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Abstract 

Background: The inclusion of direct effects mediated by water during the ligand-

receptor recognition is a hot-topic of modern computational chemistry applied to drug 

discovery and development. Docking or virtual screening with explicit hydration is 

still debatable, despite the successful cases that have been presented in the last years. 

Indeed, how to select the water molecules that will be included in the docking process 

or how the included waters should be treated remain open questions. 

Objective: In this review, we will discuss some of the most recent methods that can 

be used in computational drug discovery and drug development when the effect of a 

single water, or of a small network of interacting waters, needs to be explicitly 

considered.  

Results: Here, we analyse software to aid the selection, or to predict the position, of 

water molecules that are going to be explicitly considered in later docking studies. We 

also present software and protocols able to efficiently treat flexible water molecules 

during docking, including examples of applications. Finally, we discuss methods 

based on molecular dynamics simulations that can be used to integrate docking 

studies or to reliably and efficiently compute binding energies of ligands in presence 

of interfacial or bridging water molecules. 

Conclusions: Software applications aiding the design of new drugs that exploit water 

molecules, either as displaceable residues or as bridges to the receptor, are constantly 

being developed. Although further validation is needed, workflows that explicitly 

consider water will probably become a standard for computational drug discovery 

soon. 

1. Introduction 

Since the beginning of modern medicinal chemistry, scientists have relied on models 

to explain or to improve the activity of drugs. Nowadays, methodology advances in 

computational chemistry have made molecular models much more accurate, even if 

they still include many simplifications and approximations. Nevertheless, molecular 
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modelling is now an obliged passage of drug discovery and development process.[1–

5] The needs for higher accuracy, as well as the constantly increasing computational 

power, drives developers to create more sophisticated models.  

The inclusion of direct effects mediated by water during the ligand-receptor 

recognition is one of the topics that are currently drawing much of the attention. The 

analysis of a few thousands of crystallographic protein-ligand complexes showed that 

one or more water molecules are involved in ligand binding,[6,7] Moreover, Lu and 

co-workers found that more than 50% of the water molecules observed in 392 high-

resolution complexes actually were bridging waters.[8]  

The potential role of water in the drug design process has been long recognized. 

Medicinal chemists often dealt with the possibility to displace a water molecule from 

the binding site benefitting from the entropy change during the binding process, or to 

use it as a bridge anchoring the ligand to the receptor.[9] However, making a smart 

choice between the two strategies is only possible if the binding thermodynamics of 

the considered water can be reasonably predicted, since no simple experimental 

methods exist to evaluate the energetics of individual water molecules. 

The importance of considering water in computational drug design has already been 

reviewed and some of the applications that can be used for this purpose have also 

been discussed.[10–12] However, considering the constant improvements in software 

design and the awareness of usefulness in applications over years, in this article we 

intend to provide to medicinal chemists a synoptic discussion of the available 

computational methods. These include principally those developed in the last decade, 

which are capable of taking water into account in drug design.  

To include explicit water molecules into docking or virtual screening studies, some 

crucial questions need to be considered: how the water molecules are positioned? 

Which ones are the most important to be included for later study? How explicit 

hydration is treated by the docking software of preference? Should the water 

molecules be fully flexible during docking? How water displaceability and free 

energy or score contribution is considered?  

In the following sections, we will try to address these questions alongside with 

potential solutions, and provide current options related to docking or virtual screening 

with explicit hydration.  

Indeed, we will analyse some software that can aid the selection of important water, 

whose coordinates are obtained by experiments or by calculations, for later docking 

studies. Then, we will discuss how flexible water molecules can be efficiently treated 

during docking. Finally, we will report on some of the recent methods based on 

molecular dynamics (MD) simulations that can be used to tackle specific question 

related to the role played by water molecules in the ligand-receptor recognition 

process. 

2. Hydration Sites Selections or Predictions  

2.1. Water selection methods based on experimental data 
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One of the prevalent and acknowledged water positioning methods is the use of high-

resolution X-ray crystallographic structures. This method is generally trustworthy and 

able to provide precious information on tightly bound water molecules at the binding 

site.[13,14] Nevertheless, it is important to be aware that X-ray structures, though 

being the most resolved representation of molecular geometry we can currently 

generate by experiments, provide rather “static” information, collected at a relatively 

low temperature and with a well-ordered structural arrangement. Moreover, 

interpreting the electron density to obtain the averaged position of the atoms provides 

that the outcome for some water molecules remains dubious, especially at a relatively 

poor resolution. Additionally, the method inevitably suffers from all the intricate 

requirements that detain its application to a wider range of biomolecular systems. 

Nonetheless, well-acknowledged successes related to the HIV-1 protease were 

accomplished using the information of conserved water molecules experimentally 

determined at the binding site.[15–20] Thus, it is reasonable to consider that the same 

logic might apply to other systems. Multiple methods have been developed using this 

philosophy to estimate conserved water positions using information available in 

public databases (e.g. Protein Data Bank,[21] PDB, Cambridge Structural 

Database,[22] CSD). In addition, multiple auxiliary databases have been developed to 

address the importance of ligand-protein interactions (e.g. Binding MOAD[23,24], 

PDBbind[25,26], and BindingDB[27,28]). 

One of the experiments-based methods, Consolv,[29] analyses the environment of 

explicit water molecules at the active site to estimate their conservativity using single 

or multiple crystal structure(s). The crystallographic B-factor is considered as one of 

the environmental evaluation criteria, aside from the number of closest protein atoms 

around the water molecules (i.e. atomic density), the hydrophilicity of the hydration 

site, and the number of water-protein hydrogen bonds. Moreover, Consolv also allows 

conservation tests among multiple crystal structures using the k-nearest-neighbour 

genetic algorithm. The method was validated on 7 testing complexes, reaching a 75% 

prediction accuracy. However, 83% of false positive positions were replaced by polar 

atoms from the ligands in the original complexes, implying a potential 90% accuracy.  

The evaluation of the interactions made by different water molecules found in a 

protein binding site can also be tackled as a typical protein-ligand scoring 

problem.[30] Several scoring methods were indeed developed to describe protein 

ligand interactions,[31] the most common being empirical (or regression-based) [32–

34] and force field-based (or physics-based) scoring functions,[35–37] and the same 

theory can thus be applied to water. 

WaterScore was indeed developed as a scoring method to estimate conserved water 

molecules using a logistic regression analysis and multiple structural properties, 

derived from crystal structures.[38] Three structural properties are considered in the 

scoring function: the temperature B-factor, the solvent contact surface area, and the 

number of protein atomic contacts. The method provided a moderate prediction 

efficiency ranging from 67.4 to 71.7%. The author later published a complete statistic 

study on energetic and physicochemical properties of tightly bound water molecules. 

