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ABSTRACT 

 

Chemokines are key mediators of inflammation and are involved in both 

extrinsic and intrinsic pathway of cancer. Their main function is to induce leukocyte 

migration through the binding of specific seven transmembrane receptors. Beside 

canonical chemokine receptors, a smaller family of atypical chemokine receptors was 

described. ACKR2 binds with high affinity a broad panel of CC inflammatory 

chemokines mediating their internalization and intracellular degradation. Due to its 

chemokine scavenging activity, ACKR2 plays a protective role in chronic 

inflammation and in the extrinsic pathway of cancer.  

The objective of my thesis was to investigate the role of ACKR2 in the intrinsic 

pathway of cancer using the NeuT (HER2) murine model of oncogene-driven breast 

cancer crossed with Ackr2-/- mice. In this model, we found that ACKR2 plays a dual 

and opposite role. It slows the primary tumor development while it promotes lung 

metastasis. We found the same phenotype about metastasis using the orthotopically 

transplanted 4T1 mammary carcinoma and melanoma B16F10 cell lines. We 

demonstrated that ACKR2 expression in the hematopoietic compartment acts as a 

negative regulator of the mobilization of neutrophils with anti-metastatic function. 

In the last part of my thesis we also investigated the phenotype of circulating 

and tumor associated neutrophils (TANs) in glioma patients, a tumor context 

characterized by blood neutrophilia and a general immunosuppressive state. We found 

a higher grade of neutrophilia and an increased rate of immature neutrophils in 

glioblastoma patients compare to grade III glioma patients. Finally, we found that the 

relative abundance of circulating neutrophils on total leukocytes positively correlates 

with relative abundance of TANs. 

Collectively taken, these results indicate that neutrophils are a heterogeneous 

population with both pro and anti-tumoral functions. Targeting of neutrophils in cancer 

context represent a potential therapeutic approach that limit their pro-tumoral role 

unleashing the anti-tumoral and anti-metastatic potential.  
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1 INTRODUCTION 

 

1.1 Cancer-related inflammation 

Since from the first observations made by Rudolf Virchow in 1863 in which he noticed 

leukocytes inside neoplastic tissue, it was suggest that cancer and inflammation are 

linked to each other [1]. From that moment, several evidence sustained a direct link 

between cancer and inflammation. Today, it is established that chronic inflammation 

supports carcinogenesis and conversely, cancer cells create an inflammatory 

microenvironment that sustain tumor growth [2, 3].  

 

 Two pathways link inflammation to cancer 

The inflammatory process is described as a necessary but not sufficient cause of 

cancer. Several epidemiological studies indicate an association between chronic 

inflammation and organ-related cancer type indicating that patients with chronic 

inflammation are more susceptible to develop various cancer type [1, 4]. Nevertheless 

during all stages of cancer progression (from carcinogenesis to metastasis) it is 

registered an high amount of inflammatory mediators produced by cancer or stromal 

cells that lead to recruitment of pro-tumoral leukocytes that sustain tumor growth and 

spread [5]. The link between cancer and inflammation can be recapitulated in two 

pathways of cancer development: the extrinsic pathway and the intrinsic pathway. In 

the extrinsic pathway, a pre-existing chronic inflammation and the concomitant 

exposure to mutagen agents (for example smoke, ionic radiations, aromatic 

compounds) increase the risk to develop cancer. This observation is sustained by 

epidemiologic studies that indicate patients with chronic inflammation more 

susceptible to develop cancer [2] and experimental preclinical models in which mice 

exposed to chronic inflammatory and consequently mutagen agents are prone to 

develop cancer (Fig. 1.1) [6]. On the other hand, in the intrinsic pathway, after 

transformation cancer cells are able to produce or to induce the production of 

mediators of the inflammation such as cytokines, chemokines and prostaglandins. This 
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latter characteristic, belonging also to the extrinsic pathway, create an inflammatory 

microenvironment that enhance in a direct way tumor growth and metastasis spread 

and in an indirect way recruitment of corrupted leukocytes that sustain tumor growth 

and metastasis dissemination (Fig. 1.1) [2]. Finally, all these evidence indicates 

inflammation as a fundamental hallmark of tumor initiation, progression and spreading 

[3, 7]. 
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Figure 1.1: Two pathways link inflammation and cancer. In the extrinsic pathway, 

chronic inflammation increased cancer susceptibility after mutagen exposure. In the 

intrinsic pathway, mutated oncogene or tumor suppressor gene causes cell 

transformation. Both pathway converge in the production by cancer or stromal cells of 

mediators of inflammations [2]. 
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 Myeloid cells in cancer-related inflammation  

As discussed above, mediators of inflammation are present in both pathway of cancer-

related inflammation. One of the features exerted by mediators of inflammation is the 

recruitment of leukocytes that infiltrate the tumoral mass. Leukocytes are recruited 

from the blood stream to tumoral side by cytokine and chemokine produced by cancer 

cell and stromal cells. Both myeloid and lymphoid cells are involved in this process 

and play at the same time pro-tumoral and anti-tumoral functions depending on the 

concentration of polarizing cytokine. In detail, myeloid infiltrating cells include tumor 

associated macrophages (TAMs), tumor associated neutrophils (TANs) and monocyte-

derived dendritic cells (mo-DC) [8]. Two categories belong to TAMs: tissue resident 

macrophages that are present in the neoplastic tissue before cell transformation and 

circulating monocytes that are recruited in the tissue and then differentiate to 

macrophages. TAMs differentiate into anti-tumoral phenotype (M1) and pro-tumoral 

phenotype (M2) depending on microenvironment cytokines. Macrophages are defined 

plastic cells based on their capacity to change their phenotype from M1 to M2 or vice 

versa [9]. The same paradigm was recently attributed to TANs. Neutrophils, as 

discussed in the related paragraph of this thesis, are described to polarize, as 

macrophage, in the tumor microenvironment to anti-tumoral (N1) and pro-tumoral 

(N2) phenotype. Otherwise, the concept of neutrophil plasticity is not completed 

elucidated at the moment [10]. For dendritic cell the polarization paradigm is not 

recognized, while it is well described their role as antigen presenting cells (APC) of 

danger associated molecule pattern (DAMP) released during cell death that enhance 

the adaptive immune anti-tumoral response [11]. 

 

 Targeting cancer-related inflammation 

Being inflammation a fundamental hallmark of cancer, its target represents an 

important therapeutic strategy [12]. Today, two main therapeutic strategies emerge as 

target of cancer-related inflammation.  

The first strategy to target CRI is inhibition of the production of inflammatory 

mediators in the tumor microenvironment [13]. For example, genetic ablation of COX-

1, COX-2 and prostaglandin E2 reduce inflammation and primary tumor growth 
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enhancing anti tumoral leucocytes activity [14]. The second attempt is to directly 

inhibit leukocyte infiltration of the tumors. The best example of this strategy is the use 

of antibodies blocking the chemokine CCL2, that is the main macrophage 

chemoattractant, that inhibits lung metastasis in breast cancer model [15].  

Chemokines are mediators of inflammation involved in cancer and leukocytes biology, 

angiogenesis and other important process in cancer biology. In the following paragraph 

the role of chemokine as mediator of inflammation in cancer will be elucidated. 

 

1.2 Chemokines 

Chemokines are a large family of chemotactic cytokines including more than 50 

related molecules. The name “chemo-kines” derives from their ability to induce 

chemotaxis in responsive cells, that express dedicated chemokine receptors. Common 

features of chemokines, despite a low amino acid sequence homology, are four well-

conserved cysteine residues, which form two disulphide bonds between the first and 

the third cysteine and between the second and the fourth. These bindings give to 

chemokines a conserved tertiary structure, with a disordered amino-terminus, three-

stranded antiparallel β-sheets and a carboxy-terminal α-helix [16].  

The chemokine system is described as redundant and promiscuous because it is 

composed by more that 50 ligands recognized by only 22 receptors (Fig. 1.2) [17, 18]. 
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Figure 1.2: The chemokine system. Chemokines, their related receptors and 

expression on leukocytes [17] 
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 Chemokine classification 

Depending on the position of cysteine residues in their N-terminus, chemokines are 

divided in four subfamilies: CC, CXC, C and CX3C [19, 20]. CC chemokines are the 

most represented group of chemokines and have the first two of the four cysteine 

residues in adjacent position while CXC chemokines have one amino acids between 

the first two cysteines (Fig. 1.3). CXC chemokines can be further classified in ERL- 

and ERL+ chemokines, depending on the presence of the ELR (Glu-Leu-Arg) motif. 

On the other hand, CX3C chemokines have three amino acids separating the two 

cysteines and C chemokines have only two cysteines [18]. 

Moreover, chemokines are classified in homeostatic and inflammatory depending on 

the regulation of their expression. Homeostatic chemokines such as CCL19, CCL20 

and CCL21 are constitutively produced and regulate leukocytes migration in healthy 

condition. On the other hand, inflammatory chemokines such as CC chemokines (e.g. 

CCL2, CCL3, CCL5) and ELR+ chemokines (e.g. CXCL8) are expressed during 

pathological condition and are secondary inflammatory mediators induced by pro-

inflammatory mediators (e.g. IL-1 and TNF- α) [21]. 

 

 

 

Figure 1.3: Classification of chemokines. Chemokine classification depends on the 

presence and the number of amino acids between the two first cysteines that form the 

two disulphure bounds with other cysteines in the sequence. Chemokine are classified 

in CC, CXC, C, CX3C [22].  
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 Chemokine receptors 

Chemokines are soluble mediators acting on specific target cells that express related 

chemokine receptors. Chemokine receptors are classified according to the family of 

chemokines that bind in CXCR, CCR, CX3CR, or XCR1. Chemokine receptors belong 

to the superfamily of 7-transmembrane receptors [16] coupled to hetero-trimeric GTP-

binding proteins (G-protein) of the Gi type, sensitive to Bordetella pertussis toxin. 

Chemokine receptors have a highly-conserved structure constituted by a single peptide 

chain with three intracellular and extracellular loops, an external N-terminus domain 

essential for the specificity of ligand binding, and an intracellular carboxy-terminus 

tail. This latter domain, together with other motifs, such as the DRYLAIV (Asp–Arg–

Tyr–Leu–Ala–Ile–Val) motive between the third transmembrane domain and the 

second intracellular loop, has a role in receptor signaling (Fig. 1.4). After chemokine 

binding, conformational changes occur and trigger intracellular signaling pathways 

promoting cell migration or activation [23]. 

 

 
 

Fig 1.4: Structure of chemokine receptor. CCR5 as example of chemokine receptor 

structure [24] 
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 Chemokines in cancer 

Beyond the role of regulator of leukocytes mobilization, chemokines have a key role 

in many other functions: they regulate angiogenesis, fibrosis, cell proliferation and also 

cancer cell growth and dissemination. Chemokines are involved in both pathways that 

link inflammation to cancer. In the extrinsic pathway, chemokines are key mediators 

of chronic inflammation that increases the risk to develop cancer. In the intrinsic 

pathway, in which cancer raises from genetic events, chemokines expression is 

regulated by oncogenic pathways and transcription factors altered in cancer cells [25]. 

As discussed above, chemokines can act both on cancer and on stromal cells. 

Chemokines secreted at tumor site can recruit both immature cells and mature cells. 

Chemokines such as CCL2 and CXCL8 attract at tumor site monocytes and neutrophils 

that then differentiate to tumor associated macrophages (TAMs) and tumor associated 

neutrophils (TANs). TAMs and TANs have both pro-tumoral and anti-tumoral role 

depending on their polarization [8, 10].  Moreover, CCR4 ligands such as CCL17 and 

CCL22 have a role in the recruitment of Treg and Th2 lymphocytes that create an 

immunosuppressive microenvironment contributing to tumor growth [26]. On the 

other hand, ligand of CXCR3, CX3CR1 and CXCR6 increased mobilization of NK 

cells and T lymphocytes, cells able to kill cancer cells through direct cytotoxic effect 

[25, 27]. Chemokines have a key role also in the angiogenetic process enhancing or 

inhibiting de novo vessel formation and vessel spread. Pro-angiogenetic effects are 

exerted by ELR+ CXC chemokines and CXCL12, ligand of CXCR2 and CXCR4, that 

promote angiogenesis and inhibit apoptosis of endothelial cells [27]. On the other 

hand, ELR- chemokines such as CXCL9, CXCL10, and CXCL11 bind CXCR3 

expressing cells (Th1 lymphocytes and NK cells) and inhibit angiogenesis through the 

expression of type 1 cytokine [27-30]. A fundamental role of chemokines in the cancer 

context is the primary cancer spreading to secondary organs (metastasis). CXCR4 is 

the main receptor involved in this process. CXCR4 expression on cancer cells is up-

regulated in many cancer type and CXCR4 positive cells have an increased migration 

to organs that express high level of the ligand CXCL12 such as lung, lymph node, 

bones and liver. Pharmacological block of the CXCL12/CXCR4 axis impairs 

metastatic seeding in different preclinical tumor models [31, 32]. Moreover, some 

tumors can express CCR7 and use it to migrate into lymph nodes because lymphatic 
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vessels express high amount of the ligand CCL21 [33]. Finally, chemokines have also 

a direct role in cell survival activating cancer cells via the PI3K-AKT-NF-kB and the 

MEK1/2 and Erk1/2 axis [34, 35]. 

