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ABSTRACT 

SET and MYND domain containing protein 3 (SMYD3) is a methyltransferase that methylates 

lysine 5 of histone 4 (H4K5) and a group of non-histone proteins. Furthermore, in order to regulate 

downstream genes, SMYD3 contacts RNA polymerase II and promotes the recruitment of positive 

coactivator 4 (PC4) and BRD4 at the proximal promoter and coding regions of target genes. 

SMYD3 is overexpressed in several cancers, such as liver, breast and colorectal carcinomas, in 

which it promotes proliferation, migration and invasion of tumor cells. in order to promote cancer 

progression, SMYD3 activates the transcription of several cell cycle regulators, Myc and Ctnnb1 

oncogenes, components of the IL6-Jak-Stat3 cascade and Epithelial Mesenchymal Transition 

(EMT) markers. Recently, a novel role for SMYD3 in regulating homologous recombination (HR) 

repair and maintaining genome stability has been reported.  

SMYD3 plays a cytoplasmic role by methylating non-histone proteins. Indeed, SMYD3 methylates 

MAP3K2, vascular endothelial growth factor receptor 1 (VEGFR1), v-Akt Murine Thymoma Viral 

Oncogene Homolog 1 (AKT1), and Human Epidermal Growth Factor Receptor 2 (HER2). 

Few evidences highlighted a possible role of SMYD3 in regulating developmental processes. In 

zebrafish, SMYD3 is required for correct maturation of cardiomyocytes and for trunk 

morphogenesis. However, the SMYD3-mediated molecular mechanisms, its functional role in 

development and its interplay with other proteins involved in development are still elusive. 

Aim of the present PhD project was to better understand SMYD3 role throughout development, by 

using mESCs and zebrafish as model systems. After knocking down SMYD3 in mESCs, we 

observed an upregulation of several mesendodermal markers at different time points of 

differentiation. In parallel, an increase in mesendodermal markers was detectable in smyd3 knocked 

down zebrafish embryos. Since SMYD3 is involved in cardiomyocyte maturation in zebrafish, we 

knocked down SMYD3 and prompted mESCs to differentiate towards cardiomyocytes by forming 

embryoid bodies (EBs). As a result, we observed an upregulation of early and late cardiovascular 

markers in SMYD3 depleted EBs. These data were corroborated by an upregulation of the 

endothelial marker kdrl in smyd3 morphants. Taken together, our results suggest that SMYD3 

negatively modulates mesendodermal commitment during mESC and zebrafish development.  

As a second aim, we wanted to investigate the molecular mechanisms underlying SMYD3-mediated 

regulation of EMT. We assessed this aim by providing a link between TGFβ/SMAD signaling 

pathway, which is an important regulator of EMT during tumor progression, and SMYD3. Indeed, 

we demonstrated that SMYD3 directly interacts with SMAD3. Furthermore, the ability of SMYD3 
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inhibitor BCI-121 to impair cancer cell migration has been proved in zebrafish as a xenograft 

cancer model. 
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1 INTRODUCTION 

1.1 HISTONE METHYLATION 

Histone methylation was reported for the first time in Salmonella typhimuriumhas flagellar proteins 

(Ambler & Rees, 1959) and some years later on histone proteins (Murray, 1964). 

Histone methylation takes place primarily on the side chains of arginine (R) and lysine (K) residues, 

although it can occur on other residues, such as histidine, aspartic acid, and glutamic acid (Alam et 

al., 2015). Unlike other post-translational modifications (PTMs), such as acetylation and 

phosphorylation, histone methylation does not modify protein charge (Greer & Shi, 2012). 

The ω nitrogen atoms of arginine can be mono- or di-methylated, either symmetrically or 

asymmetrically. Up to now, H3R2, H3R8, H3R17, H3R26, H4R3, H2AR11 and H2AR29 have 

been reported to be methylated (Alam et al., 2015; Wesche, Kuhn, Kessler, Salton, & Wolf, 2017). 

Lysine is methylated on its ε-amine and can be mono-, di- or tri-methylated. The conventional sites 

for methylation include several lysine residues of histone 3 (K4, K9, K27, K36 and K79), K20 of 

histone 4 and K26 of histone 1. With the exception of H3K79, these modifications are all placed in 

the N-terminal tails of histone proteins (Figure 1) (Alam et al., 2015). 

Histone lysine methylation regulates transcription and other chromatin-related processes 

(replication, recombination (Y. Zhang & Reinberg, 2001) and DNA-damage response (Sanders et 

al., 2004)). Moreover, histone methylation is involved in heterochromatin formation, X inactivation, 

genomic imprinting and homeotic genes silencing, demonstrating its importance in many biological 

processes (Martin & Zhang, 2005). 

Figure 1.1. Schematic representation of main lysine methylation sites on histones H3 and H4 (Alam, 
Gu, & Lee, 2015) 
Histone lysine methyltransferases (KMTs) and lysine demethylases (KDMs) are associated to their lysine 
methylation site. 
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Unlike acetylation and arginine methylation, which generally correlate with transcriptional 

activation, histone lysine methylation can be associated with either activation or repression of the 

transcription process. This dual function depends on the methylation site, as well as on the number 

of methyl groups added. H3K4me3 is believed to be important for the initiation of transcription, 

given that this modified residue is highly enriched at the transcription start site (TSS) of active 

promoters. The sequence immediately flanking the TSS is also enriched in H3K4me1 and 

H3K4me2. H3K4me1 is widely distributed in enhancer regions (Calo & Wysocka, 2013). 

Moreover, active promoters are also associated with gene bodies enriched in H4K20me1, 

H2BK5me1, and H3K36me3, while inactive ones are often marked by H3K27me3 or H3K9me3. A 

peculiar subset of promoters, named bivalent promoters, are characterized by both H3K4me3 and 

H3K27me3 on different H3 tails within the same nucleosome, suggesting that intra-nucleosomal 

tail-to-tail crosstalk might be a pivotal regulatory mechanism (Black, Van Rechem, & Whetstine, 

2012).  

If compared to other PTMs such as acetylation, which possesses a fast turnover, histone lysine 

methylation has a slower turnover rate, similar to the one of the total histone. Furthermore, 

methylation displays a higher turnover rate when associated with active genes, if compared to 

repressive marks, which instead exhibit a slower turnover (Zee, Levin, DiMaggio, & Garcia, 2010). 

This particular slow kinetics of methylated histone lysine residues was suggested to confer 

epigenetic stability (Zee, Levin, DiMaggio, et al., 2010; Zee, Levin, Xu, et al., 2010).  

Given its slow turnover rate, histone methylation was thought to be an irreversible process. The 

discovery of Lys-specific demethylase 1 (LSD1, also known as KDM1A), which has substrate 

specificity for H3K4me1/2 and H3K9me1/2, instead, revealed the real dynamic nature of histone 

methylation (Figure 1) (Metzger et al., 2005; Shi et al., 2004). Some methylation events might need 

to be stably maintained, depending on the biological context (e.g. inheritance through mitosis of a 

silenced heterochromatin state), whereas others may have to be responsive to change (for example, 

during cell differentiation in response to environmental stimuli) (Greer & Shi, 2012). 

Indeed, the diverse array of methylation events provides a regulatory potential. According to the 

current model, histone methylation carries out its biological function primarily indirectly, through 

the identification of methyl marks by effector proteins (called ‘readers’). Readers recognize histone 

methyl marks and lead to transcriptional changes also by the recruitment of other proteins. Growing 

evidences also support direct actions of histone methylation, which include protein conformational 

changes. In fact, H3K79me2 alters the nucleosomal surface, while H4K20me3 is known to affect 

higher-order structure of chromatin (Lu et al., 2008). Another important feature is the interaction 

with other PTMs, that could represent a collaborative or an antagonistic relationship. In this context, 
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methylation can occur at multiple sites on the same histones. Importantly, some histone marks are 

thought to be mutually exclusive.  For example, loss of the Polycomb repressive complex 2 (PRC2), 

that catalyzes H3K27me3 in embryonic stem cells, results in a global increase in H3K27 acetylation 

(Pasini et al., 2010). Combinatorial histone marks can also affect the recognition and binding by 

methyl-binding proteins. In fact, H3S10 phosphorylation prevents H3K9me3-binding protein 

heterochromatin protein 1 (HP1) from binding to histone tails during the M phase of the cell cycle 

(Fischle et al., 2005). Therefore, histones PTMs can play an important role in the recruitment of 

methyl-modifying enzymes to specific genomic locations and, in some instances, also alter their 

substrate specificity (Greer & Shi, 2012). 

Recent evidences suggest that histone methylation is also affected by fluctuations in metabolism. 

Changes in the availability of cofactors (such as SAM, α-ketoglutarate (α-KG) and flavin adenine 

dinucleotide (FAD)) of methyltransferases and demethylases might induce adaptive responses 

affecting the methylation of proteins, especially histones (Murn & Shi, 2017). A reduced 

production of SAM in ES cells, induced by restricted metabolism of Thr, substantially decreases 

the global level of H3K4me3 leading to a slower growth and increased differentiation (Shyh-Chang 

et al., 2013). 

Reader proteins contain methyl-lysine-binding motifs, comprising plant homeodomain (PHD), 

chromo, tudor, PWWP (Pro-Trp-Trp-Pro), WD40, bromo-adjacent homology BAH, ADD (ATRX-

DNMT3-DNMT3L), ankyrin repeat, malignant brain tumor (MBT) and the zinc-finger CW (zn-

CW) domains, through which they are capable of distinguishing methylated lysine residues based 

on their methylation state and surrounding amino acid sequences (Musselman, Lalonde, Cote, & 

Kutateladze, 2012). The recognition of methyl-lysine histone sequences is a conserved mechanism, 

in which the side chain of the methylated lysine places itself into an aromatic cage in the reader 

domain. The specific recognition of methylated histones by reader proteins recruits several 

components of the nuclear signaling network to chromatin, mediating fundamental processes such 

as gene transcription, DNA replication and recombination, DNA damage response and chromatin 

remodeling. Chromatin-associated complexes often contain different readers within one or more 

subunits that display specificities for distinct PTMs (Musselman et al., 2012). 

Histone demethylases can be classified in two different functional catalytic families: monoamine 

oxidases and jumonji C (JmjC) domain-containing proteins. The first enzymatic family comprises 

LSD2, the only homologue of LSD1, and, in a flavin-dependent manner, catalyzes the 

demethylation of mono- and di-methyl lysine residues. On the other hand, JmjC domain-containing 

proteins demethylate mono-, di- and tri-methylated lysine residues. These enzymes are conserved 
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from yeast to human and are capable of demethylating histone and non-histone substrates 

(Hamamoto, Saloura, & Nakamura, 2015). 

1.2 LYSINE METHYLTRANSFERASES 

The addition of methyl groups at histone lysine residues is catalyzed by specific lysine 

methyltransferases (KMTs). These enzymes can be divided in two different classes on the basis of 

their catalytic domains. One class is characterized by a 130-140 amino acid long SET domain, 

which was originally identified in the Su(var)3–9, Enhancer-of-zeste and Trithorax proteins 

(Jenuwein, Laible, Dorn, & Reuter, 1998; Tschiersch et al., 1994). The SET domain is a highly 

evolutionarily conserved catalytic motif that catalyzes lysine methylation by adding methyl groups 

to lysine residues of other proteins using S-adenosylmethionine as a donor substrate. SET 

containing KMTs are distributed in seven families (SUV39, SET1, SET2, EZ, RIZ, SMYD AND 

SUV4-20) and few other members, such as SET7/9 and SET8 (Yi, Jiang, Li, & Jiang, 2015).  

The second class of KMTs does not contain a SET domain but includes highly conserved proteins, 

such as yeast disruptor of telomeric silencing-1, DOT1 (also known as KMT4), its eukaryotic 

homologs (human and murine DOT1-Like, or DOT1L), and other members like methyltransferase-

like 10 (METTL10) and METTL21A (Hamamoto et al., 2015). Most of the non-SET-domain 

enzymes belong to the seven-β-strand (7BS) methyltransferase family, which is characterized by a 

twisted β-sheet structure (Falnes, Jakobsson, Davydova, Ho, & Malecki, 2016). 

The two classes of KMTs also differ for the molecular mechanism of substrate recognition. SET-

domain containing proteins recognize their substrates through interaction with short and linear 

peptides, while non-SET-domain containing KMTs may recognize the tertiary structure of their 

targets (Falnes et al., 2016). 

While SET containing KMTs generally methylate lysine residues within the histone N-terminal 

tails, DOT1 and DOT1L methylate lysine 79 within the globular core of histone 3 (Alam et al., 

2015). 

Moreover, SET domain frequently co-occurs with many other protein domains, suggesting that the 

SET domain doesn’t act individually to determine substrate specificity (Herz, Garruss, & 

Shilatifard, 2013). 

To date, the involvement of diverse KMTs in embryonic development has been demonstrated. In 

mammals, the Mixed lineage leukaemias (MLLs) are an evolutionarily conserved protein family, 

which bear homology with yeast Set1 and Drosophila Trx. Six MLL family members (MLL1, 

MLL2, MLL3, MLL4, Set1A, Set1B) show a H3K4-specific methyltransferase activity. MLL1, 

MLL2, MLL3, MLL4, Set1A and Set1B form different complexes in association with a central 
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scaffold consisting of Ash2, Wdr5, Rbbp5 and Dpy30, which are essential for the MLL-associated 

KMT activity (Dou et al., 2006). Furthermore, MLLs epigenetically modulate genes associated with 

cell-cycle regulation, embryogenesis and development. Importantly, among the genes regulated by 

MLLs, we find Hox genes (HOXA-D). Hox genes are finely regulated at different stages of 

development and are essential for normal physiological functions and growth (Ansari & Mandal, 

2010). The importance of MLL function during development is highlighted by the fact that 

homozygous Mll1 knockout mice die during embryogenesis (day 10.5). The mutant phenotype is 

characterized by defects in neural crest-derived structures of the branchial arches, cranial nerves 

and ganglia (B. D. Yu, Hanson, Hess, Horning, & Korsmeyer, 1998; B. D. Yu, Hess, Horning, 

Brown, & Korsmeyer, 1995). The expression of Hox genes is correctly initiated in Mll1 knockout 

mice, but after day 9 the expression becomes dependent on Mll1 (B. D. Yu et al., 1998). Mll1 SET 

domain deletion in mice through homologous recombination in ES cells is not lethal: mice are 

viable and fertile and show skeletal defects and altered transcription of Hox genes during 

development. Hox loci are also characterized by a reduction of H3K4me1 and defects in DNA 

methylation (Terranova, Agherbi, Boned, Meresse, & Djabali, 2006). 

1.2.1 NON-HISTONE PROTEIN METHYLTRANSFERASES 

Much of what we know about KMTs derive from histone methylation, however growing evidences 

demonstrate that many of these enzymes can methylate also non-histone proteins (Huang & Berger, 

2008; Z. Wu, Connolly, & Biggar, 2017; X. Zhang, Huang, & Shi, 2015; X. Zhang, Wen, & Shi, 

2012). Similar to histones, lysine methylation of non-histone proteins can be reversed by 

demethylases (Huang & Berger, 2008) and it can be read by specific methyl-binding motifs in order 

to produce downstream outcomes (X. Zhang et al., 2015). Depending on the position of the 

methylated residue in the protein, the biological function can vary. Furthermore, many evidences 

displayed a cross-talk between protein lysine methylation and other PTMs. In fact, non-histone 

lysine methylation can block lysine ubiquitylation at specific sites, increasing protein half-life (Z. 

Wu et al., 2017). On the contrary, lysine methylation may also decrease the half-life of the protein 

promoting its ubiquitylation: this is the case of the DCAF1/DDB1/CUL4 E3 ubiquitin ligase 

complex (J. M. Lee et al., 2012). Moreover, it has been reported that a cross-talk with 

phosphorylation exists, which provides a diversification of the downstream signaling (Z. Wu et al., 

2017). Lysine methylation in non-histone proteins has been associated with regulation of a plethora 

of biological processes, among which there are signal transduction, DNA damage response, protein 

folding, metabolism and also cell growth (Z. Wu et al., 2017). 
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G9a (also known as euchromatin histone methyltransferase 2, or EHMT2) forms homodimers and 

heterodimeric complexes with its homolog G9a-like protein (GLP) (Tachibana et al., 2005). It 

catalyzes H3K9me1 and H3K9me2, repressing genes at euchromatic regions (Rice et al., 2003; 

Tachibana et al., 2002). In addition, it has been shown that G9a methylates H3K27, H3K56 and 

residues of H1 variants (Weiss et al., 2010; H. Wu et al., 2011; Y. Yu et al., 2012). Beyond 

histones, G9a can also modify non-histone proteins, among which the first identified was itself. The 

autocatalytic G9a methylation recruits, in vivo, the epigenetic regulator heterochromatin protein 1 

(HP1) and this interaction is abolished by an adjacent G9a phosphorylation (S. C. Sampath et al., 

2007). Several G9a substrates are transcription factors, such as C/EBPβ, p53 and the myogenic 

regulatory factor MyoD (Huang et al., 2010; Ling et al., 2012; Pless et al., 2008). Additionally, G9a 

Figure 1.2. Lysine methyltransferase–substrate network (Adapted by (Biggar & Li, 2015)). 
Lysine methyltransferases (KMTs) are associated with their histone and non-histone substrates as found on 
published literature. KMTs and their protein substrates are color-coded according to their functions.  
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methylates the chromatin-remodeling factor Reptin and it reversibly methylates MEF2D and 

metastatic tumor antigen 1 MTA1 (Figure 2) (J. Choi et al., 2014; J. S. Lee et al., 2010; Nair, Li, & 

Kumar, 2013).  

Through a peptide array approach, Rathert and collaborators found that G9a recognizes an Arg-Lys 

site on its targets and the G9a catalytic activity is inhibited by methylation of the arginine residue. 

The peptides derived from chromodomain Y-like protein (CDYL1), widely interspaced zinc finger 

motifs protein (WIZ), Cockayne syndrome group B protein (CSB) showed the strongest 

methylation, whereas a weaker methylation was found with the peptides derived from ACINUS, 

histone deacetylase-1 (HDAC1), DNA methyltransferase-1 (Dnmt1) and Kruppel-like factor-12 

(Kruppel) (Rathert et al., 2008). 

1.2.2 SMYD FAMILY OF METHYLASES 

SMYD family proteins contain evolutionary conserved SET and MYND domains. Currently, five 

members of SMYD family have been identified (SMYD1-5) (Figure 3). Unlike other histone 

methyltransferases, they are characterized by a distinctive SET domain, which is split in two by a 

myeloid-Nervy-DEAF-1 (MYND) domain followed by a cysteine-rich post-SET portion (J. M. Kim 

et al., 2015). As previously described for KMTs, the SET domain of SMYD proteins catalyzes 

lysine methylation. Their MYND domain, instead is a cysteine-rich zinc finger motif involved in 

protein-protein interactions and DNA binding (Figure 3). A proper MYND domain folding is 

required for the catalytic activity of the SET domain through proper three-dimensional 

conformation (Foreman et al., 2011). With the exception of SMYD5, all family members share the 

presence of tetratricopeptide repeats (TPR) at the C-terminal domain (CTD) (Figure 3). Few 

evidences demonstrated that the CTD domain plays a regulatory role in modulating the catalytic 

activity of SMYD proteins (Du, Tan, & Zhang, 2014). 

Figure 1.3. SMYD family members domains (Spellmon, Holcomb, Trescott, Sirinupong, & Yang, 
2015). 
S-sequence of the SET domain (S); MYND domain; insertion SET domain (SET-I); core SET domain 
((S)ET; SET C-terminal flanking domain (Post-SET); C-terminal domain (CTD). 
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Several reports demonstrate that SMYD proteins play important roles in heart development and 

cardiomyogenesis (reviewed in (Du et al., 2014)). 

SMYD1, previously known as BOP, has a histone methyltransferase activity and acts as a 

transcriptional repressor (Gottlieb et al., 2002; Tan, Rotllant, Li, De Deyne, & Du, 2006). SMYD1 

is a direct downstream target of serum response factor (SRF) and myogenin, acting as a key 

regulator of myogenic differentiation (D. Li et al., 2009). Furthermore, Smyd1 expression in the 

mouse developing heart depends on the direct interaction with the myocyte enhancer factor 2C 

(MEF2C) (Phan et al., 2005). Smyd1 targeted deletion in mice displayed a role in maturation of 

ventricular cardiomyocytes and right ventricular development (Gottlieb et al., 2002). Consistent 

with its crucial role in mice cardiomyogenesis, smyd1 knockdown in zebrafish (Danio rerio) 

embryos results in absence of heartbeat and disrupted myofibril organization in cardiac muscles (H. 

