
Mon. Not. R. Astron. Soc. 418, 346–356 (2011) doi:10.1111/j.1365-2966.2011.19488.x

Effects of massive neutrinos on the large-scale structure of the Universe
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ABSTRACT
Cosmological neutrinos strongly affect the evolution of the largest structures in the Universe,
i.e. galaxies and galaxy clusters. We use large box-size full hydrodynamic simulations to
investigate the non-linear effects that massive neutrinos have on the spatial properties of cold
dark matter (CDM) haloes. We quantify the difference with respect to the concordance �CDM
model of the halo mass function and of the halo two-point correlation function. We model
the redshift-space distortions and compute the errors on the linear distortion parameter β

introduced if cosmological neutrinos are assumed to be massless. We find that, if not taken
correctly into account and depending on the total neutrino mass Mν , these effects could lead
to a potentially fake signature of modified gravity. Future nearly all-sky spectroscopic galaxy
surveys will be able to constrain the neutrino mass if Mν � 0.6 eV, using β measurements
alone and independently of the value of the matter power spectrum normalization σ 8. In
combination with other cosmological probes, this will strengthen neutrino mass constraints
and help breaking parameter degeneracies.
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1 IN T RO D U C T I O N

Neutrinos are so far the only dark matter candidates that we ac-
tually know to exist. Since deviations from the standard model in
the form of extra neutrino species are still uncertain (Giusarma
et al. 2011; Gonzales-Morales et al. 2011), in this paper we focus
on standard neutrino families only. It is now established from so-
lar, atmospheric, reactor and accelerator neutrino experiments that
neutrinos have non-zero mass implying a lower limit on the total
neutrino mass given by Mν ≡ ∑

mν ∼ 0.05 eV (Lesgourgues &
Pastor 2006), where mν is the mass of a single neutrino species. On
the other hand the absolute masses are still unknown. Since neu-
trino mass affects the evolution of the Universe in several observable
ways, its measurements can be obtained from different cosmological
probes as observations of cosmic microwave background (CMB),
galaxy clustering, Lyα forest and weak lensing data (Abazajian et al.
2011).

In particular, a thermal neutrino relic component in the Uni-
verse impacts both the expansion history and the growth of cosmic
structures. Neutrinos with mass �0.6 eV become non-relativistic
after the epoch of recombination probed by the CMB, and this

�E-mail: federico.marulli3@unibo.it

mechanism allows massive neutrinos to alter the matter-radiation
equality for a fixed �mh2 (Lesgourgues & Pastor 2006). Massive
neutrinos act as non-relativistic particles on scales k > knr =
0.018(mν /1eV)1/2�1/2

m h Mpc−1, where knr is the wavenumber
corresponding to the Hubble horizon size at the epoch znr when
the given neutrino species becomes non-relativistic, �m is the mat-
ter energy density and h = H0/100 km s−1 Mpc−1. The large velocity
dispersion of non-relativistic neutrinos suppresses the formation of
neutrino perturbations in a way that depends on mν and redshift
z, leaving an imprint on the matter power spectrum for scales k >

kfs(z) = 0.82H(z)/H0/(1 + z)2(mν /1 eV) h Mpc−1 (Lesgourgues &
Pastor 2006; Takada, Komatsu & Futamase 2006), where neutrinos
cannot cluster and do not contribute to the gravitational potential
wells produced by cold dark matter and baryons. This modifies the
shape of the matter power spectrum and the correlation function on
these scales (see e.g. Doroshkevich et al. 1981; Hu, Eisenstein &
Tegmark 1998; Abazajian et al. 2005; Kiakotou, Elgarøy & Lahav
2008; Brandbyge et al. 2010; Viel, Haehnelt & Springel 2010, and
reference therein).

Massive neutrinos affect also the CMB statistics. In fact, neu-
trinos with mass �1 eV become non-relativistic after the epoch
of recombination probed by the CMB, and this mechanism al-
ters the matter-radiation equality for a fixed �mh2. WMAP7 alone
constrains Mν < 1.3 eV (Komatsu et al. 2009) and, thanks to the
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improved sensitivity to polarization and to the angular power spec-
trum damping tail, forecasts for the Planck satellite alone give a
1σ error on the total neutrino mass of ∼0.2–0.4 eV, depending on
the assumed cosmological model and fiducial neutrino mass (e.g.
Perotto et al. 2006; Kitching et al. 2008, and references therein).
Moreover, the combination of present data sets from CMB and
large-scale structure (LSS) yields an upper limit of Mν < 0.3 eV
(Wang et al. 2005; Vikhlinin et al. 2009; Gonzalez-Garcia, Maltoni
& Salvado 2010; Reid et al. 2010; Thomas, Abdalla & Lahav 2010).
A further robust constraint on neutrino masses has been obtained
using the Sloan Digital Sky Survey flux power spectrum alone, find-
ing an upper limit of Mν < 0.9 eV (2σ confidence limit) (Viel et al.
2010). However, the tightest constraints to date in terms of a 2σ

upper limit on the neutrino masses have been obtained by combin-
ing the Sloan Digital Sky Survey flux power from the Lyα forest
with CMB and galaxy clustering data and result in 	mν < 0.17 eV
(Seljak, Slosar & McDonald 2006). Somewhat less constraining
bounds have been obtained by Goobar et al. (2006), while for fore-
casting on future joint CMB and Lyα constraints we refer to Gratton,
Lewis & Efstathiou (2008). For further discussion on neutrino mass
constraints from different probes, see e.g. Abazajian et al. (2011)
and reference therein.