 

1.3 Atypical chemokine receptors 

Beyond canonical chemokine receptors, a new subfamily of chemokine receptors 

defined “atypical” has been recently identified and nomenclated [36]. Atypical 

chemokine receptors (ACKRs) have structural features similar to canonical chemokine 

receptors but have a modified DRYLAIV motif and after ligand binding, the receptors 

do not induce any G protein mediated signaling and cell mobilization. ACKRs bind 

with high affinity CC and CXC chemokines and their functional role is the regulation 

of chemokine availability. Their role is exerted scavenging, transporting or directly 

controlling signaling of other chemokine receptors [37]. Four members composed the 

ACKRs family: ACKR1 (previously nomenclated DARC), ACKR2 (D6), ACKR3 

(CXCR7) and ACKR4 (CCX-CKR) (Fig. 1.5) [36, 38]. Our research group has 

focused the attention on ACKR2, a negative regulator of CC chemokines [38, 39].  

 

 
Figure 1.5: The atypical receptors family. Current and traditional nomenclature of 

atypical chemokine receptors, their ligand and canonical receptors which ACKRs act 

as agonist [37]. 
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 ACKR2/D6 

ACKR2, previously called D6 or CCBP2, is a seven-transmembrane receptor that 

belongs to the atypical chemokine receptor family. ACKR2 binds a broad group of 

inflammatory CC chemokines (ligands of CCR1, CCR2, CCR3, CCR4 and CCR5), 

and leads to their internalization and degradation [39]. ACKR2 structure is different 

from canonical chemokine receptors for a modified DRYLAIV to a DKYLEIV motive 

that not allow binding with G-coupled protein [40]. For this reason, it was supposed 

that ACKR2 was a “silent” receptor not able to trigger any signaling pathway [41-43]. 

In basal conditions, ACKR2 is stored in endosomal vesicles and recycled continuously 

to the membrane [44, 45]. After ligand engagement, ACKR2 internalizes and targets 

chemokines to lysosomal degradation. At the same time, it activates β-arrestin-

dependent signaling, which increases receptor recycling to plasma membrane 

localization to adapt its function in the control of chemokine extracellular 

concentrations [46, 47]. ACKR2 is described to be highly expressed by the 

syncytiotrophoblast layer in placenta, by lymphatic endothelial cells, and by some 

leukocyte populations, including innate-like B cells and alveolar macrophages [48-

50]. ACKR2 role in physiology and pathology was demonstrated using gene-targeted 

mice in which ACKR2 expression is deleted. 

 

 ACKR2 role in physiology  

ACKR2 has a role both in physiologic and pathologic conditions. In homeostasis, 

ACKR2 expressed by efferent lymphatic vessel regulates chemokine levels and 

prevents excessive leukocytes accumulation in the lymphatic system [51, 52]. It 

regulates lymphatic vessel density formation in ear, diaphragm and popliteal lymph 

nodes inhibiting the recruitment of CCR2 positive pro-lymphangiogenic macrophages 

[53]. The ACKR2 scavenger activity of CC inflammatory chemokines is also involved 

in the increased efficacy of the presentation of CCR7 ligand and promotion of DC 

migration [54]. Moreover, ACKR2 controls also the morphogenesis and the branching 

of mammary gland during development [55] and the traffic of inflammatory 

monocytes (CD11b+/Ly6Chigh) with immunosuppressive phenotype inhibiting 

egression from bone marrow [56]. 
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 ACKR2 role in inflammation and autoimmunity 

ACKR2 emerges as negative regulator of the inflammation through its capacity to 

degrade CC inflammatory chemokines. In skin inflammation, ACKR2 exerts a 

protective role after phorbol ester skin painting and following injection of complete 

Freund’s adjuvant (CFA) with a concomitant decrease of the inflammatory response 

[48, 57, 58]. Similar results were found in antimicrobial response to Mycobacterium 

tuberculosis. Ackr2-/- mice display reduced survival rate, increased number of 

leukocytes, increased production of pro-inflammatory cytokines such as TNF-a, IL-

1b, INF-g and chemokines such as CCL2, CCL3, CCL4 and CCL5 [59]. Being the 

syncytiotrophoblast one of the major site of expression of ACKR2, in a LPS-dependent 

fetal loss model, Ackr2-/- mice have an increased abort rate with concomitant increased 

levels of CC chemokine and leukocytes [60]. Contrasting results were published about 

gut inflammation. While Vetrano and colleagues found in Ackr2-/- mice an increased 

inflammation after administration of dextran sulfate sodium (DSS) [61], Bordon and 

colleagues found that Ackr2-/- mice are protected after DSS administration and this 

correlates with increased production of IL-17A by T cells [62]. Further experiments 

are needed to elucidate the role of ACKR2 in this context, taking in consideration 

animal house sanitary status and the intestinal flora. 

Moreover, in a graft versus host disease (GVHD) Ackr2-/- mice have increased number 

of inflammatory monocytes with immunosuppressive activity and they are protected 

from disease development [56]. In human arthropathies, ACKR2 is upregulated in 

synovial tissue as a marker of inflammation [63]. Finally, ACKR2 was described to 

have a role in autoimmune diseases because it was found  upregulated in psoriatic skin 

[64] and Ackr2-/- mice shown a faster disease progression in a psoriasis-induced model 

with increased cell autonomous neutrophil infiltration [65]. On the other hand, Ackr2-

/- mice are protected in the development of autoimmune diabetes [66] and experimental 

autoimmune encephalomyelitis [67], but opposite results in this model are described 

by Hansell and colleagues in which they do not recapitulate phenotype found in the 

first study by the other group [68]. 
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 ACKR2 role in cancer 

ACKR2 plays also a role in cancer through its ability to scavenge chemokines [49, 57, 

62] [38]. ACKR2 role was elucidated using gene-targeted mice in different preclinical 

models. Firstly, ACKR2 was described to have a role in TPA/DMBA skin 

carcinogenesis in which ACKR2-deficient mice developed earlier and increased skin 

tumors [69]. Also in AOM/DSS model, Ackr2-/- mice increased colon cancer 

susceptibility confirming a protective role of ACKR2 in different organs [61]. On the 

other hand, ACKR2 did not affect the development of the DEN-induced hepatocellular 

carcinoma model, even if an increased macrophage infiltration was detected in gene-

targeted mice [70]. Referring to colon cancer, ACKR2 expression in human colon 

adenocarcinoma samples is decreased compared with healthy tissues and correlates 

with an increased lymphatic vessel density and an increased production of CCL22 

[71]. ACKR2 is described to be highly expressed in lymphatic endothelium [39] and 

it is implied in different vascular tumor including Kaposi’s sarcoma spindle cells [54]. 

In this context, ACKR2 expressed by cancer cells have a protective role in tumor 

growth inhibiting inflammatory chemokines such as CCL2, CCL5, and CCL3 with a 

concomitant reduced macrophage infiltration and angiogenesis. 

Immunohistochemistry data reveal that in Kaposi’s sarcoma patients ACKR2 is down-

regulated through the oncogenic pathway KRas/BRaf/MEK/MAPK [72]. ACKR2 has 

a protective role also in breast cancer but the expression in healthy epithelial cells was 

not elucidated [73]. In human breast cancer samples ACKR2 expression is inversely 

correlated to lymph node metastasis and the clinical stage. ACKR2 over-expression in 

a human breast cancer cell line regulates inflammatory chemokines levels and tumor 

aggressiveness in vivo [74]. These data were confirmed by different groups: ACKR2 

was found down-regulated during breast cancer progression, and concomitant down-

regulation of ACKR1 and ACKR4 correlates with a worse pathology outcome 

confirming a protective role not only for ACKR2, but also for other atypical 

chemokine receptors involved in chemokines control [75, 76]. ACKR2 genetic 

polymorphisms are predictors for the clinical response in patients with breast cancer. 

One single nucleotide polymorphism in the coding sequence (rs2228468) increases 

scavenger activity of chemokines and is correlated with increased relapse-free survival 

[77, 78]. The protective role of ACKR2 was also described in cervical squamous cell 
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cancer and in gastric cancer in which immunohistochemistry expression of ACKR2, 

ACKR1, and ACKR4 was correlated with a better outcome of the disease [79, 80]. 

Another contest in which ACKR2 has a protective role is human lung cancer. The lung 

cancer cell line A549 over-expressing ACKR2 showed an inhibition of in vitro 

proliferation and in vivo tumor growth caused to enhanced scavenger activity by the 

receptor [81]. These results indicate that ACKR2 expression by cancer cells limits 

tumor growth through regulation of leukocytes recruitment. Limited and not well 

exhaustive data have explored the role of ACKR2 expressed by stromal tumor cells 

such as lymphatic vessel on carcinogenesis [39]. 

 

1.4 Neutrophils 

Neutrophils are the most abundant circulating leukocytes in human (50 – 70% of 

neutrophils on total leukocytes) and have an estimated half-life of 7 hours in blood and 

1 – 2 days in tissue. Neutrophils play a central function in recognition, phagocytosis 

and killing of pathogens through production of reactive oxygen species (ROS), 

degranulation of antimicrobial peptides and the formation of neutrophil extracellular 

traps (NETs) [82]. In addition to the role in the innate response against pathogens, 

neutrophils play a role also in the regulation and activation of the innate and adaptive 

immunity [83] and in several pathological diseases including cancer [82, 84]. In the 

cancer contest, neutrophils were considered neutral players for several years but in the 

last decade, neutrophils were described to have both pro-tumoral and anti-tumoral 

functions depending on the activation and polarization state [10, 85]. Clinical data 

indicate that circulating and infiltrating neutrophils have a predicting role about 

patients survival. Elevated neutrophil-to-lymphocytes ratio (NLR) is considered a poor 

prognostic indicator in various cancer type [86]. Moreover, a meta-analysis indicates 

neutrophils presence in tumor tissue associated with poor prognosis [87]. 

 

 Neutrophil polarization in cancer 

Neutrophils are involved in several pathological contexts including cancer [84]. Even 

if neutrophil infiltration constitutes an important portion of all infiltrating leukocytes 
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in many tumor types [87], only recently the neutrophils role in cancer was starting to 

be elucidated. It was demonstrated for the first time by Fridlender and colleagues in 

1999 that neutrophils have a double role in cancer [85]. In this paper TANs were 

classified in two functional states: pro-inflammatory and anti-tumoral (N1) or anti-

inflammatory and pro-tumoral (N2) [85]. Neutrophil polarization is due to cytokines 

present in the tumor microenvironment: IFN-b polarized TAN to N1 phenotype while 

TGF-b or the inhibition of IFN-b cause a polarization toward an N2 phenotype [88]. 

The main morphological feature of N1 neutrophils is the hypersegmented nucleus. N1 

status is associated to production of pro-inflammatory cytokines (e.g. TNF-a) and 

ROS, expression of ICAM-1 and low levels of CD62L. From a functional point of 

view, N1 neutrophils are able to stimulate T cell responses and to kill cancer cells (Fig. 

1.6). On the other hand, N2 neutrophils show a ring-like nucleus, they are negative for 

ICAM-1 and express at high level of CD62L; they exert their pro-tumoral role 

expressing MMP9 and VEGF (Fig. 1.6) [84, 89]. Little is known about neutrophils 

plasticity. It is supposed that TANs that infiltrated tumor in early stages have N1 

phenotype and during tumor progression they are polarized toward N2 phenotype. In 

mice injected with Lewis Lung Carcinoma (LLC) and mesothelioma (AB12), TANs 

at early stages show N1 markers, produce high level of TNF-a and NO and have 

increased cytotoxic activity toward cancer cells, while in later stages neutrophils 

acquire pro-tumoral features [90]. The same feature was found in a model of breast 

cancer liver metastasis, in which TAN acquire N2 phenotype during progression and 

have pro-tumoral functions [91]. Also in human lung cancer TAN show in the early 

phase of the disease an activated phenotype (ICAM-1+/CD62Llow), express a broad 

group of chemokine receptors (CCR5, CCR7, CXCR3, and CXCR4), produce pro-

inflammatory cytokines and chemokines (CCL2, CXCL8, CCL3 and IL-6) and 

stimulate T cell proliferation through costimulatory molecules [92]. While at the 

moment the neutrophil polarization concept is supported by several evidences in many 

cancer type, it is not well elucidated if neutrophils phenotype changes during tumor 

progression or different neutrophil subsets are recruited during tumor growth [10]. In 

the next paragraph, neutrophil pro-tumoral and anti-tumoral activities will be 

discussed. 
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Figure 1.6: Neutrophil polarization in cancer. N1 phenotype is induces by IFN-b 

activity and N2 phenotype is induces by TGF-b: N1 and N2 are differentiates by shape 

of the nucleus, surface markers, production of inflammatory mediators and 

chemokines and by the expression of chemokine receptors [10]. 

 

 Neutrophil pro-tumoral role 

Neutrophils in cancer can exert pro-tumoral and anti-tumoral functions [84]. Several 

data elucidate the mechanisms of their pro-tumoral functions. TANs are able to release 

enzymes contained in their granules such as neutrophil elastase (ELA2), neutrophils 

collagenase (MMP8) and neutrophils gelatinase B (MMP9) that allow tumor cells 

invasion by remodeling extracellular matrix (ECM) [93]. Neutrophils support tumor 

growth secreting cytokines and growth factors (EGF, TGF-b, PDGF, HGF, VEGF). In 

detail, hepatocyte growth factor (HGF) is described to promote invasion of human 
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pulmonary adenocarcinoma cells [94] and VEGF production is enhanced through the 

oncostatin M production [95, 96]. Moreover, granule enzymes are able to activate pro-

angiogenic factors EGF, TGF-b, and PDGF from ECM [97]. ROS and reactive 

nitrogen species (RNS) are described to enhance tumorigenesis contributing to damage 

DNA and promote genetic instability [98]. ROS in the same time display anti-tumoral 

activity inhibiting metastatic seeding [99, 100] as discussed in the next paragraph. 

