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During my PhD, I worked on a project focused on unravelling the role of 

oxidative stress during muscular dystrophy progression. To study this 

phenomenon, I took advantage of a dietary natural antioxidant, known as 

cyanidin, supplied to dystrophic mouse model Sgca null (Duclos et al.,1998).  

This study resulted in a manuscript (Part II) soon to be submitted. The use of a 

diet enriched in cyanidin helped us firstly to demonstrate that this compound is 

able to delay muscular dystrophy progression morphologically, but most 

importantly, functionally; secondly to identify the molecular pathways tuned by 

this natural antioxidant. Specifically, we demonstrated that cyanidin is able to 

promote the nuclear localization of Nrf-2, the master antioxidant transcription 

factor in mammals, through AMPK activity. We also investigated on the anti-

inflammatory properties of this treatment, discovering that cyanidin is able to 

retain NF-kB in the cytoplasm modulating ERK activity. 

 

 

Also, I collaborate with Andrea Barbuti’s laboratory on a work aimed to study 

the role of miRNA in cardiac myocytes in a chronically exercised mouse model. 

I focus, in particular, on the role played by the mitochondrial homeostasis 

transcription factor PGC-1 
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Summary 

During my PhD, I mainly focus on the of dietary antioxidant and the role of 

oxidative stress in the progression of Muscular Dystrophy (MDs).  MDs are 

genetic human diseases which are hallmarked by a progressive muscle wasting 

of variable severity, in the most severe cases this condition leads patients to 

wheelchair life and premature death due to respiratory and cardiac failure 

(Emery 2002). Mutations, in these pathologies, mainly affect the Dystrophin-

associated Glycoprotein Complex (DGC); this multiprotein complex is located 

in the myofiber sarcolemma and links the fibers to the extracellular matrix 

conferring stability to fiber structure. The absence or the malfunction of the DGC 

leads to myofibers instability, which leads to fibers death and in time 

compromise muscle functionality. In the most severe cases MD patients would 

die of respiratory and cardiac failure. 

Nowadays there is no definitive treatment for MDs that can cure the root of the 

pathology, although among the different approaches, many efforts are directed 

to slow down the progression of the disease to counteract the progressive 

degeneration and to improve patients life quality (Cossu & Sampaolesi 2007).  

It is now very well established that the DGC not only plays a structural role for 

the myofiber stability, but also its stretch during contraction is essential for the 

activation of important signalling pathways. In fact, in literature is known that 

accumulation of reactive oxygen species (ROS) and oxidative stress contribute 

strongly to the worsening of MDs, suggesting that muscles affected by these 

diseases display an impairment in antioxidant signalling (Rando 1998; Rando 

2002). In this study, we show that an cyanidin enriched diet is able to delay MD 

progression in the dystrophic mouse model Sgca null. In particular we display 

a morphological amelioration of muscle tissue organization, more fiber stability 

and rescue of muscle performance.  
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Moreover, the antioxidant diet is able to interfere with the proinflammatory 

environment, typical of these pathologies. Specifically, cyanidin impairs NF-kB 

translocation into the myonuclei, and prevent the expression of typical pro-

inflammatory genes such as TNF- and iNOS. 

Furthermore, we observe an increase of the antioxidant response in dystrophic 

mice fed with this particular diet. We found that the transcriptional levels of 

antioxidant genes (i.e. HO-1 and GCLC), in this scenario, are increased through 

the activity a specific transcription factor known as Nrf-2. We investigate on the 

signalling pathway that promote Nrf-2 nuclei localization, finding that AMPK 

activity is the crucial factor. 
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Introduction 

Heterogeneity of skeletal muscle 

In order to fulfil different tasks, e.g. continuous low-intensity activity (posture), 

repeated submaximal contraction (movement) or strong and fast contraction 

(jumping) the muscle fibers display phenotypically, morphologically, 

metabolically and at the molecular level an intrinsic heterogeneity. These 

features are due to the expression of four different isoforms of myosin heavy 

chain (MyHC): MyHC-1, MyHC-2a, MyHC-2x and MyHC-2b, therefore muscle 

fibers are classified into four major groups (table 1) (DeNardi et al., 1993; 

Chakkalakal et al., 2012). The presence of a specific MyHC isoform lends to 

the fibers specific characteristics in terms of power and speed of shortening of 

each muscle; both features decrease in order MyHC-1<MyHC-2a<MyHC-

2x<MyHC-2b (Raiser et al., 1985; Bottinelli et al., 1996). This commonly leads 

to subdivide the fibers in slow-twitching or type I fibers, which usually express 

MyHC I isoform; and fast-twitching fibers expressing MyHC-2a, -2x and -2b 

isoforms (Schiaffino and Reggiani, 2011).  

Furthermore, fast and slow-twitching fibers differ in metabolic properties and 

mitochondrial content. Slow fibers are able to generate a great amount of ATP 

by oxidative metabolism via mitochondria and the ATP consumption rate is not 

very high during contraction, these allow them to extended contractile activity 

(Schiaffino and Reggiani, 2011).  

On the other side, fast-twitching fibers produce ATP very quickly through 

glycolytic metabolism, generating a limited amount of ATP and a limited 

duration in contraction (Schiaffino and Reggiani 2011). Based on these 

metabolic features, myofibers can be divided into slow-oxidative (S), fast-

oxidative-glycolytic (FOG) and fast-glycolytic (FG) fibers (Ashomor et al., 1972; 

Peter et al., 1972). The S fibers are usually type I fibers, expressing MyHC-I 

isoform, and display a great antioxidant complement to counteract the 

mitochondrial generation of reactive oxygen species (ROS), mainly resulted by 

the oxidative phosphorylation.  On the contrary FG fibers, usually type 2x fibers 

and 2b, express respectively MyHC-2x and 2b isoforms, display more glycolytic 
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enzyme content. These fibers show less expression of antioxidant enzyme 

conveying them to more sensitivity to oxidative stress and ROS concentration 

(Schiaffino and Reggiani 2011).   

 TypeI fibers 

 

Type 2a fibers Type 2x fibers Type 2b fibers 

Contraction time Slow Medium Fast Very fast 

Resistance to fatigue High Medium Intermediate Low 

Activity used for Aerobic Long-Term 

anaerobic 

Short-term 

anaerobic 

Short-term 

anaerobic 

Maximum period of use Hours <30 min <5 min <1 min 

Power produced Low  Medium High Very high 

Mitochondrial density High Intermediate Low  Low 

Oxidative capacity High Intermediate  Intermediate Low 

Glycolytic capacity  Low  High High High 

Myosin heavy Chain expression Myh7 Myh2 Myh1 Myh4 

 

 

Muscular Dystrophies 

Muscular dystrophies (MDs) are a group of myogenic disorders, which have all 

in common the progressive muscle wasting and weakness of variable 

distribution and severity. This leads in time to different degrees of mobility 

limitation, heart and respiratory failure (Emery, 2002).  

Muscular dystrophies can be divided in different groups, according to the 

distribution and severity of the phenotype. Most of them are due to mutations 

in genes encoding proteins belonging to the Dystrophin-associated 

Glycoprotein Complex (DGC). This multiprotein complex is located in the 

myofiber sarcolemma and links the fibers to the extracellular matrix conferring 

Table 1: Characteristics of muscle fiber type 
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stability to fiber structure (Figure 1A). The absence or the malfunction of the 

DGC leads to myofibers instability, event that promotes myofibers death and in 

time compromise muscle functionality.  

Histologically, MDs are characterized by variation in fibers calibre, necrotic and 

apoptotic fibers, chronic inflammation and great macrophages infiltration 

(Emery et al. 2002). All these events activate the stem cell poll of the adult 

muscle tissue, called Satellite Cells (SCs; Mercuri & Muntoni 2013), which 

differentiate in newly regenerating muscle fibers. Since these cells share the 

same mutation, they will develop in fragile myofibers failing the regenerative 

process, thus driving the muscle homeostasis in a loop of regeneration-

degeneration till the exhaustion of the stem pool (Mercuri & Muntoni 2013) (Figure 

1B). The musculature is, therefore, in time replaced by adipose and connective 

tissue (fibrosis) compromising its functionality (Emery 2002; Mercuri & Muntoni 

2013) (Figure 1C).  

The most common form of MD is the Duchenne Muscular Dystrophy (DMD). 

DMD is an X-linked pathology, which mutation leads to the absence of the 

sarcolemmal protein dystrophin, with an incidence at birth about 300x10-6 and 

a prevalence in the total male population around 60x10-6 (Bushby et al. 2010; 

Gee et al. 2017). As DMD is the most common muscular dystrophy, great 

efforts have been done to study this pathology, through generating transgenic 

mice models. The most commonly used model, the mdx mice, is characterized 

by the most common mutation in the dystrophin gene observed in humans. 

Unfortunately, this model does not recapitulate properly the phenotype of the 

human pathology, showing a milder phenotype. This phenomenon could be 

ascribed to some difference between mice and humans, such as the 

compensation effects by utrophin, a dystrophin homologous, and the longer 

telomeres, which are present in mice compared to humans one (Deconick et 

al., 1997; Grady et al., 1997; Sacco et al., 2010). 

In order to overcome this issue, novel models of MD have been generated, 

which better resemble the human phenotype. 

Limb-girdle muscular dystrophy is an autosomal recessive disease 

characterized by a weakness that affects mainly the proximal limb-girdle 
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musculature (Darin & Tulinius, 2000). The α-sarcoglycan is part of 

transmembrane proteins, which together with β, γ, and δ take part of the DGC. 

This complex connects the cytoskeleton of the myofibers to the external cellular 

matrix, conferring sarcolemmal stability, but also the DGC is essential for 

triggering specific pro-survival signalling pathways (Durbeej & Campbell, 2002; 

Rando et al.; 2002). 

The Sgca deficient mouse model develops progressive muscular dystrophy, 

with a severe phenotype showed by muscle necrosis with age, a hallmark of 

the human disease. Furthermore, this model displays a loss of sarcolemmal 

integrity, chronic inflammation at the muscle site recalling macrophage 

population, collagen and fat infiltration, and changes in terms of muscle 

performance (Duclos et al.; 1998). 

When the aim of the study is not to restore genetically the dystrophin 

expression, models such as the α-sarcoglycan null mouse (a mouse model for 

limb-girdle muscular dystrophy 2D, Sgca null, Duclos et al.; 1998), are more 

indicated. In this study, we are interested in the effects of an antioxidant-

enriched diet on the dystrophic phenotype, in the study we decided to use the 

Sgca null mouse model since better recapitulates the human pathology. 

 

 

 

 

 

 

 

 

 

 



      
 

 12 

 

Figure 1 (A) Scheme of Dystroglycan complex. (B) Brief scheme of 

degenerative/regenerative cycles occurring during MDs onset. (C) 

Representative picture of wild type (WT) and dystrophic extra cellular matrix 

deposition in the diaphragm.  
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The state of art of therapeutic strategies for Muscular Dystrophies  

Muscular Dystrophies and in particular DMD affects about 1:350 males, which 

are born apparently normal, but start to show symptoms around the first decade 

of life losing walking ability. Patients become, in time, dependent on wheelchair 

and aspiration around their 20s, and usually do not survive past the age of 30s 

caused by cardiac and respiratory failure (Bushby et al. 2010; Gee et al. 2017). 

In these patients, as said above, lacking of functional dystrophin causes 

myofibers instability and cell death; overtime muscle fibers are replaced by 

connective and adipose tissue losing their primary function. Nowadays, typical 

therapies for DMD patients include corticosteroids treatment that can only delay 

the progression of this pathology and improve muscle force; however, several 

side effects are reported in literature including behavioural changes, fractures, 

cataracts, weight gain and cushingoid appearance (Mendell et al., 1989; Biggar 

et al., 2006; Gloss et al., 2016). 

Unfortunately, up to date there are no successful therapeutic approaches to 

treat the root cause of these pathologies. Beside the drug therapy, there are 

several different approaches under investigation that aim specifically to treat 

the genetic defect. 

Gene therapy 

Gene replacement  

Gene replacement aims to replace the defective dystrophin gene, delivering the 

physiological form through adeno-associated virus vector (AVV). This approach 

is very promising since AVV is a non-pathogenic virus and it could reach 

systemically the majority of the post mitotic nuclei in the muscles (Rodino-

Klapac et al.; 2013). This strategy though showed some caveats, the most 

remarkable is the packaging capacity of the vector that is limited (less than 5kb) 

and it is not able to contain the large size of the whole dystrophin gene (Hoggan 

et al.; 1966; Rodino-Klapac et al.2013). To overcome this main issue, several 

laboratories developed a mini-dystrophin, deleting nonessential coding regions, 

such as spectrin repeats and C-terminus. This truncated dystrophin gene 
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allows to be correctly packed and delivered in the AVV vector, and studies 

demonstrated also a therapeutical efficacy of this strategy in the mdx mouse 

model (Harper et al., 2002; Wang et al., 2000).  

