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Abstract. Minimizing the Boolean circuit implementation of a given
cryptographic function is an important issue. A number of papers [14],
[15], [13], [6] only consider cancellation-free straight-line programs for
producing small circuits over GF(2). Cancellation is allowed by the Boyar-
Peralta (BP ) heuristic [5, 4]. This yields a valuable tool for practical ap-
plications such as building fast software and low-power circuits for cryp-
tographic applications, e.g. AES [5, 3], HMAC-SHA-1 [17], PRESENT
[8], GOST [8], and so on. However, the BP heuristic does not take into
account the matrix density. In a dense linear system the rows can be
computed by adding or removing a few elements from a “common path”
that is “close” to almost all rows. The new heuristic described in this
paper will merge the idea of “cancellation” and “common path”. An ex-
tensive testing activity has been performed. Experimental results of the
new and the BP heuristic were compared. They show that the Boyar-
Peralta results are not optimal on dense systems.
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1 Introduction

Circuits are important in many areas of computer science, including computer
architecture and engineering, cryptography and computer security, and privacy-
preserving multiparty computations. Minimizing the total number of gates in the
Boolean circuit implementation of a given function f can lead to high-speed soft-
ware as well as low-power hardware for f . Particularly important are hardware
optimizations of cryptographic circuits. The speed and power consumption are
often a limiting constraint in security chips — e.g., RFID, smart cards, TPMs.

Circuits for linear functions can be represented as linear straight-line pro-
grams (SLPs). These are sequential programs (see [7] and [9], for example) in
which the instructions are of the form Xi = Xj +Xk where

– Xi has not appeared before in the program;



– Xj and Xk are either inputs or have appeared before in the program;
– “+” denotes Boolean exclusive-or.

The shortest SLP problem is to find the shortest linear program which com-
putes a set of linear functions over a field. Solving the shortest SLP problem over
GF (2) corresponds to finding a gate-optimal Boolean circuit that computes the
linear functions. This problem is known to be MAX SNP-hard [4]. This means
that, unless P=NP, there is no efficient algorithm that can compute solutions
that are arbitrarily close to optimal. In [5], it is shown that known polynomial-
time heuristics do quite poorly on random n × n systems of equations, and an
exponential-time heuristic is described which does significantly better and is
fast enough to be used in many practical situations. The Boyar-Peralta (BP )
heuristic [5] has been successfully applied to a number of circuit optimization
problems of interest to cryptology. These include a compact implementation of
Present S-Box [8], HMAC-SHA-1 optimizations [17], finite-field arithmetic and
binary multiplication [7] and [1].

A random m × n linear system is constructed as follows: given a density
0 < ρ < 1, construct an m × n binary matrix by placing a 1 in position i, j of
the matrix with probability ρ. Each row of the resulting matrix is interpreted
as the sum of variables (columns) containing a 1. We will call these rows tar-
gets. There are no known tight combinatorial bounds for the gate complexity of
random linear systems. An obvious upper bound is O(mn), the only non-trivial
combinatorial upper bound we are aware of is O( mn

logm ). This can be derived from

a lemma by Lupanov [12] about matrix decompositions.
A number of papers [14], [15], [13], and [6] only consider cancellation-free

straight-line programs for producing small cryptographic circuits over GF(2). In
2009, Boyar and Peralta show that these circuits can be improved in a model that
is not restricted to producing cancellation-free circuits [5], [7]3. However, the BP
heuristic does not take into account that rows of a dense linear system have a
long path of elements in common and, allowing cancellations, these rows can be
easily computed by adding or removing a few elements from a “common path”.
In this paper, we present a new heuristic for constructing circuits that evaluate
dense linear systems. In particular, our heuristic has been developed taking into
account the possibility to (a) work in a model that is not restricted to producing
cancellation-free circuits, and (b) add/remove a few elements from a “common
path”. We conducted extensive testing on random systems for evaluating the
performance of our heuristic. Experimental results show that the new heuristic
outperforms (on average) the BP heuristic, when applied to random dense linear
systems.

2 The Boyar-Peralta heuristic

The BP heuristic [5] is for optimizing arbitrary circuits. The first step is to
minimize the number of AND gates in the circuit. This typically results in a

3 See also [2].



circuit with large linear connected components. The second step optimizes the
linear components. We briefly describe their technique for this second step.

