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ABSTRACT	

Studies	on	membrane	trafficking	have	expanded	massively	over	the	last	40	years.	

During	 this	 time,	 research	 has	 led	 to	 an	 understanding	 of	 the	 molecular	

mechanisms	underlying	membrane	trafficking	pathways,	providing	crucial	insights	

into	 several	 fundamental	 events.	 Although	 we	 have	 gained	 detailed	 knowledge	

about	 the	molecular	organization	of	membrane	 trafficking	machineries	 there	 is	a	

lack	of	a	global	view	of	its	function,	organization	and	regulation.	In	addition,	many	

genes	of	the	membrane	trafficking	machinery	have	been	associated	with	diseases.	

In	 the	 majority	 of	 cases,	 disease	 manifestation	 is	 tissue-specific	 despite	 the	

ubiquitous	expression	of	 the	causal	gene.	Explanations	for	this	phenomenon	may	

be	found	either	in	the	specific	requirements	and	demands	of	a	cell	within	a	given	

tissue	or	in	differences	in	the	expression	of	disease	gene	interactors.	

The	 main	 aim	 of	 this	 project	 was	 to	 delineate	 sets	 of	 co-expressed	 membrane	

trafficking	 genes	 and	 proteins	 (membrane	 trafficking	 modules;	 MTMs)	 across	

tissues.	For	this	purpose	we	curated	a	list	of	1,261	genes	that	have	been	described	

as	 part	 of	 membrane	 trafficking	 machineries	 in	 different	 cellular	 organelles,	

around	which	we	have	developed	a	bioinformatics	pipeline	in	order	to	address	two	

specific	questions:	

a)	 are	 membrane	 trafficking	 genes	 organized	 in	 MTMs,	 defined	 as	

communities	of	co-expressed	genes,	and	are	they	associated	with	general	cellular	

functions?	

b)	 do	 disease	 genes	 have	 specific	 membrane-trafficking	 co-expressed	

communities	in	those	tissues	that	are	affected	by	the	disease?	

To	 address	 these	 questions	 we	 used	 data	 from	 the	 Genotype-Tissue	 Expression	

(GTEx)	 project,	 a	 catalog	 of	 human	 tissue-specific	 gene	 expression	 patterns	
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obtained	 from	 “non-diseased”	 tissues	 sampled	 from	 recently	 deceased	 human	

donors.	

With	 regards	 to	 the	 first	 question,	 we	 analyzed	 the	 expression	 patterns	 of	 the	

trafficking	 genes	 in	 twenty-five	 different	 tissues	 and	 used	 weighted	 correlation	

network	analysis	(WGCNA)	to	derive	highly	preserved	MTMs.	We	have	analyzed	in	

more	detail	one	that	includes	genes	apparently	involved	in	collagen	secretion.	

Instead	 for	 the	 second	question	we	 applied	differential	 co-expression	before	 the	

WGCNA	 to	 generate	 tissue-specific	MTMs	 to	understand	how	 specific	membrane	

trafficking	gene	modules	might	be	organized	in	human	tissues.	
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Chapter	1	

Introduction:	

Eucaryotic	cells	have	half	of	their	internal	volume	occupied	by	a	complex	system	of	

intracellular	 membranes	 that	 forms	 functionally	 specialized	 compartments:	 the	

cellular	 organelles.	 Each	 organelle	 contains	 a	 distinct	 set	 of	 proteins,	 which	

mediates	 its	 unique	 function,	 and	 since	 the	 synthesis	 of	 the	 majority	 of	 them	

begins	 on	 ribosomes	 in	 the	 cytosol,	 non-cytosolic	 proteins	 usually	 have	 sorting	

signals,	at	the	N-terminus	of	the	amino	acid	sequence,	that	direct	their	delivery	to	

locations	 outside	 the	 cytosol	 (i.e.	 nucleus,	 endoplasmic	 reticulum	 (ER),	

mitochondria	or	peroxisomes).	

Sorting	 signals	 can	 also	 direct	 the	 transport	 of	 proteins	 from	 the	 ER	 to	 other	

membrane-enclosed	 compartments	 or	 between	 these	 compartments,	 tracing	 the	

principal	 ways	 of	 membrane	 transport:	 the	 exocytic	 or	 secretory	 pathway,	 that	

delivers	newly	 synthesized	proteins	 to	either	 the	plasma	membrane	 (PM)	or	 the	

extracellular	 space,	 and	 the	 endocytic	 pathway,	 that	 delivers	 PM	 components	 to	

internal	compartments	called	endosomes,	from	where	they	can	be	recycled	to	the	

same	or	different	regions	of	the	PM	or	delivered	to	lysosomes	for	degradation.	

Hence,	membrane	trafficking	can	be	defined	as	the	process	by	which	proteins	and	

other	macromolecules	are	transported	between	chemically	distinct	organelles	that	

collectively	comprise	the	exocytic	and	endocytic	pathways.	

1.1	Membrane	trafficking	players	

1.1.1	Proteins	involved	in	protein	folding	

Analysis	 of	 the	 eukaryotic	 proteome	 indicate	 that	 a	 third	 of	 translated	 proteins	

enter	 the	 secretory	 pathway	 (Dancourt	 and	 Barlowe,	 2010).	 The	 pathway	 starts	

with	the	translocation	of	the	nascent	polypeptides	across	or	into	the	ER	membrane	
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where	they	must	fold	before	being	transported	to	the	Golgi	apparatus	or	another	

destination;	molecular	chaperones	and	 folding	enzymes	assist	 the	correct	 folding	

of	these	proteins	in	the	ER.		

The	 ER	 contains	 two	 major	 chaperone	 systems	 dedicated	 to	 the	 proper	

translocation,	maturation	 and	 sorting	 of	 the	 nascent	 chains	 in	 the	 early	 secretory	

pathway:	the	classical	chaperone	and	the	carbohydrate-binding	chaperone	systems.	

The	classical	chaperone	system	is	found	in	almost	all	cellular	locations	and	generally	

involves	 heat	 shock	 proteins	 (Hsp)	 that	 bind	 directly	 to	 the	 polypeptide	 chain.	 In	

contrast,	carbohydrate-binding	chaperones,	such	as	calnexin,	calreticulin	and	lectin	

chaperones,	are	ER-specific	and	interact	with	the	hydrophilic	glycan	modification	of	

the	protein	 (see	 section	1.2.2).	These	 two	systems	co-work	 to	ensure	 that	protein	

flux	through	the	ER	 is	adequately	maintained	for	 the	 large	variety	of	proteins	that	

traverse	the	secretory	pathway	(Braakman	and	Hebert,	2013).	

In	 addition	 to	 chaperones,	 two	 subclasses	 of	 enzymes	 catalyze	 rate-limiting	

reactions	during	folding:	the	disulfide	oxidoreductases,	known	as	protein	disulfide	

isomerases	(PDIs),	and	the	protein	proline	isomerases	(PPIs).		

For	 proteins	 that	 contain	multiple	 cysteine,	 PDIs	 catalyze	 both	 oxidation	 (S—S)	

and	reduction	(-SH)	of	disulfide	bonds	allowing	the	protein	to	attain	the	pattern	of	

disulfide	 bonds	 that	 is	 compatible	 with	 its	 stably	 folded	 conformation.	 It	 also	

happens	that	a	protein	needs	a	cis-proline	to	reach	its	folded	state.	In	this	case,	the	

PPIs	catalyze	the	isomerization	of	proline	residues	from	trans	to	cis	conformation,	

as	these	residues	are	inserted	by	the	ribosome	only	in	the	trans	conformation.	

1.1.2	Vesicular	transport	effectors	

Protein	transfer	between	organelles	is	mainly	mediated	by	transport	vesicles.	Each	

vesicle	 transport	 reaction	 can	 be	 divided	 into	 four	 essential	 steps,	 budding,	
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transport,	 tethering,	 and	 fusion,	 tightly	 maintained	 and	 regulated	 by	 specific	

trafficking	components	(Cai	et	al.,	2007)	(Fig.	1.1).	

	

	

Figure	1.1	Steps	in	Vesicle	Transport.	(1)	Budding:	coat	proteins	are	recruited	onto	the	
donor	membrane	 to	 induce	 the	 formation	 of	 a	 vesicle.	 Cargo	 receptors	 and	 SNAREs	 are	
incorporated	 into	 the	 budding	 vesicle	 by	 binding	 to	 coat	 subunits.	 (2)	 Movement:	 the	
vesicle	 moves	 toward	 the	 acceptor	 compartment	 by	 diffusion	 or	 with	 the	 aid	 of	 a	
cytoskeletal	 track.	 (3)	 Tethering:	 tethering	 factors	 mediate	 the	 initial	 attachment	 of	
transport	vesicle	to	the	acceptor	membrane.	(4)	Fusion:	the	vesicle-associated	SNARE	and	
the	 SNARE	 on	 the	 acceptor	membrane	 assemble	 into	 a	 four-helix	 bundle	 (trans-SNARE	
complex),	which	drives	membrane	fusion	and	the	delivery	of	cargo	(Adapted	from	Cai	et	
al.,	2007).	

	

	

1.1.2.1	Coat	and	cargo	receptor	proteins	

Coat	 proteins	 constitute	 the	 trafficking	 machinery	 involved	 in	 the	 budding	 of	

transport	vesicles.	Once	recruited	 from	the	cytosol	 to	membranes,	 they	assemble	

in	basketlike	structures	that	mold	flat	membrane	patches	into	round	buds,	shaping	

the	nascent	vesicles.	
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The	 other	 important	 function	 of	 these	 proteins	 is	 the	 selective	 recognition	 of	

sorting	 signals	 present	 in	 the	 cytosolic	 domain	 of	 trans-membrane	 (TM)	 cargo	

proteins,	 including	cargo	receptors	 that	 span	 the	membrane	 to	efficiently	 recruit	

soluble	cargo	proteins	to	nascent	vesicles	(Gomez-Navarro	and	Miller,	2016).	

There	are	three	well-characterized	types	of	coated	vesicles,	distinguished	by	their	

coat	proteins	that	mediate	vesicle	budding	and	cargo	selection	at	different	stages	

of	 the	exocytic	 and	endocytic	pathways:	 (I)	 clathrin-coated;	 (II)	COPI-coated	and	

(III)	COPII-coated	vesicles.	

(I)	Clathrin-coated	vesicles	(CCVs)	bud	from	post-Golgi	locations	including	the	PM,	

the	 trans-Golgi	network	(TGN),	and	endosomes.	The	major	protein	component	 is	

clathrin	 whose	 subunit	 consists	 of	 three	 clathrin	 heavy	 chains	 and	 three	 light	

chains	 that	 together	 form	 a	 three-legged	 structure	 called	 triskelion.	 Clathrin	

triskelion	cannot	bind	to	membrane	or	cargo	directly	but	it	uses	adaptor	proteins	

to	anchor	to	membrane	and	bind	to	other	membrane-attached	triskelia,	forming	a	

basketlike	framework	of	hexagons	and	pentagons	that	pulls	the	membrane	into	a	

bud.	Adaptor	proteins	constitute	the	inner	layer	of	the	coat	in	contact	with	various	

TM	 proteins,	 including	 cargo	 receptors;	 there	 exist	 several	 types	 of	 them,	 each	

specific	for	a	different	set	of	cargo	receptors.	

(II)	COPI	vesicles	bud	from	the	ER-Golgi	 intermediate	compartment	(ERGIC),	and	

from	 the	 Golgi	 apparatus.	 The	 COPI	 coat	 is	 composed	 of	 heptameric	 complexes	

called	coatomers	composed	of	two	subcomplexes:	a	trimeric	complex	composed	of	

COPA/COPB2/COPE	 (RET1/SEC27/SEC28	 in	 yeast)	 that	 forms	 the	outer	 layer	of	

the	 COPI	 coat,	 and	 a	 tetrameric	 complex	 composed	 of	 COPG	 (present	 in	 two	

isoforms	COPG1	and	COPG2)/ARCN1/COPZ	(also	present	 in	 two	 isoforms	COPZ1	
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and	 COPZ2)/COPB1	 (SEC21/RET2/RET3/SEC26	 in	 yeast)	 that	 forms	 the	 inner	

core	of	the	coat	(Szul	and	Sztul,	2011).	

(III)	COPII	vesicles	bud	 from	sub-domains	of	 the	ER,	named	ER	exit	 sites	 (ERES)	

and	are	composed	of	five	rapidly	cycling	proteins:	the	small	GTPase	Sar1,	the	inner	

coat	 (Sec23/Sec24)	 and	 the	 outer	 layer	 (Sec13/31).	 Sar1-GTP	 (guanosine	

triphosphate)	 together	 with	 Sec23/Sec24	 constitute	 the	 so-called	 “pre-budding	

complex”,	which	has	the	appearance	of	a	bow	tie	with	one	side	corresponding	to	

Sec23	 and	 the	 other	 to	 Sec24	 (Bi	 et	 al.,	 2002).	 Sec23	makes	 direct	 contact	with	

Sar1-GTP	while	 Sec24	 participates	 in	 cargo	 recognition.	 The	 Sec13/31	 assembly	

unit	 is	a	heterotetramer	comprising	Sec13/Sec31-Sec31/Sec13,	the	“architectural	

core”	 of	 which	 is	 organized	 to	 form	 a	 long	 rod.	 Twenty-four	 copies	 of	 this	 rod	

assembly	 are	 required	 to	 form	 the	 COPII	 cuboctahedron	 (Stagg	 et	 al.,	 2006).	

Additional	 regulatory	 proteins	 participate	 in	 COPII	 assembly,	 including	 Sec16,	 a	

putative	 scaffold	 protein	 (Espenshade	 et	 al.,	 1995),	 and	 Sec12,	 a	 guanine	

nucleotide	exchange	factor	(GEF)	for	Sar1	(Barlowe	and	Schekman,	1993).	

A	 schematic	 representation	 of	 the	 exocytic	 and	 endocytic	 pathways,	 and	 of	 the	

inner	 and	 outer	 layers	 of	 both	 the	 COPI	 and	 COPII	 complexes,	 are	 provided	 in	

Figure	1.2A	and	B.	

	

	

	



	 8	

	 		 	

Figure	 1.2	 Intracellular	 transport	 pathways	 and	 coat	 assembly	 formation.	 (A)	The	
scheme	 depicts	 the	 compartments	 of	 the	 secretory	 and	 endosomal	 pathways.	 Arrows	
indicate	transport	steps.	Colors	indicate	the	known	coats:	COPII	(blue),	COPI	(green),	and	
clathrin	 (red).	 Secretory	 cargos	are	 synthesized	 in	 the	ER,	 exit	 the	ER	at	ERES	 in	COPII-
coated	 vesicles,	 and	 are	 transported	 to	 ERGIC.	 Cargos	 are	 sorted	 from	 ERGIC	 into	
anterograde	carriers	that	move	them	to	Golgi.	After	passage	through	the	Golgi,	cargos	are	
sorted	at	 the	TGN	for	delivery	to	the	PM,	early	and	 late	endosomes,	and	 in	some	cells	 to	
secretory	granules.	A	COPI-mediated	recycling	pathway	retrieves	proteins	from	the	Golgi	
and	ERGIC	and	returns	them	to	the	ER.	(B)	Both	the	COPII	(left)	and	COPI	(right)	coats	are	
directed	in	their	assembly	by	small	GTPases	of	the	Arf/Sar1	family.	In	the	COPII	coat,	Sar1	
is	activated	by	its	guanine	nucleotide	exchange	factor	(GEF),	Sec12,	which	localizes	to	the	
ER	membrane.	Activated	Sar1–GTP	recruits	the	Sec23/Sec24	dimer,	which	corresponds	to	
the	 “inner	 coat”	 layer	 and	 provides	 the	 cargo-binding	 function.	 A	 heterotetramer	 of	
Sec13/Sec31	 is	 subsequently	 recruited,	 forming	 the	 “outer	 coat”	 layer	 that	 drives	
membrane	curvature.	In	the	COPII	cage	formed	by	Sec13/Sec31,	four	molecules	of	Sec31	
assemble	head-to-head	 via	 β-propeller	 domains	 to	 form	 the	 “vertex”	 of	 the	 cage	 (inset).	
The	 COPI	 coat	 assembles	 upon	 activation	 of	 Arf1,	 which	 is	 driven	 by	 either	 of	 the	
redundant	 GEFs,	 Gea1	 or	 Gea2.	 Arf1	 in	 turn	 recruits	 the	 inner	 coat	 complex	 of	
Sec21/Sec26/Ret2/Ret3.	 The	 COPI	 outer	 coat	 is	 formed	 by	 Sec27/Ret1/Sec28,	 which	
assembles	in	a	triskelion	structure	via	interactions	of	three	β-propeller	domains	of	Sec27	
(inset)	(Adapted	from	Szul	and	Sztul,	2011	and	Barlowe	and	Miller,	2013).	

A	

B	
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1.1.2.2	Motor	proteins		

After	 budding,	 vesicles	 move	 towards	 their	 final	 destination	 by	 diffusion	 or	 by	

motor-mediated	 transport	 along	 cytoskeletal	 tracks.	 Motor	 proteins	 that	 drive	

vesicles	 along	 the	 cytoskeletal	 highway	 include	 families	 of	 cortex	 myosins,	

traveling	 along	 actin	 filaments,	 and	 cytosolic	 kinesins	 and	 dyneins,	 traveling	 on	

microtubules.	

Actin	 filaments	 and	 microtubules	 are	 polarized;	 ideally,	 microtubules	 originate	

from	an	organizing	 center	 (MTOC)	near	 the	nucleus	 and	 fan	out	with	 their	plus-

ends	 towards	 the	 cell	 periphery,	while	 actin	 filaments	within	 the	 cell	 cortex	 are	

directed	with	plus-ends	towards	the	cell	membrane	(Ross	et	al.,	2008)	(Fig.	1.3).	

	

	 		 	

Figure	 1.3	Motor	 proteins	 and	 vesicular	 cargo	 transport	 in	 the	 cell.	Myosin	 family	
motors,	myosin	 Va	 (dark	 brown)	 and	myosin	 VI	 (light	 blue),	walk	 along	 actin	 filaments	
(red)	at	the	cortex.	Microtubule-based	motors	include	the	kinesin	family	motors	(orange)	
and	 cytoplasmic	 dynein	 (violet).	 Kinesin	 motors	 walk	 to	 the	 plus-ends	 of	 microtubules	
(green),	 which	 are	 oriented	 toward	 the	 actin	 cortex.	 Dynein	 motors	 walk	 toward	 the	
minus-end	 of	 the	 microtubule,	 which	 is	 located	 at	 the	 microtubule-organizing	 center	
(MTOC,	green)	near	the	cell	nucleus	(blue)	(Modified	from	Ross	et	al.,	2008).	
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During	 exocytosis,	 transport	 vesicles,	 carried	 by	 plus-end	 directed	 kinesins,	 are	

translocated	 along	microtubules	 toward	 the	 cortex.	Myosins	 associate	with	 both	

microtubule	 ends	 and	 cortical	 actin	 filaments	 (Wu	 and	 Bezanilla,	 2014),	 thus	

vesicles	are	transferred,	at	the	level	of	microtubule	ends,	to	anterograde	(plus-end	

directed)	myosins	 V	 to	 be	 delivered	 to	 cell	membrane.	 In	 the	 reverse	 direction,	

during	 endocytosis,	 vesicles	 are	 transported	 initially	 through	 the	 actin	 cortex	by	

the	minus-end	directed	myosins	V	and	then	are	transferred	to	retrograde	dyneins	

traveling	on	microtubules.	

1.1.2.3	Tethering	factors	

Tethering	factors	are	a	heterogeneous	group	of	peripherally	associated	membrane	

proteins	 that	 link	 transport	 vesicles	 with	 acceptor	membrane	 to	 ensure	 correct	

docking	 and	 fusion.	 Tethers	 can	 be	 grouped	 into	 two	 major	 classes	 based	 on	

structural	similarities:	homodimeric	coiled-coil	tethers	and	multi	subunit	tethering	

complexes	(MTCs)	(Chia	and	Gleeson,	2014).	

Coiled	coil	tethers	have	two	globular	heads	that	are	joined	together	by	an	α-helical	

coiled-coil	rod.	These	proteins	are	highly	extended	and	the	current	model	 is	 that	

they	mediate	the	initial	step	in	vesicle	tethering,	being	able	to	establish	long-range	

interactions	with	vesicles	 (>200	nm).	Approximately	20	members	are	associated	

with	the	Golgi	(thus	termed	“golgins”),	are	regulated	by	small	GTPases	of	the	Rab	

and	Arl	 families	 (see	 section	 1.1.3.1),	 and	 function	 in	membrane-membrane	 and	

membrane-cytoskeleton	 tethering	 at	 the	Golgi	 apparatus;	 others	 can	be	 found	at	

endosomes	(e.g.	early	endosome	antigen	1	(EEA1)).	

MTCs	 comprise	 a	 diverse	 family	 of	 multi	 subunit	 proteins.	 They	 interact	 with	

vesicles	over	a	shorter	distance	(up	to	30	nm)	than	the	coiled-coil	tethers	and	are	

thought	 to	 tether	 a	 captured	 vesicle	 in	 close	 apposition	 to	 its	 acceptor	
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compartment,	namely	when	it	is	about	to	fuse.	

MTCs	can	be	further	divided	into	two	functional	groups:	oligomeric	complexes	that	

bind	to	SNAREs	(see	section	1.1.2.4)	and	typically	act	as	Rab	effectors,	comprising	

Dsl1p,	 conserved	 oligomeric	 Golgi	 (COG)	 complex,	 Golgi-associated	 retrograde	

protein	(GARP)	complex	and	the	exocyst,	and	oligomeric	complexes	that	function	

as	 GEFs	 for	 Rab	 proteins,	 comprising	 TRAnsport	 Protein	 Particle	 (TRAPP)	

complexes	and	homotypic	fusion	and	protein	sorting	(HOPS)	complex	(both	a	GEF	

and	a	Rab	effector)	(Sztul	and	Lupashin,	2009).	

The	TRAPP	was	first	identified	in	yeast	in	1998.	The	study	focused	on	the	protein	

Bet3,	previously	identified	in	a	large-scale	genetic	screen	as	an	essential	gene	that	

genetically	interacts	with	ER-to-Golgi	SNAREs	but	is	not	part	of	a	SNARE	complex	

(Rossi	et	al.,	1995).	Using	Bet3	as	a	probe	and	using	a	combination	of	genetic	and	

biochemical	 studies,	 the	 core	 components	 of	 the	 yeast	 TRAPP	 complex	 were	

identified.	 TRAPP	 components	 were	 named	 with	 the	 prefix	 “trs”	 (transport	

subunits)	 followed	 by	 a	 number	 corresponding	 to	 the	molecular	weight	 of	 each	

protein:	Trs20,	Trs23,	Trs33,	Trs31	and	Trs18	(more	commonly	known	as	Bet5).		

The	complex	was	proposed	to	participate	in	ER-to-Golgi	trafficking	since	depletion	

of	 Bet3	 caused	 impairment	 in	 the	 arrival	 of	 COPII	 vesicles	 to	 the	Golgi	 complex.	

Furthermore,	 the	 trafficking	 defect	 could	 be	 overcome	 by	 over-expression	 of	 an	

ER-to-Golgi	 specific	 SNARE	suggesting	 that	 the	TRAPP	complex	acts	upstream	of	

COPII	 fusion	 with	 Golgi	 membranes	 (Sacher	 et	 al.,	 1998).	 Following	 the	

identification	of	 an	additional	 four	 sub-units	 (Trs65,	Trs85,	Trs120,	 and	Trs130)	

and	the	observation	that	orthologs	are	present	in	mammals	(Sacher	et	al.,	2000),	a	

role	for	TRAPP	as	a	tethering	factor	that	acts	during	the	docking	of	COPII	vesicles	

with	the	Golgi	was	proposed	(Barrowman	et	al.,	2000).	
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Later,	 Sacher	 and	 co-workers	 postulated	 the	 existence	 of	 two	 different	 TRAPP	

complexes	 acting	 as	 GEF:	 TRAPPI,	 that	 functions	 in	 ER-to-Golgi	 trafficking	 by	

docking	 COPII	 vesicles	 with	 Golgi	 membranes	 and	 subsequently	 activating	 the	

small	 GTPase	 Ypt1,	 and	 the	 larger	 TRAPPII	 complex,	 required	 for	 intra-Golgi	

trafficking,	that	activates	the	small	GTPases	Ypt31/32p	(Kim	et	al.,	2016).	So	far,	in	

addition	 to	 TRAPPI	 and	 TRAPPII,	 another	 two	 TRAPP	 complexes	 have	 been	

identified	 in	 yeast	 (TRAPPIII	 and	 TRAPPIV)	 that	 activate	 Ypt1	 to	 regulate	 the	

assembly	of	 the	pre-autophagosomal	 structure	 (PAS),	 the	 first	 step	of	 autophagy	

(Fig.	1.4)	

	

	 	 	

Figure	 1.4	 The	 role	 of	 TRAPP	 complexes	 and	 their	 Ypt	 substrates	 in	 yeast	 intra-
cellular	trafficking.	In	the	exocytic	pathway	(top),	TRAPP	I	activates	Ypt1	to	regulate	ER-
to-Golgi	 transport,	 whereas	 TRAPP	 II	 activates	 Ypt31/32	 to	 regulate	 Golgi-to-PM	
transport.	 In	autophagy	(bottom),	a	cellular	recycling	pathway	(in	green),	TRAPP	III	and	
TRAPP	IV	activate	Ypt1	to	regulate	the	assembly	of	PAS,	the	first	step	of	autophagy.	PAS	is	
required	for	the	formation	of	the	double-membrane	autophagosome	(AP),	which	delivers	
cargo	for	degradation	in	the	lysosome	(Adapted	from	Kim	et	al.,	2016).	
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1.1.2.4	SNAREs	

SNAREs	 (soluble	 N-ethylmaleimide-sensitive	 fusion	 protein	 attachment	 protein	

receptors)	 are	 a	 family	 of	 TM	 proteins,	 which	 mediate	 the	 final	 step	 of	 vesicle	

transport,	 fusion.	 There	 are	 over	 30	 different	 SNAREs	 in	mammalian	 cells,	 each	

anchored	to	the	membrane	of	a	particular	organelle	by	a	C-terminal	TM	domain	or	

through	 lipid	modifications	such	as	prenylation	(i.e.	YKT6)	or	palmitoylation	(i.e.	

SNAP-23)	(Chen	et	Scheller,	2001;	McNew	et	al.,	1997;	Vogel	et	Roche,	1999)		

The	 SNARE	 hypothesis	 proposed	 by	 (Rothman,	 1994),	 suggests	 the	 existence	 of	

complementary	sets	of	SNAREs,	which	assemble	in	specific	complexes	to	regulate	

membrane	fusion:	vesicle	(v)-SNAREs,	found	as	a	single	polypeptide	chain	on	the	

vesicle	 membranes,	 and	 target	 (t)-SNAREs,	 found	 in	 complex	 of	 two	 or	 tree	

proteins	 on	 target	 membranes.	 The	 first	 SNARE	 complex,	 to	 drive	 membrane	

fusion,	identified,	was	that	of	VAMP1	(Trimble	et	al.,	1988),	acting	as	a	v-SNARE	on	

synaptic	vesicles,	and	Syntaxin1	and	SNAP-25	(synaptosomal-associated	protein	of	

25	kDa)	acting	as	t-SNAREs	on	pre-synaptic	membranes	(Bennett	et	al.,	1992).	The	

X-ray	crystal	structure	of	 this	complex,	elucidated	by	Axel	Brunger	and	Reinhard	

Jahn	 (Sutton	 et	 al.,	 1998),	 revealed	 a	 bundle	 of	 four	 parallel	 alpha	 helices	 that	

formed	 a	 pin-like	 arrangement	 forcing	 the	 two	 bilayers	 together	 as	 the	 SNARE	

complex	 “zippered	 up”	 to	 result	 in	 fusion	 (Fig.	 1.5).	 This	 mechanism	 is	 called	

“SNAREpin.”	

The	 specific	 assembly	 of	 SNARE	 complexes	 is	 regulated	by	 tethering	 factors	 and	

Sec1/Munc18	 family	 (SM)	 proteins.	 Tethering	 factors	 gather	 the	 formation	 of	

fusogenic	SNARE	complexes	and	prevent,	the	assembly	of	non-fusogenic	ones.	On	

the	 other	 hand,	 they	 influence	 the	 stabilization	 of	 SNARE	 complexes,	 protecting	

SNAREs	from	degradation	(Wang	et	al.,	2017).	
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Figure	1.5	The	SNARE	fusion	machinery.	v-SNAREs	(in	green)	on	a	vesicle	bind	to	their	
cognate	t-SNAREs	(in	red)	on	the	target	membrane,	forming	specific	SNAREpins	that	then	
fuse	the	two	membranes.	For	simplicity,	the	t-SNARE	is	shown	as	a	single	elongated	rod,	
although	 it	 is	 now	 known	 to	 contribute	 three	 alpha	 helices	 to	 a	 four-helix	 v-t-SNARE	
bundle.	 Other	 proteins	 regulate	 the	 assembly	 and	 disassembly	 of	 SNAREpins	 and	 thus	
control	membrane	fusion	(Modified	from	Weber	et	al.,	1998).		
	

	

MTCs	can	also	cooperate	with	SM	proteins	to	trigger	the	assembly	and	stabilization	

of	SNARE	complexes.	

SM	 family	 comprises	 4	 members	 evolutionary	 conserved:	 Sec1/Mun18,	 Sly1,	

Vps45	 and	 Vps33.	 Sly1	 protect	 the	 ER	 t-SNARE	 Ufe1p	 from	 degradation	

(Yamaguchi	 et	 al.,	 2002);	 Vps45	 interacts	with	Tlg2p	 to	 prevent	 its	 proteosomal	

degradation	 (Dulubova	 et	 al.,	 2002);	 Vps33	 (a	 member	 of	 SM	 proteins	 and	 a	

subunit	 of	 the	 HOPS	 complex)	 promotes	 the	 assembly	 of	 SNARE	 complexes	 and	

inhibits	 their	 disassembly	 by	 Sec17p/Sec18p,	 a	 soluble	 N-ethylmaleimide-

sensitive	factor	attachment	protein	(SNAP)	and	its	factor	(NSF),	which	have	been	

proven	 to	 disrupt	 the	 SNARE	 complex	 using	 energy	 derived	 by	 ATP	 hydrolysis	

(Lobingier	et	al.,	2014;	Söllner	et	al.,	1993;	Xu	et	al.,	2010).	Vps33	can	also	act	as	a	
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template	 by	 simultaneous	 binding	 with	 Vam3	 (t-SNARE)	 and	 Nyv1	 (v-SNARE)	

preventing	 the	 formation	 of	 non-physiological	 SNARE	 complexes	 (Baker	 et	 al.,	

2015).	

1.1.2.5	Lipid-transfer	proteins	

The	organelles	have	a	specific	lipid	composition,	which	determines	the	types	of	TM	

proteins	that	will	be	inserted	into	their	membranes,	and	the	types	of	peripherally	

associated	 proteins	 that	 will	 be	 recruited	 to	 their	 cytoplasmic	 surface	 (e.g.	 PI	

effectors).	

It	is	possible	to	distinguish	three	major	classes	of	membrane	lipids:	phospholipids,	

glycolipids,	and	sterols.	Both	phospholipids	and	glycolipids	have	hydrophobic	acyl	

chains	with	different	degrees	of	saturation,	and	a	polar	head,	consisting	of	either	

phosphorylated	glycerol	or	sphingosine,	 in	case	of	phospholipids,	or	glycosylated	

sphingosine,	 in	 case	 of	 glycolipids.	 Sterols	 are	 a	 sub-group	 of	 steroids,	 which	

confer	specific	properties	to	the	bilayer	such	as	fluidity.	

The	majority	of	the	organelles	are	not	engaged	in	the	synthesis	of	these	lipids,	thus	

they	receive	them	by	either	vesicular	transport	or	selective	transfer	mediated	by	

lipid-transfer	proteins	 (LTPs).	 In	 the	 first	 case,	 lipids	are	 included	 in	vesicles,	by	

bulk	flow	during	budding,	as	part	of	the	membrane.	In	the	second	case,	instead,	the	

recognition	of	 the	 lipid	 cargoes	 is	mediated	by	 a	 lipid	 transfer	domain,	which	 in	

general	can	bind	two	different	lipid	molecules,	as	demonstrated	for	the	Oxysterol-

binding	protein	(OSBP;	Mesmin	et	al.,	2013)	and	strongly	predicted	for	the	OSBP-

related	 proteins	 5	 and	 8	 (ORP5	 and	 ORP8;	 Chung	 et	 al.,	 2015).	 In	 addition	 to	

cholesterol	 and	phosphatidylserine	 (PS),	 transported	 from	 the	ER	 to	 the	TGN	or	

PM	 respectively,	 these	 proteins	 also	 bind	 PI4P,	which	 is	 returned	 to	 the	 ER	 and	
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hydrolyzed	by	the	PI4P-phosphatase	Sac1,	providing	energy	to	drive	cholesterol	or	

PS	against	their	concentration	gradients.	

Many	 LTPs	 have	 been	 identified	 at	 the	 level	 of	membrane	 contact	 sites	 (MCSs),	

membrane	appositions	between	two	organelles,	which	range	from	10	and	15	nm	

(Holthuis	and	Levine,	2005;	Lev,	2010).	The	majority	of	ORP	proteins	in	mammals	

(including	 OSBP),	 for	 example,	 have	 a	 short-sequence	 motif	 containing	 two	

phenylalanines	 in	 an	 acidic	 tract	 (FFAT	 motif)	 that	 mediates	 binding	 to	 the	 ER	

through	interaction	with	the	VAMP-associated	proteins	A	and	B	(VAPA	and	VAPB),	

whose	yeast	ortholog,	Ssc2,	has	been	shown	to	function	at	ER-PM	MCSs	(Manford	

et	al.,	2012).	Mammalian	VAPs,	conversely,	function	at	ER-Golgi	MCSs	where	they	

interact	with	many	LTPs,	 comprising	OSBP,	 the	 ceramide	 transfer	 protein	CERT,	

and	 the	 glucosyl-ceramide	 transporter	 FAPP2	 (Yamaji	 and	 Hanada,	 2015).	 Like	

FAPP2	also	OSBP	and	CERT	have	PH	domains	that	recognize	both	PI4P	and	Arf1	at	

the	TGN	(De	Matteis	and	Rega,	2015)	(Fig.	1.6).	The	PH	domain	of	ORP1L,	instead,	

binds	 to	 late	 endosome	 (LE)-specific	 phosphoinositides	 (Rocha	 et	 al.,	 2009)	 and	

those	of	ORP5	and	ORP8	bind	to	the	PM	pools	of	PI4P	(Chung	et	al.,	2015).		

All	the	phosphoinositides	(PIs),	PI4P	included,	will	be	treated	in	section	1.1.3.2.	
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Figure	1.6	Lipid	transfer	proteins	at	ER–TGN	contact	sites.	Left:	OSBP1	has	targeting	
domains	for	two	membranes,	an	N-terminal	pleckstrin	homology	(PH)	domain	(pink)	that	
typically	 binds	 PtdIns4P	 at	 the	 TGN	 and	 a	 central	 FFAT	 motif	 (red)	 that	 binds	 the	 ER	
proteins	VAPs	 (blue-green).	The	C-terminal	 lipid	 transfer	domain	 (light	 green)	 transfers	
cholesterol	 from	the	ER	to	 the	TGN	(upward	pointing	arrow).	Right:	CERT	has	a	domain	
structure	similar	to	OSBP1,	with	a	PH	domain	(pink)	that	binds	PtdIns4P	at	the	TGN	and	a	
FFAT	motif	(red)	that	binds	VAPs	at	the	ER.	The	C-terminal	lipid	transfer	domain	(purple)	
transfers	ceramide	 from	the	ER	 to	 the	TGN	(upward	pointing	arrow)	 (Modified	 from	De	

Matteis	and	Rega,	2015).	
	

	

1.1.3	Regulators	of	the	vesicular	transport	

The	four	essential	steps	of	vesicular	transport	are	highly	regulated	to	ensure	that	

vesicles	 generated	 from	 a	 donor	 compartment	 are	 delivered	 to	 their	 correct	

acceptor	compartment.		

1.1.3.1	Monomeric	GTPases	

Monomeric	 GTPases,	 also	 known	 as	 small	 GTPases,	 are	 probably	 the	 most	

important	class	of	membrane	trafficking	regulators	since	many	steps	 in	vesicular	

transport	depend	on	a	variety	of	GTP-binding	proteins	that	control	both	the	spatial	

TGN	

ER	
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and	temporal	aspects	of	membrane	exchange.	These	monomeric	enzymes	contain	

a	GTPase	domain	for	the	hydrolysis	of	GTP,	which	allows	them	to	act	as	molecular	

switches:	when	GTP	is	bound,	the	switch	is	turned	“on”	and	downstream	effectors	

are	 activated;	 hydrolysis	 of	 GTP	 to	 guanosine	 diphosphate	 (GDP)	 converts	 the	

proteins	 into	 their	 inactive	 conformation	 and	 the	 switch	 is	 turned	 “off	 ”	 again	

(Heider	 et	 al.,	 2010).	The	 conformational	 switching	 is	 subjected	 to	 regulation	by	

two	classes	of	proteins:	GEFs	that	activate	the	proteins	by	catalyzing	the	exchange	

of	GDP	for	GTP	and	GTPase-activating	proteins	(GAPs)	that	inactivate	the	proteins	

by	triggering	the	hydrolysis	of	the	bound	GTP	to	GDP.	

The	 family	of	small	GTPases	consist	of	more	 than	150	members,	which	based	on	

their	 sequence	 homology	 are	 divided	 into	 several	 subfamilies	 such	 as	 Sar1/Arf	

/Arf-like	 (Arl),	and	Rab	subfamilies.	The	Arf	 superfamily	comprises	regulators	of	

vesicle	 budding:	 when	 in	 GDP-bound	 state,	 these	 proteins	 have	 cytosolic	

localization,	 but	 once	 switched	 to	 their	 active	 form,	 these	 GTPases	 expose	 an	

amphiphilic	 helix,	 which	 inserts	 into	 the	 cytoplasmic	 leaflet	 of	 the	 membrane,	

where	 they	 start	 recruiting	 coat	 proteins.	 Arf	 proteins	 are	 responsible	 for	 both	

COPI	 and	 clathrin	 coat	 recruitment	during	 retrograde	 transport	 in	 the	Golgi	 and	

budding	 from	 the	 trans	 Golgi	 and	 the	 PM;	 Sar1	 is	 responsible	 for	 COPII	 coat	

assembly	 at	 ER	 membrane	 (Molendijk	 et	 al.,	 2004).	 In	 addition	 to	 the	 coat-

recruitment	 activity,	 Arf	 proteins	 also	 regulate	 lipid-metabolizing	 enzymes	 and	

their	 product	 effectors.	 ARF1,	 for	 example,	 stimulates	 the	 synthesis	 of	 the	

phosphatidylinositol	4-phosphate	(PtdIns4P	or	PI4P)	by	recruiting	PtdIns	4-kinase	

beta	(PI4KB)	on	the	Golgi	(Godi	et	al.,	1999).	Among	the	PI4P	effectors	there	are	

the	FAPP	proteins,	which	localize	to	the	TGN	through	coincident	detection	of	both	
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PI4P	 and	 ARF1	 mediated	 by	 the	 pleckstrin	 homology	 (PH)	 domain	 (Godi	 et	 al.,	

2004).	

With	approximately	70	members	identified	in	humans,	Rab	proteins	are	the	largest	

subfamily	of	such	GTPases.	Like	the	Arf	GTPases,	also	Rab	proteins	cycle	between	a	

membrane	 and	 the	 cytosol	 and	 their	 selective	 distribution	 on	 these	membranes	

makes	 them	 ideal	 markers	 for	 membrane-enclosed	 compartments	 (Zerial	 and	

McBride,	 2001).	 Different	 Rab	 GTPases	 assemble	 specific	 Rab	 domains	 on	

organelle	 membrane	 by	 recruiting	 heterogeneous	 effectors,	 which	 facilitate	

budding,	vesicle	transport,	 tethering	and	fusion.	Rab5,	 for	example,	assembles	on	

endosomal	membranes	and	recruits	tethering	proteins,	which	mediate	the	capture	

of	 CCVs	 arriving	 from	 PM.	 In	 addition	 Rab5	 activates	 a	 PtdIns	 3-kinase,	 which	

convert	 PtdIns	 to	 PtdIns	 3-phosphate	 (PI3P),	 bound	 by	 some	 Rab	 effectors	

(Christoforidis	 et	 a.,	 1999;	Murray	 et	 al.,	 2002)	 (see	 section	 1.3.2).	 On	 the	 same	

membrane,	 other	 two	 Rabs,	 Rab4	 and	 Rab11,	 assemble	 a	 distinct	 domain,	

responsible	 for	 the	 budding	 of	 recycling	 vesicles	 that	 return	 cargoes	 from	 the	

endosome	to	the	PM	(see	section	1.3.3).	

1.1.3.2	PI	functions	in	membrane	trafficking	

PIs	 consist	 of	 a	 family	 of	 phospholipids	 that	 over	 the	 last	 two	 decades	 have	

emerged	 as	 key	 regulatory	 components	 of	 cell	 membranes	 in	 trafficking	 and	

cytoskeleton	remodelling,	despite	their	low	abundance	(less	than	10%	of	the	total	

cellular	phospholipids)	(Di	Paolo	and	De	Camilli,	2006;	Michell,	2011;	Roth,	2004).	

It	has	become	clear	that	they	serve	as	constitutive	signals	that	recruit	various	PI-

binding	proteins,	helping	defining	organelle	identity.	

PtdIns	 is	 the	basic	building	block	 for	 the	PIs	of	 eukaryotic	 cells.	 It	 consists	of	 an	

inositol	 headgroup	 (D-myo-inositol	 1-phosphate)	 that	 is	 esterified	 via	 a	
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phosphodiester	 link	 to	 1-stearoyl,	 2-arachidonoyl	 diacylglycerol.	 PtdIns	 is	

synthesised	by	the	enzyme	CDP-diacylglycerol-inositol	3-	phosphatidyltransferase	

(known	 as	 PtdIns	 synthase)	 in	 the	 ER,	 and	 then	 delivered	 either	 by	 vesicular	

transport	 or	 lipid-transfer	 proteins	 to	 other	 membranes,	 where	 its	 subsequent	

phosphorylation	 steps	 occur	 (Cockcroft	 and	 De	 Matteis,	 2001).	 Only	 three	 (at	

positions	 D3,	 D4	 and	 D5)	 of	 five	 free	 hydroxyl	 groups	 in	 the	 inositol	 ring	 are	

subjected	 to	 reversible	 phosphorylation,	 resulting	 in	 the	 generation	 of	 seven	 PI	

species:	3	monophosphorylated,	and	4	polyphosphorylated)	(Fig.	1.7).	

	

	 	

Figure	 1.7	 PI	 metabolism.	 The	 main	 pathways	 of	 PI	 synthesis	 and	 degradation	 in	
mammalian	 cells	 are	 reported	with	 the	PI-kinases	 in	blue	 and	PI-phosphatases	 in	 green	
(Adapted	from	Vicinanza	et	al.,	2008).	
	

	

PI	 metabolism	 is	 spatially	 and	 temporally	 regulated	 through	 controlled	

recruitment	and	activation	of	the	controlling	kinases	and	phosphatases,	such	that	

distinct	PIs	can	be	enriched	in	specific	membrane	compartments	(De	Matteis	and	

Godi,	2004;	Vicinanza	et	al.,	2008)	(Fig	1.8).	
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Figure	1.8	Localization	and	distribution	of	the	PI	and	the	PI-metabolizing	enzymes.	
PI-kinases	(blue)	and	PI-phosphatases	(green)	are	differentially	distributed	in	the	cell.	
PM,	 plasma	 membrane;	 EE,	 early	 endosome;	 SE:	 sorting	 endosomes;	 RE,	 recycling	
endosome;	 LY,	 lysosome;	 MVB/LE,	 multivesicular	 body/late	 endosome;	 PAS,	 pre-
autophagosomal	structure;	PH,	phagosome;	TGN,	trans-Golgi	network;	GC,	Golgi	complex;	
ER:	endoplasmic	reticulum;	N,	nucleus	(Adapted	from	Vicinanza	et	al.,	2008).	

	

	

In	vivo,	the	PIs	concentrate	at	the	cytosolic	surface	of	biological	membranes	with	

their	 lipid	 portion	 directly	 inserted	 into	 the	 lipid	 bilayer,	 while	 the	 hydrophilic	

headgroup	 protrudes	 into	 the	 cytosol.	 In	 this	 way,	 the	 headgroup	 remains	

accessible	for	the	lipid	kinases,	phosphatases	and	phospholipases	that	regulate	the	

PI	 turnover,	 and	 also	 for	 a	 wide	 range	 of	 cytosolic	 proteins	 (including	 motors,	

coats,	adaptors,	GTPase	regulators	and	sorting	machineries)	that	are	recruited	to	

membranes	in	this	way.	

