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ABSTRACT 

A new (NNN) tridentate ligand was prepared and its ability to coordinate ruthenium(II) was 

evaluated. The presence of different functional groups on the ligand allowed to obtain bi- 

or tri- coordinated complexes depending on complexation conditions. The catalytic activity 

of both bidentate and tridentate complexes was studied in asymmetric transfer 

hydrogenation of different aryl ketones showing a comparable behavior of the two 

complexes in terms of efficiency and stereoselectivity. 

Keywords: tridentate ligand, asymmetric hydrogen transfer, asymmetric ketones 

reduction. 

1. INTRODUCTION 

The importance of chirality is widely recognized in fine chemistry, especially in the 

pharmaceutical, pesticides and food additives industries. The isolation of a chiral 

compound from a racemic mixture is challenging because it requires the separation of 

enantiomers. This process is not trivial and in addition half of the product could be lost if 

not re-convertible or usable as building-block for another synthetic pathway. In this 

context, the asymmetric catalysis is one of the best methods to introduce one or more 

stereocenters in bioactive molecules.1-2 The investigation of new stereocontrolled 

syntheses by transition metal catalysts modified by incorporating chiral ligands is thus of 

wide-spreading importance.3-4 

In the last decades, the monosulfonated diamines have been suggested among other 

ligands as a very versatile and promising category in homogeneous catalysis.5-6 Many 

ruthenium complexes have been reported and found useful in the stereoselective 

reduction of carbonyls in homogeneous phase.7 In many examples, ligand structures are 
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based on a  two-carbon-atom chain with two nitrogen substituents in the anti-position (1,2 

diamine).8-10 On the other hand, there is a great interest in transition metal complexes with 

tridentate amine ligands, especially those containing a pyridine due to its unique electronic 

and steric properties.8, 11-17 Some of them have good efficiency in the catalytic epoxidation 

reaction18-19 and in transfer hydrogenation of aryl ketones.20  

Starting from this consideration here is reported the synthesis of a new tridentate ligand 1 

(Figure 1) and the study of its different coordination modes to a ruthenium metal center. 

Recently we studied the introduction of an unnatural β-aminoacidic skeleton in a 

octapeptide used as ligand in a Cu(II) complex containing the same pyrrolidine-piperidine 

structure as in the compound reported in Figure 1.21 In principle the presence of different 

functional groups on compound 1 could allow to obtain bi- or tri-coordinated complexes 

depending on solvent and on additive choice thus leading to the possibility to investigate 

the catalytic performance of the different complexes in asymmetric transfer hydrogenation 

of aryl ketones.  

  

 

Figure 1. (NNN) ligand 

 

2. EXPERIMENTAL 
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2.1. General: 1H and 13C NMR spectra were recorded in CDCl3 or CD3OD on Bruker 

DRX Avance (300 and 75 MHz) equipped with a non-reverse probe. Chemical shifts (in 

ppm) were referenced to residual solvent proton/carbon peak. Polarimetry analyses were 

carried out on Perkin Elmer 343 Plus equipped with Na/Hal lamp. MS analyses were 

performed by using a Thermo Finnigan (MA, USA) LCQ Advantage system MS 

spectrometer with an electronspray ionization source and an ‘Ion Trap’ mass analyzer. The 

MS spectra were obtained by direct infusion of a sample solution in MeOH under 

ionization, ESI positive. Catalytic reactions were monitored by gas chromatography 

analysis using a chiral stationary phase column (MEGA DMT β, 25 m, internal diameter 

0.25 mm) or by HPLC analysis with Merck-Hitachi L-7100 equipped with Detector 

UV6000LP and chiral column (OD-H or OJ-H Chiralcel). Commercially reagent grade 

solvents were dried according to standard procedures and freshly distilled under nitrogen 

before use. 

