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• Modelling SOC in two samplings 15 year
apart gave a view of SOC change.

• Texture and land use were main drivers
of SOC concentration.

• Topographic indices were more impor-
tant than climatic indices to estimate
SOC concentration.

• SOC variation agreed with climatic
trend and soil variability maps.

• Remote sensing covariates reduced the
uncertainty of estimation.
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SOC is themost important indicator of soil fertility andmonitoring its space-time changes is a prerequisite to es-
tablish strategies to reduce soil loss and preserve its quality. Herewemodelled the topsoil (0–0.3m) SOC concen-
tration of the cultivated area of Sicily in 1993 and 2008. Sicily is an extremely variable regionwith a high number
of ecosystems, soils, and microclimates. We studied the role of time and land use in the modelling of SOC, and
assessed the role of remote sensing (RS) covariates in the boosted regression treesmodelling. Themodels obtain-
ed showed a high pseudo-R2 (0.63–0.69) and low uncertainty (s.d. b 0.76 g C kg−1 with RS, and b1.25 g C kg−1

without RS). These outputs allowed depicting a time variation of SOC at 1 arcsec. SOC estimation strongly
depended on the soil texture, land use, rainfall and topographic indices related to erosion and deposition. RS in-
dices captured one fifth of the total variance explained, slightly changed the ranking of variance explained by the
non-RS predictors, and reduced the variability of themodel replicates. During the study period, SOC decreased in
the areas with relatively high initial SOC, and increased in the areawith high temperature and low rainfall, dom-
inated by arables. This was likely due to the compulsory application of some Good Agricultural and Environmen-
tal practices. These results confirm that the importance of texture and land use in short-term SOC variation is
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comparable to climate. The present results call for agronomic and policy intervention at the district level tomain-
tain fertility and yield potential. In addition, the present results suggest that the application of RS covariates en-
hanced the modelling performance.

© 2017 Elsevier B.V. All rights reserved.
Digital soil mapping
Legacy dataset
1. Introduction

Agricultural lands play a major role in the storage of soil organic
carbon (SOC) and sequestration/release of atmospheric CO2 (Bradford et
al., 2016; Filippi et al., 2016; Post and Kwon, 2000). SOC is directly linked
with a number of ecosystem services and agronomical benefits and is the
main driver of soil fertility. However, agricultural soils have beendepleted
from their original SOC stock due to cultivation, which also negatively af-
fected soil aggregation status,water infiltration rate, soil fertility and biota
(Bruun et al., 2015; Parras-Alcántara et al., 2016; Saia et al., 2014). The
preservation of soil quality is a priority tomaintain agricultural productiv-
ity and environmental quality. In this framework, monitoring SOC con-
centration and stock changes through space and time is important to
establish strategies to reduce soil loss and preserve its quality. SOC mon-
itoring at regional scale relies on sparse sampling and application of an es-
timation process. Such a process should take into account the spatial
interdependence of samples and abundance of predictors (Martin et al.,
2014); and the distribution heterogeneity in space and among determi-
nants (predictors) of SOC accumulation (Lacoste et al., 2014). With
regards to the latter, the relationship in the domain of each predictor
with SOC and the resolution of the predictors is particularly relevant for
any spatial estimation (Miller et al., 2016; Miller et al., 2015a; Miller et
al., 2015b). The spatial estimation of SOC concentration and stocks is com-
monly performed by statistical approaches (Meersmans et al., 2009;
Orton et al., 2014) with different interpolation methods and machine
learning predictive models (Henderson et al., 2005; Yang et al., 2015).
The former is better suited to areas with dense SOC measurements,
whereas the second is more appropriate for non-regularly sampled re-
gions, since its outcome does not rely on the sample proximity to extract
functional (ecological) relationships between dependent and indepen-
dent variables.

SOC dynamics under different land uses are still poorly understood
(Francaviglia et al., 2017; Meersmans et al., 2008; Purton et al., 2015),
especially when deriving data from wide areas and with different cli-
mates. In Mediterranean environment, lack of knowledge on SOC dy-
namic is further due to variable climatic and erratic meteorological
conditions. It has been shown that cultivation exerts a negative role
on SOC accumulation in various environments (Francaviglia et al.,
2017; Kämpf et al., 2016; Novara et al., 2013) and this likely depends
on both soil tillage and reduction of biomass return to the soil. In partic-
ular, a reduction of the tillage intensity can favor SOC accumulation irre-
spective of aridity (from semi-arid to humid) and can be up to
1 t SOC ha−1 yr−1 (Conant et al., 2001; Kämpf et al., 2016; Kurganova
et al., 2014; Post and Kwon, 2000). The SOC dynamic also depends on
other factors such as soil genesis and type, land use history andmanage-
ment and useful information could be gained from SOC spatial models
(Badagliacca et al., 2017; Martin et al., 2014; Schillaci et al., 2017;
Schillaci et al., 2015; Vereecken et al., 2016).

In the last two decades the integration of physical, chemical, and bi-
ological information derived from different covariates in themodels has
boosted the studies on soil properties (Bui et al., 2009; Henderson et al.,
2005) and also for SOCmapping from global or continental (Hengl et al.,
2014; Lugato et al., 2014) to regional and plot scales (Akpa et al., 2016;
de Gruijter et al., 2016; Martin et al., 2014; Schillaci et al., 2017). SOC
mapping attempts at giving an image of the spatial distribution despite
it is costly (Minasny et al., 2013 and reference therein).