 80 

Moreover, PI metabolism is spatially and temporally regulated through 

controlled recruitment and activation of the controlling kinases and 

phosphatases, such that distinct PI can be enriched in specific membrane 

compartments (Figure 1.20 and Table 1.4) (182, 183). 
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compartments (Figure 1.20 and Table 1.4) (182, 183). 
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1.2	Pathways	and	mechanisms	of	exocytic	membrane	trafficking	

1.2.1	Polypeptide	targeting	and	translocation	

The	first	step	of	the	secretory	pathway	is	the	translocation	of	synthesized	proteins	

that	are	destined	for	the	Golgi	apparatus,	or	beyond,	into	the	ER.	In	yeast,	both	co-

translational	and	post-translational	mechanisms	operate	 to	 target	diverse	sets	of	

secretory	 proteins	 to	 the	 ER.	 The	 co-translational	 process	 begins	 with	 the	

recognition	 of	 an	 N-terminal	 signal	 sequence	 by	 the	 signal	 recognition	 particle	

(SRP),	which	drives	the	nascent	polypeptide	chain	into	the	ER	lumen,	through	SRP	

receptor	(SR)	binding	(Ogg	et	al.,	1998;	Fig.	1.9A).	The	post-translational	insertion	

of	 secretory	 proteins,	 conversely,	 depends	 on	 cytosolic	 Hsp70	 ATPases,	 such	 as	

Ssa1,	 that	 bind	 the	 N-terminal	 signal	 to	 maintain	 the	 nascent	 protein	 in	 an	

unfolded	 translocation	 competent	 state	 until	 delivery	 to	 the	 Sec63	 complex	

(Chirico	et	al.,	1988;	Deshaies	et	al.,	1988;	Fig.	1.9B).	Both	Sec63	and	SRP-bound	SR	

complexes	 require	 the	 Sec61	 complex	 to	 coordinate	 directed	 movement	 of	 the	

nascent	 chain	 into	 the	 ER	 lumen	 (Rapoport,	 2007).	More	 recently	 another	 post-

translational	translocation	pathway	to	the	ER	has	been	described	for	TM	proteins,	

including	 the	 large	 class	 of	 SNARE	 proteins	 that	 drive	 intracellular	 membrane	

fusion	events.	This	pathway,	independent	of	Sec63	and	Sec61	complexes,	involves	

a	set	of	genes	that	produced	Golgi-to-ER	trafficking	deficiencies,	 thus	named	GET	

genes	 (Schuldiner	et	 al.	 2008).	Current	models	 for	 the	GET	 targeting	pathway	 in	

yeast	suggest	that	an	Sgt2–Get4–Get5	sub-complex	targets	nascent	polypeptides	to	

Get3,	which	in	association	with	an	integral	membrane	Get1/Get2	complex,	and	in	

presence	 of	 ATP,	 integrates	 tailed-anchored	 proteins	 into	 the	 ER	 membrane	

bilayer	(Shao	and	Hegde	2011;	Fig.	1.9C).		
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Figure	 1.9	 Membrane	 translocation	 of	 secretory	 proteins.	 Three	well-characterized	
pathways	operate	to	deliver	secretory	proteins	to	the	ER	for	membrane	translocation.	(A)	
Co-translational	 insertion	 of	 secretory	 proteins.	 (B)	 Post-translational	 insertion	 of	
secretory	 proteins.	 (C)	 GET-mediated	 insertion	 of	 secretory	 proteins	 (Adapted	 from	
Barlowe	and	Miller,	2013).	
	

	

1.2.2	Maturation	of	secretory	protein	in	the	ER	

During	 the	 translocation	 through	 the	 Sec61	 complex,	 the	 N-terminal	 signal	

sequence	 of	many	 secretory	 proteins	 undergoes	 the	 endoproteolytic	 cleavage	 of	

the	signal	peptidase	complex	(SPC),	composed	of	 four	polypeptides	 termed	Spc1,	

Spc2,	Spc3,	and	Sec11	(Bohni	et	al.,	1988;	YaDeau	et	al.,	1991).	Coincident	with	the	

signal	 sequence	 cleavage,	 an	 N-linked	 oligosaccharide	 of	 14	 residues,	

Glc3Man9GlcNAc2	 (where	 Glc=Glucose,	 Man=Mannose,	 and	 GlcNAc=N-

acetylglucosamine),	 is	 attached	 to	 consensus	 Asn-X-Ser/Thr	 sites	 in	 transiting	

polypeptides	by	the	oligosaccharyltransferase	(OST)	enzyme,	detected	in	complex	

with	the	Sec61	translocon	(Kelleher	and	Gilmore,	2006).	After	the	glycan	transfer,	

a	 series	 of	 processing	 steps	 assist	 the	protein	 folding	 in	 the	ER	 lumen	 (Helenius	

and	Aebi,	2004):	first,	glucosidase	I	and	II	remove	two	glucose	residues	to	form	the	

GlcMan9GlcNAc2	 structure,	 recognized	 by	 the	 lectin	 chaperones,	 calnexin	 (CNX)	

microarray analyses of gene expression changes allow the
dissection of cell-wide changes to a given perturbation
(Travers et al. 2000). These new tools are being used with
remarkable imagination, often capitalizing on the facile na-
ture of yeast genetics, to define the interplay between related
pathways in exciting ways. For example, microarray analysis
of the changes in gene expression that occur upon induction
of ER stress via the unfolded protein response (UPR) iden-
tified upregulation of machineries involved in ER-associated
degradation (ERAD), ultimately leading to the appreciation
that these discrete pathways are intimately coordinated to
manage the burden of protein within the ER (Travers et al.
2000). A second example derives from the development of
synthetic genetic array (SGA) technology, which allows the
rapid generation of haploid double mutant strains (Tong
et al. 2001). Although the piecemeal application of this tech-
nology was informative for individual genes, the broader
application to an entire pathway was revolutionary in terms
of being able to define novel functions based on shared
genetic fingerprints. The first so-called epistatic miniarray
profile (E-MAP) made pairwise double mutations among
almost 500 early secretory pathway components, quantify-
ing the phenotypic cost of combined mutations (Schuldiner
et al. 2005). Analysis of the shared patterns of genetic inter-
actions revealed (perhaps not surprisingly) that components
in common pathways shared similar profiles, which allowed
the assignation of novel functions to previously uncharacter-
ized and enigmatic proteins. An elaboration on the E-MAP
approach made elegant use of a fluorescent reporter system
to first assess the UPR state of individual strains in the
genomic deletion collection and then to probe how UPR
activation changes in double mutant backgrounds, yielding
a more subtle understanding of genetic interactions than
gross life and death dichotomies, which usually form the
basis of synthetic interactions (Jonikas et al. 2009). With

further development of such reporters on cell status, this
area of cross-talk between pathways will become more
and more integrated, allowing a detailed picture of cellu-
lar physiology. However, as these new technologies yield
new functional clues to previously uncharacterized genes,
we need to continue to use and develop biochemical tools
that allow true mechanistic insight. Again, the strength of
the yeast system is the use of both genetic and biochemical
tools to mutually inform new discoveries.

Secretory Protein Translocation and Biogenesis

Polypeptide targeting and translocation

The first step in biogenesis of most secretory proteins is
signal sequence-directed translocation of the polypeptide
into the ER. Both cotranslational and post-translational
mechanisms operate in yeast to target diverse sets of soluble
and integral membrane secretory proteins to the ER (Figure
1). The cotranslational translocation process is initiated
when a hydrophobic signal sequence or transmembrane
sequence is translated and recognized by the signal-recognition
particle (SRP) for targeting to the SRP receptor at ER trans-
location sites (Figure 1a). In the case of post-translational
translocation, cytosolic chaperones play a critical role in
binding hydrophobic targeting signals to maintain the na-
scent secretory protein in an unfolded or loosely folded trans-
location competent state until delivery to the ER membrane
(Figure 1b). Progress on identification and characterization
of the translocation machinery will be described in turn
below as the start of a continuum of events in biogenesis
of secretory proteins.

Genetic approaches in yeast uncovered key components
in both the co- and post-translational translocation path-
ways. Appending a signal sequence to the cytosolic enzyme

Figure 1 Membrane transloca-
tion of secretory proteins. Three
well-characterized pathways oper-
ate to deliver secretory proteins
to the ER for membrane trans-
location. (A) The signal recogni-
tion particle (SRP) recognizes a
hydrophobic signal sequence or
transmembrane segment during
protein translation followed by
targeting of the ribosome–nascent
chain complex to the SRP receptor
for cotranslational membrane in-
sertion. (B) Post-translational inser-
tion of secretory proteins depends
on cytosolic Hsp70 ATPases such
as Ssa1 to maintain the nascent
secretory protein in an unfolded

translocation competent state until delivery to the Sec63 complex formed by Sec62/Sec63/Sec71/Sec72. The Sec61 complex forms an aqueous
channel for both post- and cotranslational polypeptide translocation. Kar2, a luminal Hsp70 ATPase, facilitates directed movement and folding
of nascent polypeptides. (C) In GET-mediated insertion of C-terminal tail-anchored proteins, the Sgt2–Get4–Get5 complex targets nascent
polypeptides to Get3 for Get1/Get2 dependent translocation. Tail-anchored proteins are integrated into the membrane in Sec61-independent
pathway.

386 C. K. Barlowe and E. A. Miller
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and	 calreticulin	 (CRT);	 second,	 further	 trimming	 by	 glucosidase	 II	 removes	 the	

final	glucose	 residue	 to	 result	 in	 the	 release	of	 calnexin/calreticulin	 interactions;	

last,	the	ER-localized	mannosidase	I	removes	the	terminal	mannosyl	residue	of	the	

Man9GlcNAc2	 structure	 and	 it	 is	 typically	 the	Man8GlcNAc2	 form	of	 fully	 folded	

glycoproteins	that	is	exported	from	the	ER	(Jakob	et	al.,	1998)	(Fig.	1.10).	

In	 addition	 to	 N-linked	 glycosylation,	 some	 secretory	 proteins	 undergo	 O-

mannosylation	 on	 Ser/Thr	 residues	 by	O-mannosyltransferases	 (Pmts),	which	 is	

essential	 in	yeast	 for	cell	wall	 integrity	as	well	as	normal	morphogenesis	(Strahl-

Bolsinger	et	al.	1999).	Furthermore,	almost	 the	15%	of	proteins,	destined	 to	PM,	

acquires	the	addition	of	a	glycosylphosphatidylinositol	(GPI)	anchor	in	a	multistep	

process	that	depends	on	>20	gene	products	(Orlean	and	Menon,	2007).	

1.2.3	Transport	from	the	ER	

Once	 properly	 folded,	 protein	 cargoes	 are	 packaged	 into	 small	 COPII-coated	

vesicles	that	bud	from	specific	sub-domain	of	the	smooth	endoplasmic	reticulum,	

known	 as	 ER	 exit	 sites	 (ERES),	 from	 which	 they	 are	 transported	 to	 the	 Golgi	

complex.	

Cargo	molecules	can	be	packaged	into	COPII	carriers	using	different	mechanisms:	

(I)	bulk-flow;	(II)	cargo	capture	or	(III)	the	direct	binding	to	Sec24.		

(I)	 Bulk	 flow	 export	 is	 a	 passive	 means	 of	 ER	 secretion	 where	 soluble	 or	

membrane-associated	 proteins	 are	 stoichiometrically	 sequestered	 into	 COPII	

vesicles	by	default.	The	cargo	molecules	are	simply	included	as	components	of	the	

bulk	membrane	and	fluid.		

(II)	Cargo	capture	is	a	process	by	which,	after	proper	folding,	proteins	are	released	

from	 chaperones	 and	 bind	 to	 specific	 receptors	 localized	 on	 ERES	 that	 mediate	

their	 capture	 and	 packaging	 into	 COPII-nascent	 carriers	 (Dancourt	 and	Barlowe,	
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2010).	

(III)	 TM	 cargoes	 can	 be	 exported	 out	 of	 the	 ER	 by	 binding	 directly	 to	 the	 inner	

COPII	 coat	 component	 Sec24.	 To	 accommodate	 the	 diversity	 of	 cargo	 that	must	

transit	 through	 the	 ERES,	 cells	 express	 multiple	 isoforms	 of	 the	 Sec24	 adaptor	

protein,	each	with	up	to	four	non-overlapping	cargo	recognition	sites	(Barlowe	and	

Helenius,	2016).	

In	 mammals,	 once	 budded,	 COPII	 carriers	 can	 either	 fuse	 with	 each	 other	

(homotypic	 fusion),	 forming	 the	 ER-Golgi	 intermediate	 compartment	 (ERGIC),	

absent	 in	 yeast,	 or	 tether	 and	 fuse	 directly	 with	 the	 intermediate	 compartment	

(heterotypic	fusion).	

The	ERGIC	is	relatively	short-lived	because	it	moves	quickly	along	microtubules	to	

the	Golgi	apparatus,	with	which	it	fuses	to	deliver	its	contents.	While	approaching	

cis-Golgi,	 the	ERGIC	begins	to	bud	off	COPI-coated	vesicles	that	carry	back,	to	the	

ER,	resident	proteins	either	escaped	in	the	bulk	flow	export	or	involved	in	the	ER	

budding	 reaction	 and	 now	 being	 recycled.	 This	 is	 possible	 thank	 to	 ER	 retrieval	

signals	present	 at	 the	C-terminal	 ends	of	 these	proteins.	 ER	membrane	proteins,	

for	 example,	 possess	 signals,	 generally	 consisting	of	 two	 lysines	 followed	by	 any	

two	other	amino	acids	(KKXX),	that	are	directly	recognized	by	COPI	coats	and	are	

thus	 packaged	 into	 COPI-coated	 vesicles.	 Soluble	 ER	 proteins,	 instead,	 possess	

signals,	 consisting	 of	 a	 Lys-Asp-Glu-Leu	 or	 a	 similar	 sequence	 (KDEL),	 that	 are	

recognized	by	specialized	receptor	proteins	able	 to	bind	 the	KDEL	sequence	and	

package	 any	 protein	 displaying	 it	 into	 COPI-coated	 vesicles	 (Stornaiuolo	 et	 al.,	

2003).	

A	similar	retrieval	process	continues	from	the	Golgi	apparatus,	after	the	ERGIC	has	

delivered	its	cargoes.	
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1.2.4	Transport	through	the	Golgi	apparatus	

In	 the	 Golgi,	 secretory	 proteins	 may	 receive	 other	 N-linked	 oligosaccharide	

modifications	as	they	progress	through	distinct	Golgi	compartments.		

In	 the	 cis-Golgi,	 occurs	 the	 trimming	 of	 three	 mannose	 residues	 by	 Golgi	

mannosidases	IA,	IB,	and	IC;	in	the	medial-Golgi,	the	Man5GlcNAc2	chain	is	further	

processed	 by	 addition	 of	 a	 GlcNAc	 residue	 catalyzed	 by	 N-

acetylglucosaminyltransferase	 (GlcNAcT)	 I	 (Kornfeld	 and	 Kornfeld,	 1985).	 The	

transfer	 of	 GlcNAc	 initiates	 the	 synthesis	 of	 complex	 N-glycans,	 which	 lose	 two	

mannose	 residues	 by	 Golgi	 mannosidase	 II	 and	 receive	 another	 GlcNAc	 by	

GlcNAcT-II.	The	final	steps	of	complex	oligosaccharide	synthesis	occur	in	the	trans-

Golgi,	where	the	N-glycans	are	further	branched	up	to	six	times	by	the	addition	of	

different	 sugars	 including	 galactose	 (Gal),	 sialic	 acid,	 fucose,	GlcNAc,	GalNAc	 and	

disaccharide	units	(Stanley	et	al.,	2009)	(Fig.	1.10).	

It	is	still	uncertain	if	these	molecules	move	from	one	Golgi	compartment	to	another	

by	 vesicular	 transport	 or	 cisternal	 maturation	 (the	 enzymes	 present	 in	 each	

individual	compartment	change	over	time,	while	the	cargo	proteins	remain	inside	

the	 cisterna),	 although	 evidences	 of	 changes	 in	 the	 protein	 composition	 of	

individual	 cisternae	over	 time	support	 the	maturation	model	 (Losev	et	al.,	2006;	

Matsuura-Tokita	et	al.,	2006).	
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Figure	 1.10	Processing	 and	maturation	 of	 an	N-glycan.	Following	transfer	of	 the	14-
sugar	Glc3Man9GlcNAc2	glycan	to	Asn-X-Ser/Thr	sites,	glucosidases	 in	the	ER	remove	the	
three	glucose	residues,	and	ER	mannosidase	removes	a	mannose	residue.	These	reactions	
are	 intimately	 associated	 with	 the	 folding	 of	 the	 glycoprotein	 assisted	 by	 the	 lectins,	
calnexin	and	 calreticulin,	 and	 they	determine	whether	 the	glycoprotein	 continues	 to	 the	
Golgi	or	is	degraded.	For	most	glycoproteins,	additional	mannose	residues	are	removed	in	
the	 cis	 compartment	 of	 the	 Golgi	 until	 Man5GlcNAc2Asn	 is	 generated.	 The	 action	 of	
GlcNAcT-1	on	Man5GlcNAc2Asn	in	the	medial-Golgi	initiates	the	first	branch	of	an	N-glycan.	
α-Mannosidase	II	removes	two	outer	mannoses	and	generates	the	substrate	for	GlcNAcT-
II.	The	resulting	biantennary	N-glycan	is	extended	by	the	addition	of	fucose,	galactose,	and	
sialic	 acid	 to	 generate	 a	 complex	N-glycan	with	 two	branches.	Also	 shown	 is	 the	 special	
case	 of	 lysosomal	 hydrolases	 that	 acquire	 a	 GlcNAc-1-P	 at	 C-6	 of	 mannose	 residues	 on	
oligomannose	N-glycans	in	the	cis-Golgi.	The	N-acetylglucosamine	is	removed	in	the	trans-
Golgi	by	a	glycosidase,	thereby	exposing	Man-6-P	residues	that	are	recognized	by	a	Man-6-
P	receptor	and	routed	to	an	acidified,	prelysosomal	compartment	(Adapted	from	Kornfeld	
and	Kornfeld,	1985).	
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1.3	Pathways	and	mechanisms	of	endocytic	membrane	trafficking	

1.3.1	PM	internalization	

Endocytic	 membrane	 trafficking	 starts	 with	 the	 cellular	 internalization	 of	 PM	

components,	 like	 receptors	 and	 lipids,	 and	 extracellular	material.,	 like	 receptor-

associated	 ligands	 and	 solute	 molecules.	 The	 advent	 of	 new	 microscopy	 and	

biochemical	 techniques	 has	 provided	 the	 idea	 that	 there	 are	 many	 routes	 of	

endocytic	uptake	into	the	cell	(Doherty	and	McMahon,	2009),	which	for	simplicity	

can	be	divided	 into	two	main	groups:	 those	that	require	the	GTPase	dynamin	for	

newly	 formed	 vesicles	 abscission,	 and	 those	 clathrin-	 and	 dynamin-independent		

(Fig.	1.11).	

	

	

Figure	1.11	Multiple	endocytic	pathways	of	PM	internalization.	Large	particles	can	be	
taken	 up	 by	 phagocytosis,	 whereas	 fluid	 uptake	 occurs	 by	 macropinocytosis.	 Both	
processes	appear	to	be	triggered	by	and	are	dependent	on	actin-mediated	remodelling	of	
the	plasma	membrane	at	a	large	scale.	Compared	with	the	other	endocytic	pathways,	the	
size	 of	 the	 vesicles	 formed	 by	 phagocytosis	 and	macropinocytosis	 is	much	 larger.	 Most	
internalized	 cargoes	 are	 delivered	 to	 the	 early	 endosome	 via	 vesicular	 (clathrin-	 or	
caveolin-coated	 vesicles)	 or	 tubular	 intermediates	 (known	 as	 clathrin-	 and	 dynamin-
independent	 carriers	 (CLICs))	 that	 are	 derived	 from	 the	 plasma	 membrane.	 Some	
pathways	 may	 first	 traffic	 to	 intermediate	 compartments,	 such	 as	 the	 caveosome	 or	
glycosyl	phosphatidylinositol-anchored	protein	enriched	early	endosomal	compartments	
(GEEC),	en	route	to	the	early	endosome	(Adapted	from	Mayor	and	Pagano,	2007).	
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The	best-studied	pathway	of	receptor	internalization	is	that	mediated	by	clathrin-

coated	pits	(CCPs;	clathrin-dependent	endocytosis,	CDE;	Fig.	1.11).	

Small	 areas	 of	 the	 PM	 are	 covered	 on	 the	 cytoplasmic	 surface	 with	 clathrin	

triskelions	that	start	to	assemble	in	the	polyhedral	clathrin	structure	(Fotin	et	al.,	

2004).	 The	 cytoplasmic	domains	of	 PM	 receptors	 contain	 sorting	 sequences	 that	

are	 specifically	 recognized	 by	 adaptor	 proteins,	 which	 include	 the	 clathrin	 coat	

adaptors	 AP2,	 Dab2,	 ARH	 and	 Epsin	 (Traub,	 2009).	 These	 proteins	 recruit	 and	

package	the	receptors	into	CCPs	that	invaginate	(inwards)	with	the	help	of	several	

accessory	 proteins,	 and	 then	 pinch	 off	 to	 form	 a	 CCV	 in	 a	 process	 that	 requires	

dynamin.	 The	 receptors	 for	 ironbound	 transferrin	 (TfR)	 and	 low-density	

lipoprotrein	(LDLR)	are	classic	examples	of	cargo	proteins	in	CDE.	

Many	 cell-surface	 TM	 proteins	 lack	 cytoplasmic	 sequences	 for	 their	 recruitment	

into	CCVs,	and	 they	have	been	shown	 to	be	 internalized	by	clathrin-independent	

endocytosis	 (CIE).	 Examples	 of	 these	 receptors	 are	 the	major	 histocompatibility	

complex	 (MHC)	class	 I	proteins,	β-integrins,	 the	GPI-anchored	protein	CD59,	and	

the	 glucose	 transporter	 GLUT1,	 which	 have	 been	 reported	 to	 enter	 the	 cell	 via	

dynamin-	and	clathrin-independent	endocytosis	associated	with	 the	Arf6	GTPase	

(Naslavsky	 et	 al.,	 2004b),	 and	 the	 interleukin-2	 receptor	 (IL-2R),	 which	 is	

internalized	in	a	dynamin-,	endophilin-,	and	RhoA-dependent	manner	(Boucrot	et	

al.,	2015).	

Additional	 non-clathrin-mediated	 pathways	 include	 caveolin	 and	 flotillin-

dependent	endocytosis	and	internalization	of	fluid	or	large	extracellular	particles,	

like	macropinocytosis	and	phagocytosis	(Fig.	1.11).	

Caveolins	are	a	family	of	proteins	that	coat	PM	invagination	of	55-60	nm	diameter,	

forms	higher-order	oligomers	and	bind	cholesterol	and	fatty	acids,	which	stabilize	
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oligomer	 formation	 (Parton	 et	 al.,	 2006).	 These	 properties	may	 be	 important	 in	

ordering	 local	 lipids	 into	 invagination-competent	 compositions	 (called	 caveolae)	

and	 thus	 in	modulating	membrane	 curvature.	 Caveolar	 endocytosis	 is	 dynamin-

dependent	 and	 is	 used	 by	 glycosphingolipids	 and	 by	 some	 viruses	 for	 cell	

internalization	(Shin	and	Abraham,	2001).	Despite	these	observations,	the	precise	

role	 of	 caveolins,	 the	 specific	 lipid	 composition	 of	 caveolae	 and	 the	 specific	

functional	 relevance	 of	 other	 caveolae-associated	 proteins	 remain	 to	 be	 firmly	

established.		

The	 flotillins	 are	 a	 family	 of	 coat	 proteins	 found	 in	 PM-domains	 distinct	 from	

caveolae.	Flotillin-2,	together	with	dynamin,	has	been	reported	to	be	necessary	for	

the	 GPI-linked	 proteins	 and	 cholera	 toxin	 B	 (CTxB)	 uptake	 (Ait-Slimane	 et	 al.,	

2009),	 while	 flotillin-1	 and	 dynamin-2	 have	 been	 shown	 to	 be	 required	 for	 the	

internalization	of	proteoglycans	and	their	ligands	(Payne	et	al.,	2007).	

Macropinocytosis	 is	 dynamin	 and	 GTPase	 Rac1-dependent,	 with	 cholesterol	

required	 for	 the	 recruitment	 of	 activated	 Rac1	 (Kerr	 and	 Teasdale,	 2009).	

Macropinocytosis	 derived	 compartments	 are	 called	 macropinosomes;	 these	 are	

large	 endocytic	 compartments	 involved	 in	 fluid-phase	 internalization	 and	 that	

form	 upon	 stimulation	 of	 grow	 factors	 (e.g.	 Epidermal	 growth	 factor	 (EGF)	 and	

Platelet-derived	growth	factor	(PDGF)),	when	the	tip	of	membrane	ruffles	can	fuse	

back	with	the	PM	(Orth	et	al.,	2006).	

Phagocytosis	 is	 the	uptake	of	 relatively	 large	particles	 (300	nm	 to	 several	μm	 in	

diameter)	 that	 occurs	 most	 robustly	 in	 specialized	 cells,	 such	 as	 macrophages	

(Niedergang	 and	 Chavrier,	 2004).	 In	macrophages,	 large	 diameter	 (up	 to	 2	 μm)	

tubules	 bud	 into	 the	 cytoplasm	 progressively	 invaginating	 opsonized	 and	

particulate	material	intended	for	internalization.		
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Lastly,	a	CIE	pathway	that	is	regulated	by	GTPases	Cdc42	and	Arf1,	and	actin,	has	

been	reported	for	fluid-phase	markers,	GPI-anchored	proteins	and	bacterial	toxin	

(such	 as	 CTxB)	 endocytosis	 (Kumari	 and	 Mayor,	 2008).	 This	 occur	 via	 tubular	

invaginations	 at	 the	PM,	which	 are	 known	as	 clathrin	 and	dynamin-independent	

carriers	(CLICs)	and	which	subsequently	undergo	fusion,	to	generate	distinct	early	

endosomal	 compartments:	 the	 GPI-enriched	 early	 endosomal	 compartments	

(GEECs).	

1.3.2	Sorting	of	the	endocytosed	cargoes	

Regardless	of	the	mode	of	entry,	endocytosed	cargoes	are	delivered	to	a	common,	

Rab5	 containing,	 sorting	 station,	 from	 where	 the	 cargo	 destined	 for	 recycling,	

degradation	 or	 retrograde	 transport	 are	 separated	 out.	 This	 common	 sorting	

station	 is	 known	 as	 the	 early	 endosomes	 (EEs)	 or	 the	 sorting	 endosomes	 (SEs)	

(Jovic	et	al.,	2010;	Mayor	et	al.,	1993).	The	small	GTPase	Rab5,	its	effectors	(EEA1)	

and	PtdIns	3-kinase	 type	 III	 (PI3KIII)	 and	 its	product	PtdIns3P	mark	 the	EE	and	

are	 required	 for	 its	 function.	 Morphological	 and	 biochemical	 properties	 of	 EEs	

support	 their	 complex	 functions.	The	 lumen	of	 the	EEs	 is	mildly	 acidic	 (PH~6.3-

6.8),	thereby	facilitating	conformational	changes	that	allow	for	the	dissociation	of	

ligands	from	their	receptors.	The	EEs	have	a	highly	dynamic	structure,	containing	a	

vacuolar	 part,	 with	 large	 vesicles	 (~400	 nm	 diameter)	 and	 membrane	

invaginations,	 from	which	 a	 reticulum	 of	multi-branching	 thin	 tubules	 (~60	 nm	

diameter)	 emerges	 (Bonifacino	 and	 Rojas,	 2006;	 Gruenberg,	 2001)	 (Fig.	 1.12).	

These	 morphologically	 distinct	 EE	 sub-domains	 are	 believed	 to	 be	 functionally	

important,	 such	 that	 cargoes	 to	 be	 recycled	 cluster	 within	 primarily	 tubular	

membranes,	 whereas	 cargoes	 destined	 for	 lysosomes	 remain	 in	 the	 EE	 vacuole	

(Mellman,	 1996).	 The	 tubular	 endosomal	 network	 is	 further	 sub-
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compartmentalized	into	domains	that	can	lead	receptors	to	enter	directly	into	fast	

recycling	 pathways,	 or	 to	 be	 transferred	 to	 a	 later	 recycling	 compartment	 (Fig.	

1.12).	

	

	 	

Figure	 1.12	 Ultrastructure	 of	 the	 sorting	 endosomes.	 Once	 transported	 to	 the	 EEs,	
cargoes	are	 segregated,	by	a	 series	of	 soring	events,	 into	 separate	 trafficking	 itineraries,	
having	as	final	destination	the	TGN,	PM	and	lysosome.	The	EEs	morphology	consists	of	a	
vacuolar	region	connected	to	a	network	of	tubules.	The	vacuolar	domain	is	coated	by	flat	
clathrin	that	has	a	role	in	recruiting	the	ESCRT	machinery	for	targeting	proteins	to	MVBs	
pathway.	The	 tubular	 region	 (tubular	endosomal	network,	TEN)	has	many	domains	 that	
contain	specific	devices	 (highlighted	by	different	colors)	 for	 carrier	 formation	and	cargo	
recycling	to	TGN	or	PM	(Adapted	from	Bonifacino	and	Rojas,	2006).	

	

	

The	critical	role	of	the	EE	necessitates	that	any	sorting	that	occurs	here	is	precisely	

and	highly	controlled	by	key	components,	 such	as	proteins	and	 lipids.	Numerous	

sorting	 devices	 include	 some	 effectors	 and	 regulators	 of	 vesicle	 transport	

discussed	in	section	1.1.2	and	1.1.3,	for	examples	GTPase	(Rab	and	Arf)	and	their	

effectors,	 the	PI,	 clathrin	and	 its	 adaptors,	 and	motor	proteins;	new	ones	will	 be	

presented	in	the	following	sections	(1.3.3-1.3.5).	
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1.3.3	Recycling	pathways	

Cargoes	destined	to	return	to	PM	enter	the	recycling	pathways.	It	is	the	case	of	TfR	

recycling,	whose	kinetic	studies	have	confirmed	the	existence	of	 two	routes	with	

different	 kinetics:	 the	 ‘fast’	 recycling	 pathway	 (t1/2=5	 min)	 and	 the	 ‘slow’	

recycling	pathway	(t1/2=15-30	min)	(Hopkins	and	Trowbridge,	1983).	

TfR	undergoing	fast	recycling	is	quickly	sorted	away	from	Rab5-containing	micro-

domains	into	a	Rab4	micro-domain	(Sheff	et	al.,	1999;	van	der	Sluijs	et	al.,	1992);	

alternatively,	 TfR	 undergoing	 slow	 recycling	 is	 delivered	 to	 a	 Rab4/Rab11-

containing	endocytic	recycling	compartment	(ERC)	(Sonnichsen	et	al.,	2000)	(Fig.	

1.13).	The	existence	of	Rab4-dependent	 fast	 recycling	has	been	documented	also	

for	the	transport	of	glycosphingolipids	(Choudhury	et	al.,	2004).	

Although	Rab4	and	Rab5	share	multiple	effectors,	the	organization	of	the	recycling	

domains	at	EEs	appears	to	be	only	mediated	by	Rab4,	as	immunodepletion	of	Rab5	

itself	has	no	effects	(Pagano	et	al.,	2004).	Indeed,	a	Rab4	endocytic	regulatory	role	

is	 achieved	 by	 its	 interactions	 with	 the	 multivalent	 Rab4/Rab5	 effectors,	

Rabenosyn-5	and	the	Rabaptin-5/Rabex-5	complex	(de	Renzis	et	al.,	2002;	Mattera	

and	Bonifacino,	2008;	Vitale	et	al.,	1998).	

Rabaptin-5	functions	as	a	 linker	between	Rab4	and	the	γ1-adaptin	subunit	of	the	

clathrin	 adaptor	 AP1	 (Deneka	 et	 al.,	 2003).	 This	 interaction	 potentially	 has	 a	

regulatory	 role	 in	 preventing	 the	 association	 of	 clathrin	 with	 AP1	 γ1-adaptin,	

which	 would	 result	 in	 inhibition	 of	 coat	 formation	 and	 of	 budding	 of	 EE	

membranes.	 Rabenosyn-5,	 instead,	 facilitates	 Rab4	 in	 the	 delivery	 of	 recycling	

cargoes	 to	 the	 ERC,	 acting	 as	 a	 linker	 between	 Rab4	 and	 the	 Eps15-homology	

domain-containing	protein	EHD1,	an	endocytic	regulator	that	is	found	primarily	on	

the	 tubule-vesicular	 ERC	 membranes	 (Naslavsky	 et	 al.,	 2004a).	 Depletion	 of	
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Rabenosyn-5	 leads	 to	 the	 accumulation	 of	 TfR	 in	 EEs	 (the	 EEA1	 and	 Rab5-

containing	 compartment),	 while	 depletion	 of	 EHD1	 results	 in	 cargoes	

accumulation	at	the	ERC.	

Studies	 in	mammalian	cells	have	added	another	Rab,	Rab35,	 to	 the	 fast	recycling	

pathway	of	 the	TfR	(Kouranti	et	al.,	2006);	Rab35	 is	also	associated	with	 tubular	

recycling	 endosomes,	 emanating	 from	 the	 ERC,	 that	 contain	 Arf6	 and	 EHD1	 and	

carry	specific	CIE	cargoes	back	to	the	PM	(Caplan	et	al.,	2002;	Walseng	et	al.,	2008).	

However,	a	 lot	of	evidence	exists	 for	requirements	 for	Rabs,	 their	regulators	and	

effectors,	and	motors	and	adaptors	in	the	transport	of	endocytosed	cargo	from	the	

EEs	to	the	Rab11-associated	ERC,	and/or	in	regulating	the	slow	recycling	pathway	

(Fig.	1.13).	

	

	

Figure	1.13	Regulation	of	endocytic	recycling	pathways.	Post-endocytic	itineraries	of	
receptors	 entering	 the	 cells	 by	 both	 clathrin-dependent	 (blue	 cargo)	 and	 clathrin-
independent	 (red	cargo)	endocytosis	are	shown.	Subsequent	routing	of	 cargo	 to	 the	PM,	
directly	 or	 through	 the	 endocytic	 recycling	 compartment	 (ERC),	 requires	 several	
machineries,	 including	 GTPases	 (Rabs	 and	 Arfs)	 and	 their	 effectors	 (i.e.	 Rab11FIPs)	
(Adapted	from	Grant	and	Donaldson,	2009).	
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	Rab8	co-localize	with	Arf6	on	tubular	endosomes	that	contain	CIE	cargoes,	and	it	

promotes	recycling	and	cortical-actin-driven	PM-protusions	(Hattula	et	al.,	2006);	

Rab22a	 depletion	 inhibits	 slow	 TfR	 recycling,	 while	 Rab10	 specifically	 regulate	

recycling	pathways	in	polarized	epithelial	cells	(Babbey	et	al.,	2006;	Magadan	et	al.,	

2006).	 Rab11-family-interacting	 proteins	 (RAB11FIPs)	 have	 been	 identified	

complexed	with	 proteins	 that	 regulate	 the	 slow	 recycling	 pathway	 (Inoue	 et	 al.,	

2008;	Naslavsky	et	al.,	2006;	Schonteich	et	al.,	2008).	

1.3.4	Degradative	pathway	

Cargoes	 destined	 to	 degradation	 enter	 the	 route	 to	 lysosome	 and	 a	well-studied	

mechanism,	in	this	regard,	is	that	of	the	EGF-bound	receptor	(EGFR).	

EGFR,	 lysine	 mono-ubiquitylated	 on	 its	 cytosolic	 tail,	 is	 concentrated	 in	 a	 sub-

domain	of	 the	vacuolar	EE	 that	has	a	bilayer	clathrin	coat,	where	 the	hepatocyte	

growth	factor-regulated	tyrosine	kinase	substrate	(Hrs)	also	localizes	(Raiborg	et	

al.,	 2002).	Through	 selective	binding	 to	 clathrin	 and	 recognition	of	ubiquitylated	

cargoes,	 Hrs	 drives	 the	 formation	 of	 a	 unique,	 Rab7-conteining,	 sorting	 micro-

domain	 that	 actively	 concentrates,	 and	 sorts,	 cargoes	 into	 intraluminal	 vesicles	

and,	 away	 from	 the	 tubular	 endosomal	 network	 and	 the	 ERC,	 actively	 recycles	

membranes.	 Additional	 ubiquitin-binding	 proteins,	 like	 Eps15	 and	 signal	

transducing	 adaptor	molecule	 2	 (STAM2),	 are	 part	 of	 the	 complex	 (Bache	 et	 al.,	

2003).	 Hrs	 recruits	 Tsg101,	 a	 component	 of	 the	 endosomal	 sorting	 complex	

required	 for	 transport	 (ESCRT)	 I,	 which	 subsequently	 triggers	 ESCRT-II	 and	

ESCRT-III	assembly,	leading	to	the	onset	of	membrane	invagination	and	formation	

of	 multivesicular	 bodies	 (MVBs)	 (Babst	 et	 al.,	 2002a;	 Babst	 et	 al.,	 2002b;	

Bonifacino	and	Hurely,	2008).	
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The	ESCRT	complexes	not	only	play	a	fundamental	role	in	the	MVB	biogenesis,	but	

also	in	other	cellular	processes,	such	as	cellular	abscission	and	viral	budding.	The	

unique	 structure	 of	 each	 complex,	 enable	 distinct	 biochemical	 function:	 ESCRT-I	

acts	 as	 a	 bridge	 between	 the	 functional	 sorting	 complex,	 consisting	 of	 Hrs	 and	

other	ubiquitin-binding	proteins	(also	called	ESCRT-0),	and	ESCRT-II	complex,	and	

together	 with	 ESCRT-II	 participates	 in	 bud	 formation;	 ESCRT-II	 is	 probably	 the	

most	important	of	the	super-complex	ESCRT-I/ESCRT-II	 in	MVB	biogenesis,	since	

its	 overexpression	 can	 rescue	deletions	of	ESCRT-I	 functions,	 but	not	 vice	 versa;	

ESCRT-III	associates	with	ESCRT-II	and	pinches	the	cargo	containing	vesicle	closed	

(Hurley,	2010).	

Ultimately,	fusion	of	mature	MVBs	(also	known	as	LEs)	with	the	lysosomal	vesicles	

carrying	 proteolytic	 enzymes	 results	 in	 degradation	 of	 EGFR	 and	 other	 sorted	

receptors.	

1.3.5	Retrograde	pathway	

While	the	formation	of	endosomal	tubular	structures	facilitates	efficient	recycling	

of	 receptors	 back	 to	 the	 plasma	 membrane,	 retromer-mediated	 tubulation	 is	

essential	for	retrograde	transport	of	cargoes	(like	mannose	6-phosphate	receptor	

(MPR))	from	EE	to	TGN	(Bonifacino	and	Hurley,	2008).	The	mammalian	retromer	

comprises	two	distinct	sub-complexes:	the	SNX	sub-complex,	a	dimer	composed	of	

a	 combination	 of	 SNX1,	 SNX2,	 SNX5	 and	 SNX6,	 and	 the	 vacuolar	 protein	 sorting	

(Vps)	sub-complex,	a	heterotrimer	composed	of	Vps26,	Vps29	and	Vps35	(Collins,	

2008;	Haft	et	al.,	2000;	Hierro	et	al.,	2007).	

SNX	proteins	contain	a	PtdIns3P-binding	Phox	(PX)	domain,	which	is	essential	for	

association	with	EE-membranes	(Burda	et	al.,	2002;	Carlton	et	al.,	2005a;	Cozier	et	

al.,	 2002),	 as	 well	 as	 a	 curvature-sensing	 Bin-Amphiphysin-Rvs	 (BAR)	 domain,	
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which	 is	 essential	 for	 retromer-regulated	 formation	 of	 tubular	 membrane	

structures	(Carlton	et	al.,	2004;	van	Weering	et	al.,	2010).	On	the	other	hand,	Vps	

sub-complex,	and	in	particular	Vps35,	functions	to	recognize	sorting	signals	within	

the	 cytosolic	 tails	 of	 retrograde	 cargoes,	 such	 as	 MPR	 (Arighi	 et	 al.,	 2004;	

Nothwehr	et	al.,	2000;	Seaman,	2007).	

Depletion	of	retromer	subunits	by	siRNAs	prevents	MPR	retrieval.,	 leading	 to	re-

routing	 of	 MPR	 to	 lysosomes	 (Carlton	 et	 al.,	 2005b;	 Rojas	 et	 al.,	 2007;	 Seaman,	

2004).	
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AIMS	

It	 is	 clear	 that	 the	 intracellular	 transport	 system	 is	 remarkably	 complex	 as	 it	

encompasses	a	wide	variety	of	pathways	for	the	transport	of	cargoes	(proteins	and	

other	macromolecules)	to	different	cellular	compartments.	 In	addition,	cells	have	

evolved	multiple	strategies	that	use	different	molecules	to	transport	cargo	through	

the	same	trafficking	pathway.	The	 fundamental	unit	of	 this	eclectic	system	 is	 the	

membrane	 trafficking	 module	 (MTM)	 made	 up	 of	 three	 essential	 components:	

cargoes,	effectors	and	regulators.	

Over	the	last	two	decades	genome-wide	and	high-throughput	siRNA	screens	have	

identified	 many	 of	 these	 MTMs	 (De	 Matteis	 et	 al.,	 2013;	 Liberali	 et	 al.,	 2014;	

Simpson	et	al.,	2012);	however,	a	note	of	caution	has	to	be	used	in	interpreting	the	

results	 of	 these	 studies	 as	 they	 suffer	 from	 the	major	 limitation	 of	 having	 been	

performed	in	immortalized	cell	lines,	such	as	HeLa	and	A431	cells,	often	following	

artificial	cargoes.	Thus,	the	main	aims	of	my	project	were:	

• To	define	a	set	of	MTMs	in	more	physiological	contexts;	

• To	understand	their	specific	function	and	transcriptional	regulation.	

Moreover,	membrane	trafficking	is	often	regarded	as	a	constitutive	process	with	a	

high	degree	of	 functional	redundancy	but	 this	view	 is	challenged	by	 the	 fact	 that	

mutations	of	single	trafficking	genes	with	ubiquitous	expression	give	rise	to	tissue-

specific	human	diseases	(De	Matteis	and	Luini,	2011).	According	to	this	evidence,	

another	important	aim	of	the	project	was:	

• To	 investigate	 the	 existence	 of	 specific	MTMs	 containing	 disease	 genes	 in	

those	tissues	that	would	exhibit	the	relevant	phenotype.	

Here,	a	systems	biology	approach	is	proposed	to	meet	the	objectives	listed	above.	
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1.4	State	of	the	art	in	module	detection,	validation	and	characterization	

1.4.1	RNA	Sequencing	for	Gene	Expression	Profiling	

1.4.1.1	Gene	expression	profiling	methods	

Gene	co-expression	networks	represent	a	valid	systems	biology	tool	for	detecting	

functional	gene	modules	(Ruan	et	al.,	2010;	Ruprecht	et	al.,	2017).	The	input	data	

for	 constructing	 a	 gene	 co-expression	 network	 is	 a	 gene-expression	matrix	 that	

describes	the	pattern	of	genes	actively	transcribed	under	specific	conditions	(e.g.	

entire	tissues	or	cell	lines).	

Techniques	 used	 to	 measure	 gene-expression	 profiles	 include	 “direct”	 methods	

like	DNA	microarrays	(Taub	et	al.,	1983)	and	sequence-based	techniques	like	serial	

analysis	 of	 gene	 expression	 (SAGE;	 Velculescu,	 1995).	 More	 recently,	 direct	

sequencing	of	transcripts	by	high-throughput	sequencing	technologies	(RNA-Seq)	

has	become	an	additional	alternative	to	microarrays	and	has	replaced	SAGE	(Wang	

et	al.,	2009).	Like	SAGE,	RNA-Seq	does	not	depend	on	genome	annotation	for	prior	

probe	selection	and	avoids	biases	introduced	during	hybridization	of	microarrays;	

however,	 compared	 to	 SAGE,	 it	 provides	 a	 far	more	precise	measurement	 of	 the	

levels	of	gene	transcripts	and	their	isoforms.	

Current	RNA-Seq	methods	 rely	on	complementary	DNA	(cDNA)	synthesis	 from	a	

population	of	RNA	(total	or	fractionated,	such	as	poly(A)+).	This	collection	of	cDNA	

(referred	 to	 as	 a	 library)	 is	 then	 amplified	 and	 sequenced	 in	 a	 high-throughput	

manner	 to	 produce	 millions	 of	 short	 sequence	 reads	 typically	 30-400	 bp	 long,	

which	 correspond	 to	 individual	 cDNA	 fragments.	 Following	 sequencing,	 the	

resulting	 reads	 are	 either	 aligned	 to	 a	 reference	 genome	 or	 transcriptome,	 or	

assembled	de	novo.	This	produces	a	genome-scale	transcription	map	consisting	of	
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both	the	transcriptional	structure	and	the	level	of	expression	for	each	gene	(Wang	

et	al.,	2009).	

1.4.1.2	Pre-processing	of	raw	RNA-Seq	data	

A	 significant	 factor	 to	 consider	 when	 manipulating	 raw	 RNA-Seq	 data	 is	 the	

sequencing	 depth	 or	 library	 size,	which	 is	 the	 number	 of	 sequenced	 reads	 for	 a	

given	sample.	

Often,	a	small	 fraction	of	highly	expressed	genes	account	for	 large	proportions	of	

the	sequenced	reads,	removing	power	to	detect	the	expression	of	lowly	expressed	

genes.	 In	 addition,	multiple	 sequencing	 runs	might	 result	 in	differences	 in	depth	

among	samples.	These	 issues	 leave	 the	experimenter	with	some	choices	 to	make	

regarding	the	data	analysis:	

1. Which	read	counts	to	include	in	the	analysis	and	which	to	discard;	

2. Which	normalization	methods	to	use	to	mitigate	biases	across	samples	(Lin	

et	al.,	2016).	

