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A B S T R A C T

The work aims at developing an image analysis procedure able to distinguish high value fillets of Atlantic cod
(Gadus morhua) from those of haddock (Melanogrammus aeglefinus). The images of fresh G. morhua (n= 90)
and M. aeglefinus (n = 91) fillets were collected by a flatbed scanner and processed at different levels. Both
untreated and edge-based segmented (Canny algorithm) regions of interest were submitted to surface texture
evaluation by Grey Level Co-occurrence Matrix analysis. Twelve surface texture variables selected by Prin-
cipal Component Analysis or by SELECT algorithm were then used to develop Linear Discriminant Analysis
models. An average correct classification rate ranging from 86.05 to 92.31% was obtained in prediction, irre-
spective the use of raw or segmented images. These findings pave the way for a simple machine vision system
to be implemented along fish market chain, in order to provide stakeholders with a simple, rapid and cost-ef-
fective system useful in fighting commercial frauds.

© 2018.

1. Introduction

A large number of computer vision systems have been investigated
and applied in the agri-food system answering the need of simple,
rapid, and non-destructive but reliable evaluation tools for the assess-
ment of food quality and safety during production and processing (Ma
et al., 2016). The computer vision bases go back to ‘60s (Baxes, 1994),
though its implementation in the food industry grew mainly in the last
two decades. Even if food products are extremely different, computer
vision is a cross-approach aiming at the estimation of color, morpho-
logical features and surface texture characteristics directly linked to
food quality and safety.

Few vision systems have been applied in the fishery industry,
as reported in the reviews by Mathiassen et al. (2011), Dowlati et
al. (2012), and Zion (2012). Main applications are devoted to fish
counting, definition of several physical parameters (e.g. length, width,
thickness, volume, weight, perimeter, area, compactness and round-
ness) (Balaban and Ayvaz, 2016), gender identification, chemical, bio-
chemical and sensory quality assessment, as well as species and stock
identification (Mathiassen et al., 2011). They have been implemented
both in aquaculture or fish farm and in industrial conveyor belts dur-
ing processing operations.

Promising results have been achieved in species identification.
Zion et al. (1999) were able to correctly classify grey mullet im-
ages acquired under different lighting conditions. Storbeck and Daan
(2001) described a system to recognize fish species by computer vi-
sion and a neural network, reaching more than 95% of correctly
classified fish. White et al. (2006) implemented a computer vision
machine to identify and measure different species with an accuracy
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ranging from 95.8 to 98.8%. Alsmadi et al. (2011) extracted sev-
eral features, based on ventral part of fish images, for the differenti-
ation between fish families, especially between poison and non-poi-
son families. All these systems are more or less complex and imple-
mented at different levels of the fish market chain, but they all deal
with intact whole fishes. To the best of our knowledge, no systems
have been thought for species identification in fish fillets. However,
the actual food market, driven by consumers’ needs for healthy but
ready-to-cook products, highly demands for fillets more than whole
fishes. Thus, rapid and easy tools for authenticity assessment of these
products are needed to face economic frauds (e.g. the substitution of
valuable species with cheaper ones) along the whole fish supply chain.

Even if there are a number of recognized techniques for food au-
thentication, such as molecular, chromatographic, and isotopic tech-
niques, genomics, proteomics, vibrational and fluorescence spec-
troscopy, NMR and non-chromatographic mass spectrometry
(Danezis et al., 2016), portable technologies for rapid and non-de-
structive testing would be advantageous (Stadler et al., 2016). In par-
ticular, vision systems could respond to the need of fast, reliable,
non-destructive, and in situ analyses for fish authentication.

A fundamental role in computer vision is played by image analy-
sis, which is composed by three main steps: low-level processing (i.e.
image acquisition and pre-processing), intermediate-level processing
(i.e. segmentation and object measurement), and advanced image pro-
cessing. All these steps should be optimized in order to meet the de-
fined purpose of the developed computer vision system, while reduc-
ing potential errors and ensuring result accuracy (Brosnan and Sun,
2004). Thus, the aim of this work was the development of an image
analysis procedure to be implemented in a vision system in order to
distinguish high value fillets of Atlantic cod (Gadus morhua) from
those of haddock (Melanogrammus aeglefinus).

https://doi.org/10.1016/j.jfoodeng.2018.04.012
0260-8774/ © 2018.
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2. Materials and methods

2.1. Samples

Fresh Gadus morhua (Gm, n= 90) and Melanogrammus aeglefinus
(Ma, n= 91) were provided by a trusted supplier (Copromar S.r.l., Mi-
lan, Italy) in thirteen different batches from March to June 2016. The
left fillets were portioned from the whole fishes by qualified person-
nel and carried to the university laboratories ensuring the cold chain.
Samples were stored at 4± 1°C prior to analyses that were performed
within the sampling day.

