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ABSTRACT
The description of the abundance and clustering of haloes for non-Gaussian initial conditions
has recently received renewed interest, motivated by the forthcoming large galaxy and cluster
surveys, which can potentially yield constraints of the order of unity on the non-Gaussianity
parameter fNL. We present tests on N-body simulations of analytical formulae describing the
halo abundance and clustering for non-Gaussian initial conditions. We calibrate the analytic
non-Gaussian mass function of Matarrese, Verde & Jimenez and LoVerde et al. and the analytic
description of clustering of haloes for non-Gaussian initial conditions on N-body simulations.
We find an excellent agreement between the simulations and the analytic predictions if we
make the corrections δc −→ δc

√
q and δc −→ δcq, where q � 0.75, in the density threshold

for gravitational collapse and in the non-Gaussian fractional correction to the halo bias,
respectively. We discuss the implications of this correction on present and forecasted primordial
non-Gaussianity constraints. We confirm that the non-Gaussian halo bias offers a robust and
highly competitive test of primordial non-Gaussianity.

Key words: methods: N-body simulations – methods: statistical – galaxies: clusters: general –
galaxies: haloes – cosmology: theory – large-scale structure of Universe.

1 IN T RO D U C T I O N

Constraining primordial non-Gaussianity offers a powerful test of
the generation mechanism of cosmological perturbations in the
early Universe. While standard single-field models of slow-roll
inflation lead to small departures from Gaussianity, non-standard
scenarios allow for a larger level of non-Gaussianity (Bartolo et al.
2004 and references therein). The standard observables to constrain
non-Gaussianity are the cosmic microwave background (CMB) and
the large-scale structure (LSS) of the Universe. A powerful tech-
nique is based on the abundance (Koyama, Soda & Taruya 1999;
Matarrese, Verde & Jimenez 2000; Robinson & Baker 2000;
Robinson, Gawiser & Silk 2000; Verde et al. 2001; LoVerde et al.
2008) and clustering (Grinstein & Wise 1986; Matarrese, Lucchin
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ieec.uab.es; branchin@fis.uniroma3.it; lauro.moscardini@unibo.it; sabino.
matarrese@pd.infn.it

& Bonometto 1986; Lucchin, Matarrese & Vittorio 1988) of rare
events, such as dark matter density peaks, as they trace the tail of
the underlying matter distribution. Theoretical predictions on vari-
ous observational aspects of non-Gaussianity have been extensively
tested against N-body simulations, leading to different and some-
times conflicting results (Dalal et al. 2007; Grossi et al. 2007; Kang,
Norberg & Silk 2007; Pillepich, Porciani & Hahn 2008; Desjacques,
Seljak & Iliev 2009).

Dalal et al. (2007) and Matarrese & Verde (2008) showed that
primordial non-Gaussianity affects the clustering of dark matter
haloes inducing a scale-dependent bias on large scales. Not only
this effect has been already exploited to place stringent constraints
on non-Gaussianity (Slosar et al. 2008; Afshordi & Tolley 2008),
but also it is particularly promising for constraining non-Gaussianity
from future surveys, which will provide a large sample of galaxy
clusters over a volume comparable to the horizon size (e.g. DES,
PanSTARRS, BOSS, LSST, ADEPT, EUCLID; Dalal et al. 2007;
Afshordi & Tolley 2008; Carbone, Verde & Matarrese 2008; Seljak
2008). Bartolo, Matarrese & Riotto (2005) showed that even for
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small primordial non-Gaussianities the evolution of perturbations
on super-Hubble scales yields extra contributions. The amplitude of
these contributions is comparable to the forecasted errors of some
planned surveys, opening up the possibility of measuring them.

In light of this, it is important to use N-body experiments to test
the validity of theoretical predictions for halo bias in non-Gaussian
framework. Indeed, all proposed analytic biasing expressions have
been derived in the extended Press–Schechter framework which
assumes spherical collapse dynamics, sharp k-space filtering and
Gaussian initial conditions. The validity of the extrapolation of the
extended Press–Schechter approach to the non-Gaussian case can
be tested independently by considering the halo mass function also.
It is thus also important to test and calibrate on N-body simulations
the predictions of the non-Gaussian halo mass function (Dalal et al.
2007; Grossi et al. 2007; Kang et al. 2007) and of the non-Gaussian
halo bias simultaneously. This is what we set out to do here.

In this paper, we start by reviewing the analytic predictions for
the Gaussian and non-Gaussian halo abundance and clustering (Sec-
tion 2). In Section 3, we describe the numerical simulations with
Gaussian and non-Gaussian initial conditions. In Section 4, we
present the test for the non-Gaussian mass function. In Section 5
and 6, we test the analytic predictions of Gaussian and non-Gaussian
large-scale bias against N-body simulations. In Section 7, we com-
pare our results with the literature. Finally, we conclude in Section 8.

2 FO R M U L AT I O N O F TH E N O N - G AU S S I A N
H A L O A BU N DA N C E A N D C L U S T E R I N G

Deviations from Gaussian initial conditions are commonly
parametrized in terms of the dimensionless f NL parameter (Salopek
& Bond 1990; Gangui et al. 1994; Verde et al. 2000; Komatsu &
Spergel 2001):

� = φ + fNL(φ2 − 〈φ2〉) , (1)

where � denotes the gravitational potential and φ is a Gaussian ran-
dom field. As noted by, for example, LoVerde et al. (2008), Afshordi
& Tolley (2008) and Pillepich et al. (2008), different authors use dif-
ferent conventions. Here, � denotes Bardeen’s gauge-invariant po-
tential which, on sub-Hubble scales, reduces to the usual Newtonian
peculiar gravitational potential but with a negative sign. In addition,
there are two conventions for normalizing equation (1): the LSS and
the CMB one. In the LSS convention, � is linearly extrapolated at
z = 0. In this paper, we use this convention. In the CMB conven-
tion, � is instead primordial (i.e. normalized deep in the matter-
dominated era): thus, fNL = [g(z = ∞)/g(0)]f CMB

NL ∼ 1.3f CMB
NL ,

where g(z) denotes the linear growth suppression factor in non-
Einstein–de Sitter universes.