Direct promotion of cell proliferation is exerted by ELA2, prostaglandin E2 (PGE2) 

and leukotrienes [101, 102]. In particular, leukotrienes are implied in proliferation of 

metastasis initiating cells in different preclinical model of breast cancer [103]. 

Neutrophils dampen T cell cytotoxic activity through iNOS secretion after stimulation 

by IL-17 and G-CSF produced by gd T cells [104]. As discussed above, neutrophils 

are able also to form NETs upon activation and cancer cells can be trapped in the net 

and increase their adhesion to hepatic and pulmonary microvasculature causing 

metastasis [105]. Moreover, neutrophils exert indirect tumor growth inhibiting anti-

tumoral immune responses through production of arginase 1 (Arg-1) dampening T cell 

function upon CXCL8 stimulation [106], expressing programmed death-ligand 1 (PD-

L1) [107] and producing CCL2 and other chemokine that enhance recruitment of other 

tumor-supporting leukocytes [108]. 

 

 Neutrophil anti-tumoral role 

Limited compared the pro-tumoral functions, but promising evidences indicate the 

neutrophils anti-tumoral role. As discussed above, ROS promote tissue damage and 

cell death but in same time, ROS have a direct cytotoxic effect against tumor cells [99, 

100]. Neutrophils can inhibit the lung metastatic seeding in a preclinical breast cancer 

model trough the generation of hydrogen peroxide [109]. Another mechanism of 

cancer cell killing includes antibody-dependent cell-mediated cytotoxicity (ADCC) 

[110] and this process is important for anticancer monoclonal antibodies based 

therapies [111]. In addition, interferon-activated neutrophils are able to produce TNF-

related apoptosis inducing ligand (TRAIL/APO2 ligand) with selective apoptotic 

activity against tumor cells [112, 113]. Neutrophils are also able to enhance Fas-

mediated apoptosis [114]. MET, a proto-oncogene involved in cancer cell-cycle and 
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survival, is expressed by TANs after TNF-a stimulation. Its genetic ablation leads to 

decreased transmigration across endothelium and dampen nitric oxidase-dependent 

tumor cell killing that limit cancer cell growth [115]. Neutrophils are able to decrease 

uterine tumor development in pten-/- mice promoting tumor cell detachment [116]. 

Finally, neutrophils stimulate also adaptive immune response through the expression 

of costimulatory molecules. Neutrophil stimulate proliferation of CD4+ and CD8+ T 

cells through expression of OX-40L and 4-1BBL increasing their cytotoxic activity in 

early stage of human lung cancer [92]. Recently, a neutrophil subpopulation in lung 

cancer was discovered. It was defined as APC-like hybrid TANs due to the expression 

of costimulatory molecules and because it stimulates antigen non-specific T cell 

response [117]. Enhancing of anti-tumoral neutrophil functions is a potential 

immunotherapy approach that unleash neutrophils cancer cell killing ability. 

 

 Neutrophil subpopulations 

Neutrophils were considered for many years a homogeneous population among 

granulocytes, but several evidences indicate the presence of neutrophil subsets in 

inflammation and in cancer both in mice and human. Circulating neutrophils in healthy 

mice are mainly Ly6G+/CD62high/ICAM-1neg but during inflammation it was observed 

a fraction of circulating neutrophils that upregulated ICAM-1 and shed CD62L [118]. 

CD62L (also known as L-selectin) is a cell adhesion molecule normally expressed by 

neutrophils and lymphocyte subsets [119]. CD62Llow neutrophils were associated with 

an aged phenotype with higher expression of CXCR4, TLR4, CD11b, CD49 and 

ICAM-1 exhibiting an increased aMb2/Mac1 integrin activation and NET formation 

in inflammatory conditions [120]. In homeostatic conditions, also human circulating 

neutrophils are described as a unique population labelled as CD16high/CD62Lhigh, but 

in inflammatory conditions other two populations were described: CD16dim/CD62Lhigh 

that are freshly released from bone marrow or young neutrophils and 

CD16high/CD62Llow that are older and have increased anti-microbial function and 

produced higher amount of ROS [121]. CD16high/CD62Llow neutrophil subpopulation 

was further described to upregulate CD11b and CD11c with improved suppression of 

T cell proliferation [122, 123]. In human and mouse during inflammation, a neutrophil 
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subpopulation was also described for its ability to reverse transmigrate from tissue to 

blood. These neutrophils are called reverse transmigrated neutrophils (rTEM) and 

showed activated phenotype in terms of expression ICAM-1, ROS production and low 

level of CXCR1 [124]. rTEM role is not completely elucidated because they can 

potentially spread the inflammation to distal organs form the site of inflammation 

[125], but in a zebrafish model rTEM are described dampening inflammation [126]. 

Another neutrophil subset was described in humans and mice for its ability to produce 

pro-angiogenic factors, in particular VEGF-A, the expression of VEGFR1, CD49d 

(VLA4), high level of MMP9 and CXCR4 [127]. CD10, normally expressed by 

neutrophils, has been indicated as marker of mature neutrophils. CD10 negative 

neutrophils have an activated phenotype, they able to stimulate T cell proliferation and 

IFN-g production [128]. As discussed above, a subpopulation of APC-like hybrid 

TANs has been recently described in lung cancer but it is not known if they are CD10 

negative [117]. Finally, in cancer patients and tumor-bearing mice neutrophil subsets 

can be identified on the basis of their density. Indeed, Sagiv et colleagues identified 

immature low-density neutrophils (LDNs) and mature high-density neutrophils 

(HDNs). LDNs and HDNs, in addition to be different in terms of density and shape, 

have different functional roles: HDNs have increased cancer cell killing activity while 

LDNs have an immunosuppressive role resembling features of granulocytes – myeloid 

derived suppressor cells (G-MDSC) [129]. Collectively taken, redundant and not 

officially adopted nomenclature of neutrophil subsets create a confused classification. 

Further efforts will be necessary to better describe neutrophil subsets linking 

functional activity and markers expression in order to create a unique nomenclature. 

This will be useful to describe neutrophil heterogeneity among different diseases 

underlying common features that summarize neutrophil biology. 

 

 Chemokines in neutrophil polarization 

As discussed above chemokines and chemokine receptors are mediators of the 

inflammation and play a key role in physiological and pathological contexts including 

cancer. Neutrophils express both chemokines and chemokine receptors as regulators 

of fundamental biological and functional processes including mobilization, 
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transmigration and cell activation [130, 131]. In this paragraph, it will be discussed the 

role of CXC and CC chemokines in neutrophil biology in cancer. 

 

 CXC chemokines and related receptors 

Neutrophils express high level of CXCR1 and CXCR2 and, after binding with their 

ligands, they induce a strong migrating effect [131]. In cancer, agonist of CXCR1 and 

CXCR2 such as CXCL8, CXCL5 and CXCL6, are produced by cancer cells causing 

neutrophils mobilization and infiltration into tumor mass. At the same time, 

neutrophils are able to produce and release chemokines, for example CXCL2, that 

contribute to sustain tumor infiltration by neutrophils. The most abundant chemokine 

produced by tumoral cells is CXCL8; it is over-expressed by many tumors type such 

as colon, lung, prostate, ovarian carcinoma and melanoma [132]. CXCL8 is not only 

associated with promotion of inflammation and neovascularization [133], but also with 

neutrophil-dependent cell mutation that leads to tumorigenesis [134]. On the same 

way, CXCL5 is described to be involved in tumor progression and metastasis in several 

cancer types [135, 136]. CXCL5 was found to recruit pro-tumoral neutrophils in 

preclinical models of hepatocellular carcinoma (HCC) [137] and intrahepatic 

cholangiocarcinoma (ICC) [138]. Also in human, CXCL5 expression correlates with 

poor prognosis in HCC and ICC patients [138]. Furthermore, CXCL6, CXCL2 and 

CXCL1 are involved in neutrophil recruitment to tumor. CXCL6 induce neutrophil 

infiltration sustaining tumor angiogenesis [139] and tumor growth in melanoma [140]. 

CXCL1 and CXCL2 were found to recruit neutrophils expressing S100A8 and 

S100A9 that increased cancer cell survival and resistance to chemotherapy [141]. In 

line with these results, genetic deletion of CXCR2 inhibited neutrophil recruitment 

into the tumor, inhibited tumor growth and reduced angiogenesis in B16F10 and 

MCA205 tumor models [142]. On the contrary, the role of CXCR2 in metastasis is not 

fully elucidated. In renal cell carcinoma (RCC) CXCR2 ligands CXCL5 and CXCL8 

produced by cancer cell are able to recruit anti-metastatic neutrophils that inhibit 

cancer cell seeding [143]. It is not known if CXCR2, beside allowing recruitment of 

circulating neutrophils, is differentially expressed by neutrophil subpopulations and 

has a role in their functional activities. Treatment with IFN-b, a N1 polarizing 

cytokine, does not modulate CXCR2 expression in murine neutrophils [142], while in 
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N1 TANs in lung cancer patients CXCR2 is down regulated [92]. Moreover, CXCR1 

is downregulated in rTEM [124] during inflammation but no evidence indicates 

chemokine receptors modulation on rTEM in cancer. Neutrophils express also CXCR4 

and its ligand CXCL12 (also known as SDF-1) that negatively regulate neutrophils 

release from BM. Hematopoietic progenitors express high levels of CXCR4 and it is 

downregulated during maturation. Circulating neutrophils express low levels of 

CXCR4 and it is further downregulated by a panel of cytokine including IFN-g, IFN-

a, granulocyte-macrophage colony-stimulating factor (GM-CSF) and G-CSF [144]. 

CXCR4 is upregulated in senescent neutrophils and promote their recalling to BM 

[145]. In the tumor context, CXCR4 was found upregulated in a subset of circulating 

neutrophils promoting angiogenesis and tumor progression [127]. CXCR4 is also 

inhibited by IFN-b suggesting its expression as N2 marker [89]. Pharmacological 

inhibition of CXCR4 through administration of AMD3100 (also known as Plerixafor), 

increased anti-tumoral immune response in murine models of hepatocellular 

carcinoma inhibiting immunosuppressive microenvironment [146]. However, being 

CXCR4 highly expressed also by tumor cells, it is difficult to extrapolate its role in 

neutrophil function and polarization. 
 

 CC chemokines and related receptors 

Circulating neutrophils from healthy individuals express low level of CC chemokine 

receptors and for this reason their role in neutrophil biology is not fully understood 

[147, 148]. For example, the role of CCR2 in neutrophils is emerging only recently. 

Neutrophils express lower CCR2 levels compared to monocytes, but Fujimura and 

colleagues found that CCR2 is important for neutrophil mobilization from BM [149] 

and it is responsible for neutrophil accumulation in a model of rheumatoid arthritis 

(RA) [150]. Upregulation of CCR1, CCR2, CCR3, CCR5 enhances the respiratory 

burst for bacterial killing [147] and CCR2-depend ROS generation has an anti-

metastatic role through direct cancer cell killing [109]. On the other hand, neutrophils 

producing the CCR2 ligand CCL2, enhances the recruitment of CCR2 positive 

leukocytes that can have a pro-tumoral role [108]. Neutrophil CCR5 expression is also 

associated to enhanced recruitment of myeloid cells with immunosuppressive role that 
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sustain tumor growth [151]. Collectively taken, CC chemokine receptors can be 

considered markers of activated neutrophils or N1 phenotype and could be potential 

target to enhance anti-tumor responses. On the other hand, expression of CC 

chemokine receptor ligands are markers of a N2 phenotype. This address a complex 

role for CC chemokines and their receptors. While CC chemokine receptors can trigger 

anti-tumoral function of neutrophils, their ligand could at the same time enhance 

recruitment of other pro-tumoral leukocytes (Fig. 1.6) [10]. 

 

1.5 Breast cancer 

Breast cancer represents the second common female tumor and counts about 25% of 

all tumor types. The estimated incidence rate is 19.4 per 100,000 people in East Africa 

and 89.7 per 100,000 in West Europe (WHO, 2015) [152]. Breast cancer includes a 

wide range of tumor of the breast with different anatomical and molecular 

characteristics [153]. Histological classification divides breast cancer in “in situ” and 

invasive (infiltrating) carcinoma. In situ carcinoma can be sub-classified in ductal or 

lobular carcinoma depending on tissue of origin. Invasive carcinoma is further sub-

divided in tubular, ductal lobular, invasive lobular, infiltrating ductal, mucinous and 

medullary [154]. Breast cancer heterogeneity encloses also differential expression of 

molecular marker belonging to hormone receptors and oncosuppressor genes. Tumors 

are classified depending on the expression of estrogen receptor (ER), progesterone 

receptor (PR), ErbB2 (Her2/neu), epidermal growth factor receptor (EGFR) and p53. 

Based on molecular expression, breast cancer is subdivided as: basal like (that includes 

triple negative breast cancer, ER, PR and Her2 negative, ErbB2+), normal breast 

cancer, luminal subtype A, luminal subtype B (further subdivided in Her2 positive and 

negative) and claudin-low (Fig. 1.7) [154]. Pharmacological therapy based on 

hormone receptors expression represents an efficacious therapy strategy being 

molecular heterogeneity an important feature within cancer with the same histological 

classification that predicts clinical outcome [155]. As discussed below, immune 

system plays a central role in breast cancer and immunotherapy emerges as a concrete 

therapeutic approach in the treatment of this pathology [156-158]. 
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Figure 1.7: Molecular classification of breast cancer [154]. 