The analysis was carried out on 2332 high-resolution crystal structures, but results 

were inconclusive,[39] probably due to the modest prediction ability of the method. In 
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another work, WaterScore, followed by thermodynamic integration free energy 

calculations, was successful in determining a tightly bound water molecule in the 

enzyme Abl-SH3 domain tyrosine kinase in complex with a peptide.[40] 

Force-field-like scoring methods were also developed to characterise explicit water in 

biomolecules. For instance, HINT[41] uses a non-Newtonian force field based on 

experimentally determined LogP between octanol and water (LogPo/w) and a Rank 

algorithm[42] for water scoring and optimisation. The method was tested on 4 apo 

proteins with 50 active site water molecules. The outcome was then compared to 

those observed in the holo complexes; 76% water positions were accurately 

predicted.[41] A later study, performed on 9 apo/holo structures, predicted 87% of the 

68 conserved water molecules.[43] Multiple follow-up works were carried out, 

covering protein-protein interactions,[44–46] protein-ligand interactions,[47] and the 

design of inhibitors targeting O-acetylserine sulfhydrylase,[48] thrombin,[49] 

cystalysin,[50] and human serine racemase.[51] 

Though potentially accurate, these methods require extensive amount of inputs and a 

priori knowledge, including extended experimental data. Indeed, one or multiple 

well-resolved crystal structure(s) should be acquired, generally with a large amount of 

trials and errors. These requirements probably hindered the applications of some 

methods in early drug design studies, especially on those biomolecular systems which 

are difficult to crystallise. Thus, efficient prediction tools which are not very strict on 

input data, but still provide an acceptable accuracy, are deemed necessary for drug 

design. 

2.2. In silico methods predicting water positions  

Two pathways can be followed to virtually place water at the active sites: the water 

molecules can be positioned either before or after docking experiments. The former 

approach is more closely recreating the real solvated binding scenario. The successful 

docking greatly depends on the ability of the ligand to displace water molecules, or 

the adaptability to the favourable poses due to effective bridging interactions. On the 

other hand, water placement after docking is more effective in filling up the space 

between ligand and receptor, potentially improving the binding free energy by altering 

the chemical properties about the protein surface. However, this is at the cost of losing 

some ligand adaptability due to the pre-determined “dry” poses. This could be 

particularly true if the docked complexes are hold static. Moreover, these “dry” poses 

could also be incorrect, as demonstrated by Roberts and Mancera, who improved their 

pose predictions by including explicit water molecules during docking.[52] 

Nonetheless, the usefulness of these methods should not necessary be excluded, as 

they might still be worthwhile, for example when an accurate pose predictions has 

already been achieved, but improved free energy estimations are expected.  

Pre-docking prediction of solvation sites. Based on the reference interaction site 

model (RISM) theory[53–56], the three-dimensional RISM with the closure relation 

by Kovalenko and Hirata (3D-RISM-KH) theory[57–59] has become more widely 

applied to analyse the solute-solvent interface for water configurations. The RISM 

theory essentially applies the first principles foundations of statistical mechanics and 

reduced Ornstein-Zernike integral equation theory[60] to the liquid state of matter. 
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The generalisation of the solute-solvent RISM equations,[57] in combination with the 

closure relation suggested by Kovalenko and Hirata,[58] enables the 3D mapping of 

solvent distributions around an arbitrarily shaped solute molecule. The detailed 

theoretical background has been well expounded and reviewed in a variety of reading 

materials.[58,61–64] In recent years, successful applications of the 3D-RISM-KH 

theory within multiple solvated biomolecular systems has also been reported.[65–70] 

This prevalence in applications is likely related to the solid theoretical platform it 

stands on and the more efficient computational algorithm involving solving solely the 

integral equations, revealing a comprehensive solvation structure in the statistical-

mechanical ensembles. This provides a feasible and powerful alternative for studies 

related to very complex systems that cannot be easily handled by molecular 

simulations.  

Using the 3D-RISM-KH integral equation theory, multiple thermodynamic properties 

can be calculated, one of which is the 3D distribution function. Placevent, developed 

by Sindhikara and co-workers, utilises this property to derive discrete solvent 

positions around the solute of interest.[71] The method was validated on both KNI-

272-bound HIV-1 protease and F-type Na+-ATPase. All six of the important water 

molecules of HIV-1 protease were found from a blank test and also those of the 

ATPase.[71] The 3D-RISM-KH theory combined with Placevent became a standard 

hydration analysis in a variety of studies. Recent applications include facilitating 

protein NMR shift calculations in explicit solvent,[72,73] solvation of 

channelrhodopsin cation channels,[74] predicting bound water molecules for BCR-

ABL kinase inhibitor design,[75] and providing initial solvated model for MD 

simulations of ATP-bound Akt1 complex.[76] Stumpe et al. also demonstrated that 

the water densities generated by 3D-RISM-KH remarkably agreed with that from MD 

simulations.[77] This exhibits the powerfulness of 3D-RISM-KH even when static 

conformations are used. However, it was noted that the method is not yet suitable for 

solvation free energy calculation due to intrinsic drawbacks brought about by the 

closure approximations and the applied force field. Thus, though with good accuracy 

in depicting water positions, the method is not recommended to be incorporated into 

free energy calculations.  

The continuously increasing power of modern hardware, allows protocols based on 

MD or Monte Carlo (MC) simulations to become an alternative to predict the position 

of potential important water molecules within binding site. The inhomogeneous 

solvation theory (IST or IFST)[78–80] provides the theoretical background to build 

up solvation energy profiles of systems using molecular simulations. One method 

adapting this theory, WaterMap, uses MD simulations for prior-docking water 

mapping[81,82] and has become well practiced within the Schrödinger Small-

Molecule Drug Discovery Suite.[83] The mapping procedure starts with a MD 

simulation of the restrained protein or complex in explicit solvent. The location and 

the orientation of every water molecule within the binding site are recorded into a 

density profile during the simulation. The water molecules are then mapped at gridded 

positions with a density higher than that of the bulk solvent. Enthalpy and entropy 

energy terms are then evaluated using a modified IST. Moreover, the Glide XP 

scoring function was modified, namely WScore, to incorporate more accurate solvent 
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interactions and some receptor flexibility in docking using WaterMap 

procedures.[84,85] The overall protocol and applications will be thoroughly reviewed 

in later section.  

The applications of WaterMap took off since its early release, mainly in investigating 

structure-activity relationship,[86–88] designing potentially active molecules,[89–91] 

and exploring druggable sites.[92] Some examples include adenosine A2A[87,93] and 

other G protein coupled receptors,[94] human carbonic anhydrase (HCA),[95] lactate 

dehydrogenase A (LDH-A),[96] dopamine D3 receptor,[97] serine proteases,[98] 

farnesyl pyrophosphate synthase,[99] penicillin-binding protein 3,[100] Janus kinases 

(JAKs),[90] and proprotein convertase subtilisin-kexin type 9.[101] Most of these 

studies involve evaluations of solvent thermodynamic properties at the binding site, 

implying a relatively robust and mature application in the field. Relative binding free 

energies were also computed with WaterMap, but only within congeneric series of 

ligands for which the desolvation of the binding site, rather than specific ligand 

interactions, was the main driver of the binding thermodynamics (e.g. within highly 

hydrophobic pockets).[81,102] 

One intrinsic drawback of applying MD simulation is related to proper equilibration 

of buried water molecules.[103–106] The relatively short simulation generally used in 

WaterMap calculations might fail to sample positions about more buried region at the 

binding site. This is likely severe for ligand-bound complexes. Wang and co-workers 

have applied a grand canonical Monte Carlo (GCMC) step prior to MD simulation to 

overcome this demerit.[107] Likewise, other viable methods can also be applied if 

deemed necessary. Another disadvantage of WaterMap is that the simulated system is 

not allowed for relevant conformational changes during the solvation process, since 

protein restraints are applied during MD.[11] Hence, some receptor relaxation in 

solvent might be lost. Moreover, although able to correctly predict the position of 

water molecules in a network, it cannot calculate the binding free energy of 

networked waters. 

