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A B S T R A C T

The main goal of this study was to investigate the analytical performances of a state-of-the-art device, one of the
smallest dispersion NIR spectrometers on the market (MicroNIR 1700), making a critical comparison with a
benchtop FT-NIR spectrometer in the evaluation of the prediction accuracy. In particular, the aim of this study
was to estimate in a non-destructive manner, titratable acidity and ascorbic acid content in acerola fruit during
ripening, in a view of direct applicability in field of this new miniaturised handheld device. Acerola (Malpighia
emarginata DC.) is a super-fruit characterised by a considerable amount of ascorbic acid, ranging from 1.0% to
4.5%. However, during ripening, acerola colour changes and the fruit may lose as much as half of its ascorbic
acid content. Because the variability of chemical parameters followed a non-strictly linear profile, two different
regression algorithms were compared: PLS and SVM. Regression models obtained with Micro-NIR spectra give
better results using SVM algorithm, for both ascorbic acid and titratable acidity estimation. FT-NIR data give
comparable results using both SVM and PLS algorithms, with lower errors for SVM regression. The prediction
ability of the two instruments was statistically compared using the Passing-Bablok regression algorithm; the
outcomes are critically discussed together with the regression models, showing the suitability of the portable
Micro-NIR for in field monitoring of chemical parameters of interest in acerola fruits.

1. Introduction

Acerola (Malpighia emarginata DC.) is a fruit native to Central
America and Northern South America, with some of the largest
plantings in Brazil. Acerola is considered a super-fruit due to its high
concentration of vitamin C, ranging from 1.0% to 4.5% (w/w).
Nevertheless, research on this fruit is very limited and, until now, only
the authors studied the quality characteristics using non-destructive
techniques [1,2]. Furthermore, its biochemical evolution is not com-
pletely known and its perishability is very rapid, preventing the export
of the fresh fruit.

There are numerous studies highlighting the potential of near-
infrared (NIR) spectroscopy applied to fruit and vegetables and
promoting its use as a rapid and non-destructive analytical technique
useful for determining internal and external characteristics, either

quantitative or qualitative [3,4]. However, considerable attention has
been given to the miniaturisation and portability of spectroscopic
devices, but only in the last few years, small and precise handheld
near-infrared scanning spectrometers became commercially available
[5]. A survey of scientific papers published in the last decade shows a
steady increase in the number of research and development studies
being conducted using these types of portable spectrometer [6–8]. It is
clear that the greatest advantage of these compact systems is the
possibility of being implemented for new applications on-site and on-
line at an industrial level but the potential of these instruments can
only be realized if the reduction in size does not compromise the
performance of the spectrometer [9]. Although most comparison
studies reported that portable instruments had lower performance
scores than laboratory instruments, the main conclusions were that
their flexibility and possibility of field-use were major advantages that
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made the portable options the best solution in many practical situa-
tions. Most of the scientific studies carried out recently with handheld
devices in the post-harvest field were actually performed under
laboratory conditions, applying such devices onto intact harvested
fruits [10].

Within this context, the fruit and vegetable industry demands
simple equipment capable of performing real time in field analyses,
to allow growers to reach the proper “on tree ripening” and to establish
the most suitable harvest dates, shelf-life and storage conditions. Fruit
quality standard was enhanced in the last recent years, although
consumers were not always satisfied about the quality of the fruits
available in the marked. Reaching the proper harvest time on the tree
will allow maximising fruit quality, so the possibility to have a
handheld NIR device directly in field could ensure the best possible
crop quality, required by an increasingly more demanding market,
while avoiding wastes and losses [11].

The processing of spectral data obtained with the NIR devices
requires a multivariate statistical approach for extracting useful
information from the acquired signals, because wavelength-dependent
scattering effects, instrumental noise, ambient effects, and other
sources of variability may affect the spectra. In order to relate the
spectra (independent variables) to specific fruit quality parameters
(dependent variables) a regression method is required [12].
Consequently, many studies are focused on finding the calibration
models, testing and comparing several different pre-processing tech-
niques, and optimising regression methods [10].