Let f(x) = Mx, where x = [x1, . . . , xn] is a vector of input variables and M
is an m× n matrix with coefficients over GF (2). We denote with yi the ith row
of the matrix M . Let S be the set of “known” linear functions. The members of
S are called base elements. S initially contains the variables x1, . . . , xn. Given
a linear predicate g, δ(S, g) is defined as the minimum number of additions of
elements from the set S necessary to compute g. The vector D[i] = δ(S, yi) is
called the distance from S to M . At the beginning of the computation D[i] is
one less than the Hamming weight of the ith row of M . The following loop is
performed until D[ ] = 0:

– create a new base element by adding two base elements in S;
– update S and the vector D[ ].

The choice of new base element is performed by picking a base which minimizes
the sum of elements of the updated D[ ] vector. Ties are solved by maximizing
the Euclidean norm of the new distance vector.

3 New heuristic

Let y = f(x) = Mx where M is an m × n matrix with coefficients in GF (2).
We would like to find a small circuit which computes y given an input vector
x = [x1, . . . , xn]. We consider the problem space consisting of random matrices
in which elements A[i, j] are Bernoulli trials. We call these matrices dense when
prob(A[i, j] = 1) ≥ 0.6.

Given a circuit C, a signal computed by C is either an input to the circuit
or the output of any gate in the circuit.

When M is dense, its Boolean complement M is sparse. The naive approach
with a dense matrix is to compute the complement of the matrix M and then
to apply the BP heuristic. Hence, it is appealing to try the following steps:

(i) use the BP heuristic to find a small circuit that implements Mx;
(ii) use signals computed in (i) to compute a “common path” yy =

∑n
i=1 xi;

(iii) at a cost of m additional gates, add the signal yy to each of the outputs of
the circuit computed in step (i).

We have experimentally verified that this heuristic, as well as several variations,
yield circuits with more gates than does the BP heuristic. The naive approach
fails because the base elements chosen in (i) do not guarantee the reachability of
the “common path” in few steps. Therefore, the new heuristic first computes the
“common path” by picking the base elements that may not necessarily minimize
the sum of elements of the distance vector. Then, all targets are computed by
allowing cancellations from it. Below we describe the method that did improve
over BP .

Let y = {y1, . . . , ym} be the set of rows of M (we call these targets). We will
keep track of two distance vectors D (distance from S to M) and D∗ (distance
from S to the Boolean complement of M). The heuristic is as follows:



1. (Initialization) Set S to the set of variables x1, . . . , xn. For i = 1, . . . ,m, set
D[i] = HammingWeight(yi)− 1.

2. (Create complement instance) Let y∗ = {y∗1 , . . . , y∗m} be the set of com-
plement targets (i.e. y∗i = yi). Add target y∗m+1 = [1, . . . , 1] to the set of
complement targets (note y∗m+1 encodes the function yy = Σn

i=1xi). Let
M∗ = [y∗1 , . . . , y

∗
m, y

∗
m+1]T . Let D∗ be the distance vector for M∗, initialized

to D∗[i] = HammingWeight(y∗i )− 1 for i = 1, . . . ,m+ 1.

3. (Compute the common path) Until target y∗m+1 is found — i.e., until D∗[m+
1] = 0 — pick a new base element xi, i = |S| + 1, by adding two existing
base elements such that:

(a) xi decreases the distance to y∗m+1 by one — i.e., to D∗[m+ 1]− 1;

(b) xi minimizes the sum of distances D∗ under the restriction (a).

Output the SLP instruction that computes xi. Update distance vectors D
and D∗. Add xi to S.

4. (Allow cancellations) Apply the BP heuristic to matrix M , but skipping the
initialization steps for S and D.

Note that S and D are well-defined at step 4, as they have been continuously
updated every time an SLP instruction is output. We resolve ties at step 3 by
maximizing the Euclidean norm of the vector D∗. The “common path” of our
heuristic is the target y∗m+1 = [1, . . . , 1].

3.1 A toy example

To understand the details of this new heuristic, we present a toy example. Let
y1, . . . , ym (m = 6) be the set of rows of:



y1 = x1 + x2 + x3

y2 = x2 + x4 + x5

y3 = x1 + x3 + x4 + x5

y4 = x2 + x3 + x4

y5 = x1 + x2 + x4

y6 = x2 + x3 + x4 + x5

Step 1: Initialization.