2.1 Formulation of the non-Gaussian mass function:
extended Press–Schechter approach

In the Press–Schechter framework, one considers the density con-
trast field evaluated at some early time, far before any scale of
interest has approached the non-linear regime, but extrapolated to
the present day using linear perturbation theory. Then, one considers
the height of the critical density threshold as a function of time. In
that way, the collapse of a halo at redshift z 
= 0 corresponds to the
z = 0 density fluctuation crossing a barrier of height δc(z) = �cD

(z = 0)/D(z), where �c ∼ δc(z = 0) (this is an equality only in an
Einstein–de Sitter universe); we use D(z = 0) = 1, D(z) = g(z)/g(0)
(1 + z)−1. We should recall here that, even in linear theory, the nor-
malized skewness of the density field, S3 ≡ 〈δ3〉/〈δ2〉2, depends on

redshift ∝1/D(z); however, in the Press–Schechter framework one
should use the linear S3(z = 0), in what follows S3 ≡ S3(z = 0).
Also note that in general the skewness can be written as S3 ≡ f NL

S
(1)
3 , where S(1)

3 denotes the skewness in units of f NL, care must be
exercised in the interpretation of f NL: if S(1)

3 is that of the density
field linearly extrapolated at z = 0, fNL must be the LSS one and
not the CMB one.

Generalization of the mass function to non-Gaussian initial con-
ditions within the Press–Schechter formalism has been presented in
Matarrese et al. (2000) and LoVerde et al. (2008). Both references
start by computing an expression for the non-Gaussian probability
density function of the smoothed dark matter density field, then
obtain the level excursion probability. In the Press–Schechter ap-
proach, the mass derivative of the level excursion probability is the
key ingredient to obtain the mass function expression and is the term
that gets modified in the presence of primordial non-Gaussianity. In
this derivation, several approximations are made. Both approaches
assume that deviations from Gaussianity are small.

Matarrese et al. (2000) use first the saddle-point approximation
to compute the level excursion probability and then truncate the
resulting expression at the skewness. They obtain1

n(M, z) = 2
3H 2

0 �m,0

8πGM2

1√
2πσM

exp

(
− δ2

∗
2σ 2

M

)

×
∣∣∣∣∣1

2

δ2
c

3
√

1 − S3,Mδc/3

dS3,M

d ln M
+ δ∗

σM

dσM

d ln M

∣∣∣∣∣ , (2)

where σ M denotes the rms value of the density field, the sub-
script M denotes that the density field has been smoothed on
a scale R(M) corresponding to R(M) = [M3/(4ρ̄M )]1/3, and
δ∗ = δc

√
1 − δcS3,M/3.

LoVerde et al. (2008) instead first approximate the probability
density function using the Edgeworth expansion, then perform the
integral of the level excursion probability exactly on the first few
terms of the expansion. They obtain

n(M, z) = 2
3H 2

0 �m,0

8πGM2

1√
2πσM

exp

(
− δ2

c

2σ 2
M

)
×

{
d ln σM

dM

[
δc

σM

+ S3,MσM

6

(
δ4
c

σ 4
M

− 2
δ2
c

σ 2
M

− 1

)]
+ 1

6

dS3,M

dM
σM

(
δ2
c

σ 2
M

− 1

)}
. (3)

Note that in the limit of small non-Gaussianity and rare events, the
ratio of the non-Gaussian mass function to the Gaussian one for
both expressions reduces to

RNG ≡ n(M, z|fNL)

n(M, z|fNL = 0)
−→ 1 + S3,M

δ3
c

6σ 2
M

. (4)

It is important to bear in mind that in equations (3) and (4) the
redshift dependence is enclosed only in δc (and not in S3). In the
spirit of the ‘CMB’ convention instead, where the gravitational
potential is normalized deep in the matter era, one should make sure
that all the relevant quantities are correctly extrapolated linearly at
z = 0, keeping in mind that the gravitational potential slowly evolves
in a non-Einstein–de Sitter universe.

The major limitations in both derivations are the assumption
of spherical collapse and the sharp k-space filtering. In addition,

1 We correct here a typographical error in equation (68) of Matarrese et al.
(2000), where d ln σM should be dσM .
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Non-Gaussian mass function and halo bias 323

the excursion set improvement on the interpretation of the original
Press–Schechter swindle suggests that this derivation relies on the
random-phase hypothesis (Sheth 1998), which is clearly not sat-
isfied for non-Gaussian initial conditions even for sharp k-space
filtering.

Verde et al. (2001) and LoVerde et al. (2008) addressed this issue
by using the analytical approach to compute the fractional non-
Gaussian correction to the Gaussian mass function RNG, and used
the Sheth & Tormen (1999) mass function to model the Gaussian
mass function. This approach is potentially promising, but needs to
be calibrated on numerical experiments.

In particular, one may argue that the same correction that in the
Gaussian case modifies the collapse threshold and thus the form of
the mass function from Press & Schechter (1974) to Sheth, Mo &
Tormen (2001) and Sheth & Tormen (2002) may apply to the non-
Gaussian correction. In the Gaussian case, this is usually referred
to as the correction due to ellipsoidal collapse (Lee & Shandarin
1998). While this interpretation has recently been disputed (see
e.g. Robertson et al. 2008), we will maintain the same nomenclature
here. For rare events, high peaks (δc/σ M � 1) and small f NL, this
is equivalent to lower δc by a factor

√
q with q = 0.75.

In summary, we propose that the non-Gaussian mass function
n(M, z, fNL) should be rewritten in terms of the Gaussian one
nsim

G (M, z) – given by tested fits to simulations e.g. Sheth & Tormen
(1999), Reed et al. (2003), Warren et al. (2006), Jenkins et al. (2001)
– multiplied by a non-Gaussian correction factor:

n(M, z, fNL) = nsim
G (M, z)RNG(M, z, fNL), (5)

where RNG(M, z, fNL) takes two different forms in the Matarrese
et al. (2000) and LoVerde et al. (2008) approximations. For the
Matarrese et al. (2000) case, 2

RNG(M, z, fNL) = exp

[
δ3

ec

S3,M

6σ 2
M

]

×
∣∣∣∣∣1

6

δec√
1 − δecS3,M/3

dS3,M

d ln σM

+ √
1 − δecS3,M/3

∣∣∣ (6)

and for the LoVerde et al. (2008) case

RNG(M, z, fNL) = 1 + 1

6

σ 2
M

δec

×
[
S3,M

(
δ4

ec

σ 4
M

− 2
δ2

ec

σ 2
M

− 1

)
+ dS3,M

d ln σM

(
δ2

ec

σ 2
M

− 1

)]
, (7)

where δec denotes the critical density for ellipsoidal collapse, which
for high peaks is δec ∼ δc

√
q with q = 0.75.