2.2. Fillet morphological characterization

The method proposed by Malandra and Baldisserotto (2014) was
applied to characterize the collected fillets according to their mor

phology. It is focused on some characteristics of the external side of
the fillets, fundamental to distinguish G. morhua and M. aeglefinus.
In particular, the analysis of myomeres and myosepta organization
and orientation in the cranial region of the external side permitted to
discriminate the considered species. Indeed the myosepta are angled
against the line of the body with the innermost edge nearer the front
of the body and the outermost edge nearer the tail, thus shaping like a
“W”. The characteristic “W” defines three main angles, one for each
change of direction, called dorsal posterior (DP), central anterior (CA)
and ventral posterior (VP). In the cranial region of G. morhua fillets,
the W-shaped myomeres have small angle amplitude, symmetry in DP
and VP angles and DP angle touching the dorsal side by an imaginary
line perpendicular to the lateral line (Fig. 1a). In the cranial region
of M. aeglefinus fillets (Fig. 1b), the W-shaped segments have angles
broader than those in G. morhua and the imaginary line touches both
the PD angle, but in the front side, and the VP angle close to the lateral
line.

Fig. 1. Fish fillet exterior face (a, Gadus morhua; b, Melanogrammus aeglefinus) and representation of the morphological characteristics useful for species discrimination according
to Malandra and Baldisserotto (2014) methodology DP, CA and VP are dorsal posterior, central anterior and ventral posterior angles, respectively. The dotted line represents the
imaginary line proposed by Malandra and Baldisserotto (2014) to evaluate the W-shape of myosepta.
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2.3. Image analysis

2.3.1. Image low-level processing
The acquisition of the images of each fillet was performed with a

flatbed scanner (HP Scanjet 8300, HP Inc., Palo Alto, CA, USA), cov-
ering samples with a black box to prevent light losses. Images were
acquired at a resolution of 600 dpi, with a color depth of 48 bit and
saved in uncompressed TIFF format. Image analysis was carried out
on a selected region of interest (ROI; 800× 1200 pixels) cropped in the
cranial area of each fillet and converted in grayscale (8 bit).

2.3.2. Image intermediate-level processing
Each image ROI was edge-based segmented through Canny

multi-stage algorithm. The application of this algorithm aimed at sig-
nificantly reducing the amount of data by filtering useless informa-
tion out while preserving the important structural properties in the im-
age, represented in this case by the muscular tissue pattern. In details,
Canny edge algorithm consists of: noise reduction by Gaussian filter;
image intensity gradient identification with four filters to detect hor-
izontal, vertical and diagonal edges in the blurred image; non-maxi-
mum suppression to define a set of edge points known as “thin edges”;
edges’ tracing through a double thresholding; suppression of all the
edges that are weak and not connected to strong edges by hysteresis
(Nosrati et al., 2013).

2.3.3. Image high-level processing
Both untreated and edge-based segmented ROI matrices were sub-

mitted to high level processing, through surface texture evaluation by
Grey Level Co-occurrence Matrix (GLCM) analysis and multivariate
analysis.

GLCM, a classical second-order statistical method, was applied
to create a symmetric matrix reporting the frequency of the different
combinations of grey levels co-occurring in the selected ROIs. Indeed,
it calculates how often two pixels with intensity values i and j (pi,j) at a
particular distance (δ) along a given direction (expressed in angles, θ)
occur in an image. Since the calculation is strongly affected by pixel
pitch and direction, a single GLCM might not be enough to describe
textural features of the input image. For this reason, 40 GLCMs for a
single input image were calculated considering ten distances (δ from 1
to 10 pixels) and all the four directions (θ of 0°, 45°, 90°, 135°). Then,
four main texture features were calculated for each matrix. Texture
feature calculation uses the GLCM to give a measure of the intensity
variation among the pixels of interest (Haralick et al., 1973). In this
work, the following features were calculated:

- Contrast: it measures the intensity contrast between a pixel and its
neighbor over the whole image, evaluating the local variation

It ranges from 0 (for a constant image) to the root mean square of the
size of GLCM-1.