Unfortunately, this is not the only disadvantage to take in consideration since is 

known that up to the 74% of human population display pre-existing antibodies 

against AVVs, which come from previous exposure that naturally occurs during 

childhood. Furthermore, this class of parvovirus cannot replicate in absence of 

helper viruses such as herpes simplex and adenovirus (Hoggan et al.; 1966; 

Boutin et al.; 2010). 

Genome editing 

This approach can be used to facilitate DNA repair after a double strand break 

is promoted by a programmable nuclease (Nakano and Hotta 2014). The main 

pathways involved in the DNA reprairing are two: the homologous 

recombination pathway (HR), which requires the presence of DNA template 

with homologous overlapping regions (Harber 2000). The other pathway, 

knonw as nonhomologous end joining (NHEJ), leads to insertion or deletions 

introduced to path the DNA gap (Mao et al. 2008).  

In light of these evidences the recently used CRISPR (clustered regularity interspaced 

short palindromic repeats) Cas9 (CRISPR associated protein) nuclease system uses 

RNA complementary guide to edit a specific genome DNA sequence, and for its high 

versatility has become the preferred nuclease of choice in the genome editing field 

(Gee et al; 2017).  

This flexible tool can be applied to restore the dystrophin open reading frame (ORF), 

by AVV infecting CRISPR-Cas9. In fact, targeting one or more exons through CRISPR-

Cas9 approach, dystrophin expression can be rescued. One example is deleting the 

whole exon 23 in the dystrophic mdx mouse model; it was reported that the deletion of 

the whole exon 23 is able to rescue the dystrophic phenotype (Nelson et al., 2015). 

Furthermore, it was demonstrated by Maggio and colleagues that dystrophin 

expression can be restored in immortalized DMD myoblasts by removing the splicing 

acceptor (SA) in front of exon 51 (Maggio et al. 2016). 

Even if the growing body of evidences are promising there are still some caveats in 

the filed regarding using this approach. Unfortunately, this approach shares the same 
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limits encountered for the exon skipping, since AVV infections are required as well. 

Moreover, the possibility of nonspecific DNA cleavage by CRISPR-Cas9 is the major 

concern. It was reported by several groups that a high number of off-targets mutations 

could occur, this depends on the uniqueness of the target sequence (Fu et al., 2013). 

Another concern is the immune system response editing with CRISPR-Cas9. In fact, 

it is possible that newly expressed Cas9 nuclease might promote an immune 

response, it is documented indeed that Cas9 delivered into C57BL/6 mice triggered an 

increased number of T-cells reactive to CRISPR-Cas9 (Chew et al. 2016). Indicating 

the immune system could be another obstacle to establish permanent treatment. 

Exon skipping 

Another approach to take in consideration is to target the pre-messenger RNA 

level, promoting one or more exons to be omitted and restore in such a way 

dystrophin reading frame, this strategy is also known as exon skipping. This 

phenomenon is accomplished with antisense oligonucleotides (AONs), which 

are synthesized to hybridize in a complementary manner the pre-messenger-

RNA, allowing splicing modification (Mann et al, 2001; Goyenvalle et al.; 2010).  

Several clinical trials showed the safety of this treatment in human through 

either muscular injection either systemic delivery (Van Deutekom et al.; 2007; 

Geomans et al.; 2011). However, these treatments have limited transduction 

efficacy in the heart of the mdx mice, also in long term mdx mouse studies of 

AONs supplementation is able to worsened myocardial phenotype (Malerba et 

al.; 2004). This implies that rescuing proper dystrophin expression in skeletal 

muscles in the absence of cardiac expression might have negative effects on 

cardiomyocytes. 

Cell therapy 

A third remarkable approach is focused on interfering with the loop of 

regeneration/degeneration, impaired satellite cells differentiation, loss of 

muscle fiber which is replaced by fat and connective tissue. As a result, there 

are under investigation strategies to deliver normal or genetic corrected muscle 

cells or pluripotent stem cells.  
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SC transfer experiments, first promising in the mdx mice, was disappointing in 

clinical trials due to SCs impairment to cross the blood vessel wall, poor cell 

migration, fusion and survival (Patrige et al.; 1989; Mendell et al.; 1995; Skuk 

et al.; 2004). The use of atypical myogenic precursors overcomes these issues, 

by offering high proliferating capacity, and most importantly the ability to cross 

the vessel walls, these populations include mesoangioblasts (Asakura et al.; 

2002; Cossu et al.; 2003; Tagliafico et al.; 2006). This last population 

demonstrated, in several dystrophic models, to be particularly promising as 

multipotent progenitors exhibiting potential to improve muscular dystrophy, 

ease isolation from blood vessels and their remarkable ability to arterial 

transmigrating (Tagliafico et al.; 2004). A series of study in mdx and Sgca null 

mouse models show that transplanting mesoangioblasts, genetically corrected 

to express dystrophin, resulted in dystrophin-positive terminally differentiated 

myofibers (Davies et al.; 2006; Tedesco et al.; 2012).  

Recently a clinical trial just ended (Eduract 2011-000176-33), where intra-

arterial transplantations of mesoangioblast were performed on children affected 

by DMD. In this study Cossu and collaborators demonstrated the feasibility of 

this strategy and also that is clinically safe. Unfortunately, only few amelioration 

data were collected from paediatric patients, indeed just the youngest patients 

displayed light amelioration of the pathology; when the others did not show 

changes in terms of disease progression (Cossu et al.; 2015). 

We can conclude that important steps forward were made to cure muscular 

dystrophies; even if some clinical trials are promising, no efficient therapies are 

yet available. In this scenario, it is thus important to develop approaches that 

aim to delay MD progression for two main reasons: firstly, to improve the 

patient’s life quality; secondly to make those children eligible for future clinical 

trial, since any clinical trial has to be developed on high quality muscle with poor 

fibrosis and fat infiltration. 
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Oxidative stress and antioxidant response  

Oxidative stress in skeletal muscle and Muscular dystrophies 

Oxidative stress is defined as imbalanced between the generation of reactive 

oxygen species (ROS) and the removal of such species by enzymatic and non-

enzymatic defences, also known as antioxidant response (Rando 2002). This 

imbalanced could arise from an overproduction of ROS, usually associated with 

inflammation, either from impaired antioxidant defences, as observed in some 

loss-of-function disorders. This event usually leads to oxidation of various 

molecules essential for cell survival (oxidized DNA, proteins carbonylation and 

lipids peroxidation) and ultimately causes cellular dysfunction and cell death. 

Such condition might lead to chronic tissue degeneration if these changes 

accumulate in time. Furthermore, several mouse models, that exhibit an 

impairment in ROS metabolism, such as the GSH knock out and the vitamin E 

deficient mouse models, (Kakulas et al.; 1966; Bradley et al.; 1980) show signs 

of muscle degeneration very similar to muscular dystrophies mouse models 

and patients. 

Inflammatory signalling, that is very important in MD progression, is driven by 

the Nuclear Factor kappa B (NF-kB) and cytokine (e.g. TNF-α, iNOS and IL-1b) 

are suggested to be induced also by an oxidative environment (Haycock et al. 

1996; Rando 2002; Tindball and Wehling-Henricks 2004). 

Oxidative stress has been implied in many disorders including ischemia-

reperfusion injury, cancer, degenerative diseases and in the physiological 

processes of aging and acute exercise (Halliwell et al.; 1999; Rando 2002).  

Acute exercise has been shown to induce necrotic injury in skeletal muscle, 

and among the mechanism proposed behind this type of damage is the 

oxidative stress, resulting by a combination of several processes as ischemia-

reperfusion, physical injury, consequent inflammation and altered metabolism 

(Irintchev et al.; 1987). However, it is important to establish whether oxidative 

stress is able to lead to the type of damages observed in muscular dystrophies.  
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There are several animal models, described in literature, in which oxidative 

stress is experimentally induced and it were observed dystrophic changes in 

skeletal muscles. One of the first insight, in this sense, was obtained from the 

vitamin E deficient animals, in which were reported signs of muscle 

degeneration with pathological features comparable to muscular dystrophies 

(Kakulas et al.; 1966; Bradley et al.; 1980). It also known that in humans the 

absence of vitamin E is usually associated with myopathic changes, and it is 

observed a selective involvement of type II (fast-twitching fibers) as in the 

inherited human muscular dystrophies (Lazaro et al.; 1986; Tomasi et al.; 1979; 

Webster et al.; 1988). Vitamin E is a group of compounds that act as lipid-

soluble antioxidant, therefore deficiency of these molecules is associated with 

increased lipid peroxidation. The same observations were made on a different 

mouse model of systemic depletion of GSH, in which the skeletal muscles 

display signs of degenerative changes (Martensson et al.; 1989). GSH is a 

tripeptide present in most cells and is implied in a variety of antioxidant reaction 

(Anderson et al.; 1985). In this particular mouse model findings of necrotic 

degeneration highlighted the importance of antioxidant defence in skeletal 

muscle.  

Furthermore ischemia-reperfusion injury model, both in cardiac and skeletal 

muscles, causes very similar lesions observed in muscular dystrophies 

(Mendell et al.; 1971). It is very well known that a period of ischemia followed 

by reperfusion, mimics what happens during intense contractile activity, leading 

to a burst of ROS, lipid peroxidation and protein carbonylation (Saez et al.; 

1986; Grisotto et al.; 2000). Pre-treatments with antioxidant can prevent this 

type of injury (Jeroudi et al.; 1994; Bushell et al.; 1996). However, this model 

cannot be considered a model of oxidative stress causing dystrophic-like 

phenotype, but it may help understanding the mechanisms contributing the 

pathogenesis of muscular dystrophies. Moreover, elevated oxidative markers 

are a constant finding in DMD patients (Haycock et al.; 1996; Rodriguet and 

Tarnopolsky 2003) and mdx mice (Ragusa et al.; 1995; Kaczor et al.; 2007) as 

expired pentane and TBARS (lipid peroxidation products) and high level of 

protein carbonylation. Also, it is reported that in DMD patients and in the Sgca 

null mouse model fast-twitching fibers are preferentially affected by MD 
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phenotype, which are the fibers with less antioxidant defences, more glycolytic 

metabolism and less mitochondrial content; in respect to slow-twitching fibers 

which display a more oxidative metabolism, more mitochondrial content and 

greater antioxidant difence (Webster et al.; 1988, Danieli-Betto et al.; 2004).  

These findings lead us to suppose that oxidative stress is not only a marker of 

MD progress, but it might be deeply involved in the pathogenesis of MDs, 

postulating that MD patients and mice models display an impairment in the 

antioxidant signalling pathways.  

The Antioxidant response  

Several sub-compartments within the cell produce ROS, either physiologically 

or in response to toxic or pathological insults. These dangerous species are 

metabolised by a complicate antioxidant system to maintain oxidative 

homeostasis. Major antioxidants enzymes are usually low-molecular weight 

proteins including GSH and HO-1 (heme-oxygenase 1) (Ma 2013), which are 

able to metabolize hydrogen peroxide in water and oxygen. The transcription 

of this class of genes is strictly regulated and their signalling pathway is still in 

part unknown, in particular in a dystrophic context. Emerging evidences in 

literature underlined a specific promoter sequence (5’-TGACnnnGC-3’) 

upstream these genes, called ARE (antioxidant responsive element; Rushmore 

et al.; 1990; Wasserman et al.; 1997; Nioi et al.; 2003).  

The ARE region is very similar to the DNA-binding site of a specific transcription 

factor: Nrf-2 (nuclear factor erythroid 2-related factor 2), which is a protein 

member of cap’n’collar subfamily of basic region leucine zipper (CNC bZip) 

transcription factors (Ma 2013). Studies from the past decade underlined the 

main role of Nrf-2 in response to oxidative stress and chemical toxicity. It has 

been shown that the knock out mice model for Nrf-2 (Nrf-2 KO) display an 

increased susceptibility to oxidative stress and conditions associated with 

oxidative pathologies (Motohashi et al.; 2004; Ma et al.; 2008; Klassen et al.; 

2010 Walters et al.; 2010).  

Nrf-2 is a broadly expressed 68-kDa protein that has two transcription 

activations regions in the N-terminal and C-terminal, and also displays peptides 
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for nuclear localization between residues 494 and 511, it contains also at the 

N-terminus a Neh2 domain that negatively regulates its activity through Keap1 

suppressor (Kelch-like ECH-associated protein-1) (Itoh et al.; 1999; Ma 2013; 

O’Connell and Hayes 2015).  

Under basal condition Keap1 is able to bind and retain Nrf-2 in the cytoplasm, 

through Neh2 domains, and acts also as scaffold for ubiquitin ligase proteins 

(i.e. Cullin 3, Cul3). The ubiquitination of the complex targets it to the 

proteasome resulting in Nrf-2 rapid degradation (He et al.; 2003; Ma 2013; Liam 

et al.; 2014).   

Regarding the activation of the Nrf-2 dependent signal, instead, there are still 

now some opened questions. It is known that Keap1 displays 3 phosphorylation 

sites that promote, in an oxidative environment, the uncoupling from Nrf-2 and 

its consequent translocation into the nucleus, enabling then ARE-dependent 

genes transcription (Ma et al.; 2013; Liam et al.; 2014).  