In	general,	the	choice	of	a	cutoff	of	the	counts	per	million	(CPM)	of	mapped	reads	is	

arbitrary	but	 it	 is	required	to	remove	the	extremely	noisy	data	 in	 the	expression	

estimates;	 conversely,	 a	 number	 of	 standardized	 normalization	 procedures	 have	

been	 developed	 over	 recent	 years	 to	 facilitate	 accurate	 comparisons	 between	

sample	 groups.	 Initial	 methods	 of	 normalization	 modeled	 the	 read	 counts	

associated	 to	 each	 gene	 as	 a	 Poisson	 distribution	 (Marioni	 et	 al.,	 2008).	 It	 is	

important	to	note	that	a	Poisson	distribution	models	both	mean	and	variance	using	

a	 unique	parameter.	However,	 in	 biology	 the	 variance	of	 gene	 expression	 across	

multiple	biological	replicates	is	larger	than	its	mean	expression	values,	a	problem	

known	 as	 over-dispersion	 (Rapaport	 et	 al.,	 2013),	 which	 is	 why	 other	

normalization	methods	are	in	use	today.	
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These	 methods	 include	 the	 trimmed	 mean	 of	 M-values	 (TMM)	 (Robinson	 and	

Oshlack,	2010)	and	the	DESeq	normalization	(Anders	and	Huber,	2010).	Both	TMM	

and	DESeq	models	assume	that	the	number	of	reads	in	sample	j	that	are	assigned	

to	gene	!	can	be	modeled	by	a	negative	binomial	(NB)	distribution:	

	 !!"~!"( µ!" ,!),	 	 	 	 (1.1)	

with	mean	 µ!" 	and	variance	! = !!"! .	

The	relation	between	the	variance	!	and	the	mean	μ	is	generally	defined	as:	

	 ! = µ+ αµ!,	 	 	 	 	 (1.2)	

where	α	is	the	dispersion	factor.	

Estimation	of	 this	 factor	 is	one	of	 the	 fundamental	differences	between	the	TMM	

and	 the	 DESeq	 normalization	 methods.	 TMM	 estimates	 α	 as	 a	 weighted	

combination	of	 two	components,	a	gene-specific	dispersion	effect	and	a	common	

dispersion	effect	 calculated	 from	all	 genes.	DESeq,	on	 the	other	hand,	breaks	 the	

variance	 estimate	 into	 a	 combination	 of	 the	 Poisson	 estimate	 (that	 is	 the	mean	

expression	of	 the	gene)	and	a	second	 term	that	models	 the	biological	expression	

variability	(Rapaport	et	al.,	2013).	

1.4.2	Weighted	correlation	network	analysis	

A	good	number	of	methods	have	been	developed	 for	 constructing	 and	 analyzing	

gene	co-expression	networks;	among	these,	weighted	correlation	network	analysis	

(WGCNA;	 Langfelder	 and	 Horvath,	 2008a)	 is	 by	 far	 the	 most	 used	 method	 for	

studying	biological	networks.	A	flowchart	of	the	main	steps	of	WGCNA	is	presented	

in	Figure	1.14.	
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Figure	1.14	Flowchart	of	gene	co-expression	network	analysis.	
	

	

1.4.2.1	Definition	of	a	gene	co-expression	similarity	

In	the	first	step,	a	similarity	score	between	the	m	genes	in	the	expression	matrix	is	

calculated.	 The	 result,	 called	 similarity	 matrix	 S,	 has	m	 ×	m	 dimensions	 and	 in	

general	stores	the	pairwise	correlation	coefficients	between	all	the	genes.	

The	 Pearson	 correlation	 coefficient	 is	 one	 of	 the	 measures	 of	 linear	 correlation	

between	two	variables	X	and	Y,	giving	a	value	between	-1	and	+1	inclusive,	where	

1	 is	 total	 positive	 correlation,	 0	 is	 no	 correlation,	 and	 -1	 is	 total	 negative	

correlation.	It	is	the	covariance	of	the	two	variables	divided	by	the	product	of	their	

standard	deviations:	

	 !!,! =  !!,!!! !!
.	 	 	 	 	 (1.3)	

Another	 measure	 is	 the	 Spearman	 correlation	 coefficient;	 it	 is	 defined	 as	 the	

Pearson	correlation	coefficient	between	the	ranked	variables:	

Define	a	Gene	Co-expression	Similarity	

Define	a	Family	of	Adjacency	Functions		

Determine	the	A.F.	Parameters	

Define	a	Measure	of	Node	Dissimilarity	

Identify	Network	Modules	(Clustering)	
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	 !!"#,!"# =  !!"#,!"#!!"# !!"#
,	 	 	 	 (1.4)	

where	rgX	and	rgY	are	the	ranked	variables	of	X	and	Y,	respectively.	

1.4.2.2	Definition	of	an	adjacency	function	

In	 the	 second	 step,	 either	 a	 hard	 or	 a	 soft	 threshold	 is	 applied	 to	 the	 similarity	

matrix	to	determine	the	biological	meaningfulness	of	the	connections;	this	choice	

determines	whether	the	resulting	network	will	be	unweighted	(hard-threshold)	or	

weighted	(soft-threshold).	

A	 currently	 used	 adjacency	 function	 that	 implements	 hard-thresholding	 is	 the	

signum	function,	defined	as:	

	 !!" =
1 !" !!" ≥  τ
0 !" !!" <  τ	,	 	 	 	 (1.5)	

where	!!"  is	 the	 similarity	 score	 between	 the	 genes	!	and	!,	 and	τ	is	 the	 threshold	

parameter.		

An	 alternative	 solution,	 proposed	 by	 several	 authors,	 is	 to	 threshold	 the	

significance	level	(p-value)	of	the	correlation,	which	is	typically	estimated	by	using	

the	Fisher	transformation	(Davidson	et	al.,	2001)	or	a	permutation	test	procedure	

(Butte	and	Kohane,	2000;	Carter	et	al.,	2004),	rather	than	the	correlation	itself.	

However,	the	major	limitation	of	hard-thresholding	functions	is	that	they	may	lead	

to	a	loss	of	information.	In	fact,	interactions	are	never	black	or	white	(1s	or	0s).	For	

this	reason,	it	is	often	preferred	to	use	a	soft-thresholding	function,	whose	intent	is	

not	 to	 delete	 connections	 but	 to	 emphasize	 stronger	 associations	 (larger	

correlation	coefficients).	

A	widely	used	‘soft’	adjacency	function	is	the	power	function,	defined	as:	

	 !!" = |!!"|! ,	 	 	 	 	 (1.6)	

where	β	is	the	power	parameter.	



	 44	

1.4.2.3	Definition	of	node	dissimilarity	and	module	detection	

An	important	aim	of	co-expression	network	analysis	is	to	detect	subsets	of	nodes	

(modules)	 that	 are	 tightly	 connected	 to	 each	 other.	 The	 operation	 of	 identifying	

similar	 groups	 of	 nodes	 in	 a	 data	 set	 is	 called	 clustering.	Many	 of	 the	 clustering	

algorithms	 build	 models	 based	 on	 dissimilarity	 measures	 (Shirkhorshidi	 et	 al.,	

2015),	 and,	 in	 the	 context	 of	 biological	 networks,	 one	 of	 the	 most	 used	 is	 the	

average-linkage	hierarchical	clustering.	

In	 average-linkage	 hierarchical	 clustering,	 each	 node	 is	 first	 assigned	 to	 its	 own	

cluster;	 then,	 at	 each	 step	 of	 the	 algorithm,	 the	 distance	 between	 the	 clusters,	

defined	as	the	average	distance	between	each	point	in	one	cluster	to	every	point	in	

the	 other	 cluster,	 is	 calculated,	 and	 the	 two	 most	 similar	 clusters	 are	 joined	

together.	 The	 final	 result	 is	 a	 dendrogram	whose	 branches	 are	 cut,	 in	 a	 process	

referred	to	as	tree	cutting,	branch	cutting,	or	branch	pruning,	in	order	to	identify	

the	modules.	

Distance	measures	 have	 significant	 influence	 on	 clustering	 results	 (Jaskowiak	 et	

al.,	 2014);	 typically,	 WGCNA	 uses	 the	 topological	 overlap	 dissimilarity	 measure	

(Ravasz	et	al.,	2002),	defined	as:	

	 1− !"!!" = 1− ∑!!!,!!!"!!"!!!"
!"# ∑!!!!!",∑!!!!!" !!!!!"

,	 	 	 (1.7)	

where !"!!" 	is	a	measure	of	interconnectedness	of	genes	!	and	!,	and	!!",!!",	and	

!!" ,	are	the	adjacency	scores	between	the	corresponding	pair	of	genes.	

1.4.3	Validation	of	predictive	models	

Validation	 is	 the	 process	 of	 assessing	 the	 quality	 of	 an	 inferred	 model	 with	

available	 knowledge.	 For	 quantitative	 validation,	 it	 is	 necessary	 to	 employ	 a	

scoring	 methodology	 that	 evaluates	 the	 model	 with	 respect	 to	 (a)	 information	
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already	 used	 to	 generate	 the	 model	 (internal	 validation)	 and	 (b)	 information	

independent	from	the	information	used	to	construct	the	model	(external	validation).	

The	assessment	of	inferred	gene	networks	generally	requires	benchmark	data	sets	

for	which	the	underlying	network	is	known.	Benchmarking	involves	counting	the	

number	of	correctly	predicted	links	(true	positives,	TP),	the	number	of	incorrectly	

predicted	 links	 (false	 positives,	 FP),	 the	number	 of	 correctly	 identified	non-links	

(true	negatives,	TN)	and	the	number	of	true	links	missed	by	the	inferred	network	

(false	 negatives,	 FN).	 Performance	 of	 the	model	 can	 then	 be	 summarized	 by	 the	

receiver	 operating	 characteristic	 (ROC)	 curve,	 whose	 point	 coordinates	 are	 the	

true	positive	rate	(TPR=	TP/TP	+	FN)	and	the	false	positive	rate	(FPR=FP/FP	+TN),	

respectively	(Penfold	and	Wild,	2011).	

In	 many	 clustering	 applications,	 instead,	 one	 may	 be	 interested	 in	 determining	

whether	the	inferred	cluster(s)	can	also	be	found	in	other	data	sets.	Statistics	for	

measuring	 module	 or	 cluster	 preservation	 belong	 to	 two	 different	 categories:	

network-independent	 and	 –dependent	 preservation	 statistics	 (Langfelder	 et	 al.,	

2011).	 Network-independent	 statistics	 do	 not	 require	 that	 a	 network	 has	 been	

defined,	since	 they	aim	to	evaluate	similarity	between	the	cluster	assignments	of	

both	the	reference	and	the	test	sets.	Network-dependent	statistics,	by	contrast,	aim	

to	evaluate	that	some	properties	of	the	inferred	modules	are	maintained	in	the	test	

networks,	 i.e.	 cohesiveness	 (density	 preservation	 statistics)	 and	 topology	

(connectivity	preservation	statistics).	

1.4.4	Characterization	of	co-expressed	gene	sets	

Analysis	 of	 co-expressed	 gene	 sets	 typically	 involves	 testing	 for	 enrichment	 of	

different	 annotations	 or	 'properties'	 such	 as	 biological	 processes,	 pathways,	 and	

transcription	 factor	 binding	 sites.	 It	 is	 a	 common	 task	 in	 bioinformatics	 to	 use	
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enrichment	 methods,	 such	 as	 a	 hypergeometric	 test	 or	 gene	 set	 enrichment	

analysis	(GSEA)	(Subramanian	et	al.,	2005),	to	characterize	genes	associated	with	

the	co-expressed	gene	set,	and	transfer	their	biological	annotations	to	the	related	

set,	something	known	as	guilt-by-association	(GBA)	heuristic	(Wolfe	et	al.,	2005).	

In	 recent	 years,	 several	 GBA	 methods	 for	 the	 characterization	 of	 co-expressed	

genes	 have	 been	 proposed,	 many	 of	 them	 involving	 random	 walks	 with	 restart	

(Blatti	and	Sinha,	2016;	Hofree	et	al.,	2013;	Hou	and	Ma,	2014;	Ivan	and	Grolmusz,	

2011;	Li	et	al.,	2017).	

A	 random	 walk	 (Lovasz,	 1993)	 is	 a	 stochastic	 process	 that	 starts	 from	 a	 given	

vertex	!	of	a	graph	G=(V,	E),	with	V	the	set	of	vertices	and	E	the	set	of	edges,	and	

then	 selects	 one	 of	 its	 neighbors	!,	 uniformly	 at	 random,	 to	 visit.	 Running	 the	

algorithm	for	a	sufficiently	long	time,	the	probability	of	visiting	a	particular	node !	

is	 denoted	 as	 the	 steady	 state	 probability	 of	 node	! ,	!(!) .	 The	 steady	 state	

probability	of	a	random	walk	on	G	is	defined	as:	

	 !!!! = !!!! ,	 	 	 	 	 (1.8)	

where	!! 	is	the	adjacency	matrix	of	G,	column	normalized	for	the	vertex	degrees.		

Compared	 to	 a	 random	 walk,	 a	 random	 walk	 with	 restart	 has	 an	 additional	

probability	!	of	 jumping	back	to	one	of	the	nodes	of	 interest	(seeds).	 In	this	case,	

the	steady	state	probability	of	a	random	walk	with	restart	on	G	is	defined	as:	

	 !!!! = 1− ! !!!! + !",	 	 	 	 (1.9)	

where	q	is	the	vector	of	seed	restarting	probabilities.	

Genes	and	properties	are	prioritized	for	their	relatedness	to	the	seed	genes	based	

on	this	steady	state	probability;	the	larger	the	probability	value	is,	the	higher	the	

rank	position.	
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Chapter	2	

Material	and	methods	

2.1	Employed	datasets	

2.1.1	Traffickome	list	

We	have	manually	curated	a	list	of	1261	genes	that	cover	all	the	genes	described	as	

part	 of	 membrane	 trafficking	 machineries	 at	 the	 ER,	 Golgi,	 Endosomes	 and	

Lysosomes.	We	called	 this	 list	 “traffickome”,	with	 reference	 to	 the	portion	of	 the	

genome	encoding	for	the	proteins	involved	in	the	vesicular	trafficking.	The	classes	

covered	by	 the	 traffickome,	and	 the	percentage	of	genes	 falling	 in	each	class,	are	

provided	in	Figure	2.1.	

	

	 	

Figure	2.1	Pie	chart	showing	the	classes	covered	by	the	traffickome.	
	

	

2.1.2	GTEx	V4	release	in	numbers	

We	analyzed	the	Genotype-Tissue	Expression	(GTEx;	GTEx	Consortium,	2013)	V4	

release,	which	comprises	RNA-Seq.	data	 for	2.921	samples,	representing	42	body	

sites	(28	solid	organ	tissues,	11	brain	sub-regions,	whole	blood,	and	two	cell	lines:	

Epstein-Barr	virus–transformed	lymphocytes	(LCL)	and	cultured	fibroblasts	from	

skin;	Fig.	2.2),	 from	209	donors.	Of	 these,	135	(65%)	were	male,	74	(35%)	were	
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female,	 74%	White,	 35%	 Black	 or	 African	 American,	 and	 1%	 Asian.	 Their	 ages	

range	from	21	to	70	years,	with	an	average	age	of	50	years.	Death	was	recorded	as	

due	 to	 ventilator	 death	 (64%),	 expected	 death	 after	 illness	 (10%),	 unexpected	

death	after	illness	(5%),	fast	death	of	natural	causes	(10%),	violent	and	fast	death	

(5%),	other	causes	(6%).	

	

	

Figure	2.2	GTEx	V4	release:	sample	counts	by	tissues.	
	

	

2.2	Consensus	MTM	detection	

2.2.1	Gene	and	tissue	selection	

We	 first	evaluated	 the	number	of	non-detected	genes,	defined	as	genes	with	 less	

than	1	count	per	million	of	mapped	reads	(CPM)	in	more	than	20%	of	samples	in	

each	tissue.	We	then	set,	as	minimum	requirement	to	construct	tissue-specific	co-

expression	 networks,	 ten	 samples.	 The	 number	 of	 samples	 was	 estimated	 per	

tissue,	taking	into	account	the	maximum	combination	of	outliers	(samples	in	which	

the	 number	 of	 reads	 overlapping	 a	 gene	 lie	 over	 1.5	 Interquartile	 Range	 (IQR)	
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below	 the	 first	 quartile	 (Q1)	 or	 above	 the	 third	 quartile	 (Q3)	 of	 the	 tissue	 raw	

count	estimates	of	that	gene)	between	couples	of	detected	genes,	within	the	same	

tissue.	

To	 keep	 the	 largest	 number	 of	 samples,	 we	 explored	 gene	 expression	 similarity	

among	 tissues,	 in	 order	 to	 find,	 for	 those	 tissues	 that	 did	 not	 reach	 the	 sample	

threshold,	 the	 closest	 neighbors	 in	 terms	 of	 body	 location,	 function,	 and	 gene	

expression	 pattern.	 The	 genealogy	 of	 tissues	 was	 estimated,	 evaluating	 both	

whole-genome	 and	 traffickome	 expression	 patterns.	 Raw	 counts	 were	 first	

normalized	to	render	sample	libraries	comparable	despite	the	differences	in	depth.	

The	TMM	normalization	method,	 implemented	in	the	edgeR	R-package,	was	used	

to	compute	a	scaling	factor	for	each	library.	Normalized	counts	were	converted	in	

RPKM	 units	 (RPKM=	 reads	 per	 kilobase	 per	 million	 mapped	 reads),	 calling	 the	

rpkm	function	within	the	same	package.	The	function	requires	in	input	the	vector	

of	gene	lengths	in	bases,	which	was	obtained	from	the	GENECODE	(Harrow	et	al.,	

2012)	 release	 18	 (https://www.gencodegenes.org/releases/18.html).	 We	 then	

calculated,	for	each	tissue,	the	centroids	of	gene	expressions	by	obtaining,	for	each	

gene,	 the	 median	 expression	 across	 all	 the	 samples	 of	 a	 given	 tissue.	 Finally,	

hierarchical	clustering	was	performed	using	different	settings:	RPKM	values	were	

used	 in	 log2-transformed	 (!"!!(1+ !"#$)) 	scale;	 distances	 between	 tissues	

were	defined	as:	

	 !!" = (1− !"##(!! , !!))/2,	 	 	 	 (2.1)	

where	!! 	and	!! 	are	 the	 vectors	 of	 gene	 expression	 centroids	 of	 tissue	!	and	!,	 and	

corr	is	the	Pearson	correlation	between	them;	average-linkage	method	was	applied	

as	 clustering	 strategy.	 Lastly,	 genes	 detected	 only	 in	 the	 removed	 tissues	 were	

excluded	from	further	analysis.	
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2.2.2	Network	construction	

Networks	 were	 constructed	 using	 WGCNA.	 For	 each	 tissue,	 we	 computed	 an	

adjacency	matrix	as:	

	 !!" = |!"##(!! ,!!)|! ,	 	 	 	 (2.2)	

where	!! 	and	!! 	are	 the	expression	vectors	of	 gene	!	and	!,	 and	! = 10	is	 the	 soft-

thresholding	power.	Outliers	were	removed,	as	described	 in	section	2.2.1,	before	

computing	the	correlation	coefficients.	

To	reduce	features	to	membrane	trafficking	genes,	only,	we	assessed	the	similarity	

of	 the	 correlation	 distributions	 of	 both	 the	 coding	 genome	 and	 traffickome	 by	

using	 the	 Wilcoxon	 rank-sum	 test	 (Wilcoxon,	 1946).	 The	 feature-reduced	

adjacency	 matrices	 were	 then	 transformed	 into	 Topological	 Overlap	 Matrices	

(TOMs;	see	section	1.4.2.3).	

2.2.3	Tissue	MTM	detection	and	comparison	

For	each	tissue,	the	corresponding	TOM	was	converted	to	a	dissimilarity	measure	

(1-TOM)	 and	 clustered	 using	 average-linkage	 hierarchical	 clustering.	 Modules	

were	 derived	 from	 the	 dendrogram	 using	 the	 cutreeDynamic	 function,	

implemented	in	the	dynamicTreeCut	R-package	(Langfelder	et	al.,	2008b);	function	

parameters	 were	 set	 to	 default	 values,	 except	 for	 the	 minimum	 cluster	 size	

increased	 to	 30.	 In	 order	 to	 compare	 tissue	 modules,	 we	 calculated	 the	 gene	

overlap	 for	 each	pair	of	MTMs	and	used	 the	Fisher’s	 exact	 test	 (Fisher,	1922)	 to	

assign	them	a	p-value.	False	Discovery	Rates	(FDRs)	were	computed	from	p-values	

using	 the	 Benjamini-Hochberg	 procedure	 (Benjamini	 and	 Hochberg,	 1995),	 and	

the	 1%	 significance	 level	was	 applied	 to	 convert	 the	 Fisher	matrix	 into	 a	 binary	

format.	 Finally,	 we	 computed	 the	 Jaccard	 distances	 among	 the	modules	 and	 we	
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clustered	them	using	average-linkage	hierarchical	clustering	 in	combination	with	

the	cutreeDynamic	function	(deepSlit=4).	

To	 establish	 preservation	 of	 connection	 patterns	 between	 the	 modules,	 we	

computed,	for	each	gene,	the	Pearson	correlation	of	its	expression	with	the	module	

eigengenes	(1st	principal	component	of	the	expression	matrix	of	the	corresponding	

module),	known	as	module	membership	value	(kME).	MTMs	were	then	clustered	

by	 similarities	 of	 their	 network	 topologies,	 performing	 a	 k-mean	 clustering	

(MacQueen,	1967)	on	the	matrix	of	module	kME	correlations.	Since	we	wanted	to	

compare	this	clustering	solution	to	the	one	obtained	matching	the	module	genes,	

we	set	the	number	of	groups	(k),	in	which	to	partition	the	modules,	equal	to	5.	

2.2.4	Consensus	analysis	of	tissue	expression	data	

To	 identify	consensus	MTMs,	we	considered	only	 trafficking	genes	detected	 in	at	

least	 22	 out	 of	 25	 tissues.	 TOMs	 were	 scaled	 such	 that	 their	 95th	 percentiles	

equaled	the	95th	percentile	of	the	fibroblast	TOM,	taken	as	reference.	A	consensus	

TOM	was	then	calculated	by	taking	the	component-wise	(parallel)	50th	percentile	

of	 the	 scaled	 TOMs,	 which	 were	 first	 modified	 assigning	 zero	 to	 the	 missing	

connections.	 Clustering	 was	 obtained	 in	 an	 analogous	 way	 to	 tissue	 TOMs,	 and	

modules	were	derived	from	the	cutreeDynamic	function,	using	the	Hybrid	method,	

with	a	minimum	cluster	size	of	5	and	a	medium	sensitivity	(deepSplit=2)	to	cluster	

splitting.	 The	 “deepSplit”	 and	 the	 “method”	 parameters	 were	 established	 by	

evaluating,	 for	each	pair	of	possible	values,	 the	mean	cluster	 size,	 the	number	of	

unassigned	genes	and	the	composite	preservation	statistic	(Zsummary)	(Langfelder	et	

al.,	2011),	defined	as:	

	 !!"##$%& =
!!"#$%&'!!!"##$!%&'&%(

! .	 	 	 (2.3)	
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Each	Z-statistic	was	the	result	of	a	pairwise	comparison	between	a	given	reference	

(the	 consensus	 TOM)	 and	 a	 test	 set	 (the	 scaled	 TOMs);	 mean	 and	 standard	

deviation	 were	 obtained	 shuffling,	 a	 hundred	 times,	 the	 gene	 labels	 in	 the	 test	

network	 and	 computing,	 for	 each	 randomized	 solution,	 the	 corresponding	

permuted	statistic.	Permutation	Z-scores	were	then	calculated	as	follow:		

	 ! = !"#$%&$'! !"#$!"#$%&"'
!"!"#$%&"'

.	 	 	 	 (2.4)	

For	 each	 reference-test	 pair,	 and	 for	 each	 module	 q,	 defined	 by	 the	 couple	 of	

parameters	 in	 evaluation,	 we	 calculated	 the	 Zdensity	 as	 the	 Z-score	 of	 q	 mean	

adjacency	(ZmeanAdj)	 in	 the	 test	network,	and	 the	Zconnectivity	 as	 the	mean	Z-score	of	

both	 q	adjacency	 and	 intramodular	 connectivity	 correlations	 between	 reference	

and	test	network	(Zcor.Adj	and	Zcor.kIM),	with:	

	 !"#!
(!) = !!"(!)!∈!

!!! 
.	 	 	 	 (2.5)	

The	 overall	 median	 of	 the	 Zsummary	 scores,	 across	 different	 modules	 and	 test	

networks,	was	then	used	as	an	indicator	of	module	preservation.	

At	 last,	 we	 related	 consensus	 modules	 to	 tissue	 modules	 calculating	 their	 gene	

overlap	and	using	 the	Fisher’s	exact	 test	 to	assign	 them	a	p-value;	p-values	were	

then	adjusted	for	multiple	testing,	applying	the	Benjamini-Hochberg	correction.	

2.3	Consensus	MTM	validation	

2.3.1	Internal	validation		

2.3.1.1	Internal	validation	using	module	preservation	statistics	

To	 estimate	 internal	 validity	 of	 consensus	 MTMs,	 we	 considered	 both	 network-

dependent	 and	 independent	 preservation	 statistics.	 Network-based	 statistics	

(ZmeanAdj,	 Zcor.Adj,	and	 Zcor.kIM)	were	 computed	 pairwise	 between	 the	 reference	 and	

the	test	set	for	each	consensus	module	(see	previous	section);	to	associate	them	a	
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measure	of	significance,	p-values	were	determined	from	individual	Z-scores	under	

assumption	 of	 normality	 and	 corrected	 for	 multiple	 testing,	 applying	 the	

Bonferroni	FDR-controlling	procedure	(Bland	et	Altman,	1995).	Finally,	 to	assess	

the	validity	of	 the	 consensus	MTMs,	we	verified	 that	 the	median	of	 the	 top	50%	

module-wise	FDR,	across	the	test	set,	was	below	the	significance	level	of	0.05.	

In	the	same	way,	we	computed	the	Z-scores	and	the	corresponding	FDR	for	the	co-

clustering	 network-independent	 statistic	 (Langfelder	 et	 al.,	 2011).	 The	 co-

clustering	of	module	q	between	the	reference	and	the	test	set	was	calculated	as	the	

proportion	 of	 gene	 pairs	 of	module	 q	 in	!"[!"#]	that	 clustered	 together	 in	!"[!"#!],	

denoting	with	!"[!"#]	and	!"[!"#!],	the	module	assignments	of	the	reference	and	the	

test	set:	

	 !"#$%&'()*+, !, !! = (!!
!!!) (!!

!),	 	 	 (2.6)	

where	

	 (!!
!) = !!(!!!!)

! ,	 	 	 	 	 (2.7)	

is	 the	 number	 of	 gene	 pairs	 of	 module	 q	 in	!"[!"#],	!! 	is	 the	 number	 of	 genes	

belonging	to	module	q,	and	(!!
!!!)	is	the	number	of	gene	pairs	of	module	q	that	are	

part	of	the	same	module	in	!"[!"#!].	Validity	was	established	identically	to	network-

dependent	statistics.	

2.3.1.2	Graphical	representation	of	two-dimensional	distribution	of	tissue	samples	

Principal	 component	 analysis	was	 executed	on	 the	 expression	matrices	 of	 either	

the	 internally	 validated	module	 genes	 or	 the	 whole	 traffickome	 to	 visualize	 the	

distribution	 of	 the	 tissue	 samples	 in	 a	 two-dimensional	 space.	 The	 Euclidean	

distance	between	each	pair	of	samples	in	the	plane	was	then	used	to	compute	the	

silhouette	widths	(Rousseeuw,	1987)	of	the	blood	and	brain	samples.	
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For	each	sample	!,	the	silhouette	width	!(!)	is	defined	as:	

	 ! ! = ! ! !!(!)
!"# (! ! ,! ! ),	 	 	 	 (2.8)	

where	!(!)	is	the	average	distance	between	!	and	all	the	other	points	of	the	cluster	

to	which	!	belongs,	and	!(!)	is	the	lowest	average	distance	of	!	to	any	other	cluster,	

of	which	!	is	not	a	member.	

2.3.1.3	Knowledge-based	assessment	of	module	gene	functional	associations	

The	 co-expression	 links	 among	 the	 MTM	 genes	 were	 evaluated	 for	 functional	

association	 by	 performing	 a	 two-sample	 Wilcoxon	 rank-sum	 test	 between	 the	

adjacency	distribution	of	the	MTMs	that	passed	the	internal	validation,	and	a	null	

distribution,	obtained	from	the	adjacency	values	of	the	remaining	trafficking	gene	

couples;	 the	 adjacency	 distributions	 of	 three	 membrane	 trafficking	 complexes	

(COPI,	 COPII	 and	 ESCRT-III	 complexes),	 were	 used	 as	 positive	 controls	 and	

compared	with	the	null	distribution	as	well.	

2.3.2	External	validation	

To	 consolidate	 functional	 inferences,	 we	 examined	 the	 probability	 of	 the	 MTM	

genes,	to	functionally	interact,	in	GIANT	and	STRING	database.	

2.3.2.1	The	GIANT	networks	

The	 Genome-Scale	 Integrated	 Analysis	 of	 Networks	 in	 Tissues	 (GIANT)	

(http://giant.princeton.edu)	is	a	webserver	that	provides	an	interface	to	genome-

wide	functional	interaction	networks	for	144	human	tissues	and	cell	types	(Greene	

et	 al.,	 2015).	 These	 networks	 are	 developed	 using	 a	 data-driven	 Bayesian	

methodology	 that	 integrates	 thousands	 of	 diverse	 experiments,	 spanning	 tissue	

and	 disease	 states,	 contained	 in	 more	 than	 14.000	 distinct	 publications.	 Gene	

connectivity	 scores	 are	 obtained,	 automatically	 weighting	 each	 data	 set	 for	 its	

relevance	 to	 each	of	 the	 tissue-	 and	 cell	 lineage–specific	 functional	 contexts,	 and	
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calculating	 the	 tissue-specific	 posterior	 probability	 of	 a	 functional	 relationship	

between	each	pair	of	genes.	The	network	of	 functional	 interactions	across	all	 the	

tissues	and	cell	lines	is	also	provided.	

2.3.2.2	The	STRING	database	

The	 Search	 Tool	 for	 the	 Retrieval	 of	 Interacting	 Genes/Proteins	 (STRING;	 von	

Mering	 et	 al.,	 2003)	 database	 (http://string-db.org)	 stores	 protein-protein	

interaction	data	on	multiple	species,	including	direct	(physical)	as	well	as	indirect	

(functional)	associations.	These	interactions	are	derived	from	different	“channel”,	

i.e.	 high-throughput	 experimental	 data,	 co-expression,	 mining	 of	 databases	 and	

literature,	 and	 predictions	 based	 on	 genomic	 context	 analysis.	 For	 each	 channel,	

protein-protein	 association	 scores,	 scaled	 between	 zero	 and	 one,	 are	 provided.	

They	 indicate	 the	 estimated	 likelihood	 that	 a	 given	 interaction	 is	 biologically	

meaningful,	 specific	 and	 reproducible,	 given	 the	 supporting	 evidence.	 Combined	

scores	 are	 also	 computed	 by	 combining	 the	 probabilities	 from	 the	 different	

evidence	 channels,	 correcting	 for	 the	 probability	 of	 randomly	 observing	 an	

interaction.	

2.3.2.3	Validation	of	functional	associations	using	GIANT	and	STRING	data	

The	 GIANT	 “all-tissue”	 network	 and	 the	 version	 10.0	 of	 the	 human	 STRING	

database	(Szklarczyk	et	al.,	2015)	were	selected	as	data	sources.	Validation	of	gene	

functional	associations	was	achieved	comparing	the	GIANT	posterior	probabilities	

or	 the	 STRING	 combined	 scores	 of	 the	 MTM	 genes	 with	 those	 of	 the	 residual	

trafficking	gene	pairs.	The	two-sample	Wilcoxon	rank-sum	test	was	run	to	assign	

the	 comparisons	 statistical	 significance.	 The	 distributions	 of	 the	 internally	

validated	 MTMs	 were	 obtained	 considering	 the	 signed	 kME	 of	 their	 genes.	 To	

determine	whether	the	gene	kMEs	were	statistically	significant,	a	correlation	test,	
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under	the	null	hypothesis	to	find	the	current	value	when	the	correlation	coefficient	

is	in	fact	zero,	was	performed.	Only	module	genes	with	significant	kME	(fdr<0.05)	

were	 retained	 and	 only	 interaction	 probabilities	 between	 genes	 with	 the	 same	

kME	sign	(positive	or	negative)	were	considered.	

2.4	Consensus	MTM	transcriptional	regulation	

2.4.1	Regulatory	network	construction	

To	 enable	 the	 inference	 of	 putative	 transcription	 factors	 (TFs)	 involved	 in	 the	

regulation	 of	 the	 module	 genes,	 we	 constructed	 a	 target	 gene-to-TF	 regulatory	

network,	 starting	 from	 the	 data	 stored	 in	 the	 Transcription	 Factor	 Target	 Gene	

Database	(Plaisier	et	al.,	2016).	

This	 database	was	 constructed	 by	 searching,	 in	 the	 promoter	 regions	 of	 18.153	

genes	 (±5Kbp	 from	 the	 transcriptional	 start	 site	 (TSS)),	 DNA	 sequences	 that	

significantly	 matched	 (FIMO	 p-value	 =	 1	 x	 10-5)	 one	 of	 the	 2.331	 unique	 DNA	

recognition	 motifs	 for	 690	 TFs,	 collected	 from	 JASPAR	 (Mathelier	 et	 al.,	 2014),	

TRANSFAC	 (Matys	 et	 al.,	 2006),	 UniPROBE	 (Newburger	 and	 Bulyk,	 2009)	 and	

SELEX	 (Jolma	et	 al.,	 2013).	DNase	 I	hypersensitivity	 footprints	 across	41	diverse	

cell	and	tissue	types	(Neph	et	al.,	2012),	were	used	to	provide	 information	about	

which	 regions	 of	 a	 promoter	 had	 open	 chromatin,	 and	 only	 motif	 instances	

overlapping	DNase	I	footprints	were	retained.	

Of	the	predicted	motif	instances,	we	selected	those	found	in	the	proximal	promoter	

(±500bp	 from	 the	 TSS)	 of	 genes,	 detected	 in	 at	 least	 22	 out	 of	 25	 GTEx	 tissues.	

Instances	 of	 TFs,	 not	 found	 among	 the	 detected	 genes,	 were	 removed	 as	 well.	

These	genes	and	TFs	represented	the	node	pool	of	a	direct	graph,	in	which	edges,	

having	a	gene/TF	as	a	start-point	and	a	TF	as	an	end-point,	indicated	that	at	least	

one	 instance	of	 the	TF	was	 found	 in	 the	proximal	promoter	of	 that	gene/TF.	We	
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also	 assigned	 a	weight	 to	 each	 edge	 of	 the	 graph,	 by	normalizing	 the	number	 of	

instances	of	a	specific	TF,	found	in	the	promoter	region	of	the	gene/TF	pointing	to	

it,	for	the	total	number	of	instances	of	that	TF.	

2.4.2	Identification	of	putative	transcriptional	regulators	

Putative	 TF	 were	 identified	 employing	 a	 Random	 Walk	 with	 Restart	 on	 the	

regulatory	graph.	The	function,	 implemented	 in	the	RANKS	R-package,	computes,	

for	each	TF	node,	 the	probability	of	being	visited	 starting	 from	a	node/node	set,	

given	in	input.	It	also	enable	to	specify	a	restart	parameter	(γ),	which	expresses	the	

probability	 of	 restarting	 from	 the	 node/node	 set	 after	 each	 iteration	 of	 the	

algorithm;	we	set	γ=0.1.	

To	associate	a	probability	of	 self-regulation	 to	 the	 starting	nodes,	 in	 case	of	TFs,	

the	regulatory	network	was	duplicated	with	the	primary	edges	pointing	to	the	new	

network	 nodes	 (Fig.	 2.3).	 In	 this	 way,	 the	 ancestral	 nodes	 were	 only	 used	 as	

starting	points	of	the	walk.	

	

	 	

Figure	 2.3	 Representation	 of	 a	 random	 walk	 on	 a	 network	 before	 and	 after	 its	
duplication.	 After	 duplication,	 the	 primary	 edges	 (dashed	 lines)	 point	 only	 to	 the	 new	
nodes	(gray	spheres).	
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A	 probability	 vector,	 standardized	 on	 the	maximum	 value	 and	 representing	 the	

impact	 of	 each	TF	 in	 the	network	 over	 the	 regulation	 of	 the	 starting	nodes,	was	

then	calculated	for	each	module,	starting	the	random	walk	from	the	module	genes	

with	 positive	 kMEs;	 a	 second	 run	 of	 the	 algorithm	was	 performed	 using	 all	 the	

other	 consensus	 genes	 as	 starting	 set.	 The	 ratio	 between	 the	 two	 vectors		

(background	 correction)	 defined	 the	 putative	 TFs	 involved	 in	 the	 specific	

regulation	of	that	particular	module.	

2.4.3	Evaluation	of	TF	predictions	

We	 systematically	 evaluated	 the	 sensitivity	 of	 the	 method	 by	 comparing	 TF	

predictions,	made	by	starting	the	algorithm	from	the	target	genes	of	180	ChIP-seq	

experiments	across	5	cell	lines	and	covering	54	different	TFs,	with	those	obtained	

by	normalizing	 the	previous	 for	 the	predictions	of	 the	 complementary	 sets;	 only	

genes	targeted	on	their	proximal	promoters	were	considered	for	the	evaluation.	

Specificity	 was	 determined	 by	 correlating	 the	 probability	 vectors	 associated	 to	

each	ChIP-seq	experiment.	

2.5	Consensus	MTM	functional	annotation	

2.5.1	Functional	annotation	of	MTM8	

A	putative	biological	role	of	the	consensus	MTM8	was	determined	by	analyzing	the	

processed	 RNA-Seq	 data	 of	 engineered	 human	 inducible	 fibroblasts	 (hiF-T)	

together	 with	 hiF-T-derived	 reprogramming	 intermediates	 and	 hiF-T-derived	

induced	pluripotent	stem	cells	(IPSCs),	downloaded	from	Cacchiarelli	et	al.,	2015.	

Trafficking	genes	with	a	dynamic	expression	were	 identified	applying	a	Gaussian	

process	 (GP)	 regression	method	 (Kalaitzis	and	Lawrence,	2011),	 implemented	 in	

the	gprege	R-package,	on	the	FPKM	(FPKM=	fragments	per	kilobase	of	 transcript	

per	million	mapped	reads)	expression	matrix,	and	selecting	genes	with	a	log-ratio	
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of	 marginal	 likelihoods	 >3.	WGCNA	 (β=10;	 minModuleSize=5;	 method="hybrid";	

deepSplit=2)	 was	 employed	 on	 the	 FPKM	matrix	 of	 the	 differentially	 expressed	

trafficking	 genes	 to	 identify	 the	 major	 dynamic	 expression	 patterns	 during	 the	

human	 cellular	 reprogramming.	 We	 applied	 two	 complementary	 approaches	 to	

interpret	 these	clusters:	 (1)	a	gene	set	enrichment	analysis	 for	condition-specific	

gene	 signatures	 obtained	 from	 human	 embryonic	 stem	 cells	 (hESCs)	 in	 their	

undifferentiated	state	or	upon	differentiation	toward	the	three	major	germ	layers;	

and	 (2)	 a	 comparison	 with	 cluster	 of	 differentially	 expressed	 genes	 during	

reprogramming,	annotated	for	developmental	cell	identity	(Edgar	et	al.,	2013).	

In	 the	 first	 approach,	 we	 produced	 an	 ordered	 list	 of	 genes	 based	 on	 their	

specificity	for	a	given	condition	(hESCs	in	pluripotent	conditions	or	differentiated	

into	progenitor	populations	of	 the	 early	 embryonic	 germ	 layers,	whose	RNA-Seq	

data	were	published	in	Gifford	et	al.,	2013)	by	using	the	csSpecificity	function	in	the	

cummerbund	R-package.	The	function	computes	for	each	gene,	in	each	condition,	a	

specificity	score	s,	defined	as:	

	 !!,! = 1− !"#(!!, !!),	 	 	 	 (2.9)	

where	 JSD	 is	 the	 Jensen-Shannon	distance,	!!	is	 the	expression	profile	of	 a	 given	

gene	 g	 expressed	 as	 a	 density	 (probability)	 of	 log10(FPKM+1),	 and	!! 	is	 the	 unit	

vector	 of	 'perfect	 expression'	 in	 a	 particular	 condition	!.	 We	 then	 performed	 a	

GSEA	to	evaluate	whether	the	members	of	the	clusters	tended	to	occur	toward	the	

top	of	the	list,	in	which	case	they	were	correlated	with	that	particular	condition.	

In	 the	 second	 approach,	we	 calculated	 the	 gene	 overlap	 between	 the	 clusters	 of	

trafficking	 genes	 differentially	 expressed	 during	 reprogramming	 and	 those	

identified	 in	 Cacchiarelli	 et	 al.,	 2015.	 To	 assign	 the	 comparison	 statistical	
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significance	 we	 computed	 the	 Fisher’s	 exact	 test	 and	 corrected	 the	 p-values	

adopting	the	Benjamini-Hochberg	correction.	

In	the	same	way	we	compared	the	reprogramming	clusters	to	the	consensus	MTMs.	

2.5.2	Functional	annotation	of	the	other	consensus	modules	

To	 functionally	 annotate	 the	 other	 consensus	 modules,	 we	 adopted	 a	 two-step	

approach.	In	the	first	step,	from	the	GIANT	all-tissue	network,	we	selected	significant	

interactions	 involving	 the	 module	 genes;	 in	 particular,	 only	 the	 interactions	

involving	 module	 genes	 with	 positive	 kME	 were	 considered,	 including	 those	

between	 these	 genes	 and	 non-trafficking	 genes.	 An	 interaction	 was	 deemed	

significant	if	the	corresponding	posterior	probability	was	among	the	top	1%	of	the	

total	 posterior	 probabilities.	 In	 order	 to	 assess	 cellular	 processes	 enriched	within	

the	consensus	MTMs,	we	collected	gene	sets	from	both	the	C2	and	C5	collections	of	

the	 Molecular	 Signatures	 Database	 (MSigDB,	 Subramanian	 et	 al.,	 2005).	 The	

hypergeometric	 test	 was	 then	 applied	 using	 as	 ‘balls	 drawn	 from	 the	 urn’	 the	

module	interactors,	as	‘white	balls’	the	genes	of	the	collections,	and	as	‘black	balls’	all	

the	other	genes;	processes	significantly	enriched	(fdr	<	0.05)	were	used	to	annotate	

the	modules.	

In	 the	 second	 step,	 Drug-Set	 Enrichment	 Analysis	 (DSEA,	 Napolitano	 et	 al.,	 2016)	

was	carried	out	 to	 confirm	 the	predictions	of	 the	 first	 step.	The	method	 is	able	 to	

identify	cellular	processes	that	are	targeted	by	a	set	of	drugs,	which,	in	accordance	

with	the	Mode	of	Action	by	NeTwoRk	Analysis	(MANTRA)	tool	(Iorio	et	al.,	2010),	

were	chosen	 for	 their	ability	 to	up-	or	down-regulate	 the	module	genes.	This	 step	

was	 applied	 only	when	 among	 the	 top	 20	 drugs	 (ranked	 by	 absolute	 enrichment	

scores),	we	could	identify	a	subset	of	at	least	4	drugs	that	were	able	to	up	or	down	

regulate	exclusively	the	genes	of	a	specific	module.	In	such	a	case,	we	compared	the	
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processes,	which	came	out	significant	(fdr	<	0.05)	 in	this	step,	with	those	that	had	

been	found	to	be	significant	in	the	first	step.	

Consensus	 module	 enrichments	 for	 C2	 (KEGG	 gene	 sets)	 and	 C5	 (GO	 Molecular	

Function	sets)	annotations	are	shown	in	supplementary	Figures	S1-S23.	

2.6	Tissue-specific	MTM	detection	and	validation	

2.6.1	Identification	of	tissue-specific	MTMs	

To	 identify	 tissue-specific	 MTMs,	 we	 combined	 differential	 correlation	 with	

weighted	 network	 analysis.	 In	 this	 regard,	 we	 considered	 all	 the	 correlation	

between	trafficking	genes	detected	in	at	least	one	tissue,	assigning	zero	to	missing	

coefficients.	 In	 order	 to	 establish	 the	 differences	 in	 gene	 correlations	 between	

tissues	 of	 different	 sample	 sizes,	 Pearson	 correlation	 coefficients	 (r)	 were	

converted	into	Z-scores	using	Fisher’s	Z-transformation:		

	 ! = !
! ln ( !!!!!! ).		 	 	 											(2.10)	

The	matrix	of	Z-differences	was	then	defined	as:	

	 ∆!!" =
!!!!!

(!!!!)!!!(!!!!)!!
,	 	 	 											(2.11)	

where	!	denotes	the	reference	tissue,	!	all	 the	tissues	other	than	reference,	and	!! 	

and	!! 	their	respective	sample	sizes.	

