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a b s t r a c t

The cytoplasmic accumulation of NPM1 (NPMc+) is found in acute myeloid leukemia (AML) with NPM1
mutation. NPM1 must shuttle between nucleus and cytoplasm to assure physiological protein synthesis
and, therefore, the elimination of NPMc+ is not a suitable therapeutic option. We isolated, character-
ized, and produced a functional scFv intrabody fused to nuclear localization signal(s) (NLS) that does
not recognize NPM1 but binds to the mutant-specific C-terminal NES (nuclear export signal) of NPMc+,
responsible for its cytoplasmic accumulation. The scFv-NLS fusion accumulated in the nuclei of wild type
cells and strongly bound to its antigen in the cytoplasm of NPMc+ expressing cells. However, it failed to
ingle-chain antibody relocate the majority of NPMc+ in the nucleus, even when fused to four NLS. Our results show the tech-
nical feasibility of producing recombinant intrabodies with defined sub-cellular targeting and nuclear
accumulation but the lack of information concerning the features that confer variable strength to the
signal peptides impairs the development of biomolecules able to counteract pathological sub-cellular
distribution of shuttling proteins.

d by
© 2014 Publishe

. Introduction

Nucleophosmin (NPM1) is a nucleolar multifunctional phos-
hoprotein involved in RNA metabolism [1–3], regulation of the
19/ARF-p53 tumor-suppressor pathway [4,5] and c-Myc turnover
hrough Fbw7� [6]. Under physiological conditions, the protein
huttles between nucleus and cytoplasm. In about one-third of
dult patients with AML with normal karyotype, it has been demon-
trated that AML cells bear mutations in the last coding exon of
he NPM1 gene (exon 12) [7–9]. More than 40 heterozygous dif-

erent mutations have been described. The mutations result in
rame shift and the loss of the two tryptophan residues located
n the C-terminal portion of the protein that are necessary for

Abbreviations: AML, acute myeloid leukemia; CRM1, Chromosomal Region
aintenance 1; GST, glutathione S-transferase; MBP, maltose binding protein;
ES, nuclear export signal; NLS, nuclear localization signal; NPM1, nucleophosmin;
PMc+, cytoplasmic nucleophosmin; scFv, single-chain variable fragment.
∗ Corresponding author. Tel.: +386 05 9099700; fax: +386 05 90 99 722.

E-mail addresses: ario.demarco@ung.si, ario.de-marco@curie.fr (A. de Marco).
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215-017X/© 2014 Published by Elsevier B.V. This is an open access article under the CC
Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

nucleolar localization. The insertion of short nucleotide stretches of
eleven amino acids generates the de novo formation of a Chromo-
somal Region Maintenance 1 (CRM1)/Exportin 1-dependent NES
responsible for mutant NPM1 cytoplasmic delocalization (NPMc+)
[10–12]. Although a correlation between NPM1 cytoplasmic accu-
mulation and leukemia initiation and progression has been recently
demonstrated in vivo in murine models [13,14], so far there is no
direct molecular evidence of the mechanism by which NPMc+ can
induce pathological conditions. It has been suggested that NPMc+
could form hetero-octamers with NPM1 inducing its delocalization
and that of proteins normally associated to NPM1, such as p19/ARF
and Fbw7� [4–6,15]. A monoclonal antibody (T26) specific for the
cytoplasmic mutation has been demonstrated helpful to confirm
the connection between NPMc+ expression and AML in patients
[16]. However, when we performed a double staining to identify
both NPM1 and NPMc+ localization, it turned out that a significant
portion of the wild type protein was still located in the nucleoli

[17], questioning the hypothesis of a massive NPM1 migration to
the cytoplasm. Nevertheless, both the shuttling and the residen-
tial activities of NPM1 are necessary for the normal metabolism
since NPM1 seems to be the rate-limiting nuclear export shuttle