AMPK: a ROS-sensitive kinase  

Cells homeostasis depends on the maintenance of ATP levels, whose 

hydrolysis is required for fundamental processes such as transcription and 

transport across membrane (Cardaci et al.; 2012). For this reason, cells have 

evolved mechanisms to sense changes in ATP concentration. AMPK (AMP- 

activated kinase) is able to monitor small changes in AMP concentration (the 

product of ATP hydrolysis) and represents the main metabolic regulator of the 

cell (Hardie et al.; 2011). 

AMPK is a heterodimer serine threonine kinase, which is composed by a 

catalytic -subunit, a regulatory - and-subunits (Hardie 2007). The -subunit 

contains at the N-terminal a serine/threonine kinase domain that include also 

the Thr172 residue, whose phosphorylation by upstream kinases is essential 

for AMPK activity. The auto-inhibitory region instead is placed at the C-terminus 

of the -subunit that binds and subunit (Crute et al.; 1998; Chen et al.; 

2009). In particular in the -subunit has been observed that myristoylation at 

Gly2 residue is pivotal for phosphorylation of the -subunit at Thr172 

(Mitchelhill et al.; 1997; Oakhill et al., 2011). Instead the -subunit contains 



      
 

 21 

tandem repeats sequences, known as CBS motif (cystathionine beta-

synthase), which works in pairs to provide nucleotide binding and show great 

affinity to AMP and ADP molecules (Xian et al.; 2007).   

First findings suggested that AMPK activation through ROS injury might have 

been just a reflection of ATP imbalanced encountered during stressed 

condition, instead of a direct effect on the kinase (Choi et al.; 2001).  

Zmijewskiand and colleagues provided evidences that exposing AMPK to an 

oxidative state results in the oxidation of cysteine residues in its and - 

subunits, which are pivotal for AMPK activation. Furthermore, antioxidant 

treatment promotes as well the same modification (Emerling et al., 2009; 

Zmijewskiand et al.; 2010). 

For these reasons, AMPK has been proposed as a good candidate as the 

upstream promoter of Nrf-2 signalling, since this kinase is particularly sensitive 

to ROS concentration (Cardaci et al.; 2012), sensitive to the mitochondrial 

status (Emerling et al.; 2009; Hardie et al.; 2014; Hayes et al.; 2014) and it is 

responsible also for macroautophagy and mitophagy activation signals (Kim et 

al.; 2010; Fortini et al.; 2016; Gracìa-Prat et al.; 2016; Pal 2016).  

Interestingly these signals are reported to be all impaired in MD patients and 

dystrophic mouse models (Spitali et al.; 2013; De Palma et al.; 2014; Rybalka 

et al.; 2014; Pal et al.; 2016). Indeed, it has been shown also that mitochondrial 

biogenesis and slow-twitching fiber formation are under AMPK control, 

activating a transcription cofactor essential for mitochondrial homeostasis so 

called PGC-1α (peroxisome proliferator-activated receptor-γ coactivator-1α), a 

co-factor pivotal also for the switch to oxidative fiber metabolism and inhibits 

muscle atrophy (Renèe-Ventura et al. 2008;).  
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Inflammation in muscular dystrophies 

The inflammatory mediator: NF-kB signal 

It is now very well described that inflammation plays an important role in 

worsening the dystrophic pathology (Spencer and Tindball 2001; Hnia et al.; 

2008). Broken myofibers free cytokines and ROS, in the extracellular matrix, 

which gradient recalls immune cells, and in particular macrophages, whose 

infiltration and activity at the muscle sites worsen tissue degeneration and 

fibrosis establishing a chronic inflammatory environment (Morrison et al.; 2000; 

Hodgetts et al.; 2006).  

Accordingly, experiments of macrophages depletion or impairment of their 

activity, ameliorate muscle histology in dystrophic mice (Spencer et al.; 2001; 

Wehling et al.; 2001). This phenomenon is an early process in mdx and Sgca 

null mice models, which appears at first around 3-4 weeks of age (Duclos et al.; 

1998; Spencer and Tindball 2001) 

Indeed, activation of NF-kB (nuclear factor kappa B), oxidative stress and 

secretion of proinflammatory cytokines (e.g. TNF-α, IL-1β) appear to be 

essential and related in MD progression, in both humans and mice models 

(Monici et al.; 2003; Kumar et al.; 2004; Peterson and Guttridge 2008).  

NF-kB is a family of transcription factors that usually is retained in the cytoplasm 

of the majority of cell types and exists as a homo- or heterodimers of structurally 

related proteins (May and Ghosh 1998). Every family member of this group of 

proteins contains a conserved N-terminal region known as Rel-homology 

domain (RHD) within lies the DNA-binding domain, the dimerization domain 

and the nuclear localization signal (NLS) (Baldwin et al.; 1996). Up to now there 

are described in literature five proteins belonging to NF-kB family in mammals: 

p65, c-Rel, RelB, p50/p105 and p52/p100.  

Under resting conditions, dimers of NF-kB are sequestered in the cytosol 

through noncovalent interactions with a class of inhibitory proteins called IkBs 

(nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitors). 

All known IkB proteins own multiple copies of 30-33 amino acid sequence called 
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ankyrin repeats; which specifically interacts with the RHD and this allows IkB 

molecules to mask the NLS of NF-kB, preventing its nuclear transfer (Thanos 

et al.; 1995; Verma et al.; 1995). Further findings underlined that the disruption 

of this complex is essential, in order to observe a NF-kB signal, and this is also 

due to phosphorylation of IkBs proteins (Kerr et al.; 1991; Link et al.; 1992; 

Shirakawa et al.; 1989). Mutagenesis experiments identified that in particular 

two Serine residues (Ser 32 and Ser 36) are pivotal for IkB-α phosphorylation; 

interestingly it was observed these phosphorylated residues induce 

conformational changes in the protein structure that expose lysine residues. It 

is very well know that lysine residues are often targets of ubiquitin ligase 

enzymes to target proteins to proteasome, in fact experiments show that once 

eliminated this specific lysine or the use of proteasome inhibitor IkB-α cannot 

be degraded, interfering with NF-kB signal under stressed condition.  

To sum up, if cells are properly stimulated (e.g. with TNF-α, hypoxia or oxidative 

stress), IkB-α is rapidly phosphorylated; this allows two main events: the NF-

kB/IkB-α complex dissociation, and the phosphorylation of IkB-α allowing its 

degradation via proteasome through ubiquitination.  

There are several evidences in literature demonstrating that NF-kB binding 

activity is enhanced in mdx mice compared to wild-type (WT) (Kumar and 

Boriek 2003), showing greater protein levels in the nuclei fractions (Acharyya 

et al.; 2007) and this is linked also to lower protein levels of inhibitory IkB-α 

(Kumar and Boriek 2003). Many efforts have been done to understand which 

class of kinases could activate NF-kB signal pathway and orchestrate the 

inflammatory response in this specific scenario.  

In primary myoblast culture and in myoblast stable cell line C2C12 has been 

observed that ERK kinases are directly involved in NF-kB activity, under 

hypoxia and oxidative stimuli, by phosphorylating its complex with IkB-α and 

promoting NF-kB translocation into the nucleus (Kefaloyianni et al. 2006; 

Osorio-Fuentealba et al. 2009), but there are still no findings on this specific 

pathway in vivo models of muscular dystrophy.  
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ERKs kinases 

The insulin/mitogen regulated extracellular signal-regulated kinase 1 and 2 

(ERK1/2) were the first mammalian MAPK pathways identified. MAPKs include 

four families and the most studied are ERKs, JNKs and p38-MAPK (Kyriakis et 

al. 2001; Kefaloyanni et al.; 2006). This class of kinases can be activated by a 

high number of ligand or self-activated tyrosine kinase receptor, such as EGFR, 

FGFR, IGFR, PDGFR and insulin receptor (Chang et al.; 2001; Karnoub and 

Weinberg 2008). Every MAPKs subfamily is composed by three kinase 

modules (MEEK, MEK and MAPK), each one activating the next via 

phosphorylation (Kyrianis et al.; 2001). Their substrates, usually is located in 

the cytoplasm, include other kinases, phospholipases, cytoskeletal proteins 

and transcription factors (Pearson et al.; 2001; Gosh et al.;2002).  

In literature is described that the signalling cascade of ERKs is usually initiated 

by Ras activation, which pass the signal by phosphorylating MAPKK proteins. 

These proteins, in turn, activate MAPK/ERK kinases, known also as MEK (Ahn 

et al., 1991; Gomez and Cohen, 1991), that phosphorylate directly ERK kinases 

(Serger and Krebs, 1995). Once ERKs are active, are able to phosphorylate a 

large of substrate (Yoon et al., 2006), which are usually located in the cytoplasm 

and once phosphorylated could translocate into the nucleus to trigger gene 

transcription.   

Nowadays is well established that the ERKs pathway is involved in anabolic 

processes, cell division, growth and differentiation (Widmann et al.; 1999; 

Kyrianis et al.; 2001). Recent studies, although, highlighted that oxidative stress 

is associated with an activation with kinases of the Src family, and various 

growth factors receptors such as EGFR (Abe et al.; 1999; Yoshizumi et al.; 

2000; Chen et al.; 2001; Zhougang et al.; 2004; Purdom et al.; 2005). 

In particular Kefaloyanni and colleagues show that MAPK kinases, specifically 

ERKs kinases, are able to enhance NF-kB binding activity under oxidative 

condition in myoblast cell culture of C2C12 (Kefaloyanni, et al. 2006). In this 

study it was evident that, upon H2O2 treatment, NF-kB signal is active and it is 

able to promote pro-inflammatory gene transcription (Kefaloyanni et al., 2006). 

Furthermore, they assume that ERK kinases are able to promote, via 
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phosphorylation, the disassociation of NF-kB from its inhibitor IkB-α. In fact, 

treatment with specific ERK inhibitors, show that C2C12 also under oxidative 

conditions display less NF-kB binding activity, on the other side the use of 

EGFR inhibitors do not lead to any effect on this specific pathway (Kefaloyianni 

et al. 2006; Osorio-Fuentealba et al. 2009). 

  

Natural antioxidants 

A natural antioxidant: Anthocyanin 

Polyphenols are among the most important secondary phytoproducts 

displaying a great antioxidant power. This class of molecules are hydro-soluble 

and show a basic difenipropane structure (C6-C3-C6) with two aromatic rings 

(Fig2). In particular anthocyanin are colourful pigments, catabolites from 

phenylalanine (Bravo 1998). The anthocyanin antioxidant features stay in their 

structure: the aromatic ring protects photosynthetic tissue from oxidative stress, 

produced by the light. Several studies showed how cyanidin are able to 

promotes plant survival through a phenomenon called photoinhibition. This 

process reflects the light by photosynthetic tissues, establishing a new 

equilibrium between light absorbed, CO2 produced and carbohydrates 

consumed. Furthermore plants, with a great oxidative insult, enhance the 

expression of antioxidant genes and, among them, those involved in 

anthocyanins metabolism (Stein et al.; 2002). 

For these reasons, from the past decade anthocyanins have been the subject 

of different studies in vitro, in vivo and in clinical trials for treating particular 

conditions where oxidative stress plays a major role such as aging, 

cardiovascular diseases, neurodegenerative pathologies, cancer and obesity 

(Arts and Hollman 2005). Since anthocyanin bioavailability in mammals is very 

low (less than 1%), the protective effect it cannot come from its scavenging 

properties as observed in plants. It is hypothesized that this class of antioxidant 

in mammals might act on specific pathways in the antioxidant response 

(Manach et al., 2005). 



      
 

 26 

In particular Cyanidin-3-O-glucoside (C3G) in rat hepatocytes promotes 

antioxidant genes expression (Shin et al.; 2007). There are also in vivo findings 

on murine model of obesity, which assume chronically a diet enriched in C3G 

(RD) show protective effects on terms of hyperglycaemia and fat deposition 

(Tsuda et al.; 2003). Furthermore, in heart ischemia-reperfusion rat model, long 

term treatment of enriched C3G diet show protection from oxidative damage 

(Martin et al.; 2008). 

Up to now there are studies focusing on the effects of C3G on human health, 

specifically on breast cancer (Cerletti et al 2017).  

Corn enriched in cyanidin: the red diet 

The traditional corn (Zea Mays) is plant of the Poaceae family. From this cereal 

are obtain flours usually used for mice model food. In this corn anthocyanins 

production is regulated by two families of transcriptions factors: bHLH (basic 

Helix-loop-Helix) and MYB, once in the nuclei these factors are able to bind 

promoter regions of genes involved in this molecules metabolism (Toufektsian 

et al.; 2008). In particular gene R1 (red colour 1) and B1 (booster 1), from bHLH 

family; C1 (coloredaleurone 1), Pl1 (purple plant 1) and P1 (pericarp colour 1), 

from MYB family, are responsible for anthocyanins both spatial and temporal 

profile production (Figure 2A and 2B). In fact, different genetic combinations 

give rise to different corn lines in terms of anthocyanins quantity and distribution 

in plant tissues (Petroni and Tonelli 2011); instead in the widely used line of 

Zea Mays these genes are transcriptionally silenced (Petroni et al.; 2014).   

