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Projecting non-native Douglas fir plantations in Southern Europe with the Forest Vegetation 1 

Simulator  2 

 3 

Abstract 4 

In Italy, Douglas fir has a high potential in terms of wood production and drought tolerance. 5 

However, a growth reference for mature stands is lacking. We calibrated and validated the Pacific 6 

Northwest variant of FVS to Douglas fir plantations, and ran the calibrated model to test 7 

management alternatives. We calibrated the height-diameter, crown width, crown ratio, and 8 

diameter increment submodels of FVS using multipliers fitted against tree measurements (n =704) 9 

and increment cores (180) from 20 plots. Validation was carried out on tree-level variables sampled 10 

in 1996 and 2015 in two independent permanent plots (275 trees). Multiplier calibration improved 11 

the error of crown submodels by 7-19%; self-calibration of the diameter growth submodel produced 12 

scale factors of 1.0 – 5.2 for each site. Validation of 20-years simulations was more satisfactory for 13 

tree diameter (-6% to +1% mean percent error) than for height (-10% – +8%). Calibration reduced 14 

the error of predicted basal area and yield after 50 years relative to yield tables. Simulated response 15 

to thinning diverged depending on site index and competition intensity. FVS is a viable option to 16 

model the yield of Douglas fir plantations in Italy, reflecting current understanding of forest 17 

ecosystem dynamics and how they respond to management interventions. 18 
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1 Introduction 23 

 24 

Plantations are a resource with global importance for wood and pulp production (Forest Europe 25 

2015). In Europe, Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) has been planted on a large 26 

scale and is now the most economically important exotic tree species (Schmid et al. 2014; Ducci 27 

2015). Douglas fir has usually a high growth rate in comparison with other forest tree species in 28 

Europe, has a higher resistance to drought (Eilmann and Rigling 2012), and may provide high 29 

added-value timber (especially after the first thinning) (Monty et al. 2008). In Southern Europe, no 30 

indigenous conifer has similar characteristics of productivity and timber quality (Corona et al. 31 

1998). 32 

In Italy, Douglas fir was introduced in 1882 (Pucci 1882) using seeds from the Pacific Northwest 33 

Coast of the United States (Pavari and De Philippis 1941). Between 1922 and 1938, the “Stazione 34 

Sperimentale di Selvicoltura” established 98 experimental plantations (Pavari 1916; Pavari and De 35 

Philippis 1941; Nocentini 2010). These trials demonstrated that a variety of sites in central and 36 

northern Italy was suitable for the species (Pavari 1958). Nowadays, Douglas fir plantations cover 37 

an area of about 0,8 million ha in Europe (Forest Europe 2015). In Tuscany (Central Italy), Douglas 38 

fir covers 3,360 hectares in pure stands and 2,112 hectares in mixed stands (Regional Forest 39 

Inventory of Tuscany 1998). 40 

The key to successful management of productive Douglas fir plantations is a proper understanding 41 

of growth dynamics in relation to tree characteristics, stand structure, and environmental variables. 42 

The productivity of Douglas fir stands in Italy was studied by Pavari and De Philippis (1941) and, 43 

distinctly, by Cantiani (1965) who established a yield table for stands up to 50 years old, based on 44 

115 plots of different ages.  45 

Growth and yield models simulate forest dynamics through time (i.e., growth, mortality, 46 

regeneration). They are widely used in forest management because of their ability to support the 47 

updating of inventories, predict future yield, and support the assessment of management alternatives 48 
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and silvicultural options, thus providing information for decision-making (Vanclay 1994). Much 49 

research has been carried out to model the growth of Douglas fir throughout its home range 50 

(Newnham and Smith 1964; Arney 1972; Mitchell 1975; Curtis et al. 1981; Wykoff et al. 1982; 51 

Wykoff 1986; Ottorini 1991; Wimberly and Bare 1996; Hann and Hanus 2002; Hann et al. 2003). 52 

In Italy, a growth reference for Douglas fir stands older than 50 years is currently lacking. Here, we 53 

propose the use of Forest Vegetation Simulator (FVS) to simulate the growth of such stands. 54 

FVS is an empirical, individual tree, distance-independent growth and yield model originally 55 

developed in the Inland Empire area of Idaho and Montana (Stage 1973). FVS can simulate many 56 

forest types and stand structures ranging from even-aged to uneven-aged, and single to mixed 57 

species in single to multi-story canopies. There are more than 20 geographical variants of FVS, 58 

each with its own parameterization of tree growth and mortality equations for a particular 59 

geographic area of the United States. In addition, FVS incorporates extensions that can simulate 60 

pest and disease impacts, fire effects, fuel loading and regeneration (Crookston 2005). 61 

FVS has been rarely used in Italy (Vacchiano et al. 2014). The aims of this work are: (1) calibrating 62 

and validating the Pacific Northwest Coast variant of FVS to Douglas fir plantations in Italy, (2) 63 

comparing predictions from the calibrated model against available yield tables for Douglas fir in 64 

Italy, and (3) using the calibrated model to test silvicultural alternatives for Douglas fir plantation 65 

management.  66 

 67 

2 Materials  68 

 69 

Data for this work were measured in 20 stands of Douglas fir planted between 1927 and 1942 over a 70 