2.2. (S)-1-[(3R,4R)-1-benzyl-4-(4-tosylamido)-piperidin-3-yl]pyrrolidine-2-

carboxamide 3: Pyridine (0.14 mL, 1.75 mmol), di-tert-butyl dicarbonate (0.687 g, 3.15 

mmol) and (NH4)2CO3 (0.37 g, 3.85 mmol) were added to a solution of ((3R,4R)-1-benzyl-

4-((4-methylphenyl)sulfonamido)piperidin-3-yl)-L-proline 222 (0.8 g, 1.7 mmol) in DMF (10 

mL) . The reaction mixture was stirred for 24 h at room temperature then the solvent was 

removed under vacuum. The residue, taken up in CH2Cl2 (15 mL), was washed twice with 

a NaCl saturated solution. The organic layer was dried on Na2SO4 and the solvent was 

removed under vacuum affording compound 3. Yield 85%, yellow powder.  mp 109-112°C 

(from Et2O); [α]D =+ 19,6 (c=0.23, CHCl3), MS (ESI) m/z = 457,4[M+H]+; 1H NMR (300 

MHz, CDCl3) δ  1.25-1.70 (m, 3H), 1.75-1.84 (m, 2H), 1.95-2.12 (m, 1H), 2.25-2.76 (m, 

5H), 2.42 (s, 3H), 2.81-3.05 (m, 1H), 3.12-3.20 (m, 2H), 3.30-3.41(m, 1H), 3.74-3.88 

(m,2H), 2.22-7.80 (m, 9H) ppm; 13C NMR (75MHz, CDCl3) δ 20.4 (CH3), 24.5 (CH2), 30.9 
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(CH2), 31.2 (CH2), 45.7 (CH2), 51.1 (CH2), 51.3 (CH2), 52.8 (CH), 59.4 (CH), 62.0 (CH2), 

63.6 (CH), 127.1 (CH), 128.5 (CH), 128.7 (CH), 129.8 (CH), 130.2 (CH), 138.5 (C), 143.8 

(C), 134.5 (C), 179.8 (C) ppm. Elemental analysis: calcd. for C24H32N4O3S C, 63.13; H, 

7.06; N, 12.27; found C, 63.00; H, 7.18; N, 12.08. 

2.3. N-(3R,4R)-3-[(S)-2-(aminomethyl)pyrrolidin-1-yl]-1-benzylpiperidin-4-yl-4-

tosylamide 1: Red-Al 60% solution in toluene (2.21 mL, 6.57 mmol) was added to a 

solution of carboxamide 3 (0.5 g, 1.1 mmol) in toluene (10 mL). The solution was refluxed 

under N2 atmosphere for 1,5 h (TLC analysis: CH2Cl2/CH3OH 10:1). The reaction mixture 

was poured into the ice, the obtained precipitate was filtered off. The precipitate, 

solubilized in 20 mL of ethyl acetate, was washed with water. The organic phases were 

acidified with 0.1N HCl until pH 3 and the phase separated. The acid aqueous solution 

was then pH was raised to 8 with a saturated NaHCO3 solution and extracted with ethyl 

acetate, dried with Na2SO4 and evaporated. The crude was purified by RP-HPLC using a 

gradient elution of 95–30% solvent A (solvent A: water/acetonitrile/trifluoracetic acid 95 : 5 

: 0.1; solvent B: water/acetonitrile/trifluoracetic acid 5 : 95 : 0.1) over 20 min at a flow rate 

of 20 mL/min-1. The purified compound 1 was freeze-dried and stored at 0 °C. Yield 40%, 

white solid, mp 35-40°C; [α]D = -49,6 (c=0.26 , CHCl3); MS (ESI) m/z = 443,3[M+H]+; 1H 

NMR (300 MHz, CDCl3) δ  1.25-2.56 (m, 10H), 2.42 (s, CH3), 2.61-2.98 (m, 7H), 3.42-3.58 