- Correlation: it measures how a pixel is correlated to its neighbor
over the whole image, evaluating the joint probability occurrence of
specified pixel pairs

where μ and σ are mean and standard deviation values, respectively.
It ranges between −1 and 1, which stand for a perfectly negatively or
positively correlated image.

- Energy, also known as uniformity or angular second moment: it re-
turns the sum of squared elements in the GLCM

It ranges from 0 to 1, being 1 the value for a constant image.

- Homogeneity, or Inverse Difference Moment: it measures the close-
ness of the distribution of elements in the GLCM to the GLCM di-
agonal

It ranges from 0 to 1. Homogeneity is 1 for a diagonal GLCM.
Considering these four texture features, two matrices composed of

181 samples and 160 variables were obtained for the untreated and the
edge-based segmented data. Multivariate analysis was then carried out
by Principal Component Analysis (PCA) followed by Linear Discrim-
inant Analysis (LDA). PCA was carried out by Matlab R2016a soft-
ware (The MathWorks Inc., USA) on the autoscaled matrices to inves-
tigate sample distribution and variable weights for feature selection.
Variable selection was also performed by SELECT algorithm, imple-
mented in V-PARVUS package (Forina et al., 2008), which searches
for the variable with the largest Fisher weight, selects it decorrelat-
ing then the other predictors, and iterates until a fixed number of vari-
ables is chosen. The reduced datasets obtained were submitted to LDA
(Forina et al., 2007) using the V-PARVUS package. Each sample of
fish fillets was assigned to one of the two a-priori classes defined
based on the belonging species (Gm for Gadus morhua and Ma for
Melanogrammus aeglefinus).

Classification models were calibrated with 70% of the collected
samples (121 samples) validated both in cross validation (with 5 can-
cellation groups) and in prediction with three different external test
sets each representing 4 out of the 13 different sampling batches (i.e.
30% of the collected images with balanced representation of the two
fish species).

3. Results and discussion

3.1. Fillet morphological characterization

Visual inspection of the muscular tissue structure was carried out
for the collected samples by means of the procedure proposed by
Malandra and Baldisserotto (2014). Each examined fillet resulted to
belong to the claimed species. However, even though the applied
methodology confirmed to be reliable, it is not difficult to imag-
ine how complex the recognition of differences in myomeres and
myosepta fibers’ orientation by visual perception could be and how
long the effective screening of each fillet could take. Moreover, very
well trained personnel is needed.

(1)

(2)

(3)

(4)
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3.2. Image intermediate-level processing

Fig. 2a and b report an example of ROIs obtained from Gm and
Ma samples. A visual interpretation based on the W-shape of muscu-
lar fibers is quite difficult and long to carry out. Thus, the ROIs were
submitted to segmentation by Canny method, in order to identify and
locate sharp discontinuities (Fig. 2c and d). The Canny algorithm was
optimized as follows: ROIs were treated with a Gaussian filter with
an intermediate width (4) to detect and remove with good sensitiv-
ity the noise, while keeping a low localization error of Canny algo-
rithm. The following step dealt with finding the intensity gradient of
the image in four directions (vertical, horizontal and the two diago-
nals), in order to highlight regions with high spatial derivatives. Suc-
cessively, non-maximum suppression was applied to trace and sup-
press any pixel value that is not considered an edge (i.e. which has an
intensity equal to zero). The result was a gradient array to be further
reduced by thresholding. Canny thresholding, based on hysteresis, re-
quires two constraints: an intensity of 0.4 was used in the present study
as higher threshold to mark out the remarkable edges; a lower thresh-
old (0.08) was applied to trace faint sections of edges. This approach
gave good results in defining edges along continuous curves in the im-
age, thus it made possible to follow a faint section of a given line and
to discard a few noisy pixels with large gradient but not constituting
the actual line (Nosrati et al., 2013). In the obtained binary images
(Fig. 2c and d) each edge pixel is drawn in white and it is evident that
the Canny algorithm helped in enhancing fish muscular structure, even
if it did not extract only the myosepta information. However, it per-
formed better than other edge-based segmentation approaches (Lapla-
cian of Gaussian, Sobel, Prewitt and Robert's operator), confirming a
low error rate if compared to other techniques (Maini and Aggarwal,
2009).