2000 km2 wide area in the northern Apennines, mostly within and nearby Tuscany region (Figure 71 

1), at elevations ranging between 770 and 1260 m a.s.l. For each stand, Table 1 reports climatic data 72 

derived from ClimateEU (Hamann et al. 2013) and Ecopedological Units (EU) from the 73 
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Ecopedological Map of Italy (Costantini et al. 2012). For each stand Table 2 reports aspect, slope, 74 

and site index, i.e. the top height at 50 years assessed according to Maetzke and Nocentini (1994).  75 

 76 

Tree measurements were carried out in a 20-m radius circular plot located at the center of each 77 

sampled stand, except Pietracamela that had a radius of 10 m. For each living tree (for a total of 704 78 

trees) we measured: stem diameter at 130 cm height (DBH), total height (HT), crown length (CL), 79 

and crown width (CW) as the average of two orthogonal crown diameters. From a sub-sample of 8-80 

10 trees per plot, we extracted an increment core at 130 cm above the ground. Tree cores were 81 

prepared for measurement in the lab and analyzed with LINTAB and TSAP-WIN software; from 82 

each core (for a total of 180 cores) we measured the radial increment from the last 10 annual rings 83 

to the nearest 0.01 mm. 84 

 85 

3 Calibration 86 

 87 

In order to adjust FVS to local growing conditions, the model components (hereafter “submodels”) 88 

need to undergo calibration against observed data. FVS submodels include height-diameter 89 

equations, crown width equations, crown ratio equations, tree diameter growth equations, tree 90 

height growth equations, mortality equations, and bark ratio equations. Due to the lack of repeated 91 

field measurements, this paper focuses on the first four submodels, leaving the others unchanged. 92 

Since the considered populations of Douglas fir come from the Pacific Northwest coast of the 93 

United States (Pavari and De Philippis 1941), the Pacific Northwest (PN) variant of FVS (Keyser 94 

2014) was used as a basis for model calibration and runs. The original range considered by this 95 

variant covers from a line between Coos Bay and Roseburg, Oregon in the south to the northern 96 

shore of the Olympic Peninsula in Washington, and from the Pacific coast to the eastern slope of the 97 

Coast Range and Olympic Mountains (Keyser 2014).  98 
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FVS includes two options to calibrate model performance to local growing conditions (Dixon 99 

2002): (i) automatic scaling by the model, and (ii) user-defined multipliers of model output entered 100 

by the user by specific input scripts or “keywords” (Van Dyck and Smith-Mateja 2000). For the 101 

height-diameter and large tree diameter growth submodels we analyzed the performance of 102 

automatic calibration, while for crown width and crown ratio submodels we fitted user-defined 103 

multipliers. The following paragraphs illustrate, for each of the four submodels, the adopted 104 

calibration strategy and its results. 105 

All the variables in the FVS equations are expressed in imperial units; conversion to and from the 106 

metric system was carried out outside the calibration algorithms. The simulation cycle is 10 years. 107 

To check whether each submodel needed calibration, we fitted FVS submodels to the observed data 108 

and computed 95% confidence intervals for all regression coefficients. If default FVS coefficients 109 

were outside of locally-calibrated confidence intervals, model adjustment was deemed necessary. 110 

Additionally, we compared the fit of non-calibrated versus calibrated submodels against observed 111 

data, using coefficient of determination (R2), root mean square error (RMSE), mean bias (MBE), 112 

mean absolute bias (MABE) and mean percent bias (MPE) as goodness-of-fit metrics (Rehman 113 

1999).  114 

 115 

3.1 Height-Diameter submodel 116 

 117 

Height-Diameter relationships in FVS are used to estimate missing tree heights in the input data. By 118 

default, the PN variant uses the Curtis-Arney functional form as shown in Equation [1] (Arney 1985; 119 

Curtis 1967). Height-Diameter submodel (HT) uses an internal self-calibration method; if users 120 

don’t provide all stem heights, but more than three, the height-diameter equation is calibrated. 121 

 122 

𝐻𝑇 = 4.5 + 𝑝2 ∗ exp(−𝑝3 ∗ 𝐷𝐵𝐻𝑝4) [1] 123 

 124 
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where p2-p4 are species-specific parameters (default values for the PN variant: p2=407.1595; 125 

p3=7.2885; p4=-0.5908). 126 

When fitted against observed tree heights from all the plots here considered, Equation (1) had two 127 

parameters whose confidence intervals did not include the FVS default values (Table 3): submodel 128 

adjustment was therefore needed. 129 

 130 

The fit of the uncalibrated submodel against observations (Figure 2) produced a R2 of 0.6 and MPE 131 

equal to 1.18%, corresponding to MBE equal to 33 cm and RMSE of 4.86 m. The new coefficients 132 

(p2-p4) were calculated by nonlinear regression: p2 =199.4300348, p3 =8.9860045, p4 =-0.9680623. 133 

The calibrated HT submodel produced an MBE equal to -0.3 cm and an RMSE of 4.16 m.  134 

 135 

3.2 Crown width submodel 136 

 137 

In PN-FVS, crown width (CW) is computed as a function of tree and stand characteristics (Equation 138 

