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Abstract

We present a determination of the strong coupling constant αs(mZ) based on the NNPDF3.1
determination of parton distributions, which for the first time includes constraints from jet
production, top-quark pair differential distributions, and the Z pT distributions using exact
NNLO theory. Our result is based on a novel extension of the NNPDF methodology — the
correlated replica method — which allows for a simultaneous determination of αs and the
PDFs with all correlations between them fully taken into account. We study in detail all rel-
evant sources of experimental, methodological and theoretical uncertainty. At NNLO we find
αs(mZ) = 0.1185 ± 0.0005(exp) ± 0.0001(meth), showing that methodological uncertainties are
negligible. We conservatively estimate the theoretical uncertainty due to missing higher order
QCD corrections (N3LO and beyond) from half the shift between the NLO and NNLO αs values,
finding ∆αth

s = 0.0011.
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1 Introduction

The value of the strong coupling constant αs (mZ) is a dominant source of uncertainty in the
computation of several LHC processes. This uncertainty is often combined with that on parton
distributions (PDFs), with which it is strongly correlated. However, while PDF uncertainties
have reduced considerably over the years, as it is clear for example by comparing the 2012 [1]
and 2015 [2] PDF4LHC recommendations, the uncertainty on the αs PDG average [3] remains
substantially unchanged since 2010 [4]. As a consequence, the uncertainty on αs is now the
dominant source of uncertainty for several Higgs boson production cross-sections [5].

Possibly the cleanest [6, 7] determinations of αs come from processes that do not require a
knowledge of the PDFs, such as the global electroweak fit [8]. These are free from the need
to control all sources of bias which may affect the PDF determination and contaminate the
resulting αs value. A determination of αs jointly with the PDFs, however, has the advantage
that it is driven by the combination of a large number of experimental measurements from
several different processes. This is advantageous because possible sources of uncertainties related
to specific measurements, either of theoretical or experimental origin, are mostly uncorrelated
amongst each other and will average out to some extent in the final αs result. In addition
to the above, the simultaneous global fit of αs and the PDFs is likely to be more precise and
possibly also more accurate than individual determinations based on pre-existing PDF sets,
many of which have recently appeared [9–15]. This is due to the fact that it fully exploits the
information contained in the global dataset while accounting for the correlation of αs with the
underlying PDFs.

Here we present a determination of αs which exploits the most recent PDFs obtained with
the NNPDF methodology, namely NNPDF3.1 [16]. This updates a previous determination of
αs [17, 18] based on NNPDF2.1 [19, 20]. In comparison to this previous PDF set, NNPDF3.1
represents a substantial improvement both in terms of input dataset, theoretical calculations, and
fitting methodology. Specifically, NNPDF3.1 is the first PDF set to make such an extensive use
of LHC data as to be dominated by them. It is in fact the first global analysis to simultaneously
use differential top, inclusive jet, and Z pT distribution data, all using exact NNLO theory.
Indeed, typical PDF uncertainties are of order of one to three percent in the data region for
NNPDF3.1, about a factor two smaller than they were for NNPDF2.1.

This greater precision in the PDF determination requires a corresponding improvement in
the methodology used for the αs extraction. In our previous work [17, 18], PDF replicas were
determined for a number of fixed values of αs, which was then extracted from the χ2 profile
versus αs of the best fit PDF, obtained as an average over the replicas. Here instead, both
αs and PDFs are determined from a simultaneous minimization in their combined parameter
space. As we will discuss below, this new method corresponds roughly to determining the value
and uncertainty on αs from the error ellipse of the multivariate measurement in the (αs,PDF)
hyperspace, and the old method corresponds to performing a scan of αs along the best-fit PDF
line, see Fig. 1.1 for a schematic illustration. In a situation when the variables are highly
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Figure 1.1. Comparison between the standard deviation of a pair of correlated variables (αs, θ) and the

one-sigma range for the variable αs along the best-fit line of θ. The best fit is denoted as (α̂s, θ̂) and the
ellipse is the one-sigma contour about it. The standard deviations on (αs, θ) are (σα, σθ), while σold is

the one-sigma interval for αs with fixed θ = θ̂.

correlated, especially if the semi-axes of the ellipse are of very different length, the procedure
used in our previous work might lead to an underestimate of the uncertainty in αs. Hence the
new procedure becomes very relevant, now that some PDF uncertainties are rather small.

It turns out that the implementation of this simultaneous minimization within the NNPDF
methodology is nontrivial: it requires the development of a suitable generalization of the stan-
dard NNPDF approach, which we call the correlated replica method. Using this strategy, αs
can be treated like any other quantity that depends on the PDFs. In particular, its central value
and uncertainty can be determined by performing statistics over a replica sample. This means
that, for example, the uncertainty on αs is the standard deviation of an ensemble of αs values.
As we shall see, this allows for a determination of αs with small experimental uncertainties, and
negligible methodological uncertainties. Having reduced very much the size of all other uncer-
tainties, the problem of accurately estimating theoretical uncertainties becomes quite serious.
This is specifically problematic in the case of missing higher-order uncertainties (MHOUs), for
which no fully satisfactory method has been developed. Here we will conservatively estimate the
theoretical uncertainty due to missing higher order QCD corrections (N3LO and beyond) from
half the shift between the NLO and NNLO αs values.

This paper consists of two main parts. First, in Sect. 2 we present the correlated replica
method used for the determination of αs, explain how it is used to estimate the associated
PDF uncertainties, and compare it with the method used in previous NNPDF determinations.
Then, in Sect. 3 we present our determination of αs at NLO and NNLO together with a careful
assessment of all sources of uncertainty. Possible future developments are briefly outlined in
Sect. 4.

2 The correlated Monte Carlo replica method

As discussed in the introduction, the αs determination presented here differs from our previous
one [17,18] because now the value of αs and its uncertainty are determined from a correlated fit
together with the PDFs. After briefly summarizing the main aspects of the NNPDF methodology
and the way it was used to determine αs in Ref. [17, 18], we describe the main idea of the new
method, and then discuss the details of its implementation. Only the salient aspects of the
NNPDF methodology will be recalled here; the reader is referred to the original literature (see
Ref. [16], of which we follow the notation, and references therein) and recent reviews [2, 21, 22]
for a more detailed discussion.
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2.1 General strategy

The NNPDF fitting methodology is based on constructing a Monte Carlo representation of the
original data sample consisting of pseudodata (Monte Carlo replicas of the original data), and
fitting PDF replicas to these data replicas. Specifically, starting with an Ndat-component vector
of experimental points D with components Di, a set of Nrep replicas D(k) of the data is generated
by means of:

D
(k)
i =

(
1 + rnor,ki σnori

) (
Di +

Nsys∑
p=1

rsys,ki,p σsysi,p + rstat,ki σstati

)
, i = 1, . . . , Ndat , (2.1)

where k = 1, . . . , Nrep; σnori , σsysi and σstati are normalization, systematic and statistical uncer-
tainties, and ri are random numbers such that statistics over the replica sample reproduces the
original statistical properties of the data in the limit of large Nrep. For example, this means that

lim
Nrep→∞

cov (DiDj) = Cij , (2.2)

where cov denotes the covariance over the replica sample and Cij is the full experimental co-
variance matrix of the data.