2.2 Formulation of the non-Gaussian large-scale halo bias

For the case of ‘local’ primordial non-Gaussianity equation (1),
the analytical expression for the large-scale non-Gaussian bias has
been derived in five different ways, obtaining always basically the
same result. Dalal et al. (2007) considered the Laplacian of � in
the vicinity of rare, high peaks, considering that the resulting ∇2�

is proportional to the peaks overdensity; they also generalized to
local non-Gaussianity the Kaiser (1984) argument of high-peaks
bias in order to derive its non-Gaussian version. Matarrese & Verde
(2008) derived the halo bias formula in general non-Gaussian cases
specified by an expression for the bispectrum. Slosar et al. (2008)

2 We correct here a typographical error in equation (3) of Grossi et al. (2007)
where the exponential part was missing.

adopted the peak-background split approach (Cole & Kaiser 1989)
for the local non-Gaussian case, showing that the resulting expres-
sion relies on the universality of the mass function. Afshordi &
Tolley (2008) instead interpreted non-Gaussianity as a modification
of the critical density for collapse, in the framework of ellipsoidal
collapse. Finally, Taruya, Koyama & Matsubara (2008) – see also
McDonald (2008) – used a perturbation theory approach to con-
sider at the same time non-linear bias, second-order gravitational
evolution and non-Gaussianity. It is encouraging that these differ-
ent approaches yield a consistent result for the correction to the
Gaussian Lagrangian halo bias bG

L :

�b

bG
L

= 2fNLδc(z)αM (k), (8)

where αM(k) encloses the scale and halo mass dependence – see
Appendix and equation (13), and fig. 3 of Matarrese & Verde (2008).
Also in this case the density field is the one extrapolated linearly at
z = 0, and αM does not depend on redshift.

Making the standard assumption that haloes move coherently
with the underlying dark matter, the Lagrangian bias is related to
the Eulerian one as b = 1 + bL.

The approximations used to derive this equation are Press–
Schechter (Press & Schechter 1974) approach, linear bias, small
non-Gaussianity, and in most cases spherical collapse and identifi-
cation of peaks with haloes. It is therefore important to test the valid-
ity of equation (8) with simulations and see if any correction factor
needed is indeed due to the account for non-spherical collapse/sharp
k-filtering. Following the derivation of Matarrese & Verde (2008),
we recognize that the correction to the two-point halo correlation
function due to non-Gaussianity (their equation 6) is multiplied by
ν3/σ 3

M with ν = δc/σ M . In this factor, we recognize one Lagrangian
Gaussian bias factor to the second power and an extra δc/σ

2
M , which

denominator was absorbed in the form factor. Recall that, as dis-
cussed in Section 2.1, for ‘ellipsoidal collapse’ and rare events, the
Lagrangian Gaussian bias is corrected as ν/σM −→ qν/σM (see
equation 11 for high ν). However, the remaining factor is also a
Gaussian bias and it should also be corrected by the q-factor.

We conclude that the ‘non-spherical collapse’ modifies equa-
tion (8) to be

�b

bG
L

� 2fNLδc(z)αM (k)q . (9)

Note that Afshordi & Tolley (2008) arrived to a similar yet not
identical expression when considering ellipsoidal collapse, i.e. they
suggest that δc should be substituted by the critical density of Sheth
et al. (2001), which in our limit would correspond to use

√
q rather

than q in equation (9).3

In Section 6, we will show that equation (9) correction fits well
the simulations. Equation (9) is the first term of a Taylor series
expansion and thus is valid only as long as expansion holds. For
moderate values of f NL, large α(k) or very large δc(z), one should
use more accurate expressions 4 (see Carbone et al. 2008 for more
details).

3 N- B O DY SI M U L AT I O N S

The deviations from Gaussianity we are after become important
on very large scales k � 0.03 h Mpc−1 and for massive haloes.

3 With this substitution, however, the Gaussian bias would be corrected by
a factor

√
q rather than q as required by equation (11).

4 For example, equation (9) may be written as
√

1 + 4fNLqδc(z)α(k) − 1.
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Therefore, one needs to perform N-body simulations on very large
boxes, yet with enough resolution to identify massive virialized
structures at different redshifts.

Suitable initial conditions have been set up following the method
described in more detail in Grossi et al. (2008) (see also Grossi
et al. 2007; Viel et al. 2009). In brief, a random realization of
a Gaussian gravitational potential, �L, normalized to be the one
linearly extrapolated at z = 0, is generated in Fourier space, then
it is inverse Fourier transformed back to real space and added to
the non-Gaussian term, �NL = f NL(�2

L − 〈�2
L〉). The resulting

field �L + �NL that is linear and at z = 0 is transformed back
in Fourier space. We eventually modulate the power-law spectrum
using the transfer function and compute the corresponding density
field, which we then scale back to the initial condition redshift
(z = 60). The corresponding gravitational potential is then used to
displace particles according to the Zel’dovich approximation. This
method allows one to simulate non-Gaussian models having power
spectra which are all consistent with that of the Gaussian case and
was already used by Viel et al. (2009).

In order to check the reliability of the initial condition generation,
we have performed a specific test: using 2563 particles in a box of
size 1000 Mpc h−1, primordial density fields (extrapolated linearly
at z = 0) were generated and smoothed using spherical top-hat filters
of different radii r s = 4, 6, 8, 12 Mpc h−1. The smoothed skewness
was then extracted from the fields and compared to the analytical
prediction for f NL = 100, 200, 500, 1000, as shown in Fig. 1.

The set of simulations used in this work assumes the ‘concor-
dance’ � cold dark matter (�CDM) model. We fix the relevant
parameters consistently with those derived from the analysis of
the Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data
(Komatsu et al. 2009): �m,0 = 0.26 for the matter density param-
eter; ��0 = 0.74 for the � contribution to the density parame-
ter; h = 0.72 for the Hubble parameter (in units of 100 km s−1

Mpc−1). The initial power spectrum adopts the CDM transfer func-
tion suggested by Eisenstein & Hu (1999), has a spectral index
n = 0.96 and is normalized in such a way that σ 8 = 0.8. In all ex-
periments, performed using the GADGET-2 numerical code (Springel
2005), switching off the hydrodynamical part, we consider a box
of (1200 Mpc h−1)3 with 9603 particles: the corresponding parti-
cle mass is then m ≈ 1.4 × 1011 h−1 M�. The gravitational force

200 400 600 800 1000
fNL

0.05

0.10

0.15

0.20

0.25

0.30

S
3

rs= 4 Mpc/h
rs= 6 Mpc/h
rs= 8 Mpc/h
rs= 10 Mpc/h

Figure 1. Skewness S3 of the smoothed initial density field for f NL =
100, 200, 500, 1000. Symbols show the numerical results of the initial con-
ditions code (averaged over five realizations) and are plotted against the ana-
lytical predictions for smoothing radii rs = 4, 6, 8, 10 Mpc h−1 of a spherical
top-hat filter.