Li et al., 2013; Tan et al., 2006). Nonsense mutations in the zebrafish smyd1 gene in the recessive 

mutant flatline (fla) confirmed the cardiac and skeletal muscle dysfunction (Just et al., 2011).  

SMYD2 is strongly expressed in heart, brain, and skeletal muscle (Brown, Sims, Gottlieb, & 

Tucker, 2006). The methyltransferase catalyzes H3K36me2 and H3K4me1 less efficiently, in vitro 

(Abu-Farha et al., 2008; Brown et al., 2006). Its H3K4 catalytic activity is enhanced in presence of 

the heat shock protein HSP90A and promotes expression of genes involved in regulation of cell 

cycle and transcriptional regulation (Abu-Farha et al., 2008). Unexpectedly, SMYD2 is not required 

for heart development in mice. Indeed, conditional knockout mice with a cardiomyocyte-specific 

deletion of Smyd2 had no effect on heart formation (Diehl et al., 2010). However, it has been 

reported that smyd2 zebrafish morphants showed an impaired myofibril organization in cardiac 

muscles (Voelkel et al., 2013). SMYD2 methylates also non-histone targets: the tumor suppressor 

p53 at lysine K370, repressing its transcriptional regulation function (Huang et al., 2006); the 

retinoblastoma tumor suppressor RB at lysine K860 (Saddic et al., 2010); and cytoplasmic Hsp90 

(Donlin et al., 2012). 

SMYD4 has been identified as a potential tumor suppressor that inhibits platelet-derived growth 

factor receptor A polypeptide (PDGFR-A) in breast cancer (Hu, Zhu, Qi, & Zhu, 2009). During 

Drosophila melanogaster embryogenesis, the SMYD4 homologue, dSmyd4, is expressed in the 

mesoderm, with highest levels in the somatic musculature (Thompson & Travers, 2008). 

Knockdown of dSmyd4 expression using muscle-specific RNA interference gets to eclosion failure 

and late pupal lethality, suggesting a role for dSmyd4 in development or function of adult muscles 

(Thompson & Travers, 2008). 

In contrast to the other members, SMYD5 does not bind HSP90A (Abu-Farha et al., 2011). With a 

mainly nuclear role, SMYD5 catalyzes H4K20me3 controlling pro-inflammatory genes (Stender et 
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al., 2012). Recently, it has also been demonstrated that SMYD5 targets H4K20me3 in 

heterochromatin regions, in mouse embryonic stem cells (mESCs), leading to repression of lineage-

specific genes and maintenance of the self-renewal gene expression (Kidder, Hu, Cui, & Zhao, 

2017). SMYD5 also plays a role as epigenetic regulator of hematopoiesis during zebrafish 

embryogenesis (Fujii et al., 2016).  
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1.3 THE SMYD3 METHYLASE 

Initially, SMYD3 methylation activity was studied through in vitro assays performed using a wild-

type form of the protein purified from cell cultures, and it was described as a histone H3- 

methyltransferase (Hamamoto et al., 2004). Afterwards, it has been demonstrated that SMYD3 

preferentially catalyzes H4K5me1, H4K5me2 and H4K5me3, employing bacterially expressed 

recombinant proteins (Van Aller et al., 2012). In some instances, SET-domain-containing histone 

methyltransferases require co-factors for their catalytic activity (Du et al., 2014). SMYD3 interacts 

with the heat shock-protein HSP90A through its C-terminal domain (Brown et al., 2015) and its 

activity is enhanced by the presence of the chaperone (Hamamoto et al., 2004). 

The SET domain has been showed to be responsible for SMYD3 catalytic activity (Figure 4). 

Indeed, SMYD3 recombinant proteins carrying point mutations in the SET domain (F183A, 

N205A, Y239A and deletions of NHSC and EEL sequences) fail to methylate recombinant histone 

proteins in vitro (Hamamoto et al., 2004; Van Aller et al., 2012). Structural studies confirmed that 

SET domain forms the substrate binding pocket in collaboration with post-SET and TPR domains 

(Xu et al., 2011). 

Several lines of evidence pointed out that SMYD3 exerts its function also in the cytoplasm through 

the methylation of non-histone proteins. SMYD3 methylates MAP3K2, potentiating the activation 

of Ras signalling in cancer cells (Mazur et al., 2014), and lysine 831 of vascular endothelial growth 

Figure 1.4. Structure of SMYD3-AdoHcy complex (Adapted by (Xu, Wu, Sun, Zhong, & Ding, 2011)). 
Top: a schematic representation of the full-length SMYD3. Bottom: two views of the structure of the 
Smyd3–AdoHcy complex are represented. The N-terminal SET domain (residues 1–43 and 94–242), the 
MYND domain (residues 44–93), the post-SET domain (residues 243–270), and the C-terminal region 
(residues 271–428) are colored in magenta, yellow, cyan and blue, respectively. The cofactor product 
AdoHcy is shown with a ball-and-stick model and colored in cyan. 
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factor receptor 1 (VEGFR1) in vitro, resulting in increased kinase activity (Kunizaki et al., 2007). 

Recently, other SMYD3 target proteins have been identified: v-Akt Murine Thymoma Viral 

Oncogene Homolog 1 (AKT1), in which lysine 14 methylation causes the kinase activation 

(Yoshioka et al., 2016), and Human Epidermal Growth Factor Receptor 2 (HER2), whose tri-

methylation enhances the receptor homodimerization and the resulting autophosphorylation 

(Yoshioka et al., 2017).  

Besides its methyltransferase activity towards histone and non-histone proteins, SMYD3 shows a 

role as a transcriptional cofactor. In order to regulate downstream genes, SMYD3 contacts RNA 

polymerase II (RNA Pol II) through a direct interaction with an RNA helicase (HELZ) (Hamamoto 

et al., 2004). Moreover, SMYD3 promotes the recruitment of positive coactivator 4 (PC4) (J. M. 

Kim et al., 2015), and BRD4 at the proximal promoter and coding regions of a subset of target 

genes, positively regulating their expression (Proserpio, Fittipaldi, Ryall, Sartorelli, & Caretti, 

2013), 

In contrast to other histone methyltransferases, SMYD3 can directly bind a 5′-CCCTCC-3′ 

consensus sequence, which can be found in the promoter of downstream genes (Hamamoto et al., 

2004). Despite this DNA binding preference was confirmed in few regulatory regions at different 

loci, de novo motif search of SMYD3 ChIp-Seq analysis didn’t confirm these findings (Sarris, 

Moulos, Haroniti, Giakountis, & Talianidis, 2016). The results of in vitro SMYD3-catalyzed 

methylation assays (Xu et al., 2011) and its crystal structure (Sirinupong, Brunzelle, Doko, & Yang, 

2011; Xu et al., 2011) imply that the MYND domain can stimulate the SET-dependent histone 

methylase activity through direct DNA binding. However, SMYD3 recruitment to chromatin 

regulatory regions of the estrogen receptor (ER) target genes (H. Kim et al., 2009; Y. Li et al., 

2011) does not require a consensus DNA sequence, indicating that a 5′-CCCTCC-3′ binding is not 

always a necessary step for histone methylation. 

SMYD3 regulates the expression of several target genes like the homeobox Nkx2.8 (Hamamoto et 

al., 2004), WNT10B (Hamamoto et al., 2006), the Telomere Reverse Transcriptase (hTERT) (Liu et 

al., 2007), c-Met (Proserpio et al., 2013; Zou et al., 2009) and retinoblastoma protein-interacting 

zinc finger gene 1 (RIZ1) (Dong et al., 2014). 

Based on expression data in public datasets, SMYD3 is expressed at low levels ubiquitously in 

adult tissues. It is over-expressed in tumors, when compared to the matching tissue of origin 

(http://firebrowse.org/viewGene.html?gene=SMYD3).  
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1.3.1 SMYD3 IN DEVELOPMENT 

While several studies focused on the SMYD3 role as a transcriptional co-activator in cancer, little is 

known on its possible role in regulating developmental processes. In zebrafish embryos, two 

transcripts of smyd3 are ubiquitously expressed from early developmental stages (0.75 hpf) to 96 

hpf. Through a morpholino microinjection approach, it has been demonstrated that SMYD3 is 

required for trunk morphogenesis in zebrafish (Figure 5, left panel) (Fujii, Tsunesumi, Yamaguchi, 

Watanabe, & Furukawa, 2011). Moreover, expression analyses of cardiac chamber markers, such as 

ventricular myosin heavy chain (vmhc), atrial myosin heavy chain (amhc) and cardiac myosin light 

chain2 (cmlc2) showed cardiac defects in SMYD3 morphants (Figure 5, right panel). Fujii and 

collaborators suggested that morphant phenotype may result from impaired maturation and/or 

delayed development of cardiomyocytes (Fujii et al., 2011). 

During vertebrate development, heart and skeletal muscle arise from mesoderm (Kiecker, Bates, & 

Bell, 2016), through regulation mediated by the TGF-β signaling pathway and its downstream 

effector SMAD transcription factors (Gaarenstroom & Hill, 2014; Sakaki-Yumoto, Katsuno, & 

Derynck, 2013). However, the molecular mechanisms of SMYD3 role in development and its 

interplay with other proteins involved in development are still elusive. 

Figure 5. Effect of Smyd3 knockdown in zebrafish embryos. (Adapted by Fujii et al., 2011). 
On the left, phenotype of embryos injected with smyd3-MO at 72 hpf. On the right, in situ hybridization 
of vmhc, amhc and cmlc2 in morphants, control embryos and without injection embryos at 24 hpf. 
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Recently, Smyd3 knockout mice have been generated. However, despite the widespread functions 

of SMYD3, mutant mice develop normally and are viable and fertile, suggesting compensatory 

roles of other SMYD family members or other methyltransferases (Mazur et al., 2014). 

Therefore, we decided to better investigate SMYD3 involvement during development by using two 

different models, mESCs and zebrafish, which recapitulate vertebrate embryonic development. 

1.4 MODEL SYSTEMS TO STUDY DEVELOPMENT 

1.4.1 MOUSE EMBRYONIC STEM CELLS (mESCs) 

Mouse embryonic stem cells (mESC) derive from the inner cell mass of the preimplantation embryo 

and are capable of self-renewal, meaning that they can be propagated in vitro in an undifferentiated 

state. When allowed to differentiate, they can go towards endo-, ecto-, and meso-dermal derivatives 

and give origin to all somatic cell types of the organism (Thomson et al., 1998; Zhou, Kim, Yuan, 

& Braun, 2011). To mimic the in vivo differentiation of totipotent stem cells, mESCs cultivated in 

vitro are differentiated towards embryoid aggregates, also known as embryoid bodies (EBs). The 

generation of ES cell lines initially require the presence of a monolayer of inactivated mouse 

embryonic fibroblasts and/or the addition of the cytokine leukemia inhibitory factor (LIF) to the 

medium, which can both promote self-renewal and suppress differentiation. Therefore, the self-

Figure 1.6. Schematic summary of factors involved in mESC differentiation in culture. 
Markers that identify the progression through the major steps of mESC lineage differentiation are depicted.  
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renewal property of mESCs depends on the balance among diverse signaling molecules, 

characterized by an integrated transcriptional network regulated by the pluripotency-associated 

transcription factors Oct4, Nanog and Sox2. The activity of these transcription factors combined 

with LIF signaling allow mESCs to grow in an undifferentiated state (Figure 6) (Jaenisch & Young, 

2008). LIF removal is sufficient to promote differentiation (Toyooka, Shimosato, Murakami, 

Takahashi, & Niwa, 2008). Moreover, growth factors that affect proliferation and survival of 

specific cell types (such as: basic fibroblast growth factor, bFGF; transforming growth factor, TGF; 

activin-A; bone morphogenic protein 4, BMP-4; hepatocyte growth factor, HGF; epidermal growth 

factor, EGF; nerve growth factor, NGF; retinoic acid, RA) are often added to the medium to 

promote differentiation towards a specific lineage (Kurosawa, 2007).  

In mouse, mesoderm and endoderm specification occurs during gastrulation, and this process 

involves the movement of epiblast cells through a structure called primitive streak (Gadue, Huber, 

Paddison, & Keller, 2006): in fact, epiblast cells acquire mesenchymal features and migrate along 

the primitive streak, in between the endoderm and ectoderm layers, thus forming the mesoderm. 

Further patterning of the newly formed mesoderm leads to the formation of mesendoderm in the 

anterior primitive streak, and posterior extraembryonic mesoderm in the posterior primitive streak. 

While mesendoderm will lead to the somitic or paraxial mesoderm and the definitive endoderm, 

posterior mesoderm will contribute to tail and cardiac mesoderm (Willems & Leyns, 2008). Several 

of the molecular players that control patterning of the embryo have been characterized by 

complementing mouse models with ES cell models (Tam & Loebel, 2007). In fact, cultured early 

primitive ectoderm-like (EPL) cells, deriving from ESCs, share many properties with early 

primitive ectoderm and also with cells derived from the late primitive ectoderm, including 

morphology and increased expression of early and late primitive ectoderm markers, Fgf5 and Otx2 

(Figure 6) (Vassilieva et al., 2012). In the mouse model, the ectoderm specification is then followed 

by the expression of late mesoderm and endoderm markers. Wnt signaling is required for the 

induction of mesoderm by inducing epiblast cells to adopt a paraxial mesodermal fate and to 

maintain the expression of the mesodermal transcription factor T (Brachyury) (Yamaguchi, Takada, 

Yoshikawa, Wu, & McMahon, 1999). The regulation of Brachyury expression by β-catenin activity 

is also confirmed by using differentiating mESCs (Turner, Rue, Mackenzie, Davies, & Martinez 

Arias, 2014). Brachyury is considered the earliest marker of mesodermal and also endodermal 

differentiation, both in ESC studies and during gastrulation (Figure 6) (Faial et al., 2015; Murry & 

Keller, 2008). Therefore, Nodal signaling induces differentiation towards mesendoderm in ESCs by 

inducing the expression of Goosecoid (Gsc), Mix-like homeodomain protein 1 (Mixl1), and other 

key differentiation genes (Figure 6) (X. Chen et al., 1997; Hart et al., 2002). 
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With the progression of embryonic development, mesoderm migrates and develops in tissues 

including endothelium and blood (Williamson et al., 2008). Hemangioblasts are the common 

progenitors for hematopoietic and endothelial cells and they can be detected at the midstreak stage 

of gastrulation (Huber, Kouskoff, Fehling, Palis, & Keller, 2004). Besides, ESC-derived embryoid 

bodies contain hemangioblasts (K. Choi, Kennedy, Kazarov, Papadimitriou, & Keller, 1998). Both 

in the ES-cell differentiation system and the developing embryo, the expression of Brachyury 

overlaps with the expression of the vascular endothelial growth factor 1 receptor 2, Flk1 and the 

formation of the hemangioblast-like cells (Bry+/Flk-1+ cells) (Faloon et al., 2000; Williamson et al., 

2008). This is followed by the development of Bry+/Flk-1+ cardiovascular progenitors which are 

capable of generating cardiomyocytes, smooth muscle cells, and endothelium (Kattman, Huber, & 

Keller, 2006). Subsequently, cardiovascular progenitors express the Isl1 and Nkx2.5 transcription 

factors, which are common markers in the three major cardiovascular lineages: endothelial, cardiac, 

and smooth muscle cells (Moretti et al., 2006).   

mESCs have been widely used as a model to decipher the epigenetic mechanisms of cell fate 

determination and cell homeostasis (Zhou et al., 2011). Cardiac lineage commitment during heart 

development requires the intimate interaction between cardiac-specific transcription networks and 

epigenetic modifiers. In fact, several master cardiac transcription factors, such as Nkx2.5, Isl-1, 

Mef2c, GATA-4 and Tbx-5, have been shown to form complexes with epigenetic modifiers. These 

interactions result in epigenetic modifications of cardiac-specific genes’ promoters, thus regulating 

gene expression during cardiac lineage specification (Zhou et al., 2011).  

The molecular mechanisms underlying ES cells identity and their potential for differentiation are 

still not fully understood (Sese, Barrero, Fabregat, Sander, & Izpisua Belmonte, 2013). It has been 

shown that in undifferentiated ES cells, pluripotent genes are located in euchromatic 

transcriptionally active loci, whereas genes associated with differentiation are transcriptionally 

silent. Moreover, an involvement of histone PTMs has recently emerged as a pivotal epigenetic 

event for the regulation of the pluripotent state of ES cells and for cell fate determination (Meissner, 

2010). 
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1.4.2 ZEBRAFISH AS A MODEL SYSTEM FOR DEVELOPMENT 

Zebrafish (Danio rerio) represents a monophyletic species in the Cyprinidae family of teleost fish. 

Zebrafish are tropical fish living in small rivers, streams, paddy fields and channels in Southeast 

Asia. They possess a unique combination of features that makes them particularly amenable to 

experimental and genetic analyses of early vertebrate development (Holtzman, Iovine, Liang, & 

Morris, 2016).  

Like other teleost, zebrafish underwent a whole-genome duplication event about 270 million years 

ago. As a result, 71% of human genes have at least one orthologue in zebrafish. Among orthologous 

human genes, 47% have a single zebrafish counterpart, whereas 24% have two (Howe et al., 2013). 

Moreover, the Genome Reference Consortium provided the latest zebrafish reference genome 

assembly, GRCz11 (https://www.ncbi.nlm.nih.gov/grc/zebrafish). Extensive expressed sequence 

tag (EST) sequencing and mapping projects are still on-going 

(https://genecollections.nci.nih.gov/ZGC/). 

Since zebrafish adults are less than 3.5 cm in length, many thousands can be housed in a confined 

laboratory space. Zebrafish have a relatively short generation time, reaching the adulthood in nearly 

three months after fertilization, with a lifespan of two-three years. They are prolific breeders, 

generating approximately two hundred of embryos per week. As a result, hundreds of eggs from 

several breeding pairs can be gathered for genetic or experimental analyses. 

In particular, zebrafish embryos are well suited for cell biology studies because they are fertilized 

and develop externally. These features are also a great advantage over mammalian systems for 

imaging during development. The fertilized embryos develop rapidly, making it possible to observe 

the entire course of early development in a short time. For instance, gastrulation is complete within 

10 hours post fertilization (hpf) and somitogenesis begins at about 9 hpf. At 24 hpf the zebrafish 

embryo has already formed all the major tissues and many organ precursors, such as a beating heart, 

circulating blood, nervous system, eyes and ears, all of which can be readily observed under a 

simple dissecting microscope. Larvae hatch by about 2.5 days post fertilization (dpf) and they are 

swimming and feeding by 5-6 dpf (Beis & Stainier, 2006; Weinstein, 2002). 

To date, numerous genetic screens have been performed in zebrafish, identifying mutants with very 

interesting phenotypes. These investigations contributed to the comprehension of basic vertebrate 

biology and vertebrate development. Screens in zebrafish not only enabled the systematic definition 

of a large range of early developmental phenotypes, but they contributed also more generally to the 

understanding of factors that control the specification of cell types, organ systems and body axes of 

vertebrates (Amsterdam et al., 1999; Driever et al., 1996; Haffter et al., 1996). 
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A variety of tools and methodologies have been developed to exploit the advantages of the 

zebrafish system. Zebrafish embryos and early larvae are optically clear, allowing for direct, non-

invasive observation or experimental manipulation at all stages of their development such as whole 

mount in situ hybridization (WISH) analysis of gene expression patterns with extraordinarily high 

resolution (Vogel & Weinstein, 2000). The externally developing embryos are readily accessible to 

experimental manipulation by techniques such as microinjection of biologically active molecules 

(RNA, DNA or antisense oligonucleotides), cell and tissue transplantation/ablation, fate mapping 

and cell lineage tracing (Holder & Xu, 1999; Mizuno, Shinya, & Takeda, 1999; Nicoli, Ribatti, 

Cotelli, & Presta, 2007; Stainier, Lee, & Fishman, 1993). Different tissue-specific transgenic lines 

which label developing tissues or organs are available and they allow the observation of dynamic 

processes that are hard to visualize in other systems (Gut et al., 2013; Holtzman et al., 2016). 

Therefore, clear embryos are also well suited for different imaging tools, like confocal microscopy 

and selective plane illumination microscopy (SPIM) (Huisken & Stainier, 2009; Mickoleit et al., 

2014; Reischauer, Arnaout, Ramadass, & Stainier, 2014). 