A PDF replica is then fitted to each data replica D(k). In the NNPDF approach, PDFs are
parametrized using neural networks, in turn specified by a vector of parameters θ. In the most
recent NNPDF3.1 analysis, this vector θ has 296 components, corresponding to 37 parameters
for eight neural networks (for the up, antiup, down, antidown, strange, antistrange, total charm
and gluon PDFs). Thus, for each data replica D(k) a best-fit θ(k) is found by minimizing a figure
of merit characterizing the agreement between theory and data:

χ2(θ,D) =
1

Ndat

∑
i,j

(Ti[θ]−Di)
(
C−1t0

)
ij

(Tj [θ]−Dj) . (2.3)

Here, Ti[θ] is the theoretical prediction for the i-th datapoint, dependent on the set of parameters
θ, and Ct0 is the covariance matrix used in the fit. Recall that in the presence of multiplicative
uncertainties, Ct0 cannot be directly identified with the experimental covariance matrix C used
for pseudodata generation Eq. (2.1) lest the fit be biased [23], and must thus be constructed
instead using a suitable procedure such as the t0 method [24] (see also [25]).

A peculiarity of the NNPDF approach is that the best-fit parameters of each replica, θ(k), are
not defined as the absolute minimum of the χ2 Eq. (2.3) in order to avoid overfitting, i.e. in order
not to fit statistical fluctuations. Instead, a suitable cross-validation algorithm is employed [26].
We thus obtain a set of best-fit PDF replicas θ(k), each determined as the minimum with respect
to θ of the figure of merit χ2(k) computed using the k-th data replica:

θ(k) = argmin
[
χ2(θ,D(k))

]
, (2.4)

where argmin should be understood as minimization through cross-validation, rather than as the
absolute minimum. Note that, because we employ non-deterministic minimization algorithms,
specifically genetic algorithms, the best-fit θ(k) corresponding to a given data replica D(k) is not
unique; two identical data replicas D(k1) = D(k2) may lead to two different θ(k1) 6= θ(k2) in two
runs of the minimization algorithm.

In summary, the standard NNPDF methodology produces a set of replicas D(k) of the original
data, and uses them to construct a set of PDF replicas which correspond to parameters θ(k),
where k runs over the replica sample.

The theory predictions Ti, which enter in the figure of merit of the fit Eq. (2.3) depend
not only on the PDF parameters θ, but also on theory parameters, specifically the value of
αs. Therefore, in general we can view the figure of merit as a function χ2(αs, θ,D). In stan-
dard NNPDF determinations, αs is treated as a fixed parameter, along with all other theory
parameters, such as quark masses, CKM matrix elements, the fine structure constant, and so
on. On the other hand, it is well known (see e.g. Ref. [27] for an early reference) that PDFs are
strongly correlated to the value of αs, so a determination of the combined PDF+αs uncertainty
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on a process which depends on both, requires knowledge of the PDFs as αs is varied. With
this motivation, NNPDF sets are routinely released for different fixed values of αs, where the
procedure of generating data replicas D(k) and determining PDF replicas determined by the
best-fit parameters θ(k) is repeated several times for different values of αs.

In our previous work [17, 18], αs was determined by first producing PDF fits for a range
of values of αs. The χ2(αs) of the mean of all the replicas was then fitted to a parabola as a
function of αs. This methodology has two main drawbacks. The first is that, as mentioned,
the PDFs are strongly correlated to the value of αs. With this method, however, the χ2 profile
is determined as a function of αs along the line in θ space which corresponds to the best-fit θ
at each particular value of αs, without taking into account the variations in θ space. Hence,
as illustrated in Fig 1.1, with the methodology of Refs. [17, 18] the resulting uncertainty on αs
could be somewhat underestimated.

The second drawback is more subtle. In the NNPDF procedure, the PDF uncertainty is
determined from statistics over the replica sample, so a one-sigma interval is determined by
computing a standard deviation over replicas. Whether or not this corresponds exactly to a
one-sigma (i.e. ∆χ2 = 1) interval in αs space is unclear. In fact, in PDF determinations based
on Hessian minimization in parameter space, the ∆χ2 = 1 criterion is modified by a suitable
tolerance factor [28–30], which possibly accounts for data inconsistencies or parametrization
bias. It is unclear, but certainly possible, that PDF uncertainties estimated in the NNPDF fits
also include, at least to some extent, such a tolerance.

Ideally, we would like a method of determining αs in which the uncertainty on αs is de-
termined on exactly the same footing as the PDF uncertainty, and which thus yields the full
probability distribution for αs, marginalised with respect to the PDF parameters. The goal is
to treat αs on the same footing as the vector of parameters θ that determine the PDFs, i.e. to
simultaneously minimize the figure of merit with respect to both αs and θ. This is difficult in
practice, because the dependence on αs appears in the theoretical predictions, which, for reasons
of computational efficiency, are provided in the form of pre-computed grids determined before
the fit using the APFELgrid framework [31,32].

This difficulty can be overcome through the correlated replica method, as we now explain.
The method relies on the concept of “correlated replica”, or c-replica for short. A c-replica
is a correlated set of PDF replicas, all obtained by determining the best-fit θ(k) Eq. (2.4) but
with different (fixed) values of αs: given the data replica D(k), the minimization Eq. (2.4) is
performed several times, for a range of fixed values of αs(mZ). A c-replica thus corresponds to
as many standard NNPDF replicas as the number of values of αs for which the minimization
has been performed, all obtained by fitting to the same underlying data replica D(k).

One can then determine the best-fit value α
(k)
s for the k-th c-replica by minimizing as a

function of αs the figure of merit χ2 Eq. (2.3) computed with θ(k)(αs) as αs is varied for fixed
k. Namely, we first define the figure of merit computed for the k-th c-replica,

χ2(k)(αs) = χ2
(
αs, θ

(k)(αs), D
(k)
)
, (2.5)

which we can view as a function of αs. Note that the dependence of the theory prediction T
and thus of the figure of merit Eq. (2.3) on αs is both explicit, and implicit through the best-fit
parameters θ(k)(αs). We then determine the best-fit value of αs for the k-th c-replica as

α(k)
s = argmin

[
χ2(k)(αs)

]
. (2.6)

Note that while, as discussed above, in order to avoid overfitting, the best-fit θ(k) is not the
absolute minimum of the figure of merit, no overfitting of αs is possible, because overfitting
happens when fitting a function, not a single parameter. Hence, in Eq. (2.6) the best fit value

α
(k)
s does denote the absolute minimum. Therefore, in practice α

(k)
s can be determined by fitting

a parabola to the discrete set of values of χ2(αs) for each replica, and finding the minimum of
the parabola.

Note also that determining the best-fit for the k-th c-replica by first minimizing with respect
to θ and then minimizing with respect to αs is equivalent to simultaneously minimizing in the
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(αs, θ) hyperspace, provided the same figure of merit is used for PDF and αs determination. For
instance, the absolute minimum in (αs, θ) is the solution to the coupled equations

∂

∂θ
χ2(αs, θ) = 0 , (2.7)

∂

∂αs
χ2(αs, θ) = 0 , (2.8)

where Eq. (2.7) is actually a system of Npar equations because θ is an Npar-component vector and
the partial derivative is a gradient. On the other hand, this solution can also be found (compare
Fig. 1.1) by first finding the solution θ(αs) to Eq. (2.7), determining χ2(αs) = χ2(αs, θ(αs)),
and solving

d

dαs
χ2(αs) =

(
∂

∂αs
+

∂θ

∂αs

∂

∂θ

)
χ2(αs, θ) = 0 . (2.9)

This two stage procedure yields the same solution as the coupled Eqs. (2.7)–(2.8) because the
second term in brackets on the r.h.s. of Eq. (2.9) vanishes since θ(αs) was the solution of
Eq. (2.7).