In the present study, two different regression algorithms are
compared: Partial Least Squares (PLS) and Support Vector Machines
(SVM). The first one is widely used for regression models because of its
simplicity to use, speed, relative good performance and easy accessi-
bility, while a possible large advantage of SVM is its ability to model
nonlinear relations [12]. In the field of chemistry and, more specifi-
cally, chemometrics, only a few applications of SVM for regression
tasks have been published [13,14].

The main goal of this study was to investigate the analytical
performances of a state-of-the-art device, a miniature dispersion NIR
spectrometer (weight < 60 g), evaluating the prediction accuracy in a
view of direct applicability in field. So far, very few studies described
the use of this novel device in analytical food characterization [6] and
the present study performs, for the first time, a critical comparison
between the miniaturised device and a benchtop FT-NIR spectrometer.
In particular, the aim of this study was to estimate, in a non-destructive
manner, titratable acidity and ascorbic acid content in acerola fruit
during ripening, with two spectrometers. For these purposes, the
spectra modelling was carried out using not only a method (PLS)
particularly suitable for linear models but also a non-linear one; SVM,
which could be more appropriate for the evaluation of the ripening
process, with the monitored indices reaching a plateau at the physio-
logical maturity [15]. The outcomes are critically discussed.

2. Material and methods

2.1. Fruit samples

A total of 117 acerola fruit of the most commercialised cultivar
‘Junko’ were harvested in April 2014 in Petrolina (PE – Brazil) at the
development stage of 1–25% of red skin colour and were analysed
during fourteen days at room temperature (25 ± 2 °C). Fruit ripening
involves complex physiological and biochemical changes such as the
conversion of chloroplasts to chromoplasts and synthesis of pigments
such as carotenoids and anthocyanins, which cause the skin colour
changes from green to yellow and, later, to red-purple [16]. No deep
studies were carried out on acerola biochemical modification during
ripening, so, like in previous studies on this fruit [17–19], the colour of
the skin was chosen as a parameter for the evaluation of the ripeness
level.

2.2. Near infrared spectrometers and spectral acquisition

Near infrared spectral acquisition was accomplished with two
different NIR devices:

• a MicroNIR 1700, working in the range of 950–1650 nm (10,500–
6000 cm−1), an ultra-compact and low-cost device distributed by
Viavi Solution – Milpitas, CA, United States;

• a Perkin Elmer Frontier FT-Spectrometer, working in the range of
12,000–4000 cm−1 (830–2500 nm), equipped with a Reflectance
Accessory (NIRA).

The MicroNIR dimensions are 45 mm in diameter and 42 mm in
height, weighting about 60 g, and it is equipped with a 128-pixel
detector array, which records data with a nominal spectral resolution of
6.25 nm. The system is composed by two small tungsten light bulbs as
the radiation source and a linear-variable filter (LVF) directly con-
nected to a linear indium gallium arsenide (InGaAs) array detector.

In this study, the acquisition was carried out in the reflectance
mode between 950 and 1650 nm; the integration time was 10 ms and
each spectrum was the average of 50 scans, resulting in a measurement
time of 0.50 s.

2.3. Reference analysis

Titratable acidity was determined by volumetric titration of 1 g of
acerola juice, diluted in 50 mL of distilled water, with a standardised
solution of NaOH 0.1 mol L−1. Phenolphthalein was used as the colour
indicator of the titration end point (light permanent pink, according to
AOAC [20]). The results were expressed as percentage of malic acid.
According to AOAC 1968 [21], the quantification of ascorbic acid was
carried out by volumetric titration of 1 g of acerola juice, diluted in
100 mL of oxalic acid (0.5% v/v) water solution, with a water solution
of DCPIP (2,6-dichlorophenolindophenol, 0.02% v/v) as the redox
titrant and colour indicator. The results were expressed as mg of
ascorbic acid per 100 g of acerola juice. All the reagents used in the
titration procedures were of analytical grade and were purchased from
Sigma Aldrich (Steinheim, Germany).