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

dx.doi.org/10.1016/j.btre.2014.05.008
http://www.sciencedirect.com/science/journal/aip/2215017X
http://www.elsevier.com/locate/btre
http://crossmark.crossref.org/dialog/?doi=10.1016/j.btre.2014.05.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:ario.demarco@ung.si
mailto:ario.de-marco@curie.fr
dx.doi.org/10.1016/j.btre.2014.05.008
http://creativecommons.org/licenses/by-nc-nd/3.0/


2 nolog

f
a
s
g
t
N
n
t
N

o
c
c
N
i
o
t
s
l
v
a

2

2

t
c
(
i
b
p
w
w
(

2

i
A
c
r
w
c
o
s
v
c
t
P
t
h
t
p
b
2
m
a
T
F
R
C
w

8 C. Martinelli et al. / Biotech

or ribosome components in mammalian cells and an indispens-
ble regulator of protein synthesis [18]. The diminished NPM1
huttling capacity impairs the regular ribosome assembly, places
enetic pressure upon p19/ARF/p53 pathway, and leads to muta-
ions resulting in cellular transformation [18]. This means that
PM1 shuttling must be preserved as well as its predominant
ucleolar accumulation. Consequently, any therapeutic perspec-
ive should re-establish this equilibrium rather than inactivate
PMc+ by means of neutralizing drugs.

Intrabodies have been successfully used in the past to knock-
ut their targets or sequester their antigen in specific sub-cellular
ompartments [19–21]. Similarly, we isolated a scFv antibody spe-
ific for the de novo exclusive NES motif present in the mutated
PMc+, confirmed its correct folding when it was expressed as an

ntrabody, and fused it to a sequence corresponding to a repeat
f nuclear localization signals (NLS). Despite the effective binding
o NPMc+ and the transient relocation into the nucleus, our data
howed that the antigen–antibody complex remained statistically
ocalized in the cytoplasm, a result that seems to confirm some pre-
ious reports underlining the large efficiency variability existing
mong nuclear localization signal peptides [22,23].

. Materials and methods

.1. Expression and purification of recombinant NPMc+

Full-length NPMc+ was expressed as a GST (glutathione S-
ransferase) fusion from pGEX4T vector and purified by affinity
hromatography [24] using GSTrapFF column and ÄKTA Explorer
GE Healthcare). The C-terminal NPMc+ fragment correspond-
ng to the 45 amino acids from 255 to 298 was synthesized
y PCR, cloned in pETM44 vector [25] as MBP (maltose binding
rotein)-6× His tag fusion and transformed in BL21 cells. Cultures
ere grown in ZYP-5052 auto-inducing medium [26]. Purification
as performed combining HisTrapHP column and ÄKTA Explorer

GE Healthcare).

.2. Selection and subcloning of phage displayed scFvs

Human monoclonal scFv antibodies specific to NPMc+ were
solated from the synthetic ETH-2 Gold phage display library [27].

pre-panning incubation step of the library against MBP at a
oncentration of 100 �g mL−1 was performed before each panning
ound to deplete anti-MBP binders. Three rounds of panning
ere performed on Nunc-ImmunoTM MaxisorpTM tubes (Nunc)

oated with the fusion construct NPMc+–MBP at a concentration
f 25 �g mL−1 in 50 mM sodium carbonate buffer, pH 9.6 [28] and
cFvs were screened by ELISA [27]. Six clones with an absorbance
alue higher than 0.49 and negative for the fusion tag were
onsidered positive (Supplementary Fig. 1A) and sequenced using
he following primers: Fdseq1 5′-GAATTTTCTGTATGAGG-3′ and
elbBack 5′-AGCCGCTGGATTGTTATTAC-3′. The results indicated
hat all the six clones shared the same sequence, suggesting a
igh selective pressure toward one specific binder (Supplemen-
ary Fig. 1B). It was produced in large scale in TG1 cells and
urified on HiTrapMabSelectSuRE ProteinA column followed
y size exclusion chromatography on HiLoad 16/60 Superdex
00 using ÄKTA Explorer (GE Healthcare). The mouse anti-Myc
onoclonal antibody 9E10 (8 �g mL−1) was used as a primary

ntibody in ELISA test. The NLS corresponding to the SV40 large
-antigen was fused to scFv by PCR using the following primers:

W: 5′-CCAAGCTTCCATGGAGGTGCAGCTGTTGGAGTCTGGG-3′;
EV: 5′CTAGGCGC GGCCGCATACCCCT ACGACGTGCCCGACTACCC-
AAAAAGAAACGAAAAGTA TAGTCTAGACTAG-3′ and the product
as cloned HindIII-XbaI in the pcDNA3.1 vector (Invitrogen) to
y Reports 3 (2014) 27–33

obtain NLS-HA fusions. The same approach was used to insert
till to four SV40 NLS sequences. Flag tag and GFP-scFv fusion
were obtained by cloning HindIII-XbaI the antibody cDNA in the
pcDNA3.1 and in the pEGFP-C1 (Clontech) vectors, respectively.

Supplementary Fig. S1 related to this article can be found, in the
online version, at doi:10.1016/j.btre.2014.05.008.

2.3. Cell culture and transfection

HeLa cells were grown in Dulbecco’s modified Eagle Medium
(Lonza) supplemented with 10% FBS, l-glutamine (2 mM), peni-
cillin (100 U mL−1), streptomycin (100 mg mL−1). OCI-AML2 and
OCI-AML3 [29] cell lines were grown in MEM Alpha + GlutaMAXTM-
I medium (Gibco) supplemented with 20% FBS, glutamine
and antibiotics. Transient transfections were performed using
LipofectamineTM 2000 (Invitrogen). Sf9 (Spodoptera frugiperda)
insect cells were cultured at 27 ◦C in Sf 900 II SMF medium (Gibco)
and transfected with pFastBacDual plasmids (Invitrogen) express-
ing either wild type NPM1 or NPMc+ using Insectogene T030-1.0
(Biontex). Baculoviral supernatant was collected after 96 h and used
for two cycles of infection.

2.4. Immunoblotting and immunoprecipitation

For immunoprecipitation, cells were lysed in 50 mM Tris–HCl,
pH 8, 150 mM NaCl, 0.5% NP40, and protease inhibitors. Ten micro-
grams of scFv were added overnight at 4 ◦C to HeLa and OCI-AML3
cell lysates followed by protein A/G-sepharose (GE Healthcare). For
co-immunoprecipitation experiments, total cell lysate was incu-
bated with mouse M2 anti-Flag agarose beads (Sigma) and with
anti-mouse IgG agarose beads (Sigma) for 4 h at 4 ◦C. Precipi-
tated recombinant purified proteins and cell lysates were separated
by SDS-PAGE gel and immunoblotted over a nitrocellulose mem-
brane (Whatman). After incubation with primary antibodies in 5%
skimmed milk, the membrane was incubated with horseradish
peroxidase (HRP)-conjugated anti-mouse secondary antibodies
(Bio-Rad). Primary antibodies used in WB were mouse monoclonal
anti-Myc 9E10, mouse monoclonal anti-Flag M2, mouse mono-
clonal anti-NPMc+ T26, mouse 338 [30] anti-NPM1 C-terminal
end, mouse 376 [30] anti-NPM N-terminal region, and super-
natant from recombinant scFv. ECL Plus was used as a substrate for
chemiluminescent-based protein immune detection (Pierce). Pri-
mary antibodies used in IP were mouse monoclonal anti-NPMc+
T26 and recombinant scFv.

2.5. Immunofluorescence assay

Cells grown on cover slips were fixed in paraformaldehyde,
washed twice in PBS, permeabilized 5 min in 0.2% Triton X-100,
washed again in PBS and blocked in 2% BSA for 30 min at room
temperature. Slides were incubated 1 h in blocking buffer contain-
ing primary antibodies, washed extensively in PBS, and incubated
with CY3-conjugated donkey anti-mouse immunoglobulin (Jack-
son ImmunoResearch) for 30 min. After washing, slides were
counterstained with DAPI, rinsed in distilled water, mounted with
mowiol, and assessed at the DAPI, GFP and CY3 channels. Images
were acquired using an Olympus AX70 microscope equipped with
a CoolSNAP EZ Turbo 1394 camera (Photometrics) and processed
using ImageJ 1.43 software (Wayne Rasband, NIH). Leptomycin B
experiments were performed as previously described [10]. Confo-
cal microscopy was performed on a Leica TCS SP5 equipped with

violet (405 nm) and blue (488 nm) excitation laser lines. Primary
antibodies used for IF were mouse monoclonal anti-Myc 9E10,
mouse monoclonal anti-HA, mouse monoclonal anti-NPMc+ T26,
and recombinant scFv.