The most recent developments in the digital soil mapping include
machine learning (Forkuor et al., 2017; Gasch et al., 2015; Hengl et al.,
2017) to study space-time variation of soil properties and use of remote
sensing (RS) covariates (Castaldi et al., 2016a). Thanks to their high ac-
cessibility, resolution and availability for wide areas, RS data gained im-
portance for spatial prediction of the topsoil organic C (Bou Kheir et al.,
2010; Poggio et al., 2013). For example, Bou Kheir et al. (2010) found
that SOC maps built with a classification-tree analysis of the sole RS pa-
rameters gave the same accuracy of a model built with sole digital ele-
vation model (DEM) parameters, and both of them had sole ca. 10%
less accuracy that a full RS + DEM + soil parameters model built.
Poggio et al. (2013) found that integration of RS with terrain attribute
data increased the predictive ability comparing to the model built
with only terrain parameters. However, some of the SOC estimates
lack uncertainty analysis and this compromises the reliability of predic-
tions for decisionmaking (Maia et al., 2010;Minasny et al., 2013; Ogle et
al., 2010). In addition, Conant et al. (2011) highlighted the limitation to
document time changes in SOC because of the spatial variability in the
factors that influence SOC distribution.

In a regularly-spaced data collection, SOC samples are taken from
representative or random sampling sites in a given study area. Legacy
data comes from amixture of sampling campaigns resulting in data col-
lected for different aims (Chartin et al., 2017),which frequently allow to
make predictions for areas with sampling limitations (Rial et al., 2017).
Depending on the scope of each survey (e.g. regional soil characteriza-
tion or precision agriculture) sample density can change abruptly. This
can consist in drawbacks including their non-regular distribution in
space, which call for the use of particular modellingmethod and predic-
tors. Due to these difficulties, only few examples onmapping at regional
extentwith legacy data are available. For example, Ross et al. (2013) and
Grinand et al. (2017) carried out a space-time assessment of SOC in sub-
tropical regions of south-eastern United States and Madagascar,
respectively.

Little information is available on SOC dynamics in semi-arid Medi-
terranean areas due to the unavailability of consistent databases. None-
theless, time dynamic of SOC storage in the soil is highly dependent to
the climatic zone of the area under study (Doetterl et al., 2015). In addi-
tion, spatial and time change of SOC can respond to different determi-
nants at varying the climate of area under study.

The present work fits within the big picture of spatial SOC mapping
and time change. This was made by means of a legacy dataset and use
of remotely sensed data. In particular, we used legacy data of two sam-
pling campaigns 15 years apart (1993–2008), coupled with climate
(from Worldclim data Bio1,12), and land use information (from CORINE
1990 to 2006) tomap the topsoil SOC variation across time in the agricul-
tural area of a semi-arid Mediterranean region (Fig. 1). Such aim was
achievedby applying amachine learningmethod, namely boosted regres-
sion trees (BRT), to each sampling campaign dataset using land use, soil
texture, topographic and remote sensing predictors. We also tested the
role of remote sensing covariates in the spatial SOCprediction and predic-
tors' importance by running eachmodel eitherwith orwithout the imple-
mentation of the RS covariates. In the area under study, i.e. cropped fields
in which plants (mostly field crops) have limited or no growth during
summer and early fall, the inclusion of remote sensed variables could cap-
ture part of the SOC variation due to biomass return to the soil.

2. Material and methods

2.1. Study area

The study area, Sicily (Italy), is a semiarid region located inmiddle of
the Mediterranean Sea (Fig. 1). Its area is about 25,286 km2, 60% of



Fig. 1. Locations of the sampling sites in the 1993 and 2008 in the area under study (Sicily, Italy). Land use groups used in the study are displayed.
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which cultivated. Themacroclimate of the region isMediterraneanwith
three main bioclimatic areas: thermo-, meso-, and supra-Mediterra-
nean. Mean annual temperatures in the cropped area range from 7 °C
to 15 °C and mean annual precipitation from 350 to 1000 mm, whereas
mean annual temperatures and rainfall in the natural, uncropped
area can be 1.8 °C and up to 1300 mm (Cannarozzo et al., 2006; Viola
et al., 2014). The main annual crops are durum wheat, winter-seeded
barley, pulses and forage legumes and a wide range of horticultural
crops; the main perennial crops are olive groves, vineyards and fruit
trees such as citrus, almonds, and stone fruits. Woodlands and second-
ary forests are not targeted by the SOC concentration mapping in the
present work, except those areas in which agriculture abandonment
occurred.

Adoption of conservation soil management techniques is almost ab-
sent (Ruisi et al., 2014). In the region, different soil survey campaigns
were undertaken between 1968 and 2008. The criteria for the selection
of the locations of the soil sampling are explained in the next section.
The island has a great pedoclimatic variability: dominant soils according
to the World Reference Base for soils are Calcaric Regosols, Haplic
Calcisols, Calcic Vertisols, Vitric or Silandic Andosols, Calcaric and/or
Mollic Leptosols, Calcaric Phaeozems, and Fluvic Cambisols. Hence it
can be considered quite representative of most of the Mediterranean
countries. A number of ecological and anthropic traits make Sicily
unique for ecological studies. These traits include a relatively high pop-
ulation density and degree of cultivation, an ancient environmental his-
tory, climatic variability, land uses and several dominations from
different populations, which introduced various plant species andman-
agement techniques. All these factorsmade Sicily an open and extreme-
ly variable laboratory for the study of the impact of anthropic pressure
and environmental variation at microscale, land cultivation and man-
agement on other environmental traits, including SOC distribution and
dynamics. Such characteristics strongly help in the exportation of the
results of environmental studies to other similar and different
environments and scale, such as also suggested by others (Legendre,
1998; Novara et al., 2017; Schmolke et al., 2010).