2: Crookston 2005) and bound to <=24 m: 139 

 140 

𝐶𝑊 = (𝑎1 ∗ 𝐵𝐹) ∗ 𝐷𝐵𝐻𝑎2 ∗ 𝐻𝑇𝑎3 ∗ 𝐶𝐿𝑎4 ∗ (𝐵𝐴 + 1.0)𝑎5 ∗ (exp(𝐸𝐿))𝑎6 [] 

 141 

where BF is a species- and location-based coefficient (default BF for Douglas fir= 0.977), BA is 142 

stand basal area, EL is stand elevation in hundreds of feet, and a1–a6 are species-specific 143 

parameters (a1=6.02270; a2= 0.54361; a3= -0.20669; a4= 0.20395; a5=-0.00644; a6=-0.00378). When 144 

Equation [2] was fitted against observed data, only two parameters were inside the 95% confidence 145 

intervals of the uncalibrated equation (Table 3): submodel adjustment was therefore needed. 146 

To this end, we used the CWEQN keyword that allows to enter user-defined coefficients for a new 147 

species-specific crown width model (Equation 3): 148 

 149 
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𝐶𝑊 = 𝑠0 + (𝑠1 ∗ 𝐷𝐵𝐻) + (𝑠2 ∗ 𝐷𝐵𝐻𝑠3) [3] 

 150 

where the coefficients s0 - s3 were determined by nonlinear regression: s0=6.701, s1=0, s2=0.111, 151 

s3=1.502. Calibration improved model fit: MPE decreased from 31% to 12%, MBE from 83 cm to 152 

0.2 cm and RMSE from 2.12 m to 1.87 m. 153 

 154 

3.3 Crown ratio submodel 155 

 156 

Crown ratio (CR), i.e. the ratio of crown length to total tree height, is a commonly used predictor of 157 

diameter increment both in United States (Wykoff 1990) and Europe (Monserud and Sterba 1996). 158 

It is an indicator of the joint effects of stand density, tree size and vigor, and social position of each 159 

tree in the stand. Crown ratio equations are used for three purposes by FVS: (i) to estimate tree 160 

crown ratios missing from the input data for both live and dead trees; (ii) to estimate change in 161 

crown ratio for each simulated cycle for live trees; and (iii) to estimate initial crown ratios for 162 

regenerating trees established during a simulation (Keyser 2014). 163 

 164 

PN-FVS uses a Weibull-based model to predict crown ratio for all live trees with DBH >2.5 cm 165 

(Dixon 1985). First, the average stand crown ratio (ACR) on a 1-100 scale is estimated as a function 166 

of stand density (Equation 4: Johnson and Kotz 1995): 167 

 168 

𝐴𝐶𝑅 = 𝑑0 + 𝑑1 ∗ 𝑅𝐸𝐿𝑆𝐷𝐼 ∗ 100 [4] 

 169 

where d0 - d1 are species-specific coefficients (d0 =5.666442; d1=-0.025199) and RELSDI = relative 170 

Stand Density Index, i.e., the ratio between measured (SDI) and species-specific maximum SDI 171 

(SDImax). SDI is a measure of relative density based on the self-thinning rule (Yoda et al. 1963) 172 

i.e., the inverse relationship between the number of plants per unit of area and the mean size of the 173 
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individuals (Comeau et al. 2010; Pretzsch and Biber 2005; Shaw 2006; Vacchiano et al. 2005). SDI 174 

(Reineke 1933) is calculated according to Equation (5): 175 

 176 

𝑆𝐷𝐼 = 𝑇𝑃𝐴 �𝑄𝑚𝑑
25
�
1.605

[5] 177 

 178 

where TPA is the number of trees per acre. Maximum SDI is provided as species-specific default 179 

(SDImax for Douglas fir = 950). Maximum SDI also controls FVS mortality equations; by default, 180 

density related mortality begins at RELSDI =55% (Dixon 1986). 181 

 182 

ACR is then used to estimate the parameters A, B, and C of the Weibull distribution of individual 183 

CRs (Equations 6-10): 184 

𝐴 = 𝐴0 [6]  185 

𝐵 = 𝐵0 + 𝐵1 ∗ 𝐴𝐶𝑅 (𝑏𝑜𝑢𝑛𝑑 𝑡𝑜 𝐵 > 3) [7] 

𝐶 = 𝐶0 + 𝐶1 ∗ 𝐴𝐶𝑅 (𝑏𝑜𝑢𝑛𝑑 𝑡𝑜 𝐶 > 2) [8] 

𝑆𝐶𝐴𝐿𝐸 = 1 − �0.00167 + (𝐶𝐶𝐹 − 100)� [9] 

𝐶𝑅 = 𝐴 + 𝐵 ∗ ��− log �1 − �𝑆𝐶𝐴𝐿𝐸 ∗
𝑅𝐴𝑁𝐾
𝑁 ���

1/𝐶

� [10] 

 186 

where a0, b0 - b1, c0 - c1 are species-specific coefficients (Keyser 2014) (a0=0; b0=-0.012061; 187 

b1=1.119712; c0=3.2126; c1=0), N is the number of trees in the stand, RANK is a tree’s rank in the 188 

stand DBH distribution (1 = the smallest; N = the largest), SCALE is a density-dependent scaling 189 

factor (Siipilehto et al. 2007) bound to 0.3 < SCALE < 1.0, and CCF is stand crown competition 190 

factor (Krajicek et al. 1961), computed as the summation of individual CCF (CCFt) from trees with 191 

