
                          

LETTER

Two-colour X-gamma ray inverse Compton back-
scattering source
To cite this article: I. Drebot et al 2017 EPL 120 14002

 

View the article online for updates and enhancements.

Related content
Spectral distributions of the scattered
photons within an acceptance angle in
Thomson scattering
Wang Jun and Huang Wen-Hui

-

Preliminary experimental study and
simulation of an energy-tunable quasi-
monochromatic laser-Compton X/-ray
source
Luo Wen, Xu Wang, Zhuo Hong-Bin et al.

-

Coherent x-ray and gamma-ray generation
A A Risbud

-

This content was downloaded from IP address 159.149.193.203 on 23/04/2018 at 14:52

https://doi.org/10.1209/0295-5075/120/14002
http://iopscience.iop.org/article/10.1088/1674-1137/35/2/019
http://iopscience.iop.org/article/10.1088/1674-1137/35/2/019
http://iopscience.iop.org/article/10.1088/1674-1137/35/2/019
http://iopscience.iop.org/article/10.1088/1674-1137/36/8/016
http://iopscience.iop.org/article/10.1088/1674-1137/36/8/016
http://iopscience.iop.org/article/10.1088/1674-1137/36/8/016
http://iopscience.iop.org/article/10.1088/1674-1137/36/8/016
http://iopscience.iop.org/article/10.1088/0022-3727/38/7/019


October 2017

EPL, 120 (2017) 14002 www.epljournal.org

doi: 10.1209/0295-5075/120/14002

Two-colour X-gamma ray inverse Compton back-scattering source

I. Drebot
1
, V. Petrillo

1,2 and L. Serafini
1

1 INFN-Milano - Via Celoria 16 20133 Milano, Italy
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PACS 41.50.+h – X-ray beams and x-ray optics
PACS 41.60.Ap – Synchrotron radiation
PACS 41.60.-m – Radiation by moving charges

Abstract – We present a simple and new scheme for producing two-colour Thomson/Compton
radiation with the possibility of controlling separately the polarization of the two different colours,
based on the interaction of one single electron beam with two light pulses that can come from
the same laser setup or from two different lasers and that collide with the electrons at different
angle. One of the most interesting cases for medical applications is to provide two X-ray pulses
across the iodine K-edge at 33.2 keV. The iodine is used as contrast medium in various imaging
techniques and the availability of two spectral lines accross the K-edge allows one to produce
subtraction images with a great increase in accuracy.

Copyright c© EPLA, 2017

The development of X-ray sources characterized by high
versatility, large spectral flux and tunability, opens the
way for a real breakthrough in a wide number of sci-
entific and technical fields. One of the most promising
formats in which radiation can be delivered to users con-
sists in wave packets containing two different spectral lines
with adjustable frequencies and time separation. Pairs of
coloured X-ray pulses allow one to deepen the fundamen-
tal understanding of the properties of materials and living
systems, by probing the matter on atomic scale in space
and time [1] or performing pump and probe experiments
of structural dynamics, a class of experiments designed to
monitor the ultrafast changes in atomic, electronic and
magnetic structures [2–4]. Processes as chemical reac-
tions or excitations and structural transformations in mat-
ter are excited by a first pulse and then probed with a
second one of another colour. The time scale for such
dynamics can range from 10 fs in ultrafast processes as
the dissociative ionization [5], to hundreds of femtosec-
onds for less energetic chemical mechanisms [6,7]. Another
important issue is the future colour X-ray technology.
Colour X-ray imaging will provide significant develop-
ment to screening or diagnostic radiography, because
the colour components contain extra information and al-
low to discriminate the chemical composition of the ab-
sorbing tissues [8]. Experiments on dual colour have
been recently carried on with free-electron lasers (FELs)
as radiation sources [4,9–11] and promising proposals