 

 The immune system in breast cancer  

Immune system plays a crucial role in breast cancer biology [159]. Leukocytes 

infiltrate breast cancer since the first phases of the pathology and co-evolve with 

disease progression [156]. In the initial phase, leukocytes are able to fight against 

tumor cells, but mechanism of immune escape and immunosuppression exerted by 

cancer cells cause a switch in leukocytes activity that limit their cancer cell killing 

activity, sustain primary tumor growth and contribute to metastasis spread [156]. Both 

innate and adaptive cells infiltrate tumor tissue and exert a role in cancer biology. 

Referring to innate immunity, macrophages have a paradigmatic role in disease 

progression [160]. Early phases of the disease are associated to the anti-tumoral M1 

macrophage phenotype, while established tumors are associated to pro-tumoral and 

pro-metastatic M2 phenotype. Targeting of TAM represents a valid therapeutic option 

to prevent M2 and M2-like polarization that promote tumor growth [161, 162]. Mast 

cells were observed infiltrating breast cancer and are implied directly and indirectly in 

angiogenesis [163] while eosinophils were not found infiltrating the tumoral mass 

[164]. Referring to adaptive immunity, the presence of tumor infiltrating lymphocytes 

(TILs) is correlated with negative axillary nodal status, smaller tumor size, and lower 

grade [165]. Among TILs there are both pro and anti-tumoral cells. The positive effects 

on disease progression have to be attributed to CD4+ Th1 Tcells and CD8+ T cells. 

On the other hand, CD4+ Th2 T cell and CD4+ regulatory cells (T reg) have a pro-

tumoral role and suppress immune response and lead to tumor growth [156]. Breast 

cancer can be considered as a good example of cancer immunoediting. Cancer cells 
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downregulate MHC-I molecule and at the same time overexpress check point 

inhibitors such as PD-L1 that cause evasion and dampening of the immune system, 

respectively [156]. Many immunotherapeutic strategies are proposed to enhance 

immune response against breast cancer. The most used strategy is focused on 

monoclonal antibody (for example trastuzumab that impairs HER2 signaling) and 

immune check point inhibitors alone or in combination with surgery ablation, 

radiotherapy, chemotherapy or hormonal therapy. Promising but more technical 

challenge approach, such as adoptive T cell therapy and vaccines, are also under 

clinical evaluation [157, 166]. 

 

 Neutrophils in breast cancer 

Neutrophils exert both pro-tumoral and anti-tumoral functions as described above 

depending on the tumor microenvironment [10]. In breast cancer context, several 

evidence indicates a key role of neutrophils in primary tumor growth and metastasis 

dissemination. In patients, high NLR is associated to poor overall survival (OS) and 

disease-free survival (DFS) [167, 168]. Among the different cancer subtype, high NLR 

is associated to reduced OS in luminal A subtype [167] and in ER and HER2 negative 

tumors [168]. Using Polyoma Middle T (PyMT) model it was demonstrated that 

neutrophilia is caused by G-CSF production by cancer cells [169]. In breast cancer 

patients there is a circulating neutrophil subpopulation displaying an 

immunosuppressive phenotype that sustain tumor growth [129]. Collectively taken, 

both increased number and altered phenotype of circulating neutrophils correlate with 

pathology outcome. Several evidence indicates a key role of neutrophils in breast 

cancer metastasis exerting both anti-metastatic and pro-metastatic role [170]. The anti-

metastatic role was described by Granot and colleagues. They found that the secretion 

of cytokines and chemokines such as CCL2 by cancer cells directly activates 

neutrophils to kill tumor cells by ROS production [109]. MET was described to 

enhance neutrophil extravasation with anti-tumoral and anti-metastatic activities 

[115]. On the contrary, many evidence indicates a pro-metastatic role of neutrophils. 

Coeffelt and colleagues have observed that the production of iNOS by neutrophils, 

induced by IL-17 secreted by gd T cells, inhibits CD8 T cells activity [104]. 
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Neutrophils can have a direct effect of metastasis acting on the pre-metastatic niche 

[103] trapping cancer cells through the formation of NET [171]. Mechanisms of 

recruiting pro-metastatic neutrophils are IL-5 and GM-CSF in obesity conditions 

[172], IL-16 [173]. and TNF-a that recruits CXCR2+ neutrophils [174]. Neutrophils 

interact with other immune cells involved in metastasis control such as NK cells. In 

4T1 model, neutrophils are described to inhibit NK cells and promote tissue 

remodeling thus facilitating metastasis seeding [175]. Collectively taken, immune cells 

and in particular neutrophils, play a key role in breast cancer biology. Targeting of 

neutrophils represents a potential approach to limit disease progression in particular 

metastasis spread. 

 

1.6 Glioma 

Glioma represents about 80% of malignant brain tumors with an estimated annual 

incidence of 6.6 per 100,000 individuals in the USA. The traditional classification 

divided glioma into four major histological classes (grades I–IV), taking count of their 

microscopic characteristics (for example cytological atypia, anaplasia, mitotic activity, 

microvascular proliferation, and necrosis) and clinical behavior. In 2016 World Health 

Organization (WHO) revised Classification of tumors of the central nervous system 

(CNS) [176]. The new classification also dived tumors in: astrocytomas (WHO grade 

I–IV), oligodendrogliomas (WHO grade II–III) and mixed oligoastrocytomas (WHO 

grade II–III) depending on their putative cells of origin. Grade IV glioma or 

Glioblastoma (GBM) have the higher incidence among primary brain tumor and have 

a lifespan from 12.2 to 18.2 months with a 5-year survivor rate less than 5%. GMB 

classification takes also advantage of molecular classification: IDH mutations, 1p and 

19q co-deletion, methylation status [177]. Lower-grade gliomas (WHO grade II–III) 

are about 30% of all glioma and less aggressive and the clinical behavior is not 

predictable based on their histologic class [176]. 

GBM care protocol is not changed in the last 10 years and consists of maximal tumor 

rejection followed by radiotherapy and chemotherapy with Temozolomide [178]. 

Lower-grade glioma therapeutic protocol consists of surgical rejection, clinical 

monitoring, radiation alone or in concomitant with chemotherapy. Therapy protocol 
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depend on histologic class, grade and molecular features (IDH mutations, 1p and 19q 

co-deletion). New therapeutical strategies were tested in these years to try to prolong 

patients survival, but clinical trials based on blocking angiogenesis [179] and targeting 

dysregulated cell signaling pathways [180] failed to increase survival. 

In the last 5 years, many successful data in the battle against cancer come from 

immunotherapy [181-183]. Due to the fact that in glioma there is a strong 

immunosuppressive microenvironment, unleashing the immune response against 

cancer could be a potential efficacious treatment also for this tumor [184]. 

 

 The immune system in glioma 

Traditionally CNS was described as an immune-privileged site due to the presence of 

the Blood-Brain Barrier (BBB) and the absence of leukocytes and lymphatic vessels. 

These was demonstrated with preclinical models of tissue engraftment in the brain that 

lack of the rejection due to immune response. However, it is becoming clear that the 

CNS actively interact with immune cells also in presence of an intact BBB [185, 186]. 

Moreover, Louvenau et al demonstrated the presence of lymphatic vessels within the 

dural sinuses. These vessels are able to transport leukocytes between cerebrospinal 

fluid and deep cervical lymphatic vessels [187]. In glioma context, disruption of BBB 

cause an important interaction between glioma cells and the immune system and the 

establishment of an immunosuppressive microenvironment that dampen cell-mediated 

immunity (Fig. 1.7) [188]. Immunosuppression is caused by glioma cells that over-

express molecules with immunosuppressive function such as E2, TGF-b, indoleamine 

2,3-dioxygenase (IDO), and IL-10. These molecules cause recruitment of T regulatory 

and myeloid derived suppressor cells to the tumor site that dampen APC presentation 

activity and T cell cytotoxic activity. Other mechanisms of immunosuppression occur 

in glioma; glioma cells downregulate their MHC-I complex provoking tumor escape 

and express PD-L1, ligand of PD-1 that inhibit MHC signaling limiting PD-1+ cells 

cytotoxic activity [189-191]. Blocking of PD-1 is considered a potential 

pharmacological effect to enhance T cell cytotoxic activity against cancer cells. In 

glioma preclinical models, the survival rate is increased after administration of a-PD-

1 in combination with radiotherapy [192]. Concomitant treatment with a-CTLA-4 and 
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a-PD-1 shows further increase in survival rate with increased number of activated 

CD8+ and NK cells and the decrease immunosuppressive cells in the lesion [193]. 

Moreover, concomitant pharmacological blocking of CTLA-4, PD-1 and IDO 

increased survival rate in other glioblastoma models confirming previous data. 

Blocking of CTLA-4 alone, and CTLA-4 and administration of IL-12 provoked an 

increase of tumor infiltrating effector T cell and decreased T regulatory infiltration 

[194-196]. Several clinical trials are ongoing to test the efficacy of checkpoint 

inhibitors in glioma patients. In addition other strategies to improve the immune anti-

tumoral response including vaccination with tumor-specific, tumor-associated 

peptides, infusion of primed autologous APCs and adoptive transfer of engineered T 

cell are under evaluation [197]. Also, myeloid cells in glioma are potential targets to 

improve immune response because TAMs are described as the main infiltrating 

leukocytes in glioma. Pharmacological inhibition of CSF-1R (CD115) that blocks 

monocyte maturation and differentiation toward an M2-like phenotype that sustains 

tumor growth, increases survival rate in a GMB mouse model [198, 199]. Neutrophils 

are able to infiltrate glioma lesion [200, 201] and could have both pro-tumoral and 

anti-tumoral functions.  

  



 32 

 
 

Figure 1.8: The immune response in glioma. Glioma cells secrete TGF-b and IL-10 

promoting an immunosuppressive microenvironment that inhibit immune response 

against tumor cells [188]. 

 

 Neutrophils in glioma 

In glioma context, neutrophil role is not completed elucidated [188, 199]. Evidence 

coming from patients indicates an alteration of circulating neutrophils and the presence 

of TANs into brain lesion. It is reported that glioma patients have a strong neutrophila 

[202] due to massive production of G-CSF by the tumor [203, 204]. In glioma patients 

the neutrophil-to-lymphocytes ratio (NLR), that indicates neutrophilia normalized on 

lymphocytes count [86], is predictive of their outcome. Glioma patients with an NLR 

higher than 4 develop a worse outcome independently that NLR is measured before 

therapy [205, 206], after second surgery [207] and after treatment with temozolomide 

and radiotherapy [208]. On the other hand, NLR minor than 4 is associated to favorable 

outcome of the disease only in glioblastoma with wild type gene IDH1 that is one the 

most frequently mutated gene in GBM [209]. The upregulation of CD11b expression 

in neutrophils of GBM patients is an early sign of tumor progression [210]. Neutrophils 

participate in tumor growth maintaining an immunosuppressive microenvironment 

through the production of arginase I [211]. Bevacizumab treatment (anti-VEGF-A) is 
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more efficacious in patients with higher baseline neutrophil count and the TGCA 

database indicates that Csf3 expression is correlated with VEGF-A dependent 

angiogenesis (Fig. 1.9) [212]. Neutrophils can infiltrate also brain tumor lesion [200]. 

NRL is correlated with infiltrating neutrophils [213] and there is a positive correlation 

between glioma grade and anti-VEGF-A efficacy in GBM [200, 214]. Neutrophils are 

recruited to tumor site by CXCL8 produced after FasL triggering by glioma cells [215, 

216]. Neutrophils exert their immunosuppressive role in the lesion also when they are 

attracted by macrophage migration inhibitory factor (MIF) produced by cancer cells 

[217], inducing proliferation of cancer cells through the secretion of S100A4 [214] and 

contributing to the resistance to anti-angiogenic therapy (Fig. 1.9) [218]. Preclinical 

data confirm the pro-tumoral role of neutrophils. Neutrophil depletion in a glioma 

model through the administration of anti-Ly6G prolong mice overall survival [219]. 

Finally, IDH-1 mutant glioma showed a longer survival rate compared to wild type 

IDH-1 with a reduced neutrophil infiltration [220]. 

Preclinical glioma models are valid approach to study immune system in glioma but 

there is an important limitation due to the inverted leukocytes formula in mice (10 – 

25% of neutrophil on total leukocytes) compared to human (50 – 70% of neutrophil 

on total leukocytes). Preclinical data could underestimate the role of neutrophils in 

humans and necessitate a better characterization of circulating and infiltrating 

neutrophils in human samples [188]. 
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Figure 1.9: Neutrophils in gliomas. A) Circulating neutrophils upregulate CD11b as 

early sign of tumor progression, express Arg-1 and VEGF-A that sustain angiogenesis. 

B) Infiltrating neutrophils are recruited to the tumor site through MIF and CXCL8 

secretion by cancer cells and produce S100A4 that regulate cancer cell proliferation 

and elastase that promote cancer cell infiltration in healthy tissue [188]. 
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2 AIM OF THE THESIS 

The general aim of this PhD thesis was to investigate the role of the atypical chemokine 

receptor ACKR2, a scavenger for inflammatory CC chemokines, in cancer. 