DBH > 2.5 cm (Equation 11: Paine and Hann 1982). 192 

 193 
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𝐶𝐶𝐹𝑡 = 𝑟1 + (𝑟2 ∗ 𝐷𝐵𝐻) + (𝑟3 ∗ 𝐷𝐵𝐻2) [11] 

 194 

where r1 – r3 are species-specific coefficients (r1=0.0387616; r2=0.0268821; r3=0.00466086).  195 

 196 

When fitted against observed data, confidence interval of Equation [10] included the PN-FVS 197 

default values only in one case (Table 3), therefore calibration was needed. 198 

The fit of the uncalibrated crown ratio model against observed data was very poor (R2 = 0.08, MPE 199 

= 14%, MBE = -2.64 m, RSME = 4.47 m).  200 

Crown ratio calibration was attained by a keyword (CRNMULT) that multiplies simulated crown 201 

ratios by a specified proportion (Hamilton 1994). The value of CRNMULT (=1.22) was determined 202 

by nonlinear regression using observed CR as dependent variable and the independent variables 203 

from Equations [4]-[10]. 204 

CRNMULT improved the fit of the CR submodel: R2 from 0.08 to 0.91, MPE from -14.02% to 205 

5.13%, MBE from -2.64 to -0.49 m and RMSE from 4.47 to 3.89 m. 206 

 207 

3.4 Large Tree Diameter Growth submodel 208 

 209 

The large (DBH > 7.62 cm) tree diameter growth model used in most FVS variants predicts the 210 

natural logarithm of the periodic change in squared inside-bark diameter (ln(DDS)) (Equation 12: 211 

Stage 1973) as a function of tree, stand and site characteristics: 212 

 213 
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ln(𝐷𝐷𝑆) = 𝑏1 + (𝑏2 ∗ 𝐸𝐿) + (𝑏3 ∗ 𝐸𝐿2) + (𝑏4 ∗ ln(𝑆𝐼)) + (𝑏5 ∗ sin(𝐴𝑆𝑃) ∗ 𝑆𝐿)

+ (𝑏6 ∗ cos(𝐴𝑆𝑃) ∗ 𝑆𝐿) + (𝑏7 ∗ 𝑆𝐿) + (𝑏8 ∗ 𝑆𝐿2) + (𝑏9 ∗ ln(𝐷𝐵𝐻))

+ (𝑏10 ∗ 𝐶𝑅) + (𝑏11 ∗ 𝐶𝑅2) + (𝑏12 ∗ 𝐷𝐵𝐻2) + �𝑏13 ∗
𝐵𝐴𝐿

ln(𝐷𝐵𝐻 + 1.0)�

+ (𝑏14 ∗ 𝐶𝐶𝐹) + (𝑏15 ∗ 𝑅𝐸𝐿𝐻𝑇) + (𝑏16 ∗ ln(𝐵𝐴)) + (𝑏17 ∗ 𝐵𝐴𝐿)

+ (𝑏18 ∗ 𝐵𝐴) [12] 

   214 

where BAL is total basal area in trees larger than the subject tree, RELHT is tree height divided by 215 

the average height of the 40 largest diameter trees in the stand, b1 is a location-specific coefficient 216 

that defaults to -0.1992, and b2-b18 are species-specific coefficients (b2=-0.009845; b3=0; 217 

b4=0.495162; b5=0.003263; b6=0.014165; b7=-0.340401; b8=0; b9=0.802905; b10=1.936912; b11=0; 218 

b12=-0.0000641; b13=-0.001827; b14=0; b15=0; b16=-0.129474; b17=-0.001689; b18=0) (Keyser 219 

2014). 220 

When fitted against the observations, confidence interval analysis showed that only two parameters 221 

of Equation [12] were inside the 95% confidence intervals of the uncalibrated equation (Table 3), 222 

therefore the model needed calibration. This was attained by enabling self-adjustment of growth 223 

predictions by scale factor calculation. 224 

When five or more observations of periodic increment for a species are provided for a plot, FVS can 225 

adjust the increment models to reflect local conditions (Stage 1981). This automatic calibration 226 

computes a species-specific scale factor that is used as a multiplier to the base growth equations, 227 

bound to a range of 0.08-12.18, and applied at the plot level. The scale factors are attenuated over 228 

time. The attenuation is asymptotic to one-half the difference between the initial scale factor value 229 

and one. The rate of attenuation is dependent only on time, and has a half-life of 25 year (Dixon 230 

2002). 231 
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In order to check for bias, we disabled the self-calibration and randomization algorithms of the large 232 

tree diameter growth model using the NOCALIB and NOTRIPLE keywords, and scrutinized scale 233 

factors for ln(DDS) automatically calculated against observed periodic increments. 234 

These scale factors ranged from 1 to over 5, showing a large variety of growing conditions 235 

unaccounted for by the default growth equation (Table 4). The high heterogeneity of growth is also 236 

shown by the ratio of the standard deviation of the residuals for the growth sample to the model 237 

standard error, which is consistently higher than 1.0. Bayes weights (Krutchkoff 1972) are an 238 

expression of confidence that the growth sample represents a different population than does the 239 

original data used to fit the model (in this case, PN-FVS data). In other words, a value of 0.90 240 

would indicate a 90% certainty that the growth sample represents a different population than the 241 

database used to fit the model (Dixon 2002). 242 

 243 

4 Model validation 244 

 245 

We used independent datasets from two of the oldest permanent plots in Italy (Mercurella: 85 years, 246 