(m, 2H), 7.21-7-82 (m, 9H) ppm; 13C NMR (75MHz, CDCl3) δ 21.9 (CH3), 23.9 (CH2), 29.0 

(CH2), 33.2 (CH2), 45.1 (CH2), 45.4 (CH2), 52.2 (CH2), 52.3 (CH2), 54.5 (CH), 58.4 (CH), 

60.5 (CH), 63.5 (CH2), 127.5 (CH), 128.3 (CH), 129.3 (CH), 129.7 (CH), 129.9 (CH), 138.3 

(C), 138.4 (C), 143.1 (C) ppm. Elemental Analysis: calcd. for C24H34N4O2S C, 65.13; H, 

7.74; N, 12.66; found C, 65.02; H, 7.92; N, 12.48. 

2.4. Synthesis of complex A: In a 10 mL Schlenk tube, the ligand (1.1 eq) was added 

to a solution of [RuCl2(p-cymene)]2 (0.5 eq) in 5 mL of 2-propanol under argon atmosphere 

and stirred for 5 hours at 85°C. After cooling to room temperature, a yellow precipitate has 
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been formed. The solid was filtered and washed with diethyl ether; finally, the precipitate 

was dried under vacuum. Quantitative yield, reddish solid; MS (ESI) of C34H47Cl2N4O2RuS 

[M-Cl] (m/z): calcd. 713.22, found 713.3 [M], 677.4 [M-Cl]; 1H NMR (CD3Cl, 300 MHz): δ = 

1.18-1.28 (m, 10H), 2.04-2.09 (m, 4H), 2.15 (s, 3H), 2.27 (s, 3H), 2.35-2.37 (m, 3H), 2.38-

2.40 (m, 4H), 2.89-2.91(m, 2H), 2.94-3.04(m, 2H), 3.46-3.48 (m, 2H), 4.10-4.12 (m, 1H), 

5.32-5.34 (m, 2H), 5.46-5.48 (m, 2H), 7.16-7.37 (m, 7H), 7.70 (d, J = 8.1 Hz, 2H) ppm; 

Elemental Analysis: calcd. for C34H47Cl2N4O2RuS C, 54.54; H, 6.46; N, 7.48; found C, 

54.98; H, 6.58; N, 7.51. 

2.5. Synthesis of complex B: In a 10 mL Schlenk tube, the ligand (1.1 eq) and TEA (2 

eq) were dissolved in 5 mL of toluene. The dimer [RuCl2(p-cymene)]2 (0.5 eq) was added 

and the suspension was stirred for 3 h at room temperature. Then the orange solution was 

refluxed for 1 h and during this period the solution became yellow-orange. After cooling to 

room temperature, a yellow precipitate has been formed. The solid was filtered and 

washed, first with water and then with diethyl ether; finally, the precipitate was dried under 

vacuum. Quantitative yield, brown solid; MS (ESI) of C48H66Cl4N8O4Ru2S2 (m/z): calcd.  

1230.15, found 543.4 [(M-C):2]l;1H NMR (CD3OD, 300 MHz): δ = 0.83-1.2 (m, 1H), 1.21-

1.25 (m, 2H), 1.40-1.48 (m, 2H), 1.49-1.53 (m, 2H), 1.68-2.10 (m, 2H), 2.53 (s, 2H), 2.58-

2.90 (m, 4H), 3.16-3.23 (m, 4H), 3.53-3.70 (m, 5H), 3.82-4.01 (m, 1H), 7.13-7.37 (m, 5H), 

7.76-7.81 (m, 2H), 8.47-8.61 (m, 1H) ppm; Elemental Analysis: calcd. for 

C48H66Cl4N8O4Ru2S2 C, 46.98; H, 5.42; N, 9.13; found C, 45.94; H, 5.13; N, 9.04. 