Tissue-specific	MTMs	were	identified	from	the	set	of	matrices	resulting	from	the	Z-

differences	between	a	reference	and	each	of	the	other	tissues,	in	four	steps.	First,	

ΔZs	 were	 converted	 into	 adjacency	 matrices,	 calculating	 the	 two-sided	

probabilities	 corresponding	 to	 the	 Z-difference	 scores,	 and	 then	 raising	 the	

complements	 of	 these	 probabilities	 to	 the	 power	 of	 ten;	 second,	 the	 adjacency	

matrices	were	 transformed	 to	TOMs,	which	were	normalized	by	 equalizing	 their	

95th	percentile;	third,	a	consensus	TOM	was	calculated	by	taking	the	parallel	50th	
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percentile	of	the	scaled	TOMs	and	was	converted	into	a	dissimilarity	measure	(1-

TOM);	 forth,	 average-linkage	 hierarchical	 clustering	 was	 applied	 followed	 by	

cutreeDynamic	 cutting.	 In	 this	 case,	 cutreeDynamic	 parameters	 (method=”tree”,	

minModuleSize=5	and	deepSplit=TRUE)	were	evaluated	for	the	mean	cluster	size	

and	the	number	of	the	emerging	tissue-specific	MTMs.	

Finally,	 to	 assess	 the	 accuracy	 of	 the	 method,	 we	 checked	 the	 differential	 co-

expression	of	the	synaptic	vesicle	genes	by	looking	at	their	adjacency	scores	in	the	

consensus	TOM	of	each	 tissue;	a	Wilcoxon	rank-sum	 test	was	 then	performed	 to	

determine	 if	 the	 brain	 distribution	 was	 statistically	 higher	 than	 the	 combined	

distribution	from	all	other	tissues.	

2.6.2	Internal	and	external	validation	of	tissue-specific	MTMs	

For	 the	 internal	 validation	 of	 tissue-specific	 MTMs,	 we	 used	 almost	 the	 same	

criteria	applied	to	the	consensus	modules.	Network-dependent	(ZmeanAdj,	Zcor.Adj,	and	

Zcor.kIM)	 and	 independent	 (ZcoClustering)	 statistics	were	 computed	 pairwise	 between	

the	 reference	and	 the	 test	 set	 for	each	 tissue-specific	module,	 and	p-values	were	

determined	 from	 individual	 Z-scores	 under	 assumption	 of	 normality.	 Unlike	

consensus	MTMs,	 tissue-specific	modules	were	 considered	 internally	 validated	 if	

the	 50%	 of	 the	 module-wise	 p-values,	 across	 the	 test	 set,	 was	 below	 the	

significance	level	of	0.05.	

Along	 with	 the	 preservation	 statistics,	 we	 also	 evaluated	 the	 differential	 co-

expression	of	the	internally	validated	modules	in	GIANT.	From	GIANT,	we	selected	

functional	interaction	networks	for	the	19	human	tissues	that	were	found	to	be	in	

common	 with	 the	 GTEx	 tissue	 categories.	 The	 significance	 of	 differential	 co-

expression	 of	 the	 tissue-specific	MTMs	was	 then	 assessed	 by	 performing	 a	 two-

sample	 Wilcoxon	 rank-sum	 test	 between	 the	 GIANT	 posterior	 probability	
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distributions	 of	 the	 module	 gene	 pairs	 in	 their	 respective	 network	 and	 the	

combined	 distributions	 of	 those	 gene	 pairs	 from	 all	 other	 networks.	 Before	 the	

comparison,	 the	 distributions	 were	 converted	 to	 the	 corresponding	 standard	

normal	forms.	

2.7	Normalization	of	random	walk	scores	to	exploit	network	information	

2.7.1	Co-occurrence	network	of	biomedical	concepts	

The	analysis	of	the	network	of	biomedical	concepts	provided	by	Grammatica	et	al.,	

2014,	 was	 part	 of	 a	 side	 project,	 started	 during	 the	 first	 year	 of	 my	 PhD.	 The	

network	hosts	24,984	entities	(nodes	of	the	network,	e.g.,	drugs,	diseases,	genes),	

organized	into	12	classes	(Table	2.1	reports	entity	cardinality	per	class),	which	are	

linked	 on	 the	 basis	 of	 literature	mining.	 In	 order	 to	 score	 associations	 between	

entities	not	directly	connected	 in	the	network,	a	random	walk	(RW)	is	computed	

between	each	pair	of	nodes	in	the	network.	The	random	walk	value	between	node	

A	and	node	B	is	thus	directly	proportional	to	the	amount	of	literature	forming	the	

association	path	starting	from	node	A	and	ending	at	node	B.	

	

Table	2.1	Cardinality	per	class	of	entity.	

CLASS	 Number	of	Elements	
CELL	 73	
DISEASE	 7,474	
DRUG	 2,938	
ENZYME	 158	
GENE	 13,060	
HORMONE	 65	
ORGAN	 21	
PEPTIDE	 132	
PROCESS	 15	
PROTEIN	 809	
RECEPTOR	 219	
OTHER(*)	 20	
TOTAL	 24,984	
(*)	Miscellaneous	elements	used	only	for	disambiguation	purposes	
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2.7.2	Normalization	procedure	

As	there	were	nodes	in	the	network	with	the	tendency	to	have	high	RW	scores	and,	

usually,	 these	 were	 nodes	 associated	 with	 a	 considerable	 number	 of	 scientific	

manuscripts,	 we	 reduced	 the	 number	 of	 times	 these	 nodes	 were	 selected	 by	 a	

simple	cut-off	procedure,	applying	the	following	formula	to	normalize	RW	scores:	

	 !"#$%&!" =
!!∗!"!"
!"#!∗!

,	 	 	 											(2.12)	

where	!! 	are	the	number	of	non-null	RW	scores	reaching	node	j	(starting	from	any	

node	of	a	given	class,	i.e.,	drugs,	diseases,	etc.),	!"!"is	the	RW	value	associated	to	

the	pair !",	!"#! 	is	the	sum	of	all	RW	values	reaching	node	j	and	starting	from	any	

of	 the	nodes	of	a	given	class,	and	N	 is	 the	number	of	nodes	associated	to	a	given	

class.	The	procedure	described	was	used	to	normalize	drug-drug	and	disease-drug	

RWs,	i.e.,	RWs	that	had	a	drug	as	a	source	and	destination,	and	a	disease	as	source	

and	a	drug	as	destination,	respectively.	

2.7.3	Evaluation	of	network	predictive	performances	after	score	normalization	

2.7.3.1	Goodness	of	disease-drug	and	drug-drug	associations	

Both	the	un-normalized	and	normalized	versions	of	the	networks	were	compared	

against	golden	standards	to	evaluate	their	goodness.	Specifically,	the	disease-drug	

network	 was	 first	 transformed	 in	 a	 disease	 network	 by	 computing	 the	 Pearson	

correlation	 coefficients	 between	 the	 drug-profiles	 associated	 with	 each	 disease	

and	 then	compared	 to	 the	Online	Mendelian	 Inheritance	 in	Man	 (OMIM)-derived	

network,	 whereas	 the	 drug-drug	 network	 was	 directly	 compared	 with	 the	

anatomical	therapeutic	chemical	(ATC)-derived	drug	network	(see	section	2.7.3.2	

and	2.7.3.3	 for	details	about	the	construction	of	 the	golden	standards).	Similarity	

scores	within	the	networks	were	ordered	by	significance	and	employed	to	derive	
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true	positive	rate	(TPR)	and	false	positive	rate	(FPR)	at	various	threshold	settings.	

ROC	curves	were	created	by	plotting	the	true	positive	rate	(TPR)	against	the	false	

positive	 rate	 (FPR),	 and	 the	 corresponding	 AUCs	 were	 calculated.	 Finally,	 AUC	

significances	were	conveniently	computed	via	the	Mann-Whitney	U	statistic	(Mann	

and	Whitney,	1947;	Tang	and	Balakrishnan,	2011).	

2.7.3.2	ATC-derived	drug	network	

The	 ATC	 classification	 system	 (https://www.whocc.no/atc/)	 is	 adopted	 for	 the	

classification	of	drugs	based	on	different	characteristics	such	as,	their	therapeutic	

and	 pharmacological	 properties,	 and	 the	 way	 they	 act	 on	 target	 tissues/organs.	

Each	drug	entry	in	the	classification	system	has	five	ATC	codes	associated,	one	for	

each	level	of	the	ATC	hierarchy.	For	our	comparisons	we	considered	the	4th	level	of	

the	 classification	 that	 covers	 anatomical,	 therapeutic,	 pharmacological	 and	

chemical	properties.	The	ATC	drug	network	was	built	by	connecting	drugs	sharing	

similar	ATC	level-4	codes.	Hence,	 two	drugs	with	similar	anatomical,	 therapeutic,	

pharmacological	 and	 chemical	 impact	 were	 linked	 by	 an	 edge	 in	 the	 ATC	 drug	

network.	The	 final	ATC	drug	network	contained	559	nodes,	 in	 common	with	 the	

co-occurrence	network,	connected	by	1014	edges.	

2.7.3.3	OMIM-derived	disease	network	

OMIM	 (Amberger	 et	 al.,	 2009)	 is	 a	 compendium	 of	 human	 genes	 and	 genetic	

Mendelian	phenotypes.	Technically,	OMIM	can	be	seen	as	a	list	of	pairs	where	one	

element	 is	 a	 Mendelian	 disease	 and	 the	 other	 a	 mutated	 gene,	 with	 diseases	

eventually	 associated	 to	more	 than	 one	mutation	 on	 the	 same	 or	 different	 gene.	

OMIM	network	was	built	under	the	realistic	assumption	that	a	mutation	in	OMIM	

affects	one	or	more	pathways	leading	to	the	diseased	phenotype.	Each	disease	was	

thus	 associated	 to	 all	 genes	 of	 the	 pathways,	 known	 to	 be	 linked	 with	 the	



	 66	

corresponding	 mutated	 gene.	 Then,	 diseases	 were	 related	 to	 each	 other	 by	

computing	the	Jaccard	distance.	The	p-value	cutoff	over	Jaccard	significances	was	

set	to	0.01.	The	final	OMIM	disease	network	contained	416	nodes,	in	common	with	

the	co-occurrence	network,	connected	by	5310	edges.	
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Chapter	3	

Results	

3.1	Consensus	MTM	detection	

3.1.1	Rationale	for	the	choice	of	GTEx	

The	 Genotype-Tissue	 Expression	 (GTEx)	 Project	 (GTEx	 Consortium,	 2015)	 is	 a	

resource	project	designed	to	evaluate	gene	expression	variability	in	human	tissues.	

Samples	are	obtained	 from	harvesting	autopsies	of	 relatively	healthy	 individuals,	

which	must	pass	precise	selection	criteria:	

• 21	≤	Age	(years)	≤	70	

• 18.5	<	Body	Mass	Index	(BMI)	<	35	

• Time	between	death	and	tissue	collection	below	24	hours	

• No	whole	blood	transfusion	within	48	hours	prior	to	death	

• No	history	of	metastatic	cancer	

• No	chemotherapy	or	radiation	therapy	within	the	2	years	prior	to	death	

• Absence	of	diseases	or	disorders	that	would	disqualify	someone	to	donate	

organs	or	tissues	

Thus,	 GTEx	 provides	 a	 wealth	 of	 gene	 expression	 data	 to	 study	 the	 underlying	

genetics	of	normal	physiology	in	human	tissue,	aspects	that	best	fit	with	the	aims	

of	this	project.	

3.1.2	Removal	of	certain	tissues	and	formation	of	new	categories	

The	 initial	GTEx	V4	 expression	matrix	 consisted	of	 2,921	 samples,	 divided	 in	32	

tissues	 (brain	 sub-regions	 were	 considered	 as	 unique	 tissue),	 and	 55,993	

transcribed	 genes,	 including	 protein-coding	 genes,	 pseudogenes,	 and	 long	

noncoding	RNAs	 (lncRNAs).	 As	 a	 result	 of	 gene	 and	 tissue	 selection	 (see	 section	

2.2.1),	 24	 samples	 b(elonging	 to	 bladder,	 kidney	 and	 salivary	 gland	 tissues)	 and	
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32,221	genes	(31,846	of	which	were	not	detected	at	all	and	375	detected	only	 in	

the	 excluded	 tissues)	were	 removed	 (Table	 3.1).	 Cervix	 uteri,	 fallopian	 tube	 and	

small	intestine	tissues,	which	had	not	passed	the	sample	selection	criteria,	turned	

out	to	have	genome	and	traffickome	expression	patterns	similar	to	those	of	tissues	

that	shared	analogous	body	location	and	function	with	them	(Fig.	3.1).		

	

	

Table	 3.1	Tissue	 selection	 taking	 into	 account	 the	 maximum	 outlier	 combination	
between	two	genes.	Some	tissues	were	completely	removed	(light-red	cells)	while	others	
(yellow	 cells)	 were	 grouped	 in	 more	 general	 categories	 according	 to	 a	 hierarchical	
clustering	procedure	 (Fig.	 3.1).	Conditional	 formatting	was	used	 to	 add	data	bars	 to	 the	
cells	of	 the	second	and	 third	column,	and	 to	color	scale,	with	different	green	gradations,	
the	 cells	 of	 the	 fourth	 column.	 Figure	 3.1	 Tanglegram’s	 plot	 of	 side-by-side	 tissue	
trees.	 Trees	 were	 obtained	 using	 as	 signature	 both	 traffickome	 and	 non-traffickome	
genes.	The	quality	of	the	alignment	of	the	two	trees	was	measured	using	the	entanglement	
function	 in	 the	 dendextend	 R-package;	 the	 entanglement	 coefficient	 at	 the	 top	 center	
indicates	a	good	alignment	(value	close	to	0).	
	

	

Based	 on	 this	 observation,	 we	 created	 new	 categories:	 “reproductive	 organs”,	

(comprising	cervix	uteri,	fallopian	tube	and	uterus	tissues)	and	“intestine”	(formed	

Adipose	Tissue 159 63 96
Adrenal	Gland 52 20 32
Artery 263 96 167
Bladder 11 8 3
Blood 191 65 126
Brain 357 151 206
Breast 66 25 41
Cervix	Uteri 9 8 1
Colon 74 26 48
Esophagus 227 80 147
Fallopian	Tube 6 4 2
Fibroblasts 155 56 99
Heart 133 56 77
Kidney 8 6 2
LCL 54 22 32
Liver 34 16 18
Lung 133 46 87
Muscle 157 53 104
Nerve 114 42 72
Ovary 35 17 18
Pancreas 65 23 42
Pituitary 22 11 11
Prostate 42 20 22
Salivary	Gland 5 4 1
Skin 167 67 100
Small	Intestine 17 12 5
Spleen 34 16 18
Stomach 81 33 48
Testis 60 21 39
Thyroid 120 41 79
Uterus 36 15 21
Vagina 34 16 18
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by	small	intestine	and	colon	tissues).	In	this	process	we	also	included	the	pituitary	

gland	 (which	was	 just	above	 the	 sample	 threshold	 limit),	 found	highly	 similar	 to	

brain	and	for	this	reason	merged	with	it.	The	final	dataset	was	hence	composed	of	

23,772	genes	and	2,897	 samples,	 rearranged	 in	25	 tissues.	 Figure	3.2	 shows,	 for	

each	of	the	selected	tissues,	how	the	log2-transformed	count	distributions	appear	

before	and	after	gene	filtering.	

	

	

Figure	3.2	Frequency	histograms	showing	 log2-transformed	count	distributions	 in	
each	 tissue.	 Unfiltered	 (light	 red)	 and	 filtered	 (cyan)	 distributions	 are	 shown;	 after	
filtering,	the	distributions	assume	the	aspect	of	long–tailed	Gaussians.	
	

	

3.1.3	Decision-making	process	concerning	the	first	two	steps	of	WGCNA	

For	 each	 of	 the	 25	 tissues	 that	 passed	 the	 selection,	 we	 constructed	 a	 co-

expression	 network	 using	 weighted	 correlation	 network	 analysis	 (complete	
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procedure	in	section	2.2.2).	The	first	two	steps	of	the	network	analysis	provide	for	

the	definition	of	both	a	similarity	measure	and	an	adjacency	function.	

We	 estimated	 the	 similarity	 between	 gene	 expression	 profiles	 by	 computing	

Pearson	 correlation.	 It	 is	 known	 that	 Pearson	 correlation	 is	 strongly	 affected	 by	

extreme	values,	which	may	exaggerate	or	dampen	the	strength	of	the	relationship	

between	 two	variables,	 and	by	 the	number	of	paired	observations	of	 the	 related	

variables;	 in	 fact,	 the	 smaller	 the	 sample	 size,	 the	 greater	 the	 likelihood	 of	

obtaining	 a	 spuriously	 high	 correlation	 coefficient.	 Thus,	 before	 computing	 the	

correlation	 coefficients	 between	 pairs	 of	 genes,	 outliers	 were	 removed	 after	

checking	 that	 their	 removal	 did	 not	 reduce	 significantly	 the	 number	 of	 gene	

expression	 measurements	 in	 tissues	 with	 less	 than	 50	 samples,	 i.e	 liver,	 ovary,	

prostate,	spleen	and	vagina.	We	established	that,	with	an	average	of	12,733	genes,	

detected	 in	 the	 tissues	 listed	above,	and	63,665	cases	(12,733	genes	x	5	 tissues),	

79%	of	the	genes	in	each	of	these	tissues	had	at	most	two	outliers,	 justifying	our	

choice.	Figure	3.3	recapitulates	the	outlier	distribution	in	each	tissue.	

Correlation	 coefficients	 were	 then	 converted	 into	 adjacency	 scores,	 employing	 a	

soft-thresholding	to	power	their	values.	Generally,	this	threshold	is	chosen	following	

the	scale-free	topology	criterion	(representing	the	scale-free	topology	index	(y-axis)	

as	a	function	of	the	soft-thresholding	power	(x-axis),	is	the	lowest	value	at	which	the	

scale-free	topology	index	flattens	out	upon	reaching	a	value	above	0.85).	

Although	 most	 biological	 networks	 are	 close	 to	 being	 scale-free	 (Xin	 Hu	 et	 al.,	

2016),	there	was	no	motivation	for	applying	the	scale-free	topology	criterion	here,	

as	 our	 samples	 comprised	 several	 different	 tissues.	 We	 set,	 instead,	 the	 power	

equal	 to	 ten	 in	 order	 to	 emphasize	 stronger	 associations	 (larger	 correlation	

coefficients)	and	flatten	weaker	ones	(lower	correlation	coefficients)	(Fig.	3.4).	
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Figure	3.3	Frequency	histograms	showing	tissue	outlier	distributions.	
	

	

	

Figure	 3.4	 Comparison	 between	 soft-thresholding	 powers.	 It	 is	 recommended	 to	
choose	β=6	so	that	the	resulting	co-expression	network	follows	an	approximate	scale-free	
topology.	Another	way	is	to	consider	β	as	a	stringency	parameter;	a	high	value	of	β	means	
putting	 less	 emphasis	 on	 lower	 correlation	 coefficients,	 and	 therefore	 being	 more	
statistically	stringent.	
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3.1.4	Thesis	in	favour	of	considering	only	trafficking	genes	

Before	proceeding	with	the	next	two	steps	of	the	network	analysis,	which	are	the	

definition	of	a	measure	of	node	dissimilarity	and	the	identification	of	the	modules,	

we	reduced	the	set	of	genes,	whose	modules	were	supposed	to	be	identified,	to	the	

1,237	trafficking	genes	detected	in	at	least	one	tissue.	

This	step	required	some	attention;	in	fact,	if	the	filtering	had	forced	the	association	

between	trafficking	genes,	there	would	have	been	a	high	risk	to	generate	false	co-

expression	 modules.	 Thus,	 for	 each	 tissue	 we	 compared	 the	 correlation	

distributions	of	trafficking	and	non-trafficking	genes	using	the	Wilcoxon	rank-sum	

test;	 in	24	out	of	25	comparisons	(the	fibroblast	dataset	was	the	only	exception),	

we	rejected	the	null	hypothesis	(p-value<0.05),	according	to	which	the	traffickome	

correlation	distribution	was	 lower	 than	 the	other	one.	This	 result	 suggested	 that	

the	 trafficking	genes	would	have	 clustered	 together	 regardless	of	 the	 removal	of	

the	other	genes,	which,	at	that	point,	were	eliminated.	

3.1.5	Trafficking	genes	are	organized	in	modules	preserved	among	tissues	

One	of	the	purposes	of	constructing	the	co-expression	networks	was	to	determine	

if	there	were	groups	of	trafficking	genes	that	were	co-expressed	in	human	tissues.	

To	 this	 end,	 we	 identified	 121	 modules	 from	 the	 selected-tissue	 networks	 and	

matched	them	based	on	the	number	of	overlapping	genes,	as	described	in	section	

2.2.3.	 Table	3.2	 shows,	 for	 each	 tissue,	 the	number	of	 trafficking	 genes	detected,	

the	number	of	modules	identified	and	the	average	number	of	genes	per	module.	

We	 found	 that	 692	 out	 of	 7,011	 possible	matches,	 involving	 109	modules,	were	

statistically	 significant	 (fdr<0.01).	 Cluster	 analysis	 revealed	 the	 existence	 of	 four	

groups	of	module	similarities;	a	fifth,	labeled	0,	consisted	of	modules	not	assigned	
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to	 any	 of	 the	 previous	 clusters	 (no	 significant	 matches	 were	 observed	 between	

these	modules	and	the	other	ones,	Fig	3.5	panel	A).		

	

	 		 	 	

Table	3.2	Average	number	of	 genes	per	 tissue	module.	Data	bars	were	added	to	the	
cells	related	to	the	average	number	of	genes.	
	

	

These	 preliminary	 results	 suggested	 that	 the	 majority	 of	 the	 trafficking	 genes	

constituted	 co-expression	 communities	 shared	 by	 several	 tissues,	 while	 only	 a	

small	 fraction	 of	 these	 genes	 contributed	 to	 the	 formation	 of	 tissue-specific	

modules	(an	entire	section	on	the	identification	of	tissue-specific	modules	will	be	

presented	in	paragraph	3.5).	

We	 also	 evaluated	 if	 modules	 within	 the	 same	 cluster	 had	 similar	 network	

topologies	(see	section	2.2.3);	again,	we	clustered	the	modules	and	found	that	66	

out	of	109	modules	were	assigned	to	the	same	groups	(Fig	3.5	panel	B).	

	

TABLE	3.2
N.	of	detected	

genes
	N.	of	

modules
	Average	n.	of	

genes
Adipose	Tissue 1095 5 123
Adrenal	Gland 1102 5 145
Artery 1080 5 130
Blood 952 5 150
Brain 1124 7 123
Breast 1106 5 153
Esophagus 1089 3 302
Fibroblasts 1042 4 213
Heart 1075 5 163
Intestine 1128 5 187
LCL 999 5 112
Liver 1055 4 196
Lung 1129 4 147
Muscle 1026 6 99
Nerve 1114 4 190
Ovary 1094 6 147
Pancreas 1107 2 276
Prostate 1136 5 184
Reproductive	Organs 1106 5 151
Skin 1119 4 186
Spleen 1108 6 130
Stomach 1103 5 175
Testis 1187 7 124
Thyroid 1133 3 233
Vagina 1120 6 152
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Figure	 3.5	 Heatmaps	 depicting	 the	 relationships	 between	 tissue	 modules.	 A	 In	
yellow,	 significant	 (fdr<0.01)	 gene	 overlaps	 between	 modules;	 on	 the	 sidelines,	 the	
clustering	 solution	 obtained	 performing	 average-linkage	 hierarchical	 clustering	 in	
combination	with	 the	 cutreeDynamic	 function	 (deepSlit=4).	B	Module	 kME	 correlations;	
correlation	coefficients	are	colored	from	green	(low	coefficients)	to	red	(high	coefficients).	
The	result	of	the	k-means	clustering	is	reported	along	the	lower	edge.	
	

	

3.1.6	Definition	of	core	members	shared	by	similar	modules	

Having	 established	 the	 existence	 of	 groups	 of	 co-expressed	 genes	 common	 to	

multiple	 tissues,	we	built	a	consensus	TOM,	starting	 from	1,027	trafficking	genes	

detected	 in	 at	 least	 22	 out	 of	 25	 tissues	 (details	 in	 section	 2.2.4),	 in	 order	 to	

determine	the	exact	number	and	the	core	members	of	these	groups.	Modules	were	

identified	by	the	cutreeDynamic	function,	whose	parameters	were	explored	to	find	

the	most	acceptable	 clustering	 solution	 (evaluation	criteria	 in	 section	2.2.4).	The	

parameters	 evaluated	 were	 the	 “method”	 of	 adaptive	 branch	 pruning	 of	

hierarchical	 clustering	 dendrograms,	 and	 the	 sensitivity	 to	 cluster	 splitting,	

“deepSplit”.	The	method	is	present	in	two	variants:	the	“tree”	cut	that	relies	solely	

on	 the	dendrogram,	 and	 the	 “hybrid”	 cut	 that	 improves	 the	detection	of	 outlying	

members	 of	 each	 cluster.	 The	 deepSplit	 parameter,	 instead,	 provides	 a	 rough	

control	over	sensitivity	to	cluster	splitting.	For	the	hybrid	method	the	value	 is	an	
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integer	 in	 the	 range	0	 to	4;	 for	 the	 tree	method	 it	 is	a	 logical	value	 (i.e.	TRUE	or	

FALSE).	The	higher	the	value	(or	if	TRUE),	more	and	smaller	clusters	are	produced.	

Using	 the	 tree	 cut	 method	 in	 combination	 with	 both	 of	 its	 deepSplit	 variants	

resulted	 in	 very	 small	modules	 (8-10	 genes	 on	 average)	with	 a	 large	 number	 of	

unassigned	genes	(>800)	(Fig.	3.6	and	Table	3.3).	However,	the	modules	detected	

were	 highly	 preserved	 in	 tissues.	 The	 hybrid	 cut	 method,	 conversely,	 produced	

modules	 with	 different	 average	 size	 and	 degree	 of	 preservation,	 depending	 on	

which	 deepSplit	 value	was	 used	 in	 combination	with	 it,	 although	 the	 number	 of	

unassigned	genes	was	very	low	(Table	3.3).	

	

	

Figure	 3.6	 Box	 plots	 of	 preservation	 Zsummary	 scores	 for	 modules	 detected	 by	
different	 tree	 cut	 methods.	 The	 outlines	 and	 bodies	 of	 the	 boxplots	 are	 colored	with	
different	 gradation	 of	 violet	 and	 gray	 depending	 on	 the	 average	 module	 size	 and	 the	
number	of	unassigned	genes,	respectively.	The	red	rectangle	indicates	the	method	chosen	
to	 identify	 consensus	 modules.	 Table	 3.3	 Parameters	 evaluated	 for	 each	 tree	 cut	
method,	in	numbers.	Values	are	colored	from	red	(bad	scores)	to	green	(good	scores).	
	

	

Average
module	size

Hybrid	(dS=0) 4.36 59 31
Hybrid	(dS=1) 4.02 45 29
Hybrid	(dS=2) 3.05 28 25
Hybrid	(dS=3) 2.34 19 23
Hybrid	(dS=4) 1.77 14 21
Dynamic	Tree	(No	dS) 3.87 10 810
Dynamic	Tree	(dS) 3.91 8 818

TABLE	3.3 Zsummary Unassigned	genes
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We	 decided	 to	 use	 the	 hybrid	 method	 to	 assign	 most	 of	 the	 genes	 and	 then	

eventually	 discard	 the	 modules	 at	 the	 validation	 stage	 (see	 section	 3.2),	 and	

deepSplit	 equal	 to	 2	 to	 generate	modules	with	 a	 reasonable	 number	 of	 genes	 to	

justify	a	possible	biological	function	(neither	too	large	nor	too	small);	in	this	way,	

we	 identified	 36	 consensus	 modules	 (results	 in	 supplementary	 Table	 1),	 which	

were	 related	 to	 the	 modules	 we	 discussed	 in	 the	 previous	 section	 (Fig.	 3.7).	

Contrary	to	what	was	expected,	few	consensus	modules	had	significant	enrichment	

within	 a	 given	 cluster	 while	 others	 showed	 a	 few	 dispersed	 matches	 across	 all	

cluster	modules.	

	

	

Figure	3.7	Correspondence	of	consensus	modules	with	 tissue	modules.	Each	row	of	
the	 table	 corresponds	 to	 one	 consensus	 module,	 and	 each	 column	 corresponds	 to	 one	
tissue	module	(labeled	with	cluster	colors).	Numbers	in	the	table	indicate	gene	counts	in	
the	intersection	of	the	corresponding	modules.	Coloring	of	the	table	encodes	−log(p),	with	
p	being	the	Fisher’s	exact	test	p-value	for	the	overlap	of	the	two	modules.	The	stronger	the	
red	color,	the	more	significant	the	overlap.	
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3.2	Consensus	MTM	validation	

3.2.1	Preservation	of	consensus	modules	in	individual	tissues	

The	preservation	of	 the	consensus	MTMs	was	evaluated	 in	 individual	 tissues;	 for	

each	 double,	 consensus	 module-tissue,	 we	 calculated	 three	 network-dependent,	

and	 one	 network-independent,	 preservation	 statistics,	 as	 detailed	 in	 section	

2.3.1.1.	We	 found	 that	 30	modules	were	 significantly	 preserved	 (fdr<0.05)	 in	 at	

least	seven	tissues	(the	rounded	up	quarter)	 for	three	out	of	 four	statistics	while	

only	13	were	preserved	for	all	of	them	(Fig	3.8).		

	

	 	

Figure	3.8	Box	plots	of	the	top	50%	fdr	determined	from	the	Z-scores	of	individual	
statistics	 for	 each	 reference-test	 pair.	 In	 light	 red,	 consensus	 modules	 significantly	
preserved	 (median	 fdr<0.05)	 for	 all	 four	 statistics;	 in	 black	 and	 light	 gray,	 respectively,	
modules	significantly	and	not	significantly	preserved	for	that	particular	statistic.	
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From	 here	 onwards,	 the	 term	 modules	 indicates	 the	 13	 consensus	 modules	

significant	for	the	four	preservation	statistics.	

The	heatmaps	in	Figure	3.9	recapitulate	the	Zsummary	and	the	ZcoClustering	scores	of	the	

modules	in	each	tissue;	values	>	10	indicate	strong	evidence	that	the	modules	are	

preserved,	 values	 between	 2	 and	 10	 indicate	 weak	 to	 moderate	 evidence	 of	

module	preservation,	while	values	<	2	indicate	no	evidence	of	module	preservation	

(Horvath,	2011).	According	to	this	score	system,	consensus	20	and	23	appeared	to	

be	the	most	preserved	modules.	

	

	

Figure	3.9	Heatmaps	showing	preservation	scores	for	the	consensus	module	in	each	
tissue.	Zsummary	 (left)	and	ZcoClustering	 (right)	 scores	are	colored	with	different	gradation	of	
red;	darker	reds	indicate	higher	values	of	preservation.	
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We	 then	 evaluated	 the	 distances	 among	 the	 samples	 by	 performing	 a	 principal	

component	 analysis	 on	 the	 gene	 expression	 profiles	 of	 both	 traffickome	 and	

module	genes	(Fig.	3.10;	section	2.3.1.2	for	details).	

	

	 	

Figure	 3.10	 Multidimensional	 scaling	 of	 GTEx	 samples	 based	 on	 traffickome	 or	
consensus	gene	expression.	Samples	are	projected	onto	the	first	two	principal	components.	
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We	 expected	 the	 sample	 distances	 to	 be	 lower	when	using	 the	module	 genes	 as	

signature	rather	than	the	entire	traffickome,	and	indeed	characteristic	traffickome	

separations	between	nonsolid	 (blood)	and	 solid	 tissues,	 and	within	 solid	 tissues,	

between	brain	and	the	other	ones,	were	reduced	in	preserved	modules,	as	proven	

by	 the	 average	 silhouette	 width	 of	 their	 samples	 (Fig.	 3.11);	 high	 values	 (>0.5)	

indicate	 that	 the	 samples	 are	 well	 matched	 to	 their	 own	 cluster	 and	 poorly	

matched	to	neighboring	clusters.	

	

	 	 	

Figure	 3.11	Average	 silhouette	widths	 of	 brain	 and	blood	 samples,	 following	PCA.	
Silhouette	 coefficients	 are	 computed	 from	 the	 Euclidean	 distances	 of	 the	 sample	
projections	in	the	two-dimensional	space.	

	

	

3.2.2	Functional	relatedness	of	module	genes	assessed	by	internal	analysis	

Based	on	 the	assumption	 that	genes	with	similar	patterns	of	expression	across	a	

vast	 variety	 of	 tissues	 are	 likely	 to	 encode	 proteins	 with	 related	 functions,	 we	
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selected	 from	 the	 literature	 three	 functional	 and	 well-characterized	 membrane	

trafficking	complexes,	and	compared	their	adjacency	distributions,	and	that	of	the	

MTM	genes,	with	the	adjacency	scores	of	a	null	distribution,	obtained	as	explained	

in	section	2.3.1.3	(Fig.	3.12).	

	

	

Figure	3.12	Density	plots	of	topological	overlap	measures	(TOMs)	between	pairs	of	
trafficking	 genes	 forming	 different	 distributions.	 In	 violet	 the	 null	 distribution,	 in	
green	the	consensus	distribution	and	in	red	the	distribution	of	three	membrane	trafficking	
complexes,	one	per	panel.	TOMs	are	plotted	on	logarithmic	scale.	
	

	

The	 selected	 complexes	 were	 the	 coatomers	 of	 anterograde	 and	 retrograde	

vesicles	(COPII	and	COPI	complexes,	respectively),	and	the	machinery	involved	in	

MVB	biogenesis	 for	 the	 selective	 degradation	 of	 cytoplasmic	 proteins	 (ESCRT-III	

complex);	 a	 summary	 of	 the	 gene	 products	 participating	 in	 the	 formation	 of	 the	

complexes	is	provided	in	Table	3.4.	

As	expected,	 the	adjacency	distributions	of	 the	complexes	were	significantly	greater	

than	the	null	distribution.	Of	note,	the	MTM	distribution	was	also	significantly	greater	

than	the	null	distribution,	even	more	so	than	the	COPI	and	ESCRT-III	complexes,	and	

at	least	as	significant	as	that	of	the	COPII	complex	(results	in	Table	3.5).	This	was	the	

first	indication	that	the	module	genes	could	be	functionally	related.	



	 82	

	 	 	 	

Table	 3.4	 Summary	 of	 the	 gene	 products	 participating	 in	 the	 formation	 of	 the	
complexes.	
	

	

	 	 	 	

Table	3.5	Results	of	Wilcoxon	rank-sum	test	(I).	We	tested	the	hypothesis	of	x	less	than	
or	equal	to	the	null	distribution.	
	

	

3.2.3	Functional	relatedness	of	module	genes	confirmed	by	external	sources		

Functional	association	was	reassessed	using	external	data	sources:	the	GIANT	all-

tissue	network	and	the	STRING	database	(see	sections	2.3.2.1	and	2.3.2.2).	

TABLE	3.4
Gene Description

COPA coatomer	protein	complex	subunit	alpha
COPB1 coatomer	protein	complex	subunit	beta	1
COPB2 coatomer	protein	complex	subunit	beta	2	(beta	prime)
COPE coatomer	protein	complex	subunit	epsilon
COPG1 coatomer	protein	complex	subunit	gamma	1
COPG2 coatomer	protein	complex	subunit	gamma	2
COPZ1 coatomer	protein	complex	subunit	zeta	1
COPZ2 coatomer	protein	complex	subunit	zeta	2

PREB prolactin	regulatory	element	binding
SAR1A secretion	associated,	Ras	related	GTPase	1A
SAR1B secretion	associated,	Ras	related	GTPase	1B

SEC13 SEC13	homolog,	nuclear	pore	and	COPII	coat	complex	
component

SEC23A Sec23	homolog	A,	COPII	coat	complex	component
SEC23A Sec23	homolog	A,	COPII	coat	complex	component
SEC23B Sec23	homolog	B,	COPII	coat	complex	component
SEC24B SEC24	homolog	B,	COPII	coat	complex	component
SEC24C SEC24	homolog	C,	COPII	coat	complex	component
SEC24D SEC24	homolog	D,	COPII	coat	complex	component
SEC31A SEC31	homolog	A,	COPII	coat	complex	component
SEC31B SEC31	homolog	B,	COPII	coat	complex	component

CHMP1A charged	multivesicular	body	protein	1A
CHMP1B charged	multivesicular	body	protein	1B
CHMP2A charged	multivesicular	body	protein	2A
CHMP2B charged	multivesicular	body	protein	2B
CHMP3 charged	multivesicular	body	protein	3
CHMP4A charged	multivesicular	body	protein	4A
CHMP4B charged	multivesicular	body	protein	4B
CHMP4C charged	multivesicular	body	protein	4C
CHMP5 charged	multivesicular	body	protein	5
CHMP6 charged	multivesicular	body	protein	6
CHMP7 charged	multivesicular	body	protein	7

COPI

COPIICOPII

ESCRT-III

TABLE	3.5

H0:x≤null	distr.	
Ha:x>null	distr.	 consensus	disr. COPI	distr.	 COPII	distr. ESCRT-III	

distr.	

x

p.value	 <	2.2e-16	 1.5e-06 <	2.2e-16	 0.4e-02
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The	 GIANT	 all-tissue	 network	 stores	 connectivity	 scores	 for	 combinations	 of	

25,825	 genes,	 while	 the	 version	 10.0	 of	 the	 human	 STRING	 database	 provides	

scores	 for	 3,853,379	 pairs	 of	 proteins,	 associated	 with	 17,946	 official	 gene	

symbols,	 according	 to	 the	 annotation	 of	 the	 Ensembl	 (Hubbard	 et	 al.,	 2002)	

Archive	Release	79	(http://mar2015.archive.ensembl.org).	

For	 each	 source,	we	 compared	 the	 interaction	probabilities	 between	 the	module	

gene	pairs	and	the	residual	trafficking	gene	pairs	(Fig.	3.13),	under	the	assumption	

that	 the	 first	distribution	was	 lower	 than	 the	 second	one	 (see	 section	2.3.2.3	 for	

details).	We	 restricted	 the	data	 set	 to	 trafficking	genes	as	we	 lacked	 information	

about	the	associations	of	the	other	genes.	

	

	 	 	

Figure	3.13	Box	plots	of	interaction	probabilities	between	the	module	gene	pairs	or	
the	residual	trafficking	gene	pairs.	On	the	left,	interaction	probabilities	from	GIANT;	on	
the	right,	those	from	STRING.	
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From	the	GIANT	network	we	extracted	783,126	scores,	corresponding	to	each	pair	

of	1,252	 trafficking	genes;	 of	 these,	6,271	belonged	 to	 the	MTM	gene	pairs.	Only	

58,294	 cumulative	 scores,	 instead,	 were	 found	 between	 the	 protein	 products	 of	

1,207	 trafficking	 genes	 available	 in	 the	 STRING	 database,	 879	 of	 which	 were	

associated	to	the	module	genes.	

In	both	cases	the	null	hypothesis	was	rejected,	supporting	the	thesis	that	these	genes	

could	functionally	interact.	It	should	be	emphasized	that	the	difference	between	the	

two	distributions	was	more	evident	for	GIANT	than	STRING	(p-value<2.2e-16	and	p-

value=4.3e-14,	respectively).	This	might	be	due	either	to	a	lack	of	evidence	for	most	

pairs	of	 trafficking	genes	 in	STRING,	or	 to	 the	 fact	 that	 STRING	does	not	 consider	

whether	an	interaction	is	preserved	in	multiple	tissues,	as	GIANT	does.	

3.3	Consensus	MTM	transcriptional	regulation	

3.3.1	A	regulatory	network	from	TF	binding	site	predictions	

Groups	of	co-expressed	genes	are	 likely	 to	be	regulated,	directly	or	 indirectly,	by	

common	 transcription	 factors.	 We	 identified	 putative	 TFs	 involved	 in	 the	

regulation	of	the	expression	levels	of	the	module	genes,	employing	a	random	walk	

with	 restart	 on	 a	 transcriptional	 regulatory	 network.	 To	 build	 the	 network	 (see	

section	2.4.1),	we	 selected,	 from	 the	Transcription	 Factor	Target	Gene	Database,	

360,387	 significant	 DNA	 recognition	 motifs	 of	 212	 TFs,	 found	 in	 the	 proximal	

promoter	region	of	7,469	genes.	These	genes	and	TFs	were	selected	applying	the	

same	criteria	used	for	the	selection	of	the	consensus	genes	(detection	in	at	least	22	

out	of	25	tissues).	

3.3.2	Strategies	employed	to	overcome	the	limits	of	random	walks	

Previous	work	has	already	demonstrated	the	power	of	random	walks	in	predicting	

meaningful	features	of	a	given	gene	set	(see	section	1.4.4);	biological	networks	that	
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combine	multiple	types	of	gene–gene	or	gene–property	relationships	are	explored	

to	identify	genes	mostly	related	to	the	set	in	the	input.	

However,	 these	 genes	 are	 identified	 from	 large	 and	 heterogeneous	 networks	 of	

biological	 information	 whose	 paths	 often	 converge	 onto	 hubs	 that	 connect	

different	functional	modules	of	the	networks,	and	therefore	not	exclusively	related	

to	the	set	of	genes	in	the	input.	

Additionally,	it	is	possible	that	the	gene	you	are	looking	for	already	resides	in	the	

set	in	the	input	but	it	is	not	detected	because	the	probability	of	self-relatedness	is	

altered	by	the	probability	of	restarting	from	that	node	at	each	step	of	the	random	

walk	algorithm.	A	perfect	example,	in	this	regard,	is	the	transcriptional	regulatory	

network,	which	comprises	interactions	between	regulators	(transcription	factors)	

and	 their	 target	 genes.	 It	 is	 a	 fact	 that	 some	 TFs	 are	 regulated	 by	 their	 own	

products,	a	phenomenon	known	as	autogenous	regulation,	or	by	auto-regulation;	

thus,	to	allow	the	identification	of	these	cases,	we	modified	our	regulatory	network	

as	described	in	section	2.4.2.	

Staying	on	the	topic	of	regulatory	networks,	we	also	demonstrated	that	correcting	

the	random	walk	estimates,	representing	the	likelihood	of	each	TF	in	the	network	

of	 regulating	 a	 precise	 set	 of	 genes,	 for	 those	 determined	 by	 rerunning	 the	

algorithm	 from	 different	 genes	 (background	 correction;	 see	 section	 2.4.2),	 we	

significantly	 increased	 the	 probability	 of	 finding	 the	 right	 TF	 involved	 in	 the	

regulation	of	its	targets	in	the	top	positions	(Fig.	3.14	panel	A).	This	outcome	was	

not	achieved	by	chance,	as	confirmed	by	the	correlation	of	the	probability	vectors	

associated	to	each	ChIP-seq	experiment	(see	section	2.4.3;	Fig.	3.14	panel	B);	 the	

median	correlation,	in	fact,	was	around	the	zero,	and	the	highest	coefficients	were	

obtained	by	correlating	the	probability	vectors	associated	to	ChIP-seq	experiments	



	 86	

covering	either	the	same	TF	across	different	cell	lines	or	different	TFs	belonging	to	

the	same	family.	

	

	

Figure	 3.14	 Evaluation	 of	 the	 background	 correction.	 A.	 Line	 plots	 showing	 the	
percentage	of	 correct	TFs	 ranked	 in	 the	 top	positions	 (results	 are	 grouped	by	 cell	 line).	
Rankings	were	 obtained	 by	 restarting	 the	 random	walk	 from	 the	 outcomes	 of	 ChIP-seq	
experiments.	 In	 red	 and	 in	blue,	 respectively,	 percentages	obtained	before	 and	after	 the	
correction.	 B.	 Correlation	 of	 the	 probability	 vectors	 associated	 to	 each	 ChIP-seq	
experiment.	
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3.3.3	Understanding	the	TFs	controlling	the	expression	of	module	genes	

The	random	walk	algorithm	was	then	used	to	calculate	the	impact	of	each	TF	in	the	

network	over	the	regulation	of	the	module	genes.	Estimates	were	corrected	for	the	

probabilities	of	 the	same	TFs	 to	 regulate	 the	genes	 from	the	remaining	modules.	

The	10	best	TFs	of	each	consensus	module	are	reported	in	supplementary	Table	2.	

3.4	Consensus	MTM	functional	annotation	

3.4.1	Putative	role	of	MTM8	in	collagen	secretion	

A	putative	biological	role	of	the	consensus	MTM8	was	found	by	chance	analyzing	the	

human	cellular	reprogramming	of	hiF-T	cells	to	pluripotency.	Clustering	analysis	of	

the	 RNA-Seq	 data	 from	 Cacchiarelli	 et	 al.,	 2015	 (see	 section	 2.5.1	 for	 details)	

identified	9	major	dynamic	expression	patterns	of	trafficking	genes	(Fig.	3.15).		