aimed to generate two-colour X-ray emission in Comp-
ton sources [12,13] have been investigated. Thomson and
Compton sources, even though less brilliant than FELs,
produce radiation with short wavelength, high power, ul-
trashort time duration, large transverse coherence and
tunability, full polarization control, ensuring limited costs
of construction and maintenance and dimensions compat-
ible with the space that can be allocated in hospitals and
medical centres. Existing Thomson sources [14–21] are im-
portant tools for generating tunable quasimonochromatic
X/gamma rays suitable for applications in crystallography,
plasma, high energy, matter physics and nuclear photon-
ics and in the advanced biomedical imaging as demon-
strated by the wide number of experiments on phase
contrast imaging [18,22], microtomography [22], K-edge
techniques [13,23] on biological and human samples. In
this paper we present a simple and new scheme for pro-
ducing two-colour Thomson/Compton radiation with the
possibility of controlling independently the polarization of
the two beamlets. It is based on the interaction of one sin-
gle electron beam with two light pulses that can come from
the same laser setup or from two different lasers colliding
with the electrons at different angle. One of the most in-
teresting cases for medical applications is to provide two
X-ray pulses across the iodine K-edge at 33.2 keV. The
iodine is used as contrast medium in various imaging tech-
niques and the availability of two spectral lines below and
beyond the K-edge allows to produce subtraction images
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Fig. 1: (Colour online) Kinematic of the Compton back
scattering.

Fig. 2: (Colour online) Scheme of the use of a split laser sent
to the interaction point at two different interaction angle.

Fig. 3: (Colour online) Dependence of the maximal energy of
the scattered photons from the initial scattering angle α0 for
γ = 84, εγ0 = 1.2 eV.

with a great increase in accuracy. The application to this
range of X-rays is presented and discussed.

The Thomson or inverse Compton scattering is the
process occurring when an electron belonging to a high-
brightness electron beam collides with the photons of a
laser pulse, generating X or gamma radiation. The geom-
etry of the scattering is represented in fig. 1, where α0 is
the interaction angle of the scattering.

The radiation energy is upshifted with respect to the
lasers’s one by the relation

εγm =
4γ2εL cos2 α0

2

4γ εL

mc2 cos2 α0
2 + 1

≈ 4γ2εL cos2
α0

2
, (1)

where εL is the laser photon energy, γ the electron Lorentz
factor and εγ the emitted photon energy and the electron
recoil term can be disregarded. The scheme we are propos-
ing for producing two-colour radiation is based on the in-
teraction of the electron beam with two light pulses that
can come from the same laser setup or from two differ-
ent lasers and that collide with the electrons at different

Table 1: Parameters of electron beam and laser system.

Electron beam parameters
Electrons mean energy (Mev) 43.2
Bunch charge (nC) 1
Bunch length rms (μm) 103

Nominal normalized εnx, εny (mm · mrad) 0.99, 0.98
Nominal relative energy spread σe (%) 0.5
Focal spot size σx, σy (μm) 15, 15

Laser parameters 1
Laser pulse energy (J) 0.15
Laser pulse length (ps) 1
Laser focal spot size w0 RMS (μm) 60
Collision angle (deg) 0
STOKES parameters (0, 0, −1)

Laser parameters 2
Laser pulse energy (J) 0.15
Laser pulse length (ps) 1
Laser focal spot size w0 RMS (μm) 24
Collision angle (deg) 30
STOKES parameters (0, 0, +1)

Fig. 4: (Colour online) Spectra of the scattered radiations for
different initial angles for the second laser α02.

angle, as shown in fig. 2. If the first scattering is head-
on, the angle of the second one is chosen in order to fix
the relative separation between the two radiation pulses
Δε/ε = sin2(α0/2). Figure 3 shows the dependence of
the scattered photon energy on the angle, for typical val-
ues of a Thomson source (see table 1) such as the STAR
Project [24].