http://dx.doi.org/10.1016/j.btre.2014.05.008
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Fig. 1. Immunospecificity of the anti-NPMc+ scFv. (A) HeLa cell lysates transiently expressing NPMc+-GFP were used for immunoprecipitation with the anti-NPMc+ antibodies:
scFv (lanes 1–3) and T26 (lanes 4–6). Control experiments (lanes 2 and 5) were performed with protein A-sepharose and protein G-sepharose, respectively. Membranes were
probed with T26 mouse monoclonal antibody. (B) scFv was used to immunoprecipitate NPMc+ from OCI-AML2 and OCI-AML3 cell lysates (lanes 7 and 8). Lanes 1 and 2: inputs
of OCI-AML2 cell lysate; lanes 3 and 4: inputs of OCI-AML 3 cell lysate. As controls, protein A-sepharose was incubated alone in the presence of OCI-AML2 (lane 5) and OCI-
AML3 (lane 6) cell lysates. The membrane was probed with T26 mouse monoclonal antibody. Immunofluorescence assay on HeLa cells transiently expressing NPMc+-FlagHA
(upper panels) and on not transfected HeLa cells (lower panels) was performed using purified scFv (C) and T26 mouse monoclonal antibody (D). (E) Immunofluorescence
assay on HeLa cells transiently expressing either NPMc+-GFP (upper panels) or EGFP (lower panels) was performed using the purified scFv antibody. Fusion to GFP did not
impair physiological NPMc+ localization [15].
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. Results

Panning the synthetic ETH-2 Gold phage display library [27]
gainst the C-terminal peptide of the NPMc+ mutant succeeded in
solating some scFvs that specifically bound to the nuclear export
ignal (NES) sequence responsible for the strong cytoplasmic local-
zation of the target protein (Supplementary Fig. 1). The antibody
ragment identified among the positive clones (Supplementary Fig.
B) was produced as a stable molecule and was chosen for fur-
her characterization. As shown by western immuno-blot analysis
Supplementary Fig. 1C), the antibody recognized its recombinant
ntigen alone as well as fused to either MBP or GST, while no
ignal was detected in the presence of the carrier proteins and
f the control recombinant proteins GFP and NPM1. Similarly,
he scFv detected the NPMc+ isoform expressed in insect cells

ith the same specificity of monoclonal antibodies (Supplemen-

ary Fig. 1D) and successfully pulled-down NPMc+ from total cell
ysates of both NPMc+-transfected HeLa cells (Fig. 1A) and human
cute myeloid leukemia OCI-AML3 cells that constitutively express

ig. 2. Functional characterization of the isolated anti-NPMc+ scFv. Immunofluorescenc
cFv-GFP (B) and NPMc+ (C) alone. All the experiments were performed using T26 mous
ransfected with the scFv-Flag and the NPMc+-GFP expression vectors. Successively, the F
y western immuno-blot using T26 mouse monoclonal antibody and mouse anti-Flag M2
eads was used as a negative control (right panel). Lanes 1 and 2: inputs of HeLa cells t
: inputs of HeLa cells transiently co-transfected with scFv-Flag and NPMc+-GFP at differ
0:1; lane 4, scFv-Flag to NPMc+-GFP plasmid ratio of 3:1). Lanes 5–8: corresponding imm
y Reports 3 (2014) 27–33

NPMc+ (Fig. 1B). As expected, it did not immuno-precipitate NPM1
from human acute myeloid leukemia OCI-AML2 cells in which
NPMc+ is not expressed. Pull-down efficiency was comparable to
that of the anti-NPMc+ T26 monoclonal antibody [16]. The two
antibodies visualized the same NPMc+ pattern distribution in HeLa
cells, although the monovalent scFv apparently bound the target
protein with lower avidity than the bivalent monoclonal antibody
(Fig. 1C and D). Finally, the scFv co-localized with the cytoplasmi-
cally expressed NPMc+ in transiently transfected cells, as shown by
immunofluorescence assay (Fig. 1E).