	

	

Figure	 3.15	 Line	 plots	 showing	 expression	 dynamics	 of	 differentially	 expressed	
trafficking	 genes	 during	 reprogramming.	 Cyan	 shades	 represent	 a	 95%	 bootstrap	
confidence	interval	around	the	median	values.	
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Specifically,	 cluster	 number	 2	 showed	 a	 trend	 similar	 to	 that	 of	 mesenchymal	

genes,	 including	 genes	 encoding	 structural	 components	 like	 collagen,	 that	 are	

rapidly	down-regulated	in	the	first	stage	of	the	reprogramming	(Cacchiarelli	et	al.,	

2015).	This	observation	was	confirmed	by	annotation	analyses	reported	in	Figure	

3.16	(panels	A	and	B);	in	particular,	the	two	complementary	approaches	used	(see	

section	 2.5.1)	 revealed	 an	 exclusive	 enrichment	 for	 both	mesoderm-specific	 and	

somatic	gene	signatures.		

	

	

Figure	3.16	Characterization	of	cluster	2.	A.	Gene	set	enrichment	analysis	for	condition-
specific	 gene	 signatures	 obtained	 from	 human	 embryonic	 stem	 cells	 in	 their	
undifferentiated	 state	 (HUES64)	 or	 upon	 differentiation	 toward	 the	 three	 major	 germ	
layers	(ectoderm,	endoderm	and	mesoderm).	B.	Comparison	with	cluster	of	differentially	
expressed	 genes	 during	 reprogramming,	 annotated	 for	 developmental	 cell	 identity.	
Numbers	 in	 the	 table	 indicate	 gene	 counts	 in	 the	 intersection	 of	 the	 corresponding	
clusters;	in	brackets,	the	number	of	genes	actually	compared.	Coloring	of	the	table	encodes	
the	Fisher’s	exact	test	p-value	for	the	overlap	of	the	two	clusters.	
	

	

It	 is	known	 that	 the	mesoderm	 formed	during	gastrulation	develops	 further	 into	

the	paraxial	mesoderm	at	early	stages	of	embryogenesis,	which	later	differentiates	

into	somites;	 the	somites	 in	turn	generate	the	mesenchymal	connective	tissue,	 to	

which	 fibroblasts	 belong	 (Gilbert,	 2000).	 Thus,	 some	 of	 the	 trafficking	 genes	 in	
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cluster	 2	 could	 be	 part	 of	 the	 specific	 machinery	 involved	 in	 the	 secretion	 of	

collagen,	the	main	protein	synthesized	and	secreted	by	fibroblasts.	

	Since	connective	tissue	comprises	several	tissues,	including	some	GTEx	categories	

(adipose	tissue,	blood,	fibroblasts),	and	surrounds	the	majority	of	the	other	tissues,	

like	brain	and	muscle,	we	tried	to	compare	the	trafficking	gene	clusters,	identified	

during	 the	 reprogramming	of	 hiF-T	 cells,	 to	 the	 consensus	modules.	 Surprisingly,	

the	consensus	MTM8	showed	a	statistically	significant	(fdr<0.05)	gene	overlap	with	

cluster	2;	the	genes	in	common	between	the	two	groups	are	reported	in	Table	3.6.	

	

	 	 	 	

Table	3.6	Summary	of	the	genes	in	common	between	reprogramming	cluster	2	and	
consensus	MTM8.	
	

	

Among	these	genes,	there	were	many	involved	in	different	stages	of	the	secretory	

pathway:	translocation	(SSR1),	maturation	(SPCS3),	folding	(DNAJC10)	and	export	

from	 the	 ER	 (SEC24D	 and	 SEC31A).	 There	 was	 also	 a	 transcription	 factor,	

CREB3L2,	 involved	 in	 the	 regulation	of	both	SEC24D	 (Tomoishi	 et	 al.,	 2017)	and	

ARF4	(Reiling	et	al.,	2013),	which	was	another	gene	on	the	list.	

Furthermore,	 some	 of	 these	 genes	 were	 already	 reported	 to	 be	 required	 for	

collagen	 secretion,	 as	 in	 the	 case	 of	 SEC24D	 (Sarmah	 et	 al.,	 2010)	 and	CREB3L2	

(Ishikawa	et	al.,	2017;	Saito	et	al.,	2009).	Thus	we	hypothesized	a	possible	role	of	

the	consensus	MTM8	in	collagen	secretion.	

Gene Description
ARF4 ADP	ribosylation	factor	4
CREB3L2 cAMP	responsive	element	binding	protein	3-like	2
DNAJC10 DnaJ	heat	shock	protein	family	(Hsp40)	member	C10
KDELR2 KDEL	endoplasmic	reticulum	protein	retention	receptor	2
PAPSS2 3'-phosphoadenosine	5'-phosphosulfate	synthase	2
SEC24D SEC24	homolog	D,	COPII	coat	complex	component
SEC31A SEC31	homolog	A,	COPII	coat	complex	component
SPCS3 signal	peptidase	complex	subunit	3
SSR1 signal	sequence	receptor,	alpha

TABLE	3.6
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3.5	Tissue-specific	MTM	detection	and	validation	

3.5.1	A	method	to	identify	tissue-specific	MTMs	by	differential	co-expression	analysis	

To	 investigate	 if	 disease-related	 genes	 had	 specific	 membrane	 trafficking	 co-

expressed	 communities	 in	 affected	 tissues,	 we	 identified	 tissue-specific	 MTMs	

combining	 differential	 correlation	 with	 weighted	 network	 analysis.	 Our	 method	

was	not	the	first	attempt	to	apply	WGCNA	to	differential	network	analysis	(Tesson	

et	al.,	2010),	but	it	was	the	first	one	to	explore	differential	co-expression	patterns	

under	 different	 sample	 size	 conditions.	 Details	 of	 the	 methodology	 have	 been	

reported	in	section	2.6.1.	

The	accuracy	of	the	method	was	evaluated	by	testing	the	differential	co-expression	

of	 the	 synaptic	 vesicle	 genes	 in	 all	 the	 human	 tissues	 selected	 from	 GTEx	 (see	

section	 2.6.1);	 the	 list	 of	 the	 synaptic	 vesicle	 genes	 examined	 at	 this	 stage	 is	

presented	in	Table	3.7.	

	

	 	 	 	

Table	3.7	Summary	of	the	synaptic	vesicle	genes	considered	for	the	evaluation	of	the	
method.	

Gene Description
RAB3A RAB3A,	member	RAS	oncogene	family
RAB3C RAB3C,	member	RAS	oncogene	family
RAB5A RAB5A,	member	RAS	oncogene	family
RAB7A RAB7A,	member	RAS	oncogene	family
RPH3A rabphilin	3A
SYN1 synapsin	I
SYN2 synapsin	II
SV2A synaptic	vesicle	glycoprotein	2A
SYP synaptophysin
SYT1 synaptotagmin	1
SYT2 synaptotagmin	2
SYT3 synaptotagmin	3
SYT5 synaptotagmin	5
SYT7 synaptotagmin	7
SYT8 synaptotagmin	8
SYT10 synaptotagmin	10	
SYT11 synaptotagmin	11
SYT12 synaptotagmin	12
SYT13 synaptotagmin	13
SYT14 synaptotagmin	14
VAMP1 vesicle	associated	membrane	protein	1
VAMP2 vesicle	associated	membrane	protein	2
VAMP3 vesicle	associated	membrane	protein	3
VAMP4 vesicle	associated	membrane	protein	4
VAMP5 vesicle	associated	membrane	protein	5

TABLE	3.7
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There	 has	 been	 extensive	 literature	 on	 the	 co-expression	 of	 these	 genes	 in	

different	brain	areas:	the	four	isoforms	generated	by	alternative	splicing	from	the	

transcripts	of	 synapsin	 I	 and	 II	 (SYN1	and	SYN2)	genes,	were	 reported	 to	be	 co-

expressed	 in	 almost	 all	 the	 brain	 regions	 (Südhof	 et	 al.,	 1989);	 many	 of	 the	

members	of	the	synaptotagmin	family	were	proven	to	be	abundantly	co-expressed	

in	 brain	 (Südhof,	 2001);	 synaptotagmin	 I	 (SYT1)	 and	 synaptobrevin	 II	 (VAMP2)	

were	 shown	 to	 be	 co-expressed	 in	 the	 pineal	 gland	 of	 both	 rats	 and	 gerbils	

(Redecker,	1996).	

In	light	of	this	evidence,	we	evaluated	how	accurate	our	method	was	in	capturing	

the	 differential	 co-expression	 of	 the	 synaptic	 vesicle	 genes	 when	 using	 brain	 as	

reference	 tissue	 rather	 than	 the	 other	 tissues.	 Results	 shown	 in	 Figure	 3.17	

confirmed	 a	 significantly	 (p-value<2.2e-16)	 high	 co-expression	 of	 these	 genes	 in	

brain	compared	to	their	co-expression	in	the	other	tissues.	

	

	 	 	

Figure	3.17	Box	plots	of	topological	overlap	measures	between	the	synaptic	vesicle	
genes.	 In	 this	 particular	 case,	 TOMs	 were	 determined	 from	 the	 differences	 in	 the	 co-
expression	 rates	 of	 the	 above-mentioned	 genes.	 On	 the	 left,	 the	 distribution	 of	 values	
obtained	 by	 using	 brain	 as	 reference	 tissue;	 on	 the	 right,	 the	 combined	 distribution	
obtained	by	using	each	of	the	other	tissues	as	reference.	
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3.5.2	Validation	of	cutoff-survived	modules		

As	 for	 the	 consensus	 modules,	 tissue-specific	 MTMs	 were	 also	 defined	 by	 the	

cutreeDynamic	 function;	 in	 this	 case,	 function	 parameters	 were	 identified	 by	

evaluating,	 for	 each	 selected	 tissue,	 the	 number	 of	 modules	 produced	 and	 the	

average	number	of	genes	per	module.	

We	found	that,	in	general,	the	hybrid	cut	method	produced	less	and	larger	modules	

than	the	tree	cut	method	(Table	3.8-3.9).	This	was	more	evident	when	the	hybrid	

cut	 method	 was	 used	 in	 combination	 with	 less	 sensitive	 splitting	 values;	 in	 a	

condition	of	high	sensitivity	to	cluster	splitting,	instead,	the	number	and	the	size	of	

the	modules	were	comparable	between	the	two	methods,	except	for	some	tissues	

for	which	the	hybrid	modules	were	still	too	large	compared	to	those	produced	by	

the	tree	cut	method	that	therefore	was	chosen	to	identify	the	tissue-specific	MTMs.	

	

	

Table	3.8	Number	of	differentially	co-expressed	modules	detected	by	different	tree	
cut	methods	 in	each	tissue.	Values	are	colored	from	red	(few	modules)	to	green	(many	
modules).	
	

TABLE	3.8 Hybrid	(dS=0) Hybrid	(dS=1) Hybrid	(dS=2) Hybrid	(dS=3) Hybrid	(dS=4) Dynamic	Tree	(No	dS) Dynamic	Tree	(dS)
Adipose	Tissue 1 2 10 79 99 56 122
Adrenal	Gland 2 5 28 83 92 49 115
Artery 1 1 4 34 68 32 127
Blood 1 1 1 26 50 25 102
Brain 1 1 1 18 60 42 114
Breast 1 1 2 14 51 23 113
Esophagus 1 1 1 1 2 11 83
Fibroblasts 1 1 1 17 49 30 100
Heart 1 1 6 38 76 42 118
Intestine 1 1 1 2 13 15 100
LCL 2 6 21 69 82 40 107
Liver 1 2 14 53 73 29 121
Lung 1 2 9 63 91 41 117
Muscle 1 2 10 68 90 47 109
Nerve 1 5 29 103 114 41 116
Ovary 7 19 65 103 106 57 124
Pancreas 1 3 42 95 104 65 126
Prostate 2 3 11 60 84 26 121
Reproductive	Organs 3 6 27 80 90 48 116
Skin 1 1 11 68 93 46 131
Spleen 4 20 65 100 105 57 121
Stomach 1 1 1 3 11 13 79
Testis 1 2 3 35 61 28 119
Thyroid 1 5 25 94 104 52 127
Vagina 1 2 5 29 45 23 113
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Table	3.9	Average	size	of	differentially	co-expressed	modules	detected	by	different	
tree	 cut	methods	 in	each	 tissue.	Values	are	colored	from	red	(large	modules)	to	green	
(small	modules).	
	

	

Internal	 validation	was	 then	used	 as	 a	 false	positive	handling	process	 to	 resolve	

the	 issue	 of	 having	 too	 many	 differentially	 co-expressed	 modules.	 Here	 too,	

network-dependent	 and	 -independent	 preservation	 statistics	 were	 computed	 to	

statistically	 evaluate	 agreement	 of	 differential	 co-expression	 for	 cross-tissue	

comparisons	(for	details,	see	section	2.6.2;	results	are	summarized	in	Figure	3.18).	

The	 differential	 co-expression	 of	 the	 internally	 validated	modules	 for	 19	 human	

tissues	was	also	evaluated	in	the	relative	GIANT	interaction	networks	(see	section	

2.6.2);	in	12	out	of	19	cases,	the	interaction	probability	distribution	of	the	module	

genes	 in	 the	 reference	 network	 was	 statistically	 different	 (fdr<0.05)	 from	 the	

combined	distribution	from	all	other	tissues	(results	are	shown	in	Figure	3.19	and	

Table	3.10).	Since	co-expression	was	the	data	type	that	had	mostly	contributed	to	

TABLE	3.9 Hybrid	(dS=0) Hybrid	(dS=1) Hybrid	(dS=2) Hybrid	(dS=3) Hybrid	(dS=4) Dynamic	Tree	(No	dS) Dynamic	Tree	(dS)
Adipose	Tissue 1115 558 112 14 11 20 8
Adrenal	Gland 563 225 40 14 12 23 8
Artery 1115 1115 279 33 16 35 8
Blood 1114 1114 1114 43 22 44 10
Brain 1147 1147 1147 64 19 27 9
Breast 1118 1118 559 80 22 48 9
Esophagus 1110 1110 1110 1110 555 100 12
Fibroblasts 1118 1118 1118 66 23 37 10
Heart 1117 1117 186 29 15 27 9
Intestine 1135 1135 1135 568 87 75 11
LCL 562 187 54 16 14 28 10
Liver 1126 563 80 21 15 38 9
Lung 1134 567 126 18 12 27 8
Muscle 1109 554 111 16 12 23 9
Nerve 1126 225 39 11 10 27 9
Ovary 161 59 17 11 11 19 8
Pancreas 1138 379 27 12 11 17 8
Prostate 570 380 104 19 14 44 8
Reproductive	Organs 372 186 41 14 12 23 8
Skin 1130 1130 103 17 12 24 8
Spleen 283 57 17 11 11 20 9
Stomach 1117 1117 1117 372 102 85 13
Testis 1191 596 397 34 20 42 9
Thyroid 1137 227 45 12 11 21 8
Vagina 1127 564 225 39 25 49 9
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the	 GIANT	 scores	 between	 those	 genes,	 we	 concluded	 that	 the	 tissue-specific	

modules	were	confirmed	to	be	differentially	co-expressed	also	by	GIANT	networks.	

	

	

Figure	3.18	Venn	diagrams	showing	the	overlap	of	significantly	preserved	modules	
for	 three	 network-dependent	 statistics.	 In	 light	 green	 areas,	 the	 number	 of	modules	
significantly	preserved	for	all	three	statistics.	Unless	otherwise	specified	(red	fractions	at	
the	 bottom	 of	 the	 diagrams),	 the	modules	 in	 the	 light	 green	 areas	 are	 also	 significantly	
preserved	for	the	co-clustering	preservation	statistic.	
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Figure	 3.19	 Box	 plots	 of	 interaction	 probabilities	 between	 tissue-specific	 module	
genes	 in	 the	 reference	 tissue	 network	 or	 in	 the	 other	 tissue	 networks.	 Interaction	
probabilities	were	converted	into	Z-scores	to	make	them	comparable.	Table	3.10	Results	
of	 Wilcoxon	 rank-sum	 test	 (II).	 We	 tested	 the	 hypothesis	 of	 x	 equal	 to	 the	 null	
distribution	 (combined	 distribution	 of	 interaction	 probabilities	 between	 module	 genes	
from	tissue	networks	other	than	reference	network).	
	

	

3.5.3	Examples	of	tissue-specific	MTMs	involving	disease-related	genes	

As	 regards	 the	 disease-related	 genes,	 we	 chose	 two	 of	 them	 as	 a	 case	 study:	

TRAPPC2,	 mutated	 in	 the	 SpondyloEpiphysealDysplasia	 Tarda	 (SEDT;	 OMIM	

313400),	 and	 ATP6AP2,	 muted	 in	 both	 X-linked	 mental	 retardation	 (MRXSH;	

OMIM	300556)	and	X-linked	parkinsonism	with	spasticity	(XPDS;	OMIM	300911).	

Their	modules	were	 identified	and	validated	 for	differential	 co-expression	 in	 the	

disease-relevant	tissues,	i.e.	fibroblasts	and	brain,	respectively,	and	the	topology	of	

these	modules	in	the	reference	network	versus	the	consensus	network	was	plotted	

to	highlight	the	differences	in	connection	patterns	(Figure	3.20	panels	A	and	B).	
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TABLE	3.10 H0:x=null	distr.
Ha:x≠null	distr.

x fdr
Adipose	Tissue	 2.6e-02
Adrenal	Gland	 1.0e-19
Artery	 1.1e-01
Blood	 5.2e-24
Brain	 4.2e-21
Esophagus	 1.3e-20
Heart	 5.2e-01
Intestine	 2.1e-01
Liver	 3.4e-05
Lung	 2.3e-03
Muscle	 8.5e-04
Ovary	 2.4e-04
Pancreas	 9.4e-01
Prostate	 5.0e-02
Skin	 1.6e-01
Spleen	 1.1e-08
Stomach	 4.7e-08
Testis	 4.8e-06
Thyroid	 3.1e-01
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Figure	 3.20	 Example	 of	 modules	 differentially	 co-expressed	 across	 tissues.	 A-B	
Edges	are	colored	according	to	their	topological	overlap	with	darker	colors	corresponding	
to	 higher	 topological	 overlap.	 The	 histograms	 close	 to	 each	 module	 represent	 the	
distribution	 of	 topological	 overlap	 of	 the	 network	 edges.	 The	 same	 set	 of	 genes	 is	
represented	 in	 the	reference	 tissue	network	and	 in	 the	consensus	network.	A.	TRAPPC2	
(highlighted	 in	 yellow)	 module	 in	 fibroblasts	 network	 versus	 consensus	 network.	 B.	
ATP6AP2	(highlighted	in	yellow)	module	in	brain	network	versus	consensus	network.	
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Chapter	4	

Discussion	

4.1	Unidentified	origin	of	certain	consensuses	

In	the	course	of	this	project,	we	spent	a	lot	of	time	identifying	and	characterizing	

consensus	 MTMs	 (paragraphs	 3.1-3.4	 refer	 to	 these	 aspects).	 A	 preliminary	

analysis,	in	fact,	revealed	that	the	majority	of	the	trafficking	genes	were	organized	

in	co-expression	modules,	preserved	among	tissues	(see	section	3.1.5).	These	data	

were	 complemented	by	multidimensional	 scaling	of	 tissue	 samples	based	on	 the	

expression	of	the	trafficking	genes	(see	section	3.2.1).	Except	for	brain	and	blood	

samples	that	were	clearly	separated	from	the	other	tissues,	the	rest	of	the	tissues	

shared	 high	 similarity	 in	 the	 traffikome	 signatures	 (Figure	 3.10);	 this	 evidence	

suggested	that	only	a	small	fraction	of	the	genes	could	be	differentially	expressed,	

and	thus	co-expressed,	across	tissues.	

However,	 not	 all	 the	 consensus	modules	 identified	 showed	 significant	 similarity	

with	the	clusters	of	the	preliminary	analysis,	although	many	of	these	modules	were	

effectively	preserved	in	several	tissues	having	passed	the	 internal	validation	(see	

section	 3.2.1).	 We	 could	 only	 speculate	 that	 this	 consensus	 had	 become	 visible	

after	 the	 loss	 of	 tissue-specific	 co-expressions,	 during	 the	 computation	 of	 the	

consensus	 TOM	 (see	 section	 2.2.4),	 which	 determined	 the	 segregation	 of	 those	

genes	in	different	modules.	

Not	much	can	be	said	instead	about	the	transcriptional	regulation	and	function	of	

these	modules,	 at	 least	until	 our	predictions	will	 be	 tested	 in	 the	wet	 lab.	 In	 the	

near	 future,	we	would	 like	 to	conduct	a	high-throughput	RNA-Seq	experiment	 to	

determine	if	the	module	genes	respond	to	the	silencing	of	the	transcription	factors,	

predicted	to	be	involved	in	their	regulation,	in	at	least	three	different	cell	lines.	
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4.2	The	unexploited	power	of	random	walks	

In	section	1.4.4	we	discussed	the	application	of	the	scoring	properties	of	random	

walks	 to	 diverse	 biological	 issues.	 However,	 in	 section	 3.3.2	we	 pointed	 out	 the	

limits	 of	 this	 stochastic	 process	 for	 detecting	 transcriptional	 regulatory	

mechanisms	underlying	sets	of	known	TF-target	genes	and	proposed	a	solution	to	

improve	 the	 prediction	 of	 the	 correct	 TFs	 involved	 in	 the	 regulation	 of	 their	

targets.	More	generally,	we	feel	that	the	potential	of	random	walks	has	not	being	

fully	 exploited,	 a	 proof	 of	 which	 comes	 from	 the	 analysis	 of	 the	 co-occurrence	

network	of	biomedical	concepts	provided	by	Grammatica	et	al.,	2014	(see	section	

2.7.1).	

During	the	analysis,	we	found	that	the	amount	of	literature	associated	to	different	

network	 entities	 (e.g.	 diseases)	 biased	 their	 random	 walk	 scores;	 in	 particular,	

highly	studied	entities	such	as	common	diseases	(e.g.	breast	cancer	is	associated	to	

142,109	abstracts	while	hypeoxaluria	to	only	1,293),	or	with	a	longer	experimental	

history,	tended	to	be	reached	with	higher	random	walk	scores	than	other	nodes	in	

the	network.	To	 avoid	 this	 imbalance,	 a	normalization	procedure	was	 applied	 to	

penalize	entities	reported	in	a	relatively	high	number	of	manuscripts	(see	section	

2.7.2).	 When	 applied	 on	 random	 walk	 scores	 connecting	 diseases	 to	 drugs,	 or	

drugs	to	other	drugs,	the	normalization	procedure	allowed	the	linearization	of	the	

relationship	between	the	total	random	walk	sum	and	the	reachability	for	each	drug	

(Fig.	 4.1	 panel	 A),	 and	 improved	 the	 predictive	 performances	 of	 both	 networks	

(Fig.	 4.1	 panels	 B	 and	 C;	 for	 details	 on	 the	 benchmark	 visit	 section	 2.7.3.1);	

specifically,	it	increased	the	power	to	infer	drugs	with	similar	mode	of	action	(AUC	

RWs	 =	 0.92	 and	 AUC	 normalized	 RWs=0.96)	 and	 diseases	 sharing	 similar	
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mechanistic	 biological	 dysfunctions	 (AUC	 RWs~0.5,	 p-value=0.84	 and	 AUC	

normalized	RWs=0.65,	p-value<2.2e-16).	

	

	 	 	

Figure	 4.1	 Assessing	network	 predictive	 performances	before	 and	after	 score	
normalization.	A	Sum	of	random	walk	scores	for	each	destination	node	of	the	drug-drug	
network,	 before	 (blue)	 and	 after	 (red)	 the	 normalization	 procedure.	 B	 Standard	 and	
normalized	 version	 of	 the	 disease-drug	 subnetwork	 against	 the	 OMIM-derived	 disease	
network.	 C	 Standard	 and	 normalized	 version	 of	 the	 drug-drug	 subnetwork	 against	 the	
ATC-derived	drug	network.	
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According	to	our	findings,	random	walks	are	excellent	tools	for	prioritizing	nodes	

or	 edges	 of	 a	 network,	 but	 to	 be	 able	 to	 use	 their	 full	 potential	 the	 biological	

context	 in	which	 the	method	 is	used	should	be	considered,	and,	 if	necessary,	 the	

initial	predictions	should	be	corrected.	

4.3	First	steps	towards	the	identification	of	tissue-specific	MTMs	and	future	applications	

In	 sections	 2.6.1	 and	 3.5.1	we	 presented	 a	 new	method	 for	 the	 identification	 of	

tissue-specific	 MTMs.	 Although	 the	 methodology	 proved	 to	 be	 too	 sensitive	 to	

small	variations	between	two	or	more	conditions	(since	the	fraction	of	 internally	

validated	 modules	 was	 considerably	 lower	 than	 the	 predicted	 ones),	 external	

validation	 analysis	 showed	 that	 it	 was	 accurate	 in	 identifying	 differentially	 co-

expressed	genes	(see	section	3.5.2).	Actually,	we	expected	that	the	majority	of	the	

genes	would	not	be	assigned	to	any	cluster,	but	in	fact,	just	the	opposite	occurred	

(results	are	shown	in	Table	4.1).	

	

	

Table	 4.1	 Number	 of	 unassigned	 genes	 detected	 by	 different	 tree	 cut	methods	 in	
each	tissue.	Values	are	colored	from	red	(few	genes)	to	green	(many	genes).	

TABLE	4.1 Hybrid	(dS=0) Hybrid	(dS=1) Hybrid	(dS=2) Hybrid	(dS=3) Hybrid	(dS=4) Dynamic	Tree	(No	dS) Dynamic	Tree	(dS)
Adipose	Tissue 116 116 116 116 116 135 254
Adrenal	Gland 105 105 105 105 105 124 257
Artery 116 116 116 116 116 120 205
Blood 117 117 117 117 117 131 224
Brain 84 84 84 84 84 97 211
Breast 113 113 113 113 113 119 228
Esophagus 121 121 121 121 121 133 255
Fibroblasts 113 113 113 113 113 123 235
Heart 114 114 114 114 114 117 222
Intestine 96 96 96 96 96 99 178
LCL 107 107 107 107 107 131 202
Liver 105 105 105 105 105 115 178
Lung 97 97 97 97 97 107 246
Muscle 122 122 122 122 122 144 250
Nerve 105 105 105 105 105 118 196
Ovary 107 107 107 107 107 130 222
Pancreas 93 93 93 93 93 115 248
Prostate 92 92 92 92 92 96 222
Reproductive	Organs 114 114 114 114 114 134 258
Skin 101 101 101 101 101 116 213
Spleen 100 100 100 100 100 115 202
Stomach 114 114 114 114 114 121 237
Testis 40 40 40 40 40 43 124
Thyroid 94 94 94 94 94 116 199
Vagina 104 104 104 104 104 104 246
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Our	 expectations	 came	 from	 the	 fact	 that	 several	 different	 tissues	 shared	 high	

similarities	in	their	traffickome	profiles	(see	paragraph	4.1),	therefore	only	a	small	

fraction	of	 the	 genes	was	 expected	 to	 account	 for	 tissue-specific	 interactions.	 To	

address	these	shortcomings	the	development	of	a	new	version	of	the	method	will	

focus	 on	 devising	 new	 strategies	 to	make	 it	 less	 sensitive	 to	 small	 variations	 of	

gene	co-expression	between	two	or	more	conditions.	

Regarding	 its	application,	 the	method	has	been	used	up	to	now	to	detect	specific	

MTMs,	 involving	 disease-related	 genes,	 in	 those	 tissues	 that	 would	 exhibit	 the	

relevant	 phenotype.	 However,	 we	 did	 not	 consider	 membrane	 trafficking	 genes	

whose	mutations	caused	multisystem	disorders.	The	oculocerebrorenal	syndrome	

of	 Lowe	 (OCRL)	 that	 primarily	 affects	 the	 eyes,	 nervous	 system,	 and	 kidneys	

represents	a	perfect	example	in	this	regard.	This	syndrome	is	caused	by	mutations	

in	 the	 OCRL1	 gene,	 which	 encodes	 an	 inositol	 polyphosphate-5-phosphatase;	

although	OCRL1	 is	ubiquitously	expressed,	 the	manifestations	of	Lowe	syndrome	

are	restricted	only	to	the	tissues	mentioned	above.	In	future	work,	we	would	like	

to	 deal	 with	 such	 cases,	 starting	 from	 OCRL,	 trying	 to	 combine	 the	 consensus	

analysis,	 which	 will	 be	 used	 to	 derive	 the	 oculocerebrorenal	 network	 or	 more	

generally	multi-tissue	networks,	with	differential	co-expression	analysis.	
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SUPPLEMENTARY	TABLES	

Supplementary	Table	1		

Gene	 Gene.description	 kME	
	
Cons.1	 	

APH1A	 aph-1	homolog	A,	gamma-secretase	subunit	[Source:HGNC	
Symbol;Acc:HGNC:29509]	 0.54	

ARF5	 ADP	ribosylation	factor	5	[Source:HGNC	Symbol;Acc:HGNC:658]	 0.76	

ARFRP1	 ADP	ribosylation	factor	related	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:662]	 0.46	

ARL8A	 ADP	ribosylation	factor	like	GTPase	8A	[Source:HGNC	
Symbol;Acc:HGNC:25192]	 0.48	

ARSA	 arylsulfatase	A	[Source:HGNC	Symbol;Acc:HGNC:713]	 0.42	

ATG4D	 autophagy	related	4D	cysteine	peptidase	[Source:HGNC	
Symbol;Acc:HGNC:20789]	 0.59	

ATP10D	 ATPase	phospholipid	transporting	10D	(putative)	[Source:HGNC	
Symbol;Acc:HGNC:13549]	 -0.50	

ATP6V0E2	 ATPase	H+	transporting	V0	subunit	e2	[Source:HGNC	
Symbol;Acc:HGNC:21723]	 0.28	

ATP8A1	 ATPase	phospholipid	transporting	8A1	[Source:HGNC	
Symbol;Acc:HGNC:13531]	 -0.27	

ATP9B	 ATPase	phospholipid	transporting	9B	(putative)	[Source:HGNC	
Symbol;Acc:HGNC:13541]	 0.17	

ATPAF2	 ATP	synthase	mitochondrial	F1	complex	assembly	factor	2	
[Source:HGNC	Symbol;Acc:HGNC:18802]	 0.45	

BBS10	 Bardet-Biedl	syndrome	10	[Source:HGNC	Symbol;Acc:HGNC:26291]	 -0.37	

CHMP1A	 charged	multivesicular	body	protein	1A	[Source:HGNC	
Symbol;Acc:HGNC:8740]	 0.75	

CHN1	 chimerin	1	[Source:HGNC	Symbol;Acc:HGNC:1943]	 -0.35	

CLASP2	 cytoplasmic	linker	associated	protein	2	[Source:HGNC	
Symbol;Acc:HGNC:17078]	 -0.43	

CLTB	 clathrin	light	chain	B	[Source:HGNC	Symbol;Acc:HGNC:2091]	 0.71	

COPZ2	 coatomer	protein	complex	subunit	zeta	2	[Source:HGNC	
Symbol;Acc:HGNC:19356]	 -0.03	

CTTN	 cortactin	[Source:HGNC	Symbol;Acc:HGNC:3338]	 0.37	
CYTH2	 cytohesin	2	[Source:HGNC	Symbol;Acc:HGNC:9502]	 0.42	

DGAT2	 diacylglycerol	O-acyltransferase	2	[Source:HGNC	
Symbol;Acc:HGNC:16940]	 0.18	

DNM2	 dynamin	2	[Source:HGNC	Symbol;Acc:HGNC:2974]	 0.57	
DYSF	 dysferlin	[Source:HGNC	Symbol;Acc:HGNC:3097]	 -0.08	
EHD3	 EH	domain	containing	3	[Source:HGNC	Symbol;Acc:HGNC:3244]	 -0.04	
EMD	 emerin	[Source:HGNC	Symbol;Acc:HGNC:3331]	 0.35	
EPN1	 epsin	1	[Source:HGNC	Symbol;Acc:HGNC:21604]	 0.82	
FKRP	 fukutin	related	protein	[Source:HGNC	Symbol;Acc:HGNC:17997]	 0.34	
FLOT2	 flotillin	2	[Source:HGNC	Symbol;Acc:HGNC:3758]	 0.20	
GAA	 glucosidase	alpha,	acid	[Source:HGNC	Symbol;Acc:HGNC:4065]	 0.29	
GIT1	 GIT	ArfGAP	1	[Source:HGNC	Symbol;Acc:HGNC:4272]	 0.35	
GORAB	 golgin,	RAB6	interacting	[Source:HGNC	Symbol;Acc:HGNC:25676]	 -0.31	
HPS1	 HPS1,	biogenesis	of	lysosomal	organelles	complex	3	subunit	1	 0.34	



	 104	

[Source:HGNC	Symbol;Acc:HGNC:5163]	

INPP4B	 inositol	polyphosphate-4-phosphatase	type	II	B	[Source:HGNC	
Symbol;Acc:HGNC:6075]	 -0.30	

INPP5K	 inositol	polyphosphate-5-phosphatase	K	[Source:HGNC	
Symbol;Acc:HGNC:33882]	 0.28	

KALRN	 kalirin	RhoGEF	kinase	[Source:HGNC	Symbol;Acc:HGNC:4814]	 0.09	
KIFC3	 kinesin	family	member	C3	[Source:HGNC	Symbol;Acc:HGNC:6326]	 0.37	
MYO1D	 myosin	ID	[Source:HGNC	Symbol;Acc:HGNC:7598]	 0.17	

NAGLU	 N-acetyl-alpha-glucosaminidase	[Source:HGNC	
Symbol;Acc:HGNC:7632]	 0.51	

NAPA	 NSF	attachment	protein	alpha	[Source:HGNC	
Symbol;Acc:HGNC:7641]	 0.65	

ORMDL3	 ORMDL	sphingolipid	biosynthesis	regulator	3	[Source:HGNC	
Symbol;Acc:HGNC:16038]	 0.50	

OSBP2	 oxysterol	binding	protein	2	[Source:HGNC	Symbol;Acc:HGNC:8504]	 0.14	

PEX10	 peroxisomal	biogenesis	factor	10	[Source:HGNC	
Symbol;Acc:HGNC:8851]	 0.54	

PEX14	 peroxisomal	biogenesis	factor	14	[Source:HGNC	
Symbol;Acc:HGNC:8856]	 0.59	

PICK1	 protein	interacting	with	PRKCA	1	[Source:HGNC	
Symbol;Acc:HGNC:9394]	 0.55	

PITPNM1	 phosphatidylinositol	transfer	protein	membrane	associated	1	
[Source:HGNC	Symbol;Acc:HGNC:9003]	 0.29	

RAB11B	 RAB11B,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9761]	 0.55	

RAB1B	 RAB1B,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:18370]	 0.77	

RAB30	 RAB30,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9770]	 -0.42	

RAB40C	 RAB40C,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:18285]	 0.51	

RHOBTB3	 Rho	related	BTB	domain	containing	3	[Source:HGNC	
Symbol;Acc:HGNC:18757]	 -0.39	

RHOD	 ras	homolog	family	member	D	[Source:HGNC	
Symbol;Acc:HGNC:670]	 0.49	

RILP	 Rab	interacting	lysosomal	protein	[Source:HGNC	
Symbol;Acc:HGNC:30266]	 0.46	

RIN1	 Ras	and	Rab	interactor	1	[Source:HGNC	Symbol;Acc:HGNC:18749]	 0.37	
RTN2	 reticulon	2	[Source:HGNC	Symbol;Acc:HGNC:10468]	 0.24	
SCAP	 SREBF	chaperone	[Source:HGNC	Symbol;Acc:HGNC:30634]	 0.65	

SLC9A1	 solute	carrier	family	9	member	A1	[Source:HGNC	
Symbol;Acc:HGNC:11071]	 0.33	

SNX21	 sorting	nexin	family	member	21	[Source:HGNC	
Symbol;Acc:HGNC:16154]	 0.32	

SNX27	 sorting	nexin	family	member	27	[Source:HGNC	
Symbol;Acc:HGNC:20073]	 -0.25	

STX17	 syntaxin	17	[Source:HGNC	Symbol;Acc:HGNC:11432]	 -0.40	
TAPBP	 TAP	binding	protein	[Source:HGNC	Symbol;Acc:HGNC:11566]	 0.41	

TBC1D4	 TBC1	domain	family	member	4	[Source:HGNC	
Symbol;Acc:HGNC:19165]	 -0.22	

TMED1	 transmembrane	p24	trafficking	protein	1	[Source:HGNC	 0.47	
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Symbol;Acc:HGNC:17291]	
TMEM67	 transmembrane	protein	67	[Source:HGNC	Symbol;Acc:HGNC:28396]	 -0.41	
TRAPPC6
A	

trafficking	protein	particle	complex	6A	[Source:HGNC	
Symbol;Acc:HGNC:23069]	 0.49	

TRAPPC9	 trafficking	protein	particle	complex	9	[Source:HGNC	
Symbol;Acc:HGNC:30832]	 0.42	

VPS26B	 VPS26,	retromer	complex	component	B	[Source:HGNC	
Symbol;Acc:HGNC:28119]	 0.26	

VPS4A	 vacuolar	protein	sorting	4	homolog	A	[Source:HGNC	
Symbol;Acc:HGNC:13488]	 0.61	

VPS51	 VPS51,	GARP	complex	subunit	[Source:HGNC	
Symbol;Acc:HGNC:1172]	 0.59	

ZFPL1	 zinc	finger	protein	like	1	[Source:HGNC	Symbol;Acc:HGNC:12868]	 0.57	
	
Cons.2*	 	 	

ACSL5	 acyl-CoA	synthetase	long	chain	family	member	5	[Source:HGNC	
Symbol;Acc:HGNC:16526]	 -0.01	

ALG12	 ALG12,	alpha-1,6-mannosyltransferase	[Source:HGNC	
Symbol;Acc:HGNC:19358]	 0.57	

AP3D1	 adaptor	related	protein	complex	3	delta	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:568]	 0.61	

ARF1	 ADP	ribosylation	factor	1	[Source:HGNC	Symbol;Acc:HGNC:652]	 0.76	

ARFIP2	 ADP	ribosylation	factor	interacting	protein	2	[Source:HGNC	
Symbol;Acc:HGNC:17160]	 0.66	

ARPC1B	 actin	related	protein	2/3	complex	subunit	1B	[Source:HGNC	
Symbol;Acc:HGNC:704]	 0.64	

ATP6V0B	 ATPase	H+	transporting	V0	subunit	b	[Source:HGNC	
Symbol;Acc:HGNC:861]	 0.68	

B4GALT1	 beta-1,4-galactosyltransferase	1	[Source:HGNC	
Symbol;Acc:HGNC:924]	 0.48	

BACE2	 beta-site	APP-cleaving	enzyme	2	[Source:HGNC	
Symbol;Acc:HGNC:934]	 0.30	

BET1L	 Bet1	golgi	vesicular	membrane	trafficking	protein	like	[Source:HGNC	
Symbol;Acc:HGNC:19348]	 0.36	

BICD1	 BICD	cargo	adaptor	1	[Source:HGNC	Symbol;Acc:HGNC:1049]	 -0.21	
BIN1	 bridging	integrator	1	[Source:HGNC	Symbol;Acc:HGNC:1052]	 0.01	

CC2D2A	 coiled-coil	and	C2	domain	containing	2A	[Source:HGNC	
Symbol;Acc:HGNC:29253]	 -0.38	

CLN6	 CLN6,	transmembrane	ER	protein	[Source:HGNC	
Symbol;Acc:HGNC:2077]	 0.56	

COPE	 coatomer	protein	complex	subunit	epsilon	[Source:HGNC	
Symbol;Acc:HGNC:2234]	 0.82	

COPZ1	 coatomer	protein	complex	subunit	zeta	1	[Source:HGNC	
Symbol;Acc:HGNC:2243]	 0.70	

CREB3	 cAMP	responsive	element	binding	protein	3	[Source:HGNC	
Symbol;Acc:HGNC:2347]	 0.44	

DNAJC1	 DnaJ	heat	shock	protein	family	(Hsp40)	member	C1	[Source:HGNC	
Symbol;Acc:HGNC:20090]	 0.54	

DNMBP	 dynamin	binding	protein	[Source:HGNC	Symbol;Acc:HGNC:30373]	 0.06	

DTNBP1	 dystrobrevin	binding	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:17328]	 -0.05	
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DYNC2H1	 dynein	cytoplasmic	2	heavy	chain	1	[Source:HGNC	
Symbol;Acc:HGNC:2962]	 -0.52	

ERGIC1	 endoplasmic	reticulum-golgi	intermediate	compartment	1	
[Source:HGNC	Symbol;Acc:HGNC:29205]	 0.46	

EXTL2	 exostosin	like	glycosyltransferase	2	[Source:HGNC	
Symbol;Acc:HGNC:3516]	 -0.41	

FUT8	 fucosyltransferase	8	[Source:HGNC	Symbol;Acc:HGNC:4019]	 -0.12	

GALNT2	 polypeptide	N-acetylgalactosaminyltransferase	2	[Source:HGNC	
Symbol;Acc:HGNC:4124]	 0.53	

GALNT3	 polypeptide	N-acetylgalactosaminyltransferase	3	[Source:HGNC	
Symbol;Acc:HGNC:4125]	 0.07	

GLA	 galactosidase	alpha	[Source:HGNC	Symbol;Acc:HGNC:4296]	 0.46	
GOLGA2	 golgin	A2	[Source:HGNC	Symbol;Acc:HGNC:4425]	 0.33	
GOLGA3	 golgin	A3	[Source:HGNC	Symbol;Acc:HGNC:4426]	 0.45	

GOSR2	 golgi	SNAP	receptor	complex	member	2	[Source:HGNC	
Symbol;Acc:HGNC:4431]	 0.47	

HGSNAT	 heparan-alpha-glucosaminide	N-acetyltransferase	[Source:HGNC	
Symbol;Acc:HGNC:26527]	 -0.35	

LMAN2	 lectin,	mannose	binding	2	[Source:HGNC	Symbol;Acc:HGNC:16986]	 0.84	
LMNA	 lamin	A/C	[Source:HGNC	Symbol;Acc:HGNC:6636]	 0.34	

MPV17	 MPV17,	mitochondrial	inner	membrane	protein	[Source:HGNC	
Symbol;Acc:HGNC:7224]	 0.38	

P4HB	 prolyl	4-hydroxylase	subunit	beta	[Source:HGNC	
Symbol;Acc:HGNC:8548]	 0.80	

PDIA5	 protein	disulfide	isomerase	family	A	member	5	[Source:HGNC	
Symbol;Acc:HGNC:24811]	 0.42	

PGS1	 phosphatidylglycerophosphate	synthase	1	[Source:HGNC	
Symbol;Acc:HGNC:30029]	 0.29	

PLOD1	 procollagen-lysine,2-oxoglutarate	5-dioxygenase	1	[Source:HGNC	
Symbol;Acc:HGNC:9081]	 0.47	

PLOD3	 procollagen-lysine,2-oxoglutarate	5-dioxygenase	3	[Source:HGNC	
Symbol;Acc:HGNC:9083]	 0.58	

PMM2	 phosphomannomutase	2	[Source:HGNC	Symbol;Acc:HGNC:9115]	 0.71	
PPIB	 peptidylprolyl	isomerase	B	[Source:HGNC	Symbol;Acc:HGNC:9255]	 0.81	

PREB	 prolactin	regulatory	element	binding	[Source:HGNC	
Symbol;Acc:HGNC:9356]	 0.69	

RABGAP1
L	

RAB	GTPase	activating	protein	1	like	[Source:HGNC	
Symbol;Acc:HGNC:24663]	 -0.51	

RER1	 retention	in	endoplasmic	reticulum	sorting	receptor	1	[Source:HGNC	
Symbol;Acc:HGNC:30309]	 0.64	

RIN2	 Ras	and	Rab	interactor	2	[Source:HGNC	Symbol;Acc:HGNC:18750]	 -0.20	

SCAMP3	 secretory	carrier	membrane	protein	3	[Source:HGNC	
Symbol;Acc:HGNC:10565]	 0.74	

SEC13	 SEC13	homolog,	nuclear	pore	and	COPII	coat	complex	component	
[Source:HGNC	Symbol;Acc:HGNC:10697]	 0.84	

SEC24C	 SEC24	homolog	C,	COPII	coat	complex	component	[Source:HGNC	
Symbol;Acc:HGNC:10705]	 0.53	

SEC61B	 Sec61	translocon	beta	subunit	[Source:HGNC	
Symbol;Acc:HGNC:16993]	 0.83	

SERPINH1	 serpin	family	H	member	1	[Source:HGNC	Symbol;Acc:HGNC:1546]	 0.34	
SLC35A2	 solute	carrier	family	35	member	A2	[Source:HGNC	 0.79	
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Symbol;Acc:HGNC:11022]	

SLC35D1	 solute	carrier	family	35	member	D1	[Source:HGNC	
Symbol;Acc:HGNC:20800]	 -0.15	

SLC50A1	 solute	carrier	family	50	member	1	[Source:HGNC	
Symbol;Acc:HGNC:30657]	 0.76	

SNX33	 sorting	nexin	33	[Source:HGNC	Symbol;Acc:HGNC:28468]	 -0.15	

SSR2	 signal	sequence	receptor	subunit	2	[Source:HGNC	
Symbol;Acc:HGNC:11324]	 0.71	

ST3GAL5	 ST3	beta-galactoside	alpha-2,3-sialyltransferase	5	[Source:HGNC	
Symbol;Acc:HGNC:10872]	 -0.24	

STX5	 syntaxin	5	[Source:HGNC	Symbol;Acc:HGNC:11440]	 0.50	

TMED3	 transmembrane	p24	trafficking	protein	3	[Source:HGNC	
Symbol;Acc:HGNC:28889]	 0.63	