The grid inhomogeneous solvation theory (GIST) was also proposed.[108–110] GIST 

allows the calculations of water occupancy, and enthalpic and entropic energetics on a 

3D grid, instead of at discrete hydration sites. GIST is implemented in the 

AmberTools cpptraj package[110,111] and was recently combined with 

AutoDock4[112] to incorporate water thermodynamics in virtual screening.[113] The 

authors demonstrated improvements in docking pose predictions and in virtual 

screenings for the coagulation factor Xa. A non-commercial alternative to WaterMap 

is the Solvation Thermodynamics of Ordered Water (STOW) package.[114] Similarly 

to WaterMap, the method uses a water trajectory from MD simulations and applies 

the IST to determine the thermodynamic properties of isolated or clustered water 

molecules. STOW has been successfully used in studies on several biological systems 

including HIV1-protease, Concanavalin A in complex with carbohydrates, and 

cyclophilin A.[115–118] 

Other than applying IST related methods, information on hydration sites can also be 

derived from averaged Gaussian distribution functions. WATsite takes up this strategy 

to identify important water molecules from a MD simulation implemented within a 
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Pymol plugin.[119] The method reads information from a MD trajectory of the 

protein in the apo or in the holo state. The protein binding site needs to be defined 

before running the simulation, and a ligand or a pseudo-ligand must be positioned in 

the binding pocket. A margin value is also required to define the final box size to 

enclose the binding site. Successively, for each MD frame, the positions of the oxygen 

atoms of waters within the binding site are recorded. Gaussian distribution functions 

are established about each oxygen centre on a 3D grid and averaged over the whole 

MD simulation. A quality threshold clustering algorithm is then applied to determine 

locations with peaked water occupancies as the hydration sites. The desolvation free 

energy is then calculated from solvent entropic and enthalpic surpluses to the bulk 

solvent for each hydration site. Analogous to WaterMap and related methods, a 

positive desolvation free energy indicates unstable water molecules; replacement of 

these water molecules by ligands should improve the final binding free energy.[120] 

This program is able to run all the steps necessary to the definition and visualization 

of hydration sites, starting from the structure preparation. Moreover, if combined with 

a pharmacophore modelling tool, WATsite can be employed to derive protein-based 

pharmacophore model. The use of such “water aware” pharmacophores led to higher 

computational efficiency maintaining the enrichment performance, compared to other 

models where hydration sites were not considered.[120]  

However, WATsite is only compatible for Gromacs MD trajectory for the hydration 

site analysis. Alternatively, a similar tool, WATCLUST,[121] was developed as a 

VMD[122] plugin to allow analyses on previously loaded MD trajectories. 

WATCLUST can be called from the Extensions → Analysis menu to compute 

hydration sites around specific residues, together with water site-protein interaction 

energy and other thermodynamic parameters. Additionally, the obtained water sites 

can be used to generate water biased grid maps for subsequent docking studies with 

AutoDock. 

As an alternative to MD-based methods, MC simulations might be beneficial for those 

systems whose binding sites are either occupied by a ligand or hardly accessible to 

solvent. Just Add Water Molecules (JAWS or JAWM),[123] currently implemented in 

a modified version of MCPRO (v. 2.1),[124] is a rather recent MC method that can 

operate on both apo or holo proteins. The method requires a 3D grid formed by 

overlapping spheres centred on each atom of the ligand or of a user-selected group of 

atoms of the protein. Initially, putative hydration sites are guessed by randomly 

positioning water molecules on the grid. A MC step is then performed to generate a 

probability distribution of the water occupancies. An additional degree of freedom, θ, 

representing the “water-likeness” of each hydration site, is introduced in the MC 

step.[123] The fractional water occupancies obtained in the previous step are then 

clustered into a defined number of possible hydration sites. In a second step, a biasing 

potential is applied to each water molecule identified previously, and a new MC 

simulation is performed for each water to establish the amount of time the molecule is 

interacting with the system. This procedure allows the estimation of the binding free 

energy for each water molecule. JAWS was initially validated on five biomolecular 

systems. The method performed well in predicting well-buried water molecules, but it 

required protocol adjustments for solvent exposed pockets. A consensus analysis of 
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multiple setups was also recommended. Cautions should be taken as JAWS is also 

ligand-dependent, but the method also works with apo proteins. The method was 

further validated on three protein-ligand complexes,[125] and more intensively, on 

inhibitor binding for p38r MAP kinase,[126] followed by MC free energy 

perturbation calculations. JAWS has also been applied before an enhanced MC 

method to confirm the unfavourable placement of water in a cavity.[127] 

Grand canonical Monte Carlo (GCMC) technique, another branch of MC methods, 

was initially introduced in 1974[128] and adapted to hydration analysis in 1990-

2000s.[129–132] GCMC allows number of particles in the system to fluctuate during 

the simulation. This is accomplished by coupling the system to an ideal gas reservoir 

at a constant chemical potential. Recently, Ross and co-workers developed the 

method further to overcome its previous limitations.[133] The grand canonical 

integration (GCI) was incorporated to allow optimisation of the number of solvent 

molecules though minimising the Helmholtz free energy state. The calculated 

hydration free energy in bulk solvent was in excellent agreement with experimental 

data. Additionally, in small cavities at protein-ligand interfaces, GCI calculation of 

free energy was satisfactorily close to that from replica exchange thermodynamic 

integration. With this implementation, GCMC can be applied to compute the binding 

free energies of entire water networks through water titration plots.[134,135] 

Moreover, this approach can also be used as a water placement tool. It was noted that 

it is important to achieve full convergence of the number of water molecules for 

reliable predictions.  

JAWS, GCMC and double-decoupling (a rigorous alchemical method based on MD 

and statistical thermodynamics [136]) were compared side-by-side in a later study on 

zanamivir in complex with N9-neuraminidase.[137] The three methods yielded 

consistent results in the calculation of water binding free energy, though JAWS and 

GCMC resulted 10 times faster than double-decoupling. However, this higher 

efficiency was still in the range of 30 hours using 16 2.6 GHz processors.[137] 

Moreover, issues with JAWS can arise if extensive overlaps of population densities 

occur, possibly leading to difficulties in clustering into separate hydration sites. 