The region under study, Sicily (see Supplementarymaterial Fig. 1 for
a physiographic map of the area with orography and toponymy infor-
mation used), is a setting of different agro-ecosystems and natural envi-
ronments though it is mainly semi-arid and with few incidence of
forestlands. The island has three main, almost continuous, mountain
chains: Peloritani from the north-eastern corner moving to west few
km down the northern coast, followed by the Nebrodi and then by the
Madonie. In the western/central part of the island there is an irregular
mountain area: the Sicani, somehow continuing the ridge formed by
the previous mountain chains. Mean height of the mountain chains de-
creases from east to west. These chains were formed as part of the Ap-
ennines, which span across the island as a geological bridge between
peninsular Italy (on the east end) and Tunisia (on the west end). The
highest mountain of Sicily is the Etna Volcano (about 3600 m above
sea level [a.s.l.]), located in the northeastern part of the region, south
of the Peloritani. To the south of the Etna Volcano, a wide plain (the Ca-
tania plain) is formed by the alluvium of the Simeto River, south of
which there is the expansion of a hilly to mountainous area: the
Hyblaean mountains/plateau. The rest of the core of the island, from
the plain of Catania to the Erei Mountains and cities of Enna, Caltanissetta
andAgrigento is amostly hilly areawith clayey, highpH, seldomgipsic sa-
line soils. Such as for themainmountain chains, mean height of this latter
ridge decreases from east to west. Other minor plains can be retrieved all
along the coasts. All the rivers, with the exception above-mentioned
Simeto, have a strong seasonal flow. This is due to the low rainfall south
of the Apennines ridge, or low basin extent north of it.

2.2. SOC dataset

The Regional Bureau for Agriculture, Rural Development and Medi-
terranean Fishery, the Department of Agriculture, and Service 7
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UOS7.03 provided the legacy dataset used in this study. The surveys that
produced the legacy dataset had different aims (such as redaction of
suitability or pedological maps). SOC, soil texture, actual land use, GPS
positioning and relative metadata were measured in every survey and
provided for the presentwork. From the complete record of observation
(about 2700 different locations in a timespan of 30 years), we selected
the years with the most of samplings, which were 1993 (685 points)
and 2008 (337 points) (Fig. 1). The 1993 database is a regional subset
of the national soil survey performed in the framework of the AGRIT
project of the Italian Ministry of Agriculture and Forestry (MIPAAF), all
over Italy in the years 1993 to 1994. The 2008 campaign (undertaken
in the frame of the project “Soil Map of Sicily at 1:250,000 scale”) was
aimed at closing the gap of previous campaigns basing on a GIS oriented
pedo-landscape sampling design (Fantappiè et al., 2011). Only SOC data
sampled in agricultural fields were taken into account for further
modelling procedures.

In both the1993 and2008 campaigns, soil-sampling schemewasde-
signed to collect samples from various pedo-landscape (combinations
of physiographies, lithologies and land uses) delineations as representa-
tive at a 1:250,000 scale. Samples of the 1993 campaign were taken fol-
lowing a specific guide for soil sampling and description, and consisted
of minipits excavated up to a 50 cm depth to represent the top-soil, and
sampled with the auger for the subsoil. The 2008 campaign consisted of
soil profiles described according to the official methods of ItalianMinis-
try of Agriculture (Paolanti et al., 2010). Soils from each campaign were
sampled at various depths (maximumdepth sampled up to 2.80m). For
the present study, the topsoil layer (up to 0.3-m depth) was taken into
account. As stated above, soil layers were sampled according to the ped-
ological description and thus upper and lower limit of each depth sam-
pled varied among sampling points. Thus, to standardize the SOC
concentration value, SOC was considered to decrease linearly with
depth within each layers. In particular, soil layer in the depth 0–0.3 m
were selected and those deeper than 50 cmwere not used for the pres-
ent experiment. The soil sampleswere passed through a 2mm sieve, air
dried, then analyzed for organic C content following Walkley-Black
procedure.

2.3. Predictors

Climatic data were drawn from Worldclim (Hijmans et al., 2005).
The original resolution of the Climatic data is about 1 km and were
resampled to the desired 100mmapping unit for themodelling process.
Worldclim offers different datasets including bioclimatic data. Mean
yearly rainfall and temperature of the 1950–2010 period were used.

Soil texturewas obtained by the sedimentationmethod of the sam-
ples and reported according to the USDA classification. Soil texture for
the whole area was provided by the Regional Bureau for Agriculture,
Rural Development and Mediterranean Fishery, the Department of Ag-
riculture, Service 7 UOS7.03 Geographical Information Systems, Cartog-
raphy and Broadband Connection in Agriculture, Palermo.

The CORINE land cover maps of the years 1990 and 2006 at 100-m
spatial resolution were used in order to identify the agricultural land
uses for the model built for the year 1993 and 2008, respectively
(http://land.copernicus.eu/pan-european/corine-land-cover). The anal-
ysiswas carried out according to the CORINE level 3, the Land cover type
used in the modelling stage were: i) non-irrigated arable land (CORINE
code 2.1.1, grid code 12, hereafter referred as ARA), ii) vineyards
(CORINE code 2.2.1, grid code 15), fruit trees and berry plantations
(CORINE code 2.2.2, grid code 16), and olive groves (CORINE code
2.2.3, grid code 17) (hereafter grouped in VFO), iii) annual crops associ-
ated with permanent crops (CORINE code 2.4.1, grid code 19), complex
cultivation patterns (CORINE code 2.4.2, grid code 20), land principally
occupied by agriculture, with significant areas of natural vegetation
(CORINE code 2.4.3, grid code 21) (hereafter grouped in CCP). The
land uses within the groups VFO and CCP were grouped since the SOC
stock and relationship between SOC-predictors and SOC stock in these
land uses is very similar due to similarities in plant density and soil
management, as observed in Schillaci et al. (2017). CORINE codes are
provided in Supplementary material Table 1.