The forecasted sensitivity of future LSS experiments, when com-
bined with Planck CMB priors, indicates that observations should
soon be able to detect signatures of the cosmic neutrino background
and measure the neutrino mass even in the case of the minimum
mass Mν = 0.05 eV (e.g. Hannestad & Wong 2007; Kitching et al.
2008; Abell et al. 2009; Hannestad 2010; Lahav et al. 2010). In par-
ticular, Carbone et al. (2011) show that future spectroscopic galaxy
surveys, such as Euclid, JEDI and WFIRST , not only will be able
to measure the dark energy equation of state with high accuracy,
but they will determine the neutrino mass scale independently of
flatness assumptions and dark energy parametrization, if the total
neutrino mass Mν is >0.1 eV. On the other hand, if Mν is <0.1 eV,
the sum of neutrino masses, and in particular the minimum neu-
trino mass required by neutrino oscillations, can be measured in the
context of a �CDM model.

It is therefore mandatory to measure with high accuracy the
growth history of large-scale structures in order to obtain the neces-
sary cosmological information, excluding possible systematics due
to the incorrect assumption that neutrinos are massless. One way
of determining the growth of structure is through the redshift-space
distortions (RSD) of the galaxy distribution, caused by the line-of-
sight component of galaxy peculiar velocities. RSD can be exploited
in large deep redshift surveys to measure (if the galaxy bias is mea-
sured independently) the growth rate of density fluctuations f ≡
d ln D/d ln a, with D being the linear density growth factor and a =
1/(1 + z), or to measure the linear RSD parameter β (Kaiser 1987)
that depends on the growth rate f and the galaxy linear bias b. In
particular, β in the presence of massive neutrinos depends on both
redshift and wavenumbers β(z, k) = f (z, k)/b(z), since in this case
the linear growth rate f (z, k), being suppressed by free-streaming
neutrinos, acquires a scale dependence already at the linear level
(Kiakotou et al. 2008).

There are two types of RSD with competing effects acting along
opposite directions on the observed galaxy correlation function.
While, for large separations, large-scale bulk peculiar velocities
produce a flattening effect on the correlation function and give in-
formation on the growth of structures, on small scales, random pecu-
liar velocities cause the so-called Fingers of God (FoG), stretching
compact structures along the line of sight (Scoccimarro 2004; Song
& Percival 2009).

RSD have been the subject of many analyses, as reviewed in
Hamilton (1998). The latest large galaxy surveys that have enabled
measurements of RSD via the correlation function and the power
spectrum are the two degree Field Galaxy Redshift Survey (Peacock
et al. 2001; Hawkins et al. 2003; Percival et al. 2004) and the
Sloan Digital Sky Survey (Tegmark et al. 2004; Zehavi et al. 2005;
Tegmark et al. 2006; Okumura et al. 2008; Cabré & Gaztañaga
2009a,b). Moreover, also the VIMOS-VLT Deep Survey have been
exploited in Guzzo et al. (2008) for RSD determinations from the
correlation function.

Since the linear theory description is valid only at very large
scales, an extension of the theoretical description has been attempted
to quasi-linear and non-linear scales using empirical methods based
on the so-called streaming model (Peebles 1980), consisting of lin-
ear theory and a convolution on the line of sight with a velocity dis-
tribution. This model describes the FoG elongation along the line of
sight due to random motions of virialized objects (Jackson 1972). It
has been shown by Guzzo et al. (2008), Cabré & Gaztañaga (2009a)
and Percival & White (2009) that on quasi-linear scales a streaming
model with a Gaussian velocity dispersion is a good general fit to
the redshift-space power spectrum. However, this model is not ac-
curate on very small and very large scales (Raccanelli, Samushia &
Percival 2010; Taruya, Nishimichi & Saito 2010; Okumura & Jing
2011) and fitting functions based on simulation results have been
used (Hatton & Cole 1999; Scoccimarro 2004; Tinker, Weinberg &
Zheng 2006; Tinker 2007; Tocchini-Valentini et al. 2011). Anyway,
to the purpose of this paper, the streaming model is accurate enough
to robustly constrain the effect of massive neutrinos on RSD when
applied on scales �50 h−1 Mpc.

In this work, we compare analytic results against a set of large
N-body hydrodynamical simulations developed with an extended
version of GADGET III, which is an improved version of the code de-
scribed in Springel (2005), further modified to take into account the
effect of massive free-streaming neutrinos on the evolution of cos-
mic structures (Viel et al. 2010). It is well known that galaxy/halo
bias on large, linear scales is scale independent, but becomes non-
linear and therefore scale dependent on smaller scales. This effect
can be mimicked or enhanced by the presence of massive neutrinos.
Therefore, the effect of massive neutrinos on the galaxy clustering
in the quasi non-linear regime has to be explored via N-body sim-
ulations to encompass all the relevant effects, and analyse possible
sources of systematic errors due to non-linearities and galaxy bias
scale dependence. In particular, in this work we will focus on the
DM halo mass function (MF), the DM halo bias and RSD.

The rest of the paper is organized as follows. In Section 2 we
review our method and the adopted modelling of RSD. In Section 3
we describe the exploited set of N-body simulations and present our
results on the neutrino effects on LSS. Finally in Section 5 we draw
our conclusions.