Several strategies enable researchers to easily generate mutations in specific loci. Indeed, zinc-

finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered 

regularly interspaced short palindromic repeats (CRISPR) combined with CRISPR-associated 

proteins 9 (Cas9), provide new genome editing approaches for establishing genetic knock-out and 

knock-in fish lines (M. Li, Zhao, Page-McCaw, & Chen, 2016). 

ZEBRAFISH GASTRULATION 

Zebrafish embryos allow many genetic and experimental advantages to study vertebrate 

gastrulation. For instance, several mutants showing defects in morphogenesis during gastrulation 

are available (Heisenberg & Tada, 2002). 

Zebrafish gastrulation starts around 4 hpf, when the embryo has reached the blastula stage after 

meroblastic cleavage. The embryo is formed by a mass of cells, called blastoderm, residing atop the 

big yolk cell. The blastoderm consists of an epithelial enveloping layer (EVL) and a non-epithelial 

deep layer (DEL), from which all embryonic tissues arise (Heisenberg & Tada, 2002; Montero & 

Heisenberg, 2004). Beneath and vegetally to the blastoderm we find the yolk syncytial layer (YSL), 

formed by the yolk syncytial nuclei. At this time, EVL and DEL cells start to spread over the yolk 

cells through epibolic movements. In the DEL, epiboly is initiated by radial intercalation of blastula 

deep cells which move towards more superficial layers. This results in a thinning of DEL and an 

extension of its margin over the yolk (Figure 7). Conversely, the EVL does not go through radial 

intercalation, but it moves towards the vegetal pole. YSL also undergoes epiboly towards the 

vegetal pole (Lepage & Bruce, 2010). When the YSL and the blastoderm cover approximately half 
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of the yolk (50% epiboly), the germ layers start to be morphologically distinct. At this stage, 

mesendodermal progenitors internalize and accumulate at the blastoderm margin, forming the germ 

ring. The germ ring is organized in an inner hypoblast, which is formed by the internalizing 

mesendodermal progenitors, and a superficial epiblast layer composed by non-involuting 

ectodermal progenitors (Figure 7). As soon as the germ ring is formed, both hypoblast and epiblast 

converge towards the dorsal side of the gastrula and extend along the forming antero-posterior axis. 

In particular, at the dorsal side of the embryo these convergence movements establish a thickening 

in the germ ring, called shield, which gives rise to the embryonic organizer. Mesendodermal and 

ectodermal progenitors converging towards the dorsal side undergo medio–lateral cell 

intercalations, leading to a thinning of the forming body axis along its medio–lateral extent and a 

concomitant elongation along the antero–posterior axis (Figure 7) (Solnica-Krezel, 2006).  

Figure 7. Zebrafish gastrulation movements (Rohde and Heisenberg, 2007). 
1-4A, diagrams of gastrulation stages. 1-3B, closer views illustrate different embryonic tissue layers and 
gastrulation cell movements. Convergent extension movements are represented in 4B. 
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Like in other vertebrates, during zebrafish gastrulation, signaling molecules play pivotal roles in 

axis determination and germ layer induction and patterning. Indeed, the Nodal genes, squint 

(ndr1/sqt) and cyclops (ndr2/cyc), are expressed in both the YSL and the marginal blastoderm cells, 

and cyc;sqt double mutant embryos lack endodermal and mesodermal tissues (Erter, Solnica-

Krezel, & Wright, 1998; Feldman et al., 1998; Rebagliati, Toyama, Haffter, & Dawid, 1998; K. 

Sampath et al., 1998). These observations suggest an essential role of Nodal ligands in zebrafish 

mesendoderm induction and demonstrate that the YSL is responsible for the Nodal signaling 

emanation, at the onset of gastrulation. It has been demonstrated that low concentrations of Nodal 

can induce mesodermal markers, while high Nodal concentrations induce endodermal markers 

(Dougan, Warga, Kane, Schier, & Talbot, 2003; Gritsman, Talbot, & Schier, 2000; Thisse, Wright, 

& Thisse, 2000).  

Smad2 and Smad3 have been identified as specific mediators of Nodal (including Activin and Vg1) 

pathways, while Smad1, Smad5 (called Somitabun in zebrafish) and Smad8 mediate the BMP 

pathway. Phosphorylated Smads translocate into the nucleus and promote transcriptional activation 

of specific targets by binding to specific DNA-binding factors (Kimelman, 2006; Schier & Talbot, 

2005). For instance, Smad association to the transcription factor Mixer (also known as Bonnie, 

Bon) results in activation of endoderm genes and endoderm formation, while the binding of Smads 

to FoxH1 (also known as Schmalspur, Sur) leads to mesoderm transcripts expression and mesoderm 

formation (Kimelman, 2006). 

Endoderm induction, is regulated by Nodal signaling through activation of endoderm-specific 

genes. Among these genes there are the Sox gene casanova (cas), the GATA gene faust, and the 

homeobox genes bon and mezzo (Schier & Talbot, 2005). faust mutants show that gata5 is required 

for the normal expression of nkx2.5 and for multiple aspects of cardiac and endoderm development 

(Reiter et al., 1999). cas encodes a Sox-type transcription factor, which is expressed in endodermal 

progenitors in the marginal region of the late blastula embryo. Casanova expression is sufficient to 

induce endodermal differentiation. Indeed, in the absence of cas, endoderm progenitors differentiate 

towards mesodermal derivatives (Dickmeis et al., 2001; Kikuchi et al., 2001; Sakaguchi, Kuroiwa, 

& Takeda, 2001). It has been also demonstrated that the maternal T box transcription factor 

Eomesodermin (Eomes) is required for endogenous endoderm induction. Physically interacting with 

the Mix-type homeodomain transcription factor Bon and Gata5, Eomes promotes endoderm 

induction in marginal blastomeres by facilitating the assembly of a transcriptional activating 

complex on the casanova promoter (Bjornson et al., 2005). 
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1.5 SMYD3 IN CANCER 

Cancer progression is a multistep process resulting from altered gene expression through genetic 

and epigenetic mechanisms (Hanahan & Weinberg, 2011). Several reports show how SMYD3 plays 

a role in cellular migration and invasion. This feature may be pivotal for tumor cells local invasion 

and ability to metastasize to distant sites. Since SMYD3 has been found to be upregulated in liver 

and colorectal carcinomas and to be related to the growth, proliferation and invasion of cancer cells 

(Hamamoto et al., 2004), most of the studies have been focused on a better characterization of 

SMYD3 role in tumor growth and have considered SMYD3 as an attractive candidate for 

therapeutic targeting in cancer.  

SMYD3 is also overexpressed in breast cancer and activates the transcription of oncogenes 

(WNT10B, N-myc, RIZ and hTERT), cell cycle genes (cyclinG1 and CDK2) and components of 

signal transduction pathways (STAT1, MAP3K11 and PIK3CB) (Ren et al., 2011). Similar results 

were obtained also in HeLa cells, in which SMYD3 downregulation reduced the ability of cells to 

proliferate, form colonies and migrate (Wang et al., 2008). SMYD3 promotes up-regulation of the 

MMP-9 metalloprotease, which is involved in tumor migration and invasion, both in vitro and in 

zebrafish xenograft model (Cock-Rada et al., 2012). Luo and collaborators reported that SMYD3 

promotes the MRTF-A-mediated upregulation of myosin regulatory light chain 9 (MYL9), which is 

involved in cell movement, deformation process and cell migration (Luo et al., 2014). 

SMYD3 loss in knockout mice inhibits the development of pancreatic and lung tumorigenesis, 

highlighting the importance of SMYD3 during tumorigenesis (Mazur et al., 2014). 

Recently, Sarris and collaborators deepened the characterization of SMYD3 nuclear function, which 

is essential to drive cancer-related gene expression programs. SMYD3 activates the transcription of 

several cell cycle regulators, Myc and Ctnnb1 oncogenes, components of the IL6-Jak-Stat3 cascade 

and EMT markers (Sarris et al., 2016). SMYD3 co-occupies already active chromatin regions 

occupied also by RNA Pol II and H3K4me3, and act as a “potentiator” of transcription. The 

proposed model suggests that SMYD3 selects its targets not necessarily with the recognition of a 

specific sequence, but through a combinatorial outcome of interaction with specific DNA sequence, 

with DNA binding factors, binding to the RNA Pol II and also interactions with H3K4me3 thanks 

to SMYD3 C-terminal domain. This functional specificity of SMYD3 is translated into the positive 

regulation of proliferation and cancer-promoting genes (Sarris et al., 2016). 

A recent work reported a novel role for SMYD3 in regulating homologous recombination (HR) 

repair and maintaining genome stability. SMYD3 knockdown in breast cancer cell lines leads to a 

decreased expression of HR associated genes. This causes DNA-damage hypersensitivity, 
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decreased levels of repair foci, and an impairment of homologous recombination (Y. J. Chen, Tsai, 

Wang, & Teng, 2017). 

1.6 EPITHELIAL-MESENCHYMAL TRANSITION (EMT) IN CANCER 

PROGRESSION 

The epithelial-mesenchymal transition (EMT) is a fundamental process that occurs in both 

development and disease progression. During EMT, epithelial cells lose cell-cell junctions and 

polarity to gain a motile mesenchymal phenotype (Figure 8). EMT is a reversible process, in fact, 

mesenchymal cells can revert to epithelial cells via mesenchymal-epithelial transition (MET). In 

particular, MET is important for final developmental cellular differentiation (Skrypek, Goossens, 

De Smedt, Vandamme, & Berx, 2017) and for the growth of secondary metastasis (T. Chen, You, 

Jiang, & Wang, 2017). 

Three classes of EMT are associated with different biological settings responsible for distinct 

functions. In primary, or type I, cells undergo several rounds of EMT and MET during 

implantation, embryogenesis and organogenesis. Secondary (type II) EMT is associated with wound 

healing, tissue regeneration, and organ development, whereas, tertiary EMT is induced in 

tumorigenesis and metastasis formation (Singh, Yelle, Venugopal, & Singh, 2017). 

In physiological conditions, epithelial cells are characterized by cell-cell cohesion and tissue 

integrity, while mesenchymal cells correlate with migration and invasiveness (Figure 8). Alterations 

in cell morphology, cell–matrix adhesion, and acquisition of migration abilities are necessary events 

for the transition. Therefore, loss of the epithelial marker E-cadherin alone has been shown to 

initiate EMT (Singh et al., 2017). E-cadherin is responsible for maintaining intact cell–cell 

interactions and stabilizing the cytoskeleton, precluding tumor cell mobility, and subsequent 

dissemination. Thus, its downregulation destabilizes adherent junctions between cells and cell 

polarity, leading to a mesenchymal phenotype with migratory capabilities (Ghahhari & Babashah, 

2015; Wijnhoven, Dinjens, & Pignatelli, 2000). During the transition, other key epithelial markers 

are lost, such as Mucin-1, Cytokeratins, Occludin, Desmoplakin and Claudins. On the contrary, 

mesenchymal markers, including N-cadherin, Vimentin, Smooth Muscle Actin (αSMA), 

Fibronectin, and Vitronectin are gained during the process (Figure 8) (Serrano-Gomez, Maziveyi, & 

Alahari, 2016). 
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The interplay of different inducers, like transforming growth factor (TGF-β), fibroblast growth 

factor (FGF), receptor tyrosine kinases (RTKs), WNT/b-catenin, NOTCH and Hedgehog signaling 

pathways, is required for impairing the endothelial function (Ghahhari & Babashah, 2015; 

Goswami et al., 2016; Kalluri & Weinberg, 2009).  

In addition, the EMT program is modulated by microRNAs and long noncoding RNAs (lncRNAs), 

as well as epigenetic and post-translational modifications, including methylation of cytosine 

residues in DNA CpG dinucleotides and histone modifications at N-terminal tails (Prieto-Garcia, 

Diaz-Garcia, Garcia-Ruiz, & Agullo-Ortuno, 2017; Serrano-Gomez et al., 2016). 

More importantly, many transcription factors (TFs) have been identified as key regulators of EMT. 

They cooperate repressing epithelial genes and activating transcription of mesenchymal genes 

(Prieto-Garcia et al., 2017; Singh et al., 2017; Skrypek et al., 2017). For instance, SNAIL1, 

SNAIL2 (also known as Slug), and zinc finger E-box binding proteins (ZEBs) directly repress E-

cadherin transcription, by binding to E-boxes present on the CDH1 promoter (Bolos et al., 2003). 

Additionally, SNAIL1 up-regulates the expression of several matrix metalloproteinase genes, 

including MMP9, which are essential for the basement membrane degradation and subsequent 

tumor cell invasion (Jorda et al., 2005; Kessenbrock, Plaks, & Werb, 2010). Other EMT-inducing 

TFs, are Kruppel-like factor (KLF) proteins, Forkhead box (FOX) proteins, Grainyhead-like 

(GRHL) proteins, the T-box protein Brachyury and Beta helix-loop-helix (βHLH) proteins, like 

Twist1 and Twist2 (Prieto-Garcia et al., 2017; Singh et al., 2017). 

In tumorigenesis, EMT leads to the acquisition of several mesenchymal characteristics, allowing 

cancer cells to leave the primary tumor, to survive in the circulation and to invade a secondary site. 

Figure 1.8. Epithelial-mesenchymal transition (Kalluri & Weinberg, 2009). 
Functional transition of polarized epithelial cells into mobile and ECM component–secreting mesenchymal 
cells defines the EMT. The epithelial and mesenchymal cell markers commonly used are listed. Co-
localization of these two sets of distinct markers defines an intermediate phenotype of EMT, indicating 
cells that have passed only partly through an EMT. 
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Once arrived at the metastatic site, cells can re-acquire an epithelial phenotype (MET) promoting 

colonization and developing metastasis (Figure 9) (Prieto-Garcia et al., 2017; Singh et al., 2017). 

 

 

Several studies demonstrated that TGF-β signaling induces EMT in diverse cancer types (Song, 

2007). In particular, TGF-β induces EMT through activation of SMAD2/3 signaling or other non-

canonical signaling pathways, such as PI3K/AKT or MAPK/ERK pathways (Massague, 2012). In 

the canonical TGF-β signaling pathway, TGF-β binds to its cell-surface receptors, which 

phosphorylate SMAD2 and SMAD3 (Massague, 2012). Once activated, SMAD2 and SMAD3 

translocate into the nucleus where they downregulate epithelial genes and upregulate mesenchymal 

genes by associating with SMAD4 and other DNA-binding transcription factors and cofactors 

(Cantelli, Crosas-Molist, Georgouli, & Sanz-Moreno, 2017; Massague, 2012). 

As mentioned above, recent evidences have demonstrated that SMYD3 acts as a transcriptional 

regulator of EMT genes in lung and colon cancer (Sarris et al., 2016). Therefore, we decided to 

better investigate SMYD3 transcriptional role during EMT in breast cancer cells (Figure 10). 

  

Figure 1.9. EMT in cancer progression (Kalluri and Weinberg, 2009).  
Progression from normal epithelium to invasive carcinoma undergoes several stages. Epithelial cells lose 
their polarity and detach from the basement membrane. The composition of the basement membrane also 
changes, altering cell-ECM interactions and signaling networks. Subsequently, cancer cells are able to enter 
the circulation and exit the blood stream at a remote site, where they may form metastases, which may 
involve METs and thus a reversion to an epithelial phenotype.  
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Figure 1.10. Schematic representation of SMYD3 role in cancer progression. 
SMYD3 promotes cancer progression through different mechanisms. 
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 1.7 ZEBRAFISH IN XENOGRAFT CANCER MODELS 

In addition to developmental studies, zebrafish has emerged as a suitable model for cancer research. 

Indeed, the feasibility of xenografting human cells to zebrafish has been documented by several 

reports until now. A high interspecies conservation of molecular pathways exists between zebrafish 

and mammals. Additionally, a plethora of human oncogenes and tumor suppressor genes have 

zebrafish homologues (B. Zhang, Xuan, Ji, Zhang, & Wang, 2015). Compared to 

immunopermissive mice, xenotransplantation of human malignant cells of different origins into 

zebrafish may represent a helpful approach to study different aspects of tumor growth, including 

self-renewal of cancer stem cells (CSCs), tumor angiogenesis, invasiveness and metastatic 

behaviour (Konantz et al., 2012; B. Zhang et al., 2015). Moreover, a successful tumor engraftment 

in zebrafish can provide a readout within a few days (B. Zhang et al., 2015).  

Recently, zebrafish has become a cost-effective alternative to mammals to study drug efficacy and 

toxicity. In fact, small molecular weight compounds can be dissolved in fish water and their impact 

can be investigated real-time (Konantz et al., 2012; Tobia, De Sena, & Presta, 2011; B. Zhang et al., 

2015). Therefore, zebrafish xenotransplantation may also contribute to better assess drug response 

and high throughput screening of novel anti-cancer agents (Tobia et al., 2011; B. Zhang et al., 2015; 

Zhao, Huang, & Ye, 2015). 

Tumor cell xenotransplantation can be performed both into adult and juvenile zebrafish, and thanks 

to transparent or transgenic fluorescent lines tumor engraftment, growth, and metastasis are easily 

observed. However, juvenile and adult zebrafish need immune suppression to avoid rejection, 

because immature T cells arise in the thymus by 3–4 dpf (Konantz et al., 2012; B. Zhang et al., 

2015).  

On the contrary, injection of human cancer cells in embryos at 48 hpf does not require immune 

suppression. Therefore, zebrafish embryos at 2 dpf are widely considered the ideal developmental 

stage for xenografting human cells. At this stage, different injection sites, such as blastodisk, yolk 

sac, hindbrain ventricle, bloodstream and perivitelline space, have been reported (B. Zhang et al., 

2015). 

Since zebrafish represents a powerful model to study tumor progression, we decided to employ 

zebrafish xenografts to evaluate the ability of the SMYD3 inhibitor BCI-121 (Peserico et al., 2015) 

to impair breast cancer cell migration. BCI-121 is a small molecule that has been identified, among 

other several candidates, through a virtual screening to identify new SMYD3 inhibitors. It has been 

reported that BCI-121 can induce a significant reduction in SMYD3 activity both in vitro and in 

colon rectal cancer cells (Peserico et al., 2015).  
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2 AIMS OF THE PROJECT 

1. The current knowledge about SMYD3 is mainly related to its role in tumor progression. 

Nevertheless, there are also few evidences on its involvement in muscular and cardiac 

development in zebrafish. Therefore, the focus of my PhD project was to better characterize 

SMYD3 function in development. In order to assess this aim, we decided to use a widely 

used model to study development, mESCs. In addition, in order to confirm the results 

obtained in mESCs, we decided to use zebrafish as a second developmental model. Both of 

these models represent well-suited systems to investigate developmental processes. 

 

2. SMYD3 promotes cancer cell proliferation and invasion, and it’s overexpressed in several 

cancer types. Recently, it has been reported by Sarris and collaborators that SMYD3 acts as 

a “potentiator” of transcription for proliferation and EMT genes, in cancer progression. 

However, the molecular mechanisms through which SMYD3 promotes tumor cells 

migration and invasion are still elusive. Therefore, we aimed at elucidating the underlying 

dynamics of SMYD3-mediated regulation of EMT. The SMAD-mediated TGF-β signaling 

pathway is responsible for EMT in diverse types of cancer, especially breast cancer. For this 

reason, we employed breast cancer cells as a model system and dissected SMYD3 link with 

the TGF-β/SMAD signaling pathway. In addition, we also employed xenografts in zebrafish 

as a model system to investigate the metastatic process. 
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3 MAIN RESULTS AND CONCLUSIONS 

3.1 SMYD3 IN DEVELOPMENT 

A considerable amount of data about SMYD3 is related to its function in different cancer lines. 

Since a previous study suggested that SMYD3 is necessary for cardiac and skeletal muscle 

formation in zebrafish embryos (Fujii et al., 2011), the main focus of our studies was to clarify the 

role played by SMYD3 throughout embryonic development. In order to study SMYD3, we used 

mESCs as a model that recapitulates embryonic development. In particular, we focused our 

attention on mesodermal lineage differentiation. In parallel, we wanted to investigate SMYD3 role 

in an in vivo model. Therefore, we chose zebrafish to perform our analyses, because it is widely 

considered a well-suited developmental model. 

First, we evaluated by qRT-PCR SMYD3 expression throughout mESCs differentiation. After a 

decrease at early stages, SMYD3 is stably expressed in mESCs. Additionally, immunofluorescence 

assays suggested that its expression is not restricted to nuclei, but is also detectable in cytoplasm.  