Remote sensing-derived predictors consisted of the LANDSAT 5
spectral bands. The imagerywas also used to derive theNormalized Dif-
ference Vegetation Index (NDVI), which was included as explanatory
variables in themodellingphase.Weused geometrical corrected images
L1G. Multi-temporal mosaic required normalization to adjust for incon-
sistencies between images because of the proximity of the sun, earth
and zenith angle. The procedure involved the conversion of the digital
number to radiance at sensor. Calibration coefficient was provided in
the imagery metadata (Guyot and Gu, 1994). The images used for the
study were obtained by mosaicking the following five LANDSAT 5
scenes using the only cloud free scenes belonging to the path 188 row
33 (East), path 198 row 33 and 34 (middle) and path 190 row 33 and
34 (West) from the 1987 and 2003 for modelling data of 1993 and
2008, respectively. This time differences (1987 for the 1993 and 2003
for the 2008)were needed since the regional extent of the study area re-
quires at least 3 LANDSAT path to make a complete mosaicking of the
region and these years were the closer to those of the sampling periods,
inwhich the satellites scenes close each other in timehadnoor very few
clouds, thus allowing a homogeneous dataset. LANDSAT imagery was
freely acquired from the United States Geological Survey catalogue
(USGS, http://earthexplorer.usgs.gov) and coincidedwith summer peri-
od (Rouse Jr. et al., 1974), when most of the field crops have stubble or
bare soil and very few or no crop growth occurs in other crops due to ex-
tremely high temperature and low water availability. All the RS predic-
tors had an original spatial resolution of 30 m and they have been
subsequently resampled to the desired 100mmapping unit. The choice
of such predictor is due to their strong linkage to vegetation and other
soil traits, and thus, to SOC.

2.4. Topographical indices

Shuttle Radar TopographyMission (SRTM-C) digital elevationmodel
(DEM) released in September 2014 with a 1-arcsec (30m) spatial reso-
lution (resampled to 100 m to fit the land use classification) was used
for the calculation of the morphometric spatial predictors by means of
SAGA GIS (Conrad et al., 2015). DEM was downloaded from the
earthexplorer.com website, then pre-processing such as mosaicking
and fill sinkwas applied to the 10 SRTMDEM tiles covering the regional
extent. Eleven terrain attributes were calculated: 1) slope 2) catchment
area, 3) aspect, 4) plan curvature; 5) profile curvature, 6) length-slope
factor, 7) channel network base level, 8) convergence index, 9) valley
depth, 10) topographic wetness index, 11) landform classification. See
http://www.saga-gis.org/saga_tool_doc/2.1.3/a2z.html for details on
the computation of these covariates. Categorical predictor codes are
provided in Supplementary material Table 1.

2.5. Boosted regression trees and map comparison

Boosted Regression Trees (BRT, Elith et al., 2008) was used to identi-
fy the relationships between SOC and its predictors and to regionalize
the SOC prediction. This method and other decision trees-basedmodels
have already been used as DSM techniques to deal with SOC concentra-
tion and stock mapping (Bou Kheir et al., 2010; Grimm et al., 2008;
Martin et al., 2011; Schillaci et al., 2017). BRT is based on the integration
of weak learners (or tree-based rules). In a data mining context, a weak
learner is defined as a model that performs just slightly better than ran-
dom guessing (Freund and Schapire, 1997). In this sense, the BRT algo-
rithm combines multiple weak learners into a single strong learner
(Lombardo et al., 2015). This allow the algorithm to progressively in-
creases the accuracy of the prediction by reducing the chance of
obtaining outliers since weak learners also produces weak outliers.
This additive structure allows for capturing the variance of a dependent
variable in a way where the deeper the tree is grown, the more fitting

http://land.copernicus.eu/pan-european/corine-land-cover
http://earthexplorer.usgs.gov
http://earthexplorer.com
http://www.saga-gis.org/saga_tool_doc/2.1.3/a2z.html


Table 2
The importance of each of the 25 predictors used in the boosted regression treesmodel to
estimate the soil organic carbon performed on the 1993 and 2008 samples in Sicily, Italy.
The role of the remote sensed (RS) predictors on the contribution to the total variance ex-
plained by the non-RS predictors and fold variation after removal of the RS predictors is
shown.

1993 2008

With
RS

Without
RSa

Fold
variation

With
RS

Without
RS

Fold
variation

Non-remote sensed (RS) predictors
Soil texture 16.18 16.17 1.00 22.64 24.14 1.07
Land use 12.02 14.37 1.20 6.79 8.56 1.26
Valley depth 9.24 10.21 1.10 2.38 3.24 1.36
Rainfall 5.91 9.27 1.57 4.21 5.93 1.41
Channel network base
level

4.97 6.96 1.40 9.05 10.35 1.14

LS factor 4.61 5.65 1.23 3.35 4.27 1.28
Landforms 4.19 5.04 1.20 4.44 5.34 1.20
Aspect 3.88 4.89 1.26 4.54 5.84 1.29
Elevation 3.38 4.65 1.38 3.12 3.90 1.25
Temperature 3.07 4.00 1.30 4.63 5.57 1.20
Cross sectional
curvature

2.55 3.25 1.27 2.40 3.33 1.39

Slope 2.24 2.84 1.27 2.64 3.65 1.38
Vertical distance to
channel network

2.00 2.62 1.31 2.78 3.74 1.35

Relative slope position 1.97 2.42 1.23 2.02 2.58 1.28
Catchment area 1.93 2.63 1.36 2.33 2.87 1.23
Convergence index 1.88 2.42 1.29 3.70 4.59 1.24
Topographic wetness
index

1.85 2.60 1.40 1.60 2.09 1.31

RS predictors
NDVI 7.11 – n.a.b 2.45 – n.a.
Landsat 1 1.98 – n.a. 2.33 – n.a.
Landsat 2 1.45 – n.a. 1.45 – n.a.
Landsat 3 1.80 – n.a. 1.18 – n.a.
Landsat 4 2.31 – n.a. 2.73 – n.a.
Landsat 5 1.91 – n.a. 1.28 – n.a.
Landsat 6 0.00 – n.a. 3.93 – n.a.
Landsat 7 1.57 – n.a. 2.04 – n.a.

a Remote sensing.
b Non-applicable.

Table 1
Descriptive statistics of the observed soil organic carbon (SOC) concentration values and that of the distributions of the predicted SOC valuesmodelled extracted on the same locations of
the observed values. RS if for remote sensing covariates. Descriptive statistics were produced for both row and log-transformed data. Unit of measure for row data is % SOC.