2 FORMALI SM TO MODEL REDSHI FT
DI STORTI ONS

2.1 Overview

In this section we describe how RSD are generated in the observed
galaxy correlation function. An observed galaxy redshift is com-
posed of the two additive terms,

zobs = zc + v‖
c

(1 + zc), (1)

where zc is the cosmological redshift, due to the Hubble flow. The
second term of equation (1) is caused by galaxy peculiar velocities
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where v‖ is the component parallel to the line of sight. The real
comoving distance of a galaxy is given by

r‖ =
∫ zc

0

c dz′
c

H (z)
, (2)

where H(z) is the so-called Hubble rate. When the distances are
computed replacing zc with zobs in equation (2), i.e. without cor-
recting for the peculiar velocity contribution, we say to be in the
redshift space. We will refer to the redshift-space spatial coordinates
using the vector s, while we will use r to indicate the real-space
coordinates.

Fundamental information is hinted in the anisotropies of an ob-
served galaxy map in redshift space. A useful statistics widely used
to describe the spatial properties of a general astronomical popu-
lation is the two-point correlation function, ξ (r), implicitly defined
as dP12 = n2[1 + ξ (r)] dV1 dV2, where dP12 is the probability of
finding a pair with one object in the volume dV1 and the other in the
volume dV2, separated by a comoving distance r. It is convenient
to decompose the distances into the two components perpendicular
and parallel to the line of sight, r = (r⊥, r‖), so that the correla-
tion becomes a two-dimensional function of these variables. When
measured in real space, the contour lines of ξ (r⊥, r‖) are circles for
an isotropic population of objects as galaxies. Instead, in redshift-
space ξ is distorted: at small scales (�1 h−1 Mpc) the distortion is
caused by the random motions of galaxies moving inside virial-
ized structures. This motion changes the shape of ξ in the direction
parallel to the line of sight, producing the observed FoG. At large
scales the coherent bulk motion of virializing structures squashes
the correlation function ξ perpendicularly to the line of sight.

A different kind of distortion, called geometrical or Alcock–
Paczynski (AP) distortion (Alcock & Paczynski 1979), can be
present if the cosmological parameters assumed in equation (2)
are not the same as the true cosmological model of the Universe. In
what follows, we will not consider this effect since massive neutri-
nos do not produce a geometrical distortion if the present-day total
matter energy density parameter �m is held fixed.

2.2 Modelling the dynamical distortions

At large scales and in the plane-parallel approximation, the dy-
namical distortions can be parameterized in the Fourier space as
follows:

P (k) = (1 + βμ2)2Plin(k), (3)

where Plin(k) is the linear power spectrum of the matter density
fluctuations and μ is the cosine of the angle between k and the line
of sight. Fourier transforming equation (3) gives

ξ (s, μ) = ξ0(s)P0(μ) + ξ2(s)P2(μ) + ξ4(s)P4(μ), (4)

where the functions Pl represent the Legendre polynomials
(Hamilton 1992). The multipoles ξ n(s), n = 0, 2, 4, can be written
as follows:

ξ0(s) =
(

1 + 2β

3
+ β2

5

)
ξ (r), (5)

ξ2(s) =
(

4β

3
+ 4β2

7

)
[ξ (r) − ξ (r)], (6)

ξ4(s) = 8β2

35

[
ξ (r) + 5

2
ξ (r) − 7

2
ξ (r)

]
, (7)

where ξ (r) is the real-space correlation function, and the barred
correlation functions are defined as

ξ (r) = 3

r3

∫ r

0
dr ′ξ (r ′)r ′2, (8)

ξ (r) = 5

r5

∫ r

0
dr ′ξ (r ′)r ′4. (9)

Equation (4) can be used to approximate the correlation function
at large scales. To include in the model also the small scales, as
discussed in Section 1, we adopt the streaming model and use the
following formula

ξ (s⊥, s‖) =
∫ ∞

−∞
dvf (v)ξ (s⊥, s‖ − v/H (z)/a(z)), (10)

where f (v) is the distribution function of random pairwise velocities
that are measured in physical (not comoving) coordinates (but see
e.g. Matsubara 2004; Scoccimarro 2004). In this work, we adopt
for f (v) the form

f (v) = 1

σ12

√
2

exp

(
−

√
2|v|
σ12

)
, (11)

where σ 12 is the dispersion in the pairwise peculiar velocities.

3 TH E A D O P T E D S E T O F N U M E R I C A L
SI MULATI ONS

The set of simulations we consider in this work have been per-
formed by Viel et al. (2010) with the hydrodynamical tree parti-
cle mesh–smoothed particle hydrodynamics (TreePM–SPH) code
GADGET III, which is an improved and extended version of the code
described in Springel (2005). This code has been modified in order
to simulate the evolution of the neutrino density distribution. The
cosmological model adopted in the simulations is based on cold
dark matter and assumes the presence of the cosmological constant
(�CDM): ns = 1, �m = 0.3, �b = 0.05, �� = 0.7 and h =
0.7 (H0 = 100 h km s−1), plus a cosmological massive neutrino
component �ν ≡ Mν /(h293.8 eV) (�CDM+ν). In what follows,
we consider only the so-called ‘grid-based implementation’ of the
simulations developed by Viel et al. (2010), where neutrinos are
treated as a fluid (see also Brandbyge & Hannestad 2009, 2010).
In this implementation the linear growth of the perturbations in the
neutrino component is followed by interfacing the hydrodynami-
cal code with the public available Boltzmann code CAMB1 (Lewis,
Challinor & Lasenby 2000). More specifically, the power spectra
of the neutrino density component are interpolated in a table pro-
duced via CAMB of 100 redshifts in total, spanning logarithmically
the range z = 0–49. The gravitational potential is calculated at the
mesh points and the neutrino contribution is added when forces are
calculated by differentiating this potential.