2 4 6 8 10
bHM

2

4

6
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b
H

H

fNL=-200
fNL=200

fNL=-100
fNL=100

fNL=0

 0.01 < k < 0.03

Figure 2. The bias of the halo power spectrum bhh compared to the bias
of the cross (halo matter) power spectrum bhm. As expected, when the
number density of haloes is high there is a good agreement between the
two quantities. At low halo number densities, the two quantities are affected
differently by shot noise, with bhm being the least affected.

has a Plummer-equivalent softening length of εl = 25 h−1 kpc. The
runs produced 15 outputs from the initial redshift (z = 60) to the
present time. The five simulations consider different amounts of
primordial non-Gaussianity, parametrized by the f NL parameter:
f NL = 0 (i.e. the reference Gaussian case) and f NL = ±100, ±200.
The catalogues of dark matter haloes are extracted from the sim-
ulations using the standard friends-of-friends algorithm adopting
a linking length of 0.2 times the mean interparticle distance; only
objects with at least 32 particles are considered.

We thus measure the halo bias in the simulations as

bs(k, M, z) = bhm ≡ Phm(k, z, M)

Pmm(k, z)
, (10)

where P hm(k, z, M) denotes the cross-power spectrum of dark mat-
ter with haloes of mass M at scale k, and for the simulation snap-
shot at redshift z. Similarly Pmm(k, z) denotes the dark matter power
spectrum. Here and hereafter, the subscript ‘s’ denotes quantities
measured from the simulation.

In principle, the quantity one is interested in would be the bias
of the halo power spectrum bhh = √

Phh/Pmm, but bhm is a less
noisy quantity [the shot noise of the finite number of haloes is
greatly suppressed in the estimate of P hm(k)]. The quantity bhm

is not guaranteed to be identical to bhh if bias has a stochastic
component that does not correlate with the matter density field. In
Fig. 2, we show that this is not the case and that there is a good
agreement on large scales between bhh and bhm, justifying using the
less noisy bhm as an estimator for bhh.

3.1 Comparison with independent simulations

In Fig. 3, we show the mass function extracted from our Gaussian
simulations at the following redshifts: z = 0.0, 0.44, 1.02, 1.53, 2.26
and 3.23. We also show three different theoretical predictions (also
calibrated on N-body simulations): Sheth & Tormen (1999), Jenkins
et al. (2001), Warren et al. (2006), solid, dotted and dashed lines,
respectively. There is a good agreement even at high redshift.

The simulations used here are obtained with a different code for
the initial conditions from Grossi et al. (2008), but we have checked
that there is an agreement between the two sets of simulations. A
visual comparison of the mass functions may be misleading; in fact,

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 398, 321–332

 at IN
A

F B
rera M

ilano (O
sservatorio A

stronom
ico di B

rera) on January 9, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Non-Gaussian mass function and halo bias 325
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M
2 /ρ

  d
n

/d
M

Sheth & Tormen
Jenkins et al.
Warren et al.

Figure 3. Multiplicity mass function for the Gaussian simulation computed
using a friends-of-friends halo finder. Points denote the simulations results
at different redshift: z = 0, 0.44, 1.02, 1.53, 2.26 and 3.23 (top to bottom).
Solid (green) lines are the Sheth & Tormen (1999) formula, dashed (red)
lines are the Warren et al. (2006) one and dotted (blue) are the Jenkins et al.
(2001).

the cosmologies used in the two simulations sets are different: here,
we use a cosmology consistent with WMAP 5-year results while
in Grossi et al. (2008) the cosmology in consistent with WMAP
1-year results. In addition, the box size and resolution differ: here,
we have a volume of (1200 Mpc h−1)3 and a mass resolution m ∼
1.4 × 1011 h−1 M� versus a volume of (500 Mpc h−1)3 and a mass
resolution m ∼ 2 × 1010 h−1 M� of Grossi et al. (2008). A detailed
comparison shows that despite the different volume, cosmological
parameters, initial random seeds, the differences between the sim-
ulations are small (less than 10 per cent at z = 0) and negligible
compared to the error bars . The larger simulation box enables us
now to concentrate on the differential mass function, while Grossi
et al. (2008) concentrated on the – less noisy – cumulative mass
function. While we confirm here the results of a broad agreement
between the theoretical predictions of the non-Gaussian mass func-
tions and the simulations, the increased volume and halo number (by
an order of magnitude) yield errors on the mass function smaller by
a factor ∼3, making possible a robust ‘detection’ of the q-correction
presented here. In addition, the larger simulation box enables us to
study also the large-scale non-Gaussian halo bias.

More recently, several other groups presented N-body simula-
tions, aiming at quantifying the effect of the non-Gaussian ini-
tial conditions on the halo mass function (Pillepich et al. 2008;
Desjacques et al. 2009). All these results are obtained for similar
cosmological parameters, so that we can compare estimates derived
from all the simulations directly. By comparing the results for the
individual simulations at z = 1, z ∼ 0.5 and z = 0 in Figs 4 and 5,
we demonstrate that these results are in agreement with the different
groups, once the fNL values are suitably converted to the same con-
vention. Although all simulations use boxes of Giga parsec scales
to explore the effect of non-Gaussian initial conditions at the high-
mass end, the statistical errors at the scale of massive clusters are
still large. Therefore, we also report the reciprocal of the results
obtained for negative fNL so that they appear in the positive part of
the plot, to give an intuitive feeling of the noise within the individual
simulations.