Water molecules can also be positioned through docking. WaterDock adopted this 

idea by using AutoDock Vina[138] to dock a single water molecule into the binding 

sites within a cubic space of 15 Å edge length.[139] Both locations and poses of the 

water molecule were recorded from repeated docking processes. The author reported 

97% accurate predictions among 14 structures of OppA-lysine-X-lysine-tripeptide 

complexes, and 88% within another set of X-ray structures.[139] The prediction of 

displaceable water by WaterDock was validated using the Astex Diverse Set[140] 

with an accuracy of 75%.[139] A promising perspective regarding this method is the 

highly efficient calculation due to the application of AutoDock Vina; the prediction 

can be done within seconds. A study on CDK9 applied WaterDock for binding site 

hydration.[141] The applications among the other studies are mainly in the validation 

domain for conserved water molecules in crystal structures.[142–144] 

WaterDock has been incorporated into another solvation program, Dowser++, to 

accurately predict water at protein interiors.[145] The latter is a development of the 
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Dowser software,[146] performing the calculation on the whole protein space 

followed by further analysis. This tandem analyses provided a false-positive rate 

much lower than using WaterDock alone.[145] The authors suggested that the high 

false positive rate was likely intrinsically determined by the local performance of 

AutoDock Vina at the binding site; the Vina methodology is probably not suitable for 

whole-protein docking.[145] The authors of WaterDock also addressed the potential 

drawback of the program regarding the false-positive rate, recorded at 24% for one 

test set.[147] Thus, a new version, WaterDock 2.0, was introduced with improvements 

from this standpoint.[147] The solvation behaviour of small molecules was included 

as an additional criterion based on the hydrogen bond saturation limit. Information on 

the hydration shell was derived from preliminary MD simulations. It was shown that 

the method provided a 50% improvement in false positive occurrence within ligand-

protein complexes. 

The importance of water molecules at binding sites can also be assessed from their 

desolvation due to their proximity to the solute. OpenEye’s SZMAP[148] resembles 

the well-known GRID method[149] to some extent. It provides the option of 

combining explicit water molecule with a Poisson-Boltzmann solvent continuum[150] 

(i.e. a semi-continuum solvation) and classical statistical mechanics. The method 

calculates thermodynamic quantities at gridded points using a water probe at multiple 

orientations, interacting simultaneously with the high dielectric continuum and the 

solute(s). The polar and apolar sites are distinguished using the free energy difference 

from charged to uncharged (CH2-like) water molecule, using PB calculations with 

adjusted partial charges on the hydrogens and oxygen. The performance of SZMAP 

was assessed on a variety of crystal complexes.[151] Decent results were obtained in 

predicting conserved waters and in correlation to experimental B-factor. 

Another prediction tool, SuperStar,[152–154] empirically applies non-bonded 

information collected from experimental data, i.e. the IsoStar scatterplots based on the 

CSD and PDB.[154,155] Though designed for predicting protein-ligand interactions, 

it also provides a high success rate (88%) in mapping explicit hydration in protein-

ligand complexes.[153] Multiple applications in mapping functional group 

interactions were reported so far.[156–160] In one example, SuperStar calculations 

integrated 3D-QSAR results providing a rationale for high affinity ligands interacting 

with hydrophobic residues through a polar group.[161] It was indeed observed that 

the relatively apolar side-chains were able to accommodate a water molecule acting as 

a hydrogen bond acceptor. 

Post-docking prediction of solvation sites. Though post-docking positioning of water 

molecules could potentially impair the adaptability of protein-water-ligand 

interactions, Rossato and co-workers devised an interesting solvation algorithm, 

AcquaAlta, along with molecular docking.[162] The method places water molecules 

at the ligand-protein interface based on geometric information about water molecules, 

collected from the CSD. The water propensities also consider interaction energies of 

water to generic functional groups from ab initio calculations.[162] On 20 crystal 

structures used as test set, AcquaAlta succeeded in predicting 76% of water positions.  

2.3. Applications in prospective virtual screening 
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Several criteria need to be satisfied to implement the above methods in virtual 

screening applications. Most of the methods have shown fair to good reproducibility 

of experimental data, i.e. crystal-resolved water positions. Some provided solid and 

well-rationalised computational validations, such as 3D-RISM and WaterMap. Only 

the MC based methods (JAWS and GCMC) were validated on fewer experimental 

complexes, probably due to the relatively high computational costs of these 

procedures. Compatibility with apo structure could be advantageous, as the 

calculation can be performed just once before docking or virtual screening. However, 

few of the methods provided statistically significant studies on apo proteins, except 

WaterMap.[84] 

The method also needs to be computational efficient. Calculations involving 

molecular simulations (WaterMap, JAWS, GCMC and related methods) are much 

more expensive in terms of computational time. This could impair their wider 

application in high-throughput virtual screening, as the meticulous calculation 

procedure might be more suitable for later lead optimisation. The 3D-RISM method, 

though it may take hours when considering the whole protein, can be restricted to the 

binding site to improve its efficiency. Its already well standardised applications are 

probably related to its conveniently developed connection to the principal MD 

simulation packages. SZMAP1.2 calculations can take up to several CPU-hours, but it 

can be scaled-up drastically with MPI support, if the user can get access to large 

calculation resources.  

Empirical methods seem fair starting points if high-resolution crystal structures are 

available. This is particularly true for both HINT and WaterScore methods, as both 

require pre-deposited water positions to evaluate on. However, HINT does not restrict 

the hydration sites to be experimentally determined. WaterDock could be a potentially 

quick estimator of hydration sites for virtual screening. Nonetheless, its application in 

a real-case setting is yet to be validated. Summaries of the above methods are shown 

in Tables 1 and 2. 
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Table 1. The major reviewed methods for explicit water evaluation and prediction 

Method Theory in brief 
Experimental 

data? 

Apo 

structure? 
Availability* Ref. 

Consolv 

Knowledge-based: the number 

of closest protein atoms, the 

hydrophilicity of the hydration 

site, the number of water-

protein hydrogen bonds, and B-

factor 

B-factor Yes Free (SLIDE) [29] 

WaterScore logistic regression analysis 

B-factor, 

resolved water 

positions 

Yes N/A [38] 

HINT 
A non-Newtonian force field 

and a Rank algorithm 

LogPo/w, 

resolved water 

positions 

Yes N/A [41] 

3D-RISM-KH 

+ Placevent 

Reduced Ornstein-Zernike 

integral equation theory in 

combination with the KH 

closure relation, then converting 

solvent distribution function to 

population function and derive 

water positions of the highest 

likelihood 

No Yes 
Free 

(AmberTools) 

[57–59], 

[71] 

WaterMap 
MD simulation and modified 

IST 
No Yes 

Purchasable 

license 

(Schrödinger) 

[81,82] 

GIST 

(Amber) 

MD simulation and Gridded 

IST 
No Yes 

Free 

(AmberTools) 
[108–110] 

STOW MD simulation and IST No Yes N/A [114] 

WATsite 

MD simulations, followed by 

clustering and Gaussian 

distribution analysis 

No Yes 
Free (PyMOL 

plugin) 
[119] 

JAWS 

λ-dynamics MC simulations, θ 

value simulated as water-

likeness 

No Yes 

Free 

(ProtoMS and 

MCPRO) 

[123] 

GCMC+GCI 

Coupling to an ideal gas 

reservoir at a constant chemical 

potential, optimise number of 

solvent through free energy 

minimisation 

No Yes 
Free 

(ProtoMS) 
[128] 

SZMAP 

Semi-continuum solvation at 

gridded points; water probe 

interacting with both the high 

dielectric continuum and the 

solute(s) 

No Yes 

Purchasable 

license 

(OpenEye) 

[148] 

WaterDock 

(2.0) 

Repeatedly dock a single water 

molecule into the site of interest 
No Yes 

Free (PyMOL 

plugin) 
[139,147] 

SuperStar 
Knowledge-based: non-bonded 

contacts 
No Yes 

Purchasable 

license with 

free trial 

(CCDC) 