39,336°N, 16,081°E; Vallombrosa: 90 years, 43,749°N, 11,577°E) to validate the calibrated PN-247 

FVS for a total of 275 trees. Using the the TIMEINT keyword, we ran a simulation from 1996 to 248 

2015 with a cycle length of 5 years. We compared predicted vs. observed DBH and height 249 

(Mercurella: year 2012, Vallombrosa: year 2015). Initial stem heights in Mercurella (1996) were 250 

calculated with Curtis-Arney function (Curtis 1967). The value of R2 between predicted and 251 

observed data for DBH was high in both sites (Table 5), especially for Vallombrosa (0.96), while R2 252 

for height was lower (0.54 in Mercurella and 0.72 in Vallombrosa). 253 

 254 

5 Comparison with yield tables 255 

 256 
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We ran the locally-calibrated PN variant of FVS 50 years into the future using site characteristics 257 

referred to the measured 20 plots and starting from bare ground. Initial plantation density was set at 258 

2745 trees per hectare, i.e. similar to the initial density of the yield table by Cantiani (1965), using 259 

the PLANT keyword. We instructed FVS to reproduce the same treatments prescribed by the 260 

Cantiani yield table, by using the THINBTA keyword (Thinning from below to trees per acre 261 

target); thinnings were scheduled after 20 years (20% basal area removal), 30 years (30% removal), 262 

40 years (25% removal), and 50 years (25% removal). We compared basal area simulated by the 263 

uncalibrated and calibrated PN-FVS (mean across all stands) against the Cantiani yield table. 264 

In all stands, simulated basal area was higher than the one predicted by the yield table with a MBE 265 

9.23 m2 ha-1, RMSE 13.05 m2 ha-1, and MPE 26%.  266 

Calibration reduced the difference between the Cantiani yield table established for Douglas fir 267 

plantations in Tuscany and simulated mean basal area (Figure 3) and volume (Figure 4) across all 268 

stands.  269 

 270 

6 Model runs and management options 271 

 272 

Finally, in order to evaluate management alternatives for mature Douglas fir plantations in Italy, we 273 

used the calibrated PN-FVS to simulate the results of thinning in two plots with comparable site 274 

index but different competition intensity. SDI controls FVS mortality model, and density related 275 

mortality begins when the stand SDI is above 55% of SDImax (Dixon 1986). We chose plots 276 

Acquerino58 (relative SDI 60.94%, Site index 31m) and Campamoli (relative SDI 48.15%, Site 277 

index 37 m) as test sites with similar fertility but different competition intensity. Data from both 278 

stands were run for 50 years into the future, starting from year 2013, and prescribing a thinning 279 

from below at the beginning of the simulation using the THINBTA keyword with three different 280 

management choices (type A 10%, type B 30%, type C control = no thinning). 281 
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Simulation results diverged depending on site index and current competition intensity. For all 282 

thinning regimes, both basal area and volume increased linearly in the low-competition stand 283 

(Campamoli: relative SDI =48%). In the high competition stand (Acquerino58: relative SDI = 60%) 284 

basal area decreased under the no thinning and 10% thinning regimes because of high competition 285 

mortality (Figure 5).   286 

 287 

7 Discussion 288 

 289 

FVS can be calibrated by self-calibration (e.g., the height-diameter and large tree diameter growth) 290 

or growth multipliers (e.g., crown width and crown ratio submodels). These multipliers allow the 291 

user to simulate growth patterns outside the region of first model calibration, i.e., in the presence of 292 

growth bias for any given species, geographic area, site, or forest type (Dixon 2002).  293 

Height-Diameter self-calibration reduced from of 0.328 to -0.003 m, indicating that the functional 294 

form of this allometric equation is adequate to represent dimensional relationships of Douglas fir 295 

outside of its native range. A slightly different approach was followed to calibrate the crown width 296 

submodel, i.e., fitting a simplified equation with a different functional form. The analysis of 297 

maximum CW by Paine and Hann (1982) shows crowns larger than observed in Italy, probably 298 

because of the different thinning regimes and growing conditions in the two countries. 299 

Nevertheless, the new equation of crown width (Equation [3]) reduced MBE by 80 cm and MPE by 300 

20 %, showing a satisfactory adjustment for this submodel. 301 

Crown ratio is generally the second most important predictor of tree growth, after DBH. The 302 

uncalibrated CR submodel underestimated crown ratio in our plots. Observed crowns were 22% 303 

deeper than those predicted by default PN-FVS, possibly as a result of different forest management 304 

in these plots than in geographic range of origin (e.g., more intense thinning), altered competitive 305 

relationships (no inter-specific competitors in plantations), or improved growing conditions and soil 306 

fertility (site index in the upper part of the range provided by, e.g., McArdle et al. 1949). After 307 
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calibration, the CR submodel improved considerably, although MBE remained negative: (-2.64 m 308 

default and -0.49 m calibrated). 309 

Tree diameter growth or basal area growth equations have traditionally been used as one of the 310 

primary types of growth equations for individual tree growth models (Holdaway 1984; Ritchie and 311 