In this approach the gravitational force due to neutrinos is cal-
culated based on the linearly evolved density distribution of the
neutrinos in Fourier space. This implementation has the advantage
that it does not suffer from significant shot noise on small scales,
yielding therefore higher accuracy at scales and redshifts where
the effect of the non-linear neutrino evolution is still moderate,
especially for small neutrino masses. Further advantages of such
a grid-based approach, aside from eliminating the Poisson noise,
are the reduced requirements with regard to memory (there are no

1 http://camb.info/
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Neutrino effects on LSS 349

neutrino positions and velocities to be stored) and computational
time.

The initial conditions of this set of simulations were generated
based on linear matter power spectra separately computed for each
component (dark matter, gas and neutrinos) with CAMB. The total
matter power spectrum was normalized such that its amplitude (ex-
pressed in terms of σ 8) matches the CAMB prediction at the same
redshift. The mass per simulation particle at our default resolution
is 1.4 × 1010 and 6.9 × 1010 M
 h−1 for gas and dark matter,
respectively. In this work we consider the set of simulations with
a box of comoving volume V = (512 h−1 Mpc)3, and total neutrino
mass Mν = 0, 0.3, 0.6 eV, respectively.

To identify DM haloes and their substructures we have used two
different algorithms: a standard friends-of-friends (FOF) group finder
with linking length b = 0.2, and the SUBFIND algorithm described in
Springel et al. (2001). Apart from the right-hand panel of Fig. 1,
all the results presented in this paper have been obtained using our
subhalo catalogues, composed of the gravitationally bound sub-
structures that SUBFIND identifies in each FOF haloes. However, as
we have explicitly verified, all the main conclusions of this work
do not change if we consider the halo catalogues instead. This hap-
pens because, as shown by Giocoli et al. (2010), in the mass range
considered in this work the total MF of haloes and sub-haloes is
manly dominated by the halo systems. At z = 0 the sub-halo con-
tribution start to be seen only for masses �1010 M
 h−1. For all
the considered Mν values, we have restricted our analysis in the
mass range Mmin < M < Mmax, where Mmin = 2 × 1012 M
 h−1

and Mmax = 2 × 1015, 5 × 1014, 3 × 1014, 1014 M
 h−1 at z =
0, 0.66, 1, 2, respectively.

4 R ESULTS

In this section we show how the halo MF, the halo bias and the linear
RSD parameter β get modified with respect to the standard �CDM
case, when a massive neutrino component is taken correctly into
account. In particular we compare the results between the �CDM
and the �CDM+ν cosmologies, and analyse if our findings agree
with analytical predictions in the literature.

4.1 The halo mass function

As mentioned in Section 1, the free streaming of non-relativistic
neutrinos contrasts the gravitational collapse which is the basis of
cosmic structure formation. The first consequence of this mech-
anism is represented by a significant suppression in the average
number density of massive structures. This effect can be observed
in the high mass tail of the halo MF as measured from our set of
simulations, and shown by the data points in the left-hand panel of
Fig. 1. For a fixed amplitude of the primordial curvature perturba-
tions �2

R, the amount of the number density suppression depends
on the value of the total neutrino mass Mν . From the comparison of
the corresponding MFs, we recover what is theoretically expected,
i.e. the higher the neutrino mass is, the larger the suppression in the
comoving number density of DM haloes becomes. The suppression
affects mainly haloes of mass 1014 < M < 1015 M
 h−1, depending
slightly on the redshift z. This result is in agreement with the find-
ings of Brandbyge et al. (2010). In the same plot, we compare the
measured MFs with the analytical predictions of Sheth & Tormen
(2002) (ST), represented by the solid, dotted and dashed curves,

Figure 1. DM halo MF as a function of Mν and redshift. Left: MF of the SUBFIND haloes in the �CDM N-body simulation (blue circles) and in the two
simulations with Mν = 0.3 eV (magenta triangles) and Mν = 0.6 eV (red squares). The blue, magenta and red lines show the halo MF predicted by Sheth &
Tormen (2002), where the variance in the density fluctuation field, σ (M), for the three cases, Mν = 0, 0.3, 0.6 eV, has been computed using the linear matter
P(k) extracted from CAMB. Right: ratio between the halo MFs of the simulations with and without neutrinos. The green triangles show the MF ratios of the FOF

haloes, while yellow circles show the ones of the SUBFIND haloes. The lines represent the ST–MF ratios: the black solid lines are the MF ratios predicted for
Mν = 0.3 and 0.6 eV; the red dashed lines are the same ratios but assuming ρ̄ = ρc(�m − �ν ) in the ST–MF formula (equation 12) (Brandbyge et al. 2010);
finally, the blue dotted lines are the ratios between the ST MFs in two �CDM cosmologies, which differ for the σ 8 normalization, as explained in the text. The
error bars represent the statistical Poisson noise.
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corresponding to the values Mν = 0, 0.3, 0.6 eV, respectively. The
ST fit is based on the fact that the halo MF can be written as (Press
& Schechter 1974)