[152–154] 

AcquaAlta 

Water geometric information 

from CSD and ab initio 

calculations 

No No N/A [162] 

* The software packages that the method incorporated in are shown in parentheses. 
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Table 2: Additional validation information and outcomes of the reviewed methods for 

explicit water evaluation and prediction 

Method Test set Validations Prediction accuracy* 

Consolv 7 non-homologous proteins (67 

active site waters) 

Percentage accuracy in total, 

conserved and displaced 

water + Matthews coefficient 

74.6 % 

WaterScore 4 proteins with both free and 

complexed form of structures 

(resolution < 2.5 Å) 

Probability calculated from 

best logistic regression model, 

1x10-20 probability threshold 

67.4 - 71.7 % 

HINT 4 apo proteins Score and rank water 

molecules in apo structures 

and predict their role in ligand 

binding 

76% 

3D-RISM-KH 

+ Placevent 

1 complexed structure of HIV-1 

protease and 2 apo structures for 

the rotor ring of F-ATP synthase 

Blind test of predicting water 

positions 

All the important water 

molecules were predicted 

WaterMap Apo binding cavities of 

streptavidin, Cox-2, antibody 

DB3, and HIV protease 

World energy and excessive 

entropy estimations, and 

water configuration analysis 

N/A 

GIST 

(Amber) 

Cucurbit[7]uril and coagulation 

Factor Xa 

Entropy and solvation energy 

estimations, water 

configurations, and 

comparison with hydration-

site approach (HSA) 

Perform as well as HSA 

STOW HIV-1 protease complexed with 

inhibitors, concanavalin A-

carbohydrate complexes, CypA-

CsA complex 

Free energy contributions N/A 

WATsite Factor Xa, HIV-1 protease, and 

pcDHFR 

Pharmacophore-based virtual 

screening using actives and 

DUD datasets 

N/A 

JAWS 5 proteins + ligands Identification of hydration 

sites, occupancy probabilities, 

and binding free energy 

Reasonable crystal water 

position reproducibility  

GCMC+GCI 5 proteins， a mixture of apo and 

holo structures 

Reproducibility of consensus 

crystal water positions 

100 % with some false 

positives 

SZMAP 6 proteins with 34 structures in 

total 

Water position prediction, 

free energy terms calculated 

at each position, sensitivity of 

free energy evaluation,  

More than half of the 

crystal water molecules 

were predicted 

Waterdock 

(2.0) 

A set of high resolution X-ray 

structures, 14 structures of OppA, 

and the Astex Diverse set 

Conerved water prediction for 

the first two test set, and 

hydration site prediction for 

the third one 

88%, 97%, and 75 % 

respectively 

SuperStar 50 high-resolution protein 

structures with a total of 16,474 

water positions 

Peaks in water propensity 

maps to crystal resolved 

positions 

88 % 

AcquaAlta 20 high-resolution X-ray 

structures for bridging water 

prediction and 12 OppA crystal 

structures for docking assessment 

Prediction in bridging water 

and post-docking process 

50 - 100% for binding site 

waters, and 58.3 - 100 % 

for bridging water 

molecules 

* Only results of water position prediction are listed. 

3. Incorporating Explicit Solvation During Docking 

Following the potentially important hydration sites been located, the successive 

docking procedures should be able to incorporate explicit water molecules 

accordingly. The treatment of water molecules during the docking process is crucial, 

as the initial position of waters could be far from ideal to accommodate the foreign 

compounds. Additionally, potential overlap could occur while the protein-ligand 

interaction is favoured over solvent-mediated binding. Thus, displaceability and 
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positional flexibility of these water molecules should be considered by the docking 

software. 

Moreover, the scoring of the additional water could require updates to the scoring 

functions. As some of them are well-characterised for biomolecules and organic 

compounds, they might not be as explicit-solvent-friendly. Entropy is also important 

for evaluating free energy contribution of water. The entropic cost of moving a bulk 

water to the protein was estimated to be up to 2 kcal∙mol-1 at 300 K.[163] This is far 

from trivial comparing to a solvent free energy benefit of ˗3.1 to ˗1.9 kcal∙mol-1 for a 

single water molecule, calculated from two well studied biomolecular complexes.[99] 

Finally, other requirements might also be specifically adapted to the strategy taken for 

including water molecules in docking. Hereafter, we review the docking software that 

satisfy the above criteria to some extent. We hope this will provide useful information 

for medicinal chemists upon choice making, and insights for computational 

developers and chemists to design improved protocols and methods. 

3.1. Methods adapted to docking with explicit hydration 

Schrödinger[83] has developed WScore and WaterMap methods, both incorporated in 

its multi-stage systematic pose sampling methodology,[84,85,164] for a more accurate 

scoring of docked complexes. To include protein flexibility, Repasky and co-workers 

introduced an ensemble docking protocol[84] in addition to the growing algorithm of 

relevant side chain in Glide.[164] The growing algorithm already included partial 

protein flexibility at binding site. The updated protocol uses multiple conformations 

of receptors from crystal structures and docks all ligands into each structure.[84] 

However, it is principally feasible to use receptor structures from alternative sources, 

such as clustered conformations from MD simulations. This can further improve the 

ligand adaptability in the binding pocket. The best scored pose is taken across the 

ensemble. A penalty is also added if the best score is considerably better than those of 

other poses. In addition, water reorganisation upon ligand binding is also considered 

by sampling on a grid. Glide XP,[164] the scoring function that WScore derived from, 

includes special rewarding terms upon replacement of solvent by ligand at the binding 

site. Such mechanism works like the direct penalisation of bound water molecules. 

The scoring function is also improved with multiple modified/added terms and 

penalties, in comparison to Glide XP. WaterMap is applied to identify tightly bound 

water molecules in multiple biomolecular systems. The combination of WaterMap 

and WScore provided decent improvements in both ROC AUC and enrichment factors 

in virtual screenings of actives against universal decoys in various systems.[84] 

However, to our knowledge, no prospective studies were reported so far including the 

application of the full tandem of WaterMap followed by WScore evaluation. Notably, 

efficiency is a fatal drawback of the method as MD simulations are still an essential 

sampling method for the IST analysis. It was reported that a WaterMap calculation for 

one ligand-complex can take more than 30 hours on 2.2 GHz 8-core processors.[85] 

Spatial flexibility of explicit water molecules can also be modelled by considering 

them as additional ligands or parts of the ligands. GOLD[36,165] implements the 

flexibility using the former method. The program uses an “on-and-off” strategy to 

account for water occupancy.[166] Free rotation of water molecules is also included 
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in the GOLD docking genetic algorithm, but with fixed translation. Therefore, the 

position of waters is user-defined, which requires sufficient knowledge about the 

water network in the binding site. Moreover, the scoring functions, Goldscore and 

Chemscore, were updated accordingly. The rigid-body entropy of water is included by 

an additional score penalty with an optimised constant value. Additional binding 

affinity terms for water molecules are added in the same functional forms to the 

regular protein-ligand interaction. Furthermore, interactions of each water molecule to 

other preserved ones are also included. The method reached a 93% successful 

prediction of the role of water at the binding site, either mediating ligand-to-protein 

interactions or displaced. Improvements in the prediction of binding mode were also 

observed at the validation stage. 