Therefore, we decided to investigate whether SMYD3 has a role in mESC differentiation. We 

performed SMYD3 knock down through short hairpin RNA-interference and we evaluated 

pluripotency genes expression levels by qRT-PCR. Nanog, KLF-4 and Oct4 expression levels were 

comparable in both SMYD3 depleted mESCs and Sh-Scramble ones, suggesting that SMYD3 

depletion does not affect mESC stemness. 

We also wanted to assess if SMYD3 is involved in the regulation of mESC differentiation potential. 

Following leukemia inhibitory factor (LIF) removal, we prompted mESCs to form embryoid bodies 

(EBs). Subsequently, we analyzed mRNA expression pattern of several lineage markers at different 

time points of differentiation. We observed that the expression levels of the mesendodermal 

markers Eomes, Mesp1, Sox17 and FoxA2 were significantly increased in SMYD3 depleted EBs in 

comparison with Sh-Scramble EBs. On the contrary, the expression pattern of the primitive 

ectodermal markers Fgf5 and Otx2 was similar in SMYD3 depleted EBs and control ones. 

In parallel, to investigate the role of smyd3 in zebrafish development, we performed smyd3 knock-

down by injecting in 1-2 cell stage embryos a translation blocking morpholino already published 

and validated (Fujii et al., 2011). We decided to use only the translation blocking morpholino 

because, according to Fujii and colleagues, the injection of the ATG morpholino has a more 

pronounced and clearer effect (in terms of embryos’ head and trunk defects) than that of the 

splicing morpholino. Therefore, we decided that double or co-injection of the two morpholinos in 

our experiments was not necessary. smyd3 knocked-down embryos exhibited heart and trunk 

defects, confirming the phenotype observed by Fujii and collaborators. In particular, we observed 
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different grades of pericardial edema, impaired blood circulation and curved trunk in smyd3 

morphants compared to embryos injected with standard control morpholino. Therefore, we divided 

smyd3 knocked-down embryos in four phenotypic classes following an increased severity. 

Afterwards, we decided to verify the expression of genes involved in zebrafish early developmental 

stages. In particular, we were interested in analyzing genes whose expression is associated with the 

three germ layers during zebrafish gastrulation. Through in situ hybridization (ISH) analyses 

performed at 50% epiboly stage, we observed an increase of the mesendodermal markers gata6, 

gata5, mespaa and snai1a in knocked-down embryos if compared to standard control ones. 

Through ISH, we also observed a signal increase of sox17 expression in smyd3 morphants at 70% 

epiboly stage. 

Subsequently, we focused our attention on some dorso-ventral pattern genes because we first 

observed by ISH an increased expression of the dorsal marker goosecoid (gsc) in knocked-down 

embryos at 50% epiboly stage. This effect was accompanied also by an expression enhancement of 

another dorsal marker, chordin (chd). As a consequence, a following reduction in the expression of 

the ventral marker gata2 was detected by ISH at the same developmental stage in smyd3 morphants. 

All these results suggest that SMYD3 plays a role in mesendodermal cell fate induction in zebrafish 

embryos, corroborating the data obtained using mESCs as a model. 

As mentioned above, we previously demonstrated that SMYD3 depleted EBs are likely to 

differentiate towards mesendodermal lineage. The next step of our study was to investigate whether 

the increase of mesendodermal precursors in SMYD3 depleted EBs resulted also in an enhancement 

of differentiated cells deriving from mesoderm. Since Fujii and collaborators demonstrated that 

SMYD3 is necessary for a correct cardiomyocyte formation in zebrafish embryos, we prompted Sh-

SMYD3 and control cells to differentiate towards cardiomyocytes. Therefore, we evaluated, 

through qRT-PCR, the expression levels of early markers of multipotent cardiovascular progenitors. 

Indeed, Nkx2.5 and Isl-1 showed an upregulation in SMYD3 depleted EBs in comparison with Sh-

Scramble EBs. Regarding the second mesodermal marker Flk1, immunoblot analysis displayed an 

anticipation of Flk1 protein expression from day 8 to day 6 in SMYD3 depleted EBs. This result 

was also confirmed by immunofluorescence assays in Sh-SMYD3 and Sh-Scramble EBs at day 5 of 

differentiation.  

In order to assess whether SMYD3 depletion also increases the expression of late cardiovascular 

lineage markers in EBs, we analyzed transcript levels of late cardiac markers, such as TnnT2, Myh7, 

and Myl7, which are important component of the contractile machinery. By qRT-PCR, we detected 

an increased expression of TnnT2, Myh7, and Myl7. This finding was also accompanied by a higher 

percentage of beating SMYD3 depleted EBs if compared to Sh-Scramble ones.  
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Since Flk1 positive cells give rise to cardiomyocytes, smooth muscle and endothelial cells 

populations, we decided to query the expression levels of smooth muscle actin (αSMA) and 

endothelial marker CD31. Both protein and mRNA levels of αSMA were increased in SMYD3 

depleted EBs at day 10 of differentiation. Similarly, immunofluorescence experiments suggested an 

increase of CD31 at day 10.  

In order to better investigate if SMYD3 knockdown affected mesodermal lineages in vivo, we 

decided to verify the expression of the endothelial marker kinase insert domain receptor like, kdrl, 

the Flk1 orthologue in zebrafish. Through in situ hybridization experiments performed on 48 hpf 

embryos, we found an upregulation of kdrl in smyd3 knocked-down ones. In particular, a kdrl 

upregulation was detectable in cardinal vein, posterior caudal vein and intersegmental vessels. 

3.2 SMYD3 IN CANCER  

As a side project, I also contributed to the elucidation of SMYD3 role in Epithelial Mesenchymal 

Transition (EMT) in breast cancer cell lines (Part III).  

3.2.1 MAPPING SMYD3/SMAD3 INTERACTIONS 

Recently, Sarris and collaborators demonstrated that SMYD3 potentiates transcription of many 

cancer-promoting genes during liver and colon cancer development, including EMT genes. In 

particular, SMYD3 is required for transcription of epithelial mesenchymal transition (EMT) key 

regulators (Sarris et al., 2016).  EMT is initiated and maintained by several signaling pathways, 

among which TGFβ signaling plays a pivotal role. TGFβ pathway activation results in SMAD2 and 

SMAD3 phosphorylation and translocation into the nucleus, where they promote transcriptional 

activation of EMT-inducing transcription factors.  

The aim of this project was to better describe the underlying dynamics of SMYD3-mediated 

regulation of EMT and investigate SMYD3 link with the TGFβ/SMADs signaling pathway. 

During my Ph.D., I contributed to better characterize the interaction between SMYD3 and SMAD3. 

First, I overexpressed in HEK293T the human wild type forms of the two proteins and subsequently 

performed a co-Immunoprecipitation (co-IP). Wild type SMYD3 and SMAD3 co-

immunoprecipitated, suggesting an interaction between them in cell extracts. Therefore, we wanted 

to identify SMYD3 regions responsible for the interaction with SMAD3. I performed co-IP with 

four SMYD3 mutants that lack different regions of the protein and full-length SMAD3. SMYD3 

mutants were previously generated in our lab. I mapped the region of interaction, since only 

SMYD3 mutants that contained the C-terminal domain co-immunoprecipitated with SMAD3, 

indicating that C-termini is necessary for the interaction. 
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 In addition, we wanted to understand whether the interaction between SMYD3 and SMAD3 was 

direct, or potentially mediated by additional partners. First, I produced in E. coli and purified a 

catalytically active recombinant form of SMYD3 through affinity chromatography. After GST tag 

cleavage, I performed the co-IP of recombinant SMYD3 and commercial available recombinant 

SMAD3. The result of this experiment pointed out that there is a direct interaction between the two 

proteins. 

Since SMYD3 methylates and regulates several non-histone targets, regulating their function, we 

hypothesized that SMYD3 could also methylate SMAD3. Therefore, I performed an in vitro 

methylation assay and as a control I used a purified recombinant form of MAP3K2 1-350 aa, since 

SMYD3 efficiently methylates MAP3K2 (Mazur et al., 2016). However, I found that SMYD3 does 

not methylate SMAD3 in vitro, when compared to MAP3K2 1-350 methylation (Figure 1). 

 

 

 

3.2.2 MDA-MB-231 ZEBRAFISH XENOGRAFT 

Besides, we wanted to assess SMYD3 inhibitor BCI-121 to impair breast cancer cell migration 

employing zebrafish xenografts. Together with a collaborator in the Zebrafish laboratory, we 

injected MDA-MB-231 cells in subperidermal space of 48 hpf zebrafish embryos. I treated the two 

sperimental groups with DMSO or with 50 µM BCI-121. At 48 hours post injection, I evaluated the 

presence of circulating grafted cells into the head and trunk/tail region. These experiments showed a 

significant decrease of circulating grafted cells in embryos treated with SMYD3 inhibitor BCI-121 

compared to control embryos. 

Figure 3.1. SMYD3 doesn’t methylate SMAD3. 
Left panel, autoradiography showing methylation signal of MAP3K2 1-350 by SMYD3. Right panel, 
SDS-PAGE of each sample after ON incubation. 
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FINAL CONCLUSIONS 

Overall, our results suggest that SMYD3 plays a negative role in modulating differentiation towards 

mesendoderm in mESCs. These data are also confirmed in zebrafish. We hypothesize that SMYD3 

may modulate Nodal/Activin signaling pathway, which is necessary for mesendodermal 

commitment during embryonic development. The physical interaction between SMAD3 and 

SMYD3 may suggest a negative regulation in the specific context of development. However, 

further experiments have to be done to understand the mechanism through which SMYD3 

negatively regulates SMAD3 in development. 

We can speculate that smyd3 morphants would suffer of a depletion of muscle/cardiac cells due to 

an anticipated expression of this lineage determinants and the heart and muscle phenotype could be 

associated with this depletion, however additional experiments are needed to confirm this 

hypothesis. 

Additionally, we started to characterize SMAD2/3 phosphorylation levels during mESCs 

differentiation and found that p-SMAD2/3 (Ser 423/425) levels increase in Sh-SMYD3 EBs, 

suggesting that the Nodal signaling pathway is more active in absence of SMYD3 in mESCs. This 

data is consistent with increased upregulation of mesendodermal markers Brachyury, Eomes, 

Figure 3.2. SMAD2/3 phosphorylation increases after SMYD3 knock down. 
Immunoblot of phospho and total SMAD2/3 in proliferating mESCs and day 4 EBs, in control and SMYD3 
depleted cells. 
 



 

 35 

Mesp1. 

Our findings in cancer cells show that SMYD3 interacts with SMAD3 and that SMYD3 promotes 

SMAD3 transcriptional targets in EMT. However, in mESCs depleted of SMYD3 a parallel 

mechanism should lead to downregulation of SMAD2/3 targets, which include mesendodermal 

genes. Therefore, SMYD3 seems to have an opposite mechanism in mESCs and also in zebrafish if 

compared to its role observed in EMT. Consequently, different molecular mechanisms have to be 

investigated to reconcile these findings. 

 

4 FUTURE PERSPECTIVES 

4.1 SMYD3 IN DEVELOPMENT 

According to our data obtained in mESCs and zebrafish, smyd3 overexpression should lead to a 

decreased expression of mesendodermal markers. Therefore, gain of function experiment can be 

performed to confirm our results. 

On the contrary, we hypothesize that an overexpression of smyd3 and a smad3 constitutive active 

form together could lead to a smad3 blockade by smyd3. Mesendodermal marker expression will be 

analyzed through in situ hybridization analyses. 

Furthermore, changes in the expression of phosphorylated-smad3 may be assessed, after smyd3 

morpholino microinjection, by using a transgenic zebrafish reporter line responsive to smad3 

activity. 

In mESCs, we would like to better characterize Nodal/Activin, BMP, and WNT pathways 

alterations during the early stages of differentiation, using inducers and inhibitors of the different 

pathways. Additionally, we are interested in better studying late cardiovascular marker expression 

after smyd3 knock down in zebrafish. 

In order to address if muscle/cardiac cells are depleted in smyd3 morphants, we could inject smyd3 

morpholino in transgenic fluorescent lines. For instance, cmlc2:dsRed and nkx2.5:EGFP transgenic 

lines can be used. Subsequently, morphants will be analyzed in somitogenesis in order to assay if 

cardiac precursors are affected. In parallel, muscle determinants could be analyzed in transgenic 

lines, which express EGFP under her1 or actc1a promoter.  

4.2 SMYD3 IN CANCER 

We are planning to perform additional xenograft experiment by injecting MDA-MB-231 silenced 

for SMYD3 in zebrafish embryos. 
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Abstract 

SMYD3 (SET and MYND domain containing protein 3), is a methylase over-expressed in cancer 

cells and involved in oncogenesis. SMYD3 is expressed in normal tissue and in the developing 

embryo. Despite this, SMYD3 role in physiological conditions has not been fully investigated yet. 

Importantly, it has been recently reported that SMYD3 is be involved in cardiac development and 

myogenesis in zebrafish. 

Here, we report that SMYD3 depletion promotes the induction of mesodermal pattern during in 

vitro differentiation of mouse embryonic stem cells, and causes an upregulation of cardiovascular 

lineage markers at later stages. In vivo, smyd3 knockdown in zebrafish favors the upregulation of 

mesendodermal markers during zebrafish gastrulation. 

Overall, our study reveals that SMYD3 may modulate genes involved in the early stages of 

development and of embryonic stem cells differentiation. 
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Introduction 

Epigenetic regulation of gene expression plays a pivotal role in the establishment of developmental 

programs and the maintenance of the differentiated state (Fisher and Fisher, 2011). During 

development, transcription factors and chromatin modifiers are either activated or repressed to 

commit specific cells to defined lineages in response to external cues (Ong and Corces, 2011).  

Pluripotent embryonic stem cells (ESCs) possess the unique ability to self-renew and to commit 

towards differentiation of several lineages (Young, 2011). Because of this feature, they represent a 

powerful tool that became an amenable in vitro system to study molecular mechanisms underlying 

lineage commitment and study embryonic development. The maintenance of pluripotency is 

endowed with the interconnected circuitry of the pluripotency transcription factors Oct4, Nanog, 

Klf4 and Sox2. These core transcription factors concurrently recruit several chromatin regulators to 

the genomic regions of stemness genes to maintain transcriptional activation and sustain the 

repression of differentiation genes through repressive epigenetic complexes (Delmore et al., 2011; 

Orkin and Hochedlinger, 2011). Several chromatin modulators such as Polycomb and MLL 

complexes, Mof and Jmj proteins, have been described as pivotal regulators of stem cells biology 

(Li et al., 2012; Ohtani et al.). Some of these factors are under the direct transcriptional control of 

the pluripotency network, controlled by Oct4, Nanog, Sox2, and Klf4 (Boyer et al., 2005). Two 

reports have recently uncovered SMYD3 as an Oct4/Nanog/Sox2 target in mouse embryonic stem 

cells (Campbell et al., 2007; Chen et al., 2008), hinting for a possible role for SMYD3 in ESCs 

biology.  

SMYD3 belongs to the SMYD family of methylases, which is composed of five members. SMYD 

proteins share a unique architecture of their SET domain, which is split into two parts by a MYND 

(myeloid translocation protein 8, nervy, DEAF-1) domain and it’s followed by a cysteine-rich post-

SET domain. Several reports demonstrate that SMYD proteins play important roles in heart 

development and cardiomyogenesis (Du et al., 2014). Smyd1 deletion in mice displayed a role in 

maturation of ventricular cardiomyocytes and right ventricular development (Gottlieb et al., 2002) 

and smyd1 knockdown in zebrafish (Danio rerio) embryos results in absence of heartbeat and 

disrupted myofibril organization in cardiac muscles (Tan et al., 2006). smyd2 zebrafish morphants 

show an impaired myofibril organization in cardiac muscles (Voelkel et al., 2013) and knockdown 

of drosophila dSmyd4 expression suggests a role for dSmyd4 in development or function of adult 

muscles (Thompson and Travers, 2008). SMYD5 negatively regulates lineage-specific genes and 

plays a role in the maintenance of self-renewal in mESCs (Kidder et al., 2017) and in hematopoiesis 

during zebrafish embryogenesis (Fujii et al., 2016). 

SMYD3 is expressed in the mouse embryo (Hamamoto et al., 2004a) and it becomes over-
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expressed in several tumors where it promotes invasiveness, proliferation and metastasis 

(Hamamoto et al., 2004b; Zou et al., 2009) and multiple reports have focused on SMYD3 role in 

promoting tumorigenesis (Cock-Rada et al., 2012; Luo et al., 2014).  

Despite its expression in normal tissues, very little is known about SMYD3 function in the 

physiological state. Insights in SMYD3 role in the normal embryo were provided by from a report 

by Fujii et al., showing that SMYD3 depletion correlates with heart and skeletal muscle 

abnormalities in adult zebrafish (Fujii et al., 2011). SMYD3 expression in the mouse embryo and 

adult normal tissues prompted us to investigate SMYD3 role during development, employing 

mESCs and zebrafish as amenable models. 

We show that SMYD3 depletion results in upregulation of mesendodermal markers and in 

increased expression of cardiovascular markers, in differentiating ESCs. Additionally, we tested the 

impact of SMYD3 depletion in an in vivo model, and found that SMYD3 knockdown promotes 

mesendodermal markers over-expression, during zebrafish gastrulation. 

Collectively, our results show that SMYD3 plays a role during the early steps of differentiation, 

during the commitment towards distinct germ layers fates.  
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Material and methods  

Cell cultures  

All cell lines were obtained from ATCC and were cultured at 37°C with 5% CO2 in a humid 

incubator. 

Undifferentiated R1 mouse embryonic stem cells were plated on mitomycin C-treated mouse 

embryonic fibroblast (MEF) feeders for 2 passages and then plated on tissue culture dishes coated 

with 0.1% gelatin (Millipore), in DMEM (LONZA) supplemented with 15% fetal bovine serum 

(HyClone), 1% non-essential amino acids (NEAA) (GIBCO), 1% penicillin/streptomycin (P/S) 

(GIBCO), 1% Glutamax (GIBCO), 0.1 mM β-mercaptoethanol (Sigma) and 1000 U/ml leukemia 

inhibitory factor LIF (Millipore).  

HEK-293T cells used for virus production and MEF cells used for ES feeder were cultured in 

DMEM (LONZA), containing 10% FBS (GIBCO), 1% P/S (Invitrogen) and 100uM β-

mercaptoethanol (Sigma) (MEF only). 

 

In vitro differentiation of ES cells  

To induce EB formation, undifferentiated ES cells were cultured in hanging drops for 3days (d) at a 

density of 800 cells/20μl of differentiation medium (DM), which consisted of DMEM 

supplemented with penicillin/streptomycin, 0.1 mM nonessential amino acids, 0.1 mM 2-β-

mercaptonethanol and 10% FBS (LONZA). EBs were transferred to suspension cultures for an 

additional 3d (d3+3) in non-adherent Petri dishes. For cardiac differentiation of ESC, EBs were 

plated in differentiation medium in 0.1% gelatin (Millipore) coated plates. The medium was 

changed every two days. 

 

Zebrafish lines and maintenance  

Zebrafish (Danio rerio) embryos were raised and maintained under standard conditions and 

national guidelines (Italian decree 4th March 2014, n.26). All experimental procedures were 

approved by IACUC (Institutional Animal Care and Use Committee). Zebrafish AB wild-type 

strains were obtained from the Wilson lab, University College London, London, United Kingdom. 

For in vivo observations and imaging, embryos beyond 24 hpf were washed, dechorionated and 

anaesthetized with 0.016% tricaine (ethyl 3-aminobenzoate methanesulfonate salt; Sigma-Aldrich) 

before observations and picture acquisition. Embryos were staged according to morphological 

criteria (Kimmel et al., 1995).  
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Whole mount in situ hybridization, embryo sectioning and imaging 

Whole mount in situ hybridizations were carried out as described (Thisse and Thisse, 2008). The 

riboprobes were synthesized using the Ambion® MAXIscript® SP6/T7 in Vitro Transcription Kit 

(Thermo Fisher Scientific). Images of stained embryos were taken on a Leica MZFLIII 

epifluorescence stereomicroscope equipped with a DFC 480 digital camera and LAS Leica imaging 

software (Leica, Wetzlar, Germany). 