TMED9	 transmembrane	p24	trafficking	protein	9	[Source:HGNC	
Symbol;Acc:HGNC:24878]	 0.88	

TMEM237	 transmembrane	protein	237	[Source:HGNC	
Symbol;Acc:HGNC:14432]	 -0.39	

TRAPPC4	 trafficking	protein	particle	complex	4	[Source:HGNC	
Symbol;Acc:HGNC:19943]	 0.51	

ULK2	 unc-51	like	autophagy	activating	kinase	2	[Source:HGNC	
Symbol;Acc:HGNC:13480]	 -0.53	

VMP1	 vacuole	membrane	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:29559]	 0.27	

VPS37C	 VPS37C,	ESCRT-I	subunit	[Source:HGNC	Symbol;Acc:HGNC:26097]	 0.47	

YIF1A	 Yip1	interacting	factor	homolog	A,	membrane	trafficking	protein	
[Source:HGNC	Symbol;Acc:HGNC:16688]	 0.76	

ZFYVE20	 #N/A	 -0.46	
	
Cons.3*	 	 	

ANKFY1	 ankyrin	repeat	and	FYVE	domain	containing	1	[Source:HGNC	
Symbol;Acc:HGNC:20763]	 -0.04	

ANO1	 anoctamin	1	[Source:HGNC	Symbol;Acc:HGNC:21625]	 -0.21	

AP2B1	 adaptor	related	protein	complex	2	beta	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:563]	 0.39	

AP3B1	 adaptor	related	protein	complex	3	beta	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:566]	 0.84	

AP3M2	 adaptor	related	protein	complex	3	mu	2	subunit	[Source:HGNC	
Symbol;Acc:HGNC:570]	 -0.17	

AP3S2	 adaptor	related	protein	complex	3	sigma	2	subunit	[Source:HGNC	
Symbol;Acc:HGNC:571]	 0.44	

ARHGEF2	 Rho/Rac	guanine	nucleotide	exchange	factor	2	[Source:HGNC	
Symbol;Acc:HGNC:682]	 -0.11	

ARL2BP	 ADP	ribosylation	factor	like	GTPase	2	binding	protein	[Source:HGNC	
Symbol;Acc:HGNC:17146]	 0.51	

ARSB	 arylsulfatase	B	[Source:HGNC	Symbol;Acc:HGNC:714]	 0.46	

ATG4A	 autophagy	related	4A	cysteine	peptidase	[Source:HGNC	
Symbol;Acc:HGNC:16489]	 0.62	

ATG7	 autophagy	related	7	[Source:HGNC	Symbol;Acc:HGNC:16935]	 0.33	

ATP6V1B2	 ATPase	H+	transporting	V1	subunit	B2	[Source:HGNC	
Symbol;Acc:HGNC:854]	 0.49	

BBS9	 Bardet-Biedl	syndrome	9	[Source:HGNC	Symbol;Acc:HGNC:30000]	 -0.31	
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BICD2	 BICD	cargo	adaptor	2	[Source:HGNC	Symbol;Acc:HGNC:17208]	 0.20	

BLZF1	 basic	leucine	zipper	nuclear	factor	1	[Source:HGNC	
Symbol;Acc:HGNC:1065]	 0.53	

CLTC	 clathrin	heavy	chain	[Source:HGNC	Symbol;Acc:HGNC:2092]	 0.87	

COG7	 component	of	oligomeric	golgi	complex	7	[Source:HGNC	
Symbol;Acc:HGNC:18622]	 -0.25	

COPA	 coatomer	protein	complex	subunit	alpha	[Source:HGNC	
Symbol;Acc:HGNC:2230]	 0.76	

COPB1	 coatomer	protein	complex	subunit	beta	1	[Source:HGNC	
Symbol;Acc:HGNC:2231]	 0.83	

COPB2	 coatomer	protein	complex	subunit	beta	2	[Source:HGNC	
Symbol;Acc:HGNC:2232]	 0.87	

COPG2	 coatomer	protein	complex	subunit	gamma	2	[Source:HGNC	
Symbol;Acc:HGNC:2237]	 0.29	

CPNE1	 copine	1	[Source:HGNC	Symbol;Acc:HGNC:2314]	 -0.38	

CREB3L4	 cAMP	responsive	element	binding	protein	3	like	4	[Source:HGNC	
Symbol;Acc:HGNC:18854]	 -0.31	

CTSL	 cathepsin	L	[Source:HGNC	Symbol;Acc:HGNC:2537]	 0.37	
DERL1	 derlin	1	[Source:HGNC	Symbol;Acc:HGNC:28454]	 0.67	

DRAM2	 DNA	damage	regulated	autophagy	modulator	2	[Source:HGNC	
Symbol;Acc:HGNC:28769]	 0.13	

ERAP1	 endoplasmic	reticulum	aminopeptidase	1	[Source:HGNC	
Symbol;Acc:HGNC:18173]	 0.48	

ERGIC2	 ERGIC	and	golgi	2	[Source:HGNC	Symbol;Acc:HGNC:30208]	 0.64	

ERN1	 endoplasmic	reticulum	to	nucleus	signaling	1	[Source:HGNC	
Symbol;Acc:HGNC:3449]	 0.06	

GOLGA1	 golgin	A1	[Source:HGNC	Symbol;Acc:HGNC:4424]	 -0.23	
GOLGA5	 golgin	A5	[Source:HGNC	Symbol;Acc:HGNC:4428]	 0.72	

GORASP2	 golgi	reassembly	stacking	protein	2	[Source:HGNC	
Symbol;Acc:HGNC:17500]	 0.74	

HPS4	 HPS4,	biogenesis	of	lysosomal	organelles	complex	3	subunit	2	
[Source:HGNC	Symbol;Acc:HGNC:15844]	 -0.52	

NPC1	 NPC	intracellular	cholesterol	transporter	1	[Source:HGNC	
Symbol;Acc:HGNC:7897]	 0.34	

PIP4K2C	 phosphatidylinositol-5-phosphate	4-kinase	type	2	gamma	
[Source:HGNC	Symbol;Acc:HGNC:23786]	 0.39	

PLCG1	 phospholipase	C	gamma	1	[Source:HGNC	Symbol;Acc:HGNC:9065]	 -0.48	
PLD2	 phospholipase	D2	[Source:HGNC	Symbol;Acc:HGNC:9068]	 -0.30	

PLEKHF1	 pleckstrin	homology	and	FYVE	domain	containing	1	[Source:HGNC	
Symbol;Acc:HGNC:20764]	 -0.22	

RAB11FIP
1	

RAB11	family	interacting	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:30265]	 0.17	

RAB1A	 RAB1A,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9758]	 0.82	

RAB3IP	 RAB3A	interacting	protein	[Source:HGNC	Symbol;Acc:HGNC:16508]	 0.09	

RAB40B	 RAB40B,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:18284]	 -0.35	

SAR1A	 secretion	associated	Ras	related	GTPase	1A	[Source:HGNC	
Symbol;Acc:HGNC:10534]	 0.65	

SCFD1	 sec1	family	domain	containing	1	[Source:HGNC	
Symbol;Acc:HGNC:20726]	 0.67	
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SEC22B	 SEC22	homolog	B,	vesicle	trafficking	protein	(gene/pseudogene)	
[Source:HGNC	Symbol;Acc:HGNC:10700]	 0.72	

SEC24A	 SEC24	homolog	A,	COPII	coat	complex	component	[Source:HGNC	
Symbol;Acc:HGNC:10703]	 0.79	

SGMS2	 sphingomyelin	synthase	2	[Source:HGNC	Symbol;Acc:HGNC:28395]	 0.45	

SLC17A5	 solute	carrier	family	17	member	5	[Source:HGNC	
Symbol;Acc:HGNC:10933]	 0.48	

SLC26A2	 solute	carrier	family	26	member	2	[Source:HGNC	
Symbol;Acc:HGNC:10994]	 0.37	

SNX19	 sorting	nexin	19	[Source:HGNC	Symbol;Acc:HGNC:21532]	 0.49	
STX18	 syntaxin	18	[Source:HGNC	Symbol;Acc:HGNC:15942]	 0.44	
TFEB	 transcription	factor	EB	[Source:HGNC	Symbol;Acc:HGNC:11753]	 -0.37	
TFRC	 transferrin	receptor	[Source:HGNC	Symbol;Acc:HGNC:11763]	 0.41	

TSNARE1	 t-SNARE	domain	containing	1	[Source:HGNC	
Symbol;Acc:HGNC:26437]	 -0.60	

USO1	 USO1	vesicle	transport	factor	[Source:HGNC	
Symbol;Acc:HGNC:30904]	 0.75	

WIPI1	 WD	repeat	domain,	phosphoinositide	interacting	1	[Source:HGNC	
Symbol;Acc:HGNC:25471]	 0.40	

YIPF5	 Yip1	domain	family	member	5	[Source:HGNC	
Symbol;Acc:HGNC:24877]	 0.77	

ZMPSTE2
4	

zinc	metallopeptidase	STE24	[Source:HGNC	
Symbol;Acc:HGNC:12877]	 0.66	

	
Cons.4	 	 	
ANK3	 ankyrin	3	[Source:HGNC	Symbol;Acc:HGNC:494]	 0.06	

AP1B1	 adaptor	related	protein	complex	1	beta	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:554]	 0.56	

AP5B1	 adaptor	related	protein	complex	5	beta	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:25104]	 0.54	

ARL6IP6	 ADP	ribosylation	factor	like	GTPase	6	interacting	protein	6	
[Source:HGNC	Symbol;Acc:HGNC:24048]	 -0.09	

ATG13	 autophagy	related	13	[Source:HGNC	Symbol;Acc:HGNC:29091]	 0.12	
ATP6V0A
1	

ATPase	H+	transporting	V0	subunit	a1	[Source:HGNC	
Symbol;Acc:HGNC:865]	 0.26	

ATXN2	 ataxin	2	[Source:HGNC	Symbol;Acc:HGNC:10555]	 -0.18	
BBS4	 Bardet-Biedl	syndrome	4	[Source:HGNC	Symbol;Acc:HGNC:969]	 -0.35	

CHST10	 carbohydrate	sulfotransferase	10	[Source:HGNC	
Symbol;Acc:HGNC:19650]	 0.02	

CLN8	 CLN8,	transmembrane	ER	and	ERGIC	protein	[Source:HGNC	
Symbol;Acc:HGNC:2079]	 0.26	

EHD4	 EH	domain	containing	4	[Source:HGNC	Symbol;Acc:HGNC:3245]	 0.18	
ELOVL1	 ELOVL	fatty	acid	elongase	1	[Source:HGNC	Symbol;Acc:HGNC:14418]	 0.66	

EXOC7	 exocyst	complex	component	7	[Source:HGNC	
Symbol;Acc:HGNC:23214]	 0.12	

EXT1	 exostosin	glycosyltransferase	1	[Source:HGNC	
Symbol;Acc:HGNC:3512]	 -0.02	

GOLM1	 golgi	membrane	protein	1	[Source:HGNC	Symbol;Acc:HGNC:15451]	 -0.10	
HTT	 huntingtin	[Source:HGNC	Symbol;Acc:HGNC:4851]	 0.28	
IDS	 iduronate	2-sulfatase	[Source:HGNC	Symbol;Acc:HGNC:5389]	 -0.25	
INPP5B	 inositol	polyphosphate-5-phosphatase	B	[Source:HGNC	 -0.23	
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Symbol;Acc:HGNC:6077]	

ITPR1	 inositol	1,4,5-trisphosphate	receptor	type	1	[Source:HGNC	
Symbol;Acc:HGNC:6180]	 -0.19	

MBOAT2	 membrane	bound	O-acyltransferase	domain	containing	2	
[Source:HGNC	Symbol;Acc:HGNC:25193]	 0.01	

MPDU1	 mannose-P-dolichol	utilization	defect	1	[Source:HGNC	
Symbol;Acc:HGNC:7207]	 0.64	

MTMR14	 myotubularin	related	protein	14	[Source:HGNC	
Symbol;Acc:HGNC:26190]	 0.24	

PEX5	 peroxisomal	biogenesis	factor	5	[Source:HGNC	
Symbol;Acc:HGNC:9719]	 0.27	

PIK3C2B	 phosphatidylinositol-4-phosphate	3-kinase	catalytic	subunit	type	2	
beta	[Source:HGNC	Symbol;Acc:HGNC:8972]	 0.21	

PLCB1	 phospholipase	C	beta	1	[Source:HGNC	Symbol;Acc:HGNC:15917]	 -0.41	

PRKAA2	 protein	kinase	AMP-activated	catalytic	subunit	alpha	2	
[Source:HGNC	Symbol;Acc:HGNC:9377]	 -0.31	

PRKG1	 protein	kinase,	cGMP-dependent,	type	I	[Source:HGNC	
Symbol;Acc:HGNC:9414]	 -0.25	

RAB20	 RAB20,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:18260]	 0.16	

RAB2B	 RAB2B,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:20246]	 -0.35	

RABIF	 RAB	interacting	factor	[Source:HGNC	Symbol;Acc:HGNC:9797]	 0.23	
RCAN2	 regulator	of	calcineurin	2	[Source:HGNC	Symbol;Acc:HGNC:3041]	 -0.19	

RPH3AL	 rabphilin	3A	like	(without	C2	domains)	[Source:HGNC	
Symbol;Acc:HGNC:10296]	 0.26	

RRAGB	 Ras	related	GTP	binding	B	[Source:HGNC	Symbol;Acc:HGNC:19901]	 -0.32	

SCAMP2	 secretory	carrier	membrane	protein	2	[Source:HGNC	
Symbol;Acc:HGNC:10564]	 0.71	

SLC35B2	 solute	carrier	family	35	member	B2	[Source:HGNC	
Symbol;Acc:HGNC:16872]	 0.29	

SLC35G2	 solute	carrier	family	35	member	G2	[Source:HGNC	
Symbol;Acc:HGNC:28480]	 -0.23	

SNX11	 sorting	nexin	11	[Source:HGNC	Symbol;Acc:HGNC:14975]	 0.46	

ST3GAL1	 ST3	beta-galactoside	alpha-2,3-sialyltransferase	1	[Source:HGNC	
Symbol;Acc:HGNC:10862]	 0.31	

STIM1	 stromal	interaction	molecule	1	[Source:HGNC	
Symbol;Acc:HGNC:11386]	 0.37	

SYBU	 syntabulin	[Source:HGNC	Symbol;Acc:HGNC:26011]	 0.05	
SYN2	 synapsin	II	[Source:HGNC	Symbol;Acc:HGNC:11495]	 0.25	

SYNE1	 spectrin	repeat	containing	nuclear	envelope	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:17089]	 -0.13	

SYTL2	 synaptotagmin	like	2	[Source:HGNC	Symbol;Acc:HGNC:15585]	 -0.49	
TBC1D10
A	

TBC1	domain	family	member	10A	[Source:HGNC	
Symbol;Acc:HGNC:23609]	 0.21	

TBC1D14	 TBC1	domain	family	member	14	[Source:HGNC	
Symbol;Acc:HGNC:29246]	 0.41	

TBC1D16	 TBC1	domain	family	member	16	[Source:HGNC	
Symbol;Acc:HGNC:28356]	 0.38	

TP53	 tumor	protein	p53	[Source:HGNC	Symbol;Acc:HGNC:11998]	 0.28	
UNC93B1	 unc-93	homolog	B1,	TLR	signaling	regulator	[Source:HGNC	 0.27	
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Symbol;Acc:HGNC:13481]	

VPS33B	 VPS33B,	late	endosome	and	lysosome	associated	[Source:HGNC	
Symbol;Acc:HGNC:12712]	 0.27	

VPS53	 VPS53,	GARP	complex	subunit	[Source:HGNC	
Symbol;Acc:HGNC:25608]	 0.06	

YKT6	 YKT6	v-SNARE	homolog	[Source:HGNC	Symbol;Acc:HGNC:16959]	 0.52	

ZFYVE1	 zinc	finger	FYVE-type	containing	1	[Source:HGNC	
Symbol;Acc:HGNC:13180]	 0.27	

ZFYVE21	 zinc	finger	FYVE-type	containing	21	[Source:HGNC	
Symbol;Acc:HGNC:20760]	 0.07	

	
Cons.5	 	 	

AGAP5	 ArfGAP	with	GTPase	domain,	ankyrin	repeat	and	PH	domain	5	
[Source:HGNC	Symbol;Acc:HGNC:23467]	 -0.44	

ANKRD27	 ankyrin	repeat	domain	27	[Source:HGNC	Symbol;Acc:HGNC:25310]	 0.38	

AP3M1	 adaptor	related	protein	complex	3	mu	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:569]	 0.69	

ARHGAP1
7	

Rho	GTPase	activating	protein	17	[Source:HGNC	
Symbol;Acc:HGNC:18239]	 -0.10	

ATG3	 autophagy	related	3	[Source:HGNC	Symbol;Acc:HGNC:20962]	 0.67	
BBS5	 Bardet-Biedl	syndrome	5	[Source:HGNC	Symbol;Acc:HGNC:970]	 -0.38	

BLOC1S2	 biogenesis	of	lysosomal	organelles	complex	1	subunit	2	
[Source:HGNC	Symbol;Acc:HGNC:20984]	 0.50	

BMP1	 bone	morphogenetic	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:1067]	 -0.25	

CCZ1	 CCZ1	homolog,	vacuolar	protein	trafficking	and	biogenesis	
associated	[Source:HGNC	Symbol;Acc:HGNC:21691]	 0.59	

COG1	 component	of	oligomeric	golgi	complex	1	[Source:HGNC	
Symbol;Acc:HGNC:6545]	 -0.08	

COX10	 COX10,	heme	A:farnesyltransferase	cytochrome	c	oxidase	assembly	
factor	[Source:HGNC	Symbol;Acc:HGNC:2260]	 0.56	

CTSF	 cathepsin	F	[Source:HGNC	Symbol;Acc:HGNC:2531]	 -0.41	
CYTH1	 cytohesin	1	[Source:HGNC	Symbol;Acc:HGNC:9501]	 -0.31	
DNM1	 dynamin	1	[Source:HGNC	Symbol;Acc:HGNC:2972]	 -0.33	

DPM1	 dolichyl-phosphate	mannosyltransferase	subunit	1,	catalytic	
[Source:HGNC	Symbol;Acc:HGNC:3005]	 0.48	

DRAM1	 DNA	damage	regulated	autophagy	modulator	1	[Source:HGNC	
Symbol;Acc:HGNC:25645]	 0.17	

EXOC2	 exocyst	complex	component	2	[Source:HGNC	
Symbol;Acc:HGNC:24968]	 0.41	

GDI2	 GDP	dissociation	inhibitor	2	[Source:HGNC	Symbol;Acc:HGNC:4227]	 0.80	
GIT2	 GIT	ArfGAP	2	[Source:HGNC	Symbol;Acc:HGNC:4273]	 0.07	

GNPAT	 glyceronephosphate	O-acyltransferase	[Source:HGNC	
Symbol;Acc:HGNC:4416]	 0.55	

GOLPH3L	 golgi	phosphoprotein	3	like	[Source:HGNC	Symbol;Acc:HGNC:24882]	 0.40	
IFT20	 intraflagellar	transport	20	[Source:HGNC	Symbol;Acc:HGNC:30989]	 -0.16	

INPPL1	 inositol	polyphosphate	phosphatase	like	1	[Source:HGNC	
Symbol;Acc:HGNC:6080]	 -0.49	

KIF16B	 kinesin	family	member	16B	[Source:HGNC	Symbol;Acc:HGNC:15869]	 0.51	
KIF3B	 kinesin	family	member	3B	[Source:HGNC	Symbol;Acc:HGNC:6320]	 0.33	
LBR	 lamin	B	receptor	[Source:HGNC	Symbol;Acc:HGNC:6518]	 0.34	
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MINPP1	 multiple	inositol-polyphosphate	phosphatase	1	[Source:HGNC	
Symbol;Acc:HGNC:7102]	 0.40	

MKKS	 McKusick-Kaufman	syndrome	[Source:HGNC	
Symbol;Acc:HGNC:7108]	 0.56	

MYO18A	 myosin	XVIIIA	[Source:HGNC	Symbol;Acc:HGNC:31104]	 0.00	
MYO1B	 myosin	IB	[Source:HGNC	Symbol;Acc:HGNC:7596]	 0.24	
NDRG2	 NDRG	family	member	2	[Source:HGNC	Symbol;Acc:HGNC:14460]	 -0.23	
OBSL1	 obscurin	like	1	[Source:HGNC	Symbol;Acc:HGNC:29092]	 -0.49	

PEX12	 peroxisomal	biogenesis	factor	12	[Source:HGNC	
Symbol;Acc:HGNC:8854]	 0.27	

PI4KB	 phosphatidylinositol	4-kinase	beta	[Source:HGNC	
Symbol;Acc:HGNC:8984]	 -0.40	

PIGZ	 phosphatidylinositol	glycan	anchor	biosynthesis	class	Z	
[Source:HGNC	Symbol;Acc:HGNC:30596]	 -0.30	

PLSCR1	 phospholipid	scramblase	1	[Source:HGNC	Symbol;Acc:HGNC:9092]	 0.22	

POMT1	 protein	O-mannosyltransferase	1	[Source:HGNC	
Symbol;Acc:HGNC:9202]	 -0.65	

RAB10	 RAB10,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9759]	 0.80	

RFTN1	 raftlin,	lipid	raft	linker	1	[Source:HGNC	Symbol;Acc:HGNC:30278]	 -0.11	
RTN3	 reticulon	3	[Source:HGNC	Symbol;Acc:HGNC:10469]	 0.60	
SNX2	 sorting	nexin	2	[Source:HGNC	Symbol;Acc:HGNC:11173]	 0.65	
SNX3	 sorting	nexin	3	[Source:HGNC	Symbol;Acc:HGNC:11174]	 0.61	
SNX5	 sorting	nexin	5	[Source:HGNC	Symbol;Acc:HGNC:14969]	 0.39	
SNX6	 sorting	nexin	6	[Source:HGNC	Symbol;Acc:HGNC:14970]	 0.68	
SNX7	 sorting	nexin	7	[Source:HGNC	Symbol;Acc:HGNC:14971]	 0.45	
STX6	 syntaxin	6	[Source:HGNC	Symbol;Acc:HGNC:11441]	 0.32	

SYNCRIP	 synaptotagmin	binding	cytoplasmic	RNA	interacting	protein	
[Source:HGNC	Symbol;Acc:HGNC:16918]	 0.72	

TBC1D8	 TBC1	domain	family	member	8	[Source:HGNC	
Symbol;Acc:HGNC:17791]	 -0.21	

TK2	 thymidine	kinase	2,	mitochondrial	[Source:HGNC	
Symbol;Acc:HGNC:11831]	 0.00	

TOR1B	 torsin	family	1	member	B	[Source:HGNC	Symbol;Acc:HGNC:11995]	 0.42	

ULK1	 unc-51	like	autophagy	activating	kinase	1	[Source:HGNC	
Symbol;Acc:HGNC:12558]	 -0.45	

VAPB	 VAMP	associated	protein	B	and	C	[Source:HGNC	
Symbol;Acc:HGNC:12649]	 0.49	

VPS29	 VPS29,	retromer	complex	component	[Source:HGNC	
Symbol;Acc:HGNC:14340]	 0.44	

VPS35	 VPS35,	retromer	complex	component	[Source:HGNC	
Symbol;Acc:HGNC:13487]	 0.76	

VTI1A	 vesicle	transport	through	interaction	with	t-SNAREs	1A	
[Source:HGNC	Symbol;Acc:HGNC:17792]	 0.48	

	
Cons.6*	 	 	

AP1AR	 adaptor	related	protein	complex	1	associated	regulatory	protein	
[Source:HGNC	Symbol;Acc:HGNC:28808]	 0.60	

AP3S1	 adaptor	related	protein	complex	3	sigma	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:2013]	 0.57	

AP4S1	 adaptor	related	protein	complex	4	sigma	1	subunit	[Source:HGNC	 0.30	
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Symbol;Acc:HGNC:575]	

ARL14EP	 ADP	ribosylation	factor	like	GTPase	14	effector	protein	
[Source:HGNC	Symbol;Acc:HGNC:26798]	 0.50	

ARL15	 ADP	ribosylation	factor	like	GTPase	15	[Source:HGNC	
Symbol;Acc:HGNC:25945]	 0.30	

ARL5A	 ADP	ribosylation	factor	like	GTPase	5A	[Source:HGNC	
Symbol;Acc:HGNC:696]	 0.69	

ARL6IP1	 ADP	ribosylation	factor	like	GTPase	6	interacting	protein	1	
[Source:HGNC	Symbol;Acc:HGNC:697]	 0.58	

ARL8B	 ADP	ribosylation	factor	like	GTPase	8B	[Source:HGNC	
Symbol;Acc:HGNC:25564]	 0.81	

ARRB1	 arrestin	beta	1	[Source:HGNC	Symbol;Acc:HGNC:711]	 -0.08	
ATG5	 autophagy	related	5	[Source:HGNC	Symbol;Acc:HGNC:589]	 0.71	
ATL2	 atlastin	GTPase	2	[Source:HGNC	Symbol;Acc:HGNC:24047]	 0.56	

ATP6V1C1	 ATPase	H+	transporting	V1	subunit	C1	[Source:HGNC	
Symbol;Acc:HGNC:856]	 0.58	

ATP6V1G
1	

ATPase	H+	transporting	V1	subunit	G1	[Source:HGNC	
Symbol;Acc:HGNC:864]	 0.56	

BLOC1S6	 biogenesis	of	lysosomal	organelles	complex	1	subunit	6	
[Source:HGNC	Symbol;Acc:HGNC:8549]	 0.70	

CCZ1B	 CCZ1	homolog	B,	vacuolar	protein	trafficking	and	biogenesis	
associated	[Source:HGNC	Symbol;Acc:HGNC:21717]	 0.59	

CD164	 CD164	molecule	[Source:HGNC	Symbol;Acc:HGNC:1632]	 0.65	
CHM	 CHM,	Rab	escort	protein	1	[Source:HGNC	Symbol;Acc:HGNC:1940]	 0.72	

CHML	 CHM	like,	Rab	escort	protein	2	[Source:HGNC	
Symbol;Acc:HGNC:1941]	 0.39	

CHMP1B	 charged	multivesicular	body	protein	1B	[Source:HGNC	
Symbol;Acc:HGNC:24287]	 0.45	

CHMP2B	 charged	multivesicular	body	protein	2B	[Source:HGNC	
Symbol;Acc:HGNC:24537]	 0.84	

CHMP5	 charged	multivesicular	body	protein	5	[Source:HGNC	
Symbol;Acc:HGNC:26942]	 0.61	

CLCN2	 chloride	voltage-gated	channel	2	[Source:HGNC	
Symbol;Acc:HGNC:2020]	 -0.43	

DYM	 dymeclin	[Source:HGNC	Symbol;Acc:HGNC:21317]	 0.54	

EMC2	 ER	membrane	protein	complex	subunit	2	[Source:HGNC	
Symbol;Acc:HGNC:28963]	 0.67	

ERO1L	 #N/A	 0.42	
ESYT2	 extended	synaptotagmin	2	[Source:HGNC	Symbol;Acc:HGNC:22211]	 0.42	
GABARAP
L2	

GABA	type	A	receptor	associated	protein	like	2	[Source:HGNC	
Symbol;Acc:HGNC:13291]	 0.51	

GALNS	 galactosamine	(N-acetyl)-6-sulfatase	[Source:HGNC	
Symbol;Acc:HGNC:4122]	 -0.38	

GOLGA7	 golgin	A7	[Source:HGNC	Symbol;Acc:HGNC:24876]	 0.69	

NECAP1	 NECAP	endocytosis	associated	1	[Source:HGNC	
Symbol;Acc:HGNC:24539]	 0.40	

NPHP4	 nephrocystin	4	[Source:HGNC	Symbol;Acc:HGNC:19104]	 -0.27	

PEX13	 peroxisomal	biogenesis	factor	13	[Source:HGNC	
Symbol;Acc:HGNC:8855]	 0.53	

PEX2	 peroxisomal	biogenesis	factor	2	[Source:HGNC	
Symbol;Acc:HGNC:9717]	 0.50	
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PIGA	 phosphatidylinositol	glycan	anchor	biosynthesis	class	A	
[Source:HGNC	Symbol;Acc:HGNC:8957]	 0.37	

PLEKHF2	 pleckstrin	homology	and	FYVE	domain	containing	2	[Source:HGNC	
Symbol;Acc:HGNC:20757]	 0.49	

PRKCI	 protein	kinase	C	iota	[Source:HGNC	Symbol;Acc:HGNC:9404]	 0.61	

RAB11A	 RAB11A,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9760]	 0.66	

RAB14	 RAB14,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:16524]	 0.79	

RAB18	 RAB18,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:14244]	 0.87	

RAB2A	 RAB2A,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9763]	 0.79	

RAB3GAP
2	

RAB3	GTPase	activating	non-catalytic	protein	subunit	2	
[Source:HGNC	Symbol;Acc:HGNC:17168]	 0.71	

RAB6A	 RAB6A,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9786]	 0.82	

RAB9A	 RAB9A,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9792]	 0.49	

RABGAP1	 RAB	GTPase	activating	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:17155]	 0.42	

RRM2B	 ribonucleotide	reductase	regulatory	TP53	inducible	subunit	M2B	
[Source:HGNC	Symbol;Acc:HGNC:17296]	 0.59	

SCAMP1	 secretory	carrier	membrane	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:10563]	 0.75	

SGMS1	 sphingomyelin	synthase	1	[Source:HGNC	Symbol;Acc:HGNC:29799]	 0.56	

SNAP23	 synaptosome	associated	protein	23	[Source:HGNC	
Symbol;Acc:HGNC:11131]	 0.42	

SNX16	 sorting	nexin	16	[Source:HGNC	Symbol;Acc:HGNC:14980]	 0.47	
SNX25	 sorting	nexin	25	[Source:HGNC	Symbol;Acc:HGNC:21883]	 0.49	
SNX4	 sorting	nexin	4	[Source:HGNC	Symbol;Acc:HGNC:11175]	 0.62	
TAPBPL	 TAP	binding	protein	like	[Source:HGNC	Symbol;Acc:HGNC:30683]	 -0.30	

VAMP7	 vesicle	associated	membrane	protein	7	[Source:HGNC	
Symbol;Acc:HGNC:11486]	 0.79	

VAPA	 VAMP	associated	protein	A	[Source:HGNC	Symbol;Acc:HGNC:12648]	 0.69	

VPS26A	 VPS26,	retromer	complex	component	A	[Source:HGNC	
Symbol;Acc:HGNC:12711]	 0.84	

VPS41	 VPS41,	HOPS	complex	subunit	[Source:HGNC	
Symbol;Acc:HGNC:12713]	 0.51	

YIPF6	 Yip1	domain	family	member	6	[Source:HGNC	
Symbol;Acc:HGNC:28304]	 0.65	

	
Cons.7	 	 	
AGA	 aspartylglucosaminidase	[Source:HGNC	Symbol;Acc:HGNC:318]	 0.58	

AP5M1	 adaptor	related	protein	complex	5	mu	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:20192]	 0.72	

ARL4A	 ADP	ribosylation	factor	like	GTPase	4A	[Source:HGNC	
Symbol;Acc:HGNC:695]	 0.09	

ARSD	 arylsulfatase	D	[Source:HGNC	Symbol;Acc:HGNC:717]	 0.34	

ASAH1	 N-acylsphingosine	amidohydrolase	1	[Source:HGNC	
Symbol;Acc:HGNC:735]	 0.65	
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ATG4C	 autophagy	related	4C	cysteine	peptidase	[Source:HGNC	
Symbol;Acc:HGNC:16040]	 0.46	

ATP6V1A	 ATPase	H+	transporting	V1	subunit	A	[Source:HGNC	
Symbol;Acc:HGNC:851]	 0.82	

ATP8B1	 ATPase	phospholipid	transporting	8B1	[Source:HGNC	
Symbol;Acc:HGNC:3706]	 0.39	

CD34	 CD34	molecule	[Source:HGNC	Symbol;Acc:HGNC:1662]	 -0.20	

CLCN3	 chloride	voltage-gated	channel	3	[Source:HGNC	
Symbol;Acc:HGNC:2021]	 0.81	

CLCN4	 chloride	voltage-gated	channel	4	[Source:HGNC	
Symbol;Acc:HGNC:2022]	 0.32	

CLCN6	 chloride	voltage-gated	channel	6	[Source:HGNC	
Symbol;Acc:HGNC:2024]	 -0.40	

COX15	 COX15,	cytochrome	c	oxidase	assembly	homolog	[Source:HGNC	
Symbol;Acc:HGNC:2263]	 0.56	

ERLIN2	 ER	lipid	raft	associated	2	[Source:HGNC	Symbol;Acc:HGNC:1356]	 0.72	

FGD5	 FYVE,	RhoGEF	and	PH	domain	containing	5	[Source:HGNC	
Symbol;Acc:HGNC:19117]	 -0.26	

FUCA1	 alpha-L-fucosidase	1	[Source:HGNC	Symbol;Acc:HGNC:4006]	 0.47	
GALC	 galactosylceramidase	[Source:HGNC	Symbol;Acc:HGNC:4115]	 0.37	
GDI1	 GDP	dissociation	inhibitor	1	[Source:HGNC	Symbol;Acc:HGNC:4226]	 -0.60	
GLIS2	 GLIS	family	zinc	finger	2	[Source:HGNC	Symbol;Acc:HGNC:29450]	 -0.41	

GNPTAB	 N-acetylglucosamine-1-phosphate	transferase	alpha	and	beta	
subunits	[Source:HGNC	Symbol;Acc:HGNC:29670]	 0.53	

HSD17B4	 hydroxysteroid	17-beta	dehydrogenase	4	[Source:HGNC	
Symbol;Acc:HGNC:5213]	 0.63	

ITPR3	 inositol	1,4,5-trisphosphate	receptor	type	3	[Source:HGNC	
Symbol;Acc:HGNC:6182]	 -0.21	

KIF21A	 kinesin	family	member	21A	[Source:HGNC	Symbol;Acc:HGNC:19349]	 0.42	

KIFAP3	 kinesin	associated	protein	3	[Source:HGNC	
Symbol;Acc:HGNC:17060]	 0.39	

LAMP2	 lysosomal	associated	membrane	protein	2	[Source:HGNC	
Symbol;Acc:HGNC:6501]	 0.64	

LRBA	 LPS	responsive	beige-like	anchor	protein	[Source:HGNC	
Symbol;Acc:HGNC:1742]	 0.60	

LRP1	 LDL	receptor	related	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:6692]	 -0.37	

MIA3	 MIA	family	member	3,	ER	export	factor	[Source:HGNC	
Symbol;Acc:HGNC:24008]	 0.48	

NSF	 N-ethylmaleimide	sensitive	factor,	vesicle	fusing	ATPase	
[Source:HGNC	Symbol;Acc:HGNC:8016]	 0.61	

OSBPL5	 oxysterol	binding	protein	like	5	[Source:HGNC	
Symbol;Acc:HGNC:16392]	 -0.46	

PEX7	 peroxisomal	biogenesis	factor	7	[Source:HGNC	
Symbol;Acc:HGNC:8860]	 0.56	

PIGM	 phosphatidylinositol	glycan	anchor	biosynthesis	class	M	
[Source:HGNC	Symbol;Acc:HGNC:18858]	 0.52	

PITPNM2	 phosphatidylinositol	transfer	protein	membrane	associated	2	
[Source:HGNC	Symbol;Acc:HGNC:21044]	 -0.44	

PLA2G4A	 phospholipase	A2	group	IVA	[Source:HGNC	Symbol;Acc:HGNC:9035]	 0.19	
PLCD4	 phospholipase	C	delta	4	[Source:HGNC	Symbol;Acc:HGNC:9062]	 -0.11	
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RAB11FIP
3	

RAB11	family	interacting	protein	3	[Source:HGNC	
Symbol;Acc:HGNC:17224]	 -0.61	

RAB4A	 RAB4A,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9781]	 0.37	

RRAGD	 Ras	related	GTP	binding	D	[Source:HGNC	Symbol;Acc:HGNC:19903]	 0.50	

SGPL1	 sphingosine-1-phosphate	lyase	1	[Source:HGNC	
Symbol;Acc:HGNC:10817]	 0.43	

SNX18	 sorting	nexin	18	[Source:HGNC	Symbol;Acc:HGNC:19245]	 0.36	
SNX24	 sorting	nexin	24	[Source:HGNC	Symbol;Acc:HGNC:21533]	 0.35	

SNX30	 sorting	nexin	family	member	30	[Source:HGNC	
Symbol;Acc:HGNC:23685]	 0.31	

SRC	 SRC	proto-oncogene,	non-receptor	tyrosine	kinase	[Source:HGNC	
Symbol;Acc:HGNC:11283]	 -0.45	

TRAK1	 trafficking	kinesin	protein	1	[Source:HGNC	Symbol;Acc:HGNC:29947]	 0.23	

TRIM32	 tripartite	motif	containing	32	[Source:HGNC	
Symbol;Acc:HGNC:16380]	 0.15	

TRIP10	 thyroid	hormone	receptor	interactor	10	[Source:HGNC	
Symbol;Acc:HGNC:12304]	 -0.53	

TTC8	 tetratricopeptide	repeat	domain	8	[Source:HGNC	
Symbol;Acc:HGNC:20087]	 0.34	

VPS45	 vacuolar	protein	sorting	45	homolog	[Source:HGNC	
Symbol;Acc:HGNC:14579]	 0.23	

	
Cons.8*	 	 	
ARF4	 ADP	ribosylation	factor	4	[Source:HGNC	Symbol;Acc:HGNC:655]	 0.89	

ARFGAP3	 ADP	ribosylation	factor	GTPase	activating	protein	3	[Source:HGNC	
Symbol;Acc:HGNC:661]	 0.63	

ARL1	 ADP	ribosylation	factor	like	GTPase	1	[Source:HGNC	
Symbol;Acc:HGNC:692]	 0.74	

BET1	 Bet1	golgi	vesicular	membrane	trafficking	protein	[Source:HGNC	
Symbol;Acc:HGNC:14562]	 0.40	

CALU	 calumenin	[Source:HGNC	Symbol;Acc:HGNC:1458]	 0.73	
CANX	 calnexin	[Source:HGNC	Symbol;Acc:HGNC:1473]	 0.77	
CLCC1	 chloride	channel	CLIC	like	1	[Source:HGNC	Symbol;Acc:HGNC:29675]	 0.37	

CLCN5	 chloride	voltage-gated	channel	5	[Source:HGNC	
Symbol;Acc:HGNC:2023]	 0.28	

CREB3L2	 cAMP	responsive	element	binding	protein	3	like	2	[Source:HGNC	
Symbol;Acc:HGNC:23720]	 0.45	

DERL2	 derlin	2	[Source:HGNC	Symbol;Acc:HGNC:17943]	 0.63	

DNAJB9	 DnaJ	heat	shock	protein	family	(Hsp40)	member	B9	[Source:HGNC	
Symbol;Acc:HGNC:6968]	 0.73	

DNAJC10	 DnaJ	heat	shock	protein	family	(Hsp40)	member	C10	[Source:HGNC	
Symbol;Acc:HGNC:24637]	 0.57	

EIF2AK3	 eukaryotic	translation	initiation	factor	2	alpha	kinase	3	
[Source:HGNC	Symbol;Acc:HGNC:3255]	 0.67	

ELOVL5	 ELOVL	fatty	acid	elongase	5	[Source:HGNC	Symbol;Acc:HGNC:21308]	 0.48	
ELOVL6	 ELOVL	fatty	acid	elongase	6	[Source:HGNC	Symbol;Acc:HGNC:15829]	 0.31	

ERP44	 endoplasmic	reticulum	protein	44	[Source:HGNC	
Symbol;Acc:HGNC:18311]	 0.81	

EXOC3	 exocyst	complex	component	3	[Source:HGNC	
Symbol;Acc:HGNC:30378]	 -0.50	
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GAS8	 growth	arrest	specific	8	[Source:HGNC	Symbol;Acc:HGNC:4166]	 -0.24	

GNPNAT1	 glucosamine-phosphate	N-acetyltransferase	1	[Source:HGNC	
Symbol;Acc:HGNC:19980]	 0.63	

IQSEC1	 IQ	motif	and	Sec7	domain	1	[Source:HGNC	Symbol;Acc:HGNC:29112]	 -0.41	

KDELR2	 KDEL	endoplasmic	reticulum	protein	retention	receptor	2	
[Source:HGNC	Symbol;Acc:HGNC:6305]	 0.85	

LMAN1	 lectin,	mannose	binding	1	[Source:HGNC	Symbol;Acc:HGNC:6631]	 0.82	

MCFD2	 multiple	coagulation	factor	deficiency	2	[Source:HGNC	
Symbol;Acc:HGNC:18451]	 0.70	

MGAT2	
mannosyl	(alpha-1,6-)-glycoprotein	beta-1,2-N-
acetylglucosaminyltransferase	[Source:HGNC	
Symbol;Acc:HGNC:7045]	

0.71	

P4HA1	 prolyl	4-hydroxylase	subunit	alpha	1	[Source:HGNC	
Symbol;Acc:HGNC:8546]	 0.31	

PACS1	 phosphofurin	acidic	cluster	sorting	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:30032]	 -0.15	

PAPSS2	 3'-phosphoadenosine	5'-phosphosulfate	synthase	2	[Source:HGNC	
Symbol;Acc:HGNC:8604]	 0.28	

PIK3CD	 phosphatidylinositol-4,5-bisphosphate	3-kinase	catalytic	subunit	
delta	[Source:HGNC	Symbol;Acc:HGNC:8977]	 -0.30	

PLOD2	 procollagen-lysine,2-oxoglutarate	5-dioxygenase	2	[Source:HGNC	
Symbol;Acc:HGNC:9082]	 0.42	

RAB27A	 RAB27A,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9766]	 0.50	

RPGRIP1L	 RPGRIP1	like	[Source:HGNC	Symbol;Acc:HGNC:29168]	 0.23	

SEC23A	 Sec23	homolog	A,	coat	complex	II	component	[Source:HGNC	
Symbol;Acc:HGNC:10701]	 0.65	

SEC24D	 SEC24	homolog	D,	COPII	coat	complex	component	[Source:HGNC	
Symbol;Acc:HGNC:10706]	 0.76	

SEC31A	 SEC31	homolog	A,	COPII	coat	complex	component	[Source:HGNC	
Symbol;Acc:HGNC:17052]	 0.73	

SERP1	 stress	associated	endoplasmic	reticulum	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:10759]	 0.73	

SLC35B4	 solute	carrier	family	35	member	B4	[Source:HGNC	
Symbol;Acc:HGNC:20584]	 0.34	

SPCS3	 signal	peptidase	complex	subunit	3	[Source:HGNC	
Symbol;Acc:HGNC:26212]	 0.79	

SSR1	 signal	sequence	receptor	subunit	1	[Source:HGNC	
Symbol;Acc:HGNC:11323]	 0.87	

STX1B	 syntaxin	1B	[Source:HGNC	Symbol;Acc:HGNC:18539]	 -0.45	

TBC1D17	 TBC1	domain	family	member	17	[Source:HGNC	
Symbol;Acc:HGNC:25699]	 -0.66	

TMED10	 transmembrane	p24	trafficking	protein	10	[Source:HGNC	
Symbol;Acc:HGNC:16998]	 0.80	

TMED2	 transmembrane	p24	trafficking	protein	2	[Source:HGNC	
Symbol;Acc:HGNC:16996]	 0.92	

TMED5	 transmembrane	p24	trafficking	protein	5	[Source:HGNC	
Symbol;Acc:HGNC:24251]	 0.70	

VMA21	 VMA21,	vacuolar	ATPase	assembly	factor	[Source:HGNC	
Symbol;Acc:HGNC:22082]	 0.54	

VPS11	 VPS11,	CORVET/HOPS	core	subunit	[Source:HGNC	 -0.35	
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Symbol;Acc:HGNC:14583]	
	
Cons.9*	 	 	

AP1S1	 adaptor	related	protein	complex	1	sigma	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:559]	 0.72	

AP2S1	 adaptor	related	protein	complex	2	sigma	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:565]	 0.80	

AP5S1	 adaptor	related	protein	complex	5	sigma	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:15875]	 0.63	

ARL10	 ADP	ribosylation	factor	like	GTPase	10	[Source:HGNC	
Symbol;Acc:HGNC:22042]	 -0.50	

ARL3	 ADP	ribosylation	factor	like	GTPase	3	[Source:HGNC	
Symbol;Acc:HGNC:694]	 0.24	

ARPC4	 actin	related	protein	2/3	complex	subunit	4	[Source:HGNC	
Symbol;Acc:HGNC:707]	 0.79	

ATP6V0D
1	

ATPase	H+	transporting	V0	subunit	d1	[Source:HGNC	
Symbol;Acc:HGNC:13724]	 0.76	

BLOC1S4	 biogenesis	of	lysosomal	organelles	complex	1	subunit	4	
[Source:HGNC	Symbol;Acc:HGNC:24206]	 0.43	

CHMP2A	 charged	multivesicular	body	protein	2A	[Source:HGNC	
Symbol;Acc:HGNC:30216]	 0.77	

CHMP6	 charged	multivesicular	body	protein	6	[Source:HGNC	
Symbol;Acc:HGNC:25675]	 0.65	

CTSZ	 cathepsin	Z	[Source:HGNC	Symbol;Acc:HGNC:2547]	 0.39	

EHBP1	 EH	domain	binding	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:29144]	 -0.37	