2.6. General procedure for asymmetric transfer hydrogenation (ATH): In a Schlenk 

tube sealed under argon, ketone (1 mmol) was added to the Ru-complex (A or B) (5 x 10-3 

mmol) followed by 1.5 mL of solvent and hydrogen donor (10 mmol). The solution was 

stirred for 24 h at 40°C. The conversion and enantioselectivity were evaluated by chiral GC 

or HPLC analysis.23-25 

GC analysis condition for 4a: iso 120°C, rtR=11 min., rtS=12 min. 
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HPLC condition for 4b: column: OD-H Chiralcel, hexane: ethanol = 95:5, flow = 0.8 

mL/min, λ = 216 nm: rtR = 12.6 min, rtS = 15.8 min; for 4c: OD-H Chiralcel, hexane: ethanol 

= 98:2, flow = 0.8 mL/min, λ = 220 nm: rtS = 16.1 min, rtR = 17.2 min; for 4d: OD-H 

Chiralcel, hexane: ethanol = 95:5, flow = 1.0 mL/min, λ = 220 nm: rtR 11.9, rtS =12.7 min; 

for 4e: OD-H Chiralcel, hexane: 2-propanol = 95:5, flow = 1.0 mL/min, λ = 230 nm: rtR 

=6.5,  rtS =7.5 min; for 4f: OD-H Chiralcel, hexane: ethanol = 95:5, flow = 0.8 mL/min, λ = 

216 nm: rtR = 13.9 min, rtS = 14.6 min; for 4g: OJ-H Chiralcel, eluent: hexane: 2-propanol = 

90:10, flow = 1.0 mL/min, λ = 216 nm: rtS = 23.4 min, rtR = 29.7 min. 

 

3. RESULTS and DISCUSSION 

 

Scheme 1. Synthesis of (NNN) ligand 1 

Compound 1 was synthesized starting from known acid 2 that was obtained in good yields 

through a multicomponent reaction as recently described elsewhere.22 Compound 2 was at 

first transformed in carboxamide 3 (85%) by reaction with di-tert-butyl-dicarbonate (1.8 eq), 

ammonium carbonate (2.2 eq) and pyridine (1 eq) in DMF. The intermediate 3 was turned 

into the final tridentate ligand 1 (40%) by reduction with bis(2-methoxyethoxy) aluminum 

hydride (6.5:1 molar ratio) in toluene solution at reflux temperature (Scheme 1).  

The Ru(II) complexes bearing the tridentate ligand were synthesized using two different 

methodologies: in the first case the use of 2-propanol, a protic and polar solvent in 
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absence of a base, at reflux for 5 h allowed to obtain a bidentate coordination involving the 

two over three more nucleophilic amino functions leaving the one bearing the sulfonic 

moiety aside. In the second method, the synthesis of the complex was realized in toluene 

for 3 h in presence of 2 equivalents of TEA employing in this case an aprotic apolar 

solvent in presence of a base with the aim of involving in coordination all the three amino 

functions (Scheme 2). Either the use of 2-propanol in presence of TEA or only toluene led 

the formation of complex which involved heterogeneously the three N atoms. 

 

Scheme 2. Synthetic pathways of Ru(II) complexes. 

As confirmed by 1H-NMR and ESI spectroscopy investigations two different complexes A 

and B were formed bearing a bidentate or tridentate ligand.26-28 In the 1H-NMR spectra of 

complex A the presence of the p-cymene ring as evinced by the two multiplet signals at  

5.32-5.34 and 5.46-5.48 ppm for the aromatic protons, confirmed a bidentate coordination 

mode. When the reaction takes place in the absence of a base, we can exclude the 

involvement of the tosylamine Na in the coordination of the metal center. It is likely, thus, 

that the possible coordination mode preferentially involves the Nb and Nc of methylamino-

proline moiety. In this way, a more stable five-membered ring at the metal center is 

obtained.  
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On the contrary, in the presence of TEA and toluene, the tridentate complex B is obtained 

as evinced by the absence of the peaks belonging to p-cymene group in the 1H-NMR 

spectrum. Satisfactory elemental analyses and ESI-MS data corresponding to the 

proposed structures were obtained for both complexes. 