One thus ends up, for each data replica D(k), with a best fit value (α
(k)
s , θ(k)) of both αs and

the PDF parameters. That is, from each c-replica we extract a single best fit value α
(k)
s — an “αs

replica” — exactly on the same footing as all the other fit parameters. The ensemble of values

α
(k)
s obtained from all the c-replicas then provides a representation of the probability density of
αs from which we can perform statistics in the usual way. Interestingly, this means that we can
now not only compute the best fit αs and its uncertainty as the mean and standard deviation
(or indeed 68% confidence interval) using the αs replicas, but also the correlation between αs
and the PDFs or indeed any PDF-dependent quantity.

In summary, the correlated replica method is akin to the standard NNPDF methodology
in that it starts by producing a set of replicas of the original data, but uses these to construct
a set of correlated αs-dependent PDF replicas, the c-replicas, which correspond to parameters
θ(k)(αs) when k runs over the replica sample and αs takes a number of discrete values. From

each c-replica a best-fit α
(k)
s can then be determined, so each c-replica yields an αs replica, with

α
(k)
s defined by Eq. (2.6).

Hence, the correlated replica method exploits the fact that in the NNPDF approach it is
sufficient to know the best-fit set of parameters for each replica, and all other information is
contained in the replica sample. The price to pay for this is that the statistics of the αs fitting
is inevitably more demanding than with the method of Refs. [17,18] because we have now have
to fit a different parabola for each c-replica. The issues arising from this will be discussed in the
next section.

2.2 Implementation

Building on the conceptual strategy described above, we now present the practical implemen-

tation of the correlated replica method. As already mentioned, the best-fit α
(k)
s Eq. (2.6) for

the k-th c-replica is determined by fitting a parabola to the figure of merit χ2(αs), viewed as a
function of αs, known at the discrete set of αs values for which best-fit θ(k)(αs) are available.
The reliability of the quadratic approximation to χ2(k) Eq. (2.5) and the stability of the position
of the minimum upon inclusion of higher order terms can be studied using standard methods
and will be discussed in Sect. 3.2 below.

The best-fit αs and its uncertainty are then determined, according to standard NNPDF
methodology, as the mean and standard deviation computed over the sample of αs replicas

αs = 〈α(k)
s 〉rep; σα = std

(
α(k)
s

)
rep
, (2.10)

where α
(k)
s is given by Eq. (2.6).

The uncertainty due to the finite size of the replica sample can be estimated by bootstrapping.

To this purpose, one constructs Nres resamples of the original sample of Nrep values α
(k)
s . Each

resample is obtained by drawing at random Nrep values from the original sample by allowing
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repetition. This means that each resample differs from the original sample because some values
are repeated and others are missing. The finite-size uncertainty is then estimated by first

computing the mean α
(res,i)
s for each of the resamples,

α(res,i)
s = 〈αs〉rep , (2.11)

where the mean is computed over the Nrep values of the i-th resample. The bootstrapping
estimate of the finite-size uncertainty on the central value of αs is then the standard deviation

of the set of α
(res,i)
s

∆αs = std
(
α(res,i)
s

)
res
. (2.12)

The uncertainty on the uncertainty ∆σ can be similarly computed by first determining the uncer-

tainty Eq. (2.10) for each resample, thus leading to an uncertainty σ
(res,i)
α , and then computing

the standard deviation of the ensuing uncertainties:

∆σ = std
(
σ(res,i)α

)
res
. (2.13)

We find that results become independent of the random seed used to generate the bootstrapping
resamples when Nres ' 10000.

It turns out that, when determining the best-fit θ(k)(αs) through the standard NNPDF
minimization algorithm, a certain amount of fluctuation of individual values of χ2(αs) about
the parabolic best-fit is observed. In other words, the χ2 profiles as a function αs are not very
smooth. It is therefore advantageous to introduce an improvement of the algorithm, called batch
minimization, which increases its accuracy at the cost of increasing the time required for fitting.

Furthermore, when using the standard NNPDF minimization, occasionally the fit fails to
satisfy a number of convergence and quality criteria (see Sect. 3.3.2 of Ref. [26]), in which case
it is discarded. Consequently, for some c-replicas χ2(αs) is not available for all αs values. One
must then decide on a sensible criterion for c-replica selection, with the most restrictive criterion
being to only accept c-replicas for which all χ2(αs) values are available, and the least restrictive
one to accept c-replicas for which at least three χ2(αs) values are available so a parabola can be
fitted. We now discuss batch minimization and replica selection criteria in turn.

The idea of batch minimization is to refit a given set of data replicas more than once.
In order to improve the smoothness of the χ2 profiles obtained by the direct use of NNPDF
minimization, we exploit the fact that the minimization algorithm is not deterministic, and thus
simply rerunning the minimization from a different random seed leads to a slightly different
answer. Each of these refits is called a batch. For each c-replica k and each αs value we then

end up with several best-fit results θ
(k)
i (αs), where i runs over batches.

We then pick for each c-replica k and for each αs value the batch which gives the best
χ2. We also impose the condition that at least two of the batches for the given c-replica and
αs value have converged, in order to mitigate the influence of outliers that narrowly pass the
post-selection fit criteria. The dependence of results on the number of batches used can then be
assessed a posteriori by comparing results found with different numbers of batches.

After batch minimization, we end up with a set of c-replicas θ(k)(αs) where, however, for
several c-replicas, results may be missing for one or more αs values because convergence was not
achieved. We must thus determine the minimum number of αs values Nmin such that a c-replica
is accepted. The threshold Nmin is chosen to ensure the stability of results. Curves with too few

points lead to an unreliable parabolic fit, and thus an unreliable best-fit α
(k)
s for that c-replica.

This then leads to outlier values of α
(k)
s and a spuriously large value of the uncertainty on the

α
(k)
s determination. On the other hand, once the number of points is sufficient for a reliable

parabolic fit, requiring more points does not improve the determination of α
(k)
s , but it reduces

the number of c-replicas which are retained in the final sample, which in turn increases the
finite-size uncertainty.

Therefore, the optimal value of Nmin arises from a trade-off between the uncertainty on α
(k)
s

from the parabolic fitting, and the finite-size uncertainty. In order to keep both criteria into
account, we fix Nmin by minimizing the bootstrapping uncertainty ∆σ Eq. (2.13). However, in
order to make sure that the selection is not too tight, we do not minimize ∆σ itself. Rather,
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we first multiply it by a penalty factor that depends on the number of points. This is in turn
determined as the 99% confidence level factor from a two sided Student-t distribution. Indeed, if

the distribution of best-fit α
(k)
s over replicas is Gaussian, then the difference between the sampled

and true central value follows a Student-t distribution with Nrep − 1 degrees of freedom, zero
mean and scale parameter ∆σ/

√
Nrep . A given confidence level around the mean is equal to

the standard deviation ∆σTCL,(Nrep−1), where TCL,N is the percentile at CL confidence level for
the two-sided confidence factor of the Student-t distribution with N degrees of freedom. Hence,
we choose a 99% confidence level, and we determine Nmin as the value yielding the minimum of
∆σT0.99,(Nrep−1). Also in this case, the dependence of results on the choice of selection criteria
can be studied a posteriori, and will be discussed in Sect. 3.2.