2.4. Data processing

The spectral data were modelled using two different regression
algorithms, PLS and SVM. The first algorithm was used because of its
simplicity, good performance and easy accessibility, while SVM is
intended to model non-linear relations with high dimensional input
vector.

First, the spectra of both devices were pre-processed applying the
SNV (standard normal variate) algorithm for the baseline correction;
11 point of smoothing (2 polynomial order) were applied to reduce
noise. The data were divided in two sets by way of the Kennard and
Stone duplex algorithm [22,23] the first one used for the calibration
(77 fruits) and the second one as a test set (40 fruits).

PLS regression was calculated with the SIMPLS algorithm [24] and
a leave-one-out cross validation. SVM algorithm was applied, after
column mean centering of the spectra, choosing the Ɛ-SVR (epsilon-
support vector regression) algorithm [25], with the following para-
meters: radial basis function as kernel type, ɣ=0.01 and Ɛ=0.1. A PCA
compression with 10 components was chosen to maximise the model
stability and reduce the possibility to over-fit the data.

The accuracies of the models were compared using the RMSE (root
mean square error) in calibration and in validation, as well as bias and
R2 (coefficient of determination). These indices allow evaluating the
ability of the model in predicting new samples, intended as the
reliability of the quality parameters estimation.

The comparison between the estimation abilities of the two instru-
ments (Micro-NIR and FT-NIR) in prediction was performed thanks to
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a joint test on slopes and intercepts of linear regression models (Micro-
NIR vs. FT-NIR). The null hypothesis (H0) is that the slope is not
significantly different from 1 and that the intercept is not significantly
different from 0, meaning that there are no significant differences
between the two methods at a 95% confidence level. Since both of the
analytical methods are affected by a non-negligible experimental error,
linear regression models cannot be built by means of the ordinary least
squares algorithm, the application of which requires the x variable to be
exempt from error. For this reason, method comparison was afforded
by Passing–Bablok regression [26], a suitable non-parametric method
that does not impose a priori that one of the methods is chosen as the
reference. This approach was used to highlight statistically significant
differences not only between the two instruments but also between the
instrumental estimation and the chemical determinations. The test was
conducted on the sample test set for both the quality parameters
considered in this study and for predictions made by both PLS and
SVM algorithms.

All the data processing was carried out on Matlab® environment,
version 2015a (The MathWorks, Inc) and applying algorithms from the
PLS Toolbox, version 8.1.1 (Eigenvector Research, Inc).

3. Results and discussion

3.1. Chemical data

The determinations of ascorbic acid and titratable acidity in 117
acerola fruits are presented in Fig. 1; the mean value with its
uncertainty (standard deviation – SD) for ascorbic acid content was
2844 ± 449 mg 100 g−1, while titratable acidity was 2.29 ± 0.27 g of
malic acid 100 g−1. To better understand the variability of these data, a
repeatability test (five replicates) on a standard solution with concen-
tration similar to the samples analysed was carried out. For the two
chemical analyses, the test gave the following results: 1526 ± 27 mg of
ascorbic acid 100 g−1 and 1.93 ± 0.04% of malic acid, respectively.
Considering these results, it can be deduced that the variability of the
reference analyses is ascribable to the differences among fruits.

3.2. Spectral data

Regarding the NIR spectra presented in Fig. 2, it is possible to
highlight that they are dominated by the water absorption bands due to
the O-H bonds [27] at approximately 970, 1450, 1950 and 2250 nm
[28]. Absorption bands typically found in fruits and ascribable to starch
and sugars are the second (920 nm) and the third (720 nm) overtones
of O-H stretching, and the third (910 nm) and the fourth (750 nm)
overtones of C-H stretching [29,30]. Monomeric organic acids nor-
mally show bands related to the O-H group and, in particular, the first
three overtones at about 1445, 1000 and 800 nm, respectively [31]. All
these absorption bands are very close to the stronger water absorption

regions, hindering their visualisation [32]. Only in the spectral range of
the benchtop FT-NIR it is possible to highlight the characteristic band
of organic acids due to O-H stretching combined with the C-O
stretching, around 1890 nm.