ETHE1	 ETHE1,	persulfide	dioxygenase	[Source:HGNC	
Symbol;Acc:HGNC:23287]	 0.45	

FXN	 frataxin	[Source:HGNC	Symbol;Acc:HGNC:3951]	 0.33	

INPP4A	 inositol	polyphosphate-4-phosphatase	type	I	A	[Source:HGNC	
Symbol;Acc:HGNC:6074]	 -0.39	

INVS	 inversin	[Source:HGNC	Symbol;Acc:HGNC:17870]	 -0.43	

LAMTOR1	 late	endosomal/lysosomal	adaptor,	MAPK	and	MTOR	activator	1	
[Source:HGNC	Symbol;Acc:HGNC:26068]	 0.85	

LRP6	 LDL	receptor	related	protein	6	[Source:HGNC	
Symbol;Acc:HGNC:6698]	 -0.48	

MPI	 mannose	phosphate	isomerase	[Source:HGNC	
Symbol;Acc:HGNC:7216]	 0.43	

NDUFS2	 NADH:ubiquinone	oxidoreductase	core	subunit	S2	[Source:HGNC	
Symbol;Acc:HGNC:7708]	 0.49	

NDUFS3	 NADH:ubiquinone	oxidoreductase	core	subunit	S3	[Source:HGNC	
Symbol;Acc:HGNC:7710]	 0.74	

OSBPL10	 oxysterol	binding	protein	like	10	[Source:HGNC	
Symbol;Acc:HGNC:16395]	 -0.27	

PGAP1	 post-GPI	attachment	to	proteins	1	[Source:HGNC	
Symbol;Acc:HGNC:25712]	 -0.38	

PLEKHA8	 pleckstrin	homology	domain	containing	A8	[Source:HGNC	
Symbol;Acc:HGNC:30037]	 -0.47	

RAB13	 RAB13,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9762]	 0.35	

RAB33B	 RAB33B,	member	RAS	oncogene	family	[Source:HGNC	 -0.52	
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Symbol;Acc:HGNC:16075]	

SCO2	 SCO2,	cytochrome	c	oxidase	assembly	protein	[Source:HGNC	
Symbol;Acc:HGNC:10604]	 0.39	

SLC36A1	 solute	carrier	family	36	member	1	[Source:HGNC	
Symbol;Acc:HGNC:18761]	 0.25	

SNF8	 SNF8,	ESCRT-II	complex	subunit	[Source:HGNC	
Symbol;Acc:HGNC:17028]	 0.76	

SNX12	 sorting	nexin	12	[Source:HGNC	Symbol;Acc:HGNC:14976]	 0.50	
SNX17	 sorting	nexin	17	[Source:HGNC	Symbol;Acc:HGNC:14979]	 0.71	
STX2	 syntaxin	2	[Source:HGNC	Symbol;Acc:HGNC:3403]	 -0.36	
STX8	 syntaxin	8	[Source:HGNC	Symbol;Acc:HGNC:11443]	 0.27	
STXBP2	 syntaxin	binding	protein	2	[Source:HGNC	Symbol;Acc:HGNC:11445]	 0.59	

SURF1	 SURF1,	cytochrome	c	oxidase	assembly	factor	[Source:HGNC	
Symbol;Acc:HGNC:11474]	 0.52	

TRAPPC1	 trafficking	protein	particle	complex	1	[Source:HGNC	
Symbol;Acc:HGNC:19894]	 0.79	

TRAPPC3	 trafficking	protein	particle	complex	3	[Source:HGNC	
Symbol;Acc:HGNC:19942]	 0.45	

VAMP8	 vesicle	associated	membrane	protein	8	[Source:HGNC	
Symbol;Acc:HGNC:12647]	 0.62	

VPS25	 vacuolar	protein	sorting	25	homolog	[Source:HGNC	
Symbol;Acc:HGNC:28122]	 0.78	

VPS72	 vacuolar	protein	sorting	72	homolog	[Source:HGNC	
Symbol;Acc:HGNC:11644]	 0.27	

VTI1B	 vesicle	transport	through	interaction	with	t-SNAREs	1B	
[Source:HGNC	Symbol;Acc:HGNC:17793]	 0.46	

	
Cons.10	 	 	

ACTR1A	 ARP1	actin	related	protein	1	homolog	A	[Source:HGNC	
Symbol;Acc:HGNC:167]	 0.80	

AP1M1	 adaptor	related	protein	complex	1	mu	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:13667]	 0.72	

AP2A1	 adaptor	related	protein	complex	2	alpha	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:561]	 0.74	

AP2M1	 adaptor	related	protein	complex	2	mu	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:564]	 0.67	

ARAP2	 ArfGAP	with	RhoGAP	domain,	ankyrin	repeat	and	PH	domain	2	
[Source:HGNC	Symbol;Acc:HGNC:16924]	 -0.44	

ATG2A	 autophagy	related	2A	[Source:HGNC	Symbol;Acc:HGNC:29028]	 0.35	
ATG9A	 autophagy	related	9A	[Source:HGNC	Symbol;Acc:HGNC:22408]	 0.60	

CHMP4B	 charged	multivesicular	body	protein	4B	[Source:HGNC	
Symbol;Acc:HGNC:16171]	 0.47	

CHMP7	 charged	multivesicular	body	protein	7	[Source:HGNC	
Symbol;Acc:HGNC:28439]	 0.43	

CHST3	 carbohydrate	sulfotransferase	3	[Source:HGNC	
Symbol;Acc:HGNC:1971]	 0.47	

CRYAB	 crystallin	alpha	B	[Source:HGNC	Symbol;Acc:HGNC:2389]	 0.36	
CTSO	 cathepsin	O	[Source:HGNC	Symbol;Acc:HGNC:2542]	 -0.46	
EHD2	 EH	domain	containing	2	[Source:HGNC	Symbol;Acc:HGNC:3243]	 0.53	
FLOT1	 flotillin	1	[Source:HGNC	Symbol;Acc:HGNC:3757]	 0.42	
GSN	 gelsolin	[Source:HGNC	Symbol;Acc:HGNC:4620]	 0.37	
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HIP1	 huntingtin	interacting	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:4913]	 0.40	

HYAL2	 hyaluronoglucosaminidase	2	[Source:HGNC	Symbol;Acc:HGNC:5321]	 0.42	

INPP5F	 inositol	polyphosphate-5-phosphatase	F	[Source:HGNC	
Symbol;Acc:HGNC:17054]	 0.01	

MCOLN1	 mucolipin	1	[Source:HGNC	Symbol;Acc:HGNC:13356]	 0.43	
MYO1C	 myosin	IC	[Source:HGNC	Symbol;Acc:HGNC:7597]	 0.50	

OSBPL3	 oxysterol	binding	protein	like	3	[Source:HGNC	
Symbol;Acc:HGNC:16370]	 -0.30	

PI4KA	 phosphatidylinositol	4-kinase	alpha	[Source:HGNC	
Symbol;Acc:HGNC:8983]	 0.51	

PIP5K1C	 phosphatidylinositol-4-phosphate	5-kinase	type	1	gamma	
[Source:HGNC	Symbol;Acc:HGNC:8996]	 0.62	

PITPNA	 phosphatidylinositol	transfer	protein	alpha	[Source:HGNC	
Symbol;Acc:HGNC:9001]	 0.40	

POLG	 DNA	polymerase	gamma,	catalytic	subunit	[Source:HGNC	
Symbol;Acc:HGNC:9179]	 0.37	

RAB35	 RAB35,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9774]	 0.64	

RAB3D	 RAB3D,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9779]	 0.08	

RHOB	 ras	homolog	family	member	B	[Source:HGNC	Symbol;Acc:HGNC:668]	 0.43	
RIN3	 Ras	and	Rab	interactor	3	[Source:HGNC	Symbol;Acc:HGNC:18751]	 0.46	
SCYL1	 SCY1	like	pseudokinase	1	[Source:HGNC	Symbol;Acc:HGNC:14372]	 0.76	
SNX15	 sorting	nexin	15	[Source:HGNC	Symbol;Acc:HGNC:14978]	 0.48	

STIM2	 stromal	interaction	molecule	2	[Source:HGNC	
Symbol;Acc:HGNC:19205]	 -0.47	

SYT11	 synaptotagmin	11	[Source:HGNC	Symbol;Acc:HGNC:19239]	 0.17	

TBC1D25	 TBC1	domain	family	member	25	[Source:HGNC	
Symbol;Acc:HGNC:8092]	 0.54	

TRAPPC12	 trafficking	protein	particle	complex	12	[Source:HGNC	
Symbol;Acc:HGNC:24284]	 0.37	

UNC45A	 unc-45	myosin	chaperone	A	[Source:HGNC	
Symbol;Acc:HGNC:30594]	 0.54	

WFS1	 wolframin	ER	transmembrane	glycoprotein	[Source:HGNC	
Symbol;Acc:HGNC:12762]	 0.46	

XYLT1	 xylosyltransferase	1	[Source:HGNC	Symbol;Acc:HGNC:15516]	 0.39	
	
Cons.11	 	 	

ACBD3	 acyl-CoA	binding	domain	containing	3	[Source:HGNC	
Symbol;Acc:HGNC:15453]	 0.75	

AP4M1	 adaptor	related	protein	complex	4	mu	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:574]	 -0.49	

ARAP3	 ArfGAP	with	RhoGAP	domain,	ankyrin	repeat	and	PH	domain	3	
[Source:HGNC	Symbol;Acc:HGNC:24097]	 -0.31	

ASAP3	 ArfGAP	with	SH3	domain,	ankyrin	repeat	and	PH	domain	3	
[Source:HGNC	Symbol;Acc:HGNC:14987]	 -0.20	

ATP6V0A
2	

ATPase	H+	transporting	V0	subunit	a2	[Source:HGNC	
Symbol;Acc:HGNC:18481]	 0.54	

C1GALT1	 core	1	synthase,	glycoprotein-N-acetylgalactosamine	3-beta-
galactosyltransferase	1	[Source:HGNC	Symbol;Acc:HGNC:24337]	 0.40	
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COG4	 component	of	oligomeric	golgi	complex	4	[Source:HGNC	
Symbol;Acc:HGNC:18620]	 -0.55	

DGKZ	 diacylglycerol	kinase	zeta	[Source:HGNC	Symbol;Acc:HGNC:2857]	 -0.46	

GALT	 galactose-1-phosphate	uridylyltransferase	[Source:HGNC	
Symbol;Acc:HGNC:4135]	 -0.71	

GOLT1B	 golgi	transport	1B	[Source:HGNC	Symbol;Acc:HGNC:20175]	 0.70	

HSPA13	 heat	shock	protein	family	A	(Hsp70)	member	13	[Source:HGNC	
Symbol;Acc:HGNC:11375]	 0.75	

IQSEC2	 IQ	motif	and	Sec7	domain	2	[Source:HGNC	Symbol;Acc:HGNC:29059]	 -0.47	

KDSR	 3-ketodihydrosphingosine	reductase	[Source:HGNC	
Symbol;Acc:HGNC:4021]	 0.52	

MAN1A1	 mannosidase	alpha	class	1A	member	1	[Source:HGNC	
Symbol;Acc:HGNC:6821]	 0.39	

MICAL1	 microtubule	associated	monooxygenase,	calponin	and	LIM	domain	
containing	1	[Source:HGNC	Symbol;Acc:HGNC:20619]	 -0.22	

MKS1	 Meckel	syndrome,	type	1	[Source:HGNC	Symbol;Acc:HGNC:7121]	 -0.52	

OCRL	 OCRL,	inositol	polyphosphate-5-phosphatase	[Source:HGNC	
Symbol;Acc:HGNC:8108]	 0.37	

PACS2	 phosphofurin	acidic	cluster	sorting	protein	2	[Source:HGNC	
Symbol;Acc:HGNC:23794]	 -0.52	

PEX6	 peroxisomal	biogenesis	factor	6	[Source:HGNC	
Symbol;Acc:HGNC:8859]	 -0.43	

PIGH	 phosphatidylinositol	glycan	anchor	biosynthesis	class	H	
[Source:HGNC	Symbol;Acc:HGNC:8964]	 0.33	

PPAP2B	 #N/A	 0.40	

RABGGTB	 Rab	geranylgeranyltransferase	beta	subunit	[Source:HGNC	
Symbol;Acc:HGNC:9796]	 0.48	

RCN2	 reticulocalbin	2	[Source:HGNC	Symbol;Acc:HGNC:9935]	 0.36	

SEC63	 SEC63	homolog,	protein	translocation	regulator	[Source:HGNC	
Symbol;Acc:HGNC:21082]	 0.78	

SEH1L	 SEH1	like	nucleoporin	[Source:HGNC	Symbol;Acc:HGNC:30379]	 0.59	

SLC27A1	 solute	carrier	family	27	member	1	[Source:HGNC	
Symbol;Acc:HGNC:10995]	 -0.70	

SRP72	 signal	recognition	particle	72	[Source:HGNC	
Symbol;Acc:HGNC:11303]	 0.82	

TBC1D13	 TBC1	domain	family	member	13	[Source:HGNC	
Symbol;Acc:HGNC:25571]	 -0.54	

TRAM1	 translocation	associated	membrane	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:20568]	 0.71	

TSC2	 TSC	complex	subunit	2	[Source:HGNC	Symbol;Acc:HGNC:12363]	 -0.63	

UGGT2	 UDP-glucose	glycoprotein	glucosyltransferase	2	[Source:HGNC	
Symbol;Acc:HGNC:15664]	 0.56	

VPS52	 VPS52,	GARP	complex	subunit	[Source:HGNC	
Symbol;Acc:HGNC:10518]	 -0.50	

	
Cons.12*	 	 	

ACAP3	 ArfGAP	with	coiled-coil,	ankyrin	repeat	and	PH	domains	3	
[Source:HGNC	Symbol;Acc:HGNC:16754]	 0.75	

AGAP3	 ArfGAP	with	GTPase	domain,	ankyrin	repeat	and	PH	domain	3	
[Source:HGNC	Symbol;Acc:HGNC:16923]	 0.67	

AP1G2	 adaptor	related	protein	complex	1	gamma	2	subunit	[Source:HGNC	 0.78	
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Symbol;Acc:HGNC:556]	
ATG16L2	 autophagy	related	16	like	2	[Source:HGNC	Symbol;Acc:HGNC:25464]	 0.74	

ATG4B	 autophagy	related	4B	cysteine	peptidase	[Source:HGNC	
Symbol;Acc:HGNC:20790]	 0.71	

GGA1	 golgi	associated,	gamma	adaptin	ear	containing,	ARF	binding	protein	
1	[Source:HGNC	Symbol;Acc:HGNC:17842]	 0.84	

GGA2	 golgi	associated,	gamma	adaptin	ear	containing,	ARF	binding	protein	
2	[Source:HGNC	Symbol;Acc:HGNC:16064]	 0.45	

GGA3	 golgi	associated,	gamma	adaptin	ear	containing,	ARF	binding	protein	
3	[Source:HGNC	Symbol;Acc:HGNC:17079]	 0.74	

IMPAD1	 inositol	monophosphatase	domain	containing	1	[Source:HGNC	
Symbol;Acc:HGNC:26019]	 -0.68	

INPP5E	 inositol	polyphosphate-5-phosphatase	E	[Source:HGNC	
Symbol;Acc:HGNC:21474]	 0.63	

LPCAT4	 lysophosphatidylcholine	acyltransferase	4	[Source:HGNC	
Symbol;Acc:HGNC:30059]	 0.61	

NBEAL2	 neurobeachin	like	2	[Source:HGNC	Symbol;Acc:HGNC:31928]	 0.60	
NEK8	 NIMA	related	kinase	8	[Source:HGNC	Symbol;Acc:HGNC:13387]	 0.46	

OSBPL2	 oxysterol	binding	protein	like	2	[Source:HGNC	
Symbol;Acc:HGNC:15761]	 0.49	

OSBPL7	 oxysterol	binding	protein	like	7	[Source:HGNC	
Symbol;Acc:HGNC:16387]	 0.74	

PIK3R1	 phosphoinositide-3-kinase	regulatory	subunit	1	[Source:HGNC	
Symbol;Acc:HGNC:8979]	 -0.44	

PRKD2	 protein	kinase	D2	[Source:HGNC	Symbol;Acc:HGNC:17293]	 0.58	

RAB24	 RAB24,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9765]	 0.73	

RABEP2	 rabaptin,	RAB	GTPase	binding	effector	protein	2	[Source:HGNC	
Symbol;Acc:HGNC:24817]	 0.52	

RABGGTA	 Rab	geranylgeranyltransferase	alpha	subunit	[Source:HGNC	
Symbol;Acc:HGNC:9795]	 0.61	

RUSC1	 RUN	and	SH3	domain	containing	1	[Source:HGNC	
Symbol;Acc:HGNC:17153]	 0.54	

STX10	 syntaxin	10	[Source:HGNC	Symbol;Acc:HGNC:11428]	 0.74	
STX4	 syntaxin	4	[Source:HGNC	Symbol;Acc:HGNC:11439]	 0.58	
TAZ	 tafazzin	[Source:HGNC	Symbol;Acc:HGNC:11577]	 0.78	
ULK3	 unc-51	like	kinase	3	[Source:HGNC	Symbol;Acc:HGNC:19703]	 0.66	

WHAMM	 WAS	protein	homolog	associated	with	actin,	golgi	membranes	and	
microtubules	[Source:HGNC	Symbol;Acc:HGNC:30493]	 0.36	

ZFYVE27	 zinc	finger	FYVE-type	containing	27	[Source:HGNC	
Symbol;Acc:HGNC:26559]	 0.62	

	
Cons.13	 	 	
ACOX1	 acyl-CoA	oxidase	1	[Source:HGNC	Symbol;Acc:HGNC:119]	 0.63	

AHI1	 Abelson	helper	integration	site	1	[Source:HGNC	
Symbol;Acc:HGNC:21575]	 0.18	

AKAP8	 A-kinase	anchoring	protein	8	[Source:HGNC	Symbol;Acc:HGNC:378]	 0.44	

AP1G1	 adaptor	related	protein	complex	1	gamma	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:555]	 0.81	

ATP7B	 ATPase	copper	transporting	beta	[Source:HGNC	
Symbol;Acc:HGNC:870]	 -0.28	
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CLINT1	 clathrin	interactor	1	[Source:HGNC	Symbol;Acc:HGNC:23186]	 0.67	

COG2	 component	of	oligomeric	golgi	complex	2	[Source:HGNC	
Symbol;Acc:HGNC:6546]	 0.42	

DENND5A	 DENN	domain	containing	5A	[Source:HGNC	
Symbol;Acc:HGNC:19344]	 -0.14	

DYNLL1	 dynein	light	chain	LC8-type	1	[Source:HGNC	
Symbol;Acc:HGNC:15476]	 -0.27	

FGD4	 FYVE,	RhoGEF	and	PH	domain	containing	4	[Source:HGNC	
Symbol;Acc:HGNC:19125]	 0.27	

GAPVD1	 GTPase	activating	protein	and	VPS9	domains	1	[Source:HGNC	
Symbol;Acc:HGNC:23375]	 0.72	

IFT46	 intraflagellar	transport	46	[Source:HGNC	Symbol;Acc:HGNC:26146]	 -0.41	
KIF3C	 kinesin	family	member	3C	[Source:HGNC	Symbol;Acc:HGNC:6321]	 -0.52	

LFNG	 LFNG	O-fucosylpeptide	3-beta-N-acetylglucosaminyltransferase	
[Source:HGNC	Symbol;Acc:HGNC:6560]	 -0.29	

LMAN2L	 lectin,	mannose	binding	2	like	[Source:HGNC	
Symbol;Acc:HGNC:19263]	 -0.32	

NECAP2	 NECAP	endocytosis	associated	2	[Source:HGNC	
Symbol;Acc:HGNC:25528]	 -0.28	

NPHP1	 nephrocystin	1	[Source:HGNC	Symbol;Acc:HGNC:7905]	 -0.28	
OSBP	 oxysterol	binding	protein	[Source:HGNC	Symbol;Acc:HGNC:8503]	 0.67	

PIP5K1A	 phosphatidylinositol-4-phosphate	5-kinase	type	1	alpha	
[Source:HGNC	Symbol;Acc:HGNC:8994]	 0.41	

RAB11FIP
4	

RAB11	family	interacting	protein	4	[Source:HGNC	
Symbol;Acc:HGNC:30267]	 0.11	

SAR1B	 secretion	associated	Ras	related	GTPase	1B	[Source:HGNC	
Symbol;Acc:HGNC:10535]	 0.66	

SEC16A	 SEC16	homolog	A,	endoplasmic	reticulum	export	factor	
[Source:HGNC	Symbol;Acc:HGNC:29006]	 0.59	

SRP68	 signal	recognition	particle	68	[Source:HGNC	
Symbol;Acc:HGNC:11302]	 0.58	

STX3	 syntaxin	3	[Source:HGNC	Symbol;Acc:HGNC:11438]	 0.31	
SULF1	 sulfatase	1	[Source:HGNC	Symbol;Acc:HGNC:20391]	 -0.30	

TRAPPC10	 trafficking	protein	particle	complex	10	[Source:HGNC	
Symbol;Acc:HGNC:11868]	 0.54	

VPS37B	 VPS37B,	ESCRT-I	subunit	[Source:HGNC	Symbol;Acc:HGNC:25754]	 0.35	
	
Cons.14*	 	 	
ATL3	 atlastin	GTPase	3	[Source:HGNC	Symbol;Acc:HGNC:24526]	 0.71	
CAV1	 caveolin	1	[Source:HGNC	Symbol;Acc:HGNC:1527]	 0.49	
CAV2	 caveolin	2	[Source:HGNC	Symbol;Acc:HGNC:1528]	 0.59	
GOLPH3	 golgi	phosphoprotein	3	[Source:HGNC	Symbol;Acc:HGNC:15452]	 0.78	
MAP1LC3
B	

microtubule	associated	protein	1	light	chain	3	beta	[Source:HGNC	
Symbol;Acc:HGNC:13352]	 0.68	

MTMR2	 myotubularin	related	protein	2	[Source:HGNC	
Symbol;Acc:HGNC:7450]	 0.61	

PICALM	 phosphatidylinositol	binding	clathrin	assembly	protein	
[Source:HGNC	Symbol;Acc:HGNC:15514]	 0.78	

PIP4K2A	 phosphatidylinositol-5-phosphate	4-kinase	type	2	alpha	
[Source:HGNC	Symbol;Acc:HGNC:8997]	 0.45	

PITPNB	 phosphatidylinositol	transfer	protein	beta	[Source:HGNC	 0.72	
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Symbol;Acc:HGNC:9002]	

PLEKHA3	 pleckstrin	homology	domain	containing	A3	[Source:HGNC	
Symbol;Acc:HGNC:14338]	 0.74	

RAB21	 RAB21,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:18263]	 0.76	

RAB22A	 RAB22A,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9764]	 0.60	

RAB31	 RAB31,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9771]	 0.56	

RAB5B	 RAB5B,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9784]	 0.50	

RAB8B	 RAB8B,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:30273]	 0.67	

RAC1	 Rac	family	small	GTPase	1	[Source:HGNC	Symbol;Acc:HGNC:9801]	 0.71	

RPGR	 retinitis	pigmentosa	GTPase	regulator	[Source:HGNC	
Symbol;Acc:HGNC:10295]	 0.49	

RRAGC	 Ras	related	GTP	binding	C	[Source:HGNC	Symbol;Acc:HGNC:19902]	 0.64	

SEC62	 SEC62	homolog,	preprotein	translocation	factor	[Source:HGNC	
Symbol;Acc:HGNC:11846]	 0.61	

SLC37A4	 solute	carrier	family	37	member	4	[Source:HGNC	
Symbol;Acc:HGNC:4061]	 -0.50	

SPG20	 #N/A	 0.62	
STX12	 syntaxin	12	[Source:HGNC	Symbol;Acc:HGNC:11430]	 0.72	

VAMP3	 vesicle	associated	membrane	protein	3	[Source:HGNC	
Symbol;Acc:HGNC:12644]	 0.71	

VPS37A	 VPS37A,	ESCRT-I	subunit	[Source:HGNC	Symbol;Acc:HGNC:24928]	 0.72	
XYLT2	 xylosyltransferase	2	[Source:HGNC	Symbol;Acc:HGNC:15517]	 -0.64	
	
Cons.15	 	 	
ARF3	 ADP	ribosylation	factor	3	[Source:HGNC	Symbol;Acc:HGNC:654]	 0.74	
ARF6	 ADP	ribosylation	factor	6	[Source:HGNC	Symbol;Acc:HGNC:659]	 0.32	

B4GALT5	 beta-1,4-galactosyltransferase	5	[Source:HGNC	
Symbol;Acc:HGNC:928]	 0.50	

BACE1	 beta-secretase	1	[Source:HGNC	Symbol;Acc:HGNC:933]	 0.51	

CLEC2D	 C-type	lectin	domain	family	2	member	D	[Source:HGNC	
Symbol;Acc:HGNC:14351]	 -0.62	

DCTN1	 dynactin	subunit	1	[Source:HGNC	Symbol;Acc:HGNC:2711]	 0.78	

DYNC1H1	 dynein	cytoplasmic	1	heavy	chain	1	[Source:HGNC	
Symbol;Acc:HGNC:2961]	 0.78	

EHD1	 EH	domain	containing	1	[Source:HGNC	Symbol;Acc:HGNC:3242]	 0.52	

ERC1	 ELKS/RAB6-interacting/CAST	family	member	1	[Source:HGNC	
Symbol;Acc:HGNC:17072]	 0.70	

EXTL3	 exostosin	like	glycosyltransferase	3	[Source:HGNC	
Symbol;Acc:HGNC:3518]	 0.72	

GOLGA8B	 golgin	A8	family	member	B	[Source:HGNC	Symbol;Acc:HGNC:31973]	 -0.55	

INPP5A	 inositol	polyphosphate-5-phosphatase	A	[Source:HGNC	
Symbol;Acc:HGNC:6076]	 0.54	

KIF1C	 kinesin	family	member	1C	[Source:HGNC	Symbol;Acc:HGNC:6317]	 0.59	

M6PR	 mannose-6-phosphate	receptor,	cation	dependent	[Source:HGNC	
Symbol;Acc:HGNC:6752]	 0.51	

MBTPS1	 membrane	bound	transcription	factor	peptidase,	site	1	 0.47	
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[Source:HGNC	Symbol;Acc:HGNC:15456]	
MICALL1	 MICAL	like	1	[Source:HGNC	Symbol;Acc:HGNC:29804]	 0.61	

NFKB1	 nuclear	factor	kappa	B	subunit	1	[Source:HGNC	
Symbol;Acc:HGNC:7794]	 0.44	

PEX26	 peroxisomal	biogenesis	factor	26	[Source:HGNC	
Symbol;Acc:HGNC:22965]	 0.66	

RAB11FIP
5	

RAB11	family	interacting	protein	5	[Source:HGNC	
Symbol;Acc:HGNC:24845]	 0.59	

RAB8A	 RAB8A,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:7007]	 0.63	

SNPH	 syntaphilin	[Source:HGNC	Symbol;Acc:HGNC:15931]	 0.22	

ST3GAL2	 ST3	beta-galactoside	alpha-2,3-sialyltransferase	2	[Source:HGNC	
Symbol;Acc:HGNC:10863]	 0.47	

TGFBRAP
1	

transforming	growth	factor	beta	receptor	associated	protein	1	
[Source:HGNC	Symbol;Acc:HGNC:16836]	 0.68	

	
Cons.16*	 	 	

APPL2	 adaptor	protein,	phosphotyrosine	interacting	with	PH	domain	and	
leucine	zipper	2	[Source:HGNC	Symbol;Acc:HGNC:18242]	 0.51	

ARFGEF1	 ADP	ribosylation	factor	guanine	nucleotide	exchange	factor	1	
[Source:HGNC	Symbol;Acc:HGNC:15772]	 0.82	

CPNE3	 copine	3	[Source:HGNC	Symbol;Acc:HGNC:2316]	 0.82	

EGFR	 epidermal	growth	factor	receptor	[Source:HGNC	
Symbol;Acc:HGNC:3236]	 0.40	

EXOC4	 exocyst	complex	component	4	[Source:HGNC	
Symbol;Acc:HGNC:30389]	 0.43	

EXOC6	 exocyst	complex	component	6	[Source:HGNC	
Symbol;Acc:HGNC:23196]	 0.47	

GOSR1	 golgi	SNAP	receptor	complex	member	1	[Source:HGNC	
Symbol;Acc:HGNC:4430]	 0.58	

LPCAT1	 lysophosphatidylcholine	acyltransferase	1	[Source:HGNC	
Symbol;Acc:HGNC:25718]	 -0.45	

PIK3CB	 phosphatidylinositol-4,5-bisphosphate	3-kinase	catalytic	subunit	
beta	[Source:HGNC	Symbol;Acc:HGNC:8976]	 0.70	

PSEN1	 presenilin	1	[Source:HGNC	Symbol;Acc:HGNC:9508]	 0.71	

RAB3IL1	 RAB3A	interacting	protein	like	1	[Source:HGNC	
Symbol;Acc:HGNC:9780]	 -0.53	

RABEP1	 rabaptin,	RAB	GTPase	binding	effector	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:17677]	 0.43	

SCYL2	 SCY1	like	pseudokinase	2	[Source:HGNC	Symbol;Acc:HGNC:19286]	 0.69	
SCYL3	 SCY1	like	pseudokinase	3	[Source:HGNC	Symbol;Acc:HGNC:19285]	 0.52	

SEC22C	 SEC22	homolog	C,	vesicle	trafficking	protein	[Source:HGNC	
Symbol;Acc:HGNC:16828]	 0.50	

SPAST	 spastin	[Source:HGNC	Symbol;Acc:HGNC:11233]	 0.63	

SPTLC1	 serine	palmitoyltransferase	long	chain	base	subunit	1	[Source:HGNC	
Symbol;Acc:HGNC:11277]	 0.75	

STX1A	 syntaxin	1A	[Source:HGNC	Symbol;Acc:HGNC:11433]	 -0.61	
STXBP5	 syntaxin	binding	protein	5	[Source:HGNC	Symbol;Acc:HGNC:19665]	 0.57	

TRAPPC11	 trafficking	protein	particle	complex	11	[Source:HGNC	
Symbol;Acc:HGNC:25751]	 0.71	

TRAPPC8	 trafficking	protein	particle	complex	8	[Source:HGNC	 0.83	
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Symbol;Acc:HGNC:29169]	

VPS4B	 vacuolar	protein	sorting	4	homolog	B	[Source:HGNC	
Symbol;Acc:HGNC:10895]	 0.81	

	
Cons.17	 	 	

ACAP2	 ArfGAP	with	coiled-coil,	ankyrin	repeat	and	PH	domains	2	
[Source:HGNC	Symbol;Acc:HGNC:16469]	 0.77	

AGPS	 alkylglycerone	phosphate	synthase	[Source:HGNC	
Symbol;Acc:HGNC:327]	 0.64	

AP4E1	 adaptor	related	protein	complex	4	epsilon	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:573]	 0.64	

ARFIP1	 ADP	ribosylation	factor	interacting	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:21496]	 0.68	

ATP7A	 ATPase	copper	transporting	alpha	[Source:HGNC	
Symbol;Acc:HGNC:869]	 0.67	

COG6	 component	of	oligomeric	golgi	complex	6	[Source:HGNC	
Symbol;Acc:HGNC:18621]	 0.62	

COL4A3B
P	

collagen	type	IV	alpha	3	binding	protein	[Source:HGNC	
Symbol;Acc:HGNC:2205]	 0.67	

HPS3	 HPS3,	biogenesis	of	lysosomal	organelles	complex	2	subunit	1	
[Source:HGNC	Symbol;Acc:HGNC:15597]	 0.44	

MTM1	 myotubularin	1	[Source:HGNC	Symbol;Acc:HGNC:7448]	 0.68	

OSBPL11	 oxysterol	binding	protein	like	11	[Source:HGNC	
Symbol;Acc:HGNC:16397]	 0.58	

OSBPL8	 oxysterol	binding	protein	like	8	[Source:HGNC	
Symbol;Acc:HGNC:16396]	 0.69	

PIK3C3	 phosphatidylinositol	3-kinase	catalytic	subunit	type	3	[Source:HGNC	
Symbol;Acc:HGNC:8974]	 0.69	

PIK3R4	 phosphoinositide-3-kinase	regulatory	subunit	4	[Source:HGNC	
Symbol;Acc:HGNC:8982]	 0.62	

PRKAA1	 protein	kinase	AMP-activated	catalytic	subunit	alpha	1	
[Source:HGNC	Symbol;Acc:HGNC:9376]	 0.65	

SACM1L	 SAC1	like	phosphatidylinositide	phosphatase	[Source:HGNC	
Symbol;Acc:HGNC:17059]	 0.72	

SNX13	 sorting	nexin	13	[Source:HGNC	Symbol;Acc:HGNC:21335]	 0.76	
STX7	 syntaxin	7	[Source:HGNC	Symbol;Acc:HGNC:11442]	 0.55	
STXBP3	 syntaxin	binding	protein	3	[Source:HGNC	Symbol;Acc:HGNC:11446]	 0.75	

TRIP11	 thyroid	hormone	receptor	interactor	11	[Source:HGNC	
Symbol;Acc:HGNC:12305]	 0.68	

VCPIP1	 valosin	containing	protein	interacting	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:30897]	 0.71	

WDR44	 WD	repeat	domain	44	[Source:HGNC	Symbol;Acc:HGNC:30512]	 0.74	

YIPF4	 Yip1	domain	family	member	4	[Source:HGNC	
Symbol;Acc:HGNC:28145]	 0.68	

	
Cons.18*	 	 	

ABCB7	 ATP	binding	cassette	subfamily	B	member	7	[Source:HGNC	
Symbol;Acc:HGNC:48]	 0.55	

ASAP1	 ArfGAP	with	SH3	domain,	ankyrin	repeat	and	PH	domain	1	
[Source:HGNC	Symbol;Acc:HGNC:2720]	 0.45	

ATP9A	 ATPase	phospholipid	transporting	9A	(putative)	[Source:HGNC	 0.52	
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Symbol;Acc:HGNC:13540]	

BCS1L	 BCS1	homolog,	ubiquinol-cytochrome	c	reductase	complex	
chaperone	[Source:HGNC	Symbol;Acc:HGNC:1020]	 -0.74	

CDKN1B	 cyclin	dependent	kinase	inhibitor	1B	[Source:HGNC	
Symbol;Acc:HGNC:1785]	 0.45	

CDS2	 CDP-diacylglycerol	synthase	2	[Source:HGNC	
Symbol;Acc:HGNC:1801]	 0.61	

EPS15	 epidermal	growth	factor	receptor	pathway	substrate	15	
[Source:HGNC	Symbol;Acc:HGNC:3419]	 0.72	

GABARAP
L1	

GABA	type	A	receptor	associated	protein	like	1	[Source:HGNC	
Symbol;Acc:HGNC:4068]	 0.59	

GCC2	 GRIP	and	coiled-coil	domain	containing	2	[Source:HGNC	
Symbol;Acc:HGNC:23218]	 0.70	

KIF1B	 kinesin	family	member	1B	[Source:HGNC	Symbol;Acc:HGNC:16636]	 0.62	
OPTN	 optineurin	[Source:HGNC	Symbol;Acc:HGNC:17142]	 0.58	

OSBPL9	 oxysterol	binding	protein	like	9	[Source:HGNC	
Symbol;Acc:HGNC:16386]	 0.64	

PIK3CA	 phosphatidylinositol-4,5-bisphosphate	3-kinase	catalytic	subunit	
alpha	[Source:HGNC	Symbol;Acc:HGNC:8975]	 0.74	

POMT2	 protein	O-mannosyltransferase	2	[Source:HGNC	
Symbol;Acc:HGNC:19743]	 -0.36	

RAB12	 RAB12,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:31332]	 0.67	

RB1CC1	 RB1	inducible	coiled-coil	1	[Source:HGNC	Symbol;Acc:HGNC:15574]	 0.83	
SBF2	 SET	binding	factor	2	[Source:HGNC	Symbol;Acc:HGNC:2135]	 0.72	

SEC24B	 SEC24	homolog	B,	COPII	coat	complex	component	[Source:HGNC	
Symbol;Acc:HGNC:10704]	 0.77	

SNX9	 sorting	nexin	9	[Source:HGNC	Symbol;Acc:HGNC:14973]	 0.50	

TBC1D15	 TBC1	domain	family	member	15	[Source:HGNC	
Symbol;Acc:HGNC:25694]	 0.76	

	
Cons.19	 	 	

AP1S2	 adaptor	related	protein	complex	1	sigma	2	subunit	[Source:HGNC	
Symbol;Acc:HGNC:560]	 0.53	

ARL6IP5	 ADP	ribosylation	factor	like	GTPase	6	interacting	protein	5	
[Source:HGNC	Symbol;Acc:HGNC:16937]	 0.69	

ATP6AP2	 ATPase	H+	transporting	accessory	protein	2	[Source:HGNC	
Symbol;Acc:HGNC:18305]	 0.70	

CRTAP	 cartilage	associated	protein	[Source:HGNC	Symbol;Acc:HGNC:2379]	 0.53	
CTSK	 cathepsin	K	[Source:HGNC	Symbol;Acc:HGNC:2536]	 0.37	

EXT2	 exostosin	glycosyltransferase	2	[Source:HGNC	
Symbol;Acc:HGNC:3513]	 0.56	

GM2A	 GM2	ganglioside	activator	[Source:HGNC	Symbol;Acc:HGNC:4367]	 0.55	

GNS	 glucosamine	(N-acetyl)-6-sulfatase	[Source:HGNC	
Symbol;Acc:HGNC:4422]	 0.82	

HEXB	 hexosaminidase	subunit	beta	[Source:HGNC	
Symbol;Acc:HGNC:4879]	 0.74	

ITSN1	 intersectin	1	[Source:HGNC	Symbol;Acc:HGNC:6183]	 0.49	

LAPTM4A	 lysosomal	protein	transmembrane	4	alpha	[Source:HGNC	
Symbol;Acc:HGNC:6924]	 0.72	

LIPA	 lipase	A,	lysosomal	acid	type	[Source:HGNC	Symbol;Acc:HGNC:6617]	 0.72	
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LPCAT2	 lysophosphatidylcholine	acyltransferase	2	[Source:HGNC	
Symbol;Acc:HGNC:26032]	 0.53	

MANBA	 mannosidase	beta	[Source:HGNC	Symbol;Acc:HGNC:6831]	 0.55	

NPC2	 NPC	intracellular	cholesterol	transporter	2	[Source:HGNC	
Symbol;Acc:HGNC:14537]	 0.54	

PHYH	 phytanoyl-CoA	2-hydroxylase	[Source:HGNC	
Symbol;Acc:HGNC:8940]	 0.42	

PPT1	 palmitoyl-protein	thioesterase	1	[Source:HGNC	
Symbol;Acc:HGNC:9325]	 0.77	

SDCBP	 syndecan	binding	protein	[Source:HGNC	Symbol;Acc:HGNC:10662]	 0.58	

TGOLN2	 trans-golgi	network	protein	2	[Source:HGNC	
Symbol;Acc:HGNC:15450]	 0.71	

TPP1	 tripeptidyl	peptidase	1	[Source:HGNC	Symbol;Acc:HGNC:2073]	 0.72	
	
Cons.20*	 	 	

ARL2	 ADP	ribosylation	factor	like	GTPase	2	[Source:HGNC	
Symbol;Acc:HGNC:693]	 0.77	

ARL6IP4	 ADP	ribosylation	factor	like	GTPase	6	interacting	protein	4	
[Source:HGNC	Symbol;Acc:HGNC:18076]	 0.85	

B3GAT3	 beta-1,3-glucuronyltransferase	3	[Source:HGNC	
Symbol;Acc:HGNC:923]	 0.65	

B4GALT7	 beta-1,4-galactosyltransferase	7	[Source:HGNC	
Symbol;Acc:HGNC:930]	 0.63	

CHMP4A	 charged	multivesicular	body	protein	4A	[Source:HGNC	
Symbol;Acc:HGNC:20274]	 0.57	

DPM3	 dolichyl-phosphate	mannosyltransferase	subunit	3	[Source:HGNC	
Symbol;Acc:HGNC:3007]	 0.76	

HRAS	 HRas	proto-oncogene,	GTPase	[Source:HGNC	
Symbol;Acc:HGNC:5173]	 0.69	

LAMTOR4	 late	endosomal/lysosomal	adaptor,	MAPK	and	MTOR	activator	4	
[Source:HGNC	Symbol;Acc:HGNC:33772]	 0.83	

NDUFS7	 NADH:ubiquinone	oxidoreductase	core	subunit	S7	[Source:HGNC	
Symbol;Acc:HGNC:7714]	 0.83	

NDUFS8	 NADH:ubiquinone	oxidoreductase	core	subunit	S8	[Source:HGNC	
Symbol;Acc:HGNC:7715]	 0.72	

NDUFV1	 NADH:ubiquinone	oxidoreductase	core	subunit	V1	[Source:HGNC	
Symbol;Acc:HGNC:7716]	 0.69	

RAB4B	 RAB4B,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9782]	 0.65	

RABAC1	 Rab	acceptor	1	[Source:HGNC	Symbol;Acc:HGNC:9794]	 0.60	

SLC27A5	 solute	carrier	family	27	member	5	[Source:HGNC	
Symbol;Acc:HGNC:10999]	 0.64	

TRAPPC2L	 trafficking	protein	particle	complex	2	like	[Source:HGNC	
Symbol;Acc:HGNC:30887]	 0.58	

USE1	 unconventional	SNARE	in	the	ER	1	[Source:HGNC	
Symbol;Acc:HGNC:30882]	 0.64	

VAMP5	 vesicle	associated	membrane	protein	5	[Source:HGNC	
Symbol;Acc:HGNC:12646]	 0.48	

VPS16	 VPS16,	CORVET/HOPS	core	subunit	[Source:HGNC	
Symbol;Acc:HGNC:14584]	 0.53	

VPS28	 VPS28,	ESCRT-I	subunit	[Source:HGNC	Symbol;Acc:HGNC:18178]	 0.70	



	 129	

	
Cons.21	 	 	

AP2A2	 adaptor	related	protein	complex	2	alpha	2	subunit	[Source:HGNC	
Symbol;Acc:HGNC:562]	 -0.36	

ARAP1	 ArfGAP	with	RhoGAP	domain,	ankyrin	repeat	and	PH	domain	1	
[Source:HGNC	Symbol;Acc:HGNC:16925]	 -0.58	

ATP6AP1L	 ATPase	H+	transporting	accessory	protein	1	like	[Source:HGNC	
Symbol;Acc:HGNC:28091]	 -0.38	

CDK2	 cyclin	dependent	kinase	2	[Source:HGNC	Symbol;Acc:HGNC:1771]	 0.07	
DNM1L	 dynamin	1	like	[Source:HGNC	Symbol;Acc:HGNC:2973]	 0.69	

GFM1	 G	elongation	factor	mitochondrial	1	[Source:HGNC	
Symbol;Acc:HGNC:13780]	 0.86	

LRPPRC	 leucine	rich	pentatricopeptide	repeat	containing	[Source:HGNC	
Symbol;Acc:HGNC:15714]	 0.75	

MAN2B2	 mannosidase	alpha	class	2B	member	2	[Source:HGNC	
Symbol;Acc:HGNC:29623]	 -0.25	

MTOR	 mechanistic	target	of	rapamycin	kinase	[Source:HGNC	
Symbol;Acc:HGNC:3942]	 0.57	

NDUFS1	 NADH:ubiquinone	oxidoreductase	core	subunit	S1	[Source:HGNC	
Symbol;Acc:HGNC:7707]	 0.82	

PDHA1	 pyruvate	dehydrogenase	E1	alpha	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:8806]	 0.63	

PIP4K2B	 phosphatidylinositol-5-phosphate	4-kinase	type	2	beta	
[Source:HGNC	Symbol;Acc:HGNC:8998]	 -0.40	

SCO1	 SCO1,	cytochrome	c	oxidase	assembly	protein	[Source:HGNC	
Symbol;Acc:HGNC:10603]	 0.63	

SEC23IP	 SEC23	interacting	protein	[Source:HGNC	Symbol;Acc:HGNC:17018]	 0.78	
SNX1	 sorting	nexin	1	[Source:HGNC	Symbol;Acc:HGNC:11172]	 0.30	
SRPR	 #N/A	 0.66	

TRAPPC13	 trafficking	protein	particle	complex	13	[Source:HGNC	
Symbol;Acc:HGNC:25828]	 0.67	

TRAPPC2	 trafficking	protein	particle	complex	2	[Source:HGNC	
Symbol;Acc:HGNC:23068]	 -0.32	

UNC13D	 unc-13	homolog	D	[Source:HGNC	Symbol;Acc:HGNC:23147]	 -0.56	
	
Cons.22*	 	 	

AGAP6	 ArfGAP	with	GTPase	domain,	ankyrin	repeat	and	PH	domain	6	
[Source:HGNC	Symbol;Acc:HGNC:23466]	 0.61	

AP5Z1	 adaptor	related	protein	complex	5	zeta	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:22197]	 0.70	

ARFGAP1	 ADP	ribosylation	factor	GTPase	activating	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:15852]	 0.81	

CLCN7	 chloride	voltage-gated	channel	7	[Source:HGNC	
Symbol;Acc:HGNC:2025]	 0.68	