Multiple studies adopted GOLD with explicit hydration into applied molecular 

docking projects.[167–171] More intriguingly, its application in virtual screening has 

also been explored. Murray and co-workers combined the virtual screening process 

with NMR experiments for fragment-based lead development of heat shock protein 90 

(Hsp90).[172] Four hits were identified and validated with crystallographic structures. 

The binding modes were also compared to crystal structures of known active 

compounds targeting Hsp90 and have shown a good correlation in protein-ligand 

contacts. One fragment was further optimised into a lead compound with low nM 

activity in cells. Other retrospective studies were also conducted to validate the 

screening performance in Cytochrome P450 1A2[173] and RNA.[174] 

RosettaLigand[175] uses a multi-stage docking protocol based on MC search with full 

ligand and protein flexibility enabled. The water molecules at the interface can be 

considered as protein-centric or ligand-centric.[176] The two methods differ in the 

way water is treated; the former includes water movement independently from the 

ligand while the latter has an initial stage where water molecules move in accordance 

with the ligand. Additional water translation and rotation cycles are also included. 

However, no solvent-specific scoring adjustments are included. The force-field-based 

scoring function includes a desolvation energy calculated using an implicit solvent 

model, and the weighting factor is well-characterised for protein-ligand complexes 

with no explicit solvent.[175,177] Hence, the effect of including water molecules for 

scoring is undefined. For both the water docking methods, the author demonstrated 

improvements in both pose prediction and ranking. 

Flexibility of explicit water molecules can be included by linking them to ligands. 

Both Molegro Virtual Docker (MVD)[178] and AutoDock[179] approached explicit 

hydration docking from this viewpoint. In both methods, water molecules are attached 

to the ligand molecules through hydrogen bonding. Thus, the ligands are solvated 

prior to docking. In MVD, attached water molecules (AWM) are added to the ligand 

according to the hydrogen bond donor/acceptor and hybridisation properties of the 

heavy atoms they are going to be attached at.[180] The bond distances (2.8 Å) and 

angles are set at fixed values. Full flexibility is applied to the ligand and to all AWMs 

during the docking process, while the receptor is kept rigid. Ligand poses are 

characterised by positions, orientations, and torsional angles, with AWMs added to 

the torsion tree model with a newly defined hydrogen-bond edge. Any AWM with 

positive energy contribution is ignored. An additional rigid-body entropic penalty is 
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added at a constant value for each preserved water molecule after the docking run. 

The method provided a 50% success rate for the 12 tested complexes. This improved 

to 67% when the top 5 poses were considered. Paulson and colleagues also adopted 

the same philosophy to include explicit hydration in Glide.[83,181] Computational 

investigations suggested that at least two water molecules were required to mediate 

interactions between thapsigargin and sarco/endoplasmic reticulum calcium 

ATPase.[181] Standard docking procedures failed to reproduce the correct orientation 

of the ligand.  

Similarly to MVD, the attachment manoeuvre of water molecules in AutoDock occurs 

by saturating all the hydrogen bond donors and acceptors on the ligand 

molecule.[182] However, a slightly larger H-bond distance (3.0 Å) and a set of 

empirical values for bond angles are used. The water molecules are represented by a 

neutrally charged spherical pseudoatom (W atom) combining hydrogen bond acceptor 

and donor properties. Whether a water molecule is displaced or conserved is 

continuously evaluated during the docking process by both the enthalpy and entropic 

contributions. The energy contribution of each W atom consists of weighted van der 

Waals and hydrogen bond enthalpies, and desolvation entropy. The authors validated 

the method on 221 complexes of various sizes, obtaining an increase of 11.7% in the 

accuracy of binding pose predictions compared to docking without water. A 

standardized protocol to perform docking in the presence of explicit water was also 

published recently.[183] Similar to previous methods, the later applications in 

molecular docking were mainly incurred with binding mode predictions.[184–188]  

A special treatment of additional explicit solvent was also developed in FlexX. The 

software applies an incremental construction docking algorithm as its main 

implementation method.[32,189] The water molecules are incorporated using the 

particle concept as an extension to the original FlexX docking procedures.[190] The 

type and number of interactions are predefined for each particle, with restrained 

orientation of interactions during docking and penalised scoring in the final outcome. 

The initial hydration sites are approximated through a clustering analysis[191] and 

ghost particles are added. During docking, a ghost is converted to a particle (i.e. a 

water particle) if an interaction with ligand occurs. Conversely, overlapping particles 

are removed. If one particle has a vacant interaction, a penalty is added implicitly 

including the rigid-body entropy loss. The method was tested out on 200 complexes 

from the PDB. Minor improvements in docking were observed, but several correct 

predictions in the binding mode were still achieved, including the important water 

molecules in HIV-1 protease. 

3.2. Applications in prospective virtual screening 

A synopsis of the docking methods discussed above is reported in Table 3. Most of 

the methods presented satisfy the criteria to include explicit hydration in docking 

suggested earlier, with one exception: RosettaLigand does not include any updated 

enthalpic or entropic terms for water molecules. For a method that uses a force-field-

based scoring function with a fitted desolvation from implicit solvent, its performance 

in binding energy evaluation remains unclear.  
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Table 3. The reviewed docking software including explicit water molecules 

Method 

Water 

incorporation 

strategy 

Protein 

Flexibility 

Water 

Flexibility 

Enthalpy/ 

Entropy 
Availability Ref. 

WaterMap + 

WScore 

Simultaneous 

multi-stage 

docking of water 

molecule on a 

grid 

Structure 

ensemble, 

side chain 

growing 

algorithm 

Reorganisation 

on a grid 

Rewarding 

ligand-protein 

interactions 

Purchasable 

license 

(Schrödinger) 

[81,82],  

[84,85] 

GOLD 

Independent from 

ligand and 

protein, 

additional water 

occupancy and 

rotation added to 

docking 

algorithm 

Partial 

flexibility 

On-and-off, 

free rotation, 

fixed 

translation 

Constant 

score penalty 

for rigid-body 

entropy 

Purchasable 

license with 

free trial 

(CCDC) 

[166] 

RossetaLigand 

Protein-centric: 

water molecules 

move 

independently to 

ligand 

Full 

flexibility 
Full flexibility 

No specific 

treatments 

Free* 

(Rosetta) 
[176] 

Ligand-centric: 

water molecules 

move with ligand 

during low 

resolution 

sampling, then 

independently 

during high 

resolution 

sampling 

Full 

flexibility 
Full flexibility 

MVD 

Ligand pre-

solvated with 

water molecules. 

Extended ligand 

torsional tree 

model for water 

in guided 

differential 

evolutionary 

algorithm of 

MVD 

Rigid Full flexibility 

As ligand, 

water 

attached to 

ligand 

through 

hydrogen 

bonding, 

constant 

rigid-body 

entropic 

penalty 

Purchasable 

license with 

free trial** 

[180] 

AutoDock 

Ligand pre-

solvated with 

water molecules. 

Special grid map 

of water-protein 

interaction for 

Lamarckian 

Genetic 

Algorithm 

Rigid Full flexibility 

Van der 

Waals and 

hydrogen 

bond 

enthalpies, 

desolvation 

entropy 

Free [182] 

FlexX 

The particle 

concept: water 

“particles” 

updated at each 

phase of the 

docking process 

Rigid 
Removable, 

full flexibility 

Geometry 

dependent 

scoring, 

implicit 

penalty of 

rigid-body 

entropy 

Purchasable 

license 
[190] 

* RosettaLigand is now included in RosettaScripts.  