In particular, being ACKR2 protective in chronic inflammation and in the extrinsic 

pathway of cancer, the first objective was to assess the role of ACKR2 in the intrinsic 

pathway of cancer development, using both the HER2 oncogene-driven breast cancer 

model NeuT and orthotopical and intravenous injection of the breast cancer 4T1 and 

melanoma B16F10 cell lines. The objective was to determine if ACKR2 has a role in 

primary tumor growth and lung metastasis development elucidating the role of innate 

immune cells, monocytes and neutrophils. 

The second objective was to study by flow cytometry the phenotype of circulating and 

infiltrating monocytes and neutrophils in high grade glioma patients, a tumor 

characterized by neutrophilia and immunosuppression, in order to understand the 

prognostic role of these cells. 
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3 MATERIAL AND METHODS  

 

3.1 ACKR2 study material and methods 

 

 Cell lines 

4T1 and 4T1-66cl4 cells (kindly provided by Dr Claudia Chiodoni, Department of 

Experimental Oncology and Molecular Medicine, Istituto Nazionale dei Tumori, 

Milano, Italy) were grown in DMEM (Lonza) supplemented with 10% FBS (Sigma), 

1% penicillin/streptomycin (Lonza), 1% L-glutamine (Lonza), 1% sodium pyruvate 

(Lonza), 1% Hepes (Lonza). B16-F10, kindly provided by Massimiliano Mazzone 

(Vesalius Research Center, Leuven, Belgium), were grown in DMEM (Lonza) 

supplemented with 10% FBS (Sigma), 1% penicillin/streptomycin (Lonza), 1% L-

glutamine (Lonza). 4T1-luc from PerkinElmer were grown in RPMI 1640 (Lonza), 

10% FBS (Sigma), 1% penicillin/streptomycin (Lonza), 1% L-glutamine (Lonza), 1% 

sodium pyruvate (Lonza), 5.4 g/l glucose (Sigma). 

 

 Animals 

Ackr2-/- mice were maintained on pure Balb/c and C57BL/6J genetic background. 

Balb/c WT and Ackr2-/- mice were crossed with NeuT mice (kindly donated by 

Professor Federica Cavallo, University of Turin, Italy). WT and WT CD45.1 mice 

were obtained from Charles River Laboratories (Calco, Italy) or were cohoused 

littermates. All colonies were housed and bred in the SPF animal facility at Humanitas 

Clinical and Research Center in individually ventilated cages. Mice used for 

experiments were 8 to 12 weeks old. Procedures involving animals handling and care 

were conformed to protocols approved by the Humanitas Clinical and Research Center 

(Rozzano, Milan, Italy) in compliance with national (4D.L. N.116, G.U., suppl. 40, 

18-2-1992) and international law and policies (EEC Council Directive 2010/63/EU, 

OJ L 276/33, 22-09-2010; National Institutes of Health Guide for the Care and Use of 

Laboratory Animals, US National Research Council, 2011). The study was approved 
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by the Italian Ministry of Health (approval n. 88/2013-B, issued on the 08/04/2013). 

All efforts were made to minimize the number of animals used and their suffering. 

 

 Tissue collection 

Blood was collected from the retro-orbital plexus and by cardiac puncture as described 

[221]. Briefly, blood was collected in 2KD-EDTA spray coated tubes (BD 

Bioscience), washed in FACS buffer (PBS-/-, 1% BSA, 0.05 % sodium azide), red 

blood cells were lysed, washed again and cells were stained as indicated. Lungs were 

instilled with PBS for FACS analysis or 10% neutral buffer formalin for histological 

analysis. For FACS analysis, lungs were minced, digested for 45 min in 1 mg/ml 

collagenase IV (Sigma) in PBS-/- (Sigma), filtered with 70 µm cell strainer. Red blood 

cells were lysed and cells stained as indicated. BM was collected by femurs. Bones 

were harvested, cleaned, flushed and filtered with 70 µm cell strainer. Red blood cells 

were lysed and cells stained as indicated below. 

 

 Tumor models 

Tumor volume was assessed with caliper using the formula: (Length x Width x 

Width)/2. Tumor take in NeuT model was determinate by palpation as number of 

mammary tumors per mouse. For 4T1 and 4T1-66cl4 models 5 x 105 cells were 

injected in the mammary fat pad of Balb/c mice. For lung metastasis evaluation in 

NeuT, 4T1 and 4T1-66cl4 model, lungs were instilled and fixed for 24 h with 4% 

neutral buffered formalin, routinely processed for paraffin embedding, sectioned at 4 

µm thickness, and stained with hematoxylin and eosin. Sections were evaluated in a 

blinded fashion under a light microscope. Lung metastasis in NeuT, 4T1 and 4T1-

66cl4 models were classified according to their size into: small (<30 neoplastic cells), 

medium (30–300 neoplastic cells), and large (>300 neoplastic cells). A total metastatic 

score was then calculated for each lung as follows: number of small metastases*1 + 

number of medium metastases*3 + number of large metastasis*5. Representative 

images were acquired with Slide Scanner VS120 dotSlide (Olympus) and analyzed 

with ImageJ. The melanoma cell line B16F10 (2 x 105 cells) was injected i.v. in 
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C57BL/6 mice and metastases were macroscopically counted as dark nodules on the 

lung surface. For all the models, metastatic ratio was calculated as ratio of metastasis 

in Ackr2-/- or depleted mice compared to indicated control mice. For macrophages 

depletion, mice were treated with 100 µg of a-CD115 antibody (clone AFS98, 

Bioxcell) the day before 2 x 105 B16-F10 injection and every two days for the entire 

duration of the experiment. For neutrophils depletion, mice were treated with 200 µg 

of a-Ly6G antibody (clone 1A8, Bioxcell) the day before 2 x 105 B16-F10 injection 

and with 100 µg every three days for the entire duration of the experiment. For B cell 

depletion, mice were treated with 250 µg of a-CD20 (clone 5D2, Genentech Inc.) three 

days before 2 x 105 B16-F10 injection. For adoptive transfer experiments, neutrophils 

were isolated from WT and Ackr2-/- BM using the Mouse Neutrophil Isolation Kit 

(Miltenyi Biotec) and an autoMACS Pro separator (Miltenyi Biotec). Cell purity was 

assessed by flow cytometry (CD45, CD11b, Ly6G) and used only if neutrophils were 

≥ 95% on CD45+ cells. For B16F10 model, recipient WT mice were injected i.v. with 

5 x 106 WT or Ackr2-/- neutrophils every 3 days for the entire duration of the 

experiment. For adoptive transfer experiment, recipient CD45.1 mice were injected 

i.v. with 2 x 106 CD45.2 WT or Ackr2-/- neutrophils 15 minutes before CCL3L1 

(R&D) injection and after 1 hour lung and blood were collected and leukocytes 

counted by flow cytometry. 

 

 Immunohistochemistry 

Serial 4 µm formalin-fixed and paraffin-embedded lung sections were deparaffinized 

and underwent heat-induced epitope retrieval with pressure cooker. Endogenous 

peroxidase activity was blocked by incubating sections in 3% H2O2 for 15 min. Slides 

were rinsed and treated with Rodent Block M (Biocare Medical) for 30 min to reduce 

nonspecific background staining and then incubated for 1 h at room temperature with 

Ly6G antibody (1:200; clone 1A8; BD Bioscience), Sections were incubated for 30 

min with Rat on Mouse HRP-Polymer kit (Biocare Medical). The immunoreaction was 

visualized with 3,3’-diaminobenzidine (Peroxidase DAB Substrate Kit, Vector 

Laboratories) substrate and sections were counterstained with Mayer’s haematoxylin. 

Negative immunohistochemical controls for each sample were prepared by replacing 
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the primary antibody with normal serum. Positive control sections were included in 

each immunolabeling assay. Tissues were dehydrated with ethanol, mounted with 

Eukitt and acquired with an Olympus BX61 virtual slide scanning system using Cell^F 

software (Olympus). In each section 10 independent field of view were acquired. To 

evaluate the extent of granulocytes infiltration in the lung parenchyma, the percentage 

of Ly6G-positive area was analyzed with Image-Pro Analyzer 7.0 (Media Cybernetics) 

software. Representative images were generated using the ImageJ analysis program 

(http://rsb.info.nih.gov/ij/). 

 

 Flow cytometry analysis 

Flow cytometry analysis were performed as previously described [221]. To exclude 

death cells from analysis, cells were stained with Violet dead cell stain kit (Thermo 

Fisher). Single cell suspension was stained with antibodies listed in table 3.1 and 

related isotype. All antibodies were purchased from BD Bioscience, BioLegend, 

eBioscience or AbD Serotec. Flow cytometry data were acquired using a FACSCanto 

II (BD Bioscience) and LSR Fortessa (BD Bioscience) and data were analyzed with 

FACS Diva (BD Bioscience) and representative images were generated with FlowJo 

Software (Tree Star). To analyze ROS production, neutrophils were stained with 5 µM 

CellROX Deep Red Reagent (Thermo Fisher) for 20 min at 37°C in RPMI 1% FBS. 

Staining was blocked on ice, red blood cells were lysed, and neutrophils analyzed by 

flow cytometry within 2 h from the staining. The absolute number was determined by 

using TruCount beads (BD Biosciences) according to the manufacturer’s instructions. 

Cell sorting was performed using a FACSAria III (BD Bioscience). 

 

 Leukocyte mobilization 

Mice were injected i.p. with 3 µg CCL3L1 (R&D) and after 1 hour blood was collected 

and leukocytes counted by flow cytometry.  
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 Generation of BM chimeras 

Recipient mice received gentamycin (0.8 mg/ml) in drinking water for 2 weeks starting 

10 days before irradiation. WT and Ackr2-/- mice were lethally irradiated with a total 

dose of 900 cGy. After 2 h, mice were injected in the retro-orbital plexus with 4 x 106 

nucleated BM cells obtained by flushing of the cavity of a freshly dissected femur from 

WT or Ackr2-/- donors. Experiment were performed 16 weeks after irradiation to allow 

complete myeloid repopulation. 

 

 In vitro cell killing assay 

Neutrophils were isolated by magnetic separation as described above from blood of 14 

days 4T1 tumor-bearing mice or from BM of untreated mice and seeded (1 x 105/well) 

in a 96 wells plate in which, 4 hours before, 5 x 103 4T1-luc cells were plated in 

Optimem (Thermo Fisher) + 0.5% FBS. Cells were incubated overnight in presence of 

Apocynin 100 µM (Sigma) or DMSO control. Firefly luciferase activity was detected 

with luciferase assay system (Promega) and Synergy H2 (Biotek). Cell killing was 

calculated as percentage of tumor lysis by the following formula: % cell killing = (1 - 

[luminescence of samples with neutrophils] / [luminescence of samples in medium]) x 

100. 

 

 Transcript analysis by quantitative PCR (qPCR) 

Total RNA was extracted from neutrophils using the TRIzol reagent (Thermo Fisher). 

Reverse transcription was done using High Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems). Quantitative PCR was performed with TaqMan Gene 

Expression Assays in a CFX Connect Real-Time PCR Detection System (BioRad) 

with probes listed in table 3.2. Relative mRNA expression was determined by using 

the 2^-DCt method, and normalized to the expression of the housekeeping gene Gapdh. 
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 Statistical analysis 

Data are represented as mean. In all figures sample variation is shown as SD. P value 

was generated using the unpaired t test (GraphPad Prism 5). * = p < 0.05, ** = p < 

0.01, *** = p < 0.001, ns = not statistically different. 

 

Table 3.1: List of murine antibodies. 

 

Antigen Fluorochrome Clone Supplier 

CD45 PerCP 30-F11 Biolegend 

CD45 V450 30-F11 BD Bioscience 

CD45 BV605 30-F11 BD Bioscience 

CD11b Pacific Blue M1/70 Biolegend 

CD11b PE M1/70 BD Bioscience 

CD11b PerCP-Cy5.5 M1/70 BD Bioscience 

Ly6G PeCy7 1A8 BD Bioscience 

Ly6G FITC 1A8 BD Bioscience 

Ly6C FITC AL-21 BD Bioscience 

Ly6C PE AL-21 BD Bioscience 

F4/80 Alexa 647 CI:A3-1 AbD Serotec 

ICAM-1/CD54 APC YN1/1.7.4 Biolegend 

CD62L PE MEL14 eBioscience 

Gr-1 APC RB6-8C5 BD Bioscience 
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Table 3.2: List of murine Taqman probes for qPCR. 

 

Gene name Code 

Ccr1 Mm01216147_m1 

Ccr2 Mm_00438270_m1 

Ccr5 Mm04207879_m1 

Cxcr4 Mm_01292123_m1 

Vegfa Mm00437306_m1 

Tnf-a Mm00443258_m1 

Alox5 Mm01182747_m1 

Arg1 Mm_00475988_m1 

Gapdh Mm99999915_g1 
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3.2 Neutrophils in High grade glioma materials and methods 

 

 Patients 

Al total of 6 patients with grade III glioma, 4 patients with IV grade glioma 

(glioblastoma) and 4 heathy controls were enrolled in the study. Patients were stratified 

based on histological classification. This study was approved by the clinical committee 

of Humanitas Clinical and Research Center. All patients signed an informed consent 

document. 

 

 Blood collection 

Blood was collected the day before the surgery in vacutainer containing 2KD-EDTA 

spray coated tubes (BD Bioscience), washed in FACS buffer (PBS-/-, 1% BSA, 0.05 

% sodium azide), red blood cells were lysed, washed again and cells were stained as 

indicated. 