 

Morpholino microinjection  

Antisense morpholino was purchased from Gene Tools (LLC, Philomath, OR). Morpholinos were 

diluted in Danieau solution (Nasevicius and Ekker, 2000) and injected into 1-to-2 cell-stage 

embryos using Eppendorf FemtoJet Micromanipulator 5171. Rhodamine dextran (Molecular 

Probes, Life technology) was co-injected as dye tracer. smyd3 knockdown was performed injecting 

0,3 pmol/embryo of a translation blocking MO (smyd3-MO 5’-

CCTCTCCATAATCACAGCCTCCATC-3’) previously described (Fujii et al, 2011). A standard 

control oligo (ctrl-MO, 5’-CCTCTTACCTCAGTTACAATTTATA-3’, against human β-globin 

gene) with no target in zebrafish embryos, was also used, to check for non-specific effects due to 

the injection procedure. 

 

Virus production and plasmids 

mES cells were infected with viral supernatant produced as following: HEK293T were transiently 

transfected with pCL-ECO (Addgene) and retroviral vector pSh-Scramble or pSh-SMYD3 

(Proserpio et al., 2013) by using the calcium phosphate technique. After 10 hours, the medium was 

changed, harvested 36h after transfection, and used to infect mES cells in the presence of 4μg/mL 

polybrene (Sigma). We performed spinoculation at 4000rpm for 45 minutes. Infected cells were 

selected with 1μg/mL puromycin (Sigma) for 3 days. 

HEK293T were transfected with psPAX2, pMD2.G and pLKO-puro-sh_Scramble or lentivirus 

brachyury-eGFP (Addgene plasmid 2122) (Kita-Matsuo et al., 2009).  

 

Reverse transcriptase PCR and Real-time PCR 

Total RNA was isolated by the Tryzol method (SIGMA), reverse transcribed to cDNA with High 

Capacity cDNA Reverse Transcription Kit (Applied Bio-System) and subjected to qPCR analysis. 

Primers were designed to amplify regions of 80-120bp in size and include two exons. 

Oligonucleotides sequence used in qRT-PCR is reported below. Quantitative PCR was performed 

using SYBR green IQ reagent (GeneSpin) in the iCycler IQ detection system (Biorad). qPCR was 
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performed in triplicate for each of the biological replicates. 

For embryonic cDNAs, pregnant mice were sacrificed between at day 10.5 and 12.5 of pregnancy, 

embryos were collected by caesarean section, dissected and processed as above. 

 
GENE  Sequence  
NANOG F 

R 
GCGGACTGTGTTCTCTCAGG 
CCACCGCTTGCACTTCATCC 

KLF 4 F 
R 

CGTCCCAGTCACAGTGGTAA 
AAAAGAACAGCCACCCACAC 

EOMES F 
R 

CCCACGTCTACCTGTGCAAC 
GGTGGGGTTGAGTCCGTTTA 

GAPDH F 
R 

  CACCATCTTCCAGGAGCGAG   
  CCTTCTCCATGGTGGTGAAGAC   

Oct 4 F 
R 

AAGCAACTCAGAGGGAACCT 
GGTGATCCTCTTCTGCTTCA 

EOMES F 
R 

CCCACGTCTACCTGTGCAAC 
GGTGGGGTTGAGTCCGTTTA 

Mesp 1 F 
R 

 GTTCCTGTACGCAGAAACAGCAT 
GTTTCTAGAAGAGCCAGCATGTC 

SOX-17 F 
R 

GCCGATGAACGCCTTTATGGTG 
TCTCTGCCAAGGTCAACGCCTT 

Brachyury  F 
R 

TGCCTACCAGAATGAGGAGATTA 
CCATTACATCTTTGTGGTCGTTT 

TnnT  F 
R 

AGCGCGTGGAGAAGGACCTGA 
CCGCTCTGCCCGACGCTTT 

MYH7 F 
R 

CCAAGGGCCTGAATGAGGAG  
GCAAAGGCTCCAGGTCTGAG 

MYL7 F 
R 

AGGAAGCCATCCTGAGTGCCTT 
CATGGGTGTCAGCGCAAACAGT 

ACTA2 F 
R 

AGGCACCACTGAACCCTAAG 
ACAGCACAGCCTGAATAGCC 

NKX2.5 F 
R 

GTCCAGCTCCACTGCCTTCT 
CAAGTGCTCTCCTGCTTTCC 

Isl 1 F 
R 

GGCTACACAGCGGAAACACT 
ACGTGCTTTGTTAGGGATGG 

Snail 1  F 
R 

ACTGGTGAGAAGCCATTCTCCT  
CTGGTATCTCTTCACATCCGAGT  

E-cadherin F 
R 

GTCTACCAAAGTGACGCTGAAGT 
TCTCGTTTCTGTCTTCTGAGACC 

OTX2 F 
R 

CTTCATGAGGGAAGAGGTGGCAC  
TGGCGGCACTTAGCTCTTCGATTC 

FGF5 F 
R 

GCTGTGTCTCAGGGGATTGT 
CACTCTCGGCCTGTCTTTTC 

Smyd3 F 
R 

  AGAGGTGTGCAAGTGATGAAAGT   
  ATCAAATCTTCAATCAGGCTGTG   

GAPDH F 
R 

  CACCATCTTCCAGGAGCGAG   
  CCTTCTCCATGGTGGTGAAGAC   

 

Protein extracts 

Total cells extracts were prepared lysing the cells pellet in RIPA buffer as described (Proserpio et 

al., 2013). The extracts were centrifuged at maximum speed for 15 min and the supernatant was 

collected. 

Protein concentration was determined by Bradford assay. Total cell extracts were separated by 

SDS-PAGE, and immunoblotted with specific antibodies (SMYD3: GeneTex, GTX121945, 

GAPDH: Santa Cruz, sc-32233, Nanog: Cosmobio REC-RCAB002P-F, Oct4: ab19857, 

αSMA:ab15694, Flk1: Novus NB100-627SS). 

To isolate chromatin, sample were prepared following Mendez’s protocol described in (Méndez and 

Stillman, 2000). Briefly, cells were resuspended in buffer A (10 mM HEPES pH 7.9, 10 mM KCl, 
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1.5 mM MgCl2, 0.34 M sucrose, 10% glycerol, 1 mM DTT and Protease inhibitor cocktail). Triton 

X-100 (0.1%) was added, and the cells were incubated for 5 min on ice. Nuclei were collected in 

pellet 1 (P1) by low-speed centrifugation. The supernatant (S1) was further clarified by high-speed 

centrifugation to remove cell debris and insoluble aggregates. Nuclei were washed once in buffer A, 

and then lysed in buffer B (3 mM EDTA, 0.2 mM EGTA, 1 mM DTT, protease inhibitors). 

Insoluble chromatin was collected by centrifugation, washed once in buffer B, and centrifuged 

again under the same conditions. The final chromatin pellet (P3) was resuspended in Laemmli 

buffer and sonicated.  

 

Immunofluorescence analysis 

Immunostaining of cultured cells were carried out as described previously (Proserpio et al., 2013). 

Briefly, the cells were fixed for 10 min in 4% paraformaldehyde (PFA) in PBS and permeabilized 

with 0.2% Triton X-100 in PBS for 10 min. After incubation in 3% BSA for at least 20 min at room 

temperature, cells were incubated for 2 h at room temperature with antibodies. After washing the 

samples with 0.1% Triton X-100 in PBS for 10 min, cells were incubated with secondary 

antibodies, which are fluorescent labeled. DAPI was used for nuclear staining. The samples were 

examined with a fluorescence microscope (Carl Zeiss, Italy). Pictures of staining were obtained 

using an AxioCam (Carl Zeiss Vision, Italy).  

 

Statistical analysis 

Data are represented as mean ± standard error of the mean (SEM). Data are analyzed by using a 

two-way ANOVA followed by post-hoc Bonferroni’s test comparison. Probability values of less 

than 0.05 were considered statistically significant. 
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Results 

SMYD3 is expressed in the developing mouse embryo and in embryonic stem cells 

SMYD3 was mainly studied in different cancer cell lines, where it promotes proliferation and 

invasion (Giakountis et al., 2017; Hamamoto et al., 2004a). To investigate if SMYD3 may play a 

role in development, we first analyzed SMYD3 expression levels in non-tumor derived cells. 

SMYD3 transcripts were high in mESCs and C2C12 myoblasts, when compared to the fibroblast 

cells NIH3T3. SMYD3 mRNA was also expressed in the mouse embryo at d10.5 (Fig.1 A). 

To investigate SMYD3 role during development, we decided to use mESCs as a model system that 

recapitulates early stages of embryo formation.  

We first analyzed SMYD3 protein levels by Western blot throughout differentiation of embryoid 

bodies (EBs) and we observed that SMYD3 levels decrease at early stages of differentiation and it 

is maintained to stable levels till day 12 (Fig. 1B). 

We also checked SMYD3 distribution in different intracellular compartments by chromatin 

fractionation and immunofluorescence assays. These experiments revealed that SMYD3 is 

expressed in mESCs and it is detectable in cytoplasm, nuclei and chromatin fraction (Fig. 1C, 1D). 

Together, these data indicate that SMYD3 is expressed in mouse embryonic stem cells and EBs, 

which can be used to further investigate SMYD3 role in stemness and lineage commitment. 

 

SMYD3 depletion does not affect stemness  

To test if SMYD3 plays a role in the differentiation of mESCs, we performed loss-of-function 

experiments by reducing SMYD3 levels with a short hairpin RNA (shRNA) targeting SMYD3 (Fig. 

2A). Pluripotency markers Oct4, Nanog and KLF4 maintained the same expression profile, 

SMYD3-depleted cells compared to the control, in the early stages of differentiation. These results 

were confirmed by immunoblot analysis, with antibodies raised against Nanog and Oct4 (Fig. 2B). 

Overall, we concluded that SMYD3 does not play a role in mESCs stemness maintenance. 

 

SMYD3 depletion accelerates mesendodermal markers expression, in mESCs 

Next, we sought to elucidate whether SMYD3 regulates the differentiation potential of mESCs. We 

examined and compared mRNA expression patterns for various lineage markers at different time 

points following LIF (leukemia inhibitory factor) withdrawal and embryoid bodies formation. The 

mesendodermal markers Eomes, Mesp1, Sox17, FoxA2 were upregulated in control cells and peaked 

through day 4-5 of differentiation. Strikingly, in SMYD3 depleted cells the expression of Eomes, 

Mesp1 and FoxA2 was significantly higher compare to the control (p < 0.05) (Fig. 3A).  To further 

characterize SMYD3 role in the early stages of lineage commitment, we analyzed the pan-
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mesodermal marker Brachyury/T expression levels, which was upregulated in SMYD3-depleted 

cells (Fig. 3A). Moreover, we co-infected undifferentiated Sh-SMYD3 or Sh-Scramble mESCs with 

a virus carrying eGFP cDNA under the control of the Brachyury/T promoter. Consistently, we 

observed eGFP fluorescence peaking at days 6 of differentiation, and Sh-SMYD3 cells displayed 

more foci of GFP positive cells (Fig. 3B). 

Furthermore, markers of the primitive ectoderm Fgf5 and Otx2 as well as the Sox1 ectoderm marker 

behaved in a similar manner in SMYD3 knocked-down and control cells (Fig. 3C). Overall, these 

data show that SMYD3 depletion favors mesendodermal commitment in differentiating EBs. 

 

smyd3 knockdown promotes mesendodermal fate during zebrafish gastrulation  

To test whether our findings were confirmed in an in vivo model, we injected smyd3 morpholino 

(Smyd3_MO) in zebrafish embryos, at the 1-2 cell stage. Morphants displays curved trunk, 

pericardial edema, impaired circulation compared to the standard control embryos and were divided 

in four phenotypic classes, with increasing severity (Supplemental Fig. 1A and B). These defects 

reflected the previously reported phenotype for smyd3 morphants (Fujii et al., 2011; Sarris et al., 

2016).   

To analyze zebrafish mesendodermal markers in smyd3 morphants, we performed in situ 

hybridization (ISH) at the onset of gastrulation (50% epiboly). Gata6, gata5, mespaa and snai1a 

signal was enhanced in the blastodermal margin, in smyd3 morphants (Fig. 4A). Conversely, the 

ectodermal marker otx3 expression was comparable in morphant and standard control embryos (Fig. 

4B). In midgastrulation (80% epiboly), sox17 levels were enhanced in the endodermal precursors 

cells (Fig. 4C). Additionally, the dorsal markers goosecoid (gsc) and chordin (chd) showed an 

expansion in the blastodermal margin of smyd3 knocked down embryos (Fig. 4D), while the signal 

for the ventral marker gata2 was reduced. Overall, these data suggest that smyd3 knockdown favors 

the induction of mesendodermal fate in the zebrafish embryo, supporting the in vitro results in 

mESCs. 

 

SMYD3 knockdown influences later stages of differentiation 

SMYD3-depleted ESC appeared to be more prone to differentiate towards the mesendodermal 

lineage. To test whether upregulation in mesendodermal lineage persisted also at later stages of 

differentiation, we differentiated Sh-SMYD3 and Sh-Scramble EBs toward cardiovascular fate.  

This lineage choice was particularly relevant, because of the possible role of SMYD3 in 

cardiomyocyte formation in zebrafish (Fujii et al., 2011).   

Early markers of multipotent cardiovascular progenitors such as Nkx2.5 and Isl-1 were more 
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robustly expressed in SMYD3-depleted EBs when compared to Sh-Scramble control EBs (Fig. 5A). 

In parallel, we also investigated the expression of a second mesodermal marker, Flk-1. Flk-1 protein 

expression in SMYD3 depleted EBs was anticipated from day 8 to day 6, when compared to Sh-

Scramble cells (Fig. 5B). This finding was confirmed by immunofluorescence experiments in Sh-

SMYD3 and control EBs at day 5 of differentiation. At this stage, Flk1-positive cells were more 

abundant in SMYD3-depleted EBs, when compared to control Sh-Scramble cells, in 

immunofluorescence assays (Fig. 5C).  

In order to investigate whether SMYD3 depletion enhanced the expression of cardiac lineage 

markers in EBs, we analyzed the transcript levels of late cardiac markers, e.g. as TnnT2, Myh7, and 

Myl7, which are essential components of contractile cardiac machinery. We detected elevated 

mRNA levels of TnnT2, Myh7 and Myl7 in SMYD3 depleted EBs (Fig. 6A). This increase was 

paralleled by a higher percentage of beating EBs in SMYD3 depleted EBs compare to the control 

ones (Fig. 6B). 

 Since Flk1 positive cells give rise to cardiomyocytes, smooth muscle and endothelial populations, 

we also explored the expression levels of smooth muscle actin (αSMA) and endothelial marker 

CD31. αSMA mRNA and protein levels were increased at d10 of differentiation (Fig. 6C and D). 

The endothelial marker CD31 was also increased in Sh-SMYD3 EBs compared to Sh-Scramble 

ones, at day 10 (Fig. 6E).  

Our results show that SMYD3 depletion promotes cardiac, smooth muscle and endothelial marker 

expression in differentiating ESCs.  

In addition, we analyzed the expression of the endothelial marker kinase insert domain receptor like 

(kdrl), which is the Flk1 orthologous in zebrafish. Through in situ hybridization analyses we 

observed a slight increase in kdrl expression in smyd3 morphants at 24 hpf. Kdrl increased 

expression persists and intensifies at 48 hpf (Fig. 6F). Enhanced expression was particularly evident 

in the cardinal vein, dorsal aorta, posterior caudal vein, intersegmental vessels and head vessels of 

smyd3 knocked down embryos at 48 hpf, suggesting that the kinase receptor is upregulated in the 

endothelial cells lacking smyd3. 

Taken together, these findings hint for a tendency of SMYD3-depleted cells to differentiate into 

mesodermal lineages.  
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Discussion 

Fujii et al. (2011) recently showed that SMYD3 may be involved in cardiomyocyte differentiation 

and myogenesis in zebrafish (Fujii et al., 2011), but its potential contribution in developmental 

processes has not been fully investigated yet.  

We detected robust SMYD3 expression in the developing embryo as well as in mouse embryonic 

stem cells, which were used as suitable in vitro model to study lineages differentiation. 

Our data show that SMYD3 knockdown promotes mesendodermal markers expression, both in 

differentiating mESCs and in gastrulating zebrafish embryos.  

While zebrafish smyd3 morphants have phenotypic defects, Smyd3 knockout mice don’t show an 

apparent phenotype (Mazur et al., 2014; Sarris et al., 2016). SMYD2 knockdown in ESCs leads to 

the upregulation of endodermal markers, but not of mesodermal ones. We speculate that SMYD3 

functions can be partially compensated by other SMYD family members or unrelated proteins, 

during mouse development, where SMYD3 loss does not result in any obvious defects in the 

mouse. Alternatively, SMYD3 functions might be not conserved among species.  

SMYD3 has both nuclear and cytoplasmic functions, which may depend or be not on its 

methylation activity (Mazur et al., 2014; Sarris et al., 2016). We speculate that SMYD3 might 

participate in the induction of repressors of the mesendodermal fate.  

Several signaling pathways modulate mesendoderm formation: FGF and Wnt pathways are required 

for the proper formation of germ layers (Willems and Leyns, 2008) and Activin/Nodal and BMP4 

pathways further influence mesoderm and endoderm specification (Lindsley et al., 2006). Wnt and 

Nodal/Activin pathways modulate mesodermal markers transcription (Gadue et al., 2006). It 

appears that in mESCs SMYD3 may affect one of these pathways to diminish mesendodermal 

genes transcription.  

Recently, SMYD3 was shown to methylate the MAP3K2 kinase and affect Ras-activated pathway 

in certain types of cancer (Mazur et al., 2014). It is tempting to speculate that SMYD3 modulates 

other cytoplasmic kinases along the Wnt or Nodal/Activin pathway to modulate the outcome of 

their signaling.  

Interestingly, SMYD3 localization in ESCs is not restricted to the cytoplasm, but it is also present 

in the nucleus. Therefore, SMYD3 nuclear functions may play a direct role on the chromatin of 

pivotal regulatory genes, which negatively modulate mesodermal gene transcription. 
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Figure legends 

Figure 1. SMYD3 is expressed in mouse embryo and in mouse embryonic stem cells (mESCs). 
A, mRNA was extracted from NIH3T3, C2C12 myoblasts and mESC in parallel with d10.5 embryo 
and SMYD3 transcript levels were measured by qRT-PCR. Data were normalized to GAPDH. 
Means from three independent experiments are shown. B, Immunoblot analysis of SMYD3 protein 
levels at different time points of ESCs differentiation. GAPDH served as a loading control. C, 
immunofluorescence was performed on undifferentiated mESCs with an antibody raised against 
SMYD3. Nuclei were visualized by DAPI staining (blue). D, ESCs were analyzed by biochemical 
fractionation, followed by immunoblot, to characterize SMYD3 distribution in different fractions: 
cytoplasmic or soluble fraction (S2), solubilized nuclear proteins fraction (S3), and chromatin-
nuclear matrix-bound fraction (Chr). GAPDH served as S2 control, while H3 served as Chr control. 
 
Figure 2. SMYD3 depletion does not interfere with stemness. A, mRNAs were extracted at 
different stages of ESCs differentiation, and SMYD3 or pluripotency-related genes (Nanog, Klf4, 
Oct4) transcript levels were evaluated throughout differentiation, by qRT-PCR. B, Nanog, Oct4 and 
SMYD3 protein levels were analyzed by immunoblot. Data were normalized to GAPDH. Means 
and SEM from three independent experiments are shown. 
 
Figure 3. SMYD3 knockdown increase mesendodermal marker expression, in differentiating 
mESCs. A, mRNA levels of mesendodermal markers were measured by qRT-PCR. Data were 
normalized to GAPDH. Means and SEM from three independent experiments are shown. 
Significance was calculated by 2 way Anova, followed by Bonferroni post-hoc test. *p<0.05 value 
for the significance is shown in the plot.  
B, eGFP reporter fluorescence was analyzed in EBs infected with Sh-Scramble/brachyury-eGFP 
and Sh-SMYD3/brachyury-eGFP were checked for eGFP expression, at day 6 of differentiation. 
C, primitive ectoderm genes (Otx2, FGF5, Sox1) expression was measured by qRT-PCR at 
different time points. Means and SEM from three independent experiments are shown.  
 
Figure 4. smyd3 knockdown promotes mesendodermal fate in zebrafish  
A, expression of the mesendodermal markers gata6, gata5, mespaa and snai1a (side view), was 
evaluated by ISH in smyd3 morphants at 50% of epiboly, in comparison to standard control 
embryos. Embryos are shown in dorsal view. B, ISH of the ectodermal marker otx3 was performed 
in morphants and standard control embryos at 50% epiboly stage. C, the endodermal marker sox17 
was examined at 80% epiboly and shown in side view. D, ISH of dorsal markers gsc, chd and of 
ventral marker gata2 was performed at 50% epiboly and shown in dorsal view.  
   