The initial basis vector is S = {x1, x2, x3, x4, x5}, the targets is y = {y1, y2, y3, y4, y5, y6},
the distance vector is D = [2, 2, 3, 2, 2, 3].

Step 2: Create a complement instance.

We generate the “common path” yy = x1 + x2 + x3 + x4 + x5, the new set of
targets is y∗ = {y1, y2, y3, y4, y5, y6, yy}, the new distance vector is D∗ =



[1, 1, 0, 1, 1, 0, 4], and the new matrix is

M∗ =



0 0 0 1 1

1 0 1 0 0

0 1 0 0 0

1 0 0 0 1

0 0 1 0 1

1 0 0 0 0

1 1 1 1 1


Step 3: Compute the common path.
We compute y∗m+1, also called yy or “common path”.

– x7 = x1 + x3.
D = [1, 2, 2, 2, 2, 3] D∗ = [1, 0, 0, 1, 1, 0, 3] S = {x1, . . . , x7}

– x8 = x4 + x5.
D = [1, 1, 1, 2, 2, 2] D∗ = [0, 0, 0, 1, 1, 0, 2] S = {x1, . . . , x8}

– x9 = x2 + x7. Found target y1 = x9.
D = [0, 1, 1, 2, 2, 2] D∗ = [0, 0, 0, 1, 1, 0, 1] S = {x1, . . . , x9}

– x10 = x8 + x9. Found target yy = x10.
D = [0, 1, 1, 2, 2, 1] D∗ = [0, 0, 0, 1, 1, 0, 0] S = {x1, . . . , x10}

Step 4: Allow cancellations.
We apply theBP heuristic to matrixM . The distance vector isD = [0, 1, 1, 2, 2, 1],
the base is S = {x1, . . . , x10} and the new distance vector D∗ is no more updated.

– x11 = x1 + x10. Found target y6 = x11.
D = [0, 1, 1, 1, 2, 0] S = {x1, . . . , x11}

– x12 = x2 + x8. Found target y2 = x12.
D = [0, 0, 1, 1, 2, 0] S = {x1, . . . , x12}

– x13 = x2 + x10. Found target y3 = x13.
D = [0, 0, 0, 1, 2, 0] S = {x1, . . . , x13}

– x14 = x5 + x11. Found target y4 = x14.
D = [0, 0, 0, 0, 1, 0, ] S = {x1, . . . , x14}

– x15 = x7 + x14. Found target y5 = x15.
D = [0, 0, 0, 0, 0, 0] S = {x1, . . . , x15}

4 Experimental results

We conducted extensive testing to gauge the performance of our new heuristic,
against that of BP . Experiments were performed on square and non-square
matrices (more details can be found in [18]). Due to space limitations, this paper
only discusses our results on square matrices. The useful conclusions drawn are
also valid for rectangular matrices. Although we are able to solve systems larger
than 30× 30, we limited our experiments to size 30 due to the exponential time
complexity of both heuristics.



4.1 Gate Count

We generated several n × n matrices [16], n = 15, 16, . . . , 30, for biases ρ. For
each size n and each bias ρ, we randomly pick 100 matrices from our benchmark
set, hence we tested 9600 matrices.

Circuits for Mx were constructed for each matrix M using BP and our
heuristic. We identified four matrix size thresholds, one for each of the bias
values ρ = 0.6, 0.7, 0.8, 0.9, beyond which the new heuristic performs on average
better than the old one. Our experiments also suggest that there exists a lower
bound ρL for the bias beyond which it is convenient to use the new heuristic
on large enough matrices. Of course, at a cost of roughly doubling the running
time, one can run both heuristics and pick the best circuit.

Bias ρ = 0.4 and 0.5. Experimental results show that the average number
of XOR gates computed by the new heuristic is, on average, worse than those
computed by the old one. As expected, the new heuristic does not perform well
on sparse matrices. However, over 3200 matrices handled, the new heuristic gets
better results in 577 cases — i.e. 211 when ρ = 0.4 and 366 when ρ = 0.5.
This means that, as expected, the BP heuristic sometimes fails to find the best
solution.

Bias ρ = 0.6. When the bias grows, the new heuristic behaves better than
the old one. Experimental results suggest that the difference between the aver-
age number of XOR gates computed by the two heuristics gradually increases
with the increasing size of the matrix. In particular the new heuristic will per-
form better than BP when applied to large-enough matrices of density 0.6. The
threshold over which the new heuristic performs as well as or better than BP
lies between 20× 20 and 22× 22.