 

 Tissue collection and dissociation 

Tumor core identified by PET analysis removed and washed in PBS-/-. 0.2 g of tissue 

were put in C tube (Miltenyi Biotec) and mechanical disaggregated using 

GentleMACS (Miltenyi Biotec). Later, cells were filtered in 70 µm cell strainer and 

red blood cells were lysed, washed again and cells were stained as indicated. 

 

 Flow cytometry 

Flow cytometry analysis were performed as previously described [222]. Fc receptors 

were blocked with incubation with 1% human serum (Sigma). Single cell suspension 

was stained with antibodies listed in table 3.3 and related isotype. All antibodies were 

purchased from BD Bioscience and BioLegend. Later, to exclude death cells from 

analysis, cells were stained with Violet dead cell stain kit (Biolegend). Flow cytometry 
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data were acquired using a FACS A5 Symphony (BD Bioscience) and data were 

analyzed with FlowJo Software (Tree Star).  

 

 Statistical analysis 

Data are represented as mean. In all figures sample variation is shown as SD. P value 

was generated using the unpaired t test (GraphPad Prism 5). * = p < 0.05, ** = p < 

0.01, *** = p < 0.001, ns = not statistically different. 

 

Table 3.3: List of human antibodies. 

 

Antigen Fluorochrome Clone Supplier 

L/D BV510 Zombie Biolegend 

CD45 APC-Cy7 2D1 BD 

CD14 FITC M5E2 BD 

CD15 BV710 W6D3 BD 

CD16 PE 594 3G8 Biolegend 

Syto16 FITC  Thermo Fisher 

CD66b AF700 G10F5 Biolegend 

CD3 BV570 UCHT1 Biolegend 

CD19 BV570 HIB19 Biolegend 

CD56 BV570 5.1H11(NCAM) Biolegend 

CD11b BV605 ICRF44 Biolegend 

CD54 APC HA58 Biolegend 

CD62L BV650 DREG56 Biolegend 

CCR2 BV421 48607 BD 

CXCR1 Percp-Cy5.5 8F1/CXCR1 Biolegend 

CXCR2 PE-Cy7 E8/CXCR2 Biolegend 
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4 RESULTS 

 

4.1 Study of the role of ACKR2 in the intrinsic pathway of 

cancer 

To study the role of ACKR2 in the intrinsic pathway of cancer, we use NeuT mice as 

model of Her2+ breast cancer and we evaluated tumor growth and lung metastasis 

development as sign of disease severity. 

 

 Ackr2-/- mice are protected against tumor metastasis 

In order to extend previous studies on ACKR2 in carcinogenesis, we crossed Balb/c 

WT and Ackr2-/- mice with Balb/c NeuT mice, which overexpress the rat HER2 (Neu) 

oncogene under the mouse mammary tumor virus (MMTV) promoter and 

spontaneously develop mammary carcinomas closely recapitulating human breast 

carcinogenesis [223]. We followed primary tumor development measuring time of 

appearance and volume, and we found that in NeuT/Ackr2-/- mice tumoral masses in 

mammary glands developed earlier and reached higher volumes as compared to 

NeuT/Ackr2+/+ mice (Fig. 4.1A). This result is in accordance with previous reports 

showing that ACKR2 genetic deficiency results in increased growth of primary tumors 

[69, 224]. Unexpectedly, lung analysis revealed less metastatic lesions in NeuT/Ackr2-

/- mice as compared to NeuT/Ackr2+/+ mice (Fig. 4.1B and C). 

In an effort to strengthen and extend these findings, we use also the mammary 

carcinoma tumor lines 4T1. 4T1 tumor cells were transplanted ortotopically in the 

mammary fat pad of WT and Ackr2-/- mice and no difference in primary tumor growth 

was detected (Fig. 4.1D), but again the number of spontaneous lung metastasis was 

significantly lower in Ackr2-/- mice (Fig. 4.1E and F). These findings reveal an 

opposite role of ACKR2 in tumor biology. ACKR2 deletion has a pro-tumoral role in 

primary tumor growth in NeuT model and, at the same time a protective role in lung 

metastasis development in NeuT and 4T1 models. 
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Figure 4.1: Ackr2-/- mice are protected from lung metastasis. 

A) NeuT/Ackr2+/+ (white symbols) and NeuT/Ackr2-/- (black symbols) mice were 

evaluated for tumor growth calculated as described in the Materials and Methods 

section (n = 42 and 23 for NeuT/Ackr2+/+ and NeuT/Ackr2-/- mice, respectively). B) 

Representative images of hematoxylin and eosin staining of NeuT/Ackr2+/+ and 

NeuT/Ackr2-/- lungs at 25 weeks of age. Magnification: 10X. Scale bar: 500 µm. C) 

Lung metastatic rate of NeuT/Ackr2+/+ (white column) and NeuT/Ackr2-/- (black 

column) mice, calculated as described in the Materials and Methods section (n = 26 

and 16 for NeuT/Ackr2+/+ and NeuT/Ackr2-/- mice, respectively). D) Tumor volume 

in WT (white symbols) and Ackr2-/- (black symbols) mice injected orthotopically with 

4T1 cells. (n = 14 and 13 for WT and Ackr2-/- mice, respectively). E) Representative 

images of hematoxylin and eosin staining of WT and Ackr2-/- lungs at day 28 after 4T1 

cell injection. Magnification: 10X. Scale bar: 500 µm. F) Lung metastatic rate of WT 

(white columns) and Ackr2-/- (black columns) mice at day 28 after orthotopic injection 

of 4T1 cells (n = 14 WT and 13 Ackr2-/- mice). 
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 ACKR2 in the hematopoietic compartment is responsible of the 

protection 

In order to determine the contribution of Ackr2 expressed by hematopoietic cells in 

the metastatic phenotype, we performed BM chimera experiments. We found that WT 

mice reconstitute with Ackr2-/- BM recapitulate the lung metastasis levels found in 

Ackr2-/- control (Fig. 4.2A) indicating that the protective phenotype is due to lack of 

ACKR2 by hematopoietic cells. 

The two breast cancer models used in our experiments are known to induce expansion 

and mobilization of myeloid cells, which then promote tumor growth [169, 225]. 

Interestingly, when animals were challenged with the 4T1 sibling cell line 66cl4, 

which on the opposite is unable to induce myeloid cell expansion because lack in the 

production of cytokine that influence myeloid cell recruitment such as G-CSF and 

GM-CSF [226, 227], we did not find any difference in the number of metastatic lesions 

between WT and Ackr2-/- mice (Fig. 4.2B). 

 

 
Figure 4.2: Hematopoietic expression of ACKR2 cause lung metastasis 

protection. 

A) Lung metastatic rate using 4T1 model in bone marrow chimeric mice (Donor → 

Recipient) calculated as described in the Materials and Methods section (n = 6 for WT 

and 4 for Ackr2-/- recipient mice, respectively). B) Lung metastatic rate of WT (white 

columns) and Ackr2-/- (black columns) mice at day 28 after orthotopic injection of 4T1 

or 4T1 66cl4 cells (n = 14 WT and 13 Ackr2-/- mice for 4T1, 4 WT and 4 Ackr2-/- mice 

for 4T1 66cl4).  
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 Neutrophil and monocytes are increased in blood and lung of Ackr2-/- 

mice  

We therefore focused on effects of Ackr2 genetic inactivation on the myeloid 

compartment of tumor-bearing mice as a potential mechanism of protection from 

metastasis. As previously reported, in resting conditions Ackr2-/- mice present 

increased number of inflammatory monocytes compared to WT mice while there is no 

difference in the number of other circulating leukocytes [56]. When we analyzed 

circulating and lung infiltrating leukocyte subsets in tumor-bearing mice (Gating 

strategy fig. 4.3A and B), we found, as expected, an increased circulating Ly6G+ 

neutrophils and Ly6Chigh inflammatory monocytes in NeuT/Ackr2+/+ mice (Fig. 4.4A 

and B, respectively) compared with resting WT and Ackr2-/- mice. 

When we crossed Ackr2-/- mice with NeuT mice we found that the absolute number of 

neutrophils and monocytes was further increased compared to NeuT/Ackr2+/+ mice 

(Fig. 4.4A and B, respectively). Increased number of inflammatory neutrophils and 

monocytes, but not alveolar or interstitial macrophages, was detected also in the lung 

of NeuT/Ackr2-/- as compared to NeuT/Ackr2+/+ mice (Fig. 4.4C). Lung 

immunohistochemistry also showed a higher number of Ly6G+ neutrophils in the 

parenchyma of NeuT/Ackr2-/- lungs compared with NeuT/Ackr2+/+ mice, confirming 

flow cytometry data (Fig. 4.4D and E). In 4T1 model, analysis of myeloid cells in the 

BM at day 14 after tumor injection showed a reduced number of monocytes and 

neutrophils in the BM of Ackr2-/- animals compared to WT mice (Fig. 4.4F) while no 

differences were found in vehicle-injected mice. These results indicate that, under 

tumor challenge, Ackr2-/- mice show enhanced release from BM of myeloid cells, 

which then accumulate in the blood stream and seed peripheral organs. 
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Figure 4.3: Flow cytometry gating strategy for the analysis of circulating and lung 

infiltrating neutrophil and inflammatory monocytes. 

A) Gating strategy to identification of circulating neutrophils (CD45+/CD11b+/Ly6G+) 

and inflammatory monocytes (CD45+/CD11b+/Ly6Chi). B) Gating strategy for the 

identification of interstitial macrophages (P1; CD11b+/F4/80int/Ly6C-/CD11c-/Ly6G-) 

alveolar macrophages (P2: CD11blow/F4/80hi/Ly6Cint/CD11c+/Ly6G-), inflammatory 

monocytes (P3; CD11b+/F4/80int/Ly6Chi/CD11c-/Ly6G-), and neutrophils (P4; 

CD11b+/F4/80-/Ly6Cint/CD11c-/Ly6G+) in the lungs of tumor-bearing mice. 
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Figure 4.4: Protection from metastasis in Ackr2-/- mice is associated with 

increased numbers of monocytes and neutrophils in blood and lungs. 

A) Absolute number of circulating neutrophils (CD45+/CD11b+/Ly6G+) and B) 

inflammatory monocytes (CD45+/CD11b+/Ly6Chi) in NeuT/Ackr2+/+ (white squares), 

NeuT/Ackr2-/- (black squares), WT (white triangles) and Ackr2-/- (black triangles) 

mice (n = 6 – 9 for NeuT/Ackr2+/+ mice, 5 – 7 for NeuT/Ackr2-/- mice, 3 - 5 for WT 

and Ackr2-/- mice). C) Absolute number of neutrophils, inflammatory monocytes, 

alveolar (CD11blow/F4/80+/Ly6Cint/CD11c+/Ly6G-) and interstitial macrophages 

(CD11b+/F4/80int/Ly6C-/CD11c-/Ly6G-) in the lungs of NeuT/Ackr2+/+ (white 

columns) and NeuT/Ackr2-/- (black columns) mice at 15 weeks of age (n = 12 and 6 

for NeuT/Ackr2+/+ and NeuT/Ackr2-/- mice, respectively). D) Representative 

immunohistochemical images of Ly6G staining in NeuT/Ackr2+/+ and NeuT/Ackr2-/- 

lungs at 25 weeks of age. Magnification: 20X. Scale bar: 100 µm. E) Quantification 

of Ly6G immunohistochemical images as DAB positive cells on field of view (n = 9 

and 8 for NeuT/Ackr2+/+ and NeuT/Ackr2-/- mice, respectively). F) Absolute number 

of neutrophils and inflammatory monocytes in the BM of WT (white columns) and 

Ackr2-/- (black columns) mice on day 14 after orthotopic injection of PBS or 4T1 cells 

(n = 4 for both WT and Ackr2-/- mice). 
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 Neutrophils are required for metastasis protection in Ackr2-/- mice 

To investigate the relevance of the increased myeloid cell mobilization found in Ackr2-

/- mice in the metastatic process, the B16F10 melanoma cell line was injected i.v. in a 

classic “artificial” hematogenous metastasis model.  

Also in this experimental setting, Ackr2-/- mice showed a significant reduction in the 

number of metastatic foci in the lungs as compared to WT animals (Fig. 4.5A). In order 

to understand which myeloid cells are responsible for metastasis protection, we 

performed depletion experiments using monoclonal antibodies. Macrophages 

depletion by treatment with an a-CD115 monoclonal antibody significantly decreased 

the number of metastasis in WT mice, but did not reverse the protection observed in 

Ackr2-/- mice (Fig. 4.5B). B cell depletion (performed with a-CD20 administration) 

did not modify the metastatic rate in WT and Ackr2-/- (Fig. 4.5C). Interestingly, 

neutrophil depletion with a-Ly6G monoclonal antibody caused a reduction in 

metastasis in WT mice while, on the contrary, an increase in metastasis in Ackr2-/- 

mice, which in the absence of neutrophils lost their protection and developed a number 

of metastasis comparable to WT animals (Fig. 4.5D).  

The protective role of neutrophils in Ackr2-/- mice was also demonstrated performing 

depletion experiments with the ortotopically transplanted tumor lines 4T1. Also in this 

tumor, the number of metastasis in WT mice are reduced by neutrophil depletion while 

it is increased in Ackr2-/- mice (Fig. 4.5E). 

The role of Ackr2-/- neutrophils in metastasis protection was further supported by 

adoptive transfer experiments. Transfer of Ackr2-/- but not WT neutrophils into WT 

tumor-bearing mice significantly reduced the number of metastasis (Fig. 4.5F) to 

numbers comparable to those observed in Ackr2-/- tumor-bearing mice (Fig. 4.5A). 