Figure 5. SMYD3 depletion enhances early cardiac differentiation in mESCs. A, Gene 
expression of early cardiac markers Isl1 and Nkx2.5 was analyzed by qRT-PCR. Data were 
normalized to GAPDH. B, immunofluorescence analysis was performed with Flk1 antibodies at d5 
of EBs differentiation. DAPI stains nuclei. C, Western Blot analysis was performed on mESCs 
protein extracts at different time of differentiation, with antibodies raised against Flk1. GAPDH 
serves as a loading control.  
 
Figure 6. SMYD3 modulates late cardiovascular markers. A, Cardiac markers TnnT2, Myh7 and 
Myl7 were measured by qRT-PCR at d0, d6, d8, d10 and d12 of mESC differentiation. Data were 
normalized to GAPDH B, Beating EBs were counted at d10, d11, d12 of EBs formation in Sh-
Scramble and Sh-SMYD3. C, Western Blot analysis of αSMA protein extracts of Sh-Scramble and 
Sh-SMYD3 EBs at d10, d12, d14. GAPDH serves as a loading control. D, αSMA mRNA levels 
were measured by qRT-PCR as in A. E, Immunofluorescence microscopy was performed on d10 
EBs with antibodies against the endothelial marker CD31. DAPI stains nuclei. F, kdrl expression 
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was analyzed at 24 and 48 hpf, in standard control and SMYD3 morphants. Arrows show caudal 
artery (CA), dorsal aorta (DA), posterior caudal vein (PCV), intersegmental vessels (ISVs) and 
cardinal vein (CV). 
 
Supplementary Fig. S1. SMYD3 morphant phenotypic classes. 
A, Schematic representation of morpholino-mediated targeting of smyd3 transcript. 
B, Representative images of the four observed phenotypic classes at 48hpf are shown. 
C, Morphants distribution in the four phenotypic classes. Morphants were analyzed at two 
morpholino does (0.2 and 0.4pmol/embryo). 
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Abstract 

SMYD3 is a methylase previously linked to cancer cell invasion and migration. Here we show that 

SMYD3 favors TGFβ-induced epithelial-mesenchymal transition (EMT) in mammary epithelial 

cells, promoting mesenchymal and EMT-TFs expression.  

SMYD3 directly interacts with SMAD3 but it is unnecessary for SMAD2/3 phosphorylation and 

nuclear translocation. Conversely, SMYD3 is indispensable for SMAD3 direct association to EMT 

genes regulatory regions. Accordingly, SMYD3 knockdown or its pharmacological blockade with 

the BCI121 inhibitor dramatically reduce TGFβ-induced SMAD3 association to the chromatin.   

Remarkably, BCI121 treatment attenuates mesenchymal genes transcription in MDA-MB-231 cells 

and reduces their invasive ability in vivo, in a zebrafish xenograft model. 

In addition, clinical dataset analysis revealed that higher SMYD3 levels are linked to a less 

favorable prognosis in claudin-low breast cancers and to a reduced metastasis free survival in breast 

cancer patients. 

Overall, our data point at SMYD3 as a pivotal SMAD3 cofactor that promotes TGFβ-dependent 

mesenchymal gene expression and cell migration, in breast cancer. 
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Introduction 

A crucial event occurring in the metastatic process is the epithelial-mesenchymal transition (EMT), 

which endows tumor cells with the ability to trans-differentiate from epithelial to mesenchymal-like 

cells and to acquire the capability to leave the primary tumor mass and disseminate at distant sites 

(1,2). EMT has been extensively linked to both metastatic progression of cancer (1,3) and 

acquisition of stem-cell properties (4,5), strengthening the hypothesis that reprogramming from 

epithelial to mesenchymal phenotype leads to acquired migration and self-renewal abilities, which 

foster the formation of secondary tumors at distant sites. 

Specific extracellular signals activate the EMT and promote epithelial cells reprogramming towards 

a mesenchymal phenotype (6). During this process, epithelial features such as cell-cell adhesion, 

polarity and lack of motility are lost, and cells acquire mesenchymal characteristics, including 

motility and ability to invade. In breast cancer progression, EMT is triggered and maintained by 

various extracellular signals promoting either autocrine or paracrine stimuli. Among these signals, 

the transforming growth beta (TGFβ) signaling pathway plays a crucial role (1,3,7). Evolution to 

invasive and metastatic forms of breast cancer correlates with the activation of EMT (6,8,9) and 

with increased levels of TGF-β1 in plasma of breast cancer patients and at invasive front in human 

breast cancer tissue sections (10,11).  

TGFβ signaling pathway activation results in SMAD2 and SMAD3 phosphorylation, their 

association with SMAD4, and translocation to the nucleus, where SMAD2/3 promote 

transcriptional activation of EMT-inducing transcription factors (EMT-TFs): Snail1, Slug, ZEB1/2, 

Twist1/2 and Sox4 (12,13). SMAD2/3/4 transcription factors orchestrate the epithelial cell 

reprogramming in concert with epigenetic factors that regulate epigenome plasticity and coordinate 

the expression of molecular signatures associated with the EMT program (14,15). Different DNA-

binding partners confer SMADs target gene selectivity and influence the recruitment of 

transcriptional coactivators or co-repressors. SMADs can bind to acetyltransferases as p300, 

P/CAF, but also HDACs and chromatin repressors, which contribute to target genes regulation 

(8,(16).   

Expression profiles analysis of human breast cancers allowed the identification at least five 

different molecular subtypes (luminal A, luminal B, Her2+, basal and claudin-low) (17,18). Among 

these subtypes, claudin-low tumors express characteristic mesenchymal genes, and the EMT 

signature is particularly enriched in this set of tumors, which associate with poorer prognosis 

(19,20). 

The methylase SMYD3 was reported to promote cancer cells proliferation and invasion, and to be 

over-expressed in several cancers, e.g. colorectal, pancreatic, liver and breast cancer cells, and was 
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also identified in gene signatures of metastatic pancreatic cancer cells (21-25).  SMYD3 has been 

reported to directly regulate the metalloproteinase MMP-9 and cancer invasion (26-29). Recently, 

Sarris et al. (2016) described that SMYD3 is recruited at chromatin regulatory regions of 

proliferation and EMT genes, in mouse models of liver and colon cancers and they depict SMYD3 

as a transcriptional “potentiator” for proliferation and EMT genes, during cancer progression (23). 

Nevertheless, although SMYD3 oncogenic function is well established, the molecular mechanism 

through which it promotes tumor cells migration and invasion hasn’t been fully described yet. To 

elucidate the underlying dynamics of SMYD3-mediated regulation of EMT, we employed breast 

cancer cells as a model system and investigated SMYD3 link with the TGFβ/SMADs signaling 

pathway. Here we report that SMYD3 is indispensable for SMAD3 mediated regulation of target 

genes, in TGFβ treated breast cancer cells. SMYD3 blockade with the BCI121 inhibitor reduced 

cell motility, both in cell cultures and in an in vivo model of zebrafish xenograft. Our study provides 

novel insight in TGFβ-induced transcriptional activation and it supports SMYD3 as a promising 

therapeutic target for cells that undergo EMT.  

Results 

SMYD3 is required for efficient TGFβ-induced EMT 

Our analysis of the Human Cancer Genome Atlas (TCGA) database (30,31) revealed that SMYD3 

transcripts are over-expressed in a variety of cancers, and amplification frequency measured by 

RNA transcript levels is especially apparent in different breast cancers cohorts (Supplementary Fig. 

S1A). 

In addition to its role in cancer cells proliferation, SMYD3 was shown to regulate EMT genes (23). 

Since EMT is causatively linked to distant metastases for epithelial cancers including breast cancer, 

we tested SMYD3 function in TGFβ-induced EMT, in NMuMG mouse mammary epithelial cells. 

We knocked down SMYD3 levels by Sh-interference. As expected, following TGFβ treatment 

ShScramble NMuMG cells morphology acquired a mesenchymal phenotype (Fig. 1A, left panel), 

accompanied by the down-regulation of epithelial transcripts E-cadherin and Claudin 6 and 

upregulation of mesenchymal transcripts N-Cadherin and Fibronectin (Fig. 1B). Remarkably, 

ShSMYD3 cells maintained a more epithelial morphology (Fig. 1A, right panel) and the epithelial 

transcripts E-Cadherin and Claudin6 failed to decrease (Fig. 1C). Immunoblot analysis revealed that 

E-Cadherin and Occludin protein levels were maintained at higher levels following TGFβ 

stimulation, when compared to ShScramble cells (Fig. 1C). Moreover, ShSMYD3 cells failed to to 

increase Fibronectin1 and N-cadherin transcript and protein levels (Fig. 1B and C). Snail1, which 

plays a critical role in the transcriptional repression of epithelial genes and transition to a 
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mesenchymal phenotype during EMT (32), failed to be upregulated both at the transcriptional and 

protein level in ShSMYD3 cells (Fig. 1D). Similar results were obtained when we employed 

SMYD3-depleted NMuMG cells, generated using an unrelated retrovirus targeting SMYD3 

(Supplementary Fig. S2A). Conversely, AKT and ERK phosphorylation levels, which were shown 

to be affected by SMYD3 depletion in previous reports (25,33,34), remained unchanged in our 

model system (Supplementary Fig. S2B).  

F-actin and Paxillin immunostaining revealed that SMYD3 depletion did not affect the epithelial 

morphology of NMuMG cells in the absence of TGFβ. Following TGFβ treatment, instead, 

expression of the epithelial marker ZO-1 was retained at the cell membrane of SMYD3-depleted 

cells, and the signal for the mesenchymal marker N-cadherin was barely detectable in ShSMYD3 

cells (Fig. 1E). TGFβ induced stress fibers and focal adhesion formation, revealed by F-actin and 

paxillin staining respectively, were almost absent in ShSMYD3 cells and revealed reduced 

remodeling of cytoskeleton, when compared to ShScramble TGFβ-treated cells (Fig. 1E).  

Since cells undergoing TGFβ-induced EMT acquire the ability to migrate, we evaluated SMYD3 

impact on cell migration through a wound-healing assay. We observed that ShSMYD3 cells 

migrated significantly less than control shScramble cells (Fig. 1F).  

Together, these results demonstrate that SMYD3 is required for efficient TGFβ-induced EMT in 

murine mammary epithelial cells. 

Similar results were obtained in immortalized benign MCF10A human mammary epithelial cells, in 

which the cuboidal cobblestone epithelial cells switch to a fibroblastoid morphology following 

TGFβtreatment (Fig. 2A). SMYD3 depletion by RNA interference led to a persistency of the 

epithelial morphology, upon TGFβ treatment (Fig. 2A, right panel); this lack of morphological 

change was accompanied by a delay in mesenchymal markers expression, such as Snail1, N-

cadherin and Vimentin (Fig. 2B). Concurrently, protein levels of the epithelial marker Occludin 

were maintained at higher level in SMYD3-depleted cells, when compared to control scramble 

interfered cells.  In TGFβ-treated SMYD3-knockdown cells, N-cadherin, Vimentin, Fibronectin1 

and MMP9 transcripts were lower than in control cells, suggesting that SMYD3 positively regulates 

transcriptional regulation of a set of mesenchymal genes (Fig. 2C). Snail1 and other transcription 

factors (e.g. Sox4, Snail2, Zeb1,2, Twist1,2) induce EMT through repression of epithelial genes and 

are defined as EMT transcription factors (EMT-TFs) (15). When SMYD3-deficient and control 

cells were exposed to TGFβ for 6 hours we observed that mRNA levels of a subset of EMT-TFs 

(Snail1, Snail2, Sox4, Twist1) failed to be upregulated in SMYD3-knockdown cells (Fig. 2D). 

Overall, these data suggest that SMYD3 plays a role in regulating EMT-TFs and mesenchymal 

genes transcription and modulates TGF-β induced EMT in human and mouse mammary cells. 
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SMYD3 pharmacological blockade prevents EMT, independently of SMYD3 methylation 

activity 

SMYD3 function was recently challenged by the small inhibitor BCI121 (34). In a parallel set of 

experiments, SMYD3 function was hindered by pharmacological blockade, by treating both 

NMuMG and MCF10A cells with increasing concentration of the SMYD3 inhibitor BCI121(34).  

Both cell lines were initially treated with different doses of BCI121 for 3 hours and subsequently 

co-treated with TGFβ for additional 48 hours. At the 10µM BCI121 dose, TGFβ−treated NMuMG 

cells failed to upregulate mesenchymal transcripts such as Fibronectin and to down-regulate mRNA 

levels of the epithelial genes E-cadherin and Claudin6 (Fig. 3A). Likewise, SMYD3 

pharmacological blockade in MCF10A cells resulted in a modest increase in the mesenchymal 

transcripts N-cadherin and MMP9, following TGFβ treatment, starting from the 5µM BCI121 dose 

(Fig. 3B). 

 As previously reported for other cell lines, 72 hour BCI121 treatment led to decreased cell 

viability(34), both in NMuMG and MCF10A cells. With the exception of the 50µM dose in 

NMuMG cells, BCI121 did not significantly affect cell growth at 48 hour treatment, suggesting that 

BCI121 effects on EMT were largely independent on its impact on cell proliferation at earlier stages 

(Supplemental Fig. S3A and S3B).  

By interacting with the lysine-binding pocket, BCI121 exerts a dual function on SMYD3, both 

inhibiting its catalytic activity and preventing its recruitment to the chromatin (34). We therefore 

tested whether SMYD3 methylase activity was indispensable for EMT regulation. We evaluated the 

ability of SMYD3 catalytically inactive mutants to promote EMT, when compared to wild type 

SMYD3 (SMYD3-WT). Both SMYD3-WT and a catalytically defective mutant (SMYD3-ΔEEL) 

promoted upregulation of the mesenchymal genes N-cadherin and Vimentin, and equally reduced 

E-cadherin and Occludin protein levels, as well as membrane-associated ZO-1 (Supplementary Fig. 

S4A and Fig. S4B). These results are in agreement with previously reported data (Sarris et al., 

2016) and they suggest that SMYD3-mediated EMT genes regulation is independent on SMYD3 

methylation activity. 

 

SMYD3 directly interacts with SMAD3  

Transcriptional regulation of TGFβ−modulated genes is largely controlled by SMAD2/3 

transcription factors during EMT (32). Therefore, we first checked whether SMYD3 interacted with 

SMAD3 in HEK293T cells, transfected with Flag-SMYD3 and HA-SMAD3 plasmids. 

Immunoprecipitation experiments revealed that over-expressed SMYD3 was able to associate to 
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SMAD3, in the absence of TGFβ stimulation (Fig. 4A). Next, we determined whether SMYD3 was 

able to interact with endogenous SMAD3 and performed immunoprecipitation experiments using 

NMuMG extracts. The experiments with endogenous proteins confirmed the interaction, and 

indicated that the association is independent of TGFβ treatment in NMuMG cells and it is not 

affected by the presence of the TGFβ inhibitor SB43152 in growth medium (Fig. 4B). To define the 

protein domains involved in the interaction, we performed immunoprecipitation experiments in 

HEK293T cells over-expressing SMAD3 deletion mutants with full-length SMYD3 and found that 

the MH2 domain is required for SMYD3 association (Fig. 4C and Supplementary Fig. S5A). Co-

immunoprecipitation experiments with full-length HA-SMAD3 and Flag-SMYD3 deletion mutants 

revealed that mutant SMYD3 encompassing aa 219-428 and aa 111-428 associate with SMAD3 as 

the full-length protein. Conversely SMYD3 proteins lacking the C-terminal region (SMYD3_1-219 

and SMYD3_1-380) weakly interacted with SMAD3 (Fig. 4D and Supplementary Fig. S5B).  To 

investigate whether SMYD3 c-terminal region was relevant in the modulation of TGFβ induced 

genes, we transfected MCF10A cells either with full-length SMYD3 or SMYD3_1-380 plasmids. 

Following TGFβ treatment, Occludin levels were reduced and mesenchymal proteins Snail1, Snail2 

and N-cadherin were increased in SMYD3 full-length over-expressing cells, compared to the empty 

vector transfected cells. SMYD3_1-380 over-expression instead didn’t promote mesenchymal 

genes expression or Occludin down regulation (Fig.4E). Additionally, we performed 

immnuoprecipitation experiments with recombinant GST-SMAD3 and SMYD3 proteins and we 

were able to confirm a direct association between the two proteins in vitro (Fig. 4F). Overall, these 

data suggest that SMYD3 directly interact with SMAD3 through its C-terminal domain, and this 

region is crucial for EMT genes modulation. 

 

SMYD3 is indispensable for SMAD3 association to the chromatin 

To deeper delve in the molecular mechanism underlying SMYD3 regulation at mesenchymal genes, 

we tested SMYD3 ability to associate to a subset of genes, in TGFβ treated MCF10A cells. We 

found that SMYD3 is recruited to Snai1, Sox4, MMP9 and Vimentin regulatory regions in 

MCF10A cells. The BCI121 inhibitor competes with histones for SMYD3 binding (34) and as 

expected BCI121 treatment  prevented SMYD3 occupancy at these regulatory regions. To provide 

further mechanistic insight, we assayed SMAD2/3 recruitment at mesenchymal target genes, in 

BCI121-treated cells. Chromatin immunoprecipitation (ChIP) assays revealed that SMAD2/3 

engagement at mesenchymal genes was significantly reduced by SMYD3 pharmacological 

blockade (Fig. 5A). However, BCI121 treatment did not prevent SMAD2/3 and SMYD3 co-

immunoprecipitation in MCF10A TGFβ-treated cells (Supplementary Fig. S6).   Comparable 
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results were obtained when SMAD2/3 and SMYD3 recruitment was evaluated at regulatory regions 

of MMP9, Snail1, Sox4, Vimentin in ShSMYD3 MCF10A cells treated with TGFβ, and compared 

to ShScramble control cells (Fig. 5B).  

Remarkably, both immunoblot and immunofluorescence experiments revealed that TGFβ 

dependent SMAD2/3 phosphorylation was unaffected by SMYD3 knockdown (Fig. 5C and 5D). 

Likewise, SMAD2/3 nuclear translocation was not influenced by SMYD3 reduction (Fig. 5E), 

suggesting that SMYD3 depletion didn’t impair SMAD2/3 nuclear localization.  

ChIP assays in NMuMG cells, confirmed a reduction in SMAD2/3 and SMYD3 occupancy at the 

Snail1 promoter, in ShSMYD3 TGFβ-treated cells compared to ShScramble cells. Additionally, 

histone marks analysis at Snail1 regulatory regions, revealed that SMYD3 depletion was 

accompanied by a local decrease in histone H3K9ac and H3K4me3. Conversely, repressive histone 

marks H3K27me3 and H3K9me3 occupancy was comparable in ShSMYD3 and ShScramble cells. 

Concurrently, RNA Polymerase II recruitment was reduced at mesenchymal genes in ShSMYD3 

NMuMG cells (Fig. 5F) further supporting Snail1 reduced transcription. Taken together, these 

findings suggest that SMYD3 directly takes part in the transcriptional regulation of a subset of 

mesenchymal genes, and that its engagement correlates with SMAD2/3 and RNAPolII recruitment 

and regulatory regions. Overall, SMYD3 appears to promote EMT-TFs and mesenchymal genes 

transcription, independently of its methylase activity and by hindering SMAD2/3 chromatin 

association. 

 

SMYD3 inhibition decreases MDA-MB-231 cells migration ability and mesenchymal 

phenotype 

We next asked whether SMYD3 depletion could attenuate the mesenchymal phenotype in a 

metastatic mesenchymal-like breast cancer cell line. We therefore treated human MDA-MB-231 

cells with BCI121 and asked whether SMYD3 blockade could reduce the MDA-MB-231 

mesenchymal gene transcription and promote epithelial markers expression. We treated MDA-MB-

231 cells with two doses of BCI121 (10 and 50 µM) for 48 hours and found that SMYD3 inhibition 

increased the expression of epithelial markers Occludin and Claudin6 and reduced the expression of 

mesenchymal markers Snail2, Fibronectin1 and N-cadherin (Fig. 6A). In agreement with reduced 

mRNA, Occludin protein levels increased, whereas Snail1, Snail2, Vimentin and Fibronectin levels 

decreased following BCI121 administration (Fig. 6B). Functionally, BCI121 treatment decreased 

MDA-MB-231 ability to migrate in vitro, as shown by in wound-healing assays (Fig. 6C).  

MDA-MB-231 cells have been employed to evaluate in vivo migration, in zebrafish xenografts. 