In Fig. 4, we show our simulation results for fNL = 100 (blue
triangles) and for fNL = −100 (red squares) at z = 0 compared
with data points from fig. 1 of Desjacques et al. (2009) (black

Figure 4. Comparison between the halo mass function recovered in our
simulations with the work of Desjacques et al. (2009) and Pillepich et al.
(2008) at z = 0. We show the ratio between our non-Gaussian and Gaus-
sian simulation with fNL = ±100, few points we read out from fig. 1 of
Desjacques et al. (2009) (black points) at the values of ν corresponding to 1
× 1013, 1 × 1014 and 1 × 1015 M� h−1 and the points from Pillepich et al.
(2008). We plot the reciprocal of the results for fNL = −100.

points) at the values of ν corresponding to 1 × 1013, 1 × 1014 and
1 × 1015 M� h−1 (as given in their figure caption). Note that, as
Desjacques et al. (2009) use fNL = 100 in the CMB convention for
their simulations, we scaled the points down accordingly by a factor
1.3 to be comparable with our fNL = 100. We also show the results
for Pillepich et al. (2008) (green points). Here, we again apply the
rescaling as before, as their fNL of 82 would correspond to a fNL of
∼106 in the LSS notation.

In Fig. 5, the left-hand panel shows the results for Pillepich et al.
(2008) (green points) at z = 0.5, and our points for the two closest
available output times of our simulation (z = 0.44 and 0.61). The
right-hand panel shows the comparison at z = 1 between our points
(blue triangles and red squares) and points from Desjacques et al.
(2009) (black squares).

From this comparison, we conclude that there is a remarkable
agreement between the three independents simulations, highlighting
the robustness of the simulations results. The differences visible at
some of the highest mass bins are not significant, given the large
error bars present.

4 M A S S FU N C T I O N

We compare the halo mass function of the non-Gaussian simulations
with the theoretical predictions of equations (5–7) that is including
our ansatz for the non-spherical collapse correction: δc −→ √

qδc.
For clarity, we show here the non-Gaussian to Gaussian mass func-
tion ratio, i.e. the factor RNG(M, z). The comparison between theory
and simulations results is shown in Fig. 6 for a few redshift snap-
shots and for fNL = ±100, and in Fig. 7 for fNL = ±200 for
the same redshifts. Dashed lines are the mass function of Matar-
rese et al. (2000) – equation (6) – and dot–dashed lines are that of
LoVerde et al. (2008) – equation (7).

Contrary to Kang et al. (2007) and Dalal et al. (2007), we conclude
that both Matarrese et al. (2000) and LoVerde et al. (2008) are good
descriptions of the non-Gaussian correction to the mass function,
once the correction for non-spherical collapse is included.

Figs 6 and 7 seem to indicate that LoVerde et al. (2008) may
be a better fit for small masses while there is some tendency for
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Figure 5. Comparison between the halo mass function recovered in our simulations with the work of Desjacques et al. (2009) and Pillepich et al. (2008). In
both panels we show the ratio between the non-Gaussian and Gaussian simulation points. In the left-hand panel, we show the data of Pillepich et al. (2008)
at z = 0.5 and compare them with our simulation results for the two closest available redshifts: z = 0.44 and 0.61 and with Desjacques et al. (2009). In the
right-hand panel, we show the points at redshift 1 for our simulations with fNL = ±100 and three points we read out from fig. 1 of Desjacques et al. (2009)
(black points) at the values of ν corresponding to 1 × 1013, 1 × 1014 and 1 × 1015 M� h−1. We plot the reciprocal of the results for fNL = −100. All points
are rescaled to |fNL = 100| in our notation. The three independent simulations are in good agreement.
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Figure 6. Ratio of the non-Gaussian (fNL = ±100) to Gaussian mass function for different redshift snapshots: top-left panel z = 0.61; top-right panel z =
1.02; bottom-left panel z = 1.53; bottom-right panel z = 1.86. The dashed line is the mass function of Matarrese et al. (2000) and the dot–dashed lines are that
of LoVerde et al. (2008), both including the q-correction.
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Figure 7. Ratio of the non-Gaussian (fNL = ±200) to Gaussian mass function for different redshift snapshots: top-left panel z = 0.61; top-right panel z =
1.02; bottom-left panel z = 1.53; bottom-right panel z = 1.86. The dashed line is the mass function of Matarrese et al. (2000) and the dot–dashed lines are that
of LoVerde et al. (2008), both including our q-correction.

Matarrese et al. (2000) to provide a better fit at high masses. This
is not surprising: the Edgeworth expansion works well away from
the extreme tails of the distribution (i.e. for moderate δc/σ M), while
the saddle-point approximation used in Matarrese et al. (2000) is
expected to work better at the very tails of the distribution (very
high δc/σ M). We expect that the mass function of Matarrese et al.
(2000) will be a better fit at very high masses or larger fNL. This
will be further explored in future work.

5 G AU SSIAN HALO BIAS, AND THE EFFECT
O F M E R G E R S

The large-scale, linear halo Eulerian bias for the Gaussian case is
(Mo & White 1996; Mo, Jing & White 1997; Scoccimarro et al.
2001)

bG = 1 + 1

D(zo)

[
qδc(zf )

σ 2
M

− 1

δc(zf )

]

+ 2p

δc(zf )D(zo)

{
1 +

[
qδ2

c (zf )

σ 2
M

]p}−1

, (11)

where q = 0.75 and p = 0.3 account for non-spherical collapse and
are a fit to numerical simulations. Here, σ M denotes the rms value of
the dark matter fluctuation field smoothed on a scale R correspond-

ing to the Lagrangian radius of the haloes of mass M; zf denotes the
halo formation redshift and zo denotes the halo observation redshift.
As we are interested in massive haloes, we expect that zf � zo. As
the non-Gaussian halo bias correction is proportional to bG − 1,
the dependence of bG on whether the selected haloes underwent a
recent merger (i.e. zf ∼ zo) or are old haloes (i.e. zf � zo) affects
the amplitude of the non-Gaussian correction (Carbone et al. 2008;
Slosar et al. 2008). Before we trust our simulation to accurately
describe the non-Gaussian halo bias, we check whether we recover
the Gaussian one and whether the linear halo bias approximation is
a good description for the scales, redshifts and mass ranges we are
interested in. Gao, Springel & White (2005) show that analytical
predictions for the Gaussian halo bias are in reasonable agreement
with simulations and that the bias for low-mass haloes shows strong
dependence on formation time but high-mass haloes (the ones we
are interested in) do not. The halo bias for the Gaussian simulation
and the comparison with the theory prediction are shown in Fig. 8.
Except for the Gaussian halo bias bG

0 ≡ 1 + δc(zo)/[σ 2
MD(zo)]

defined in Efstathiou et al. (1988) and Kaiser (1984) indicated
by the dotted (blue) line, the simulated data agree with the the-
oretical expectations at different redshifts. In particular, in Fig. 8,
the black solid line represents the total Gaussian bias of equa-
tion (11), the dashed (red) line represents the contribution from the
first line of equation (11) and, finally, the dot–dashed (green) line is
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Figure 8. Black solid line: the large-scale Gaussian halo Eulerian bias
bG of equation (11). Blue dotted line: the Gaussian halo bias bG

0 ≡ 1 +
δc(zo)/[σ 2

MD(zo)] as defined in Efstathiou et al. (1988) and Kaiser (1984).
Green dot–dashed line: 1 + q(bG

0 − 1). Red dashed line: the contribution
bG

1 ≡ 1 + [qδc(zf )/σ 2
M − 1/δc(zf )]/D(zo) to the total bias of equation (11).