These results indicate Ackr2-/- neutrophils as leukocytes population with antimetastatic 

activity.  
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Figure 4.5: Ackr2-/- neutrophils are responsible of metastasis protection. 

A) Lung metastatic rate in WT and Ackr2-/- mice 10 days after i.v. injection of B16-

F10 cells. Number of metastasis was normalized on WT mice. B-D) Metastatic rate in 

WT and Ackr2-/- mice depleted for macrophages with a-CD115 (B), B cells with a-

CD20 (C) and neutrophils with a-Ly6G (D) 10 days after i.v. injection of B16-F10 

cells. Number of metastasis was normalized on WT mice treated with an irrelevant 

antibody (IgG) (n = 5 – 10 for WT mice, 5 – 8 for Ackr2-/- mice). E) Metastatic rate in 

WT and Ackr2-/- mice depleted for neutrophils with a-Ly6G 28 days after orthotopic 

injection of 4T1 cells (n = 3 for WT mice, 3 – 5 for Ackr2-/- mice). Number of 

metastasis was normalized on WT mice treated with an irrelevant antibody (IgG). F) 

Metastatic rate in WT mice 10 days after i.v. injection of B16-F10 cells and adoptive 

transfer of WT (white dots) or Ackr2-/- neutrophils (black dots) or PBS (grey dots). 

Number of metastasis was normalized on PBS injected mice. Representative images 

of excised lungs are shown on the left.  
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4.2 Analysis of neutrophil phenotype in Ackr2-/- mice 

We demonstrated that ACKR2 expression in hematopoietic compartment is 

responsible of the protection and neutrophils are the leukocytes involved in the 

protection. Our objective was to analyze neutrophils phenotype in Ackr2-/- mice to 

describe ACKR2 role on neutrophils biology.  

 

 Hematopoietic Ackr2 expression impairs in vivo neutrophil 

mobilization 

To investigate the role of ACKR2 in neutrophil infiltration in lungs, we performed 

experiments of leukocyte mobilization in BM chimeric mice. After one hour from i.p. 

injection of CCL3L1, a ACKR2, CCR1, CCR3 and CCR5 ligand known to induce 

rapid neutrophil mobilization [228], we analyzed blood and lung infiltrating 

neutrophils in bone marrow chimeric mice to assess if hematopoietic ACKR2 

expression altered neutrophils mobilization. I.p. injection causes a systemic spread of 

CCL3L1 and cause an increase of neutrophil extravasation in tissues including the 

lung. 

Results showed an increase in the number of circulating (Fig. 4.6A) and lung 

infiltrating neutrophils (Fig. 4.6B) in either WT or Ackr2-/- host animals when 

transplanted with Ackr2-/- but not whit WT hematopoietic cells, demonstrating that the 

increased neutrophil mobilization induced by CCL3L1 injection was caused by the 

absence of ACKR2 on the hematopoietic compartment. To exclude the role of other 

hematopoietic cells, we performed adoptive transfer experiment. We transfer WT and 

Ackr2-/- CD45.2 neutrophil in WT CD45.1 recipient challenged with CCL3L1. After 

one hour from the injection, we registered an increased infiltration in the lung of Ackr2-

/- CD45.2 neutrophils in WT CD45.1 mice (Fig. 4.6C) with a concomitant decrease in 

the blood (Fig. 4.6D) indicating and increase activity to extravasate from blood to lung. 
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Figure 4.6: Hematopoietic ACKR2 expression increased neutrophils mobilization 

and lung infiltration in vivo. 

A and B) Absolute number of circulating (A) and lung infiltrating (B) neutrophils in 

bone marrow chimeric mice (Donor → Recipient) after one hour from i.p. injection of 

CCL3L1 (n = 6 for WT and 4 for Ackr2-/- recipient mice, respectively). C) WT and 

Ackr2-/- CD45.2 neutrophils percentage on transferred neutrophils after one hour from 

i.p. injection of CCL3L1 (n = 3 recipient for each group). D) Absolute number of 

circulating WT and Ackr2-/- CD45.2 neutrophils after one hour from i.p. injection of 

CCL3L1 (n = 3 recipient for each group). 

  

A 

D 

W
T 

Ack
r2
-/-  

0.0

0.1

0.2

0.3

0.4

0.5
***

C
D

45
.2

 N
eu

tro
ph

ils
 / 

Tr
an

sf
er

re
d 

ne
ut

ro
ph

il 
(%

)

W
T 

Ack
r2
-/-  

0

50

100

150 *

C
D

45
.2

 N
eu

tro
ph

ils
 (n

 x
 1

02 /µ
l)

W
T →

 W
T

Ack
r2

-/-
 →

 W
T

W
T →

 A
ck

r2
-/-

 

Ack
r2

-/-
 →

 A
ck

r2
-/-

 0

20

40

60

80

*

**
*

N
eu

tro
ph

ils
 (n

 x
 1

02 /µ
l)

W
T →

 W
T

Ack
r2
-/-  →

 W
T

W
T →

 A
ck

r2
-/-

Ack
r2
-/-  →

 A
ck

r2
-/-  

0

5

10

15

20

*
*

**

N
eu

tro
ph

ils
 (n

 x
 1

05 /lu
ng

)

B 

C 



 55 

 ACKR2 impairs CC chemokines expression in neutrophils 

To elucidate the increased neutrophil mobilization in Ackr2-/- mice, we investigated 

chemokine receptor expression. Being CCL3L1 a ligand of CCR1, CCR3 and CCR5 

we investigated the role of these and other chemokine receptor in neutrophils. We 

exclude from the analysis CCR3 because it is not expressed of neutrophils [229]. We 

added analysis of CCR2 as a chemokine receptor involved in neutrophils migration 

and functional activity [149] and CXCR4 known to have an important role in 

neutrophil egression from the bone marrow [230]. RT-PCR analysis from WT and 

Ackr2-/- resting bone marrow neutrophils revealed an increase of the expression of 

CCR1, CCR2 and CCR5 (Fig. 4.7A) but not CXCR4. This result indicates that the 

increased capacity of neutrophil to migrate in vivo are associated with a selectively 

increased expression of chemokine receptors. 

 

 

 

Figure 4.7: ACKR2 impairs CC but not CXC chemokine receptor expression. 

A) qPCR analysis of chemokine receptors in FACS sorted WT (white columns) and 

Ackr2-/- (black columns) neutrophils (n = 4 for both WT and Ackr2-/- mice, two 

independent experiments). Data are relative to GAPDH expression. 
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 ACKR2-deficient neutrophils have an activated phenotype 

Neutrophil, as previously discussed, can be polarized in N1 (anti-tumoral) and N2 

(pro-tumoral) phenotype. To asses if Ackr2-/- neutrophil show features belonging to 

polarized phenotype, we performed flow cytometry analysis of circulating neutrophils. 

We analyzed surface markers know to be involved in neutrophil activation: CD62L/L-

selectin that is shed prior to neutrophil extravasation [119] and ICAM-1 that after 

binding with ICAM-1 on the endothelium allow neutrophils diapedesis [82]. 

In B16F10 model, we observed decrease of CD62L expression in Ackr2-/- mice 

compared to WT control (Fig. 4.8A and B) indicating an increased potential of 

neutrophil extravasation. At the same time, we found an increased expression of 

ICAM-1 in Ackr2-/- neutrophil (Fig. 4.8C and D) indicating the increased capacity to 

extravasate confirming an activated phenotype of Ackr2-/- neutrophils. No differences 

again were found in basal control for CD62L and ICAM-1 expression (Fig. 4.8B and 

D). We analyzed also by q-PCR a panel of gene involved in neutrophil biology 

described to be regulated in neutrophil polarization [10] and we found no difference 

in the expression of Tnf-α, Alox5, Vegfa and Arg1 (Fig. 4.8E). In 4T1 model, we 

observed a decreased level of CD62L in basal conditions between WT and Ackr2-/- 

neutrophil but not in tumor bearing mice (Fig. 4.8F). Similar data was obtained in 4T1 

model: ICAM-1 is increased in Ackr2-/- tumor bearing mice and no difference were 

found in basal control (Fig. 4.8G). These results indicate an activated phenotype of 

Ackr2-/- neutrophils that associated with antimestatic activity in B16F10 model 

previously described (Fig. 4.5F) indicate a N1 phenotype both in term of expression 

of cell surface molecules and in vivo functional activity. 
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Figure 4.8: Ackr2-/- neutrophils have activated phenotype and increased 

expression of inflammatory CC chemokine receptors. 

A) Representative histograms and B) quantifications of CD62L expression. CD62L 

mean fluorescence intensity (MFI) was normalized on WT neutrophils injected with 

PBS. C) Representative plot and D) quantification of percentage of ICAM-1 positive 

circulating neutrophils (CD45+/CD11b+/Ly6G+) in WT and Ackr2-/- mice 10 days after 

i.v. injection with B16-F10 cells. Negative gate was set on isotype control. E) qPCR 

analysis of activation markers in FACS sorted WT (white columns) and Ackr2-/- (black 

columns) neutrophils (n = 4 for both WT and Ackr2-/- mice, two independent 

experiments). Data are relative to GAPDH expression. F) Quantifications of CD62L 

expression. CD62L mean fluorescence intensity (MFI) was normalized on WT 

neutrophils injected with PBS. G) Quantification of percentage of ICAM-1 positive 

circulating neutrophils (CD45+/CD11b+/Ly6G+) in WT and Ackr2-/- mice 7 days after 

orthotopic injection with 4T1 cells. Negative gate was set on isotype control.  
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 ACKR2-deficient neutrophils increased ROS production 

To investigate functional molecule involved in neutrophil polarization, we analyzed 

reactive oxygen species (ROS) production of circulating neutrophil from tumor 

bearing mice by flow cytometry. We found an increase of ROS production in Ackr2-/- 

neutrophil in both B16F10 (Fig. 4.9A) and 4T1 model (Fig. 4.9B). Chemokine receptor 

are known to induce neutrophil ROS production [109] and our objective was to 

investigate if the increased transcript expression of CCR2 in Ackr2-/- have a functional 

role in our system. We noticed that Ackr2-/- neutrophil have an increased ROS activity 

even in basal condition (Fig. 4.9C) and after CCR2 stimulation through the ligand 

CCL2, Ackr2-/- neutrophil display an increased ROS production indicating the receptor 

have a function role in Ackr2-/- neutrophil biology (Fig. 4.9C). 

 

 
Figure 4.9: ACKR2 impair neutrophil ROS production in vivo and in vitro. 

A) MFI of cellROX in WT and Ackr2-/- neutrophils taken from mice 10 days after 

orthotopic injection of B16F10 cells. CellROX MFI was normalized on WT 

neutrophils. B) MFI of cellROX in WT and Ackr2-/- neutrophils taken from mice 7 

days after orthotopic injection of 4T1 cells. CellROX MFI was normalized on WT 

neutrophils. C) CellROX MFI in WT (white columns) and Ackr2-/- (black columns) 

neutrophils preincubated with PBS or LPS (100 ng/ml, 20 min) and stimulated with 

CCL2 (500 ng/ml, 30 min) or PMA (50 ng/ml, 30 min). CellROX MFI was normalized 

on basal WT group (n = 4, two independent experiments for both WT and Ackr2-/- 

mice). 
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 ACKR2-deficient neutrophils have increased cytotoxic activity 

The increased ROS production in Ackr2-/- mice could have a role in direct cell killing 

of cancer cell by neutrophil. We assessed in vitro cell killing in order to evaluate anti-

metastatic potential of neutrophils and we performed ROS inhibition to dissect ROS 

contribution in cell killing. WT and Ackr2-/- neutrophils separated from 4T1 tumor 

bearing mice were co-cultured with 4T1 luciferase expressing cells to determinate cell 

killing assay. We registered an increased cell killing by Ackr2-/- neutrophil compared 

to WT control (Fig. 4.10A). ROS inhibition performed with apocynin, an inhibitor of 

NADPH oxidase complex [109], inhibits cell killing in WT mice and in Ackr2-/- but 

not abrogates difference between WT and Ackr2-/- neutrophils (Fig. 4.10A). 

Similar results were obtained using neutrophils from bone marrow of resting mice. 

Ackr2-/- neutrophils display an increased tumoral killing activity (Fig. 4.10B), ROS 

inhibitor apocynin decreases cells killing in WT and Ackr2-/- neutrophils but not 

abrogates the different cell killing ability between WT and Ackr2-/- neutrophils (Fig. 

4.10B). 
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Figure 4.10: Ackr2-/- neutrophil show a ROS-dependent cell killing activity in 

vitro. 

A) In vitro cell killing activity against 4T1-luc cells of circulating neutrophils 

magnetically separated from WT and Ackr2-/- mice after 21 days from orthotopic 4T1 

injection. DMSO or Apocynin (100 µM) was added to inhibit ROS activity (n = 3, two 

independent experiments for both WT and Ackr2-/- mice). B) In vitro cell killing 

activity against 4T1-luc cells of resting bone marrow neutrophils magnetically 

separated from WT and Ackr2-/- mice. DMSO or Apocynin (100 µM) was added to 

inhibit ROS activity (n = 3, two independent experiments for both WT and Ackr2-/- 

mice). 