3 The strong coupling constant from NNPDF3.1

We now present the main result of this work, namely the determination of αs (mZ) based on the
methodology discussed in Sect. 2. We first present the best-fit result for αs and its experimental
uncertainty, determined through the correlated replica method. We then discuss methodological
and theoretical uncertainties. We finally collect our final result and briefly compare it to other
recent determinations from PDF fits and to the PDG average.

3.1 Best-fit results for αs and statistical uncertainty

We have determined αs (mZ) both at NLO and NNLO using the methodology and dataset of
the NNPDF3.1 global analysis [16]. The only difference in the fit settings is the theoretical de-
scription of the inclusive jet production datasets at NNLO. Here we use exact NNLO theory [33]
for the ATLAS [34] and CMS [35] inclusive jet measurements at 7 TeV, and discard the other
jet datasets used in NNPDF3.1 for which the NNLO calculation is not available (note that, as in
NNPDF3.1, only ATLAS data in the central rapidity bin are included). To ensure a consistent
comparison, the input datasets of the NLO and NNLO fits are identical, up to small differences
in the kinematical cuts as explained in [16].

Specifically, we determine αs by generating a set of 400 data replicas, and from them a set
of 400 c-replicas each with 21 values of αs, thus corresponding to a total of 8400 PDF replicas
correlated as discussed in Sect. 2.1. These c-replicas are generated for αs (mZ) ranging between
0.106 and 0.130, varied in steps of ∆αs = 0.002 between 0.106 and 0.112 and between 0.128 and
0.130, and in steps of ∆αs = 0.001 between 0.112 and 0.128, adding up to the total of 21 values.
From these we determine αs replicas, which form a representation of the probability distribution
of αs.

At NNLO we find
αNNLO
s (mZ) = 0.11845± 0.00052 (0.4%) . (3.1)

This result is based on a total of Nrep = 379 c-replicas, selected from a starting set of 400 after
batch minimization of three batches, using the minimization and selection methods described in
Sect. 2.2. At NLO we find

αNLO
s (mZ) = 0.12067± 0.00064 (0.5%). (3.2)

In this case, the sample includes Nrep = 108 c-replicas selected after batch minimization with
two batches. The smaller number of c-replicas selected at NLO is in part explained by the
requirement (see Sect. 2.2) that two batches have converged for the given αs value, which is of
course less severe when three batches are available, but the worse quality of the NLO fit also
plays a role since it causes more fits to be discarded by the post-selection criteria.

The uncertainty quoted in Eqs. (3.1) and (3.2) is that obtained using standard NNPDF
methodology, namely, taking the standard deviation over the αs replica sample. We have verified
that essentially the same results are obtained if instead we compute the 68% confidence interval.
The uncertainty is obtained in precisely the same way as our PDF uncertainty, to which it
is strongly correlated; it includes the propagated correlated uncertainty from the underlying
data, and uncertainties coming from possible inefficiencies of the minimization procedure. This
uncertainty is what we refer to as the experimental uncertainty on αs (mZ). It will have to
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Figure 3.1. The χ2 profiles for each of the 379 c-replicas used for the NNLO determination of αs(mZ),
Eq. (3.1). Each curve corresponds to an individual c-replica, and the color scale indicates the best-fit αs
value determined from the parabolic fit to that curve.
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Figure 3.2. The probability distributions for the best-fit α
(k)
s values Eq. (2.6) at NNLO (left) and at

NLO (right). Each marker indicates the α
(k)
s value corresponding to each individual c-replica.

be supplemented by methodological and theoretical uncertainties, to be discussed in Sects. 3.2
and 3.3 below.

The 379 c-replicas selected for the NNLO determination are shown in Fig 3.1. The color
scale of each curve indicates the best-fit αs value. It is apparent that the vast majority of
the curves exhibit an approximately parabolic behaviour. The probability distributions of the

best-fit values α
(k)
s Eq. (2.6) which correspond to each c-replica, both at NLO and at NNLO,

are shown in Fig. 3.2, where the markers indicate the value of α
(k)
s for each specific c-replica.

These probability densities have been determined using the Kernel Density Estimate method,
see [36]. We find that the probability distribution for αs (mZ) is both shifted to higher values
and broadened when going from NNLO to NLO. The decrease of the best-fit value of αs (mZ)
when going from NLO to NNLO has been repeatedly observed before (see Table 1 of Ref. [37] for
an extensive set of examples), also in our previous determination [17, 18], while the broadening
is due to the poorer quality of the NLO fit.

The impact on the αs determination of any subset of the input data can be roughly assessed
by studying its contribution to the total figure of merit. We have done this by determining
replica by replica the corresponding partial χ2

p for a process (or group of processes) p, defined
as the figure of merit Eq. (2.3) with the summation over i, j now restricted to data which
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NLO NNLO

Fixed-target charged lepton DIS 973 973

Fixed-target neutrino DIS 908 908

Collider DIS (HERA) 1221 1211

Fixed Target Drell-Yan 189 189

Collider Drell-Yan 378 388

Inclusive jets 164 164

Z pT 120 120

Top quark pair production 26 26

Total 3979 3979

Table 3.1. Number of data points at NLO and NNLO corresponding to the different subsets of the
input experimental data considered here. These eight subsets adds up to the total dataset.

belong to the specific subset p. The αs fit procedure through the correlated replica method

is then just repeated but using this partial χ2
p. Namely, for each c-replica the partial χ

2(k)
p

for process p is computed, a parabola is fitted to it, the corresponding minimum α
(k)
s,p of the

parabola is determined, and the resulting set of minima is used to find the value of αs (mZ) and
its uncertainty.

Here we consider the following eight groups of processes p: top production, the Z pT distri-
butions, collider and fixed target Drell-Yan, inclusive jets, and deep-inelastic scattering (DIS)
either at HERA or at fixed-target experiments, in the latter case separating charged lepton
and neutrino beams. The number of data points corresponding to each of these data subsets is

shown in Table 3.1. Not unexpectedly, the χ
2(k)
p profiles for data subsets turn out to be rather

less parabolic than the total χ2, especially for processes such as neutrino DIS or fixed target
Drell-Yan that have weak sensitivity to αs.

When determining αs (mZ) from the partial χ
2(k)
p , we do not repeat the replica selection and

simply use the same replicas selected for the total dataset. Consequently, we must apply a form

of post-selection, whereby each time a parabola for χ
2(k)
p has no minimum the corresponding c-

replica is ignored. At NNLO, for five out of eight data subsets we retain all 379 c-replicas, while
for jets, neutrino DIS, and fixed-target Drell-Yan, we retain only 376, 366, and 302 c-replicas
respectively. The results for the partial αs (mZ) determined from χ2

p for the various families of
processes are collected in Fig. 3.3. The central value and uncertainty shown are respectively
determined as the median and 68% symmetric confidence level interval from the corresponding

partial α
(k)
s,p . This is because the analogue of Fig. 3.2 for individual processes turns out to be

rather non-gaussian, especially for processes such as fixed-target Drell-Yan that only have a
weak handle on αs.