Hann 1985; Wykoff 1986; Wensel et al. 1987; Dolph 1988). A variety of equation forms and 312 

covariates have been used in diameter increment models. Wykoff (1990) indicated that three types 313 

of covariates need to be considered in a diameter increment model: tree size, competition and site. 314 

FVS includes them all: tree (DBH, height), stand (crown competition factor, basal area, basal area 315 

in larger tree) and site (aspect, slope, elevation, site index) characteristics are incorporated in a 316 

single equation (Equation [12]). Self-calibration of the large-tree diameter increment model occurs 317 

if, for a given species, there are at least five large (DBH >7.62 cm) tree records with measured 318 

diameter increments. Correction scale factors relating measured to predicted increment are then 319 

added to the simulations as multipliers. Scale factors higher than one, like the one computed by this 320 

calibration study, imply that the default model is underpredicting diameter growth. The amount of 321 

underprediction was major (up to 5-fold), but we could find no apparent relationship between scale 322 

factor and topographic or site variables in our sample plots. Actual growth performance might be 323 

related to unknown provenance differences, local soil water deficit (Sergent et al. 2014a), or soil 324 

nitrogen content, which was found important in tree growth recovery after drought spells (Sergent 325 

et al. 2014b). Previous calibrations of the FVS empirical diameter growth submodels found the a 326 

18-parameter functional form too complicated to calibrate reliably and to discern ecological effects 327 

of individual predictors, suggesting replacement by much simpler model forms (Shaw et al. 2006) 328 

following sensitivity analysis of the most influential parameters (Vacchiano et al. 2008).  329 

In this study it was not possible to calibrate other dynamic submodels of FVS, namely the height 330 

increment and mortality components, due to the lack of repeated measures as a calibration dataset. 331 

We acknowledge that mortality is an especially important component, as FVS has been previously 332 

found to be highly sensitive to small differences in the self-thinning algorithm (De Rose et al. 333 
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2008). More research and monitoring are needed to understand both density-dependent and density-334 

independent mortality in the non-native range of Douglas fir, especially regarding tree susceptibility 335 

to drought stress (Ruiz Diaz Britez et al. 2014) or extreme weather events. 336 

The validation against independent data from Mercurella and Vallombrosa stands showed that the 337 

DBH was predicted with a higher accuracy than height, probably due to the lack of measured 338 

heights and, consequently, the absence of height-diameter self-calibration for Mercurella in the 339 

initial simulation year (1996), and possibly to the lack of calibration of the height growth submodel. 340 

The validation against these independent dataset showed that the calibrated model generally had a 341 

much lower prediction error than the original PN-FVS models, in particular for predicting DBH at 342 

Vallombrosa.  343 

Even after calibration, PN-FVS overpredicted stand basal area at 50 years by 26% to a local yield 344 

table (Cantiani 1965). With only one direct measurement in time, it is impossible to ascertain 345 

whether this might be related to differences in species-specific carrying capacity (maximum SDI), 346 

or altered growing conditions as a consequence of e.g., climate change and/or higher nitrogen 347 

deposition relative to when the original yield table was fitted. However, biological validation of 348 

model behavior was successful, as simulated stands responded to different thinning (type A 10%, 349 

type B 30%) in a manner that was highly sensitive to their current site index and competition 350 

intensity. Where competition was higher, the benefit of thinning was greater.  351 

In this work, our goal was to illustrate a model calibration procedure that could be replicated by 352 

forest managers starting from one-time tree size measurements compounded by an increment 353 

sampling. Calibration by multipliers is rigid in the sense that it does not allow for changing or 354 

simplifying model forms, e.g., dropping unused predictors or altering the shape of allometric curves 355 

(e.g., Russell et al. 2013), which could be attained only by rewriting the simulator code.  However, 356 

our work was successful in providing a statistically validated decision support tool to project 357 

growth and yield of mature non-native Douglas fir plantations some decades into the future. 358 

Notwithstanding the inherent limitation of an empirical approach to forest modeling (Pretzsch 359 
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2009), the wealth of management options, model extensions, open access, and continuity of support 360 

by the developers make FVS an attractive option to managers and forest owners wishing to 361 

implement their management plans with scientifically based decision support tools.    362 

 363 

8 Conclusion 364 

 365 

This work has calibrated an age-independent, individual-tree, distance-independent growth and 366 

yield simulator for Douglas fir for Central Italy. A tree level simulator could be an effective tool for 367 

planning forest management. Calibrating this model to other areas and for other species in Italian 368 

forests may be a useful management support instead of traditional yield tables. 369 

Other FVS submodels and extensions can be calibrated besides those here considered (Russell et al. 370 