  

0

10

20

30

40

50

DMSO    Apocynin

WT Ackr2-/-

DMSO    Apocynin

***
p=0.1169

*
*

C
el

l k
illi

ng
 (%

)

A 

0

10

20

30

40

50 **
p=0.0677

*
*

DMSO    Apocynin

WT Ackr2-/-

DMSO    Apocynin

C
el

l k
illi

ng
 (%

)

B 



 61 

4.3 Analysis of human neutrophils in glioma patients  

In the previous paragraph, we assessed an anti-tumoral role of neutrophil in ACKR2-

deficient mice. Our aim was to investigate the neutrophil phenotype in a human cancer 

context. We select high grade glioma (grade III and GBM) because are tumor types in 

which a strong systemic immunosuppressive environment is described [188]. We 

select also this type of cancer because we have the practical access to fresh blood and 

tissue samples, fundamental for neutrophils flow cytometry analysis. We analyzed 

relative neutrophil abundance on total leukocytes, their phenotype and subsets the day 

before the surgery and we correlated with TANs abundance. 

 

 Detection of circulating neutrophils and monocytes in high grade 

glioma patients 

In order to investigate human circulating neutrophil rate and phenotype we perform 

multiparametric flow cytometry analysis on total blood leukocytes. We identified 

neutrophils as CD45+/CD3-/CD19-/CD56-/CD15+/CD16+ (Fig. 4.11A). We analyzed 

by flow cytometry neutrophil rate to total leucocytes (CD45 positive cells) in healthy 

patients, glioma grade III and GBM patients. While in healthy control and grade three 

glioma patients we observed about 65% of circulating neutrophils, in GBM patients 

we found an increased neutrophil rate of 82% (SD = 6.74) (Fig. 4.11B). This result 

confirms previous data [202] that indicate neutrophilia as a feature of GBM patients 

due to increase granulocytosis and neutrophil mobilization for increased CXCL8 

[231], G-CSF [203, 204]. With the same staining, we are able to identify monocytes 

as CD45+/CD3-/CD19-/CD56-/CD15-/SSCint (Fig. 4.11A). We found no difference are 

found in term of relative monocytosis, all the groups have the same rate of circulating 

monocytes (Fig. 4.11C). Based on this evidences, we foucus our attention on 

neutrophils evaluating their subsets and activatory status. 
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Figure 4.11: GBM patients have relative neutrophilia but not monocytosys. 

A) Gating strategy to identification of circulating neutrophils (CD45+/CD3-/CD19-

/CD56-/CD15+/CD16+) and monocytes neutrophils (CD45+/CD3-/CD19-/CD56-

/CD15-/SSCint) B) Relative neutrophil rate on total leukocytes (CD45+ cells). C) 

Relative monocytes rate on total leukocytes (CD45+ cells). 
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 Circulating neutrophil subsets in GBM patients  

As previously described, granulopoiesis is altered in GBM patients. We set a flow 

cytometry approach to gate circulating and infiltrating neutrophils and their subsets. It 

is reported that neutrophils are a heterogeneous population and neutrophils subset can 

be identified in pathological situation such as sepsis and cancer evaluating expression 

of CD62L and CD16 [122]. We identified those populations also in our patients cohort 

(Fig. 4.12A) and we found in GBM patients a strong increase of immature 

CD16low/CD62L+ neutrophils that are not present in healthy controls (Fig. 4.12B). We 

observed also a concomitant reduction of “classical” neutrophils CD62L+/CD16+ rate 

in GBM compared to healthy controls (Fig. 4.12C). Finally, only a trend in the increase 

of activated neutrophils CD62Lneg/CD16+ in GBM patients was detected (Fig. 4.12D). 

These results indicate a differential presence of neutrophils subsets in GBM patients 

indicating an altered neutrophil release from bone marrow and a different maturation 

status.  

To assess neutrophils activation status in HGG patients compared to heatlhy subjects, 

we analyzed a panel of functional molecules involved in neutrophil biology. We 

noticed any difference in the expression on total neutrophil from healthy subjects and 

patients of CD11b (Fig. 4.12E), ICAM-1 (Fig. 4.12F), CXCR1 (Fig. 4.12G), CXCR2 

(Fig. 4.12H) and CCR2 (Fig. 4.12I). 
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Figure 4.12: GBM patients display altered neutrophils subsets ration. 

A) Representative dot plot of healthy control or GBM patient showing an altered 

neutrophil subsets ratio. B – D) Relative abundance on total neutrophils of (B) 

CD16low/CD62L+ cells, (C) CD62L+/CD16+, (D) CD62Lneg/CD16+. E – I) MFI or 

percentage of expression on total neutrophil of (E) CD11b, (F) ICAM-1 (G) CXCR1, 

(H) CXCR2, (I) CCR2.  
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 Increased neutrophilia is associated with increased neutrophil 

infiltration  

Neutrophils infiltrate tumor lesion in the brain [200] and to assess if increased 

neutrophilia in blood is associated with increased neutrophils infiltration rate we 

performed flow cytometry analysis on immune infiltrate in glioma lesion. We set 

protocol to dissociate and stain infiltrating neutrophils in brain lesion (Fig. 4.13A) and 

we found a positive correlation between circulating neutrophils rate and infiltrating 

neutrophils rate on total CD45+ cells (Fig. 4.13B). These results indicate that increased 

circulating neutrophils rate is reflected on infiltrating neutrophil abundance. 
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Figure 4.13: Circulating neutrophils rate is positively associated with infiltrating 

neutrophils rate. 

A) Gating strategy for the identification of infiltrating neutrophils 

(CD45+/CD15+/CD16+/CD11b+/CD66b+) B) Linear correlation between circulating 

and infiltrating neutrophils in brain lesion.  
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5 DISCUSSION 

 

Chemokines are small cytokine with chemotactic function and play a pivotal role in 

the inflammation process and in cancer [31]. Negative control of inflammation is an 

essential aspect of resolution of inflammation and its target represents a concrete 

therapeutic to limit tumor growth and metastatic spread [25]. Atypical chemokine 

receptors are a distinct family of receptors that control chemokine bioavailability. They 

scavenge, transport chemokines and represent one important mechanisms of control of 

the chemokine system [37]. ACKR2 (also known as D6) is a negative regulator of 

inflammation because it leads to degradation many inflammatory CC chemokines [40]. 

Previously studies using ACKR2 gene-targeted mice describe an important role for 

this receptor in the control of inflammation because it dampens excessive 

inflammatory responses and accumulation of leukocytes with pro-inflammatory 

phenotype [232]. Also in cancer model, Ackr2-/- mice treated with inflammatory and 

mutagen compounds that recapitulate the extrinsic pathway of tumor development, 

shown an increased tumor growth [38]. These data indicate an important role for 

ACKR2 in the control of the inflammatory process that can promote carcinogenesis. 

The aim of this thesis was to study the role of ACKR2 in the intrinsic pathway of 

cancer. We used NeuT mice, that express the rat oncogene HER2 under the mouse 

mammary tumor virus (MMTV) promoter, and develop breast cancer. Ackr2-/- mice 

crossed with NeuT mice showed an increased tumor growth compared to 

NeuT/Ackr2+/+ mice recapitulating the role of ACKR2 found in skin and colorectal 

cancer models [61, 69]. Surprisingly, despite enhanced tumor growth, NeuT/Ackr2-/- 

mice were partially protected from lung metastasis, indicating a double role of ACKR2 

in this tumor model. Lung metastasis protection in Ackr2-/- mice was also 

demonstrated in mice injected orthotopically with the breast cancer cell line 4T1 and 

in mice injected i.v. in a classic “artificial” hematogenous metastasis model with the 

melanoma cell line B16F10. 

In order to understand if ACKR2 plays a role in the hematopoietic or stromal 

compartment, we performed bone marrow chimera experiment in the 4T1 model and 

we recapitulate the protection of Ackr2-/- mice transferring Ackr2-/- bone marrow in 

WT host. These results indicate that ACKR2 expression in the hematopoietic 
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compartment is responsible of the protection. We associated also metastasis protection 

to increased number of circulating neutrophils and monocytes in NeuT/Ackr2-/- mice. 

To assess which leukocyte population was involved in the metastasis protection, we 

performed cell depletion using monoclonal antibody. Only when neutrophils were 

depleted, but not monocytes or B cells, Ackr2-/- mice increased metastatic rate 

compared to WT levels in B16F10 and 4T1 model. We prove also that neutrophil-

mediated protection in Ackr2-/- mice was due to neutrophils performing adoptive 

transfer experiments. Only the transfer of Ackr2-/- neutrophils in B16F10 WT bearing 

mice recapitulated the phenotype of Ackr2-/- mice. Following these results, we focused 

our attention to Ackr2-/- neutrophils in order to understand which was the mechanism 

of protection. We analyzed circulating neutrophil phenotype in tumor-bearing mice 

with flow cytometry techniques. Ackr2-/- neutrophils, compared to WT neutrophils, 

had increased ICAM-1 expression and lower levels of CD62L, indicating N1 

polarization or an activate state of neutrophils. Moreover, we demonstrated that Ackr2-

/- neutrophils, in a model of in vivo mobilization with the administration with CCL3L1 

chemokine, have a cell intrinsic increased mobilization from bone marrow to blood 

and are more able to infiltrate lungs. Increased cell-autonomous mobilization of 

neutrophils in Ackr2-/- mice was previously observed also in skin in a psoriasis model 

[65]. To further demonstrate the cell intrinsic increased mobilization, we performed 

the same experiment transferring CD45.2 WT and Ackr2-/- neutrophils into CD45.1 

WT mice. We found, again, an increase rate of Ackr2-/- neutrophils in the lung of WT 

mice compared to controls and a concomitant decrease of Ackr2-/- neutrophils in the 

blood due to the increased extravasation activity. These results were correlated to 

increased transcript level of chemokine receptor CCR1, CCR2 and CCR5 in Ackr2-/- 

neutrophils in resting condition that indicate a direct role of ACKR2 in the regulation 

not only of chemokines bioavailability, but also of the receptors that share the ligands 

with ACKR2. Ackr2-/- neutrophils have also an increased ROS production compared 

to WT controls in both B16F10 and 4T1 model. We demonstrated also that ROS 

production is CCR2-dependent and Ackr2-/- neutrophils have increased CCR2-

dependent ROS production compared to WT. Finally, we prove that Ackr2-/- 

neutrophils have increased direct cancer cell activity performing co-culture of WT and 

Ackr2-/- neutrophils with 4T1 luciferase-expressing cells and we found an increased 

cell killing rate of Ackr2-/- neutrophils compared to WT controls. ROS inhibition 



 69 

abrogates cell killing by WT neutrophils and cause a cell killing decrease in Ackr2-/- 

neutrophils but not abrogates the difference between WT and Ackr2-/- neutrophils. 

These results indicated a not complete ROS-dependent mechanism of cell killing by 

Ackr2-/- neutrophils. Extensive experiments are needed to elucidate the cell killing 

mechanism in Ackr2-/- neutrophils. All these achievements indicate ACKR2 as a 

negative regulator of the mobilization of neutrophils with anti-metastatic activity 

[233]. 

Neutrophils were considered for many years as neutral players in cancer, but in the last 

decade neutrophils were emerged as a leukocyte population with different roles in 

carcinogenesis, primary tumor growth and metastatic spread [84]. Cytokines released 

in the tumor microenvironment and at systemic level modulate neutrophil maturation, 

mobilization from bone marrow and polarization [10]. These observations indicate that 

neutrophils are potential target of antitumor therapy for their direct activity against 

cancer cells [109] and for their indirect role such as regulator of angiogenesis [212]. 

Our findings reveal that ACKR2 genetic ablation in neutrophils resulted in an activated 

phenotype that inhibit tumor metastasis [233]. 

In order to understand if human neutrophils are present in different activation states in 

the blood of tumor patients, we performed flow cytometry analysis. We started to 

phenotype neutrophils in high grade glioma patients. High grade gliomas are brain 

tumors that include glioblastoma. They have a mean survival time of fifteen months 

after diagnosis. In high grade glioma patients, a severe immunosuppression is 

described with a concomitant neutrophilia in blood and presence of TANs in the brain 

lesion [188]. Increased neutrophil to lymphocytes ratio is associated with a worse 

pathology outcome while few data describe neutrophils phenotype [188, 205, 207-

209]. All these features make high grade gliomas an interesting context for the study 

of neutrophils phenotype. Our preliminary data confirm a strong neutrophilia before 

the surgery in GBM patients compared to grade III patients and heathy controls [202]. 

On the contrary, no differences were observed for monocytes. In healthy condition, 

neutrophils are described as a homogeneous population but during pathology, such as 

sepsis and cancer, neutrophil subsets with differential activation and maturation were 

described [122]. We demonstrated that also in GBM patients three distinct neutrophil 

subsets were detected based on the differential expression of CD16 and CD62L. this 

indicated that in glioma patients neutrophil maturation and activation is affected, but 



 70 

at the moment we have not detected differences in the expression of a panel of markers 

involved in neutrophil biology. Nevertheless, we found a positive correlation between 

circulating and tumor infiltrating neutrophil abundance on total leukocytes indicating 

that increased neutrophilia is associated to enhance neutrophils activation. Further 

analyses will be necessary to better describe neutrophil phenotype and to associate 

abundance of circulating and infiltrating neutrophils and their phenotype with survival 

rate and therapy effectiveness. 

Collectively taken, our findings reveal that canonical and atypical chemokine receptor 

have an active role in the maturation and the activation of neutrophils with anti-

metastatic activity. Neutrophils and their chemokine receptors are so indicated as 

functional target during cancer pathologies in order to block pro-tumoral role and 

unleash their anti-tumoral and anti-metastatic potential.  
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