The above considerations on the chemical results laid the founda-
tions for the correct interpretation of the regression models imple-
mented with the NIR data. The model parameters, calculated on pre-
processed spectra, are presented for both NIR spectrometers in Tables
1, 2, where it is possible to compare the two algorithms applied on both
the ascorbic acid and titratable acidity predictions.

Concerning the PLS regression on FT-NIR (Table 1), data gives
similar results for both titratable acidity and ascorbic acid content. The
coefficient of determination and the root mean square error were
similar and satisfactory in calibration for both of the parameters. It is
interesting to underline that, in prediction, the accuracy of the model
for the titratable acidity (R2=0.74 and RMSEP=0.14%) is higher if
compared with that of ascorbic acid (R2=0.49 and RMSEP=342 mg
100 g−1).

SVM, which fits well non-linear models, gives better results in
calibration for both of the chemical parameters, with higher R2 and
comparable calibration errors, compared with the more widespread
PLS outcomes. This improvement of model ability is not confirmed in
prediction, with comparable results between PLS and SVM for titra-
table acidity and ascorbic acid (R2=0.69, RMSEP=0.16% and R2=0.49,
RMSEP=360 mg 100 g−1, respectively).

From the comparison of the two algorithms on FT-NIR data, it is
possible to gather that the data are well modelled for both PLS and
SVM with better results in calibration than in prediction.

Regarding MicroNIR data (Table 2), PLS modelling gives not fully
satisfactory results, with R2 lower than 0.5. Moreover, the prediction
ability for titratable acidity is comparable with the calibration in term
of RMSE and seem to be slightly better in term of R2, allowing to
hypothesise an over-fitting of the prediction model. The same models
obtained with the SVM algorithm resulted in better calibration and
prediction outcomes for both ascorbic and malic acid. For the hand-
held device, the improvement due to the non-linear modelling is clear,
giving reliable regression models also in prediction. This improvement
could be ascribable to technical differences between the two devices,
which are reflected in differences in the spectral quality that need a
more complex mathematical approach to fit the data.

For all the models presented, the errors in prediction are adequate,
considering the standard deviation of the reference methods and the
errors of the analytical determination obtained by the repeatability test
(s). In fact, the RMSEP values should be lower than the standard
deviation of the chemical determination chosen as reference data;
moreover, the model errors are expected to be higher than the standard
deviations obtained in repeatability condition. The standard deviation
is equal to 0.27% while the analytical error is equal to 0.04% for
titratable acidity; for the ascorbic acid content, the standard deviation
is equal to 448.6 mg 100 g−1 while the error associated with the
repeatability test is equal to 27 mg 100 g−1.

Regarding the comparison between the benchtop FT-NIR and the
portable MicroNIR, the models developed for both titratable acidity
and ascorbic acid seem to give comparable results using the traditional
FT-NIR. In particular, comparing the best models for both the
instruments, the relative RMSEP values (RMSEPx100/mean) for the
MicroNIR data modelled with SVM algorithm are 7% and 11% for
titratable acidity and ascorbic acidy content, respectively. These results
are interesting if compared with the NIR data modelled by PLS
regression with a relative RMSEP equal to 6% for titratable acidity
and 12% for ascorbic acid.

To verify if the differences among the instruments are statistically
significant, Passing-Bablok regression method was performed on the
test set data. Thanks to a joint test on slopes and intercepts, the models
were compared in pairs analysing the differences between the two
instruments and with the reference data, for both linear and non-linear

Fig. 1. Determinations of ascorbic acid and titratable acidy contents in ‘Junko’ acerola
fruit at different ripening stages, n=117 samples. Results are presented in a random
order on the x-axis; the dotted line indicates the standard deviation of the chemical data.
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modelling. Remembering that the null hypothesis (H0) is that the slope
is not significantly different from 1 and that the intercept is not
significantly different from 0, at a 95% confidence level, the results of

the Passing-Bablok comparison are presented in Table 3.
The linear modelling gives better results in comparing the FT-NIR

data and the chemical determinations; instead, less satisfactory results
are obtained when the MicroNIR data are fitted with a linear PLS
model. SVM non-linear modelling confirms to be suitable for MicroNIR
data, in particular for the prediction of titratable acidity. Regarding the
comparison between the two devices, the prediction ability of the two
instruments is statistically comparable when a non-linear modelling is
applied.