2015): regeneration, climate-FVS and especially mortality, which is an important growth submodel 371 

to be considered in future evaluations because it is one most sensitive to changes in future climate 372 

regimes, such as increases in drought severity and duration (Crookston et al. 2010). Simple 373 

modifications to the tree mortality model within PN-FVS could result in improved precision for 374 

estimating future number of trees (e.g., Radtke et al. 2012). 375 

The self-calibration feature of FVS extends the geographic range over which the model can be 376 

exploited, assuming that the factors affecting growth in a given area also affect growth in the same 377 

way elsewhere. If this assumption cannot be accepted, the only other option is to refit the 378 

relationships using data from the geographic area of interest. If this procedure can be accepted, then 379 

the model equations can be calibrated rather easily. 380 

Here, we have proved a relevant improvement for the application of FVS in Italy over the original 381 

model. The results also highlight the importance of using long-term historical growth data for the 382 

calibration and validation of the model. Permanent plots are generally well suited for tracking long-383 

term model reliability and for evaluating model performance relative to specific treatments 384 

distinctively. Maintaining existing local networks of permanent plots, especially those with long 385 
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histories of measurement, to predict forest growth in the climate change, is suggested (Crookston et 386 

al. 2010). 387 

In conclusion, FVS has been proven to be a suitable type of yield modeling for Douglas fir forest 388 

growth in Italy: (i) it suitably represents current understanding of the dynamic forest ecosystem and 389 

how it responds over time to management interventions; (ii) it provides a monitoring target to test 390 

our assumptions with (for example, stand yield following different silvicultural treatments and 391 

successional pathways when no treatments are applied); (iii) it provides a modeling framework to 392 

integrate existing modeling components such as crown equations, site index curves and ecological 393 

land classification; (iv) it provides tools to develop and compare various silvicultural treatments; (v) 394 

it simulates a stand through time to inform and instruct forest managers; (vi) it can be effectively 395 

adopted to update inventory data. 396 
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Table captions 556 

 557 

Table 1: Main climatic and geographic parameters of the sampled stands: MAT=mean annual 558 

temperature, MWMT=mean warmest month temperature, MCMT=mean coldest month 559 

temperature, MAP=mean annual precipitation, MSP=mean summer precipitation, EU= 560 

ecopedological units. 561 

Table 2: Main site and dendrometric characteristics of the study areas: SDI=stand density index, 562 

CCF=crown competition factor, PCC=percent of canopy cover, QMD=quadratic mean diameter, 563 

TH=top height, SI=site index. 564 

Table 3: Confidence intervals of HT - CW - CR - ln(DDS) submodel parameters (bold: default PN-565 

FVS value within 95% c.i. of the uncalibrated submodel). 566 

Table 4: Scale factors computed by self-calibration of the ln(DDS) submodel. 567 

Table 5: Results of calibrated PN-FVS model validation at Mercurella and Vallombrosa sites. 568 