FIG4	 FIG4	phosphoinositide	5-phosphatase	[Source:HGNC	
Symbol;Acc:HGNC:16873]	 -0.40	

FYCO1	 FYVE	and	coiled-coil	domain	containing	1	[Source:HGNC	
Symbol;Acc:HGNC:14673]	 -0.45	

IDUA	 iduronidase,	alpha-L-	[Source:HGNC	Symbol;Acc:HGNC:5391]	 0.75	
LEPRE1	 #N/A	 0.47	
MAN1B1	 mannosidase	alpha	class	1B	member	1	[Source:HGNC	 0.60	



	 130	

Symbol;Acc:HGNC:6823]	

MOGS	 mannosyl-oligosaccharide	glucosidase	[Source:HGNC	
Symbol;Acc:HGNC:24862]	 0.73	

OSBPL1A	 oxysterol	binding	protein	like	1A	[Source:HGNC	
Symbol;Acc:HGNC:16398]	 -0.65	

POFUT2	 protein	O-fucosyltransferase	2	[Source:HGNC	
Symbol;Acc:HGNC:14683]	 0.71	

PRKCA	 protein	kinase	C	alpha	[Source:HGNC	Symbol;Acc:HGNC:9393]	 -0.39	

SGSH	 N-sulfoglucosamine	sulfohydrolase	[Source:HGNC	
Symbol;Acc:HGNC:10818]	 0.44	

SLC35C2	 solute	carrier	family	35	member	C2	[Source:HGNC	
Symbol;Acc:HGNC:17117]	 0.70	

SMPD4	 sphingomyelin	phosphodiesterase	4	[Source:HGNC	
Symbol;Acc:HGNC:32949]	 0.54	

SPG7	 SPG7,	paraplegin	matrix	AAA	peptidase	subunit	[Source:HGNC	
Symbol;Acc:HGNC:11237]	 0.65	

TBC1D5	 TBC1	domain	family	member	5	[Source:HGNC	
Symbol;Acc:HGNC:19166]	 -0.53	

ZFYVE9	 zinc	finger	FYVE-type	containing	9	[Source:HGNC	
Symbol;Acc:HGNC:6775]	 -0.72	

	
Cons.23*	 	 	
BBS2	 Bardet-Biedl	syndrome	2	[Source:HGNC	Symbol;Acc:HGNC:967]	 -0.36	
CALR	 calreticulin	[Source:HGNC	Symbol;Acc:HGNC:1455]	 0.90	

COPG1	 coatomer	protein	complex	subunit	gamma	1	[Source:HGNC	
Symbol;Acc:HGNC:2236]	 0.83	

DNAJB11	 DnaJ	heat	shock	protein	family	(Hsp40)	member	B11	[Source:HGNC	
Symbol;Acc:HGNC:14889]	 0.90	

DPAGT1	 dolichyl-phosphate	N-acetylglucosaminephosphotransferase	1	
[Source:HGNC	Symbol;Acc:HGNC:2995]	 0.71	

GANAB	 glucosidase	II	alpha	subunit	[Source:HGNC	Symbol;Acc:HGNC:4138]	 0.74	

GBF1	 golgi	brefeldin	A	resistant	guanine	nucleotide	exchange	factor	1	
[Source:HGNC	Symbol;Acc:HGNC:4181]	 0.41	

HSP90B1	 heat	shock	protein	90	beta	family	member	1	[Source:HGNC	
Symbol;Acc:HGNC:12028]	 0.87	

HSPA5	 heat	shock	protein	family	A	(Hsp70)	member	5	[Source:HGNC	
Symbol;Acc:HGNC:5238]	 0.84	

ORMDL2	 ORMDL	sphingolipid	biosynthesis	regulator	2	[Source:HGNC	
Symbol;Acc:HGNC:16037]	 0.68	

PDIA3	 protein	disulfide	isomerase	family	A	member	3	[Source:HGNC	
Symbol;Acc:HGNC:4606]	 0.88	

PDIA4	 protein	disulfide	isomerase	family	A	member	4	[Source:HGNC	
Symbol;Acc:HGNC:30167]	 0.90	

PDIA6	 protein	disulfide	isomerase	family	A	member	6	[Source:HGNC	
Symbol;Acc:HGNC:30168]	 0.93	

SEC23B	 Sec23	homolog	B,	coat	complex	II	component	[Source:HGNC	
Symbol;Acc:HGNC:10702]	 0.77	

SRPRB	 SRP	receptor	beta	subunit	[Source:HGNC	Symbol;Acc:HGNC:24085]	 0.85	

TIMM8A	 translocase	of	inner	mitochondrial	membrane	8A	[Source:HGNC	
Symbol;Acc:HGNC:11817]	 0.40	

UGGT1	 UDP-glucose	glycoprotein	glucosyltransferase	1	[Source:HGNC	 0.80	
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Symbol;Acc:HGNC:15663]	
XBP1	 X-box	binding	protein	1	[Source:HGNC	Symbol;Acc:HGNC:12801]	 0.70	
	
Cons.24*	 	 	

AGAP1	 ArfGAP	with	GTPase	domain,	ankyrin	repeat	and	PH	domain	1	
[Source:HGNC	Symbol;Acc:HGNC:16922]	 0.32	

AP4B1	 adaptor	related	protein	complex	4	beta	1	subunit	[Source:HGNC	
Symbol;Acc:HGNC:572]	 -0.46	

APPL1	 adaptor	protein,	phosphotyrosine	interacting	with	PH	domain	and	
leucine	zipper	1	[Source:HGNC	Symbol;Acc:HGNC:24035]	 0.82	

ARL16	 ADP	ribosylation	factor	like	GTPase	16	[Source:HGNC	
Symbol;Acc:HGNC:27902]	 -0.48	

B3GALNT
2	

beta-1,3-N-acetylgalactosaminyltransferase	2	[Source:HGNC	
Symbol;Acc:HGNC:28596]	 0.59	

COG3	 component	of	oligomeric	golgi	complex	3	[Source:HGNC	
Symbol;Acc:HGNC:18619]	 0.70	

COG5	 component	of	oligomeric	golgi	complex	5	[Source:HGNC	
Symbol;Acc:HGNC:14857]	 0.62	

EEA1	 early	endosome	antigen	1	[Source:HGNC	Symbol;Acc:HGNC:3185]	 0.85	

EXOC5	 exocyst	complex	component	5	[Source:HGNC	
Symbol;Acc:HGNC:10696]	 0.85	

GOLGA4	 golgin	A4	[Source:HGNC	Symbol;Acc:HGNC:4427]	 0.65	

HOOK3	 hook	microtubule	tethering	protein	3	[Source:HGNC	
Symbol;Acc:HGNC:23576]	 0.69	

KIF2A	 kinesin	family	member	2A	[Source:HGNC	Symbol;Acc:HGNC:6318]	 0.69	

MACF1	 microtubule-actin	crosslinking	factor	1	[Source:HGNC	
Symbol;Acc:HGNC:13664]	 0.38	

RAB3GAP
1	

RAB3	GTPase	activating	protein	catalytic	subunit	1	[Source:HGNC	
Symbol;Acc:HGNC:17063]	 0.72	

RAB5A	 RAB5A,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9783]	 0.80	

SCAPER	 S-phase	cyclin	A	associated	protein	in	the	ER	[Source:HGNC	
Symbol;Acc:HGNC:13081]	 0.57	

SMAP1	 small	ArfGAP	1	[Source:HGNC	Symbol;Acc:HGNC:19651]	 0.68	
SNX29	 sorting	nexin	29	[Source:HGNC	Symbol;Acc:HGNC:30542]	 0.35	
	
Cons.25	 	 	

ATP6V0E1	 ATPase	H+	transporting	V0	subunit	e1	[Source:HGNC	
Symbol;Acc:HGNC:863]	 0.61	

ATP6V1D	 ATPase	H+	transporting	V1	subunit	D	[Source:HGNC	
Symbol;Acc:HGNC:13527]	 0.52	

ATP6V1E1	 ATPase	H+	transporting	V1	subunit	E1	[Source:HGNC	
Symbol;Acc:HGNC:857]	 0.84	

ATP6V1H	 ATPase	H+	transporting	V1	subunit	H	[Source:HGNC	
Symbol;Acc:HGNC:18303]	 0.71	

BECN1	 beclin	1	[Source:HGNC	Symbol;Acc:HGNC:1034]	 0.73	

CHMP3	 charged	multivesicular	body	protein	3	[Source:HGNC	
Symbol;Acc:HGNC:29865]	 0.63	

OFD1	 OFD1,	centriole	and	centriolar	satellite	protein	[Source:HGNC	
Symbol;Acc:HGNC:2567]	 -0.65	

RAB5C	 RAB5C,	member	RAS	oncogene	family	[Source:HGNC	 0.69	
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Symbol;Acc:HGNC:9785]	

RAB7A	 RAB7A,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9788]	 0.85	

RRAGA	 Ras	related	GTP	binding	A	[Source:HGNC	Symbol;Acc:HGNC:16963]	 0.75	

SEC31B	 SEC31	homolog	B,	COPII	coat	complex	component	[Source:HGNC	
Symbol;Acc:HGNC:23197]	 -0.66	

SNAP29	 synaptosome	associated	protein	29	[Source:HGNC	
Symbol;Acc:HGNC:11133]	 0.69	

SORT1	 sortilin	1	[Source:HGNC	Symbol;Acc:HGNC:11186]	 0.59	
STX16	 syntaxin	16	[Source:HGNC	Symbol;Acc:HGNC:11431]	 -0.70	

TBC1D1	 TBC1	domain	family	member	1	[Source:HGNC	
Symbol;Acc:HGNC:11578]	 0.38	

	
Cons.26	 	 	

ABCD1	 ATP	binding	cassette	subfamily	D	member	1	[Source:HGNC	
Symbol;Acc:HGNC:61]	 0.63	

ACP2	 acid	phosphatase	2,	lysosomal	[Source:HGNC	
Symbol;Acc:HGNC:123]	 0.67	

ALG1	 ALG1,	chitobiosyldiphosphodolichol	beta-mannosyltransferase	
[Source:HGNC	Symbol;Acc:HGNC:18294]	 0.73	

ARFGAP2	 ADP	ribosylation	factor	GTPase	activating	protein	2	[Source:HGNC	
Symbol;Acc:HGNC:13504]	 0.56	

ARRDC3	 arrestin	domain	containing	3	[Source:HGNC	
Symbol;Acc:HGNC:29263]	 -0.49	

COG8	 component	of	oligomeric	golgi	complex	8	[Source:HGNC	
Symbol;Acc:HGNC:18623]	 0.58	

DOLK	 dolichol	kinase	[Source:HGNC	Symbol;Acc:HGNC:23406]	 0.81	

HPS6	 HPS6,	biogenesis	of	lysosomal	organelles	complex	2	subunit	3	
[Source:HGNC	Symbol;Acc:HGNC:18817]	 0.83	

PSEN2	 presenilin	2	[Source:HGNC	Symbol;Acc:HGNC:9509]	 0.56	
PSKH1	 protein	serine	kinase	H1	[Source:HGNC	Symbol;Acc:HGNC:9529]	 0.73	

RPTOR	 regulatory	associated	protein	of	MTOR	complex	1	[Source:HGNC	
Symbol;Acc:HGNC:30287]	 0.66	

SMPD1	 sphingomyelin	phosphodiesterase	1	[Source:HGNC	
Symbol;Acc:HGNC:11120]	 0.59	

VAC14	 Vac14,	PIKFYVE	complex	component	[Source:HGNC	
Symbol;Acc:HGNC:25507]	 0.69	

VPS18	 VPS18,	CORVET/HOPS	core	subunit	[Source:HGNC	
Symbol;Acc:HGNC:15972]	 0.75	

	
Cons.27	 	 	
AKAP9	 A-kinase	anchoring	protein	9	[Source:HGNC	Symbol;Acc:HGNC:379]	 0.81	

ARFGEF2	 ADP	ribosylation	factor	guanine	nucleotide	exchange	factor	2	
[Source:HGNC	Symbol;Acc:HGNC:15853]	 0.67	

ATG14	 autophagy	related	14	[Source:HGNC	Symbol;Acc:HGNC:19962]	 0.73	
ATG2B	 autophagy	related	2B	[Source:HGNC	Symbol;Acc:HGNC:20187]	 0.81	

CLASP1	 cytoplasmic	linker	associated	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:17088]	 0.59	

EPG5	 ectopic	P-granules	autophagy	protein	5	homolog	[Source:HGNC	
Symbol;Acc:HGNC:29331]	 0.65	

FGD6	 FYVE,	RhoGEF	and	PH	domain	containing	6	[Source:HGNC	 0.46	



	 133	

Symbol;Acc:HGNC:21740]	
GOLGB1	 golgin	B1	[Source:HGNC	Symbol;Acc:HGNC:4429]	 0.73	

PEX1	 peroxisomal	biogenesis	factor	1	[Source:HGNC	
Symbol;Acc:HGNC:8850]	 0.72	

PIGG	 phosphatidylinositol	glycan	anchor	biosynthesis	class	G	
[Source:HGNC	Symbol;Acc:HGNC:25985]	 0.58	

SYNRG	 synergin	gamma	[Source:HGNC	Symbol;Acc:HGNC:557]	 0.61	
TNKS	 tankyrase	[Source:HGNC	Symbol;Acc:HGNC:11941]	 0.79	

VPS13A	 vacuolar	protein	sorting	13	homolog	A	[Source:HGNC	
Symbol;Acc:HGNC:1908]	 0.63	

VPS39	 VPS39,	HOPS	complex	subunit	[Source:HGNC	
Symbol;Acc:HGNC:20593]	 0.55	

	
Cons.28	 	 	
CLTA	 clathrin	light	chain	A	[Source:HGNC	Symbol;Acc:HGNC:2090]	 0.66	
CTSD	 cathepsin	D	[Source:HGNC	Symbol;Acc:HGNC:2529]	 0.73	
ERGIC3	 ERGIC	and	golgi	3	[Source:HGNC	Symbol;Acc:HGNC:15927]	 0.75	

ERP29	 endoplasmic	reticulum	protein	29	[Source:HGNC	
Symbol;Acc:HGNC:13799]	 0.76	

GNPTG	 N-acetylglucosamine-1-phosphate	transferase	gamma	subunit	
[Source:HGNC	Symbol;Acc:HGNC:23026]	 0.66	

GUSB	 glucuronidase	beta	[Source:HGNC	Symbol;Acc:HGNC:4696]	 0.51	
IQCB1	 IQ	motif	containing	B1	[Source:HGNC	Symbol;Acc:HGNC:28949]	 -0.36	

KDELR1	 KDEL	endoplasmic	reticulum	protein	retention	receptor	1	
[Source:HGNC	Symbol;Acc:HGNC:6304]	 0.70	

LRP5	 LDL	receptor	related	protein	5	[Source:HGNC	
Symbol;Acc:HGNC:6697]	 0.30	

LRPAP1	 LDL	receptor	related	protein	associated	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:6701]	 0.62	

NEU1	 neuraminidase	1	[Source:HGNC	Symbol;Acc:HGNC:7758]	 0.72	
SQSTM1	 sequestosome	1	[Source:HGNC	Symbol;Acc:HGNC:11280]	 0.45	

TBC1D2	 TBC1	domain	family	member	2	[Source:HGNC	
Symbol;Acc:HGNC:18026]	 0.29	

YIPF3	 Yip1	domain	family	member	3	[Source:HGNC	
Symbol;Acc:HGNC:21023]	 0.82	

	
Cons.29	 	 	

ARL13B	 ADP	ribosylation	factor	like	GTPase	13B	[Source:HGNC	
Symbol;Acc:HGNC:25419]	 0.66	

ATG12	 autophagy	related	12	[Source:HGNC	Symbol;Acc:HGNC:588]	 0.69	
BBS7	 Bardet-Biedl	syndrome	7	[Source:HGNC	Symbol;Acc:HGNC:18758]	 0.60	

CLN5	 CLN5,	intracellular	trafficking	protein	[Source:HGNC	
Symbol;Acc:HGNC:2076]	 0.38	

LYST	 lysosomal	trafficking	regulator	[Source:HGNC	
Symbol;Acc:HGNC:1968]	 0.64	

MYO5A	 myosin	VA	[Source:HGNC	Symbol;Acc:HGNC:7602]	 0.53	

PIK3C2A	 phosphatidylinositol-4-phosphate	3-kinase	catalytic	subunit	type	2	
alpha	[Source:HGNC	Symbol;Acc:HGNC:8971]	 0.82	

PIKFYVE	 phosphoinositide	kinase,	FYVE-type	zinc	finger	containing	
[Source:HGNC	Symbol;Acc:HGNC:23785]	 0.76	

RAB11FIP RAB11	family	interacting	protein	2	[Source:HGNC	 0.78	
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2	 Symbol;Acc:HGNC:29152]	
SYNJ1	 synaptojanin	1	[Source:HGNC	Symbol;Acc:HGNC:11503]	 0.58	

TGFBR3	 transforming	growth	factor	beta	receptor	3	[Source:HGNC	
Symbol;Acc:HGNC:11774]	 0.56	

VAMP4	 vesicle	associated	membrane	protein	4	[Source:HGNC	
Symbol;Acc:HGNC:12645]	 0.74	

VPS54	 VPS54,	GARP	complex	subunit	[Source:HGNC	
Symbol;Acc:HGNC:18652]	 0.68	

	
Cons.30	 	 	

ATP6AP1	 ATPase	H+	transporting	accessory	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:868]	 0.74	

CTSA	 cathepsin	A	[Source:HGNC	Symbol;Acc:HGNC:9251]	 0.75	
FUCA2	 alpha-L-fucosidase	2	[Source:HGNC	Symbol;Acc:HGNC:4008]	 0.65	
GBA	 glucosylceramidase	beta	[Source:HGNC	Symbol;Acc:HGNC:4177]	 0.77	
GLB1	 galactosidase	beta	1	[Source:HGNC	Symbol;Acc:HGNC:4298]	 0.85	

HEXA	 hexosaminidase	subunit	alpha	[Source:HGNC	
Symbol;Acc:HGNC:4878]	 0.61	

LAMP1	 lysosomal	associated	membrane	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:6499]	 0.77	

MAN2B1	 mannosidase	alpha	class	2B	member	1	[Source:HGNC	
Symbol;Acc:HGNC:6826]	 0.65	

NAGA	 alpha-N-acetylgalactosaminidase	[Source:HGNC	
Symbol;Acc:HGNC:7631]	 0.67	

NCSTN	 nicastrin	[Source:HGNC	Symbol;Acc:HGNC:17091]	 0.73	

POFUT1	 protein	O-fucosyltransferase	1	[Source:HGNC	
Symbol;Acc:HGNC:14988]	 0.57	

PSAP	 prosaposin	[Source:HGNC	Symbol;Acc:HGNC:9498]	 0.76	

SUMF1	 sulfatase	modifying	factor	1	[Source:HGNC	
Symbol;Acc:HGNC:20376]	 0.60	

	
Cons.31	 	 	

ACAP1	 ArfGAP	with	coiled-coil,	ankyrin	repeat	and	PH	domains	1	
[Source:HGNC	Symbol;Acc:HGNC:16467]	 0.52	

ARRB2	 arrestin	beta	2	[Source:HGNC	Symbol;Acc:HGNC:712]	 0.76	
CD68	 CD68	molecule	[Source:HGNC	Symbol;Acc:HGNC:1693]	 0.75	
CTSB	 cathepsin	B	[Source:HGNC	Symbol;Acc:HGNC:2527]	 0.65	
CTSC	 cathepsin	C	[Source:HGNC	Symbol;Acc:HGNC:2528]	 0.53	
CTSS	 cathepsin	S	[Source:HGNC	Symbol;Acc:HGNC:2545]	 0.77	

FGD2	 FYVE,	RhoGEF	and	PH	domain	containing	2	[Source:HGNC	
Symbol;Acc:HGNC:3664]	 0.72	

FGD3	 FYVE,	RhoGEF	and	PH	domain	containing	3	[Source:HGNC	
Symbol;Acc:HGNC:16027]	 0.58	

INPP5D	 inositol	polyphosphate-5-phosphatase	D	[Source:HGNC	
Symbol;Acc:HGNC:6079]	 0.48	

LAPTM5	 lysosomal	protein	transmembrane	5	[Source:HGNC	
Symbol;Acc:HGNC:29612]	 0.86	

SERPINA1	 serpin	family	A	member	1	[Source:HGNC	Symbol;Acc:HGNC:8941]	 0.52	

SLC11A1	 solute	carrier	family	11	member	1	[Source:HGNC	
Symbol;Acc:HGNC:10907]	 0.59	
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Cons.32	

EXOC1	 exocyst	complex	component	1	[Source:HGNC	
Symbol;Acc:HGNC:30380]	 0.71	

FKTN	 fukutin	[Source:HGNC	Symbol;Acc:HGNC:3622]	 0.69	
MYO6	 myosin	VI	[Source:HGNC	Symbol;Acc:HGNC:7605]	 0.59	

PEX3	 peroxisomal	biogenesis	factor	3	[Source:HGNC	
Symbol;Acc:HGNC:8858]	 0.64	

PI4K2B	 phosphatidylinositol	4-kinase	type	2	beta	[Source:HGNC	
Symbol;Acc:HGNC:18215]	 0.64	

RAB28	 RAB28,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9768]	 0.40	

SEC22A	 SEC22	homolog	A,	vesicle	trafficking	protein	[Source:HGNC	
Symbol;Acc:HGNC:20260]	 0.48	

SLC35A3	 solute	carrier	family	35	member	A3	[Source:HGNC	
Symbol;Acc:HGNC:11023]	 0.83	

SNX14	 sorting	nexin	14	[Source:HGNC	Symbol;Acc:HGNC:14977]	 0.73	

TRAPPC6B	 trafficking	protein	particle	complex	6B	[Source:HGNC	
Symbol;Acc:HGNC:23066]	 0.78	

VPS36	 vacuolar	protein	sorting	36	homolog	[Source:HGNC	
Symbol;Acc:HGNC:20312]	 0.72	

	
Cons.33	 	 	

DHCR24	 24-dehydrocholesterol	reductase	[Source:HGNC	
Symbol;Acc:HGNC:2859]	 0.75	

DHCR7	 7-dehydrocholesterol	reductase	[Source:HGNC	
Symbol;Acc:HGNC:2860]	 0.85	

EBP	 emopamil	binding	protein	(sterol	isomerase)	[Source:HGNC	
Symbol;Acc:HGNC:3133]	 0.71	

HMGCR	 3-hydroxy-3-methylglutaryl-CoA	reductase	[Source:HGNC	
Symbol;Acc:HGNC:5006]	 0.80	

INSIG1	 insulin	induced	gene	1	[Source:HGNC	Symbol;Acc:HGNC:6083]	 0.78	

LDLR	 low	density	lipoprotein	receptor	[Source:HGNC	
Symbol;Acc:HGNC:6547]	 0.69	

PRKCD	 protein	kinase	C	delta	[Source:HGNC	Symbol;Acc:HGNC:9399]	 0.27	

SREBF2	 sterol	regulatory	element	binding	transcription	factor	2	
[Source:HGNC	Symbol;Acc:HGNC:11290]	 0.75	

UNC13B	 unc-13	homolog	B	[Source:HGNC	Symbol;Acc:HGNC:12566]	 0.23	
	
Cons.34	 	 	

ATP6V1F	 ATPase	H+	transporting	V1	subunit	F	[Source:HGNC	
Symbol;Acc:HGNC:16832]	 -0.67	

CEP290	 centrosomal	protein	290	[Source:HGNC	Symbol;Acc:HGNC:29021]	 0.78	
ERO1LB	 #N/A	 0.61	

GOPC	 golgi	associated	PDZ	and	coiled-coil	motif	containing	[Source:HGNC	
Symbol;Acc:HGNC:17643]	 0.81	

KIF3A	 kinesin	family	member	3A	[Source:HGNC	Symbol;Acc:HGNC:6319]	 0.67	

MON2	 MON2	homolog,	regulator	of	endosome-to-Golgi	trafficking	
[Source:HGNC	Symbol;Acc:HGNC:29177]	 0.79	

NPHP3	 nephrocystin	3	[Source:HGNC	Symbol;Acc:HGNC:7907]	 0.75	
RUFY2	 RUN	and	FYVE	domain	containing	2	[Source:HGNC	 0.79	
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Symbol;Acc:HGNC:19761]	

ZFYVE16	 zinc	finger	FYVE-type	containing	16	[Source:HGNC	
Symbol;Acc:HGNC:20756]	 0.72	

	
Cons.35	 	 	
DGUOK	 deoxyguanosine	kinase	[Source:HGNC	Symbol;Acc:HGNC:2858]	 0.66	

DYNLT1	 dynein	light	chain	Tctex-type	1	[Source:HGNC	
Symbol;Acc:HGNC:11697]	 0.49	

LAMTOR5	 late	endosomal/lysosomal	adaptor,	MAPK	and	MTOR	activator	5	
[Source:HGNC	Symbol;Acc:HGNC:17955]	 0.84	

NDUFAF2	 NADH:ubiquinone	oxidoreductase	complex	assembly	factor	2	
[Source:HGNC	Symbol;Acc:HGNC:28086]	 0.84	

NDUFV2	 NADH:ubiquinone	oxidoreductase	core	subunit	V2	[Source:HGNC	
Symbol;Acc:HGNC:7717]	 0.71	

PARK7	 Parkinsonism	associated	deglycase	[Source:HGNC	
Symbol;Acc:HGNC:16369]	 0.82	

RABEPK	 Rab9	effector	protein	with	kelch	motifs	[Source:HGNC	
Symbol;Acc:HGNC:16896]	 0.59	

UQCRB	 ubiquinol-cytochrome	c	reductase	binding	protein	[Source:HGNC	
Symbol;Acc:HGNC:12582]	 0.54	

	
Cons.36	 	 	

ARPC2	 actin	related	protein	2/3	complex	subunit	2	[Source:HGNC	
Symbol;Acc:HGNC:705]	 0.83	

ARPC3	 actin	related	protein	2/3	complex	subunit	3	[Source:HGNC	
Symbol;Acc:HGNC:706]	 0.80	

ARPC5	 actin	related	protein	2/3	complex	subunit	5	[Source:HGNC	
Symbol;Acc:HGNC:708]	 0.81	

DEGS1	 delta	4-desaturase,	sphingolipid	1	[Source:HGNC	
Symbol;Acc:HGNC:13709]	 0.73	

RAB32	 RAB32,	member	RAS	oncogene	family	[Source:HGNC	
Symbol;Acc:HGNC:9772]	 0.63	

RTN4	 reticulon	4	[Source:HGNC	Symbol;Acc:HGNC:14085]	 0.64	
	
*	Consensus	modules	significant	for	all	four	preservation	statistics	
____________________________________________________________________________________________________________________	
	

	

Supplementary	Table	2	

TF	 TF.description	 Score	
	
Cons.2	
CENPB	 centromere	protein	B	[Source:HGNC	Symbol;Acc:HGNC:1852]	 2.25	

CREB3L2	
cAMP	responsive	element	binding	protein	3	like	2	[Source:HGNC	
Symbol;Acc:HGNC:23720]	 2.23	

ELK3	
ELK3,	ETS	transcription	factor	[Source:HGNC	
Symbol;Acc:HGNC:3325]	 1.64	

ERF	 ETS2	repressor	factor	[Source:HGNC	Symbol;Acc:HGNC:3444]	 1.47	
ETS2	 ETS	proto-oncogene	2,	transcription	factor	[Source:HGNC	 1.86	
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Symbol;Acc:HGNC:3489]	
KLF13	 Kruppel	like	factor	13	[Source:HGNC	Symbol;Acc:HGNC:13672]	 1.76	
PKNOX1	 PBX/knotted	1	homeobox	1	[Source:HGNC	Symbol;Acc:HGNC:9022]	 2.72	

TGIF1	
TGFB	induced	factor	homeobox	1	[Source:HGNC	
Symbol;Acc:HGNC:11776]	 1.73	

ZBTB18	
zinc	finger	and	BTB	domain	containing	18	[Source:HGNC	
Symbol;Acc:HGNC:13030]	 2.00	

ZNF691	 zinc	finger	protein	691	[Source:HGNC	Symbol;Acc:HGNC:28028]	 1.63	
	
Cons.3	 		 		

CEBPZ	
CCAAT/enhancer	binding	protein	zeta	[Source:HGNC	
Symbol;Acc:HGNC:24218]	 1.76	

CREB3L2	
cAMP	responsive	element	binding	protein	3	like	2	[Source:HGNC	
Symbol;Acc:HGNC:23720]	 2.03	

EPAS1	
endothelial	PAS	domain	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:3374]	 5.15	

HIC2	
HIC	ZBTB	transcriptional	repressor	2	[Source:HGNC	
Symbol;Acc:HGNC:18595]	 3.99	

KLF13	 Kruppel	like	factor	13	[Source:HGNC	Symbol;Acc:HGNC:13672]	 1.42	

NFKB2	
nuclear	factor	kappa	B	subunit	2	[Source:HGNC	
Symbol;Acc:HGNC:7795]	 1.46	

NR4A1	
nuclear	receptor	subfamily	4	group	A	member	1	[Source:HGNC	
Symbol;Acc:HGNC:7980]	 1.53	

RBPJ	
recombination	signal	binding	protein	for	immunoglobulin	kappa	J	
region	[Source:HGNC	Symbol;Acc:HGNC:5724]	 1.48	

RELB	
RELB	proto-oncogene,	NF-kB	subunit	[Source:HGNC	
Symbol;Acc:HGNC:9956]	 1.51	

ZNF589	 zinc	finger	protein	589	[Source:HGNC	Symbol;Acc:HGNC:16747]	 1.97	
	
Cons.6	

	 	
ARNTL	

aryl	hydrocarbon	receptor	nuclear	translocator	like	[Source:HGNC	
Symbol;Acc:HGNC:701]	 1.39	

BRF1	
BRF1,	RNA	polymerase	III	transcription	initiation	factor	subunit	
[Source:HGNC	Symbol;Acc:HGNC:11551]	 1.41	

CENPB	 centromere	protein	B	[Source:HGNC	Symbol;Acc:HGNC:1852]	 1.53	

CREB3L2	
cAMP	responsive	element	binding	protein	3	like	2	[Source:HGNC	
Symbol;Acc:HGNC:23720]	 1.54	

FOXK1	 forkhead	box	K1	[Source:HGNC	Symbol;Acc:HGNC:23480]	 1.32	

HIC2	
HIC	ZBTB	transcriptional	repressor	2	[Source:HGNC	
Symbol;Acc:HGNC:18595]	 3.27	

NR1H3	
nuclear	receptor	subfamily	1	group	H	member	3	[Source:HGNC	
Symbol;Acc:HGNC:7966]	 2.54	

STRA13	 #N/A	 1.34	

TERF1	
telomeric	repeat	binding	factor	1	[Source:HGNC	
Symbol;Acc:HGNC:11728]	 1.56	

TFAP4	 transcription	factor	AP-4	[Source:HGNC	Symbol;Acc:HGNC:11745]	 1.58	
	
Cons.8	 		 		

CEBPZ	
CCAAT/enhancer	binding	protein	zeta	[Source:HGNC	
Symbol;Acc:HGNC:24218]	 1.69	

DR1	 down-regulator	of	transcription	1	[Source:HGNC	 1.76	
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Symbol;Acc:HGNC:3017]	
E2F3	 E2F	transcription	factor	3	[Source:HGNC	Symbol;Acc:HGNC:3115]	 1.71	

HIC2	
HIC	ZBTB	transcriptional	repressor	2	[Source:HGNC	
Symbol;Acc:HGNC:18595]	 1.68	

POU6F1	 POU	class	6	homeobox	1	[Source:HGNC	Symbol;Acc:HGNC:9224]	 1.65	

RBPJ	
recombination	signal	binding	protein	for	immunoglobulin	kappa	J	
region	[Source:HGNC	Symbol;Acc:HGNC:5724]	 1.94	

STAT1	
signal	transducer	and	activator	of	transcription	1	[Source:HGNC	
Symbol;Acc:HGNC:11362]	 1.69	

STAT5A	
signal	transducer	and	activator	of	transcription	5A	[Source:HGNC	
Symbol;Acc:HGNC:11366]	 2.78	

STAT5B	
signal	transducer	and	activator	of	transcription	5B	[Source:HGNC	
Symbol;Acc:HGNC:11367]	 2.16	

TERF1	
telomeric	repeat	binding	factor	1	[Source:HGNC	
Symbol;Acc:HGNC:11728]	 2.19	

	
Cons.9	

	 	
BRCA1	

BRCA1,	DNA	repair	associated	[Source:HGNC	
Symbol;Acc:HGNC:1100]	 1.84	

CDC5L	 cell	division	cycle	5	like	[Source:HGNC	Symbol;Acc:HGNC:1743]	 1.95	
CENPB	 centromere	protein	B	[Source:HGNC	Symbol;Acc:HGNC:1852]	 2.06	
E4F1	 E4F	transcription	factor	1	[Source:HGNC	Symbol;Acc:HGNC:3121]	 1.70	

EPAS1	
endothelial	PAS	domain	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:3374]	 17.77	

GMEB2	
glucocorticoid	modulatory	element	binding	protein	2	[Source:HGNC	
Symbol;Acc:HGNC:4371]	 2.60	

NF1	 neurofibromin	1	[Source:HGNC	Symbol;Acc:HGNC:7765]	 1.64	

ZBTB4	
zinc	finger	and	BTB	domain	containing	4	[Source:HGNC	
Symbol;Acc:HGNC:23847]	 3.71	

ZNF589	 zinc	finger	protein	589	[Source:HGNC	Symbol;Acc:HGNC:16747]	 4.56	
ZNF628	 zinc	finger	protein	628	[Source:HGNC	Symbol;Acc:HGNC:28054]	 7.55	
	
Cons.12	 		 		

CEBPD	
CCAAT/enhancer	binding	protein	delta	[Source:HGNC	
Symbol;Acc:HGNC:1835]	 1.40	

CEBPG	
CCAAT/enhancer	binding	protein	gamma	[Source:HGNC	
Symbol;Acc:HGNC:1837]	 1.23	

EP300	 E1A	binding	protein	p300	[Source:HGNC	Symbol;Acc:HGNC:3373]	 2.10	
KLF12	 Kruppel	like	factor	12	[Source:HGNC	Symbol;Acc:HGNC:6346]	 1.25	

MNT	
MAX	network	transcriptional	repressor	[Source:HGNC	
Symbol;Acc:HGNC:7188]	 1.33	

NFIC	 nuclear	factor	I	C	[Source:HGNC	Symbol;Acc:HGNC:7786]	 1.67	
RFX7	 regulatory	factor	X7	[Source:HGNC	Symbol;Acc:HGNC:25777]	 2.07	

STAT3	
signal	transducer	and	activator	of	transcription	3	[Source:HGNC	
Symbol;Acc:HGNC:11364]	 1.34	

TP53	 tumor	protein	p53	[Source:HGNC	Symbol;Acc:HGNC:11998]	 1.40	

USF1	
upstream	transcription	factor	1	[Source:HGNC	
Symbol;Acc:HGNC:12593]	 1.50	

	
Cons.14	

	 	ATF1	 activating	transcription	factor	1	[Source:HGNC	 1.30	
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Symbol;Acc:HGNC:783]	
CUX1	 cut	like	homeobox	1	[Source:HGNC	Symbol;Acc:HGNC:2557]	 1.31	
HMBOX1	 homeobox	containing	1	[Source:HGNC	Symbol;Acc:HGNC:26137]	 3.27	

RARG	
retinoic	acid	receptor	gamma	[Source:HGNC	
Symbol;Acc:HGNC:9866]	 1.37	

TRIM28	
tripartite	motif	containing	28	[Source:HGNC	
Symbol;Acc:HGNC:16384]	 1.40	

TTF1	
transcription	termination	factor	1	[Source:HGNC	
Symbol;Acc:HGNC:12397]	 1.60	

USF1	
upstream	transcription	factor	1	[Source:HGNC	
Symbol;Acc:HGNC:12593]	 2.03	

ZBTB33	
zinc	finger	and	BTB	domain	containing	33	[Source:HGNC	
Symbol;Acc:HGNC:16682]	 1.48	

ZBTB49	
zinc	finger	and	BTB	domain	containing	49	[Source:HGNC	
Symbol;Acc:HGNC:19883]	 1.75	

ZBTB6	
zinc	finger	and	BTB	domain	containing	6	[Source:HGNC	
Symbol;Acc:HGNC:16764]	 1.87	

	
Cons.16	 		 		

ARID5A	
AT-rich	interaction	domain	5A	[Source:HGNC	
Symbol;Acc:HGNC:17361]	 1.52	

ATF5	
activating	transcription	factor	5	[Source:HGNC	
Symbol;Acc:HGNC:790]	 1.57	

BBX	 BBX,	HMG-box	containing	[Source:HGNC	Symbol;Acc:HGNC:14422]	 1.68	

CEBPB	
CCAAT/enhancer	binding	protein	beta	[Source:HGNC	
Symbol;Acc:HGNC:1834]	 1.89	

ETS1	
ETS	proto-oncogene	1,	transcription	factor	[Source:HGNC	
Symbol;Acc:HGNC:3488]	 1.67	

HMGA1	
high	mobility	group	AT-hook	1	[Source:HGNC	
Symbol;Acc:HGNC:5010]	 1.76	

PKNOX1	 PBX/knotted	1	homeobox	1	[Source:HGNC	Symbol;Acc:HGNC:9022]	 2.18	

REST	
RE1	silencing	transcription	factor	[Source:HGNC	
Symbol;Acc:HGNC:9966]	 1.58	

TGIF2	
TGFB	induced	factor	homeobox	2	[Source:HGNC	
Symbol;Acc:HGNC:15764]	 1.73	

ZNF350	 zinc	finger	protein	350	[Source:HGNC	Symbol;Acc:HGNC:16656]	 1.73	
	
Cons.18	

	 	CTCF	 CCCTC-binding	factor	[Source:HGNC	Symbol;Acc:HGNC:13723]	 1.54	

GABPB1	
GA	binding	protein	transcription	factor	beta	subunit	1	[Source:HGNC	
Symbol;Acc:HGNC:4074]	 1.38	

MAFF	
MAF	bZIP	transcription	factor	F	[Source:HGNC	
Symbol;Acc:HGNC:6780]	 7.03	

NR1H2	
nuclear	receptor	subfamily	1	group	H	member	2	[Source:HGNC	
Symbol;Acc:HGNC:7965]	 1.55	

NR2C2	
nuclear	receptor	subfamily	2	group	C	member	2	[Source:HGNC	
Symbol;Acc:HGNC:7972]	 1.39	

NR4A1	
nuclear	receptor	subfamily	4	group	A	member	1	[Source:HGNC	
Symbol;Acc:HGNC:7980]	 1.99	

RXRB	 retinoid	X	receptor	beta	[Source:HGNC	Symbol;Acc:HGNC:10478]	 2.24	
SIRT6	 sirtuin	6	[Source:HGNC	Symbol;Acc:HGNC:14934]	 1.25	
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ZNF589	 zinc	finger	protein	589	[Source:HGNC	Symbol;Acc:HGNC:16747]	 2.56	
ZNF784	 zinc	finger	protein	784	[Source:HGNC	Symbol;Acc:HGNC:33111]	 2.16	
	
Cons.20	 		 		

CREB3L2	
cAMP	responsive	element	binding	protein	3	like	2	[Source:HGNC	
Symbol;Acc:HGNC:23720]	 2.12	

EPAS1	
endothelial	PAS	domain	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:3374]	 7.00	

GMEB2	
glucocorticoid	modulatory	element	binding	protein	2	[Source:HGNC	
Symbol;Acc:HGNC:4371]	 16.45	

NFIC	 nuclear	factor	I	C	[Source:HGNC	Symbol;Acc:HGNC:7786]	 2.44	

POLR3A	
RNA	polymerase	III	subunit	A	[Source:HGNC	
Symbol;Acc:HGNC:30074]	 1.52	

STRA13	 #N/A	 2.28	

ZBTB14	
zinc	finger	and	BTB	domain	containing	14	[Source:HGNC	
Symbol;Acc:HGNC:12860]	 1.70	

ZBTB18	
zinc	finger	and	BTB	domain	containing	18	[Source:HGNC	
Symbol;Acc:HGNC:13030]	 2.43	

ZNF282	 zinc	finger	protein	282	[Source:HGNC	Symbol;Acc:HGNC:13076]	 1.92	
ZNF652	 zinc	finger	protein	652	[Source:HGNC	Symbol;Acc:HGNC:29147]	 1.68	
	
Cons.22	

	 	
ARID5B	

AT-rich	interaction	domain	5B	[Source:HGNC	
Symbol;Acc:HGNC:17362]	 1.28	

ELK1	
ELK1,	ETS	transcription	factor	[Source:HGNC	
Symbol;Acc:HGNC:3321]	 1.04	

ETS2	
ETS	proto-oncogene	2,	transcription	factor	[Source:HGNC	
Symbol;Acc:HGNC:3489]	 1.03	

GMEB1	
glucocorticoid	modulatory	element	binding	protein	1	[Source:HGNC	
Symbol;Acc:HGNC:4370]	 1.24	

MECP2	
methyl-CpG	binding	protein	2	[Source:HGNC	
Symbol;Acc:HGNC:6990]	 1.23	

RFX3	 regulatory	factor	X3	[Source:HGNC	Symbol;Acc:HGNC:9984]	 1.31	
RFX5	 regulatory	factor	X5	[Source:HGNC	Symbol;Acc:HGNC:9986]	 1.31	

ZBTB14	
zinc	finger	and	BTB	domain	containing	14	[Source:HGNC	
Symbol;Acc:HGNC:12860]	 1.30	

ZBTB33	
zinc	finger	and	BTB	domain	containing	33	[Source:HGNC	
Symbol;Acc:HGNC:16682]	 1.39	

ZBTB7A	
zinc	finger	and	BTB	domain	containing	7A	[Source:HGNC	
Symbol;Acc:HGNC:18078]	 4.14	

	
Cons.23	 		 		
CLOCK	 clock	circadian	regulator	[Source:HGNC	Symbol;Acc:HGNC:2082]	 1.91	
EP300	 E1A	binding	protein	p300	[Source:HGNC	Symbol;Acc:HGNC:3373]	 2.85	

GMEB2	
glucocorticoid	modulatory	element	binding	protein	2	[Source:HGNC	
Symbol;Acc:HGNC:4371]	 2.96	

NFYA	
nuclear	transcription	factor	Y	subunit	alpha	[Source:HGNC	
Symbol;Acc:HGNC:7804]	 1.91	

NFYC	
nuclear	transcription	factor	Y	subunit	gamma	[Source:HGNC	
Symbol;Acc:HGNC:7806]	 1.79	

STAT5A	 signal	transducer	and	activator	of	transcription	5A	[Source:HGNC	 2.02	



	 141	

Symbol;Acc:HGNC:11366]	

STAT5B	
signal	transducer	and	activator	of	transcription	5B	[Source:HGNC	
Symbol;Acc:HGNC:11367]	 1.87	

TERF1	
telomeric	repeat	binding	factor	1	[Source:HGNC	
Symbol;Acc:HGNC:11728]	 2.70	

ZNF628	 zinc	finger	protein	628	[Source:HGNC	Symbol;Acc:HGNC:28054]	 3.51	
ZNF784	 zinc	finger	protein	784	[Source:HGNC	Symbol;Acc:HGNC:33111]	 2.33	
	
Cons.24	

	 	
DR1	

down-regulator	of	transcription	1	[Source:HGNC	
Symbol;Acc:HGNC:3017]	 1.79	

ELK3	
ELK3,	ETS	transcription	factor	[Source:HGNC	
Symbol;Acc:HGNC:3325]	 1.51	

MEF2D	 myocyte	enhancer	factor	2D	[Source:HGNC	Symbol;Acc:HGNC:6997]	 1.48	

NR1H2	
nuclear	receptor	subfamily	1	group	H	member	2	[Source:HGNC	
Symbol;Acc:HGNC:7965]	 1.78	

NR3C1	
nuclear	receptor	subfamily	3	group	C	member	1	[Source:HGNC	
Symbol;Acc:HGNC:7978]	 3.04	

PTEN	
phosphatase	and	tensin	homolog	[Source:HGNC	
Symbol;Acc:HGNC:9588]	 2.07	

RXRA	 retinoid	X	receptor	alpha	[Source:HGNC	Symbol;Acc:HGNC:10477]	 1.52	
RXRB	 retinoid	X	receptor	beta	[Source:HGNC	Symbol;Acc:HGNC:10478]	 2.80	
TFAP4	 transcription	factor	AP-4	[Source:HGNC	Symbol;Acc:HGNC:11745]	 2.16	
ZNF75A	 zinc	finger	protein	75a	[Source:HGNC	Symbol;Acc:HGNC:13146]	 1.65	
	

	

SUPPLEMENTARY	FIGURES	

Figures	 S1-S23	 Percentage	 of	 module	 genes	 interacting	 with	 significant	

KEGG-	 or	 GO_MF-category	 genes.	 Red	 dots	 at	 the	 zero	 level	 indicate	 non-

significant	categories;	by	contrast,	dots	that	are	above	zero	indicate	categories	that	

are	statistically	significant	(fdr<0.05)	for	the	hypergeometric	test.	(*)	denotes	the	

categories	that	have	statistical	significance	(fdr<0.05)	for	both	hypergeometric	test	

and	DSEA;	zoom	in	on	the	x-labels	is	necessary	to	read	the	categories.	
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