3.3. Image surface texture features

The complete results of surface texture analysis by GLCM cannot
be shown due to the big size of the datasets (181 samples × 160 vari-
ables). The main findings are summarized in Fig. 3, which reports,

for the untreated and edge-based segmented data of the two fish
species, the average values of the four calculated features (i.e. con-
trast, correlation, energy and homogeneity) for the ten considered dis-
tances (from 1 to 10 pixels) and the four angles (0°, 45°, 90° and
135°).

Surface texture features of the untreated data (Fig. 3a) showed no
differences between the two fish species for contrast and homogene-
ity that are, actually, inversely correlated. Contrast gives a descrip-
tion of the intensity contrast between a pixel and its neighbor over
the whole image. In our analyses it could assume values from 0 to 49
(i.e. (8-1)ˆ2), but the average values calculated for Gm and Ma fillets
were 0.11± 0.05 and 0.10± 0.06, respectively. Thus, the images can
be considered constant at any tested distance and angle. Homogene-
ity (also known as Inverse Difference Moment) values ranged from
0.89 to 0.97, being close to the diagonal GLCM that has, by defini-
tion, a value of 1. These results revealed that there was a small grey
tone difference in the pixel pair comparison of the fish fillet images.
The smaller the pixel distance, the higher the homogeneity, meaning
that at δ = 1 the GLCM is diagonal, i.e. all elements at local level in
the image are the same. The contrast and homogeneity results obtained
were expected since, as it can be observed by the examples reported in
Fig. 2a and b, the fish fillet images had very low contrast, with a high
evenness. On the other hand, a difference between the two fish species
was observed based on correlation and energy values, no matter the
considered distance nor direction (Fig. 3a). Correlation measures grey
tone linear dependencies in the image, thus values close to 1 stand for
positive correlation. Gm samples showed an average pixel correlation
higher then Ma samples (0.8 ± 0.2 vs. 0.7± 0.2). An opposite trend was
observed for energy, with Ma average values (0.6± 0.2) higher than
those of Gm (0.5 ± 0.2), meaning that the grey level distribution in Ma
had a more constant or periodic form then in Gm.

Surface texture features calculated on the edge-based segmented
ROIs did not show species differences (Fig. 3b) as there was a sharp
overlapping of the average values.

The comparison of surface texture features calculated on the un-
treated and the edge-based segmented ROIs showed that data trans-
formation particularly affected correlation and energy values; indeed
the correlation highly decreased in magnitude after Canny segmenta

Fig. 2. Fish fillet selected regions of interest: a) Gadus morhua after grayscale transformation, b) Melanogrammus aeglefinus after grayscale transformation, c) Gadus morhua after
pre-treatment with edge enhancement Canny algorithm, d) Melanogrammus aeglefinus after pre-treatment with edge enhancement Canny algorithm.
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tion (averaged values from 0.73 to 0.11), whereas energy increased
(averaged value from 0.57 to 0.71). In any case, the two features cal-
culated on raw or the edge-based transformed data decreased when the
windows size increased.

From these observations, it seems plausible a fish species discrim-
ination according to average surface texture features calculated with
untreated data. However, in order to confirm this hypothesis, a deeper
evaluation of surface texture parameters of all samples was necessary.

3.4. Principal Component Analysis (PCA)

PCA was applied to explore both the complete surface texture
datasets (i.e. untreated and edge-based segmented data) in order to
highlight possible groups of samples according to fish species and to
highpoint the variables’ weight in this distribution. As regards the un-
treated matrix (181 samples × 160 variables), the bi-plot reported in
Fig. 4a shows the projection of samples and variables (eigenvectors)
in the space defined by PC1 and PC2 that together explained 95.43%
of the total variance. No sample distribution according to fish species
was evident. The bi-plot showed that each surface texture feature (i.e.
contrast, correlation, energy and homogeneity) is positioned in a dif-
ferent quadrant, no matter the distances and the angles investigated.
This means that values of a given surface texture parameter calcu-
lated with different distances and/or directions gave similar informa-
tion about fish fillet samples. Homogeneity and energy are quite close
to each other, suggesting a similar contribution to the sample variabil-
ity on the first PC.