These corn lines were bred in such a way to obtain a hybrid line (B1, Pl1) with 

a high concentration of cyanidin and isogenic to Zea Mays (Yellow diet, YD) 

(Pilu et al.; 2011; Figure 2C). Therefore, from this particular corn line it is 

possible to produce food for murine models particularly enriched in cyanidin. A 

study from 2013 this diet is used to evaluate the effects of cyanidin on obesity 

in C57BL/6J mice, after 12 weeks of treatment it was observed a reduction in 

mice weight, adipocytes size and less inflammation at level of adipose tissue 

compared to control mice fed only with high fat diet (Tsuda et al.; 2003). 
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This is one of the many examples that proves dietary cyanidin could prevent 

pathologies where oxidative stress is at the base of the molecular (Hollman 

2005; Shin et al.; 2007; Martin et al.; 2008). 

 

Figure 2: (A) Transcription factors involved in anthocyanin synthesis in Zea mays. (B) 

Phenotypical characterization of special distribution and accumulation of anthocyanins 

(Petroni et al. 2017). (C) Quantification of cyanidin levels produced by two Zea Maya 

varieties R1 C1 and B1 P/1 compared to the commercial variety r1 b1 p/1 (Pilu et al., 

2011) 
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AIMS OF THE PROJECT 

MDs are hereditary diseases all characterized by progressive skeletal muscle 

wasting and weakness of variable severity, leading patients in time to 

wheelchair and premature death by cardiac and respiratory failure (Emery 

2002). Mutations in these pathologies are all in genes involved in the 

dystrophin-glycoprotein complex (DGC). This structure is a sarcolemmal 

complex that connect the fiber plasma membrane to extracellular matrix and it 

is responsible for myofibers integrity during contraction. Lacking of DGC 

promotes fibers fragility and consequently cell death; myofibers are replaced 

by satellite cells (stem cells of adult muscle tissue) that however share the same 

mutation differentiating so in defective myofibers. In such a way, the muscle 

tissue falls in a loop of degeneration and regeneration until the exhaustion of 

the stem cells pool, which in time is replaced by connective and fat tissue 

(fibrosis). Furthermore, immune cells, in particular macrophage population, are 

recalled by broken fibers establishing an inflammatory environment at the 

muscle site, that in time it will become chronic, worsening the dystrophic 

phenotype. MDs are still severe orphan drug diseases. 

Since oxidative stress is involved in muscle degeneration, one of the 

considered strategies is to use antioxidant molecules to counteract the 

oxidative stress generated. (Rando et al. 2002; Hori et al. 2011; Kuno et al. 

2013; Bhuiyan et al. 2012; Ji 2008; Perveen et al. 2014; Sun et al. 2015).  

This PhD project aims to evaluate the effects of an anthocyanin enriched diet 

(red diet, RD) on a dystrophic mouse model for the Limb Girdle Muscular 

Dystrophy 2D (LGMD 2D, an autosomal recessive disorder caused by 

mutations in the α-sarcoglycan gene, Sgca null) (Duclos et al. 1998). The 

choice of this mouse model is due to the fact that the Sgca null mouse, at 

variance with the most commonly used mdx mouse model, better recapitulates 

the progression of MDs as in human patients. Then, once investigated the 

effects of the RD on Sgca null mice, this study would focus on the possible 

pathways that RD could modulate. 
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Main Results 

My PhD project was focused on the effects of antioxidant diet and the role of 

oxidative stress in muscular dystrophy progression. Specifically, we used a diet 

enriched in cyanidin (RD), a powerful natural antioxidant (Pilu et al.; 2011, 

Petroni et al., 2017), and, as a control, a cyanidin-free diet isogenic to the RD 

(yellow diet, YD) to firstly investigate on the phenotypical effects on the 

dystrophic mouse mode Sgca null (Duclos et al., 1998); and secondly on the 

pathway tuned by this diet. Here below are listened the main results of my 

project: 

• RD fed mice show a morphological amelioration in terms of muscle 

organization, fiber integrity, macrophage infiltration and collagen 

deposits 

● Muscle performance and endurance are rescued when dystrophic mice 

are supplied with RD 

● Macrophage infiltrates are less present in dystrophic muscles of RD fed 

mice 

This promising data allowed us to investigate deeper on how RD could trigger 

dystrophic muscle amelioration: 

● Reduction of the inflammatory parameters, which is coupled to a less 

activity of NF-kB into the myonuclei, due to an enhanced expression of 

IkB-α and a decrease of the phospho-ERK protein level 

● I observed a shift to a more oxidative fiber metabolism, more 

mitochondrial SDH activity, increased protein level of PGC-1α (master 

transcription factor of mitochondrial biogenesis) and its target genes  

● I found out the activation of a particular antioxidant pathway in muscle of 

mice fed with RD, in which the antioxidant master transcription factor 

Nrf-2 plays the main role. Nrf-2 in these conditions is more localized into 

the nuclei and its target genes are transcriptionally active (i.e. 

Hemeoxigenase-1, HO-1 and glutamate-cysteine ligase catalytic 
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subunit, GCLC), triggering the antioxidant response. Furthermore, I 

observed that this translocation is due to AMPK activity. 
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Part II 
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Abstract 

Muscular Dystrophies are severe genetic diseases due to mutations in structural 

genes, which lead to wasting of skeletal muscle compromising patients’ mobility and 

respiratory functions. Previous studies show that oxidative stress and inflammation 

play a great role in the worsening of these pathologies. Furthermore, it is known that 

myofibers that display oxidative metabolism and great antioxidant defence, such as 

type I fibers, are more protected from dystrophic signs. In this work, we show a 

morphological and functional rescue in Sgca null dystrophic mice fed with a diet 

enriched in a natural antioxidant known as cyanidin, as a consequence of both muscle 

fiber type switch and reduction of inflammation. In particular, we demonstrate that 

cyanidin reduces inflammation by allowing the retention of NF-kB into the cytoplasm 

through the inhibition of ERK kinases. Moreover, we identified Nrf-2 as the master 

transcription factor that, upon cyanidin stimuli, is able to promote the antioxidant 

response delaying muscular dystrophy progression. This work provides strong 

evidences that a cyanidin enriched diet protects and delays the progression of 

muscular dystrophies, demonstrating how much the oxidative stress might exacerbate 

the disease being detrimental for the successful of both gene and cell therapies.    
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INTRODUCTION 

Muscular dystrophies (MDs) are a group of heterogeneous genetic diseases, 

characterized by wasting of skeletal muscle tissue, which in time compromises patient 

mobility and, in the most severe cases, respiratory and cardiac functionality leading to 

premature death (Emery 2002; Mercuri & Muntoni 2013). In many cases, the mutations 

affect one or more proteins that cluster in the dystrophin-glycoprotein complex (DGC) 

located at the basal lamina of the myofibers. This complex connects myofibers to the 

extra cellular matrix, and its role is essential for fiber integrity and cell signalling during 

contraction. The mutations result in the disassembly or a malfunction of the entire 

DGC, which leads to an increased fragility of sarcolemma and myofibers death.  

Damaged and death fibers can be replaced by satellite cells (SCs), the adult stem cells 

of skeletal muscle tissue. In this pathologic scenario, since SCs share the same 

mutation as well as the damaged myofibers, they differentiate in fragile myofibers, 

leading to a loop of degeneration and regeneration (Emery 2002). In time, the 

population of SCs is exhausted and the damaged muscle is replaced by connective 

and adipose tissue, impairing the physiological function of muscle tissue (Mercuri & 

Muntoni 2013; Konieczny et al. 2013; Emery 2002). Despite the molecular 

mechanisms behind MDs are very well known, this class of diseases is one of the most 

difficult to treat. Indeed, although several clinical trials have been carried on, no 

definitive cure is still available. 

Skeletal muscle is the most abundant tissue in the human body and it is composed of 

large multinucleated fibers, whose nuclei cannot divide. Consequently, any cell or gene 

replacement strategy must restore a proper gene expression in hundreds of millions 

of post-mitotic nuclei, which are embedded in a highly structured cytoplasm and 

surrounded by a thick basal lamina. It is therefore evident that, although caused by a 

single gene defect, this group of pathologies could be considered as a multifactorial: 

misregulation of associated sarcoplasmic proteins, severe chronic inflammation and 



      
 

 35 

consequent macrophage infiltration resulting in fibrosis. Among the different 

approaches, many efforts are directed to slow down the progression of the disease to 

counteract the progressive degeneration and to improve patients life quality (Cossu & 

Sampaolesi 2007). 

Therefore, one of the considered strategies is to use antioxidant molecules to 

counteract the oxidative stress generated by muscle contraction and degeneration 

(Rando et al. 2002; Hori et al. 2011; Kuno et al. 2013; Bhuiyan et al. 2012; Ji 2008; 

Perveen et al. 2014; Sun et al. 2015).  Several evidences in literature showed that 

oxidative stress and accumulation of reactive oxygen species (ROS) strongly 

contribute to the worsening of the dystrophic pathology (Rando et al. 1998, Rando et 

al. 2002). The models proposed suggest that myofibers cannot manage the 

physiological production of ROS during contraction, due to the lack of a proper 

antioxidant signal from DGC, leading to activation of apoptotic signals (Rando et al. 

2002). Precisely, the accumulation of ROS in the myofibers leads to the carbonylation 

and alteration of several essential molecules as nucleic acids and lipids, consequently 

this phenomenon activates cell death programs (Bedard and Krause 2007; Cardaci, 

Filomeni, and Ciriolo 2012; Rando et al. 1998).  

Another important aspect of MD progression is the chronic inflammation. Indeed, it has 

been shown that the presence of intracellular and interstitial ROS in MD patient, 

released by necrotic fibers, enhances the secretion of pro-inflammatory cytokines 

(such as tumour necrosis factor alpha, TNF-α, transforming grow factor beta, TGF-β 

and iNOS) in muscle extracellular matrix (Tidball & Villalta 2010; Rando 2002). This 

gradient recalls macrophages, which are essential players in acute muscle 

regeneration; but, in a chronic myopathic context, this population establishes in time a 

chronic inflammatory environment worsening the dystrophic phenotype (Haycock et al. 

1998; Jackman et al. 2013) .  
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In this study, we provide evidences that a natural antioxidant, cyanidin, a polyphenol 

member of the anthocyanins family, is helpful in treating MD pathologies, by acting as 

both anti-oxidant and anti-inflammatory molecule.  

We indeed provide evidences that cyanidin enriched diet (Red diet, RD) supplied to 

the dystrophic α-sarcoglycan null mouse model (Sgca null, Duclos et al.; 1998) at 

weaning and in adult period, when the first signs of the disease are already present, is 

able to morphologically and functionally rescue the pathologic phenotype. Specifically, 

we demonstrate that cyanidin acts by tuning the antioxidant pathway through 

modulation of Nrf-2 localization and the anti-inflammatory response through NF-kB-

dependent activity. 
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METHODS 

Maize production  

Maize genotypes were originally in W22 background, homozygous dominant for the 

a1, a2, c1, c2, bz1 and bz2 genes, homozygous recessive for the r1 gene and different 

b1 pl1 constitution. To obtain cyanidin-rich and cyanidin free corn with an isogenic 

background, a novel maize cyanidin-rich hybrid was developed carrying the B1 and 

Pl1 alleles (red diet, RD), which confer cyanidin pigmentation in seed pericarp and all 

plant tissue (Radicella et al.,1992; Pilu et al. 2003; Petroni et al., 2011; Pilu et al., 

2011). Plant and seed tissues carrying b1 pl1 alleles are cyanidin-free (yellow diet, YD. 

To obtain ears with a high production of kernels, the homozygous inbred line B1 Pl1 

W22 and the b1 pl1 W22 inbred line were crossed to a b1 pl1 B73 inbred line and the 

F1 progeny seeds were used to produce two synthetic populations differing only in b1 

pl1 constitution (Petroni et al., 2017). 

Mouse model 

All mice were kept in pathogen-free conditions with 12-12 hours light-dark cycle. All 

the procedures on animals were conformed to Italian law (D. Lgs n 2014/26, 

implementation of the 2010/63/UE) and approved by the University of Milan Animal 

Welfare Body and by the Italian Ministry of Health. The genotyping strategies have 

been published in the references. Sgca null mice were previously described in Duclos 

et al. 1998. At three weeks of age, Sgca null mice were randomly divided in two groups: 

one fed with the control cyanidin-free diet (YD) and the other one fed the cyanidin 

enriched diet (RD). The diets were supplied ad libitum to the mice for 5 weeks or 25 

weeks. Both male and female mice were used indiscriminately. In order to check the 

effects of the cyanidin enriched diet on mice which already show the first signs of the 

pathology, we also supplied the diets at 5 weeks for 15 weeks. 