These preliminary data confirmed that the scFv was a reliable
binder of the NPMc+ mutant and therefore we evaluated the possi-
bility to express it as an intrabody in HeLa cell cytoplasm. HeLa cells
were transiently co-transfected with NPMc+ and a scFv-GFP fusion.
The frequency of cells co-expressing both constructs was always

low (about 5%) but the homogeneous accumulation of green fluo-
rescent (scFv-fusion) protein seems to indicate that the anti-NPMc+
antibody did not aggregate and that it mainly co-localized with its
antigen in the cytoplasm (Fig. 2A–C). Similar results were obtained

e assay on HeLa cells transiently co-expressing both scFv-GFP and NPMc+ (A), or
e monoclonal antibody to localize NPMc+. (D) HeLa cells were first transiently co-
lag-tag was used for affinity precipitation and the resulting material was analyzed
antibody, as indicated (left panel). Immunoprecipitation with mouse IgG agarose

ransiently transfected with NPMc+-GFP (lane 1) or scFv-Flag (lane 2). Lanes 3 and
ent stoichiometric plasmid ratios (lane 3, scFv-Flag to NPMc+-GFP plasmid ratio of

unoprecipitations.
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Fig. 3. Sub-cellular localization of the scFv-NLS – NPMc+-GFP complex in transiently co-transfected HeLa cells. ScFv-NLS (A) and NPMc+-GFP (B) transfected alone were
used as controls. scFv-NLS and NPMc+-GFP co-localize in transiently co-transfected HeLa cells (C). The expression of scFv-NLS was detected by anti-HA mouse monoclonal
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ntibody. NPMc+-GFP and scFv-NLS co-accumulate in the nucleus (D) when cells are
icroscopy imaging allows observing that NPMc + -GFP (E) accumulates in the nucle
PM1 nucleolar localization before (G) and after leptomycin B treatment (H).

y infecting leukemic cells with retroviral and lentiviral vectors
xpressing the scFv (data not shown). The immunoprecipitation
esults (Fig. 2D) confirmed that, upon transient co-expression, the
cFv-Flag construct was functionally folded and effectively inter-
cted with its antigen in the intracellular milieu, although at a low
toichiometic ratio.

Summarizing, the scFv specific for the C-terminus of the
utated NPMc+ could be expressed in the cytoplasm of mam-
alian cells as a functional intrabody. Consequently, we prepared
reagent composed by the fusion of the recombinant antibody
ogether with a NLS to evaluate the possibility to bind the cyto-
lasmic NPMc+ and relocate it into the nucleus. The scFv-NLS
onstruct effectively accumulated into the nucleus (Fig. 3A) and
ed with leptomycin B, an inhibitor of protein nuclear export. Nevertheless, confocal
tomycin B-treated cells very rapidly, even in the absence of scFv-NLS (F). Wild-type

co-accumulated with NPMc+ in the same compartment when the
protein nuclear export was inhibited by treating the cells with lep-
tomycin B, a CRM1-dependent nuclear export inhibitor (Fig. 3D). In
the absence of leptomycin B treatment, the scFv failed to relocate
the cytoplasmic mutant NPMc+ (Fig. 3B) and we observed rather
the opposite, namely the antigen sequestered the antibody in the
cytoplasm (Fig. 3C). The fusion of four NLS to the scFv did not mod-
ify the equilibrium (data not shown). Confocal microscopy imaging
showed that NPMc+-GFP (Fig. 3E) accumulated very rapidly in the
nuclei of leptomycin B-treated cells even in the absence of scFv-

NLS (Fig. 3F). The leptomycin B-dependent nuclear accumulation
of NPMc+ and NPM1 in the nucleus was equally effective after 1 h
(Fig. 3G and H) although the NPM1 protein accumulation was faster
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data not shown). The relatively rapid accumulation of NPMc+ in the
ucleus and the rare availability of co-transfected cells impaired to
emonstrate a statistically significant contribution of scFv-NLS to
he protein nuclear uptake (data not shown).