Figure 4 presents the evaluation of the spectrum of the
scattered photons for different values of the angle of the
second laser α02 collimated into the fixed acceptance angle
performed with the Monte Carlo code CAIN [25].

As can be seen, the radiation energy for α0 = 0 is about
E1 = 34 keV, above the iodine K-edge. A separation

14002-p2



Two-colour X-gamma ray

Fig. 5: (Colour online) Energy angular distribution of the scat-
tered radiation for α02 = 30 deg.

Fig. 6: (Colour online) Relative spectrum of the scattered ra-
diation for α02 = 30 deg.

Δε/ε ≈ 6.5% between the energies of the two pulses
means, for instance, to operate with one head-on colli-
sion and the other one at about 30◦. In this case, the
second line will be at E2 = 32 keV. Furthermore, the num-
ber of scattered photons N in a Thomson/Compton scat-
tering at a generic angle α0 collimated in an acceptance
angle Ψ = γθmax can be obtained on the basis of the
luminosity as

NΨ =
fNeNL

∫ Ψ dΨ′ dσ
dΨ′

2π
√

σ2
y,e + σ2

y,L

√
σ2

x,e + σ2
x,L + (σ2

z,e + σ2
z,L) tan2

(
α0
2

) ,

(2)

where
∫ Ψ dΨ′ dσ

dΨ′ is the Compton cross-section as a func-
tion of the acceptance angle Ψ [26], Ne, NL are the num-
ber of interacting electrons and laser photons, σx (σx,L)
and σy (σy,L) are the rms electron (laser) transverse di-
mensions at waist, σz (σz,L) is the electron (laser) beam
length and θmax is the maximum acceptance angle. If the
two radiation pulses are required to have comparable pho-
ton numbers, the lengths σz (σz,L) should be as short as
possible and the two laser pulses should be focused in a
different way, in particular the first laser beam was focused

Fig. 7: (Colour online) Spectra of the scattered radiations for
different collimation angles θ.

Fig. 8: (Colour online) Spectra of the scattered radiations for
different collimation angles θ. Colours represent different po-
larisations.

at w0L1 = 60μm and the other one at w0L2 = 24μm as
shown in table 1. In fig. 5 the total photon phase space is
reported, for α1 = 0 and a2 = 30◦. Figure 6 presents the
spectrum of the radiation collimated within an acceptance
angle θ = 1mrad, with a good balance between the two
spectral peaks. Another quantity that has to be controlled
for separating the two spectral lines is the acceptance an-
gle. Figure 7 presents the spectrum of scattered radiations
as a function θ and shows that only for acceptance angles
lower than (E2 − E1)/E the two spectral lines present a
reasonable separation.

For producing two radiation pulses of different polarisa-
tion [27,28] we can propose to insert a polarization rotator
along the trajectory of one of the lasers, thus providing the
possibility to get two colours also with different polarisa-
tions. In fig. 8 we present the spectrum of the scattered
photons from two lasers with different polarisations.

In this work we present a new scheme to produce two-
colour X-rays based on compact Compton sources. This
scheme consists in the use of two laser pulses impinging
on the same electron beam at two different angles, with
frequencies given by formula (1). The potentialities of
scattered radiations can be improved by using a different
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polarisation of the initial laser pulses. This scheme can be
extended to the production of a sequence of two X-ray
pulses with different colours separated also in time. In
fact, it is possible to change and adjust at will the temporal
delay between two laser pulses, which, in turn, equals the
time separation between two successive electron bunches.
This is of paramount importance for adjusting the time
needed by the detectors to record and load the two images
at two different colours, which is mandatory for digital
subtraction This technique is thought for devices based
on electron-laser scattering in free space, with optimized
single-shot parameters and relatively low repetition rate,
such as for instance the source STAR. The application
in cavity, in fact, would be much more complicated to
implement and deserves further analysis. The two-colour
imaging by Monte Carlo technique simulation through a
phantom will be analysed in future works.
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