Hematoxylin and Eosin and Milligan’s Trichrome 
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Hematoxylin and eosin staining was performed on 7μm-thick cryosections fixed with 

4% paraformaldehyde for 10 min at 4°C. The staining was performed according to 

standard protocols. For Milligan’s trichrome staining, sections were fixed for 1 h with 

Bouin’s fixative (Sigma-Aldrich) and rinsed for 1 h under running water. Sections were 

then rapidly dehydrated to 95% EtOH in graded ethanol solutions, successively passed 

in 3% potassium dichromate (Sigma-Aldrich) for 5 min, rapidly washed in distilled 

water, stained with 0,1% acid fuchsin (Sigma-Aldrich) for 30 sec, washed again in 

distilled water, passed in 1% phosphomolybdic acid (Sigma-Aldrich) for 3 min, stained 

with Orange G (2% in 1% phosphomolybdic acid) (Sigma-Aldrich) for 5 min, rinsed in 

distilled water, passed in 1% acetic acid (VWR) for 2 min, stained with 1% Fast Green 

for 5 min (Sigma-Aldrich), passed in 1% acetic acid for 3 min, rapidly dehydrated to 

100% EtOH and passed in Xylene before mounting with Eukitt (Bio-Optica). 

SDH staining 

For SDH staining, freshly cut 7μm-thick cryosections of Tibialis anterior were used. 

Sections were incubated in SDH incubating solution (1 tablet of nitroblue tetrazolium 

dissolved in 0,1M sodium succinate-0,1M phosphate buffer pH7.4, all from Sigma-

Aldrich) for 1 h at 37°C, rinsed in distilled water, rapidly passed in 30%, 60%, 30% 

Acetone (VWR), and rinsed again in distilled water. Sections were then rapidly 

dehydrated in graded EtOH solutions, cleared in Xylene and mounted with Eukitt 

mounting medium. 

Evan’s Blue Dye uptake measurement  

Evan’s Blue Dye (Sigma-Aldrich) solution (10mg/ml) was injected systemically through 

the caudal vein 6 h before sacrifice (0,25μl per 10g of mice). Positivity for Evan’s Blue 

Dye was revealed through its auto fluorescence, fixing sections with acetone (VWR) 

for 10 min at -20°C, permeabilizing them in 1%BSA (Sigma-Aldrich)-0,2% Triton X-100 

(Sigma-Aldrich) for 30 min and incubating them O/N with rabbit anti-laminin antibody 
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(Sigma-Aldrich, 1:300) to reveal myofiber outlines. The day after, sections were 

washed, incubated with a goat anti-rabbit 488 secondary antibody (Jackson Lab, 

1:250), together with Hoechst (Sigma-Aldrich, 1:250) to stain the nuclei, washed again 

and finally mounted with a Fluorescence Mounting Medium (Dako). Measurement of 

the percentage of Evan’s Blue Dye Uptake was performed counting the number of 

Evan’s Blue Dye positive fibers on total muscle section reconstructions, using Image 

J software.  

Treadmill Test 

For Treadmill test functional assay, 3 weeks old Sgca null mice were fed for 5 weeks 

with RD or YD diet and WT with YD diet, as control. Mice were trained 3 times once a 

week before recording the performance. Treadmill test was therefore performed 

starting from 8 weeks old mice, once a week for 21 weeks. The test was conducted on 

a treadmill (Bioseb) with a 10% incline, starting from a speed of 6 cm/sec and 

increasing it by 2 cm/sec every 2 minutes. For each test, the time to exhaustion of each 

mouse was measured. 

RNA Extraction, RT-PCR and Real Time PCR 

Real time PCR was performed starting from RNA extracts obtained from muscle 

tissues homogenized and extracted in Trizol Reagent (Invitrogen) following 

manufacturer’s instructions. 1μg of RNA was retro-transcribed to cDNA using iScript 

cDNA Synthesis Kit (Biorad) and 5μl of diluted (1:5) cDNA was used for each sample. 

Gene expression was quantified by comparative CT method, using GAPDH as a 

reference. Primers used are:  

• GCLC FOR: CTACCACGCAGTCAAGGACC 

• GCLC REV: CCTCCATTCAGTAACAACTGGAC 

• HO-1 FOR: AGGTACACATCCAAGCCGAGA 
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• HO-1 REV: CATCACCAGCTTAAAGCCTTCT 

• TNF- FOR: CCACCACGCTCTTCTGTCTA 

• TNF- REV: AGGGTCTGGGCCATAGAACT 

• iNOS FOR: CCACCAACAATGGCACATCAGGT 

• iNOS REV: TAGGTCGATGCACAACTGGGTGAA 

• GAPDH FOR: TTCACCACCATGGAGAAGGC 

• GAPDH REV: GGCATGGACTGTGGTCATGA 

• CPT-1b FOR: GACTTCCGGCTTAGTCGGG 

• CPT-1b REV: GAATAAGCGGTTTCTTCCAGGA 

• UCP3 FOR: CTGCACCGCCAGATGAGTTT 

• UCP3 REV: ATCATGGCTTGAAATCGGACC 

Protein extraction and Western Blot  

Western blot was performed on protein extracts from muscles homogenized in Tissue 

Buffer (150 mM Tris-HCl, pH 7.5; 1mM EDTA, 1% Triton, 150 mM NaCl, all from 

Sigma-Aldrich) for 30 sec, followed by lysis on ice for 30 minutes and by centrifugation 

at 10000 rpm at 4°C to pellet cell debris. Supernatant was quantified using DC Protein 

Assay (Biorad), and 30-50μg of total protein extracts were loaded for each sample. 

Images were acquired using Chemidoc ImageLab software (Biorad). The following 

antibodies and dilutions were used: rabbit anti-PGC-1 (1:1000, Abcam), mouse anti-

total ERK1/2 (1:500, Santa Cruz), rabbit anti-pERK1/2 Thr202/Tyr204 (1:1000, Santa 

Cruz), rabbit anti-total AMPK (1:1000, Santa Cruz), rabbit anti-pAMPK Thr162 (1:1000, 

Santa Cruz), mouse anti-IKB (1:1000, Santa Cruz), muose anti-p65 (NF-kB, 1:1000, 

Santa Cruz), rabbit anti-Nrf-2 (1:1000, Abcam), mouse anti-Vinculin (1:2500, Sigma-

Aldrich), mouse anti-GAPDH (1:5000, Biogenesys) IgG-HRP secondary antibodies 

(1:10000, Bio-Rad). 

Nuclear and Cytoplasm fractioning 
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The protocol was taken from Dimauro et al. 2012. Quadriceps were minced on ice and 

homogenized in 300 μl of STM buffer (250mM sucrose, 50mM Tris-HCl pH 7.4, 5 mM 

MgCl2, all from Sigma-Aldrich and protease and phosphatase inhibitors). After 30 min 

on ice, samples were centrifuged at 800g for 15 min at 4°C and the supernatant, 

corresponding to the cytoplasmic fraction, recovered. The pellet, which is mainly 

composed by myonuclei, was washed in STM buffer and centrifuged at 500g for 15 

min at 4°C twice and the supernatant discard. The pellet was washed again in STM 

buffer and centrifuged at 1000g for 15 min at 4°C and discard the supernatant. The 

pellet was crushed in 100 μl of NET buffer (20mM HEPES pH 7,9, 1,5 mM MgCl2, 0,5 

M NaCl, 0,2 mM EDTA, 20% glycerol, 1% Trito-X-100, all from Sigma-Aldrich and 

protease and phosphatase inhibitors) and let for 30 min in ice. The nuclei were then 

sonicated (Bioruptor) at maximum intensity for 5 pulses of 5 sec and pauses of 15 sec. 

Then, samples were centrifuged at 9000g for 30 min at 4°C, the supernatant obtained 

were the nuclei fraction. 

In order to establish the purity of the two fractions, by Western blot, we used for the 

nuclei fraction rabbit anti-H3 antibody (Histone3, 1:7000, abcam), and mouse anti-

GAPDH (1:5000, Biogenesys) for the cytoplasmic fraction. 

Protein carbonylation content (PCC) 

The level of oxidative stress in quadriceps protein extracts was quantified by 

measuring of protein carbonylation. Carbonyls groups were derivatized into their DNP 

adducts using 2,4-Dinitrophenylhydrazine (DNPH) (Mecocci et al., 1998). Quadriceps 

muscles were homogenized in tissue buffer adding 1mM DTT. After protein 

quantification 50μg of protein was derivatized with the same volume of DNPH (10mM 

in 2M HCl, Sigma-Aldrich) for 1h in the dark at RT. Afterwards, to precipitate 

corbonylated protein and stop the derivatization reaction was added a solution 30% of 

trichloroacetic acid (TCA, Sigma-Aldrich) and let sample rest for 15min in ice. Then, 
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samples were centrifuged at 15000g for 15 min at 4°C. After removing the supernatant, 

each pellet was washed three times with a solution of ethanol-ethyl acetate (1:1) in 

order to remove the excess of DNPH, then the pellet was solubilized in 1mL of 

guanidine (6M, Sigma-Aldrich) and incubated for 30min at 37°C. The content of 

corbonylated protein was measured by spectrophotometer at 370nm (Janway).  

Immunofluorescence 

Immunofluorescence was performed on 7μm cryosections. Slices were fixed for 10min 

at 4°C with 4%PFA, washed twice in PBS and permeabilized with a solution containing 

1%BSA (Sigma-Aldrich) and 0.2% Triton X-100 (Sigma-Aldrich) in PBS, for 30min at 

room temperature. After a blocking for 30min with 10% donkey serum, slices were 

incubated O/N with primary antibodies in PBS-1,5% donkey serum. The day after, two 

washes in PBS-1%BSA-0,2%Triton X-100 were performed and samples were 

incubated for 45min at room temperature with secondary antibodies and Hoechst 

(1:500, Sigma-Aldrich). Excess of antibody was washed twice in PBS-0,2%Triton X-

100 before mounting with Fluorescence Mounting Medium (Dako). The following 

antibodies and dilutions were used: goat anti Collagen I (1:200, Southern Biotech), 

donkey anti-goat 488 (1:250, Jackson Lab).  

F4/80 immunofluorescence was performed on cryosections of Tibialis Anterior. 

Samples were permeabilized for 10 min at RT in a solution of PBS-0,5% Triton X-100 

(Sigma-Aldrich), there washed three times in PBS. After blocking for 30 min with a 

solution of PBS-3%BSA (Sigma-Aldrich), slices were washed twice with PBS and 

incubated O/N with primary antibodies anti-F4/80 (rat, 1:400, Novus) and anti-laminin 

(rabbit, 1:300 Sigma-Aldrich) in PBS. The day after, three washes in PBS were 

performed and samples were incubated for 45min at room temperature with secondary 

antibodies and Hoechst (1:500, Sigma-Aldrich). Excess of antibody was washed five 
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times in PBS before mounting with Fluorescence Mounting Medium (Dako). F4/80 

positive cells were normalized on the total number of fibers in the picture. 

For slow Myosin heavy chain (slow MyHC) immunostaining, cryosections were 

retrieved in a Na-citrate solution (10mM pH 6) for 30 min in a steamer machine. Once 

equilibrated the section at RT, slices were washed twice with PBS for 10 min and then 

added the primary antibody mouse anti-slow MyHC 1:1000(Sigma) and rabbit anti-

laminin 1:300 (Sigma-Aldrich) over night at 4°C Fibers positive for slow MyHC were 

normalized on the total number of laminin-positive myofibers in the cryosections. 

Isolation of macrophages from skeletal muscle 

Skeletal Muscles collected from hind limb were minced and digested enzymatically 

and mechanically in a single cell suspension with 0,2% of Collagenase B (Roche) in 

RPMI (Lonza) medium for 1h and 30min in water bath at 37°C under agitation. After 

filtration with cell strainers (70 and 40 µm, Grainer) and centrifugation at 272g for 

10min at 4°C, the single cell suspension was resuspended in sterile PBS-0,5% BSA 

(Genespin)-2mM EDTA (Sigma-Aldrich) and incubated with anti-CD45 antibody 

conjugated with magnetic beads (Miltenyi Biotech) for 30 min at 4°C. Cells were then 

washed with PBS-0,5% BSA (Genespin)-2mM EDTA (Sigma-Aldrich) and CD45+ cell 

isolation was performed by using magnetic columns (Miltenyi, Biotech) according to 

manufacturer instructions. After Fc blocking (Fc Buffer, Miltenyi Biotech), the fraction 

of CD45+ cells were incubated with Ly6C-PE antibody (eBioscence), to discriminate 

pro-inflammatory (Ly6C+) from anti-inflammatory macrophages (Ly6C-), and with 

CD64-APC antibody (BD Bioscence) to discriminate neutrophils from macrophages 

Cell sorting experiments were then performed using a FACSAria IIu (BD Bioscience). 

Diva software (BD Pharmingen, San Diego, CA) was used for data acquisition and 

analysis 

Image acquisition 
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Images were acquired with an inverted microscope (Leica-DMI6000B) equipped with 

Leica DFC365FX and DFC400 cameras. The Leica Application Suite software was 

used for acquisition while Photoshop was used to generate merged images. 

Measurement of myofiber cross sectional area and Collagen I quantification 

Measurement myofiber cross sectional area was performed on Tibialis anterior muscle 

sections using Image J software. Collagen I quantification was performed using a 

Macro in ImageJ to identify and quantify Collagen I positive areas. 