Bias ρ = 0.7. The new heuristic performs, on average, better than the old
one. For 16× 16 matrices the new heuristic gets the best, or the same, solution
in 73% of cases. This value grows up to 98% for 30× 30 matrices.

Bias ρ = 0.8. In this case the new heuristic performs better compared to
BP when ρ = 0.7. In fact, it beats BP on matrices as small as 15 × 15. For
16 × 16 matrices we get the best, or the same, solution in 84% of cases, while
for matrices larger than size 24× 24, this percentage is greater or equal to 98%.

Bias ρ = 0.9. In this case, the behavior of the new heuristic is similar to that
of the ρ = 0.7 and 0.8 cases. However, the threshold is higher — i.e., around
size 20× 20 — and the observed probability of the new heuristic beating BP on
matrices larger than size 20× 20 is between 0.70 and 0.96.

Figure 1 visualizes the output data collected, showing the difference between
the average number of XOR gates required by the new heuristic and BP . Neg-
ative values indicate that the new heuristic performs better than BP , while
positive values indicate it performs worse. This data can help us identify when
the new heuristic is expected to provide the best results for specific values of
ρ and n. Therefore it is possible to identify a lower bound ρL that indicates a
threshold beyond which it is convenient to use the new heuristic.

When ρ = 0.4 or 0.5, and n ≤ 30, BP will perform on average a bit better
than the new one (see Figure 1). This is no longer true for ρ = 0.6 and n = 20.



Fig. 1: Avg num XORs new heuristic compared to BP : Gate Count – Circuit Depth

Therefore, the lower bound ρL lies between 0.5 and 0.6 as long as n ≤ 30. We have
not determined the density value at which the new heuristic is asymptotically
better than BP . It is some number smaller than 0.6, and we conjecture it is
greater than 0.5. It is conceivable that 0.5 + ε, for any ε > 0, is dense enough for
sufficiently large matrices.

4.2 Circuit Depth

The reduction of gate complexity of a circuit is not the only important measure
on combinational logic implementation. The depth of a circuit, — i.e., the length
of the longest path in it — is another one. Indeed, when depth of the combina-
tional logic increases, an important performance metric worsens: the delay. In
general, it is not difficult decreasing circuit depth at the cost of increasing cir-
cuit width, or vice versa. As shown in Section 4.1, the new heuristic reduces gate
count when applied to dense linear systems. In this section, we experimentally
show that new heuristic not only reduces the gate count but also decreases (on
average) the circuit depth. An extensive testing activity has been conducted to
evaluate the depth of the circuits. The set of data used is the same described
in Section 4.1 — i.e., n× n matrices, n = 15, 16, . . . , 30. For these experiments,
we focus on the most interesting (dense) biases ρ = 0.6, . . . , 0.9. We tested 6400
dense matrices previously generated, 100 matrices from each value of ρ and n.
Experimental results were collected and analyzed.

Bias ρ = 0.6. Experimental results show that BP generates, on average,
circuits with a shorter critical path (for n ≤ 30).

Bias ρ = 0.7,0.8,0.9. This is no longer true for ρ ≥ 0.7 and n = 15. In these
cases, the new heuristic provides (on average) circuits with a shorter critical path.
Experimental results show that our heuristic outperforms BP for high density
matrices of size bigger than 15× 15.



5 Concluding remarks

There are at least two ways to gauge how interesting these results are. This
paper shows that the new heuristic outperforms (on average) BP heuristic, when
applied to random dense linear systems. Experimental results suggest that the
solutions provided usually have a shorter critical path and a reduced number of
XOR gates. In [10, 11], Fuhs et al. were able to prove that, in specific cases, the
circuits generated by BP are optimal. Our work shows that, if we play with dense
linear system, better results can be obtained encouraging circuits to benefit from
the cancellation.

At a practical level, we note that linear systems of the sizes considered in this
work show up in practice — e.g. AES [5, 4], HMAC-SHA-1 [17], Present [8], etc.
In particular, the new heuristic has been used in 2013 to show that the bottom
linear part of the circuit presented in [4] was sub-optimal by at least one gate.
Then, exploring all ties, Cagdas Calik pointed out that the BP heuristic yields
a better circuit [7].
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