MDA-MB-231 cells were injected in the sub-peridermal space, close to the sub-intestinal vessels 
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(SIV) plexus, in zebrafish embryos at 48 hours post fertilization (hpf). After cells injection, 

embryos were treated either with 50µΜ BCI121 or DMSO for 48 hours. We then evaluated the 

number of single cells that invaded the zebrafish body, either in the tail, heart or head, at 2 days 

post-injection (dpi). We found that the number of invading MDA-MB-231 cells was significantly 

reduced in zebrafish embryos treated with BCI121, when compared to DMSO treated embryos (Fig. 

6D and E).  

Overall, these results indicate that BCI121 treatment decreases MDA-MB-231 cells mesenchymal 

signature and it reduces their invasion ability, both in vitro and in vivo. 

 

SMYD3 is highly expressed in human breast cancers and correlates with increased metastasis  

To assess whether our findings could be related to the pathogenesis of human breast cancer and 

metastasis formation, we studied SMYD3 expression in one of the publicly available data sets in the 

TCGA repository (Supplementary Fig. S1). In the Metabric cohort (35,36) SMYD3 was altered in 

24.1% of the 2501 cases (Supplementary Fig. S1). 

Analysis of RNA-seq expression profiles of breast invasive carcinomas obtained from the TCGA 

database and analyzed with the Firebrowse portal showed that SMYD3 expression was significantly 

enhanced in breast cancer tumors (1093 tumor samples) when compared to healthy tissue (112 

normal samples) (Fig. 7A). Remarkably, we couldn’t point out any specific SMYD3 enrichment in 

relation to any molecular subtype (Supplementary Fig. S7A). We next focused on EMT signature 

genes and interrogated expression data from 1394 tumors obtained from the Metabric dataset to 

investigate whether SMYD3 transcript levels was associated with EMT genes expression. We 

stratified patients for SMYD3 levels (Supplementary Fig. S7B), and found that Snail2, Zeb1, Zeb2, 

Twist1, Twist2, N-cadherin, Fibronectin and Vimentin were significantly upregulated in High 

SMYD3 tumors compared to the low SMYD3 group (Supplementary Fig. S7C). We observed a 

positive correlation between SMYD3 and mesenchymal genes expression (Snail2, Zeb2, 

Fibronectin, N-Cadherin and Vimentin) in the Metabric dataset (Supplementary Fig. S7D). To 

confirm our findings, we extended our analysis to the NKI295 breast cancer dataset (37), and 

confirmed a positive correlation between SMYD3 and Snail2, N-cadherin and Fibronectin 

expression (Supplementary Fig. S7E). 

Core-EMT signature genes are highly expressed in claudin-low breast cancers, when compared to 

other molecular breast cancers subtypes (20). We therefore queried for a correlation between 

SMYD3 expression and a subset of core-EMT genes in claudin-low tumors, within the Metabric 

dataset. Our analysis confirmed a positive correlation between SMYD3 expression and EMT-TFs 

(Snail2, ZEB2, ZEB1, Twist1), as well as mesenchymal gene transcripts (Fibronectin, N-Cadherin) 
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and the degree of correlation was more robust in claudin-low subtype than in the whole Metabric 

cohort (Fig. 7B). Transcript levels for Snail2, ZEB1, ZEB2, Twist1, Twist2, Vimentin and 

Fibronectin were significantly higher in claudin-low tumors over-expressing SMYD3 compared to 

the SMYD3 low tumors (Fig. 7C), and the differences between the two groups were more prominent 

than in the analysis on the entire dataset (Supplementary Fig. S7C). 

SMYD3 higher expression levels did not correlate with a poorer prognosis in the Metabric cohort as 

a whole; however, SMYD3 high patients had a significantly lower survival probability in the 

claudin-low tumor subgroup, when compared to the claudin-low SMYD3 low patients’ group (Fig. 

7C).  

To further investigate SMYD3 prognostic value, we performed a parallel analysis in different 

clinical microarray dataset from 1354 breast tumors (38). We first focused our analysis to an 

advanced tumor stage, and found that distant metastasis free survival was significantly higher for 

patients with low SMYD3 grade 3 tumors, independently of lymph node status and systemic 

treatment they underwent (n=458, p value 0.022) (Fig. 7D). Likewise, SMYD3 high levels in grade 

1, lymph node negative tumors, in patients that didn’t undergo chemotherapy or endocrine therapy, 

displayed a significantly lower probability of distant metastasis free survival (n=94, p=0.031) 

(Supplementary Fig. S7F).  

Overall, clinical dataset analysis suggests that SMYD3 levels positively correlate with EMT-TFs 

and mesenchymal gene expression in breast tumors. Higher SMYD3 levels in breast tumors 

associate with reduced metastasis free survival, and with a worst overall survival probability in 

claudin-low tumors. 

 

Discussion 

Results presented in this paper highlight SMYD3 nuclear functions in regulating EMT-transcription 

factors and mesenchymal gene expression, in the context of TGFβ stimulation. We describe a direct 

TGFβ-independent interaction between SMYD3 and SMAD3 and a functional interplay between 

SMYD3 and SMAD3 in EMT genes transcriptional regulation. We propose that SMYD3 is 

indispensable for TGFβ−induced SMAD3 recruitment at chromatin regulatory regions of 

mesenchymal targets and EMT-TFs.  

Several lines of evidence previously linked SMYD3 to migration and invasion, in different cell 

lines (12-16). Our findings confirm this indication in TGFβ-induced EMT and provide a molecular 

mechanism that supports recently reported in vivo findings (23), highlighting a crucial role for 

SMYD3 in promoting EMT genes activation. Sarris et al. (2016) showed by ChIP-Seq assay that 
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SMYD3 occupies several regulatory regions in liver tumors and revealed that SMYD3 association 

to a subset of proliferation and EMT loci promotes their transcriptional activation (23). We propose 

that SMYD3 cooperates with SMAD3 at EMT genes driving mesenchymal and EMT-TFs 

transcription.  

Following TGFβ-mediated stimulation, SMAD2 and SMAD3 activate, translocate to the nucleus 

and bind to different transcription factors, co-activators or co-repressors thus achieving higher 

affinity and selectivity for target genes regulatory regions (16). In different cell types SMAD3 

occupancy is directed by cell-type-specific master transcription factors, which are responsible for 

orchestrating the cell-type-specific effects of TGFβ signaling (39). Therefore, cell-type-specific 

effects of TGFβ signaling are in large part determined by SMAD2/3 interactions with transcription 

factors and cofactors and they can vary in a cell/tissue-specific manner. In this scenario, we propose 

that SMYD3 takes part in the orchestrated SMAD3 recruitment at a subset of mesenchymal and 

EMT-TFs genes, following TGFβ stimulation. SMAD3 interacts with SMYD3 through the MH2 

domain, which is responsible for association to various transcription factors and cofactors, as well 

as for the interaction between SMAD proteins and their transcriptional activation (40).  SMYD3 

interaction domain, instead, encompasses SMYD3 c-terminal region, which was previously 

reported to be involved in HSP90 (41) and H3K4me3 interaction in vitro (23). 

Our ChIP data show that SMYD3 depletion doesn’t affect distribution of repressive histone marks 

H3K9me3 and H3K27me3 at the Snail1 promoter. These findings are in agreement with the concept 

that SMYD3 is recruited at open-chromatin regions (23) and suggest that SMYD3/SMAD2/3 

independent mechanisms are involved in H3K9me3 and H3K27me3 removal (42) and.  Conversely, 

SMYD3 promotes H3K4me3 and H3K9Ac marks deposition at the SNAI1 promoter, as well as 

SMAD3 and RNAPolII recruitment and transcriptional activation. These data suggest that SMYD3 

association to the SNAI1 gene is subsequent to repressive histone marks removal and that SMYD3 

association potentiates transcription through SMAD2/3 and RNAPolII recruitment, at EMT loci. 

SMAD3 was previously reported to mediate COMPASS recruitment and precede H3K4 

trimethylation at the SNAI1 promoter, in TGFβ-treated DU145 cells (43). Additionally, SMAD3 

interacts with p300/CBP and TGFβ treatment promotes acetylation of SMAD2/3 target genes 

(44,45), further suggesting that H3 SMAD2/3 association to the chromatin is required to promote 

K4me3 and H3K9Ac. Additionally, SMYD3 associates with the RNAPolII complex (46,47), and 

this interaction may favor the transcriptional machinery recruitment at EMT genes.  

Remarkably, SMYD3-mediated regulation of EMT is independent of its catalytic activity, 

suggesting that SMYD3 co-activator functions are not mediated by SMYD3 methylation activity at 

the mesenchymal/EMT-TFs genes. Likewise, SMYD3 knockdown didn’t lead to ERK and AKT 
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phosphorylation modulation (25,33,34), indicating that SMYD3 cytosolic and methylation-

dependent mechanisms are finely tuned and operate differently in different context.   

In the patho-physiological context, patients’ data on survival and metastasis free survival support 

the experimentally described SMYD3 role in promoting EMT. SMYD3 mRNA levels are 

upregulated in breast cancers compared to normal breast tissues, but SMYD3 transcripts appear to 

be significantly upregulated in every breast cancer subtypes. SMYD3 also promotes transcriptional 

activation of proliferation genes and its augmented levels may confer an advantage for tumor 

growth in the different breast cancer subtypes. Additionally, SMYD3 was shown regulate HER2 

dimerization through direct methylation (48), suggesting that in different breast cancer subtypes 

SMYD3 may provide selective growth advantages. 

Claudin-low breast cancer cells were shown to be more likely than other breast cancer subtypes to 

promote the breast tumor initiating cancer cell (BTICs) population in response to TGFβ(49). We 

propose that in TGFβ sensitive cells, such as claudin-low cancer cell, SMYD3 may promote EMT 

genes activation through its SMAD3 interplay. 

Recent evidences show that EMT-associated markers are highly expressed in cancer stem cells and 

promote their self-renewal (4).  Remarkably, BTICs are enriched within the claudin-low molecular 

subtype of breast cancer, where TGFβ/SMAD signaling promote BTICs expansion (49). Further 

investigations will reveal whether SMYD3 likewise promotes BTICs stemness in claudin-low cells.  

Overall, our data further support SMYD3 as a promising pharmacological target for anti-cancer 

therapy. 

 

Materials and Methods 

Cell cultures and reagents 

NMuMG, MCF10A and MDAMB231 cell lines were from were purchased from the American 

Type Culture Collection, grown in DMEM supplemented with 10% FBS, 100 U/ml penicillin and 

100 mg/ml streptomycin. MCF10A cell line was grown in DMEM F-12 supplemented with 5% HS, 

20 ng/ml EGF, 0.5 mg/ml hydrocortisone, 100 ng/ml cholera toxin, 10 µg/ml insulin, 100 IU/ml 

penicillin and 100 mg/ml streptomycin. Cells were grown in a humidified incubator with 5% CO2 at 

37°C. Cellules were starved for 12 hrs in serum free growth medium, fresh medium containing FBS 

was changed and treated with 5ng/ml TGFβ. 

TGFβ was reconstituted in 10 mM citric acid (pH 3.0) to a final concentration of 0.1 mg/ml, then 

further diluted in PBS containing 0.1% BSA to a final concentration of 0.01 mg/ml and stored at -
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20°C. BCI-121 (Innovamol, Italy) was dissolved in dimethyl sulfoxide (DMSO) and stored at -

20°C. Unless differently described, BCI121 was used at a final concentration of 10 µM. 

All cell lines were periodically tested for mycoplasma with MycoAlert Mycoplasma detection kit 

(Euroclone, Italy). All cell lines were fed every 48/72 hours, for a maximum number of 30 

passages. 

Cell proliferation and wound healing assays 

Cells growth was determined with a Bürker chamber, counting cells after 48 h or 72 h of BCI-121 

or DMSO exposure.  

Wound healing assays was performed using Dish Culture–Inserts (Ibidi). 50000 cells per well were 

plated and dish were incubated at 37°C and 5% CO2. After 24 hours the Culture-Insert was 

removed and medium was changed. Pictures were taken at time 0, 24 or 48 h, to evaluate migration 

ability. The “wounded” area was manually selected (blue lines) and quantified wih ImageJ.   

RNA Isolation and Real Time PCR (qRT-PCR) 

Total RNA was extracted using TRI reagent (Sigma) according to the manufacturer’s instruction. 

cDNA was synthesized from RNA (1µg) using the High Capacity cDNA Reverse Transcription Kit 

(Applied Biosystem). qRT-PCR was performed in triplicate using SYBR Green PCR Master Mix 

(Bio-Rad) or 2X Xtra Master Mix (GeneSpin) on a CFX Connect Real-Time PCR Detection 

System (Bio-Rad). The qRT-PCR reactions were normalized using GAPDH as housekeeping gene 

and relative quantification was done using the ddCT method. 

The oligonucleotides used in qRT-PCR on NMuMG cells were:  

CDH1 Forward: 5'-GTCTACCAAAGTGACGCTGAAGT-3' 
Reverse: 5'-TCTCGTTTCTGTCTTCTGAGACC-3' 

CDH2 Forward: 5'-AATAGACCCCGTGAATGGGCAGATC-3' 
Reverse: 5'-AGGCGGGATTCCATTGTCAGAAG-3' 

CLD6 Forward: 5'-CTCATCTCTGGCATCATCTTTG-3' 
Reverse: 5'-AGGGGTTGTAGAAGTCCTGGAT-3' 

FN1 Forward: 5'-GCTGGATGATGGTGGACTGT-3' 
Reverse: 5'-CTCGGTTGTCCTTCTTGCTC-3' 

SNAI1 Forward: 5'-ACTGGTGAGAAGCCATTCTCCT-3' 
Reverse: 5'-CTGGTATCTCTTCACATCCGAGT-3' 

 

The oligonucleotides used in qRT-PCR on MCF10 and MDAMB-231 cells were:  

CDH2 Forward: 5'-AGGGGACCTTTTCCTCAAGA-3' 
Reverse: 5'-CTACTGCATGTGCCCTCAAA-3' 

CLD6 Forward: 5'-GATGCAGTGCAAGGTGTACG-3' 
Reverse: 5'-GCCTTGGAATCCTTCTCCTC-3' 

FN1 Forward: 5'-TGAAAGACCAGCAGAGGCATAAG-3' 
Reverse: 5'-CTCATCTCCAACGGCATAATGG-3' 

MMP9 Forward: 5'-TGACAGCGACAAGAAGTGGG-3' 
Reverse: 5'-TTCAGGGCGAGGACCATAGA-3' 
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OCLN Forward: 5'-GAAGCCAAACCTCTGTGAGC-3' 
Reverse: 5'-GAAGACATCGTCTGGGGTGT-3' 

SMYD3 Forward: 5'-TGAATGTGACTGTTTCCGTTGC-3' 
Reverse: 5'-ATTGCTGCTTATGATCGCCTGG-3' 

SNAI1 Forward: 5'-ATCGGAAGCCTAACTACAGCGAGC-3' 
Reverse: 5'-CAGAGTCCCAGATGAGCATTGG-3' 

SNAI2 Forward: 5'-CTTTTTCTTGCCCTCACTGC-3' 
Reverse: 5'-GCTTCGGAGTGAAGAAATGC-3' 

SOX4 Forward: 5'-CCAGCAAGAAGGCGAGTTAG-3' 
Reverse: 5'-CGGAGCCTTCTGTCTTCATC-3' 

VIM Forward: 5'-CCCTCACCTGTGAAGTGGAT-3' 
Reverse: 5'-GCTTCAACGGCAAAGTTCTC-3' 

  

The oligonucleotides used in ChIP qRT-PCR were: 

hMMP9 Forward: 5'-GGTGGTGTAAGCCCTTTCTCAT-3' 
Reverse: 5'-ATGGTGAGGGCAGAGGTGTCT-3' 

hSNAI1  Forward: 5'-GAGTGGTTCTTCTGCGCTACTG-3' 
Reverse: 5'-GCTGTAGTTAGGCTTCCGATTGG-3' 

SOX4 Forward: 5'-ATTGTTTTGTGGCTTTCTCTTCCC-3' 
Reverse: 5'-TCAGCATTGGAATAAAGAATCAGCC-3' 

hVIM Forward: 5'-CTCTTCTCCGGGAGCCAGTC-3' 
Reverse: 5'-CGGTAGGAGGACGAGGACAC-3' 

mSNAI1  Forward: 5'- CGGAGTTGACTACCGACCTT -3' 
Reverse: 5'- GACCTAGGTAGTCGGGGTCAC-3' 

 

RNA interference 

 siRNAs targeting human SMYD3 (5’-GAUUGAAGAUUUGAUUCUA-3’) (Eurofins Genomics). 

siRNA (150nM) were transfected with Lipofectamine 2000 according to the manufacturer’s 

instructions. Scrambled siRNA (5’-GCGUUGCUCGGAUCAGAAA-3’) was used as negative 

control. Lentiviral infections in MCF10A cells were performed with shRNA targeting SMYD3 

(Mission ShRNA, Sigma) and shRNA used for retroviral infections in NMuMG cells was 

previously described (47). Retroviral and lentiviral infections were performed as in (50).  

Cell extracts and immunoblot analysis  

Cells collected and homogenized in RIPA lysis buffer (50 mM Tris-HCl pH 7.4, 0,5% sodium 

deoxycholate, 0,1% SDS, 250 mM NaCl, and 1% NP40) supplemented with protease and 

phosphatase inhibitors (Sigma). Homogenates were solubilised in Laemmli Sample buffer and 30 

µg proteins were separated on 8%, 10% or 12% SDS-PAGE, and transferred to nitrocellulose 

membranes using Trans-Blot Turbo Transfer System (BioRad). Membranes were blocked with 

Phosphate-buffered saline (PBS) containing 0.1% Tween and 5% nonfat dry milk and incubated 

with primary antibody, overnight. E-caderin (Cell Signaling, 24E10), Occludin (Santa Cruz, sc-

5562), Fibronectin (Santa Cruz, sc-9068), SMYD3 (GeneTex, GTX121945), SMYD3 (Cell 
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Signaling, D2Q4V), Snail1 (Cell Signaling, C15D3), Actin (Santa Cruz, sc-8432), p-SMAD2/3 

(Santa Cruz, sc-11763), Vimentin (Santa Cruz, sc-6260), histone H3 (Santa Cruz, sc-10809), Flag 

(Sigma, F3165), HA (Santa Cruz, sc-805), Snail2 (Santa Cruz, sc-166476), Lamin A/C (Cell 

Signaling, 4C11), c-myc (Santa Cruz, sc-789), AKT1/2/3 (Santa Cruz, sc-8312), p-AKT1/2/3 

(Santa Cruz, sc-7985-R), ERK (Santa Cruz, sc-94), p-ERK (Santa Cruz, sc-sc-7383), GAPDH 

(Santa Cruz, sc-32233).  Nuclear and cytoplasmic extracts were performed with Nucleat Extract Kit 

(Active Motif). 

Chromatin immunoprecipitation (ChIP) 

Chromatin immunoprecipitation was performed as previously described (Proserpio et al., 2013). 

MCF10A and NMuMG cells were treated with 5 ng/ml TFGβ for 6 hrs before formaldehyde 

crosslinking.  2µg of SMYD3 (NovusBio, NBP1-79393) and SMAD2/3 (Cell Signaling, D7G7) 

Cell Signaling) antibodies were used in MCF10A cells, SMYD3 (GeneTex, GTX121945), SMAD3 

(Abcam, ab28379) RNAPolII (GeneTex), H3K4me3 (Millipore, 05-745), H3K27me3 (Active 

Motif, 39536), H3K9me3 (Active Motif, 39161), H3K9Ac (Millipore, 06-942). 

Recombinant proteins 

GST-SMYD3 (kind gift form dr. N. Reynoird, University of Grenoble, France) was expressed in E. 

coli TUNER cells, previously transfected with the Chaperone pKJE7 plasmid (Takara), by 

induction with 0.1 mM IPTG O/N at 4°C. Recombinant GST-SMYD3 was purified using Pierce 

Glutathione Superflow Agarose resin (Thermo Scientific) and eluted with 125 mM Tris/HCl, 150 

mM NaCl, 10 mM reduced glutathione, 0.2% Triton X100, pH 8.0. GST tag was removed with 

PreScission Protease (GE Healthcare), according to the manufacturer’s instructions. 

Immunoprecipitation 

Whole cell extracts were obtained from HEK293T transfected cells or NMuMG cells collected and 

homogenized in IP lysis buffer (50 mM Tris-HCl pH 8, 150 mM NaCl, 5 mM MgCl2, 2 mM EDTA, 

10% glycerol, 0.1% NP40) supplemented with protease and phosphatase inhibitors (Sigma, Italy). 