Raw data Log-transformed data

1993 2008 1993 2008

Observed Predicted
with RS

Predicted
without RS

Observed Predicted
with RS

Predicted
without RS

Observed Predicted
with RS

Predicted
without RS

Observed Predicted
with RS

Predicted
without RS

Mean 1.2219 1.2246 1.2246 1.4881 1.4959 1.4965 0.0080 0.0687 0.0693 0.0743 0.1536 0.1546
Standard error 0.0273 0.0146 0.0143 0.0567 0.0249 0.0244 0.0098 0.0044 0.0044 0.0146 0.0065 0.0064
Minimum 0.1000 0.6821 0.6665 0.0300 0.8027 0.7774 −1.0000 −0.1661 −0.1762 −1.5229 −0.0955 −0.1093
Percentile 1% 0.2000 0.7322 0.7231 0.2000 0.8523 0.8889 −0.6990 −0.1354 −0.1408 −0.6990 −0.0694 −0.0512
Percentile 2.5% 0.2000 0.7779 0.7811 0.2533 0.9137 0.9222 −0.6990 −0.1091 −0.1073 −0.5965 −0.0392 −0.0352
Percentile 25% 0.8000 0.9599 0.9611 0.8325 1.1294 1.1416 −0.0969 −0.0178 −0.0172 −0.0796 0.0529 0.0575
Median 1.0000 1.1125 1.1148 1.1450 1.3573 1.3480 0.0000 0.0463 0.0472 0.0588 0.1327 0.1297
Percentile 75% 1.5000 1.3453 1.3392 1.7575 1.6973 1.7033 0.1761 0.1288 0.1268 0.2449 0.2298 0.2313
Percentile 97.5% 3.2475 2.4201 2.3855 4.4638 2.9182 2.8322 0.5115 0.3838 0.3776 0.6497 0.4651 0.4521
Percentile 99% 4.2000 2.7196 2.7162 5.6966 2.9813 3.0149 0.6232 0.4345 0.4340 0.7556 0.4744 0.4793
Maximum 5.4000 2.9830 3.0140 10.9500 3.4762 3.3565 0.7324 0.4746 0.4791 1.0394 0.5411 0.5259
Mode 1.0000 1.0554 1.0151 0.9900 0.8205 0.7774 0.0000 0.0234 0.0065 −0.0044 −0.0859 −0.1093
Standard deviation 0.7648 0.4074 0.4002 1.1530 0.5074 0.4968 0.2751 0.1237 0.1218 0.2972 0.1318 0.1294
Kurtosis 5.1596 3.4557 3.4879 14.9722 1.5478 1.5422 1.3897 0.7781 0.8042 2.1546 −0.0729 −0.0682
Skewness 1.8570 1.7964 1.7953 2.9695 1.3679 1.3563 −0.6215 0.9741 0.9742 −0.3757 0.6848 0.6774
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segments are obtained and added to the initial tree, to accommodate
the SOC concentration at eachmapping unit. The first step of this proce-
dure consist of a Classification And Regression Trees (CART) analysis
which recursively screens the observations in matched datasets made
up by a dependent variable, either categorical (classification) or contin-
uous (regression), and one or many explanatory variables. Explanatory
variables can be either categorical or continuous. Differently froma clas-
sic CART approach, where a single tree can grow only to be finally
pruned to get a readable model, the application of the BRT (second
step) iteratively generates trees of a fixed dimension. Each tree is
based upon the previous, and BRT gradually minimizes a loss function
in order to improve the predictive performance. The adoption of the
Huber-M loss function instead of a more common square loss function
reduces the noise when iteratively measuring the difference between
estimated and actual values for SOC concentration data. The procedure
ceases when the creation of trees produces overfitting effects. The eval-
uation of the overfitting is performed by measuring the prediction re-
siduals or deviance for each of the consecutive trees over a random
independent sample that was kept separate from the calibration
phase. Typically, the testing error quickly decreases the more trees are
generated and subsequently slows down reaching an inflection point
from where it starts to increase. This behavior is recognized as
overfitting, determining the choice of the best model before the tree
starts fitting the noise of the training data instead of revealing ecological
relationships.

In the present research, 100 replicates were randomly generated
and modelled from each of the original SOC concentration dataset.
Relationships between variables are explained through response curves
(Lombardo et al., 2015). We used R (R Development Core Team, 2008),
with the ‘dismo’ package developed by Elith et al. (2008). The package
allows for the customization of: i) learning rate (lr), which is set
to determine the contribution of each tree to the final tree architecture;
ii) tree complexity (tc), which controls the number of splits; iii)
bag of fraction (bg), the proportion of data selected at each step of
the modelling procedure. Following Hashimoto et al. (2016) we
performed the 10-fold cross-validation procedure to determine the
optimal number of trees (maximum numbers of trees 10,000) and a tc
value of 20. Regarding each single run, model performances was
assessed using the coefficient of determination of the scatter plot of
the predicted against the observed values (pseudo-R2) and root mean
square error (RMSE). Standard deviation maps of the 100 runs were
also constructed.
The maps of organic carbon generated for the 1993 and 2008 were
compared and a difference (SOC08–SOC93) computed in which an in-
crease of SOC was displayed as positive and a decrease as negative. An
error map of the difference was built by adding the standard error of
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the 1993 and 2008maps and highlighting those pixel which SOC differ-
ence (as absolute value)was higher than the sumof the standard errors.
In such pixels, SOC difference was considered as reliable.