M dM

ρ̄

dn(M, z)

dM
= ζf (ζ )

dζ

ζ
, (12)

with ζ ≡ [δsc(z)/σ (M)]2, where δsc(z) = 1.686 is the overdensity
required for spherical collapse at z in a �CDM cosmology, and
ρ̄ = �mρc, where ρc is the critical density of the Universe. Here
�m = �c dm + �b + �ν , and dn(M, z) is the number density of
haloes in the mass interval M to M +dM . The variance of the linear
density field, σ 2(M), is given by

σ 2(M) =
∫

dk
k2Plin(k)

2π2
|W (kR)|2, (13)

where the top-hat window function is W(x) = (3/x3)(sin x − x cos x),
with R = (3M/4πρ̄)1/3.

The ST fit to ζ f (ζ ) is

ζf (ζ ) = A

(
1 + 1

ζ ′p

) (
ζ ′

2

)1/2 e−ζ ′/2

√
π

, (14)

with ζ ′ = 0.707ζ , p = 0.3 and A = 0.3222 determined from the
integral constraint

∫
f (ζ ) dζ = 1.

In Fig. 1 the variance of the density field, σ 2(M), has been
computed with the matter power spectrum extracted from CAMB

(Lewis et al. 2000), using the same cosmological parameters of
the simulations. In particular, in the left-hand panel we show
the MF of substructures identified using the SUBFIND algorithm,
where the normalization of the matter power spectrum is fixed by
�2

R(k0) = 2.3 × 10−9 at k0 = 0.002 Mpc−1 (Larson et al. 2011),
chosen to have the same value both in the �CDM+ν and in the
�CDM cosmologies. The error bars represent the statistical Poisson
noise.

In the right-hand panel of Fig. 1 we show the ratios between the
halo MFs evaluated in the �CDM+ν and �CDM cosmologies. In
particular, the triangles represent the ratios of the halo MFs mea-
sured directly from the simulations after identifying the structures
via a FOF group finder (Springel 2005), and the filled circles rep-
resent the ratios between the �CDM+ν and �CDM MFs for the
substructure evaluated via the SUBFIND algorithm.

Figure 2. Real-space two-point autocorrelation function of the DM haloes in the �CDM N-body simulation (blue circles) and in the simulation with Mν =
0.6 eV (red squares). The blue and red lines show the DM correlation function, for Mν = 0 and 0.6 eV, respectively, obtained by Fourier transforming the
non-linear power spectrum extracted from CAMB (Lewis & Bridle 2002) which exploits the HALOFIT routine (Smith et al. 2003). The bottom panels show the
ratio between the halo correlation function of the simulations with and without neutrinos. The error bars represent the statistical Poisson noise corrected at
large scales as prescribed by Mo, Jing & Boerner (1992).
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Neutrino effects on LSS 351

The curves in the panel show the corresponding ST predictions
for three cases: (i) the solid lines represent the ratios between the
theoretical MFs when the total �m = �cdm + �b + �ν is in-
serted in equation (12) through the expression ρ̄ = �mρc; (ii) the
dashed lines represent the theoretical MF ratios when the quantity
ρ̄ = (�cdm + �b)ρc is used in equation (12); (iii) finally, the dot-
ted lines represent the ratios between the ST MFs in two �CDM
cosmologies, which differ for the σ 8 normalization, i.e. the ratio
between the MF in a �CDM cosmology having the same σ 8 value
of the simulations with a massive neutrino component, and the MF
in a �CDM cosmology having a σ 8 value in agreement with the
CMB normalization �2

R(k0) = 2.3 × 10−9 and in the absence of
massive neutrinos.

We note that the MFs of the haloes obtained with the FOF algo-
rithm look to be better fitted by the theoretical predictions of case
(i), while the MFs of the substructures obtained with the SUBFIND

algorithm have a trend much more similar to the predictions of case
(ii) (Brandbyge et al. 2010). Moreover, we see that, as the redshift
increases, the suppression of the halo number density due massive
neutrinos moves also towards masses M ≤ 1014 M
 h−1. As an ex-
ample, the number density of haloes with mass 1014 M
 h−1 at z = 0
decreases by ∼15 per cent for Mν = 0.3 eV and by ∼30 per cent for
Mν = 0.6 eV, and, at z = 1, by ∼40 and ∼70 per cent, respectively.

As already discussed in Viel et al. (2010), the free-streaming of
massive neutrinos leads to the well-known degeneracy between the
values of σ 8 and Mν . However, as the case (iii) lines show, the differ-
ence between the MFs with and without neutrinos does not reduce
merely to a σ 8 renormalization of the background cosmology, since,
even renormalizing to the same σ 8, neutrinos free-streaming alters
the MF, changing its shape and amplitude especially for the less
massive objects (compare the dotted-blue and solid-black lines in
the right-hand panel of Fig. 1). However, the possibility to measure
this effect and break the Mν–σ 8 degeneracy depends on the value
of the neutrino mass and on the sensitivity in measuring the MF at
masses M < 1014 M
 h−1. The resolution limits of our simulations
do not allow us to study the properties of haloes with masses M �
1012 M
 h−1. Future galaxy surveys, like Euclid, should be able to
break this degeneracy measuring the number counts of low-mass
galaxies together with the overall shape of the matter power spec-
trum (see e.g. Carbone et al. 2011). Moreover, even with present
observational data it has already been possible to break the Mν–σ 8

degeneracy. For instance, Viel et al. (2010) robustly constrained
the neutrino masses using the Sloan Digital Sky Survey flux power
spectrum alone, without CMB priors on σ 8.