The values of αs (mZ) shown in Fig. 3.3 should be interpreted with some care. Indeed, the
partial χ2

p is in each case computed using PDF c-replicas determined from the minimization of
the global χ2. These are in general different from the c-replicas that would be determined by
simultaneous minimization of χ2

p with respect to αs and the PDFs. Therefore, the values of αs,p
in Fig. 3.3 cannot be interpreted as the best-fit values of αs (mZ) for a given subset p. They
instead provide an estimate of the pull on the best-fit αs (mZ) value that specific families of
processes have within the global fit subject to the constraints from the rest of the data.

Moreover, even their interpretation as pulls is only approximate. Firstly, the replica selection

is applied to the total χ2 rather than to each partial χ2
p, so that several partial χ

2(k)
p profiles

turn out not to have a minimum. Furthermore, the total χ2 includes cross-correlations which
are lost when determining partial χ2

p, because the covariance matrix Ct0 in Eq. (2.3) is gener-
ally nonzero even when i and j belong to different data subsets. For instance, inclusive jet, Z
pT , and Drell-Yan measurements from the same experiment (ATLAS, or CMS) are correlated
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Figure 3.3. The values of the partial αs (mZ) and the corresponding uncertainties determined from χ2
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for the various families of processes p of Table 3.1 at NLO and NNLO.
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Figure 3.4. Comparison of the NNLO determination of αs (mZ) using the method of [17, 18], which
neglects the correlation between αs and PDFs, and the current one based on the correlated replicas.

amongst themselves by the common luminosity uncertainty. Finally, partial αs values are corre-
lated through the underlying PDFs, implying that the pulls should not be expected to combine
additively into the final result.

Even with all these caveats, Fig. 3.3 shows that the very accurate αs (mZ) value from the
global dataset is obtained from a combination of pulls which correspond to values of αs (mZ)
dispersed about the global best-fit value, without signs of tension or inconsistency, and subject
to significant fluctuations which are suppressed when constructing the total χ2. This supports
our conclusion that the current determination of αs (mZ) from a global fit is more precise and
accurate than determinations based on subsets of data relying on pre-existing PDF sets.

Finally, we compare the current NNLO determination of αs (mZ), Eq. (3.1) and Fig. 3.3,
with the one found using the method of Refs. [17, 18]. We fix αs and add the contribution to
the χ2 from each standard PDF replica for that αs value. We then determine the total χ2(αs),
fit a parabola to it, and determine the best-fit and uncertainty as the minimum and ∆χ2 = 1
interval. For simplicity, we do this without using batch minimization, i.e. we compute the
total χ2 from one of the batches (batch II, see Sect. 3.2 below) which then enter the batch
minimization procedure. Using this method we find

αNNLO
s (mZ) = 0.1180± 0.0004 (0.3%) , (3.3)

αNLO
s (mZ) = 0.1203± 0.0004 (0.3%) .

Also in this case we can repeat the determination for different data subsets based on the partial
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Figure 3.5. The NNLO cumulative differences, χ2
p(αs) − χ2

p(0.1185), between the partial χ2
p values

evaluated at αs (mZ) and at best-fit value αs (mZ) = 0.1185 for different families of processes. In
the part of the plot above (below) zero, only contributions from experiments for which the cumulative
difference is positive (negative) are shown (see text). The plot is displayed either with a wider (left) or
narrower (right) choice of range on the y axis.

χ2
p, and the corresponding results are compared in Fig. 3.4.

As expected, and discussed in the introduction and in Sect. 2.1, we find that the best-fit
values of αs (mZ) determined with the old method [17, 18] and with the new correlated replica
method are in good agreement, both for the global dataset and for the data subsets. The small
differences in central values are most likely due to uncertainties related to the finite size of the
replica sample, which, as discussed in [17, 18], can be non-negligible when the old method is
used. On the other hand, also as expected, neglecting the correlation between αs and PDFs as
in the old method leads in general to an underestimate of the uncertainty on αs. This effect is
more marked for processes such as fixed-target Drell-Yan and neutrino DIS that have a limited
sensitivity to αs, because in this case the difference in length of the semi-axes of the error ellipse
in Fig. 1.1 is large.

This determination of αs (mZ) from the total χ2 also offers a complementary way of quan-
tifying how much each family of processes constrains the final best-fit value, by plotting the
contribution of each data subset to the total χ2. Specifically, we show in Fig. 3.5 the cumulative
differences at NNLO, χ2

p(αs) − χ2
p(0.1185), between each partial χ2

p and its value computed at
the global best-fit αs (mZ) value, neglecting cross-correlations between different data subsets.
The plot is divided into two halfs: above zero, only positive differences are shown, and below
zero, only negative ones. Thus, when all differences are positive the plot shows the breakdown of
the total χ2 into the contribution of different experiments (up to neglected cross-correlations),
while when some of them are negative the lower part of the plot shows by how much the χ2

of the individual experiments shown has improved in comparison to their value at the global
minimum αs(Mz) = 0.1185). In order to increase readability, the plot is displayed twice, with
two different choices of scale on the y axis.

From this comparison, we observe that the LHC data significantly contribute to constraining
αs. In particular, it is interesting to note that the 13 data points from top-quark pair production
lead to a significant contribution to the total χ2 away from the best-fit, even though the global
dataset contains almost 4000 data points. Similar considerations apply to the Z pT distributions.
This means that there is a small range of values of αs where these two groups of processes are
consistent with the rest of the data entering the fit, thereby providing a tight constraint on αs.

3.2 Methodological uncertainties

In view of the rather small experimental uncertainty on the final value of αs (mZ), Eqs. (3.1)–
(3.2), we need to assess possible uncertainties associated to the various aspects of our methodol-
ogy described in Sect. 2. Specifically, we discuss here the methodological uncertainties associated
to c-replica selection, batch minimization, the quadratic approximation to χ2 profiles, and the
treatment of correlated systematics.

The replica selection algorithm determines an optimal value of Nmin, the minimal number of
αs for which results must be available for a given c-replica to be selected. We have varied this
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Nmin αs (mZ) Nrep ∆αs

18 0.11842± 0.00031 (0.3%) 12 0.00009

15 0.11844± 0.00044 (0.4%) 92 0.00005

6 0.11845± 0.00052 (0.5%) 379 0.00003

3 0.11844± 0.00056 (0.5%) 400 0.00003

Table 3.2. Dependence of the NNLO determination of αs (mZ) on the minimum number of αs values
per c-replica Nmin (see Sect. 2.2). In each case, the best fit value and statistical uncertainty on αs are
shown, together with the number of surviving c-replicas Nrep and the bootstrapping uncertainty ∆αs

Eq. (2.12). The value chosen using the selection criterion of Sect. 2.2, which leads to the final vale of
αs (mZ) Eq. (3.1), is Nmin = 6 (third row of the table, in boldface).

batches αs (mZ) Nmin Nrep

I 0.11831± 0.00065 (0.5%) 9 310

II 0.11828± 0.00062 (0.5%) 14 216

III 0.11822± 0.00072 (0.6%) 13 369

I+II 0.11844± 0.00054 (0.5%) 11 225

I+III 0.11841± 0.00058 (0.5%) 13 158

II+II 0.11841± 0.00060 (0.5%) 14 288

I+II+III 0.11845± 0.00052 (0.4%) 6 379

Table 3.3. Results for the NNLO determinations of αs (mZ) using different combinations of the three
available batches. In each case we show both the best-fit value of αs (mZ), the minimum number of
αs values per c-replica Nmin, and the corresponding number surviving c-replicas Nrep. The last row (in
boldface) corresponds to our final result Eq. (3.1).