3. Results

Distributions of observed and predicted data with and without re-
mote sensing (RS) predictors were log shaped (Table 1 and Supplemen-
tary material Fig. 2). Distribution of predicted data showed similar
skewness than observed data in 1993 and lower, but always positive,
kurtosis in 1993 and kurtosis and skewness than observed data in
2008, which suggests that this method better estimates SOC in the cen-
tral values of the distribution. All models had pseudo-R2 higher than
0.693 for the 1993 model and 0.634 for 2008 model. Models with and
without RS predictors had similar accuracy (Supplementary material
Fig. 3). The removal of the RS predictors had a negligible effect on
both the variation of the pseudo-R2 and angular coefficient of the pseu-
do regression lines of both models, which was 0.43–0.45 in the 1993
and 0.33–0.34 in the 2008. Similarly, the intercepts were from 6.59 to
10.13 g organic C kg−1, thus thepredictions overestimated the observed
value when SOC is low and down-estimated it when SOC is high.

Removal of the RS predictors slightly changed the ranking of the pre-
dictors in terms of contribution to the total variance explained (Table 2).
Among the RS predictors, only NDVI in the 1993 model showed a rela-
tively high contribution to the variability explained (7.11%, the 4th
strongest predictor), whereas its importance was negligible in the
2008 model (2.45%, the 15th predictor).

In general, the removal of the RS predictors resulted in an increase of
the contribution to the total variance of the lowest contributing predic-
tors (Table 1), with the exception of rainfall (5.91% in the 1993 model
and 4.21% in the 2008model). Rainfall contribution to the total variance
explained was 1.57 and 1.41 fold after removal of the RS predictors. In
Fig. 2.One-hundredmeters resolutionmapsof the SOC (expressed in g C kg−1, a, b) anduncerta
or without (b, d) remote sensed covariates. STD is for standard deviation. Please note that rang
total, the removal of the RS predictors from themodelling procedure in-
creased the total contribution to the total variance explained of the six
most important non-RS predictors by 9.71% in 1993 and 8.08% in
2008. The most important predictor of SOC content in both the 1993
and 2008 models was texture (19.18% and 22.64%, respectively, in the
models with RS predictors). The six most important non-RS predictors
across all 4 models were soil texture, land use, valley depth, rainfall,
channel network base level (that is correlated with the height above
the see level [a.s.l.] of the basin upon each pixel and thus to the chance
of receiving SOC by erosion) and LS factor.

In themodels both with andwithout RS predictors, a discrepancy in
the association between soil texture levels and relative importance for
SOC predictionwas found between the 1993 and 2008models (Supple-
mentary material Fig. 4). In the 1993 model, only Silty-Clay-Loam (tex-
ture 6) and Sandy-Loam(texture 7) showed a positive association to the
SOC, whereas in the 2008 model, such a positive association was also
found for Clay (texture 1), Sandy Clay Loam (texture 8), and Sandy
soils (texture 9). In both models, CCP contributed more than VFO to
SOC estimation and VFO more than ARA. Channel network base level
negatively correlated with SOC estimation in the first half of its range
in both the 1993 and 2008 models (up to 660 and 330 m a.s.l., respec-
tively), after which its contribution to the function of SOC estimation
was always positive and constant. Similar trends were observed for
the rainfall to SOOC estimation relationship. The role played by valley
depth was strong in the 1993 model, only. Valley depth, which is in-
versely correlated with the deposition process, positively associated
with SOC only in the lowest SOC concentration samples.

As expected, the highest SOC concentrations were mostly found in
sites with relatively low mean temperature and high rainfall, which, in
this area, are conducive for C accumulation in soil (see Cannarozzo et
al., 2006; and Viola et al., 2014 for maps of rainfall and temperatures).
In our study area, these sites are mainly located at the boundaries of
intymaps (c, d) of the boosted regression treesmodels builtwith data from1993with (a, c)
e vary among classes.
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the mountain chains (Figs. 2 and 3): the northern mountain chains
(Madonie, Nebrodi and Peloritani), the Volcano Etna in the eastern
part of the island, the SicaniMountains in thewestern part of the island,
and to a certain extent theHyblaean area in the south-eastern corner. In
general, the higher the SOC concentration, the higher the standard error
of the model. The models with RS showed a lower standard error than
the models without RS, especially in 1993.

Classification of the predicted samples in the range ± 50% than the
observed was high for both the 1993 and 2008 models (81% and 72%
of the estimated data extracted on the same location of the entry data;
Fig. 4) and well distributed in the area. Samples classified in the ranges
b or N50% than the observed were also well distributed.

The removal of the RS predictors did not exert an effect on the SOC
prediction, which was on average 11.9 g organic C kg−1 in ARA,
12.6 g organic C kg−1 in VFO, and 14.4 g organic C kg−1 in CCP (Fig. 5).
Irrespective of the presence of the RS covariates in the model, such
amount increased by 1.9%, 1.9% and 0.9% in ARA, VFO, and CCP, respec-
tively, from 1993 to 2008 and such increase occurred in all land use
groups considered in a similar extent (Supplementary material Fig. 5).

The variation of the SOC in the area under study strongly depended
on the subarea within the region and did not match the SOCmap at the
baseline (1993) (Fig. 6) In contrast, the reliability of this difference
[measured as |SOC08–93| − (STDEV08 + STDEV93)] did not depend on
the area and was positive in almost all pixels. An increase of SOC con-
centration (+10.1 g SOC kg−1 in the 99th percentile of the difference
distribution, i.e. +0.67 g SOC kg−1 yr−1, Supplementary material Fig.
6) was frequently found in the Hyblaean area, especially in the moun-
tains and hilly environments, in the western hilly to plains areas, and,
unexpectedly, on the central area located on the south of the northern
mountain ridge. A loss of SOC (−6.6 g SOC kg−1 in the 1st percentile
of the difference distribution, i.e.−0.44 g SOC kg−1 yr−1)was observed
in the areas surrounding the other mountains ridge, the areas between
Fig. 3.One-hundredmeters resolutionmaps of the SOC (expressed in g sC kg−1, a, b) and uncert
c) or without (b, d) remote sensed covariates. STD is for standard deviation. Please note that ra
the eastern slope of Etna Volcano and the sea and the Catania plain to
the south of Etna, the Hyblaean plains on the south of the Hyblaean
Mountains, and in part of the far-western plains, near the western cor-
ner of the island.