1 + q(bG
0 − 1). The small difference when using zf ∼ zo im-

plies that, for the Gaussian halo bias of very massive haloes (M
� 1013 M�), it is reliable to assume that the correction from the
‘non-spherical collapse’ can be encapsulated in the factor q in front
of δc(zo)/[σ 2

MD(zo)].

6 N ON-GAU SSIAN HALO BIAS

The effect of non-Gaussian halo bias on the halo matter cross-power
spectrum is shown in Fig. 9, where we considered haloes of mass
above 1013 M� in the simulation snapshot at z = 1.02. The bottom
panel of Fig. 9 shows the non-Gaussian bias relative to the Gaussian
one. Note that error bars in the upper panel include cosmic variance
error. The relative bias in the lower panel is obtained from the ratio
of the non-Gaussian to Gaussian power spectra, in this quantity the
cosmic variance is greatly reduced as the Gaussian components of
the initial conditions are in common. Here and in the following
Figs 10 and 14, the error bars shown are the error on the average of
the band-power quantity shown in the y-axis.

While Fig. 9 only qualitatively illustrates the effect, a more quan-
titative comparison between the simulation results and the theory
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Figure 9. Effect of the non-Gaussian halo bias on the power spectrum. In the
top panel, we show the halo matter cross-power spectrum for masses above
1013 M� at z = 1.02. The bottom panel shows the ratio of the non-Gaussian
to Gaussian bias.

is presented in Fig. 10, where we show that the quantity �b/b of
equation (8) obtained from the simulations outputs (points with er-
ror bars) and the corresponding theory lines as a function of k, for
selected redshift snapshots of the simulations. We have considered
halo masses above 1013 M�. It is clearly visible from Fig. 10 that
the non-Gaussian halo bias effect becomes increasingly more pro-
nounced at high redshift and larger scales for a fixed halo mass
range.

For a more detailed comparison between theory and simulations
and quantitative evaluation of the performance of the ‘q-correction
we introduced, we proceed as follows. We note that in equation (8)
the redshift and scale dependence of the non-Gaussian correction
can be factorized as a term that depends only on redshift and one
that depends only on k and M. The M-dependence is expected to be
very weak at large scales (k < 0.03 h−1 Mpc−1). Here, we will test
the mass, scale and redshift dependence of the non-Gaussian halo
bias and calibrate its normalization on the simulations.

In Fig. 11, we show the dependence on halo mass of �b/bL. We
define the quantity

R(M) =
(

�b

bL

)
s

(
�b

bL

)−1

theory

, (12)

where (�b/bL)theory is given by equation (8). To study the mass
dependence, we evaluate the theory at fixed mass M̂ = 1014 M�.
We compute the bias from the simulations taking haloes in six
different mass bins. Fig. 11 includes only scales k < 0.03 h Mpc−1,
different lines correspond to different redshift snapshots between
z = 0 and 1.5. As expected, there is no notable dependence on halo
mass.

Having confirmed the expected weak dependence on halo mass
for masses M > 1013 M�/h and on scales k < 0.03 h Mpc−1, we
can study the redshift and scale dependence of �b/bL, considering
haloes of different masses above 1013 M� h−1.

The redshift dependence of �b/bL, (�b/bG
L )s[2fNLαM (k)q]−1

is shown in Fig. 12 where M > 1013 M�/h and scales k <

0.026 h Mpc−1 were used. In applying the correction δc/σ
2
M −→

qδc/σ
2
M to �b/(bG −1), we have actually corrected bG

0 , i.e. we have
employed the same approximation used for the green dot–dashed
line of Fig. 8, giving equation (9). Equation (9) in fact is only the
consequence of our correction to the Gaussian halo bias. Note that
the approximation zf ∼ z0 we employed here is expected to hold for
rare – massive – haloes, and Fig. 8 shows that this is a good approx-
imation. A detailed study of the dependence of the non-Gaussian
halo bias correction on the formation redshift of the haloes will be
presented elsewhere.

There seems to be an indication that the q-correction factor for
the large-scale bias correction may slightly depend on the value of
fNL: in particular, the figure shows that it could be slightly smaller
than q for fNL large and negative and smaller for fNL large and
positive. This is not unexpected for two reasons: first, for large
non-Gaussianity the Taylor expansion done to obtain equation (8)
(see derivation of equation 13 of Matarrese & Verde 2008) looses
accuracy at high redshift; secondly, the presence of non-Gaussianity
may alter the dynamics of non-spherical collapse [e.g. through tidal
forces – see e.g. Desjacques (2009) – or by significantly changing
the redshift for collapse with respect to the Gaussian case]. At this
stage, however, this trend is not highly significant and further study
will be left to future work.

We show the scale dependence of equation (9),
(�b/bG

L )s[2fNLδc(z)q]−1, in Fig. 13. The thin lines corre-
spond to different redshifts and the thick black line to their average.
The dotted line is the theory prediction with q = 0.75. Note
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Figure 10. The quantity of equation (8), �b/b as function of k, for simulation snapshots at z = 0.44, 1.02 and 1.54. Simulation outputs and theory lines are
shown for fNL = ±100 and ±200.
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Figure 11. Weak mass dependence of �b/b at scales k < 0.03 h−1 Mpc−1.
Different lines correspond to different redshift snapshots between z = 0 and
1.5. The overall normalization is arbitrary.
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Figure 12. The redshift dependence of the non-Gaussian correction to the
halo bias: points are the values measured from the simulations and lines
are the theoretical predictions, equation (9). Only k < 0.026 h Mpc−1 were
used.

that there is an excellent agreement on the scales of interest, e.g.
k < 0.03 h Mpc−1. On smaller scales, the effect of non-Gaussianity
is very small and the measurement become extremely noisy. These
results are in qualitative agreement with the findings of Pillepich
et al. (2008).