4.2 The halo clustering and bias

As well known, massive neutrinos strongly affect also the spatial
clustering of cosmic structures. As explained in Section 2.2, a stan-
dard statistics generally used to quantify the clustering degree of
a population of sources is the two-point autocorrelation function.
Although the free-streaming of massive neutrinos causes a sup-
pression of the matter power spectrum on scales k larger than the
neutrino free-streaming scale kfs, the halo bias results to be signif-
icantly enhanced. This effect can be physically explained thinking
that, starting from the same �2

R(k0) as initial condition, due to the
suppression of massive neutrino perturbations, the same halo bias
would correspond, in a �CDM cosmology without neutrinos, to
more massive haloes, which, as well known, are typically more
clustered.

In fact, Fig. 2 shows, at different redshifts, the two-point DM
halo correlation function measured using the Landy & Szalay (1993)

Figure 3. DM halo bias, b = (ξhalo/ξDM)0.5, measured from the �CDM
simulations (blue circles) and from the two simulations with Mν = 0.3 eV
(magenta triangles) and Mν = 0.6 eV (red squares). The error bars represent
the propagated Poisson noise corrected at large scales as prescribed by Mo
et al. (1992). Dotted lines are the theoretical predictions of Sheth, Mo &
Tormen (2001) (equation 15). The four panels show the results at different
redshifts, as labelled.

Figure 4. Mean bias (averaged in 10 < r < 50 h−1 Mpc) as a function
of redshift compared to the theoretical predictions of Sheth et al. (2001)
(dotted lines) (equation 15). Here the dashed lines represent the theoretical
expectations for a �CDM cosmology renormalized with the σ 8 value of the
simulations with a massive neutrino component. The error bars represent
the propagated Poisson noise corrected at large scales as prescribed by Mo
et al. (1992).

estimator, compared to the correlation function of the matter density
perturbations. We observe that, while for a fixed �2

R(k0), due to neu-
trino free-streaming, the total matter correlation function decreases
with respect to the �CDM case, especially on small scales (compare
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the solid-blue and dashed-red lines in Fig. 2), the halo correlation
function undergoes the opposite trend (compare the data points in
Fig. 2), so that the matter perturbation suppression is in some way
compensated by a stronger spatial clustering of the massive haloes.

In particular, the halo clustering difference between the �CDM
and �CDM+ν cosmologies increases with the redshift (as it hap-
pens also for the halo MFs). For Mν = 0.6 eV we find that the halo
correlation function in the presence of massive neutrinos at z = 1
is ∼20 per cent larger than in a pure �CDM model, and at z = 2
the difference rises up to ∼40 per cent (see the bottom panels of
Fig. 2).

This effect is even more evident in Figs 3 and 4, that show the
effective bias measured from the simulations (symbols) compared
to the analytical predictions (dotted lines), obtained using the Sheth
et al. (2001) (SMT) bias, weighted with the ST MF of equation (12):

b(z) =
∫ Mmax

Mmin
n(M, z)bSMT(M, z) dM∫ Mmax

Mmin
n(M, z)dM

, (15)

where Mmin and Mmax have been defined in Section 3. Also in this
case, the theoretical expectations reproduce correctly the numer-

ical findings, inside the statistical errors, and, as in the �CDM
cosmology, the halo bias results to be scale independent on large
scales, while the effect of non-linearities starts to be important for
separations r < 20 h−1 Mpc.

4.3 Redshift-space distortions

As it happens for the halo MFs and clustering, also RSD are strongly
affected by free-streaming neutrinos. Fig. 5 shows the real and
redshift-space correlation functions of DM haloes extracted from
the simulations as a function of the neutrino mass. In the presence
of massive neutrinos the rms of galaxy peculiar velocities is smaller
than in a pure �CDM cosmology, due to the suppression of both
the growth rate f (k, z) and the matter power spectrum P(k, z), which
enter the bulk flow predicted by linear theory (Elgarøy & Lahav
2005; Kiakotou et al. 2008):

〈v2(R∗)〉 = (2π2)−1 H 2
0

∫
dkf 2Plin(k)W 2

G(kR∗) , (16)

where WG(kR∗) is the window function, e.g. for a Gaussian sphere
of radius R∗, W(kR∗) ≡ exp ( − k2R2

∗/2). This effect competes with

Figure 5. Two-point autocorrelation function in real and redshift space of the DM haloes in the �CDM N-body simulation (blue circles) and in the simulation
with Mν = 0.6 eV (red squares). The bottom panels show the ratio between them, compared with the theoretical expectation given by equation (17). The error
bars represent the statistical Poisson noise corrected at large scales as prescribed by Mo et al. (1992).
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the increase of the halo bias discussed in Section 4.2, resulting in
a redshift-space halo correlation function slightly suppressed in a
�CDM+ν cosmology. In the bottom panels of Fig. 5 we show the
ratios ξ (s)/ξ (r) compared to the theoretical values represented by
the large-scale limit of equation (4):

ξ (s)

ξ (r)
= 1 + 2β

3
+ β2

5
. (17)