Considering the distinctive features of the complexes here proposed, we then evaluated 

their capability to be used as precatalysts in asymmetric transfer hydrogenation of different 

aryl ketones (Table 1).29  

 

Table 1: ATH of different substituted aryl ketones. 

 

Entry
[a] 

Substrate H donor Reaction solvent Catalyst Conversion
[b] 

e.e. 

1 

4a 

HCOOH H2O 

A 

63% 17% 

2 HCOOH/TEA H2O - - 

3 HCOONa H2O 85% 81% 

4 HCOOH H2O 

B 

- - 

5 HCOONa H2O 63% 44% 

6 HCOONa H2O/MeOH 1:1 65% 70% 

7 HCOONa 2-propanol 54% 82% 

8 

4b 

HCOOH H2O 

A 

30% 33% 

9 HCOONa H2O 45% 58% 

10 HCOONa H2O/MeOH 1:1 22% 5% 

11 HCOONa 2-propanol 30% 15% 

12 HCOOH H2O B - - 
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13 HCOONa H2O 35% 54% 

14 

4c 

HCOOH H2O 

A 

65% - 

15 HCOONa H2O 55% 9% 

16 HCOONa 2-propanol 48% 33% 

17 HCOONa H2O 

B 

20% 2% 

18 HCOONa H2O/MeOH 1:1 35% - 

19 HCOONa 2-propanol 23% 22% 

20 4d HCOONa H2O A 20% - 

21 4e HCOONa H2O A 32% 31% 

22 4f HCOONa H2O A 67% 96% 

23 

4g 

HCOOH H2O  

A 

90% 12% 

24 HCOONa H2O >99% 28% 

 

[a]Reactions were carried out at 40°C using 1 mmol of substrate with 0.5 mol % of ruthenium complex in 2 mL of solvent with 10 

equivalents of HCOOH, HCOONa or HCOOH/TEA azeotropic mixture as hydrogen donors. [b] Conversion and e.e. were determined by 

GC and by HPLC after 24 h.  

The catalysts performance was evaluated using different reaction conditions (solvent, 

temperature) and different hydrogen donors (HCOOH, HCOONa, azeotropic mixture 

5:2=TEA:HCOOH).  

Water was found as the best solvent for carrying out the reaction. Indeed, when 2-

propanol or the mixture H2O/MeOH were employed the reaction conversion significantly 

decreased (Table 1, entries 6, 7, 10, 11, 16, 18 and 19). Only in the case of complex B, it 

is worth noting that the enantiomeric excess in the reduction of acetophenone resulted 

increased under these conditions (entries 6 and 7 vs 5). The temperature variation (20°C, 

40°C or 60°C) did not show any significant effect on enantioselectivity (data not shown). 

Regarding the hydrogen donors, HCOONa resulted the more effective in terms of 

enantioselectivity, in a ratio 10:1 with the substrate. On the contrary, using HCOOH, the 
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reaction didn’t proceed with complex B (entries 4 and 12) while in the case of complex A, 

a racemic mixture or endowed with a low e.e. of the product was obtained (entries 1 vs 3, 

8 vs 9, 14 vs 15 and 23 vs 24). 

The comparison of different catalytic systems revealed that TOF (turnover frequency) for 

the p-cymene-containing complex A is 7 h-1 similarly to 5 h-1 for dimer complex B 

(calculated for ATH of acetophenone in water and in the presence of HCOONa as 

hydrogen donor, Table 1 entry 3 vs entry 5). The corresponding alcohol was achieved in 

good yield by both catalytic systems but with modest enantioselectivity in the case of dimer 

B.12, 30 

The cooperation of the metal hydride and the amine nitrogen hydrogen functions in the 

ATH of ketones and imines with 2-propanol or triethylammonium formate as the hydrogen 

source, was a key discovery by Noyori group and this represented an outstanding example 

of outer-sphere mechanism.31-34 This last one remains the generally accepted mechanism 

for hydrogen-transfer step in the case of complex A, in which only two nitrogen atoms 

resulted coordinated to metal center.23, 35-36  

In the case of complex B, in which there are three functional groups coordinated, the 

formation of dimer afforded two 16-electron ruthenium precatalysts that might rearrange in 

the formation of the active hydride species.  