value from its minimum Nmin = 3 (needed in order to fit a parabola) to a high value Nmin = 18
(meaning that at most three values αs can be missing in order for a c-replica to be retained).
Results for the number of c-replicas passing the criterion and the ensuing value of αs are collected
in Table 3.2 for a number of choices. In each case we also show the finite-size uncertainty ∆αs

on the best-fit αs estimated by bootstrapping, Eq. (2.12).
The number of surviving c-replicas varies significantly; all the starting 400 c-replicas pass the

loosest criterion (i.e., it is always possible to fit a parabola to any c-replica), but only Nrep = 12
c-replicas pass the most restrictive criterion. However, even with this most restrictive criterion
the finite-size uncertainty is below the permille level. For the value selected by the algorithm, the
finite-size uncertainty is of order 0.03%, i.e. by almost a factor 20 smaller than the experimental
uncertainty Eq. (3.1) and it does not decrease further even when all c-replicas are kept. The
finite-size uncertainty on the αs uncertainty ∆σ itself Eq. (2.13) is comparable in all cases.

The value of αs (mZ) and its experimental uncertainty are hence very stable; the shift of
central value and uncertainty when the selection criterion is varied is always smaller than the
finite-size uncertainty. This stability can be understood by observing that each c-replica consists
of at least Nmin correlated PDF replicas, so each of the determinations shown in Table 3.2 is
obtained from more than Nmin ×Nrep PDF replicas. We thus estimate that the bootstrapping
uncertainty, and the related but smaller uncertainty due to choice of replica selection, to be of
order ∆αs = 0.00003 (0.03%), one order of magnitude smaller than the experimental uncertainty.

We next turn to discuss batch minimization. The results shown in Table 3.2 all correspond
to the NNLO baseline which uses batch minimization with three batches. In order to assess the
impact of batch minimization, in Table 3.3 we compare results obtained with each of the three
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Ntrim fitted αs (mZ) range αs (mZ) Nrep

0 [0.106,0.130] 0.11845± 0.00052 (0.4%) 379

2 [0.108, 0.128] 0.11846± 0.00045 (0.4%) 218

5 [0.110, 0.126] 0.11852± 0.00051 (0.4%) 290

10 [0.114, 0.124] 0.11869± 0.00046 (0.4%) 32

15 [0.115, 0.120] 0.11822± 0.00079 (0.7%) 10

4 [0.113, 0.130] 0.11850± 0.00058 (0.5%) 296

5 [0.106, 0.124] 0.11855± 0.00059 (0.5%) 197

Table 3.4. Results for the NNLO determinations of αs (mZ) when the Ntrim outer values of αs are not
used and the fit is restricted to a smaller range. In the bottom part of the table we also show results
found discarding values asymmetrically, at the upper or lower edge of the range. In each case we show
the number of discarded αs values, the best-fit value of αs (mZ), and the number of surviving c-replicas
Nrep. The first row (in boldface) corresponds to our final result Eq. (3.1).

batches, with the three possible pairs, and combining the three batches. In each case we show
the final best-fit αs (mZ) and experimental uncertainty, the value of Nmin, the minimum number

of α
(k)
s values per c-replica, and the number of surviving c-replicas Nrep.
It is clear from this comparison that as more batches are combined, results become more

stable. The values of Nmin are on average larger with two batches, and larger still with three,
but without a reduction of the number of surviving c-replicas Nrep as was observed in Table 3.2.
With three batches, Nrep is largest even though Nmin is also largest. This means that, thanks

to batch minimization, the number of available α
(k)
s values per replica is on average higher. It

follows that the finite-size uncertainty is reduced by batch minimization, thus leading to the
very small uncertainties shown in Table 3.2.

The values of αs (mZ) behave as expected upon use of batch minimization. The experimental
uncertainty is reduced when more batches are used and the central values with different com-
binations of batches are all consistent with each other within given uncertainties. Furthermore,
the differences in central values with different combinations of batches are reduced upon use of
batch minimization (they are smaller when using two batches than when using a single batch).
Additionally, the shift in central value when increasing the number of batches is rather smaller
than the uncertainty, and, finally, the central value is stabilized when increasing the number of
batches, so the difference between two and three batches is on average smaller than the difference
between one and two batches.

We conclude that the value of αs (mZ) found using three batches is the most accurate. We
observe that even the shift between the three-batch value and the single-batch value which differs
most from it is about a third of the finite-size uncertainty. We take this as further evidence that
there is no extra contribution of methodological origin due to batch minimization to be added
to the statistical uncertainty. We finally observe that the two-batch result is in fact consistent
within its very slightly larger uncertainty, thus justifying the use of only two batches at NLO.

We next turn to the methodological uncertainties related to the quadratic fitting of χ2

profiles. We have studied this in three different ways: by removing outer values of αs (mZ) from
the fit; by adding higher order terms to the fitting function; and by changing the fitting variable.
We discuss each in turn.

First, we have repeated the NNLO determination removing αs values that are farthest from
the best-fit value αs (mZ) = 0.1185, fitting a smaller range of values around the minimum.
As a further consistency check, we have removed αs values asymmetrically. Results are shown
in Table 3.4; in each case we show the number of discarded αs values Ntrim, the resulting
fitted range, the best fit αs (mZ) and uncertainty, and the number of surviving c-replicas Nrep.
Here too, the behaviour is consistent with expectations. As the fitted range is reduced, the
experimental uncertainty increases and the number of surviving c-replicas decreases (thereby
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αs (mZ) Nrep

default 0.11845± 0.00052 (0.4%) 379

ln 0.11845± 0.00052 (0.4%) 379

exp 0.11849± 0.00052 (0.4%) 379

Table 3.5. Same as Table 3.2, comparing the default parabolic fitting (in boldface) of the χ2(αs) profiles
with those with a transformed input, both χ2 (ln(1 + αs)) and χ2 (exp(αs)).

also increasing the finite-size uncertainty). The central value, however, is extremely stable; the
shift in central value when restricting the range is always more than a factor two smaller than
the experimental uncertainty. In fact, the shift is never larger than ∆ = 0.00010 (0.08%) unless
the number of surviving c-replicas becomes of order ten, in which case the finite-size uncertainty
(recall Table 3.2) is of the same order or larger.

A different way of testing for deviations from quadratic behaviour is to apply a criterion to
assess fit quality to both quadratic and cubic fits. Here we use the Akaike Information Criterion
(AIC) [38], which estimates the expected relative distance between a given fitted model and the
unknown underlying law [39]. The AIC score balances goodness of fit against simplicity of the
model. A lower score corresponds to a lower expected distance measured by the Kullback-Leibler
divergence. The AIC score is defined by

AIC = 2r − 2 lnL+
2r(r + 1)

n− r − 1
, (3.4)

where r is the number of degrees of freedom of the model, n is the number of fitted points, and
ln(L) is the log-likelihood associated with the model.

In our case, we fit to χ2(k)(αs), Eq. (2.5), viewed as a function of αs using either a parabola
(as in our default determination) or a higher order polynomial. The log-likelihood is then in
each case just the χ2 of this fit. Computing the AIC score for each fitted profile, averaging
over c-replicas, and taking the variance of results as a measure of the uncertainty, we find
AIC = 169 ± 37 for the default quadratic fit and AIC = 173 ± 35 for a cubic fit. We conclude
that there is no evidence that a cubic fit is better than a quadratic one.