PCA was applied also to surface texture data calculated after
edge-based segmentation of fish fillet images. Results are reported in
the bi-plot of Fig. 4b, which shows the variance space of PC1 and PC2
describing 94.42% total variance. In this case too, no sample distribu-
tion was observable according to fish species, and the surface texture
variables calculated at the different distances and angles were gener-
ally grouped according to the feature, with the exception of four cor-
relation data calculated at 90° that are positioned in the quadrant IV
instead of quadrant I.

Because of the high correlation observed for each surface texture
variable calculated at different distances and angles, a variable reduc-
tion was applied for the subsequent chemometric analyses. In particu-
lar, for each considered features, the values calculated in the four di-
rections at a given distance were averaged, thus eliminating the effect
of angles on the results (Haralick et al., 1973). As regards the distance,
since no information are available on the optimal value to be consid-
ered, the two extreme gaps (1 and 10 pixels) and a central point (5 pix-
els) were used. As a result, a so-called PCA-reduced dataset composed
of 181 samples and 12 variables was obtained for both untreated and
edge-based segmented fish fillet images.

3.5. Linear Discriminant Analysis (LDA)

LDA was applied to the PCA-reduced datasets (181 samples × 12
variables) obtained by GLCM analysis of untreated and edge-based
segmented fish fillet ROIs. LDA permits to classify objects accord-
ing to categories by the construction of the optimal a-posteriori clas-
sification rule based on a class a-priori assigned to each sample. The
classification rule is quite simple as it originates from directions, or
canonical variables, describing the maximum distance among cate

gories, improving the class separability (Forina et al., 2007). The cor-
rect classification rate is an index of goodness of the constructed rule
but it is not sufficient to test the model reliability. Therefore, LDA
models were validated by both internal cross-validation and predic-
tion, considering three different external test sets. The correct classifi-
cation percentages in prediction obtained with surface texture parame-
ters calculated on untreated fillet images ranged from 67.44 to 76.00
depending on the external test set considered (Table 1). Similar results
were obtained also with surface texture features of the edge-based seg-
mented images, being the correct classification range 67.44–72.07%.

Model performances were promising but not exhaustive to confirm
the fish fillet species. Indeed, a stakeholder applying such approach
could confuse up to 30% of the investigated samples, with the risk
of accepting a M. aeglefinus fillet as the more valuable G. morhua
one. Therefore, LDA was performed also on two other datasets con-
structed with the surface texture variables selected by SELECT algo-
rithm (Forina et al., 2008). In particular, twelve features were picked
up based on their Fisher classification weight (Table 2). They were
mainly related to contrast when considering the untreated matrices; in-
deed 7 out of 12 variables referred to this feature calculated at differ-
ent distances and angles. Contrast was a significant parameter maybe
because it is specifically related to surface texture patterns of an im-
age (Haralick et al., 1973). The variables selected for the pre-treated
dataset were instead almost exclusively related to correlation calcu-
lated at low distances. Indeed, a high segmentation effect on this para-
meter was also observed in § 3.3.

Using the SELECT-reduced datasets for LDA with the same con-
straints previously described, reliable models were obtained with all
the external test sets and for both untreated and edge-based segmented
images. Indeed, the average prediction ability ranged from 86.05 to
92.31% (Table 3), irrespective the use of raw or segmented images.

The obtained results are in agreement with those reported in im-
age analysis studies performed for fish species discrimination in the
last 20 years. Some studies reported better classification abilities, but
they were carried out on whole fishes rather than fillets, thus taking
advantage of skin color, fish shape and other geometric features. In-
deed, Zion et al. (1999, 2012) found correct classification rate in pre-
diction from 86 to 100% when discriminating between carp, St. Peter's
fish and grey mullet. In another study dealing with six different fish
species (sole, plaice, whiting, dab, cod, and lemon sole), a correct clas-
sification higher than 95% was obtained by Artificial Neural Network
system (Storbeck and Daan, 2001). White et al. (2006) reached 100%
accuracy of differentiation giving an indisputable discrimination be-
tween flatfish and roundfish.