Generally, using at least one of the regression algorithms, the
models demonstrated to be reliable in predicting ascorbic acid and
malic acid contents in acerola fruit with no statistically differences
highlighted with the Passing-Bablok test, suggesting comparable and
accurate results obtained for both instruments.

4. Conclusions

NIR spectroscopy, combined with regression models, is confirmed
to be an interesting tool for non-destructive evaluation of quality

Fig. 2. Spectra of acerola samples after SNV transformation from the two devices (left: MicroNIR, right: FT-NIR).

Table 1
Calibration and prediction models for FT-NIR using two algorithms: SVM and PLS.

PLS Number of samples Range Calibration Prediction

Calibration/Prediction Mean (min–max) S.D.% R2 RMSEC Bias Q2 RMSEP Bias

Titratable acidity (% malic acid) 77/40 2.3 1.6–2.9 11.8 0.63 0.17 0.00 0.74 0.14 −0.02
Ascorbic acid content (mg/100 g) 77/40 2844 1576–3653 15.8 0.65 285 0.00 0.49 342 −29.06
SVM Number of samples Range Calibration Prediction

Calibration/Prediction Mean (min–max) S.D.% R2 RMSEC bias Q2 RMSEP bias
Titratable acidity (% malic acid) 77/40 2.3 1.6–2.9 11.8 0.75 0.14 0.00 0.69 0.16 −0.02
Ascorbic acid content (mg/100 g) 77/40 2844 1576–3653 15.8 0.91 145 4.75 0.49 360 −46.68

Table 2
Calibration and prediction models for MicroNIR using two algorithms: SVM and PLS.

PLS Number of samples Range Calibration Prediction

Calibration/Prediction Mean (min–max) S.D.% R2 RMSEC Bias Q2 RMSEP Bias

Titratable acidity (% malic acid) 77/40 2.3 1.6–2.9 11.8 0.40 0.18 0.00 0.66 0.18 0.00
Ascorbic acid content (mg/100 g) 77/40 2844 1576–3653 15.8 0.42 311 0.00 0.40 404 −24.53
SVM Number of samples Range Calibration Prediction

Calibration/Prediction Mean (min–max) S.D.% R2 RMSEC bias Q2 RMSEP bias
Titratable acidity (% malic acid) 77/40 2.3 1.6–2.9 11.8 0.78 0.11 0.00 0.72 0.16 0.02
Ascorbic acid content (mg/100 g) 77/40 2844 1576–3653 15.8 0.71 221 5.19 0.65 318 −1.64

Table 3
Passing-Bablok regression results for both of the algorithms. A joint test on slope and
intercept values of the regression lines, at a 95% confidence level, was performed.

PLS FT-NIR vs MicroNIR Ascorbic acid: H0 accepted
Titratable acidity: H0 rejected

Reference vs FT-NIR Ascorbic acid: H0 accepted
Titratable acidity: H0 accepted

Reference vs MicroNIR Ascorbic acid: H0 rejected
Titratable acidity: H0 rejected

SVM FT-NIR vs MicroNIR Ascorbic acid: H0 accepted
Titratable acidity: H0 accepted

Reference vs FT-NIR Ascorbic acid: H0 rejected
Titratable acidity: H0 rejected

Reference vs MicroNIR Ascorbic acid: H0 rejected
Titratable acidity: H0 accepted
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parameters of vegetables and fruit. The SVM regression algorithm gives
better results for modelling quality parameters in acerola, laying the
basis for the application of the non-linear regression approach in other
postharvest applications. MicroNIR demonstrated to be a robust
portable device for the application of spectroscopy in field, even though
the reduced number of wavelengths. In conclusion, the combination of
simple devices with non-linear modelling may offer a very interesting
and reliable tool for monitoring fruit quality directly in the field. This
approach, if applied through the supply chain, could improve, in a
sustainable way, the quality of fruit that reaches consumers tables in
everyday life.
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