Statistics 

All data shown in graph are expressed as mean ± SD, apart from graphs showing 

cross sectional area distributions, which are expressed as mean±whiskers from min to 

max. Statistical analysis between two columns was performed using two-tailed 

unpaired Student’s t-Test, whereas data containing more than two experimental 

groups were analysed with one-way ANOVA followed by Bonferroni’s test. *P<0,05; 

**P<0,01; ***P<0,001; confidence intervals 95%, alpha level 0,05. 
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RESULTS 

Cyanidin enriched diet leads to a general amelioration of histopathological signs 

of Muscular Dystrophy  

In order to establish if cyanidin would be beneficial in protecting and delaying the 

different signs of muscular dystrophy, we fed Sgca null mice at weaning with a cyanidin 

enriched diet (named red diet, RD) for 5 weeks or 25 weeks, to evaluate a short and 

long-term benefits from this diet.  As controls, we also provide to Sgca null and wild 

type mice (WT) a yellow diet (YD), an isogenic diet to RD without the enrichment in 

C3G, at the same time points (Figure Supplementary 1). The Sgca null mouse model 

(Duclos et al. 1998) was chosen for our analysis because of its very severe phenotype, 

resembling the main hallmarks of the Duchenne Muscular dystrophy (DMD) human 

pathology. Firstly, muscle histology was analysed through haematoxylin and eosin 

staining on Tibialis anterior and Diaphragm sections. We observed that dystrophic 

control mice fed with YD display at 5 weeks of diet first signs of muscle degeneration 

with inflammatory infiltrates and necrotic areas, hallmarks that worsen in the longer 

time point confirming that the control diet does not interfere with the pathology 

progression. On the other side, Sgca null mice fed with the RD display a better 

morphology of muscle tissue, with less infiltrates in particular at 5 weeks of diet (Fig.1A, 

B). In the 25 weeks of diet, YD group shows severe signs of muscular degeneration 

such as fibers disorganization, necrotic fibers and cellular infiltrates. Conversely, 

animals fed with the RD display a more preserved tissue, with less cellular infiltrates. 

Furthermore, to quantify the morphological amelioration, we measured the fiber calibre 

distribution (cross sectional area, CSA) in Tibialis anterior sections at both time points 

(Fig. Supplementary 2A), which underlined a non-homogenous distribution in 

dystrophic mice fed with YD. On the other side, animals supplied with the cyanidin 

enriched diet display a more homogenous distribution of the CSA at both 5 and 25 

weeks of diet.  
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Collagen deposits in MDs are one the main signs of myopathy, which replace muscle 

tissue and compromise patients’ mobility upon chronic inflammation environment 

(Zanotti et al., 2016). To establish if an anthocyanin-based diet might influence 

collagen deposits, we performed a Milligan’s trichrome staining on Tibialis anterior and 

Diaphragm of YD or RD-fed Sgca null animals (Fig.2A). As the figure shows, Sgca null 

mice fed with control diet display abundant extracellular matrix in both muscles, in 

particular at 25 weeks. On the contrary, the dystrophic mice fed with the RD have less 

extracellular matrix deposition both in the tibialis anterior and in the diaphragm. 

Interestingly, this reduction persists also in the longer time point. Going further with 

analysis, we wanted to quantify what we observed with the trichrome staining, thus we 

performed an immunostaining for collagen I and measured the fluorescent positive 

area in tibialis anterior (Fig.2B). In both the time points analysed, we observed a 

decrease in collagen I deposits upon cyanidin stimuli compared to dystrophic mice 

supplied with the YD (Fig2C). 

 

Antioxidant diet improves myofiber integrity and rescues muscle performance 

To quantify the histological amelioration observed in Sgca null mice fed with a cyanidin 

enriched diet, we evaluated the main parameters that are normally altered in 

dystrophic muscles. The analysis of centrally nucleated myofibers, as a measure of 

muscle regeneration, did not lead to a significant difference between YD and RD-fed 

animals, indicating that regeneration process is not affected by cyanidin 

supplementation (Supplemental Figure 2B). In order to evaluate the integrity of muscle 

sarcolemmal membranes, we systemically injected Evan’s Blue Dye (EBD) in 

dystrophic animal fed with yellow or red diet. As shown in Fig.3A and B, we observed 

a statistically significant decrease in the percentage of Evan’s Blue positive fibers in 
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Sgca null mice supplied with RD compared to their littermates fed with the control diet 

at both 5 and 25 weeks of treatment.  

Notably, we also verified whether this marked amelioration was also accompanied by 

an improvement of functional ability of RD-fed Sgca null mice, measuring muscle 

performance with a treadmill test. We measured the muscle performance as time to 

exhaustion for 21 weeks in Sgca null mice fed with RD or YD. As shown in the graph 

in Fig.3C, we observed a statistically significant increase in muscle endurance in mice 

supplied with cyanidin enriched diet, that lasts in time compared to their littermates fed 

with the control diet. Notably, the performance of Sgca null mice fed with the RD is 

comparable to the WT mice group. 

Cyanidin prevents NF-kB nuclear localization inhibiting ERK phosphorylation  

Inflammation in MDs plays an essential role in worsening the pathology. Macrophages 

are the immune population, which contributes the most in this phenomenon, 

establishing in time a chronic inflammatory environment. In order to evaluate 

macrophage infiltration, we sorted, by FACS, CD64+ cells from hind limb muscle lysate 

from Sgca null mice fed with YD or RD. As shown in Fig. 4A, we observed a statistically 

significant decrease in the total macrophage population in muscle of dystrophic mice 

fed with cyanidin-enriched diet. Furthermore, we looked at the pro-inflammatory and 

anti-inflammatory macrophage sub-populations (CD64+ Ly6C+ and CD64+ Ly6C-, 

respectively), whose ratio is not altered with the diet in both the time points (Fig.4B).  

This indicates that cyanidin reduces macrophages infiltration but not interfere on their 

phenotype switching.  

To further study on the possible modulation of the inflammatory pathway following 

Cyanidin assumption, we focused our attention on the ERK kinases. In fact, in literature 

it is reported that in primary myoblast culture, and in the myogenic stable cell line 

C2C12, under hypoxia and oxidative stimuli, ERK kinases are directly involved in NF-
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kB translocation into the nucleus by phosphorylating its complex with IkBα 

(Kefaloyianni et al. 2006; Osorio-Fuentealba et al. 2009). Interestingly, we observed, 

through Western blot analysis, a decrease in ERK phosphorylation in quadriceps 

lysate of dystrophic mice fed with RD, which correlates with an increase in NF-kB 

canonical inhibitor IkBα protein level (Fig.4C). We also evaluated NF-kB translocation 

into the nucleus by analysing the nuclear and cytoplasmic protein fraction of 

quadriceps from YD or RD fed dystrophic animals (Fig.4D). Notably, we observed that 

when Sgca null mice were fed with the RD, NF-kB less translocates into the nuclei of 

muscle fibers in comparison to YD fed mice, in both time points. The impairment in NF-

kB translocation into the RD-fed myonuclei resulted in a reduction of NF-kB functional 

activity as confirmed by the analysis of its target genes TNF-α and iNOS, which 

statistically decrease at both 5 and 25 weeks of diet (Fig4E). 

 

Cyanidin enriched diet promotes a shift towards an oxidative metabolism 

In order to further identify the mechanism(s) through which Cyanidin mainly acts, we 

tested its anti-oxidant power by looking at the protein carbonylation content (PCC), as 

a measure of the protein oxidation, in quadriceps protein extracts from Sgca null mice 

fed with the RD with respect to YD control fed animals. As shown in the graph in Fig.5A, 

we observed that the dystrophic condition in Sgca null mice fed with the control diet 

leads to high corbonylated protein contents that increases in time. More interestingly, 

when dystrophic mice are supplied with the RD, values of PCC strongly decrease to 

WT values. We thought that the decrease in carbonylation content might be due to an 

increase of oxidative metabolism and mitochondrial activity in animals fed with the RD 

(Schiaffino and Reggiani 2010).  It is indeed well described that oxidative fibers, which 

express high levels of slow isoform of myosin heavy chain (MyHC slow, slow twitching 

fibers), are more protected from the dystrophy progression both in the Sgca null mouse 
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model and in human patients (Webster et al 1988; Danieli-Betto 2005). To confirm this 

hypothesis, we performed a SDH staining on cryosections of Tibialis anterior muscles 

from Sgca null mice fed with the YD and RD. This is an enzymatic staining able to 

colour fibers displaying oxidative metabolism (dark blue) by mitochondrial SDH 

enzymatic activity. The staining highlighted more fiber with oxidative metabolism in 

tibialis anterior of Sgca null mice fed with RD compared to their littermates who were 

supplied with the control diet (Fig.5B). This observation was molecularly confirmed by 

checking the presence of the pivotal transcription factor of mitochondrial biogenesis 

and oxidative metabolism in muscle: PGC-1α (peroxisome proliferator-activated 

receptor-γ coactivator-1α) (Renèe-Ventura et al.; 2008; Villena 2014; Wang et al.; 

2015). Western blot analysis on tibialis anterior protein extracts revealed a higher 

expression of PGC-1α in muscles derived from dystrophic mice fed with RD compared 

to those from fed with the control diet, with an increase at the later time point (Fig.5C). 

This observation was also confirmed by checking the expression levels of two genes 

target of PGC-1α, CPT (carnitine palmitoytransferase) and UCP (mitochondrial 

uncoupling protein-3) (Fig Supplementary 2C) 

To further investigate whether the RD could, not only, promotes a metabolic shift, but 

also promotes a slow twitching muscle fiber phenotype, we performed an 

immunostaining for slow MyHC to quantify slow fibers in tibialis anterior sections 

(Fig.5D). The quantification of the immunostaining at both time points led us to 

conclude that a cyanidin enriched diet promotes a more switch towards an oxidative 

muscle metabolism.  

Cyanidin promotes antioxidant pathway through Nrf-2 activity 

To molecularly characterize the antioxidant response observed, we focused on the 

possible antioxidant pathway triggered by cyanidin.  We interestingly observed, by 

Western blot, an activation of AMPK in quadriceps protein extract of Sgca null mice 
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fed with RD in respect to mice fed with YD (Fig.6A). It is indeed reported in literature 

that AMPK is sensitive to the cellular oxidative status and activate an antioxidant 

response (Emerling et al., 2009; Zmijewskiand et al.; 2010), suggesting that 

antioxidant pathway is triggered in our experimental model. We focused, then, our 

attention on the main transcription factor involved in mammals’ antioxidant response: 

Nrf-2.  

Under basal Nrf-2 is retained in the cytoplasm and its ubiquitination promotes 

proteasome-dependent degradation (He et al.; 2003; Ma 2013; Liam et al.; 2014). 

Instead, in an oxidative environment, Nrf-2 uncouples from its inhibitory complex and 

translocates into the nucleus, enabling then ARE-dependent (antioxidant responsive 

element) genes transcription, such as heme-oxigenase-1(HO-1) and glutamate-

cysteine ligase catalytic subunit (GCLC) (Ma et al.; 2013; Liam et al.; 2014). 

Indeed, Western blot analysis of nuclear and cytoplasmic protein fractions show that 

Nfr-2 is more present into the nuclei of dystrophic mice when cyanidin is supplied 

(Fig.6B), compared to their dystrophic littermates fed with the control diet, which 

indeed displays an impairment of Nrf-2 nuclear localization. This data was also 

confirmed by q-PCR looking at canonical targets of Nrf-2 HO-1 and GCLC, which are 

up-regulated in mice fed with cyanidin for both 5 week and 25 weeks. 

 

Red diet ameliorates already compromised dystrophic mice 

The results shown so far have clearly demonstrated that cyanidin enriched diet in 

dystrophic animals causes a significant improvement of the disease. In light of a future 

translational approach, we wondered whether supplying the RD might lead to the same 

effects observed even when the dystrophic disease already occurred, which 

represents what would normally be feasible in patients.  



      
 

 51 

To address this question, we provided RD and the control YD to Sgca null at five weeks 

of age for 15 weeks, when sings of dystrophy can be detected (Duclos et al. 1998). 

The Haematoxylin and Eosin staining on Tibialis anterior and Diaphragm muscles of 

Sgca null mice fed with RD highlighted amelioration in terms of muscle organization 

and morphology (Fig.7A), which appears more preserved with less cell infiltrates. This 

observation is further confirmed by the cross-sectional area data which shows in 

dystrophic mice supplied with RD a more homogenous distribution of the fiber calibre 

values compared to the YD fed ones (Fig. Supplementary 3A). Trichrome staining on 

Tibialis anterior and Diaphragm sections also showed a decrease in extra-cellular 

matrix deposits (Fig.7A) when RD is supplied, at variance with Sgca null mice fed with 

the control diet. Morphological amelioration was further confirmed by EBD assay 

(Fig.7B), where tibialis anterior sections of dystrophic mice fed with RD show less 

permeability to the dye compared to the control group (Fig. Supplementary 3B). 