Even if still good, performances of classification models decreases
when dealing with fish fillets and in any case no studies have been
published so far about fish fillet authentication by means of image
analysis techniques. For instance, Misimi et al. (2008) reached a 90%
correct classification rate for the rating of Atlantic cod and Atlantic
salmon during rigor mortis and ice storage. Also Xu et al. (2017) ap-
plied a computer vision system for differentiation of organically and
conventionally farmed salmon reaching a correct classification rate in
prediction of 83.6% based on L*a*b values (PLS-DA model). Bet-
ter results have been found when applying Vis/NIR imaging (Zhu
et al., 2013) for discriminating fresh from frozen-thawed fillets (cor-
rect classification of 97%), or when combining different in

Fig. 3. Average results of surface texture analysis of fish fillets (Gm, Gadus morhua; Ma, Melanogrammus aeglefinus) carried out by Grey Level Co-occurrence Matrix. Average
values of the four calculated features (i.e. contrast, correlation, energy, and homogeneity) for the ten considered distances (1–10 pixels) and the four angles (0°, 45°, 90°, and 135°)
are shown: a) data obtained by untreated images, b) data obtained by images pre-treated with edge enhancement Canny algorithm.
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Fig. 4. Bi-plot obtained by Principal Component Analysis applied to surface texture features (i.e. contrast, correlation, energy, and homogeneity) of Gadus morhua (Gm) and
Melanogrammus aeglefinus (Ma) fillets calculated on untreated images (a) and images pre-treated with edge enhancement Canny algorithm (b).

Table 1
Results of Linear Discriminant Analysis applied for fish species authentication (Gadus
morhua and Melanogrammus aeglefinus) to fillet surface texture features selected by
Principal Component Analysis: average correct classification percentages of models
based on untreated or edge-based segmented images.

Untreated dataset Pre-treated dataset

External test set 1
Calibration 79.54 74.32
Cross validation 72.73 65.72
Prediction 73.08 72.07

External test set 2
Calibration 85.33 75.78
Cross validation 78.89 72.22
Prediction 76.00 69.00

External test set 3
Calibration 82.27 77.31
Cross validation 76.29 70.64
Prediction 67.44 67.44

Table 2
Surface texture features of untreated or edge-based segmented images selected by SE-
LECT algorithm.

Untreated dataset Pre-treated dataset

Feature Distance Angle Feature Distance Angle

Contrast 1 135 Contrast 1 45
3 45 Correlation 1 0
4 0 2 0
4 45 2 45
6 90 3 135
8 0 4 0
10 45 4 45

Correlation 3 0 4 135
5 90 5 90

Energy 1 45 6 10
10 45 7 0
10 135 8 135

struments (i.e. portable Vis/NIR spectrometer, digital camera and tex-
ture analyzer) for the discrimination of fresh and frozen-thawed West
African goatfish (classification accuracy of 100%) (Ottavian et al.,
2014).

As regards cod and haddock fillet authentication, Grassi et al.
(2018) proposed a near infrared spectroscopy approach able to cor-
rectly discriminate 100% of fillets. It is thus evident that systems
more complex than computer vision tools, like near infrared spec-
troscopy and hyperspectral imaging, can lead to higher classification

Table 3
Results of Linear Discriminant Analysis applied for species authentication (Gadus
morhua and Melanogrammus aeglefinus) to fillet surface texture features selected by
SELECT algorithm: average correct classification percentages of models based on un-
treated or edge-based segmented images.

Untreated dataset Pre-treated dataset

External test set 1
Calibration 92.73 91.59
Cross validation 84.09 86.36
Prediction 92.31 92.31

External test set 2
Calibration 92.67 92.22
Cross validation 86.67 88.89
Prediction 90.00 92.00

External test set 3
Calibration 92.99 92.58
Cross validation 84.54 85.57
Prediction 86.05 86.05

rate, but these instruments have higher initial capital investment and
onerous data analysis if compared to the image analysis approach here
proposed.

4. Conclusions

This work demonstrated a good performance of image analysis ap-
plied to Gadus morhua and Melanogrammus aeglefinus fillet discrim-
ination. In particular, the application of GLCM analysis and the selec-
tion of surface texture parameters by the algorithm SELECT allowed
to obtain reliable LDA models reaching correct classification rate in
prediction up to 92%.

These findings envision a machine vision system to be imple-
mented from the fish factory gate, where the material is delivered, up
to the retail channels. In particular, scanning windows could be set di-
rectly on conveyor sorting belts in industries producing transformed
fish products, in order to check the authenticity of the raw materials.
In a future perspective, also simple scanning machines could be de-
veloped in order to make them available in markets and supermar-
kets, allowing consumers to scan products before purchasing. Provid-
ing stakeholders with such a simple, rapid and cost-effective system
will help them in fighting commercial frauds throughout the entire fish
value chain.
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