The effect of massive neutrinos on RSD is evident in particular
when the correlation function is measured as a function of the two
directions perpendicular and parallel to the line of sight. In fact, from
the top and bottom panels of Fig. 6, we observe that, in the case
of massive neutrinos, the spatial halo clustering is less enhanced
in redshift space than in real space. On large scales, this effect is
due to the lower value of 〈v2(R∗)〉 when neutrinos free-streaming
is taken into account. On small scales, our analysis shows that also
FoG get decreased in the presence of massive neutrinos, so that
the best-fitting values of β and σ 12, derived by modelling galaxy
clustering anisotropies, result to be different than what expected in a
�CDM cosmology. This might induce a bias in the inferred growth
rate from data analysis, and therefore a potentially false signature
of modified gravity (see e.g. Simpson, Jackson & Peacock 2011).
Moreover, estimates of β and σ 12, when compared with the �CDM
expectations, yield an indirect neutrino mass measurement and may
help breaking degeneracies with the other cosmological parameters.

We quantify these effects in Fig. 7, which shows the best-fitting
values of β and σ 12 as a function of Mν and z, where we have
neglected their scale dependence which, for the neutrino masses
considered in this work, is small enough that statistical errors hide
deviations of β and σ 12 from spatial uniformity (Kiakotou et al.
2008). Therefore, in this case we have considered the linear RSD
parameter as a function of the redshift alone, β = f (z)/b(z) �
�m(z)γ /b(z), with γ = 0.545. The data points of Fig. 7 show that
neutrinos free-streaming suppresses β and σ 12 by an amount which

increases with Mν and z, and, fixed �2
R(k0), is clearly distinguish-

able from the corresponding �CDM values (dashed lines). As an
example, at z = 0.6 the β best-fitting values decrease by ∼10 per cent
for Mν = 0.3 eV, and by ∼25 per cent for Mν = 0.6 eV. Likewise, the
σ 12 best-fitting values decrease by ∼25 per cent for Mν = 0.3 eV,
and by ∼45 per cent for Mν = 0.6.

On the other hand, the β best-fitting values fall in the shaded grey
bands, which represent the propagated ∼10 per cent theoretical bias
error. These bands contain also the theoretical predictions obtained
in a �CDM cosmology renormalized with the σ 8 value of the
simulations with a massive neutrino component (blue dotted lines).
This means that, if an error of ∼10 per cent is assumed on bias
measurements, we are not able to distinguish the effect of massive
neutrinos on β when the two cosmological models with and without
ν are normalized to the same σ 8.

In Fig. 8 we show, as a function of Mν and z, the relative difference
between the theoretical β values calculated in the �CDM+ν and
�CDM cosmologies, normalized to the same σ 8. At z = 1 and for
Mν > 0.6 eV, the relative difference with respect to the Mν = 0
case is �β/β � 3 per cent. This result is interesting, since future
spectroscopic galaxy surveys, as Euclid, JEDI and WFIRST , should
be able to measure the linear RSD parameter with errors ≤3 per cent
at z ≤ 1, per redshift bin.

5 C O N C L U S I O N S

In this work we have studied the effect of cosmological neutrinos
on the DM halo MF, clustering properties and RSD. To this purpose
we have exploited the grid implementation of the hydrodynamical
N-body simulations developed by Viel et al. (2010), which include
a massive neutrino component, taking into account the effect of
neutrinos free-streaming on the cosmic structure evolution. In order
to model RSD, we have adopted the so-called streaming model
(Peebles 1980), which consists of linear theory and a convolution on

Figure 6. Two-point autocorrelation function, ξ , in real and redshift space. The contours represent lines of constant correlation, ξ (r⊥, r‖) = 0.15, 0.25, 0.5, 1,
3, for Mν = 0 (blue), Mν = 0.3 eV (magenta) and Mν = 0.6 (red), respectively. Different panels show the results at redshifts z = 0.6, 1, 2, as labelled.
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Figure 7. Best-fitting values of βσ 12, as a function of Mν and redshift (points), compared with the ST theoretical predictions (solid lines). The dashed lines
show the theoretical predictions in a �CDM cosmology with the same �2

R(k0). The blue dotted lines show instead the theoretical predictions for a �CDM
cosmology normalized to the σ 8 value of the simulation with a massive neutrino component, as explained in the text. The shaded grey bands represent the
propagated ∼10 per cent theoretical bias error. The error bars represent the scatter in the measured β obtained dividing the simulation box in 27 sub-boxes,
and rescaled by the square root of the total volume of the simulation box (Guzzo et al. 2008).

the line of sight with a velocity distribution. This model is accurate
enough to robustly constrain the effect of massive neutrinos on RSD
when applied on scales �50 h−1 Mpc.

We have compared the findings from the �CDM and the
�CDM+ν simulations, and analysed their agreement with the ana-
lytical predictions of ST (Sheth et al. 2001; Sheth & Tormen 2002).
Concerning the halo MF, we recover what is theoretically expected,
i.e. starting from the same �2

R(k0) as initial condition, massive
neutrinos suppress the comoving number density of DM haloes
by an amount that increases with the total neutrino mass Mν . The
suppression affects mainly haloes of mass 1014 < M < 1015 M
 h−1,
depending slightly on the redshift z. As an example, the number
density of haloes with mass 1014 M
 h−1 at z = 0 decreases by
∼15 per cent for Mν = 0.3 eV and by ∼30 per cent for Mν = 0.6 eV,
and, at z = 1, by ∼40 and ∼70 per cent, respectively. Moreover,
with increasing z, the suppression of the halo number density due to
free-streaming neutrinos moves towards masses M ≤ 1014 M
 h−1.