4. Discussion

The understanding of the space-time variation of SOC is a prerequi-
site to hypothesize future scenarios and the outcome of any policy on
crop yield, yield potential and ecosystem service (Dono et al., 2016;
Elith et al., 2008; Luo et al., 2015; Novara et al., 2017). Thus SOC should
be primarily managed to increase (agro)-ecosystem resilience to an-
thropic pressure and climate change. However, the mutual relationship
of SOC and climate change depends on several variables (e.g. soil texture
or tillage) and has wide variation (Kirschbaum, 1995; Stockmann et al.,
2013). In this framework, the integration of short and long term com-
parisons (Conant et al., 2001; Kämpf et al., 2016; Kurganova et al.,
2014; Post and Kwon, 2000) can strongly boost the accuracy of SOC pre-
diction (Luo et al., 2015). However, single-point comparisons, even
when analyzed for a wide timespan, have the drawback of being uncor-
rected for position in the stochastic population of the data and are thus
not representative of wide areas.

In the present study, the integration of DSM and BRT modelling
allowed us produce maps of probable agricultural topsoil SOC distribu-
tion (alongwith reliability and errormaps) for two sampling campaigns
performed 15 years apart (1993 and 2008). This also allowed us to esti-
mate how SOC varied through space and time at each land use group
(arables [ARA], tree-like crops [VFO], and cropped areas with semi-nat-
ural vegetation [CCP]) and the importance of some ecological character-
istics on space-time SOC variation.

The study periodwas selected according to the highest availability of
data within each campaign and its timespan (15 years) allowed us to
aintymaps (c, d) of the boosted regression treesmodels built with data from 2008with (a,
nge vary among classes.



Fig. 5. Estimates of the soil organic carbon in each of the land use groups used in the
present study as affected by the presence of the remote sensed (RS) covariates in the
model. ARA is for non-irrigated arable land; VFO is for vineyards, fruit trees and berry
plantations, and olive groves; CCP is for annual crops associated with permanent crops,
complex cultivation patterns, land principally occupied by agriculture, with significant
areas of natural vegetation. Data are means ± standard error. Number of sampling
points falling into an area of each land use group is shown.

Fig. 4. Prediction confidence map of the boosted regression trees (BRT) models of 1993 (a, c) and 2008 (b, d) built with (a, b) or without (c, d) remote sensed predictors. Each point
represents the ratio between BRT-predicted and observed values. The closer the ratio is to 1, the better its representation of the observed value is.
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depict a short-term variation of SOCwithin a well-characterized period.
Its beginning (1993) luckily fell soon before a number of European and
worldwide policy measures which profoundly impacted agriculture, in-
cluding the Regulation EEC 1272/88 on set-aside (compulsory from the
1992); theUnitedNations Framework Convention on Climate Change of
1993 (into force from 1994); and theWorld Trade Organization Marra-
kesh Agreement of 1994. Similarly, its end (2008 campaign) fell soon
after the abolishment of the compulsory set-aside in the EU (Common
Agricultural Policy [CAP] health check 2008) and the decoupled CAP
EU payments to agriculture in 2005 (Regulation EEC 1782/2003). This
collocates our research study in a period of low agricultural dynamic
in term of land use change and management techniques, the latter of
which were dominated by durum wheat continuous cultivation (in
ARA) and deep plowing.

Indeed,we found that the area covered by ARAand that by VFOwere
almost constant during the study period (1993 to 2008), whereas the
area covered by CCP increased by 55%, whichwas likely due to the tem-
porarily conversion of grassland to pastures. As expected, we found that
SOC of ARAwas predicted as lower thanVFO and that of VFO lower than
CCP. The increase in the SOC stock during the study periodwas however
partly unexpected. From the one hand, we expected to find an increase
in the ARA and VFO due to many conditions. These include the applica-
tion of Good Agricultural and Environmental Conditions (Borrelli et al.,
2016),which effects on ARAwere directly elucidated in similar environ-
ments (Ventrella et al., 2011); the high clay content in the soils cropped
with these species, as directly addressed by Zinn et al. (2005a, 2005b);
massive recourse to the set-aside (partly compulsory); the minor role
of climate change in agricultural areas (Cannarozzo et al., 2006;
Fantappiè et al., 2011); and ease of SOC increase in low-SOC soils
(Kämpf et al., 2016), such as those in the present study (b12.6 g kg−1

± 0.21 g kg−1). From the other hand, such an increase was expected
to occur in the northern, rainy, part of Sicily thanks to the presence of
conditions conducive to a SOC accumulation, rather than in the south-
ern, more arid parts, whereas we found an opposite pattern. Nonethe-
less, these results agree with those of other lower resolution studies in
the same area (Chiti et al., 2012; Fantappiè et al., 2011; Freibauer et
al., 2004; Hashimoto et al., 2016; Lugato et al., 2014) or studies conduct-
ed in similar environments (Farina et al., 2016; Rodríguez Martín et al.,
2016), where soil management exerted an important role in the per-
centage or reduction of SOC in relatively humid areas.

Climate change effect on Sicily is under debate: no change in the
rainfall in most of ARA and VFO-dominated areas is expected



Fig. 6.One-hundredmeters resolutionmap of the difference in the SOC (expressed in g C kg−1) during the study period (a, b). Reddish pixels in a and b panels indicate a loss and greenish
pixels a gain in the SOC in 2008 compared to 1993. Please note that range vary among classes. Reliability (c, d) of the maps in a and b panels, respectively, computed as the difference
between the SOC difference (SOC08–SOC93, in absolute value) and the sum of the standard errors (in lower panels of Figs. 2 and 3). Green points indicate those pixels in which the
difference of SOC is reliable (i.e. reliability is higher than 0). Maps of the sum of the standard deviations of the ‘map of SOC’ (e, f). SD is for sum of standard deviations. Each
computation and mapping was made for models built with (a, c, and e) and without (b, d, and f) remote sensing (RS) predictors. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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(Cannarozzo et al., 2006), and a temperature increase is likely to occur
(Viola et al., 2014). However, the interaction betweenwater availability
and temperature with the effect of soil traits and land use on potential
and actual mineralization and C inputs are yet to be clarified
(Badagliacca et al., 2017; Bogunović et al., 2017b; Davidson and
Janssens, 2006; Purton et al., 2015). For example, in a high organic C
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area (Galapagos), Rial et al. (2017) suggested that the increase in the
amount of rainfall and, in general, water availability (through occult
precipitations, too) will likely consist in an increase of the SOC stock.