Finally, in Fig. 14 we show the non-Gaussian halo bias correction
�b from the simulations as function of the Gaussian halo bias. We
only consider scales k < 0.03.

We conclude that equation (9), with q ∼ 0.75, provides a good
fit to non-Gaussian simulations.
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Figure 13. Scale dependence of equation (9). The thin lines correspond
to different redshifts for haloes with mass above 1013 M�/h and the thick
black line is their average. The dotted line is the theory prediction with q =
0.75. At k > 0.03 h Mpc−1, the effect of non-Gaussianity is very small, and
the measurement becomes extremely noisy.
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Figure 14. Non-Gaussian halo bias correction as function of the Gaussian
halo bias.

7 C O M PA R I S O N W I T H PR E V I O U S WO R K

After the discussion of Section 2, it should be clear that if f CMB
NL

were used in the theoretical predictions or S3 were not linearly
extrapolated to z = 0, then any constraints on non-Gaussianity so
obtained would have to be rescaled by a factor ∼1.3. This seems
to be the case of some work in the literature. On the other hand,
the q-correction factor effectively introduces a rescaling of a factor
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∼0.753/2 = 0.65 for the mass function case and 0.75 for the bias case.
It is a coincidence that, for the halo bias, 1.3 × 0.75 ∼ 1, thus the
fNL normalization mistake cancels out with the spherical collapse
approximation error. This fortuitous cancellation does not happen to
the same level in the mass function 0.753/2 × 1.3 ∼ 0.8, explaining
perhaps some of the claimed discrepancy of the simulations with the
analytic mass function predictions and the claimed agreement with
the halo bias predictions. Another possible source of inaccuracy
would be an inconsistent treatment of the redshift evolution of δc

and S3 (see discussion in Section 2).
The simulations used here are obtained with a different code for

the initial conditions from Grossi et al. (2008), but we have checked
that there is an agreement between the two sets of simulations. A
visual comparison of the mass functions may be misleading; in fact,
the cosmologies used in the two simulations sets are different: here,
we use a cosmology consistent with WMAP 5-year results while
in Grossi et al. (2008) the cosmology in consistent with WMAP
1-year results. In addition, the box size and resolution differ: here,
we have a volume of (1200 Mpc h−1)3 and a mass resolution m ∼
1.4 × 1011 h−1 M� versus a volume of (500 Mpc/h)3 and a mass
resolution m ∼ 2 × 1010 h−1 M� of Grossi et al. (2008). A detailed
comparison shows that despite the different volume, cosmological
parameters, initial random seeds, the differences between the sim-
ulations are small (less than 10 per cent at z = 0) and negligible
compared to the error bars. The larger simulation box enables us
now to concentrate in detail on the differential mass function, while
Grossi et al. (2008) concentrated on the cumulative mass function.
While we confirm here the results of a broad agreement between
the theoretical predictions of the non-Gaussian mass functions and
the simulations, the increased volume and halo number (by an order
of magnitude) yield errors on the mass function smaller by a factor
>3, making possible a robust ‘detection’ of the q-correction pre-
sented here. In addition, the larger simulation box enables us to
study also the large-scale non-Gaussian halo bias.

In Fig. 15, we compare our theoretical predictions with the re-
sults presented in Pillepich et al. (2008) and Desjacques et al.
(2009). The left-hand panel shows our simulation results at z =
0 for fNL = ±100 and our theoretical predictions. Additionally,
we show the fit presented by Pillepich et al. (2008), equations (8)
and (9), evaluated for the suitable values of fNL accounting for the
different notations for fNL. We also adopt our cosmological param-

eters when converting σ M to M. The right-hand panel shows the
simulation results presented in Pillepich et al. (2008) at z = 0 and
their fitting formula at z = 0 and 1. We over plot our theoretical
models evaluated for their cosmological parameters and for the cor-
responding values of fNL. Moreover, we add the data points from
Desjacques et al. (2009) for z = 0 and 1, suitably rescaled by the
differences of the fNL value used. The mass function fits of Fig. 12
differ for large masses, in the regime where simulations errors be-
come large; the fits are, however, consistent given the individual
points error bars.

Our theoretical formulae for the non-Gaussian mass function
(equations 5–7) and for the non-Gaussian halo bias (equation 9)
are physically motivated expressions that have been tested on N-
body simulations. They have the advantage over fitting formu-
lae that they can be more robustly interpolated and extrapolated
to cosmologies and parameters that have not been directly sim-
ulated, and they are more robust over parameters ranges where
the simulations have low signal-to-noise ratio. Compared to sim-
ple fitting formulae, equations (6), (7) and (9) have the disad-
vantage that they require the calculation of some numerical inte-
grals. To overcome this, we supply tabulated values for S

(1)
3,M , σ M

and αM for a WMAP5 cosmology in the range of interest at
www.ice.csic.es/personal/verde/nongaussian.html.

The q-correction we find here has implications for previously re-
ported and forecasted constraints on non-Gaussianity. In Table 1, we
report present and forecasted constraints on f NL from the literature
rescaled to f CMB

NL and corrected for our factor q.
This confirms that constraints on fNL for non-Gaussianity of

the local type, achievable using the non-Gaussian halo bias, are
competitive with CMB constraints (fNL ∼ 5 for Planck and fNL ∼ 3
for a CMB Pol-type mission; Babich & Zaldarriaga 2004; Yadav,
Komatsu & Wandelt 2007).

8 C O N C L U S I O N S

We have considered (1.2 Gpc h−1)3 size and 9603 particles N-body
simulations with non-Gaussian initial conditions of the local type,
with non-Gaussianity parameter fNL = ±100, fNL = ±200 and a
reference Gaussian simulation (fNL = 0). The clustering properties
and the abundance of the simulation’s haloes were then compared
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Figure 15. Left-hand panel: comparison between simulations points and fits from this work and the polynomial fit of Pillepich et al. (2008). Right-hand panel:
our correction to the Matarrese et al. (2000) and LoVerde et al. (2008) non-Gaussian mass function fits, the polynomial fit of Pillepich et al. (2008) and points
from Desjacques et al. (2009) (black squares) and Pillepich et al. (2008) (green triangles). See the text for more details.
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Table 1. Current and forecasted constraints on f CMB
NL .