With regard to the halo clustering in the real-space, we observe
that the trend of the halo correlation function ξ (r) is opposite to the
dark matter one. In fact, on one side, for a fixed �2

R(k0) the total
matter correlation function decreases with respect to the �CDM
case due to neutrino free-streaming, in particular on small scales.
On the other side, the halo correlation function undergoes the op-
posite trend since the halo bias results to be significantly enhanced.
For Mν = 0.6 eV, we find that the halo correlation function in the
presence of massive neutrinos at z = 1 is ∼20 per cent larger than
in a pure �CDM model, and at z = 2 this difference rises up
to ∼40 per cent. Also in this case, the theoretical ST bias model
reproduces correctly the numerical findings, inside the statistical
errors, and, as in the �CDM cosmology, the halo bias results to be
scale-independent on scales larger than r � 20 h−1 Mpc.

Considering RSD, we find that the rise of the spatial halo cluster-
ing due to massive neutrinos is less enhanced in the redshift space
than in the real space. In fact, on large scales, the value assumed by
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Figure 8. The relative difference between the theoretical β values calculated
in the �CDM+ν and �CDM cosmologies, normalized to the same σ 8.

the bulk flow, 〈v2(R∗)〉, in a �CDM+ν cosmology is smaller than
in a pure �CDM one. On small scales, also FoG get decreased in
the presence of massive neutrinos, so that the best-fitting values of
β and σ 12 reduce by an amount which increases with Mν and z.
As an example, fixed the same initial condition on �2

R(k0), at z =
0.6 the β best-fitting values decrease by ∼10 per cent for Mν =
0.3 eV, and by ∼25 per cent for Mν = 0.6 eV. Likewise, the σ 12

best-fitting values decrease by ∼25 per cent for Mν = 0.3 eV, and
by ∼45 per cent for Mν = 0.6.

If not taken correctly into account, these effects could lead to a
potentially fake signatures of modified gravity. Moreover, estimates
of β and σ 12 can be used to extract measurements of the total
neutrino mass and may help breaking degeneracies with the other
cosmological parameters.

However, these effects are nearly perfectly degenerate with the
overall amplitude of the matter power spectrum as characterized
by σ 8. This strong Mν–σ 8 degeneracy undermines the potentiality
of the mentioned methods in constraining the neutrino mass. For
instance, the difference between the halo MFs in the �CDM+ν

and �CDM models largely decreases if we normalize the two cos-
mologies to the same σ 8. Similarly, when analysing RSD, we find
that the β best-fitting values fall in the shaded grey bands of Fig. 7,
representing the propagated ∼10 per cent theoretical bias error, and
which contain the theoretical predictions obtained in a �CDM cos-
mology renormalized with the σ 8 value of the simulations with a
massive neutrino component. For such a value of the bias error, we
are prevented to distinguish the effect of massive neutrinos on β, if
we use as initial condition the same σ 8 value both for the �CDM+ν

and �CDM cosmologies.
None the less, the σ 8 renormalization of the matter power spec-

trum does not totally cancel the neutrino effects which, in this case,
depending on the Mν value, alter the MF shape and amplitude es-
pecially for the less massive objects. As an example, at z = 0 the
difference between the halo MFs with and without massive neu-
trinos is ∼3 per cent at M = 1013 M
 h−1 for Mν = 0.6 eV. The
detection of this small effect depends on the sensitivity in measuring
the halo MF at masses M < 1014 M
 h−1.

More promising are measurements of β. In Fig. 8 we show, as a
function of Mν and z, the relative difference between the theoretical

β values calculated in the �CDM+ν and �CDM cosmologies,
normalized to the same σ 8. At z = 1 and for Mν > 0.6 eV, the relative
difference with respect to the Mν = 0 case is �β/β � 3 per cent.
This results is interesting, since future nearly all-sky spectroscopic
galaxy surveys, like Euclid, JEDI and WFIRST , should be able to
measure the linear RSD parameter with errors �3 per cent at z ≤
1, per redshift bin. This means that, even exploiting information
from β measurements alone, they will contribute, along with other
cosmological probes, to constrain the value of the total mass of
cosmological neutrinos.
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Cabré A., Gaztañaga E., 2009b, MNRAS, 396, 1119
Carbone C., Verde L., Wang Y., Cimatti A., 2011, J. Cosmol. Astropart.

Phys., 3, 30
Doroshkevich A. G., Khlopov M. I., Sunyaev R. A., Szalay A. S., Zeldovich

I. B., 1981, Ann. New York Acad. Sci., 375, 32
Elgarøy Ø., Lahav O., 2005, New J. Phys., 7, 61
Giocoli C., Tormen G., Sheth R. K., van den Bosch F. C., 2010, MNRAS,

404, 502
Giusarma E., Corsi M., Archidiacono M., de Putter R., Melchiorri A., Mena

O., Pandolfi S., 2011, Phys. Rev. D, 83, 115023
Gonzalez-Garcia M. C., Maltoni M., Salvado J., 2010, J. High Energy Phys.,

8, 117
Gonzalez-Morales A. X., Poltis R., Sherwin B. D., Verde L., 2011, e-print

arXiv:1106.5052
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