Protein contents of all the samples were determined by the Bradford’s method. 500 µg of whole 

extract were incubated with Myc (Millipore, 05-419), SMYD3 (Santa Cruz, sc-49519X), normal 

IgG (Santa Cruz, sc-2027, sc-2028) at 4°C for 2 hours and Protein G Agarose beads (Pierce, Italy) 

were added for 45 additional minutes.  IP for Flag were performed with Flag-M2 affinity gel 

(Sigma, A2220). For IP with recombinant proteins, 200ng of GST-SMAD3 (Sigma, Italy) and 

SMYD3 were incubated with 2µg of anti-SMYD3 antibody (Santa Cruz, sc-49519X) or with goat 

IgG (Santa Cruz, sc-20208) in IP Buffer (50 mM Tris/HCl, 1 mM EDTA, 150 mM NaCl, 5 mM 

MgCl2, 10% glycerol, 0.1% NP40, pH 8.0) and incubated at 4°C for 2 hours and Protein G Agarose 

beads (Pierce, Italy) were added for 45 additional minutes. Immuno-complexes were washed 3 
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times and immune complexes were resolved by SDS-PAGE and analyzed by Western blot with 

SMAD2/3 (Cell Signaling, D7G7), HA (Santa Cruz, sc-805), Flag (Santa Cruz, sc-807), SMYD3 

(GeneTex, GTX121945). 

Immunofluorescence  

Cells seeded on coverslips were washed with PBS, fixed in methanol and blocked with 3% BSA in 

1XPBS 0,02% Triton for 1 hour at room temperature. Samples were then probed overnight with 

Paxillin (Santa Cruz, 5574), ZO1 (Santa Cruz 10804), N-cadherin (Santa Cruz, 7939), F-actin 

Phalloidin (Santa Cruz, sc-363795), p-SMAD3 (Cell Signaling, C25A9). After three 5 minute 

washes with PBS, cells were incubated for 1 hour at room temperature with rabbit or mouse Alexa 

Fluor secondary antibodies. Cells were then washed three time for 5 minute with PBS, coverslips 

were mounted on slides with Fluoroshield with DAPI (Sigma) and examined with The samples 

wereexamined with a fluorescence microscope (Carl Zeiss). Pictures of staining were obtained 

using an AxioCam (Carl Zeiss Vision). 

Zebrafish care and tumor xenograft 

Tg(fli1a:EGFP)y1 transgenic embryos, collected by natural spawning, were staged and raised at 

28°C in fish water (Instant Ocean, 0.1% methylene blue), according to National (Italian D.lgs 

26/2014) and European laws (2010/63/EU and 86/609/EEC). Dechorionated embryos at 48 h 

postfertilization (hpf) were anesthetized with 0.04 mg/mL of tricaine (Sigma-Aldrich). Tumor cells, 

labeled with a red fluorescent dye for cell viability (CellTracker™ CM-DiI, Invitrogen) and 

resuspended in PBS, were implanted in the sub-peridermal space, close to the sub-intestinal vessels 

(SIV) plexus, of 48 hpf zebrafish embryos (100 cells for each embryo). After the cell implantation, 

embryos showing cells into the yolk sac and/or in the vasculature embryos were excluded from 

further analyses. Correctly grafted embryos were split in two experimental groups that were treated 

with 50 µM BCI121 and the vehicle alone (DMSO) respectively. BCI121 and DMSO were diluted 

directly into the fish water. Thus, treated and control embryos were incubated at 32°C. At 48 hours 

post injection (hpi), the presence of circulating grafted cells into the trunk/tail region was evaluated 

through a fluorescence stereomicroscope (Leica DM6000B equipped with LAS Leica imaging 

software). The spread of injected tumor cells throughout the embryo was quantified in both 50 µM 

BCI121treated and control embryos by the “Analyze Particle” plugin of Fiji software. Data 

from two independent experiments were pooled.  Statistical significance was calculated with 

unpaired Student’s t-test. * p<0.05. 

Clinical datasets analysis 

The website FireBrowse (http://firebrowse.org) was used to interrogate the TGCA database for the 

average SMYD3 expression in breast invasive carcinomas versus normal tissue. 

http://firebrowse.org/
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The website cBioPortal (http://www.cbioportal.org) was used for meta-analysis (30,31). The 

Metabric dataset contains 2509 patients with breast cancer with Illumina v3 RNA microarray, 

clinical data and a follow-up period up to 350 months (Pereira 2016 nature; Curtis nature 2012). 

Only 1866 patients were included in the present study, because they displayed all the parameters 

considered. Patients were stratified based on SMYD3 z-score and quartiles were identified as 

SMYD3 High (q1: SMYD3 z-score ≥ 0.998. N=468) and SMYD3 Low (q3 SMYD3 z-score ≤ -

0.327. N=467). SMYD3 expression levels were correlated with EMT genes transcript levels by 

Pearson correlation analysis. Estimated probability of overall survival and distant metastasis free 

survival was calculated with the Kaplan-Meier method.  

NKI295 dataset was downloaded from http://ccb.nki.nl/data/ (51). The subgroup of patients with 

BRCA1 mutations was excluded from the analysis. 

  

Statistical analysis 

The statistical significance of the results was analyzed using the unpaired Student’s t-tail test, 1 way 

Anova followed by Tukey post-test, 2 way Anova, followed by Bonferroni post-test using 

GraphPad (Prism6). Survival curves were analysed by Log-rank (Mantel-Cox) Test and Gehan-

Breslow-Wilcoxon Test. Correlations were analyzed by Pearson r test. *p < 0.05, **p < 0.01, and 

***p < 0.001 were considered statistically significant.   
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Figure legends 

Figure 1. SMYD3 depletion impairs TGFβ-induced EMT in murine NMuMG cells. A, Brightfield 
images of shSMYD3 or shScramble NMuMG cells treated with 10 ng/ml TGFβ or vehicle for 24 
hours. Scale bar=10µm. B, Quantitative real-time PCR analysis of epithelial (E-Cadherin, 
Claudin6) or mesenchymal (N-Cadherin and Fibronectin) genes. shSMYD3 or shScramble 
NMuMG cells were treated with 10 ng/ml TGFβ for 0, 24, 48 or 96 h. GAPDH was used as 
housekeeping gene.. Statistical analysis was performed with 1 way ANOVA, followed by post-hoc 
Tukey test. n ≥3, * p ≤0.05, ** p ≤0.01. C, Western blot analysis of epithelial (E-Cadherin and 
Occludin) or mesenchymal (N-Cadherin and Fibronectin) genes in shSMYD3 or shScramble 
NMuMG cells treated with 10 ng/ml TGFβ for 0, 48 or 72 h. GAPDH serves as a loading control. 
D, Upper panel: Snail1 transcript levels were quantified by qRT-PCR, after 0, 6, 12 h of TGFβ 
treatment. Lower panel: Western blot to evaluate Snail1 protein levels at 0, 6 12, 24 h following 
TGFβ treatment. β-actin was used as loading control. E, immunofluorescence microscopy of 
mesenchymal and epithelial markers in shSMYD3 or shScramble NMuMG cells. Left panels show 
untreated cells and the right panel shows cells treated with 10 ng/ml TGFβ for 24hrs. Epithelial 
(ZO-1) and mesenchymal (N-Cadherin) were analyzed. Paxillin was used to detect focal adhesion 
plaques, and phalloidin to visualize the actin cytoskeleton. Scale bar=20µm. F, Wound healing 
assay on shSMYD3 or shScramble NMuMG cells treated with 10 ng/ml TGFβ for 0 and 24 hours. 
Migration percentage is reported in the right panel. Scale bar=10µm. 
 
Figure 2. SMYD3 knockdown hinders TGFβ-induced EMT in human MCF10A cells. A, 
Brightfield images of siScramble or SiSMYD3 MCF10A cells treated with 5 ng/ml TGFβ or 
vehicle, for 24 hours. Scale bar=10µm. B, siSMYD3 or siScramble MCF10A cells were treated 
with 5 ng/ml TGFβ for 72 hours, and protein extracts were analyzed by Western blot analysis for 
epithelial (Occludin) or mesenchymal markers (N-Cadherin, Vimentin and Fibronectin). GAPDH 
serves as a loading control. C, MCF10A cells were treated with 10 ng/ml TGFβ for 72 hours and 
mRNA levels of epithelial (Occludin) and mesenchymal genes (MMP9, Vimentin, N-Cadherin and 
Fibronectin) were determined by quantitative real-time PCR analysis, relative to GAPDH. D, 
MCF10A cells were treated with 5 ng/ml TGFβ for 6 hours and mRNA levels of EMT-TFs was 
determined by quantitative real-time PCR analysis, relative to GAPDH. Statistical analysis was 
performed with 1 way ANOVA, followed by post-hoc Tukey test. n≥3, * p ≤0.05, ** p ≤0.01. 
 
Figure 3. SMYD3 blockade with the BCI121 inhibitor hampers TGFβ-induced EMT. A, Epithelial 
(E-Cadherin, Claudin-6) or mesenchymal (N-Cadherin and Fibronectin) transcripts were quantified 
by quantitative real-time PCR analysis, relative to GAPDH. NMuMG cells were treated with 10 
ng/ml TGFβ in the presence of 0, 1, 5 10 and 50 µM BCI121, for 48 hours. Statistical analysis was 
performed with 1 way ANOVA, followed by post-hoc Tukey test. n ≥3, * p ≤0.05, ** p ≤0.0. B, 
N-Cadherin and MMP9 transcript levels were quantified by quantitative real-time PCR normalized 
to GAPDH in MCF10A cells treated with 5 ng/ml TGFβ in the presence of 0, 1, 5 10 and 50 µM 
BCI121 for 48 hours. Statistical analysis was performed with 1 way ANOVA, followed by post-hoc 
Tukey test. n ≥3, * p ≤0.05, ** p ≤0.01. C, D, Wound healing assay on NMuMG and MCF10A 
cells treated with 10 ng/ml TGFβ and 10µM BCI121 for 0 and 24 hours. Migration percentage is 
reported in the right panel. Scale bar=10µm. 
 
 
Figure 4. SMYD3 directly interacts with SMAD3. A, Western-blot analysis of over-expressed 
Flag-SMYD3 and HA-SMAD3 following co-immunoprecipitation with anti-Flag antibody. B, Co-
immunoprecipitation analysis of endogenous SMYD3 and SMAD3 in NMuMG cells. Whole cell 
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extract were prepared from NMuMG cells after starvation, from cells treated with the TGFβ-
signaling inhibitor SB431542, or starved and treated with 10 ng/ml TGFβ for 30 and 60 minutes. Ip 
was performed with antibodies raised against SMYD3. C, Co-immunoprecipitation with anti-Myc 
antibody in whole cell extracts of HEK293T cells over-expressing Myc-SMYD3 and Flag-SMAD3 
WT or Flag-tagged SMAD3 domains MH1, L-MH2 and MH2. Lower panel represent a schematic 
representation of SMAD3 mutants. D, co-immunoprecipitation with anti-Flag antibody of 
HEK293T cells over-expressing HA-SMAD3 and Flag-SMYD3 WT or Flag-tagged SMYD3 
mutants 1-219, 219-428, 111-428, 1-380. Lower panel represent a schematic representation of 
SMYD3 mutant. E, Full-length SMYD3 and SMYD3_1-380 were over-expressed in MCF10A cells 
and treated with 5ng/ml TGFβ for 48 h.  Whole cell extracts were analyzed by immunoblot for 
epithelial and mesenchymal markers. F, in vitro co-immunoprecipitation of GST-SMAD3 and 
SMYD3 was performed with SMYD3 antibodies. Immunoblot was performed with anti-SMAD2/3 
and anti-SMYD3 antibodies.  
 
Figure 5. SMYD3 assists SMAD3 recruitment to the chromatin. A, SMAD2/3 and SMYD3 
association to regulatory regions of EMT markers was analyzed by ChIP qPCR, in ShScramble and 
ShSMYD3 MCF10A cells treated with 5ng/ml TGFβ for 24 hours. Data are expressed as fold 
enrichment over the IgG control. Statistical analysis was performed with Student’s t test. n=4, * p 
≤0.05, ** p ≤0.01, *** p ≤0.001, B, SMAD2/3 and SMYD3 association to EMT markers was 
analyzed by ChIP qPCR, in MCF10A cells co-treated with 5ng/ml TGFβ and 10 µM BCI121 for 24 
hours. Data are expressed as fold enrichment over the IgG control. Statistical analysis was 
performed with unpaired Student’s t test. n=4, * p ≤0.05, ** p ≤ 0.01, *** p ≤ 0.001. C, 
immunofluorescence microscopy of shSMYD3 or shScramble NMuMG cells treated with 10 ng/ml 
TGFβ for 2 h. Depicted in the left two panels the staining for the phosphorylated SMAD3 (P-
SMAD3), in the middle panels DAPI and in the right panels the merge of the two stainings. Scale 
bar=10µm. D, Western-blot analysis of P-SMAD3 and SMAD2/3 levels in shSMYD3 or 
shScramble NMuMG cells, treated with 10 ng/ml TGFβ for for 30 min. E, Western-blot analysis of 
cytoplasmic (C) and nuclear (N) P-SMAD3 in shSMYD3 or shScramble NMuMG cells treated with 
10 ng/ml TGFβ for 30 min. GAPDH was used as cytoplasmic marker, histone H3 as nuclear 
marker. F, ChIP assay was performed to evaluate SMYD3, SMAD2/3, RNAPolII, H3K9me3, 
H3K9Ac, H3K27me3 occupancy at the Snail1 promoter, in NMuMG cells treated with 10ng/ml 
TGFβ for 6 h. Data are normalized on IgG. Statistical analysis was performed with unpaired 
Student’s t test. n=3, * p ≤0.05, ** p ≤0.01. 
 
Figure 6. SMYD3 blockade by BCI121 tempers MDA-MB-231 mesenchymal phenotype and 
migration ability. A, MDA-MB-231 cells were treated with increasing doses of BCI121 (0, 10 or 50 
µM) for 48 h. Epithelial (Occludin, Claudin6) or mesenchymal (Snail1, Snail2, Vimentin and 
Fibronectin) marker mRNA levels were measured by qRT-PCR. GAPDH was used as 
housekeeping gene. Statistical analysis was performed with 1 way ANOVA, followed by post-hoc 
Tukey test n ≥3, * p ≤0.05, ** p ≤0.01, *** p ≤0.001. B, MDA-MB-231 cells were treated with 
increasing doses of BCI-121 (0, 10 or 50 µM) for 72 h and whole cell extracts were assayed for 
epithelial (Occludin) or mesenchymal (Snail1, Snail2, Vimentin and Fibronectin) protein levels by 
immunoblot. GAPDH was used as a loading control. C, Wound healing assay on MDA-MB-231 
cells treated with 10µM BCI121 for  0 and 24 hours. Migration percentage is reported in the right 
panel. Scale bar=10µm. D, in vivo migration assay in zebrafish xenografts. 1x102 MDA-MB-231 
cells were injected in the subepidermal pocket of zebrafish embryos at 48 hpf. Embryos were 
treated with 50 µM BCI-121 or DMSO, for 48 h. E, Cells migrating in the tail, heart and head were 
counted in the two groups, 48 hpi. Scale bar=200μm. Statistical analysis was performed with 
unpaired Student’s t-test.  * p ≤0.05 
 



 

 95 

Figure 7. Prognostic value of SMYD3 in breast cancer. A, Box plots showing SMYD3 expression 
levels in normal and tumor breast tissue. Analysis was performed on 1098 breast cancer tissues and 
112 normal tissues on TCGA data, downloaded from through Firebrowse. *** p<0.0001, unpaired 
Student’s t test. B, Correlation between SMYD3 and the mesenchymal markers SNAIL2, ZEB1, 
ZEB2, TWIST1, Fibronectin and N-Cadherin expression, calculated on claudin-low tumors 
(Metabric), by Pearson correlation analysis. Pearsons’ coefficient tests were performed to assess 
statistical significance. C, Claudin-low tumors (Metabric) were stratified for SMYD3 expression 
(high vs low) and Snail2, ZEB1, ZEB2, TWIST1, TWIST2, Vimentin, Fibronectin mRNA levels 
were compared in SMYD3-low and SMYD3-high tumors. Statistical significance was calculated 
with unpaired Student’s t test. *p ≤0.05, **p≤0.001, ***p≤0.0001. C, D, Kaplan-Meier plots of 
survival probability of claudin-low patients stratified by SMYD3 expression in the Metabric 
dataset. p value calculated by log rank test. E, Kaplan-Meier plots of distant metastasis-free survival 
of patients with grade 3 tumors, stratified by SMYD3 expression levels. p value was calculated by 
log rank test. 
 
Supplementary Figures 
Figure S1. SMYD3 over-expression is present in multiple cancers.  
TCGA database was queried for SMYD3 under- or over-expressing SMYD3 tumors. TCGA data 
were analyzed using the open-source software cBioPortal for Cancer Genomics 
(http://www.cbioportal.org/). 
 
Figure S2. SMYD3 depletion doesn’t impact ERK and AKT activation.  
A, Immunoblot of Epithelial (E-Cadherin, Occludin) and mesenchymal (N-Cadherin) protein levels 
in shSMYD3 or shScramble NMuMG cells, treated with 10 ng/ml TGFβ for 72 h. GAPDH was 
used as loading control.   
B, Immunoblot of p-ERK, ERK, p-AKT and AKT in NMuMG cells treated with 10 ng/ml TGFβ 
for 72 h.   
 
Figure S3. BCI121 impact on NMuMG and MCF10A cells growth.  
A, B, NMuMG and MCF10A cells growth was evaluated in the presence of TGFβ (right panel) or 
vehicle (left panel), in cells treated with increasing doses of SMYD3 inhibitor BCI121.  
 
Figure S4. SMYD3-mediated regulation of EMT genes is independent from its methylation 
activity.  
A, NMuMG cells were transduced with pBabe-SMYD3, pBabe-SMYD3_ΔEEL and pBabe-
EMPTY retroviruses and clones were treated with 10ng/ml TGFβ for 48 h. Epithelial (E-Cadherin 
and Occludin) and mesenchymal (N-Cadherin and Vimentin) protein levels were analyzed by 
immunoblot. B, Immunofluorescence microscopy of pBabe-SMYD3, pBabe-SMYD3_ΔEEL and 
pBabe-EMPTY NMuMG cells treated with TGFβ for 48 h, fixed with paraformaldehyde and 
stained with antibodies against the epithelial marker ZO1. 
 
Figure S5. Inputs of Cells extracts used for co-IP experiments.  
A, Input HEK293T cell extracts used for co-IP in fig 4C are shown. B, Input HEK293T cell extracts 
used for co-IP in fig 4D are shown. 
 
Figure S6. BCI121 treatment doesn’t impact SMAD3/SMYD3 interaction.  
A, MCF10A cells were treated with BCI121 or DMSO for 24 h and whole cell extracts were used in 
immunoprecipitation experiments with antibodies raised against SMYD3. Immunoblot was 
performed with SMAD2/3 and SMYD3 antibodies. 
 
Figure S7. Breast cancer clinical dataset analysis.  

http://www.cbioportal.org/
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A, box plots represent SMYD3 mean z score across breast tumor subtypes. Data were obtained 
from the Metabric dataset. B, Patients were stratified in two group with “High” (q1) and “Low” 
(q3) SMYD3 expression levels. C, Tumors from the whole Metabric dataset were stratified for 
SMYD3 expression (high vs low) and Snail2, ZEB1, ZEB2, TWIST1, TWIST2, Vimentin, N-
Cadherin, Fibronectin mRNA levels were compared in SMYD3-low and SMYD3-high tumors. 
Statistical significance was calculated with unpaired Student’s t test, *p ≤0.05, **p≤ 0.001, 
***p≤0.0001. D, Correlation between SMYD3 and the mesenchymal markers SNAIL2, ZEB2, 
ZEB1, TWIST1, Fibronectin and N-Cadherin expression, calculated on breast cancer tumors from 
the Metabric dataset, by Pearson correlation analysis. E, Correlation between SMYD3 expression 
and the mesenchymal markers SNAIL2, Fibronectin and N-Cadherin, calculated in the NKI295 
breast cancers dataset by Pearson correlation analysis. F, Kaplan-Meier plots of distant metastasis-
free survival of patients with grade 1 breast tumors, stratified by SMYD3 expression levels. p value 
was calculated by log rank test.  
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