Measurements
Data/method f NL, 1σ–2σ errors Reference

Photo-LRG–bias 84+54+101
−85−331 Slosar et al. (2008)

Spectro-LRG–bias 93+74+139
−83−191 Slosar et al. (2008)

QSO–bias 11+26+47
−37−77 Slosar et al. (2008)

Combined 37+23+42
−26−57 Slosar et al. (2008)

NVSS–ISW 140+647+755
−337−1157 Slosar et al. (2008)

NVSS–ISW 272 ± 127 (2σ ) Afshordi & Tolley (2008)

Forecasts
Data/method �f NL(1 − σ ) Reference

BOSS–bias 18 Carbone et al. (2008)

ADEPT/Euclid–bias 1.5 Carbone et al. (2008)

PANNStarrs–bias 3.5 Carbone et al. (2008)

LSST–bias 0.7 Carbone et al. (2008)

LSST–ISW 10 Afshordi & Tolley (2008)

with independent simulations and theoretical predictions. We find a
good agreement between different simulations, indicating that the
initial conditions setup is under control. We find that the Press–
Schechter-based description of the non-Gaussian correction to the
Gaussian mass function of Matarrese et al. (2000) and LoVerde
et al. (2008) is a good fit to the simulations, provided that

(i) the Press–Schechter-based description is used to compute
the ratio between Gaussian and non-Gaussian mass function and

(ii) the critical density δc is corrected to account for non-
spherical collapse dynamics.

This is summarized in our equation (5) and in equations (6)
and (7) for the non-Gaussian mass functions of Matarrese et al.
(2000) and LoVerde et al. (2008), respectively. For large thresholds
this correction is equivalent to a rescaling of the spherical collapse
threshold: δc

√
q where q = 0.75. The q-correction is thus equivalent

to a reduction of fNL by a factor ∼1.5 because in the mass function,
to leading order fNL multiplies δ3

c .
We find that the non-Gaussian halo bias prescription of Dalal

et al. (2007), Matarrese & Verde (2008), Slosar et al. (2008) and
Afshordi & Tolley (2008) provides a good description of the scaling
of the large-scale halo clustering of the simulations. In particular,
we have tested separately the predicted redshift, scale and fNL de-
pendence. The overall amplitude of the effect, however, should be
corrected by a factor ∼ q which can also be understood in the con-
text of ellipsoidal collapse or as a modification to the excursion set
ansatz and the sharp k-space filtering (see equation 9). There is an
indication that this correction may be slightly dependent on f NL.
This is not unexpected, but the signal-to-noise ratio of the effect is
too small in the current simulations to draw robust conclusions. We
also find that on large (k < 0.03 h Mpc−1) scales, as expected, the
fractional correction to the non-Gaussian halo bias is independent
of mass. On smaller scales a dependence on mass is expected, but
the simulations do not have sufficient signal-to-noise ratio to verify
it. The q-correction to the non-Gaussian halo bias modifies current
and forecasted constraints reported in the literature as indicated in
our Table 1.

The formulae we presented here for the non-Gaussian mass
function (equations 5–7) and non-Gaussian halo bias (equation 9)
are physically motivated expressions which provide good fits to

a suite of N-body simulations. As such, they can be more ro-
bustly interpolated and extrapolated than simple fitting functions
(in www.ice.csic.es/personal/verde/nongaussian.html, we provide
useful quantities for ease of use of these equations.). We confirm
that the non-Gaussian halo bias offers a robust and highly compet-
itive test of primordial non-Gaussianity of the local type.

After the present work was submitted, closely related works
by Maggiore and Riotto were posted to the on-line repository
(arXiv:0903.1251 and arXiv:0903.1250). In their work, a phys-
ical interpretation of the q-correction of the non-Gaussian mass
function presented here is offered. In particular, they show that the
q-coefficient can be understood in terms of the diffusing barrier
model, which is responsible for modifications both to the Gaus-
sian and non-Gaussian mass function. The fact that the same effect
should appear in both the Gaussian and non-Gaussian mass function
is discussed here also in Section 2.1. It may be worth mentioning that
Borgani & Bonometto (1990) indicated that modifying the shape
of the barrier (i.e. assuming that the δc threshold is not strictly a
step function) would lead to a modification of the mass function in
a similar direction.
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APPEN D IX A

We report here the explicit expression for the function αM(k) which
encloses the scale (and mass) dependence of the non-Gaussian halo

bias. For a derivation of the expression from first principles, please
see Matarrese & Verde (2008).

We start by defining the functionMR(k) which relates the Fourier
transform of the smoothed linear overdensity field to the Fourier
transform of the Bardeen potential:

δR(k) = 2

3

T (k)k2

H 2
0 �m,0

WR(k)�(k) ≡ MR(k)�(k) , (A1)

where T(k) denotes the matter transfer function and WR(k) is the
Fourier transform of WR(r), the top-hat function of width R.

Then, we define the so-called ‘form factor’ FR(k)

FR(k) = 1

8π2σ 2
R

∫
dk1k

2
1MR(k1)Pφ(k1)

×
∫ 1

−1
dμMR

(√
x
) [

Pφ

(√
x
)

Pφ(k)
+ 2

]
, (A2)

where Pφ denotes the power spectrum of the linear gravitational
potential φ. The form factor is closely related to the primordial
bispectrum, x = k2

1 + k2 + 2k1kμ, and μ denotes the cosine of the
angle between k1 and k.

Finally αM(k) is given by

αM (k) = FR(k)

MR(k)
. (A3)

Note that the mass dependence comes in only through the pres-
ence of the smoothing window W R in MR(k). For k-modes corre-
sponding to scales larger than the Lagrangian radius of the haloes,
W R = 1. These are also the scales where the analytic derivation of the
non-Gaussian halo bias effect holds, for example for a halo of mass
1 × 1014 M� h−1 the comoving Lagrangian radius is 7 Mpc h−1 and
W R(k) deviates significantly from 1 at k � 0.1 h Mpc−1. On scales
k � 0.1 h Mpc−1, �b/b shows no mass dependence.

It is useful to derive analytically an expression for αM(k) valid on
large scales. For the local type of non-Gaussianity, the bispectrum
is dominated by squeezed configurations: in this limit, FR(k) tends
to unity for large scales where WR(k) goes to unity.

Therefore, on scales larger than the Lagrangian radius of the halo

αM (k) = M−1
R (k) = 3

2

H 2
0 �m,0

T (k)k2
∼ H 2

0 �m,0

k2
, (A4)

where in the last step we have approximated the transfer function
to unity on large scales. This last step offers a good approximation
(to better that 20 per cent) on scales k < 0.01 h Mpc−1.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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