 569 

 570 

 571 

  572 
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Table 1 573 

 574 

Stand Latitude  Longitude  Elevation  MAT  MWMT  MCMT  MAP  MSP  EU  

 degrees m asl °C mm code 

acquerino44 44.009 11.002 950 9.5 19.2 0.9 1485 463 8.07 

acquerino58 44.005 11.009 900 9.8 19.5 1.2 1458 455 8.07 

amiata 42.872 11.581 1100 10 19.7 2 622 246 16.01 

berceto 44.498 9.978 950 9 18.9 -0.2 1301 444 8.08 

camaldoli152 43.807 11.812 1030 9.3 18.9 0.9 1148 394 8.07 

camaldoli209 43.805 11.819 1020 9.3 18.9 0.9 1142 393 8.07 

campalbo 44.129 11.301 950 9.1 18.9 0.2 1365 415 10.01 

campamoli 43.836 11.75 920 9.8 19.4 1.2 1134 390 10.04 

cavallaro 43.959 11.748 880 9.8 19.7 0.8 986 362 10.03 

cottede 44.105 11.175 1100 8.4 18.3 -0.6 1268 392 10.01 

frugnolo 43.395 11.916 770 11 20.6 2.5 734 275 10.04 

gemelli 43.968 11.728 1000 9.2 18.9 0.4 1211 424 10.03 

lagdei 44.415 10.018 1250 7.5 17 -1 1780 578 8.07 

lama 43.838 11.869 860 10.2 19.9 1.6 1103 384 8.07 

lizzano 44.155 10.831 1120 8.5 18.1 0 1128 428 8.07 

montelungo 44.024 10.962 1090 8.8 18.4 0.2 1464 456 8.07 

orecchiella 44.206 10.364 1260 7.7 17.2 -0.6 1671 527 8.05 

ortodicorso 44.04 10.988 1074 8.8 18.5 0.2 1482 459 8.07 

pietracamela 42.515 13.548 1120 9.8 19.4 1 806 319 11.07 

porretta 44.135 10.922 1057 8.8 18.5 0.2 1179 407 8.07 

 575 

 576 
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Table 2 577 

 578 

Stand Age  Aspect  Slope  Trees  SDI CCF PCC  QMD  TH  SI  

 years degrees n - - % cm m m 

acquerino44 75 135 30 49 517.5 417 87 53.2 41.1 31.1 

acquerino58 85 180 60 31 578.9 499 76 75.9 47.4 31.1 

amiata 75 225 10 34 512.1 428 53 66.5 46.8 34.1 

berceto 82 355 50 44 488.6 420 69 54.9 35.8 28 

camaldoli152 75 90 30 53 553.1 442 52 52.9 45.7 31.1 

camaldoli209 75 135 30 39 550.5 456 41 63.8 48.9 34.1 

campalbo 79 90 10 24 434.2 373 41 74.4 47.0 31.1 

campamoli 72 270 40 36 457.4 375 64 59.8 49.2 36.9 

cavallaro 80 45 55 35 485.7 402 64 63.2 47.2 31.1 

cottede 87 180 20 37 481.1 405 48 60.6 40.7 28 

frugnolo 86 355 20 43 466.4 375 45 54.2 46.5 31.1 

gemelli 81 135 30 32 472.3 394 62 65.6 47.6 31.1 

lagdei 87 357 10 35 509.7 425 72 65.1 40.2 28 

lama 73 90 60 31 375.0 315 56 57.9 43.3 31.1 

lizzano 80 90 30 39 568.8 474 78 65.1 48.0 34.1 

montelungo 75 135 45 38 475.0 389 62 59.2 42.4 31.1 

orecchiella 72 225 15 36 447.4 368 33 59 42.0 31.1 

ortodicorso 80 45 40 34 411.5 335 66 58 42.6 28 

pietracamela 80 315 85 21 783.5 619 76 49.2 43.1 28 

porretta 85 40 25 46 556.0 453 58 57.9 40.6 28 

 579 
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Table 3 580 

Submodel Statistical parameters Confidence interval PN-FVS default 

  2.5% 97.5%  

HT p2 177.051041 244.5944047 407.1595 

 p3 5.439085 16.9760288 7.2885 

 p4 -1.274372 -0.6851091 -0.5908 

CW a1 3.59114045 23.884341979 5.884 

 a2 0.80599868 1.311925335 0.544 

 a3 -0.74220643 -0.308624119 -0.207 

 a4 -0.02696175 0.142872953 0.204 

 a5 -0.0869313 0.156519271 -0.006 

 a6 -0.01535613 -0.003457285 -0.004 

CR A 20.029 41.385 0 

 B 10.162 26.481 4.5 

 C -0.105 1.092 0.311 

ln(DDS) b1 95.403020 513.117783 -0.1992 

 b2 0.248486 2.749077 -0.009845 

 b3 -0.040339 -0.002925 0 

 b4 7.360673 17.855091 0.495162 

 b5 0.097451 3.735880 0.003263 

 b6 -1.197667 1.942963 0.014165 

 b7 -13.818310 7.291880 -0.340401 

 b8 -14.522460 14.427475 0 

 b9 2.005133 24.924225 0.802905 

 b10 -10.721810 20.635366 1.936912 

 b11 -25.792430 16.887971 0 

 b12 -0.007620 0.007434 -0.0000641 

 b13 -0.037989 0.302196 -0.001827 

 b14 0.034499 0.126296 0 

 b15 0.220498 9.916505 0 

 b16 -125.8779 -42.562184 -0.129474 

 b17 -0.100059 0.006533 -0.001689 

 b18 -0.002082 0.229584 0 

 581 
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Table 4 582 

Stand 
Number of tree  

records 

Fvs scale  

factor 

Ratio  

std. Error 

Bayes  

weight 

Scale  

factor 

acquerino44 7 1.019 3.642 0.451 1.043 

acquerino58 9 1.555 2.663 0.85 1.681 

amiata 8 2.869 1.543 0.999 2.872 

berceto 9 1.988 3.549 0.947 2.066 

camaldoli152 9 2.14 2.509 0.975 2.182 

camaldoli209 8 2.447 1.56 0.995 2.458 

campalbo 6 2.42 1.076 0.995 2.431 

campamoli 10 3.388 2.029 1 3.388 

cavallaro 6 1.882 3.061 0.924 1.982 

cottede 8 3.181 1.288 1 3.181 

frugnolo 8 1.656 2.143 0.896 1.756 

gemelli 6 1.847 3.576 0.907 1.967 

lagdei 7 1.072 2.333 0.579 1.128 

lama 10 5.19 1.589 1 5.19 

lizzano 9 3.299 2.5 1 3.299 

montelungo 9 2.952 2.105 0.999 2.955 

orecchiella 10 2.371 2.565 0.99 2.392 

ortodicorso 9 2.372 1.992 0.991 2.391 

pietracamela 9 2.282 2.151 0.987 2.307 

porretta 13 1.363 3.241 0.759 1.504 
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Table 5 584 

Statistical parameter 
Mercurella Vallombrosa 

DBH Height DBH Height 

R2 0.89 0.54 0.96 0.72 

MBE -4.36 cm 3.17 m 0.03 cm -5.32 m 

RMSE 6.15 cm 4.44 m 3.67 cm 7.07 m 

MPE -6.76% 8.85% 1.55% -10.13% 

MABE 4.79 cm 3.53 m 3.32 cm 6.31 m 

 585 

 586 

  587 



 

 30 

Figure captions 588 

 589 

Figure 1 – Location of the study areas 590 

Figure 2 - Observed versus predicted tree heights by default PN-FVS Height-Diameter submodel 591 

Figure 3 - Basal area predicted by PN-FVS default, by calibrated PN-FVS and by Cantiani yield 592 

table (1965) 593 

Figure 4 - Volume predicted by PN-FVS default, by calibrated PN-FVS and by Cantiani yield table 594 

Figure 5 - Simulation of the response of stand basal area (above) and volume (below) to thinning 595 

from below in the Campamoli (left) and Acquerino58 (right) stands. 596 
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