We perform a final test based on the observation that any transformation of the error function
profile of the form

χ2(αs)→ χ2(f(αs)) , (3.5)

where f is sufficiently smooth and monotonic, should lead to the same best-fit value of αs.
The results of fitting αs from the transformed profiles Eq. (3.5) with f(αs) = exp(αs) and
f(αs) = ln(1 + αs) are shown in Table 3.5. The argument of the log is shifted so that f(αs)
admits a Taylor expansion in powers of αs. Reassuringly, we find extreme stability with respect
to these transformations of the fitting argument.

Combining results from Tables 3.4 and 3.5 and the analysis based on the AIC score we can
conservatively take as an estimate of the uncertainty related to parabolic fitting the largest shift
observed in Table 3.2, neglecting the cases with Nrep < 100 which are dominated by finite-size
uncertainty, namely

∆par = 0.00010 (0.08%). (3.6)

We finally turn to the uncertainty related to the treatment of experimental correlated sys-
tematic errors. As mentioned in Sec. 2.1, the covariance matrix in the presence of multiplicative
uncertainties should be identified with the experimental covariance matrix, in order to avoid
biasing the fit [23]. We thus adopt the t0 method, introduced in [24], benchmarked in [25], and
used for the determination of all NNPDF sets from NNPDF2.0 [40] onwards. In this procedure,
the normalization of the multiplicative uncertainties that enter the covariance matrix is itera-
tively determined from a prior theory prediction. Because the PDFs and αs are now determined
on the same footing, the same covariance matrix is used for both. It is clear that the same χ2
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Figure 3.6. Top: probability distributions for the best-fit α
(k)
s values (same as Fig. 3.2) and bottom:

values of the partial αs (mZ) and corresponding uncertainties (same as Fig. 3.4) in both cases comparing
NNLO results from a single batch found using either a consistent or an inconsistent definition of the χ2.

definition must be used in Eq. (2.9) as in Eqs. (2.7)-(2.8) in order for the same minimum to be
found.

Indeed, it is interesting to note that using an inconsistent definition of the covariance matrix
significantly biases the result of αs (mZ). In Fig. 3.6 we compare the distribution of NNLO
αs (mZ) values as well as the total and partial best-fit values and uncertainties, computed for
a single batch, either consistently using the t0 covariance matrix (see Figs. 3.2, 3.4 for the
corresponding results with three batches) or inconsistently using the experimental covariance
matrix. We find that the inconsistent definition leads to a much broader distribution for the
total χ2, thereby signaling the lack of consistency, and, more importantly, a biased central value
αs(mZ) = 0.114 ± 0.001exp (0.9%), shifted by about 9-σ in comparison to the correct result
Eq. (3.1). The fact that a downward shift of αs (mZ) is observed when using the inconsistent
definition can be understood based on the observation that the bias [23] typically leads to the
best-fit undershooting the data, essentially because with multiplicative uncertainties a lower
prediction has a smaller uncertainty [41]. Indeed, inspection of the partial best-fit values shows
that the bias is much stronger for collider experiments than the fixed-target ones. This is what
one would expect, because systematic uncertainties are multiplicative for collider experiments,
while they are mostly additive for fixed-target [25], so any effect or bias related to the treatment
of multiplicative uncertainties should be mostly seen in collider data.

The use of the t0 procedure in principle leads to a further methodological uncertainty related
to the choice of the prior used for the construction of the t0 matrix, which should therefore be
assessed. In order to determine the final result Eq. (3.1) the t0 matrix was constructed using the
best-fit PDF set from batch II of Table 3.3. We have repeated the determination constructing
the t0 matrix from the best-fit PDF set of either of the other two batches. Results are collected
in Table 3.6. It is clear that, using the consistent t0 method, results are extremely stable. We
can conservatively estimate the uncertainty due to the choice of t0 from the largest shift seen in
Table 3.6 as ∆t0 = 0.00004 (0.03%).

In summary, we conservatively estimate methodological uncertainties by adding in quadra-
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t0 αs (mZ) Nrep

I 0.11844± 0.00052(0.4%) 379

II 0.11845± 0.00052(0.4%) 379

III 0.11841± 0.00051(0.4%) 356

Table 3.6. Best-fit value of αs (mZ) and experimental uncertainty found using three different forms
of the t0 covariance matrix (see text); the second row corresponds to the central result Eq. (3.1). The
number of c-replicas selected in each case is also shown.

ture the finite-size uncertainty ∆αs = 0.00003, the uncertainty related to the parabolic approx-
imation ∆par = 0.00010 and the uncertainty related to the treatment of correlated systematics
∆t0 = 0.00004, with the result

σmeth = 0.00011 (0.09%) . (3.7)

Therefore, we find that, at NNLO, methodological uncertainties are smaller than the experi-
mental uncertainties Eq. (3.1) by a factor five.

3.3 Theoretical uncertainties from missing higher orders

A determination of αs (mZ) is dependent on the perturbative order of the QCD calculations
on which it relies. Therefore, at any fixed order it is affected by a missing higher order uncer-
tainty (MHOU). In older, and also some more recent determinations of αs (mZ) (specifically for
determination in PDF fits see Refs. [17, 42, 43]) no attempt was made to estimate the MHOU,
and sometimes NLO or NNLO values of αs (mZ) were quoted with the understanding that they
might differ by an amount greater than the quoted uncertainty due to this missing uncertainty.
However, as the experimental uncertainty decreases, an estimate of the MHOU becomes manda-
tory, and in the context of PDF fits it was done e.g. in Ref. [18]. Indeed, this uncertainty,
usually estimated by scale variation, is typically dominant in more recent determinations [9–15].

In the present case, a first handle on the MHOU associated to αs is provided by the difference
between the NLO and NNLO results Eqs. (3.1) and (3.2), namely

∆αpert
s ≡ |αNNLO

s − αNLO
s | = 0.0022 , (3.8)

which corresponds to a 2% shift of the NNLO central value. This is about four times larger than
the experimental uncertainty in Eq. (3.1), thereby suggesting that even at NNLO the MHOU on
the αs (mZ) determination might be comparable to, or larger than the experimental uncertainty.

In our previous determination of αs Ref. [18] the MHOU was estimated using the Cacciari-
Houdeau (CH) method [44], which relies on a Bayesian estimate of the missing higher pertur-
bative orders based on the behaviour of the known orders. Use of exactly the same method of
Ref. [18], to which the reader is referred for details, leads to the values

∆CH,NLO = 0.003 , (3.9)

∆CH,NNLO = 0.0004 (3.10)

for the 68% confidence level MHOU on αs(MZ). The rather large difference in the MHOU
estimate between NLO and NNLO stems from the fact that there is a significant shift when
going from LO to NLO, but a much smaller one when going from NLO to NNLO.