During this 15-years study (1993–2008), mean increase in SOC in
the agricultural area of the region (median = +1.62 g C kg−1 soil;
lower confidence interval 95%:−4.86 g C kg−1; upper confidence inter-
val 95%:+8.40 g C kg−1) appeared similar to the time trends in temper-
ature and rainfall observed in the region (Cannarozzo et al., 2006; Viola
et al., 2014) and the degree of lithological and soil diversity (Costantini
and L'Abate, 2016; Fantappiè et al., 2015). This occurred despite the
most important predictors of SOC at any pixel were soil texture, land
use and topographic covariates, as also found elsewhere (Bogunović et
al., 2017b), whereas rainfall and temperature only contributed by
8.98% and 8.94% of the total variability explained in the 1993 and
2008 model, respectively. Grinand et al. (2017), by means of an algo-
rithm similar to the one we used, found that SOC change modelled in
a 20-years timespan was likely negative in humid and not different
than zero in arid areas and that such variation strongly depended on
both the climatic predictors and degree of deforestation. However, in
contrast to Grinand et al. (2017), we found an increase of the CCP,
which effect on SOC is more similar to that of forests compared to ARA
and VFO.

A matching between SOC and climatic gradient was observed by
Vaysse and Lagacherie (2015) in southern France, a colder and more
rainy environment than Sicily. In addition, in the ‘Vaysse and
Lagacherie (2015)’ modelling of soil traits, a similarity among maps of
SOC, soil pH and soil clay content can be observed. It is likely that in
our environment, the variability of some important traits related to
soil erosion and deposition (such as valley depth and channel network
base level) and thus C movements by erosion and deposition across
pixel was better related to trends in rainfall and temperature, than
their long-term mean. Nevertheless, the present results only partly
fitted the erosion risk map published soon before the beginning (Ferro
et al., 1991) or the end (Fantappiè et al., 2015) of the present experi-
ment. This latter discrepancy can depend on both the difference in the
spatial resolution between the present map and those of Ferro et al.
(1991) and Fantappiè et al. (2015) and the lack in these of the informa-
tion about the deposition of the eroded soil and C (Adhikari et al., 2014).
Indeed, we found that catchment area, landforms, valley depth and
channel network base level, which are related to soil deposition, con-
tributed by 20.3% and 18.2% of the total SOC variability explained in
1993 and 2008, respectively. Topographic indices can strongly affect
SOC concentration through erosion and deposition, whereas their role
in SOC stock can be minimal (Grimm et al., 2008; Schillaci et al.,
2017). In the present work, we found that RS indices minimally in-
creased the pseudo-R2 of the fitting functions and mostly affected
both the variance explained by each covariate and the variability
among model replicates. In particular, the RS covariates captured on
their whole 18.1% and 17.4% of the total variance explained in the
1993 and 2008, respectively. Bou Kheir et al. (2010) found that removal
of RS indices can increase the total variance explained by the less impor-
tant predictors and, in contrast to the present study, also the overall ac-
curacy of the model. Other studies indicated that the importance of RS
indices in SOC mapping can depend on a range of factors, including
the variable mapped, the resolution of the measured and ancillary vari-
ables, the extent of the study and the importance of the processes of SOC
accumulation in relation to the study area (Castaldi et al., 2016b;
Grinand et al., 2017; Poggio et al., 2013; Priori et al., 2016). It is thus like-
ly that the high number of non-RS covariates in this work and their abil-
ity to explain a high degree of variability reduced the ability of the RS
data to explain an additional amount of variability. In addition, the
need of using more than one Landsat image (each of which took 13–
32 days apart from each other) could have reduced the importance of
RS indices for thewhole area and impaired their contribution to the pre-
diction. Similarly, some experiments with fewer input points and or
coarser covariates than the present found a high percentage of variance
explained by the RS indices in either SOC or other environmental traits
(Akpa et al., 2016; Castaldi et al., 2016b; Wang et al., 2016).

5. Conclusions

In the present work, two legacy sub-datasets of SOC concentration
were integrated in a DSM procedure to estimate the SOC variation
along a 15-years period (1993–2008). This result was possible since
the application of the covariates produced a pseudo-R2 of SOC represen-
tation of 0.63–0.69,which allowed a time comparison of SOC at the pixel
level. Texture and land use classes showed the highest predictor impor-
tance, around one third of the variance explained. Yigini and Panagos
(2016) indicated these traits as capable of having a short-term impact
on the SOC higher than climate-driven processes.

The integration of RS indices used in this study did not increase the
pseudo-R2, but captured about one fifth of the total variance explained
by the covariates and strongly reduced the modelling variability. This
suggests that their integration in themodels can overcomeproblems re-
lated to erroneous attribution of some samples to the other covariate
levels.

Finally, the present results can imply both agronomic and policy
consequences at the district level and call for an intervention on soil fer-
tility to maintain agriculture productivity (Dono et al., 2016). These re-
sults can help in calibrating models of SOC dynamic under various
management or climate change scenarios, especially at regional extent,
by removing the noise in themodelling phase by a correctionwith RS or
other soil traits and geographical covariates, as already shown with
other disturbing covariates in SOC modelling (Bogunović et al., 2017a,
2017b; Zinn et al., 2005b), which provide measures of covariates with
a unique resolution in broad areas.
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