** Qiagen Bioinformatics has stopped maintenances of MVD after version 6.0.1. A new CLC Drug Design 

Workbench was developed in replacement. 



This is a post print version of the article published in Curr Med Chem. 2018 May 13. doi: 
10.2174/0929867325666180514110824  
http://www.eurekaselect.com/162094/article 

Current applications of these water-incorporating methods in real life virtual 

screening are still barren. One successful drug discovery project using GOLD was 

reported, but in combination with NMR screening re-evaluation.[172] The majority of 

studies, as reviewed above, are limited to molecular docking and, occasionally, lead 

optimisation. This lack of confidence is probably due to the acceptable performance 

of the still developing conventional docking methodologies, as well as concerns 

regarding the potential impairment on computational efficiency. Most methods indeed 

increase computational expenses drastically. The MD simulation phase in WaterMap 

makes the Glide water-docking protocol hardly feasible for virtual screenings where 

large computational resources are not accessible. Same goes for RosettaLigand due to 

the inclusion of multiple stages of MC simulation and energy minimisation. 

Nonetheless, with the improving in computational power, the drawbacks due to 

efficiency impairments will become less significant. 

GOLD could be a good option if prior knowledge of water network within the binding 

site has already been acquired. With the water-incorporating strategy of the method, 

there is likely a limit on the number of water molecules that can be considered 

without increasing the computational time considerably. An analysis of protein-ligand 

complexes in PDB suggested that an average of 4.6 water molecules are involved in 

the bridging process.[8] This might provide some optimism toward a wider 

application of the method in virtual screening. Combinations of the GOLD docking 

with the water selection or prediction methods discussed in the early sections are also 

worth for further investigations. 

4. MD-based Binding Free Energy Calculation with Explicit Solvent 

MD simulations are often exploited to refine the docking poses, since they can include 

explicit solvation and full protein flexibility. Moreover, the post-processing of MD 

trajectories can be applied to compute relative binding energies, for instance rescoring 

results of a previous docking run. In the process of ligand recognition and, 

consequently, in drug design, the flexibility of proteins plays a crucial role. When a 

ligand binds to a protein, the receptor can undergo a delicate structural fitting process 

(i.e. the induced-fit effect), thus resulting in a tightly bound complex. Although 

multiple docking methods have implemented full or partial receptor flexibility, the 

treatment is still rudimental compared to MD simulations.[192–197]  

Being computationally more expensive than docking, MD-based binding predictions 

are currently possible only in medium to low throughput screening.[12] However, 

rigorous MD methods such as alchemical transformations are often used to explain a 

posteriori the role played by water in protein-ligand binding. 

Double-decoupling[136,198] and free energy perturbation (FEP)[199,200] are the 

most widely used techniques to dynamically evaluate the role of specific water 

molecules upon ligand binding. These methods are based on MD and statistical 

mechanics and belong to the alchemical free energy calculations,[201] in which the 

absolute or relative binding energies of a molecule are computed by “switching it off” 

from its surrounding, or by converting it to related species, respectively. 

Consequently, both double-decoupling and FEP can be applied to evaluate the free 

energy of binding of a water molecule into a protein binding site. In the first method, 
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the electrostatic and van der Waals interactions of the water molecule with the 

surroundings are gradually switched off during two sets of simulations: one for 

transferring the water from bulk to the gas phase, and the other for transferring the 

water from the protein binding pocket to the gas phase.[136,198] Since this method is 

rather time-consuming, its application is only feasible when dealing with a very 

limited number of structures, where precision and detailed thermodynamic 

information are a priority for the calculation. This and related approaches might be 

helpful in retrospective studies of compounds showing peculiar structure-activity 

relationships. 

FEP methods allow the computation of the free energy of binding through finite or 

infinitesimal alchemical changes of the system energy function.[199] Like double-

decoupling, these methods are very accurate but extremely time-consuming. 

However, recent studies involving the combination of FEP and replica exchange 

solute tempering methods (FEP+) demonstrated the applicability and the utility of this 

technique in the drug discovery process.[202–204] When simulations are conducted 

in explicit solvent, or if important water molecules are retained during the FEP step, 

this approach can consider the contribution of water to the binding free energy. For 

example, Ciordia et al. have recently conducted both retrospective and prospective 

evaluations of binding energies to optimize a novel series of amidine containing 

spirocyclic BACE1 inhibitors.[204] During the FEP analyses, conserved 

crystallographic waters were kept in the binding site and their contribution to the 

binding energy was included in the calculation. Alternatively, Lesenlink et al. used 

WaterMap to generate water molecules to be considered in FEP+ calculations to 

predict the binding affinities of 45 ligands to four GPCRs.[205] In another work, 

classical MD and FEP calculations in explicit TIP3P water were performed to identify 

new spleen tyrosine kinase inhibitors.[206] 

Another renowned method to predict relative binding energies is the molecular 

mechanics Poisson-Boltzmann surface area (MM-PBSA) approach,[207,208] or its 

approximation using Generalized Born (MM-GBSA). The method is a good trade-off 

between accuracy and efficiency.[174,209–214] MM-PB/GBSA is based on the 

assumption that the solvent can be macroscopically described as a continuum 

dielectric medium.[215] Nevertheless, “bulk-like” water and “ligand-like” water 

could be distinguished by keeping selected explicit solvent molecules during the MM-

PB/GBSA analysis.[216] This allows the contribution of water-mediated hydrogen 

bonds to the receptor-ligand binding energy to be considered explicitly. In some 

cases, this approach satisfied the expectations,[217–222] but sometimes it revealed to 

be useless or even detrimental.[223,224]  

A possible source of uncertainty is given by the way in which water molecules to be 

included in the calculations are selected. When experimental information is available, 

the most intuitive approach is to include those molecules which are known to bridge 

the protein with one or more ligands.[221,223,224] In most of the cases, only 

conserved and stable water molecules are detected in crystallographic structures. For 

example, the experimental activity rank of three disaccharides binding the 

Pseudomonas aeruginosa Lectin I (PA-IL) was correctly reproduced only by 

including a bridging water molecule in MM-PBSA analysis.[221] However, the 
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selection of waters should be deliberated with caution, possibly considering other 

parameters such as the experimental B-factor,[225] hydrogen bonds,[219] or water 

density/occupancy analyses.[226] In a study on factor Xa complexed to six ligands, 

the inclusion of water molecules with oxygen B-factor lower than 100 resulted in 0.93 

and 0.97 correlations between binding energies predicted by PB and GB models, 

respectively, and experiments. Conversely, the default implicit approach gave an 

inverse correlation.[225] 

It should be noted that X-ray water positions can derive from the average electron 

density of several molecules competing for the same site.[217,219,227] For instance, 

a water molecule bridging the ligand to Asn722 was observed in the crystal structure 

of topoisomerase I in complex with topotecan (PDB code: 1K4T).[228] However, 

MD simulations conducted on the complex showed that the water bridge was shared 

principally by three water residues (Fig. 1).[217] 

Figure 1. Representation of the swap of bridging water molecules observed during 

the MD simulation of topoisomerase I in complex with topotecan (PDB code 1K4T). 