We also focused on inflammatory parameters by quantifying the number of F4/80 

positive macrophages (a surface marker of this immune population) in Tibialis anterior 

sections from YD versus RD fed Sgca null mice. The data (Fig. 7C) displays less 

infiltrating macrophages in Sgca null mice fed with the cyanidin enriched diet compared 

to the data collected in the dystrophic mice supplied with control diet.  We also checked 

whether cyanidin is also able to act on the ERK-NF-kB axis when the disease is already 

advanced. Fig. 7D shows that ERK phosphorylation is downregulated, whereas the 

IkBα protein level is increased.  Moreover, the nuclear/cytoplasmic protein fraction 

analysis of muscle lysates from YD and RD fed animals displays less NF-kB nuclear 

translocation in mice fed with the RD compared to those fed with the control diet, which 

show an increased pro-inflammatory signal through ERK-NF-kB axis. These results 

were also confirmed by the analysis of the inflammatory genes TNF-α and iNOS 

which statistical significant decrease in dystrophic mice fed the antioxidant-enriched 

diet (Fig. Supplementary 3D).  
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Similarly, to what described in dystrophic animals fed with the different diet at weaning, 

we observed an oxidative fiber metabolism shift in Sgca null mice fed with the RD at 5 

weeks of age, in terms of SDH activity (Fig. Supplementary 3C). Consistently, AMPK 

is more active also in mice with RD and nuclear and cytoplasmic protein fractions 

displays a more translocation of Nfr-2 in the nuclear compartment upon cyanidin 

dietary stimuli (Fig.7E) 
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DISCUSSION 

Muscular dystrophies are severe degenerative diseases that still now lack of a 

definitive therapy. In particular, the main feature of this pathology is a loop of muscle 

tissue degeneration followed by attempts to repair muscle damage, which, failing, 

worsen the pathology. This is mainly reflected on the satellite cells population that, in 

time, it is exhausted and muscle replaced by connective and adipose tissue, thus 

compromising its function and leading patients first to wheelchair and, in the most 

severe cases, at premature death. Previous works in literature show that dystrophic 

muscle display an intrinsic susceptibly to oxidative stress, and it was suggested this 

process might be at the molecular basis of the MDs onset impairing myofibers viability 

and contributing in time strongly to the dystrophies progression (Bedard and Krause 

2007; Cardaci, Filomeni and Ciriolo 2012; Rando et al. 1998), but literature still lacks 

of a detailed molecular mechanism that describe this phenomenon.  

Proper nutrition, assuming an optimal intake of bioactive compounds, might be at basis 

of new therapeutic approaches (Speciale et al. 2014). Interestingly, there is a growing 

body of literature that show that consumption of natural antioxidant is associated with 

no side effects, and also despite their lower bioavailability (less than 2%) provide 

protective effects against oxidative stress in several models either in vivo and in vitro 

(Martin et al. 2010; He and Giusti 2010). Specifically, in this case, cyanidin enriched 

diet has already been proved its safety in humans in two, currently on-going, clinical 

trials on breast cancer (Cerletti et al., 2016) 

In this study, we show that providing natural antioxidant (cyanidin, red diet RD) to 

dystrophic mice it is possible to delay muscular dystrophy sings. In particular, RD 

promotes, in Sgca null mice, a protective effect by MD progression, inducing important 

ameliorations both in the muscle morphology and, most importantly, in terms of muscle 

performance. We confirmed also that promoting an oxidative fiber metabolism is more 
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protective from this pathology as others have shown before (Webster et al., 1998; 

Danieli-Betto et al. 2004). Interestingly, in literature it is known that slow-twitching 

fibers, which show a more oxidative metabolism, are more protected from MDs 

degeneration in respect to fast-twitching fibers (Webster et al., 1998; Danieli-Betto et 

al. 2004). We reported that dietary cyanidin promotes a shift to a more oxidative 

metabolism, enhances mitochondrial biogenesis genes and slow-twitching fiber 

phenotype acting on MD progression in this mouse model. Further investigation on the 

upstream molecular pathway that might links molecular and histological amelioration 

observed, lead us to study Nrf-2 translocation pattern, a transcription factor which acts 

in response to oxidative stress. We show that when RD is supplied to Sgca null mice, 

Nrf-2 is more prone to translocate into the nuclei and promotes the activation of 

antioxidant genes such as HO-1 and GCLC. More interestingly, for the first time, we 

reported that in dystrophic mice fed with the control diet, Nrf-2 nuclear protein levels 

are decreased compared to mice with RD, suggesting that Sgca null display an 

impairment in the antioxidant signalling due to Nrf-2 miss localization impacting, 

therefore, on dystrophy progression.  

Moreover it is well described in literature how inflammation and in particular 

macrophages play an essential role in hastening the pathology course (Haycock et al. 

1998; Jackman et al. 2013; Tidball & Villalta 2010; Rando 2002). We reported that 

macrophages infiltration in the muscle tissue is reduced when cyanidin is supplied to 

the mice, which acts on NF-kB reinternment in to the cytoplasm through both the 

activation of ERK kinases and the increased expression of IkBα protein levels. The 

cytoplasmic localization of NF-kB is crucial to the negative regulation of typical 

inflammatory genes, such as TNF-α and iNOS  whose role in worsening muscular 

dystrophy progression is well described in literature (Haycock et al. 1998; Jackman et 

al. 2013; Tidball & Villalta 2010; Rando 2002).  
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Thus, this study gives a more detailed picture of how ROS accumulation, oxidative 

stress, antioxidant and anti-inflammatory signals cross-talk and impact on the MD 

progression, through the identification of the essential players in this process to tune 

in order to observe a morphological and functional on this pathology. 

Summarizing, we demonstrated that cyanidin has a dual protective role in the 

amelioration of muscular dystrophy progression. Firstly, acting as a powerful 

antioxidant, and secondly interfering on the increased inflammation which is coupled 

with the progressive muscle wasting. 

Overall, the results collected demonstrate for the first time that a dietary natural 

compound might be a powerful strategy to counteract the progression of a 

degenerative genetic disease. Since cyanidin enriched food is available also for 

humans (Ceretti et al. 2017), it could be good practice to couple this dietary protocol 

with molecular and genetic approach that aim to correct the genetic defects at basis of 

muscular dystrophies. Therefore, we suppose that cyanidin could be strongly affective 

not only on the different groups of muscular dystrophies but also for other pathologies, 

in which oxidative stress and inflammation play a crucial role. 
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Figure and Figure legends 
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Figure.1 Cyanidin enriched diet ameliorates muscle morphology 

(A) Hematoxylin and Eosin (H&E) staining of Tibialis anterior of Sgca null mice fed with 

YD or RD for 5 weeks or 25 weeks. Scale bar 100μm. N=16 Sgca null YD and N=16 Sgca 

null mice RD in the 5 weeks group. N=8 Sgca null YD and N=10 Sgca null mice RD for the 25 

weeks group. (B) Hematoxylin and Eosin (H&E) staining of Diaphragm of Sgca null mice 

fed with YD or RD for 5 weeks or 25 weeks. Scale bar 100 μm. N=16 Sgca null YD and 

N=16 Sgca null mice RD in the 5 weeks group. N=8 Sgca null YD and N=10 Sgca null mice RD 

for the 25 weeks point. 
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Figure.2 Cyanidin enriched diet promotes less collagen deposits 

(A)Milligan’s Trichrome staining of Tibialis anterior (left panel) and Diaphragm (right 

panel) muscles at 5 weeks (upper panel) and 25 weeks of diet (below panel), Scale 

bar 100 μm. N=16 Sgca null YD and N=16 Sgca null mice RD in the 5 weeks group. N=8 Sgca 

null YD and N=10 Sgca null mice RD for the 25 weeks group.  (B) Immunofluorescence 

showing Collagen I deposits (green) and Hoechst (blue) in Tibialis anterior sections of 

Sgca null mice fed for 5 weeks (left panel) and 25 weeks (right panel) with YD or RD, 

Scale bar 100μm. N=4 Sgca null YD and N=4 Sgca null mice RD in the 5 weeks group. N=5 

Sgca null YD and N=5 Sgca null mice RD for the 25 weeks group. (C) Quantification of 

fluorescent positive area for Collagen I at 5 weeks and 25 weeks of diet. N=4 for Sgca 

null YD 5weeks and N=4 for Sgca null RD. For the 25 weeks N=5 for Sgca null YD and 

Sgca null RD. Values are expressed as Mean±whiskers. Two-tailed unpaired Student’s 

t-Test; **P<0,01. 

  



      
 

 67 

  



      
 

 68 

Figure.3 Red diet promotes fiber integrity and rescue muscle performance  

(A) Immunofluorescence for laminin (green) and EBD (red) on Tibialis Anterior at 5 

weeks (upper panel) and 25 (below panel) of diet. Scale bar 100 m. N=7 Sgca null 

YD and RD for 5 weeks group, and N=10 for Sgca null YD and RD for 25 weeks group. 

(B) Percentage of EBD positive myofibers in Tibialis Anterior at 5 weeks and 25 weeks 

of diet. N=7 Sgca null YD and RD for 5 weeks group, and N=10 for Sgca null YD and 

RD for 25 weeks group; mean± SD. (C) Treadmill test on WT fed with YD, Sgca null 

YD, Sgca null RD mice. The plot shows the percentage of the time to exhaustion for 

each session compared to the mean of the first two sessions of training. N=21 

measurements for 3 WT animals, 4 Sgca null YD and RD. Mean±SD. Two-tailed 

unpaired Student’s t-Test; *P<0,05; ***P<0,001. 

 

 

  



      
 

 69 

 

 

  

 



      
 

 70 

 

Figure.4 Inflammatory parameters decrease in Sgca-null mice fed with RD 

through a down regulation of NF-kB signalling  

(A) Number of CD64+ sorted cells from total hind limb extracts in Sgca null mice fed 

with YD or RD for 5 and 25 weeks. N=6 for Sgca null mice fed with YD and N=7 for 

Sgca null mice fed with RD for 5 weeks group. For the 25 weeks group, N=3 for Sgca-

null YD and RD. (B) Ratio between CD64+LyC6+(proinflammatory) and CD64+LyC6- 

(anti-inflammatory) sorted cells from total lysate of hindlimbs. N=6 for Sgca null mice 

fed with YD and N=7 for Sgca null mice fed with RD for 5 weeks group. For the 25 

weeks group, N=3 for Sgca-null YD and RD. 

(C) Western blot from protein lysate of mice fed with YD or RD for 5 and 25 weeks. 

The assay was repeated 4 times. (D) Western blot of nuclear and cytoplasmic fraction 

of Sgca null mice fed with YD or RD for 5 and 25 weeks. Blots show the localization of 

NF-kB into the nuclear and cytoplasmic compartments. Histone 3 and GAPDH were 

chosen as normalization for the nuclear and cytoplasmic fraction, respectively. The 

assay was repeated 5 times. 

(E) Real Time PCR analysis of TNF- (left panel) and iNOS (right panel) expression 

on N=5 Sgca null YD, N=5 Sgca RD null fed for 5 weeks. For the 25 weeks group N=4 

Sgca null YD and N=4 Sgca null RD. Mean±SD;  

Two-tailed unpaired Student’s t-Test; *P<0,05; **P<0,01 ***P<0,001; ns: non 

significant. 
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Figure.5 Cyanidin promotes a shift to a more oxidative fiber metabolism 

(A) Quantification of protein carbonylation content (PCC) from protein lysate of WT, 

Sgca null YD and RD mice fed for 5 or 25 weeks. N=4 Sgca WT YD, N=4 Sgca null 

YD and N= 3 Sgca null RD mice fed for 5 weeks. For the 25 weeks, N=4 Sgca WT YD, 

N=3 Sgca null YD and N= 3 Sgca null RD mice (B) Entire Tibialis anterior muscle 

section reconstructions showing SDH staining at 5 weeks and 25 of diet; N=6 Sgca 

null YD and 5 Sgca null RD mice fed for 5 weeks. For the 25 weeks, group N=6 Sgca 

null YD and 6 Sgca null RD mice. Scale bar 100m. (C) Western blot underlying PGC-

1 protein levels from protein lysate of Sgca null mice fed with YD or RD for 5 and 25 

weeks. N=3 for Sgca null mice fed with YD or RD for 5 and 25 weeks. (D) 

Immunofluorescence showing slow MyHC positive fibers (green), laminin (red) and 

nuclei (Hoechst, blue) of Tibialis anterior sections of Sgca null mice fed with YD or RD 

for 5 weeks (upper panel) and 25 weeks (panel below). Scale bar 50µm. On the right 

panel percentage of slow MyHC-positive fibers were normalized on the total number 

of laminin-positive myofibers. N=7 Sgca null YD and N=7 Sgca null RD mice fed for 5 

weeks. For the 25 weeks group, N=6 Sgca-null YD and N=6 Sgca-null RD mice. 