The NLO estimate of the MHOUs in Eq. (3.9) is reassuringly in good agreement with the
observed shift Eq. (3.8). The NNLO uncertainty Eq. (3.10) is also consistent with expectations
based on the CH uncertainty estimate of Ref. [18], where the value of αs (mZ) determined using
the NNPDF2.1 set was found to lead to ∆CH,NNLO = 0.0009. Indeed, PDF uncertainties in the
NNPDF3.1 set are generally smaller than those on NNPDF2.1 by a factor of two or more, due to
significant impact of LHC data in the more recent determination. In addition, the shift between
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NLO and NNLO PDFs is found to be smaller in NNPDF3.1 than in previous NNPDF sets [45],
presumably because MHO terms pull in different directions and thus partly cancel each other to
a greater extent in a more global fit. Indeed, we find a similar increase of perturbative stability
of PDFs and of the associated αs (mZ) by repeating the analysis presented here for reduced
datasets [46]. Therefore, the reduction of the MHOU by a comparable factor in Eq. (3.8) in
comparison to Ref. [18] is expected.

Nevertheless, the very small value of the MHOU at NNLO, Eq. (3.10), even smaller than the
already small experimental uncertainty Eq. (3.1), may seem rather too optimistic. There are
furthermore several reasons of principle and practice why the reliability of the CH method in the
present case is dubious. The main one is that the implementation of the method suggested in

Ref. [18] relies on a guess for an underlying “true” value α
(0)
s , and for a leading-order value αLO

s ,
neither of which is known. The result Eqs. (3.9-3.10) is obtained by varying αLO

s ∈ [0.10, 0.14].

and α
(0)
s ∈ [0.110, 0.125]. These are however largely arbitrary choices, and the final answer relies

on them.
We therefore prefer to adopt a more conservative estimate. Namely, we assume that the

MHOU on the NNLO result is half the difference between the NLO and NNLO results Eq. (3.8):

∆αth
s = 0.0011 (0.9%) , (3.11)

about twice the size of the corresponding experimental uncertainty Eq. (3.1). Whereas this is
surely a very crude estimate, we do not feel that any of the available methods can lead to a
more reliable conclusion.

On top of the missing higher fixed-order QCD corrections, several other aspects of the
theory used in the simultaneous determination of αs (mZ) and PDFs also lead to uncertainties.
These include the values of the heavy quark masses, standard model parameters (specifically
CKM matrix elements and electroweak couplings), electroweak corrections, QCD resummation
corrections [47,48], QCD power corrections, and nuclear corrections. Many of these uncertainties
were assessed in the NNPDF3.1 PDF determination that we are relying upon [16], and found
to be smaller than PDF uncertainties. In particular, the dependence on the charm mass in
previous PDF determinations is substantially reduced in NNPDF3.1 and likely rather smaller
than the MHOU, thanks to the presence of an independently parametrized charm PDF [49],
and electroweak corrections are carefully kept under control thanks to the choice of suitable
kinematic cuts. But PDF uncertainties mix with the experimental uncertainty on αs (mZ), with
which they are strongly correlated, and are in fact indistinguishable from it, as discussed in
Sect. 2.1, so the hierarchy of uncertainties on PDFs and αs (mZ) is the same. We conclude that
we have evidence that most of these theoretical uncertainties are sub-dominant in comparison
to the experimental uncertainty Eq. (3.1), and thus even more so in comparison to the MHOU
Eq. (3.11).

3.4 Final results and comparisons

We can now collect results. Combining the NNLO value and experimental uncertainty Eq. (3.1),
the methodological uncertainty Eq. (3.7) and the theoretical uncertainty Eq. (3.11) we get

αNNLO
s (mZ) = 0.1185± 0.0005exp ± 0.0001meth ± 0.0011th = 0.1185± 0.0012 (1%) , (3.12)

where in the last step we have added all uncertainties in quadrature. For a comparison to
other determinations, such as the PDG average, we recommend using only the experimental
uncertainty (the methodological uncertainty being negligible), which reflects the limitations of
our result and procedure, but not the limitation due to the fact that our result is obtained at
NNLO. For precision phenomenology, however, we recommend use of the total uncertainty in
order to conservatively account for the MHOU.

This result can be compared to the previous one [18] based on NNPDF2.1, αNNLO
s (mZ) =

0.1173±0.0007exp±0.0009th. In comparison to this older result, the central value of αs(mZ) has
increased by ∆αs = +0.0012 . As far as uncertainties are concerned, both the theoretical and
experimental uncertainties on this previous result are larger, if one compares like with like. The
experimental uncertainty should actually be compared to Eq. (3.3) as it was obtained with the
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Figure 3.7. Comparison of the present NNLO determination of αs (mZ), Eq. (3.12), with the PDG
average and with the previous ABMP16, MMHT14, and NNPDF2.1 results. For the NNPDF values, the
inner (darker) error bar correspond to experimental uncertainties, while the outer (lighter) one indicates
the sum in quadrature of experimental and theoretical uncertainties.

same method. The uncertainty is somewhat underestimated because it neglects the correlation
between PDFs and αs, while the theory uncertainty should be compared to Eq. (3.10) which is
also based on the CH method. We conclude that, in comparison to Ref. [18], the current result
is more precise, though with more conservatively estimated uncertainties.

In Fig. 3.7 we compare the NNLO result of Eq. (3.12) to our previous result [18], to the current
PDG average [3], and to two recent determinations obtained from simultaneous fit of PDFs and
αs (mZ), ABMP16 [43] and MMHT2014 [42]. We find good agreement with the PDG average as
well as with the MMHT14 and NNPDF2.1 determinations. It has been suggested [50, 51] that
the lower ABMP16 value can be partly explained by the use of a fixed-flavour number scheme
with Nf = 3 for the treatment of DIS data. It is interesting to observe that the current AMBP16
value is higher than previous values of αs (mZ) obtained by the same group [52], from which the
ABMP16 analysis in particular differs because of inclusion in Ref. [43] of LHC top production
and W and Z production data (described with Nf = 5).

Interestingly, the αs (mZ) determination from the NNPDF3.1 fit is higher than any other
recent determination from PDF fits. Inspection of Figs. 3.3 and 3.5 strongly suggests that
this increase is driven by the high-precision LHC data, especially for gauge boson production
(including the Z pT distribution) but also for top and jet production.

4 Summary and outlook

In this work we have presented a new determination of the strong coupling constant αs (mZ)
jointly with a global determination of PDFs which, by relying on NNPDF3.1, for the first time
includes a large amount of LHC data using exact NNLO theory in all cases. In comparison to
a previous determination based on NNPDF2.1, our results exploit the new correlated replica
method that is equivalent to the simultaneous fit of PDFs and αs. This new method thus fully
accounts for the correlations between PDFs and αs in the determination of the best-fit value of
αs and of the associated uncertainty.

We find that the determination of αs (mZ) is considerably stabilized by the use of a wide set of
different processes and data, and we provide evidence that a global simultaneous determination of
αs (mZ) and PDFs leads to a more stable and accurate result than the one obtained from subsets
of data. We thus obtain a value of αs (mZ) which is likely to be more precise and more accurate
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than previous results based on similar techniques. We find that the LHC data consistently lead
to an increase in the central value of αs (mZ), and observe good overall consistency between the
datasets entering the global fit. Our NNLO determination turns out to be in agreement within
uncertainties with previous results from global fits and with the PDG average.

The main limitation of our result comes from the lack of a reliable method to estimate the
uncertainties related to missing higher order perturbative corrections. Theoretical progress in
this direction is needed, and perhaps expected, and would be a major source of future improve-
ment. For the time being, even with a very conservative estimate of the theoretical uncertainty,
our result provides one of the most accurate determinations of αs (mZ) available, and thus pro-
vides valuable input for precision tests of the Standard Model and for searches for new physics
beyond it.
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