For this system, the inclusion of the crystallographic water in MM-PBSA or MM-

GBSA calculations led to a failure in ranking a series of camptothecin derivatives. 

However, good correlations between calculations and experiments were obtained by 

selecting a fixed number of water molecules that were the closest to the ligand in 

every frame of the MD trajectory that was going to be considered in the MM-PBSA 

or MM-GBSA analyses (r2 = 0.51 and 0.87 for the two methods, respectively).  

We developed this idea into the Nwat-MMGBSA (or Nwat-MMPBSA, depending on 

the nature of the implicit solvent model) protocol that, besides topoisomerase I, was 
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validated on systems such as penicillopepsin, α-thrombin and avidin,[217] as well as 

on ranking different protein-protein complexes.[218] We observed an increase in the 

correlation between predicted binding energies and experiments of 15-50% compared 

to standard MM-PB/GBSA,[217] with differences principally depending on the role 

played by water in the ligand-receptor interaction. Aldeghi and co-workers validated 

the method on 57 bromodomain systems against alchemical absolute binding free 

energy (ABFE) calculations.[229] The authors found that ABFE calculations still 

were the most accurate, but MM-PBSA including explicit ligand hydration shells was 

a valid alternative, especially considering the much lower computational cost. In 

another work, Kannan and co-workers observed that MM-PBSA calculations 

provided better correlations with experimental IC50 for a set of Mnk1 and Mnk2 

inhibitors only when up to 10 water molecules were included in the calculation.[230] 

Interestingly, this number is lower than that found in our previous studies (30-

50),[217,218] possibly because of the smaller interface between Mnk1/Mnk2 kinases 

and the respective Type II inhibitors, compared to other systems. We recently 

integrated the Nwat-MMGBSA protocol into a complete workflow for virtual 

screening, automatically performing library setup, docking, ligand parameterization 

and MD simulations, prior to Nwat-MMGBSA rescoring.[231] The workflow was 

tested on two systems, AmpC β-lactamase and Rac1. Nwat-MMGBSA rescoring 

improved the AUC of ROC curves by 16 and 20% for the two systems, respectively, 

compared to standard MM-GBSA rescoring.  

It should be noted that computed binding energies generally increase when explicit 

waters are included in MM-PB/GBSA calculations. Therefore, the out-coming 

energies should be interpreted as scores and not as absolute binding free energies. 

This is also due to the entropic term that is usually neglected in the calculation, 

principally due to the significant increase in computational cost required by the 

normal mode analysis.[225,229,232–235] Nevertheless, Aldeghi and co-workers[229] 

observed an improvement in correlation to experiments when entropy was considered 

by using a new and rather cheap approach proposed by Duan and co-workers.[236] 

However, the method was tested in standard MM-PBSA calculations and its 

combination with the inclusion of explicit waters still needs to be validated. 

An attempt in using MM-GBSA to evaluate the effect of water displacement was also 

reported.[237] Ryde and co-workers used MM-GBSA to reproduce the binding free 

energies of nine phenol analogues to ferritin. All the water molecules present in the 

binding site were included in the calculation as part of the receptor. In addition, the 

effect of displaced water molecules was considered by computing the affinities of 

binding-site waters both before and after the ligand binding. To obtain the most 

accurate free energy estimations, the authors converted both the ligand and the water 

molecules into non-interacting ghost molecules, when unbound, to avoid the inclusion 

of the continuum solvent contribution to the energy. This approach then required two 

single-average calculations, one for the complex and one for the receptor. However, 

the authors evidenced the estimation of the free energy of an unbound water molecule 

as the principal drawback of the method. They suggested the use of the experimental 

value of ˗47 kJ ∙ mol−1 to obtain correct results on their reported example, but 

different values might be needed for different systems. 
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Conclusions 

Modern drug design relies on the complete understanding of molecular recognitions 

occurring between a target and a ligand. This implies generating as much information 

as possible on both the structural and chemical-physical features of both partners. 

Nevertheless, this might not be enough, since most of the biological processes occur 

in water. The behaviour of water as a bulk solvent is generally considered by all 

computational methods applied to drug design. However, given the differences 

between bulk and binding site solvent properties and the role played by water in the 

binding process, considering water as the “third actor” in the ligand-receptor 

interaction is less trivial. This should indeed be done at different stages of the drug 

design process. First, detailed hydration pattern within the binding side can be 

obtained by combining experimental information with the results of MD simulations. 

Moreover, important water molecules might be considered in virtual screening, with 

the non-negligible toll taken in terms of simulation time.  

Software applications such as Consolv,[29] WaterScore[38] and HINT[41] were 

developed to aid the selection of water molecules that might be particularly important 

in ligand recognition (Table 1). However, whenever experimental information on 

conserved water is lacking, relevant hydrations sites can also be predicted. Some 

predictive methods, like Placevent,[71] relies on the 3D-RISM equations, other on 

IST,[78–80] like the well-known WaterMap,[82] or its non-commercial alternative 

STOW.[114] IST-based methods require information on water dynamics, generated by 

a preliminary MD simulation, but MC is also feasible in water placement applications. 

For instance, JAWS is a rather recent MC method that works on both apo or holo 

proteins.[123] Modern implementations of the GCMC technique can be used either as 

a water placement tool, or to compute the binding free energies of single or networked 

water molecules.[134,135] Other methods, such as WaterDock[139,147] or 

SZMAP[148] can be used to place water in a putative binding site before attempting a 

drug design study or a virtual screening.  

Relevant docking procedures with the option of incorporating explicit solvation were 

also discussed in this review (Table 2), together with some applications in drug 

design. GOLD[36,165] is one of the most widely applied tools with robust 

applications and good successful rates in hydrated docking. It models water molecules 

as additional ligands and uses a “on-and-off” strategy and additional score penalty to 

evaluate water displacement.[166] Schrödinger[83] incorporated its WScore and 

WaterMap methods in a multi-stage methodology to score docking 

complexes.[84,85,164] RosettaLigand performs a MC search and proceed in a way 

either water motions are more connected to the receptor or the ligand.[175] FlexX 

treats water molecules as additional particles, as an extension to its original 

procedure.[190] Other packages, including AutoDock[179] and MVD,[178] can tackle 

explicit hydration by attaching water to the ligand molecules through hydrogen 

bonding.[180] 

Finally, this review also covered the use of MD simulations to elucidate questions 

related to the active presence of water at binding interfaces. Indeed, the 

conformational space accessed by the receptor, ligand and solvent can be explored by 
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MD simulations more extensively than by docking. Moreover, the stability of water 

mediated interactions can be investigated and their contribution to binding explicitly 

evaluated. Alchemical transformations are the method of choice whenever precise and 

accurate thermodynamic information are desired.[136,198–200] Conversely, when a 

trade-off between speed and accuracy is needed, methods derived from the popular 

MM-PBSA technique can also be used to improve the scoring of ligands whose 

binding is actively facilitated by water.[238,237] Since computationally demanding, 

MD methods are still confined to the evaluation of a limited number of cases, but the 

fast development of computer hardware will probably lead to wider applications, 

potentially in real life drug discovery projects. 
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