Mean±SD; Two-tailed unpaired Student’s t-Test; *P<0,05; **P<0,01. 
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Figure.6 AMPK activity promotes the antioxidant response through Nrf-2 

translocation into the nuclei 

(A) Western blot analysis of AMPK phosphorylation from quadriceps protein extracts 

of Sgca null mice fed with YD or RD for 5 and 25 weeks. The assay was performed 4 
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times for the 5 weeks group and 3 times for the 25 weeks group. (B) Western blot 

analysis of Nrf-2 localization from nuclear and cytoplasmic fraction of quadriceps of 

Sgca null mice fed with YD or RD for 5 and 25 weeks. Histone3 and GAPDH were 

chosen as normalization for the nuclear and cytoplasmic fraction, respectively. The 

assay was repeated 5 times. (C) Real Time PCR analysis of Nrf-2 target genes HO-1 

(left panel) and GCLC (right panel) expression on N=5 Sgca null YD, N=5 Sgca RD 

null fed for 5 weeks. For the 25 weeks group, N=4 Sgca null YD and N=4 Sgca null 

RD quadriceps muscles. Mean±SD; Two-tailed unpaired Student’s t-Test; *P<0,05; 

**P<0,01. 
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Figure.7 Cyanidin enriched diet ameliorates dystrophic phenotype also in 

already compromised Sgca-null mice 

(A) Upper: Hematoxylin and Eosin (H&E) staining on Tibialis anterior (left panel) and 

Diaphragm muscles (right panel) of 5 weeks-old Sgca null mice fed with YD or RD for 

15 weeks. Scale bar 100µm. Lower: Milligan’s Trichrome staining on Tibialis anterior 

(left panel) and Diaphragm muscles (right panel) in animals in the different 

experimental conditions. Scale bar 100µm. N=3 Sgca null YD and N=3 Sgca null mice RD. 

(B) Immunofluorescence for laminin (green) and EBD (red) on Tibialis Anterior. Scale 

bar 50µm. N=3 Sgca null YD and N=3 Sgca null mice RD 

(C) Quantification of F4/80+ positive cells in Tibialis Anterior sections of 5 weeks-old 

mice fed with YD or RD for 15 weeks. N=3 Sgca null YD and N=3 Sgca null mice RD. (D) 

Western blots show phosphorylated ERK compared to total ERK, IKB protein level 

(upper panel) from protein extract of Sgca null mice fed with YD or RD for 15 weeks. 

The below panel shows Western blot of NF-kB protein levels in the nuclear and 

cytoplasm fractions of Sgca null mice fed with YD or RD 15 weeks. N=3 Sgca null YD 

and N=3 Sgca null mice RD. (E) Western blots show AMPK phosphorylation level 

compared to total AMPK (upper panel) from protein extract of Sgca null mice fed with 

YD or RD 15 weeks. The below panel show Western blot of Nrf-2 protein levels in the 

nuclear and cytoplasm fractions of extracts of Sgca null mice fed with YD or RD 15 

weeks. N=3 Sgca null YD and N=3 Sgca null mice RD. Mean±SD; Two-tailed unpaired 

Student’s t-Test; ***p<0,01; ns: non significant. 
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Figure supplementary 1 

Scheme of the dietary protocol 
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Figure supplementary2 

(A) Tibialis anterior Percentage distribution of the fiber caliber (CSA) of Sgca null mice 

fed with YD or RD for 5 weeks (left panel) or 25 weeks (right panel). N=3 for Sgca null 

YD, N=5 for Sgca null RD in the 5 weeks group. N=7 for Sgca null YD and RD in the 

25 weeks group. (B) Percentage of central nucleated myofiber in Tibialis anterior 

muscles. N=7 for Sgca null YD, N=7 for Sgca null RD in the 5 weeks group. N=7 for 

Sgca null YD and RD in the 25 weeks group. (C) Expression levels of two PGC-1a 

target genes CPT and UCP. N=7 for Sgca null YD, N=7 for Sgca null RD in the 5 weeks 

group. N=7 for Sgca null YD and RD in the 25 weeks group. N=5 Sgca null YD, N=5 

Sgca RD null fed for 5 weeks. For the 25 weeks group, N=4 Sgca null YD and N=4 

Sgca null RD. Mean±SD; Two-tailed unpaired Student’s t-Test; **P<0,01; ns= non 

signficant. 
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Figure supplementary 3 

(A)Percentage of centrally nucleated myofibers in Tibialis anterior muscles at 15 weeks 

of diet (left panel); N=3 Sgca null YD and 3 Sgca null RD mice; mean± SD; Distribution 

of fiber calibre (right panel) in Sgca null mice fed for 15 weeks with YD or RD; Mean± 

SEM.  (B) Percentage of EBD positive myofibers in Tibialis Anterior at 15 weeks of 

diet; N=3 Sgca null YD and RD for 5 weeks group. (C)Entire Tibialis anterior muscle 

section reconstructions and higher magnifications showing SDH staining at 15 weeks 

of diet; N=3 Sgca null YD and 3 Sgca null RD mice. Scale bar 100µm. (D)   Real Time 

PCR analysis of TNF- (left panel) and iNOS (right panel) expression on N=3 Sgca 

null YD, N=3 Sgca RD null fed animals. Mean±SD; Two-tailed unpaired Student’s t-

Test; *P<0,05; **P<0,01; ns: non significant. 
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Part III 
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Cyanidin selectively promotes the antioxidant response 

through Nrf-2 signal in C2C12 

In order to investigate if cyanidin is able to selectively promote the transcription 

of antioxidant genes through Nrf-2 dependent pathway, we infected the 

myoblast cell line C2C12 with a Short-hairpin targeting Nrf-2 mRNA (Sh-Nrf2, 

Sigma-Aldrich). The so modified cell line (fig. 8A) was exposed to an oxidative 

stimulus with 1mM of H2O2 (Sigma-Aldrich, Rando et al. 1997) with or without 

the cyanidin enrichment in the medium. After 4 hours, we checked the cells 

viability through Trypan blue counting, and observed that in the Sh-Nrf-2 C2C12 

are more sensitive to an oxidative stimulus compared to scramble infected 

C2C12 exposed only to H2O2, or when in the double condition (fig. 8B). To 

consolidate the analysis, we checked by qPCR the expression levels of typical 

Nrf-2 target genes, such as HO-1 and GCLC, in our four conditions. The assay 

highlighted that when cyanidin is present in the medium of scramble C2C12 

group they express the same levels of antioxidant genes as the scramble 

C2C12 exposed only to H2O2, indicating that cyanidin in promote antioxidant 

response. More interestingly, when Nrf-2 is silenced, the expression of its target 

genes is decrease significantly, not only in presence of the oxidative stimulus, 

but also when this group is exposed to cyanidin (fig 8C), suggesting that no 

antioxidant response is triggered. Moreover, we might suppose then that 

cyanidin exhibits its antioxidant activity through Nrf-2 signalling. 
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Figure 8: (A) Western blot for Nrf-2 from C2C12 protein extract infected with scramble 

(left) or Sh-Nrf-2 (right). (B) The plot showing the percentage of cell viability after 4h 

hours of treatment Mean±SD. (C) Real Time PCR analysis of HO-1 (left panel) and 

GCLC (right panel) expression after 4 hours of treatment. N=3 for both the scramble 

and Sh-Nrf-2 group Mean±SD Two-tailed unpaired Student’s t-Test; *P<0,05; ns: non 

significant. 
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Conclusion and future prospective 

Muscular dystrophies are a wide group of genetic diseases, whose hallmark is 

a progressive muscle wasting which in time compromises patients’ mobility, 

and the most severe cases respiratory and cardiac function (Emery 2002). 

Mutations, in these pathologies, affect genes involved in the dystrophin-

glycoprotein complex (DGC) formation, whose role is pivotal for myofiber 

stability during skeletal muscle contraction.  

Inflammation also plays an essential role in worsening muscular dystrophies. 

In fact, myofibers disruption promotes a proinflammatory environment recalling 

macrophages at the damage site, establishing in these patients a chronic 

inflammatory environment (Morrison et al.; 2000; Hodgetts et al.; 2006; Munoz-

Cánovez and Serraro 2015). 

Oxidative stress is one of the mechanisms proposed to contribute strongly to 

the physiopathology of muscular dystrophies and chronic inflammation 

environment (Rando 2002). Furthermore, evidences in literature show that type 

I fibers, that are known to display oxidative metabolism and greater antioxidant 

defences, are more protected from dystrophic phenotype both in humans and 

in the Sgca null mouse model (Webster et al.; 1988, Danieli-Betto et al.; 2004). 

In this work I show that an cyanidin enriched diet (RD, Petroni et al.; 2017) 

supplied to Sgca null mouse model delays muscular dystrophy progression 

through specific molecular pathways. Specifically, providing the RD from the 

weaning time, I observe an overall amelioration of morphological parameters, 

such as the fiber calibre and less fragile fibers. Notably, this amelioration also 

persists when the diet is provided for longer time. Furthermore, this particular 

diet is able to rescue morphological parameters also when it is provided after 

the weaning when muscular tissue degeneration already occurred. Even more 

interestingly, this muscle improvement is coupled to an increase of muscle 

performance, indicating the delay of muscular degeneration is also present in 

terms of muscle functionality. 

Chronic inflammation is an important process involved in muscular dystrophies 

progression, which display the involvement of macrophage as the main immune 
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population (Spencer et al.; 2001; Wehling et al.; 2001, Hnia et al.; 2008). When 

Sgca null mice are fed with the cyanidin enriched diet I observed also a 

decrease in macrophage infiltrates and inflammatory parameters, indicating 

that cyanidin acts also as an anti-inflammatory compound. The data collected 

show that in the Sgca dystrophic model, when the antioxidant diet is supplied, 

IkB-α protein levels are increased and there is a consequent recruitment of NF-

kB in the cytoplasmic fraction, which is reflected also on its transcriptional 

activity. Furthermore, I demonstrate that NF-kB translocation in the myonuclei 

is ERK dependent, since phospho-ERK protein levels decreased in dystrophic 

mice fed with RD at variance with Sgca null mice fed with control diet. 

Specifically, ERK is able to promote the disassociation of NF-kB from its 

inhibitory complex, allowing so the NF-kB nuclear translocation and promotes 

the transcription of pro-inflammatory genes (such as TNF- α and iNOS), whose 

products recall macrophages during inflammation in the muscle tissue 

(Morrison et al.; 2000; Hodgetts et al.; 2006). 

Since is known that fibers that display an oxidative metabolism, coupled with 

antioxidant defences, are more protected from dystrophic phenotype, I also 

investigated on the muscle metabolic status in mice fed with the RD. The SDH 

staining highlights that cyanidin promote a switch to oxidative metabolism, and 

since SDH is a mitochondrial enzyme, it is likely that also mitochondrial 

homeostasis is enhanced, data confirmed by PGC1- α increased protein levels, 

a transcription cofactor essential for mitochondrial homeostasis (Renèe-

Ventura et al.; 2008; Villena 2014; Wang et al.; 2015). These observations let 

to suppose that mitochondrial homeostasis and oxidative metabolism might 

play an important role in muscular dystrophies amelioration; furthermore, it 

could be very interesting study deeper processes such as mitochondrial 

homeostasis, mitophagy and mitochondria turn over signalling since it was 

shown to be impaired in muscular dystrophies (Kim et al.; 2010; Fortini et al.; 

2016; Gracìa-Prat et al.; 2016; Pal 2016). 

Coupled with slow twitching phenotype, antioxidant defences are also 

enhanced in presence of cyanidin stimuli as shown by the qPCR data for typical 

antioxidant genes, such as HO-1 and GCLC. To identify the player involved in 

the antioxidant pathway, I focused on the main transcription factor activated 
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under oxidative stress condition Nrf-2, in particular in endothelial cells models 

(Motohashi et al.; 2004; Ma et al.; 2008; Klassen et al.; 2010 Walters et al.; 

2010). Western blot data from protein fractioning show that Nrf-2 protein levels 

are increased in the nuclear fraction of dystrophic mice fed with RD compared 

to YD fed one. This leads to suppose that, cyanidin can promote Nrf-2 

translocation into myonuclei and display a specific transcriptional activity, but 

most importantly, Sgca null mice fed with the control diet show an impairment 

of Nrf-2 nuclear localization and this might be the cause of the mismanagement 

of oxidative stress. Going deeper with the analysis, I observed also that AMPK 

phosphorylation levels are increased when cyanidin is provided to dystrophic 

mice, and, together with some evidences in literature where AMPK is linked to 

oxidative stress, it might suggest a link between Nrf-2 nuclear localization and 

AMPK activity (Emerling et al., 2009; Zmijewskiand et al.; 2010).  

Overall, I can conclude that, the use of dietary antioxidant in MD display an 

important effect delaying muscular dystrophy progression on different and 

important aspect of the pathology. Furthermore, I prove that also starting the 

RD at time points further than the weaning time, when the first signs of 

degeneration a fibrosis are already present, brings to beneficial effect on the 

pathology progression. Cyanidin enriched products are already present in 

successful human clinical trials, proving their safety but also offering 

cardioprotection, protection against cancer (Cerletti et al. 2017). The use of 

these products could be, therefore, applied to children affected by muscular 

dystrophies, firstly to improve patients’ life delaying the pathology, and secondly 

to enlarge of cohort of patients eligible in clinical trials since any curative 

therapy must be performed on good muscle quality.
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