In spite of the loss of p-cymene moiety, the mechanism of ATH probably involved, also in 

this case, a classical catalytic cycle.37-40 

Taking into consideration the differences in both structural coordination mode, our 

complexes resulted less active and straightly less stereoselective in comparison with other 

similar catalytic systems reported in literature.16, 35, 41-42 In those systems better results 

might depend on the presence of an additive in formation of bimetallic 6-membered 
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transition state or in alternative on the presence of an additional phosphine ligand known 

for reducing the acidity of metal center that favors the hydride transfer. Furthermore, the 

results obtained with our complexes, indicated that the steric hindrance around the Ru 

center in the transition state, deriving both from the ligand and the substrate, could affect 

the reactivity and the enantioselectivity of the reactions.27, 37 

In summary, the best result in terms of reaction rate and enantioselectivity was obtained 

with complex A in the reduction of the activated ketone substrate 4f, ethyl 3-oxo-3-

phenylpropanoate (entry 22).  

4. CONCLUSION 

In conclusion, we developed a new (NNN) compound able to be used as ligand in 

ruthenium(II) complexes. Depending on complexation conditions, it was possible to obtain 

a bi- or a tri-dentate coordinated complex. The catalytic activity in asymmetric transfer 

hydrogenation shown by the tridentate complex B could be compared to arene-Ru(II) 

complexes (bidentate complex A) only in terms of reactivity whereas stereoselection is 

influenced by the reaction conditions and the substituents on aromatic ketones.  
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Table 1: ATH of different substituted aryl ketones 1 

Insert figure 2 

Entry Substrate H donor Reaction solvent Catalyst Conversion e.e. 

1 

4a 

HCOOH H2O 

A 

63% 17% 

2 HCOOH/TEA H2O - - 

3 HCOONa H2O 85% 81% 

4 HCOOH H2O 

B 

- - 

5 HCOONa H2O 63% 44% 

6 HCOONa H2O/MeOH 1:1 65% 70% 

7 HCOONa 2-propanol 54% 82% 

8 

4b 

HCOOH H2O 

A 

30% 33% 

9 HCOONa H2O 45% 58% 

10 HCOONa H2O/MeOH 1:1 22% 5% 

11 HCOONa 2-propanol 30% 15% 

12 HCOOH H2O 

B 

- - 

13 HCOONa H2O 35% 54% 

14 

4c 

HCOOH H2O 

A 

65% - 

15 HCOONa H2O 55% 9% 

16 HCOONa 2-propanol 48% 33% 

17 HCOONa H2O 

B 

20% 2% 

18 HCOONa H2O/MeOH 1:1 35% - 

19 HCOONa 2-propanol 23% 22% 

20 4d HCOONa H2O A 20% - 

21 4e HCOONa H2O A 32% 31% 

22 4f HCOONa H2O A 67% 96% 

23 

4g 

HCOOH H2O  

A 

90% 12% 

24 HCOONa H2O >99% 28% 

 3 
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[a]Reactions were carried out at 40°C using 1 mmol of substrate with 0.5 mol % of ruthenium complex in 2 mL of solvent with 10 4 

equivalents of HCOOH, HCOONa or HCOOH/TEA azeotropic mixture as hydrogen donors. [b] Conversion and e.e. were determined by 5 

GC and by HPLC after 24 h.
9
 6 

 7 

 8 
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Figure 1 

 

Figure in the Table 1 

 

Scheme 1 

 

Scheme 2 
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