. Discussion

Sub-cellular localization of proteins shuttling between nucleus
nd cytoplasm is the consequence of the dynamic equilibrium
etermined by the relative strength of the two opposite fluxes. In
he case of NPM1, both NLS and NES putative motifs are embedded
nto the wild type sequence, as expected for a protein physiologi-
ally shuttling between nucleus and cytoplasm. However, it is not
et clear how many different signal motifs contribute to tune the
huttling, due to the fact that both the leucine residues located at
ositions 42 and 44 as well as the region between amino acids
2–104 seem to be essential for the export [31,32]. On the other
and, the two tryptophan residues located at amino acids 288
nd 290 display a synergic nucleolar localization effect [11] addi-
ive to the contribution of the canonical NLS sequences positioned
t 152–157 and 190–197 [33]. Different mutations generate a de
ovo C-terminal NES leading to a complete shift of the equilib-
ium toward the cytoplasmic accumulation. At the same time, the
nhibition tests in the presence of leptomycin B confirm that the sit-
ation remains highly dynamic, since the NPMc+ is relocated to the
ucleus in less than 1 h. These observations suggest that NPMc+ is
ot sequestered in the cytoplasm, that the apparent lack of relocali-
ation is due to unequal rates of translocation in the two directions,
nd that a modification between the relative speed of export and
mport might re-establish a preferential nuclear accumulation. It
as been recently reported that CRM1 overexpression modifies this
quilibrium and correlates with metastasis and poor prognosis in
ifferent human cancers [34]. However, despite some positive pre-
linical indications [35,36], this transporter controls the shuttling of
oo many essential proteins to be considered an ideal therapeutic
arget. As an alternative possibility, the equilibrium between the
wo opposite fluxes could be modified by acting on the strength
f the import/export motifs, as it happens in some pathological
onditions [37].

The therapeutic potential of tuning the protein delivery to
uitable sub-cellular compartments by means of intrabodies have
een recently reviewed [21,38]. Conventional IgGs do not fold
orrectly in the reducing cytoplasmic milieu but recombinant anti-
ody fragments with simpler structures can reach their functional
onformation despite the unfavorable redox conditions. In basic
esearch, the effect of the rapid removal of cytoplasmic proteins
as been evaluated by using single-domain antibodies that can
rap GFP-tagged proteins and deliver them to ubiquitin-dependent
egradation [39]. However, protein sub-cellular re-localization is
ot a straightforward application since artificially introduced sub-
ellular localization sequences clash with native and discording
ignal sequences [40], a condition that can result in unpredictable
rotein distribution inside the cell [37]. Furthermore, physiological
ES and NLS have apparently evolved as “weak” signals, whereas
athological motifs can be extremely more effective. In this per-
pective, it would be crucial to have models to predict the effect
f coexisting signal sequences of different strength and driving to
pposite directions. We have shown that it was possible to select an
nti-NPMc+ scFv antibody, to express it as a functional intrabody
hat binds its antigen in human cell cytoplasm, and to obtain its
uclear accumulation after fusion to suitable NLS. Nevertheless, the

ntibody–antigen complex was not retained in the nucleus proba-
ly because of the different efficiencies of the available import and
xport signal sequences. The mutation-dependent export domain
f NPMc+ reverts the predominantly nucleolar localization enabled
y Reports 3 (2014) 27–33

by the two NLS sequences embedded into the NPM1 sequence.
Apparently, even the addition of four NLS sequences to the scFv did
not significantly modify the NPMc+ sub-cellular statistical distribu-
tion. Insufficient total driving strength and structural hindrance due
to the repeats could be responsible for the negative result. Further-
more, the affinity and the dissociation kinetics of the antibody to its
antigen could represent two additional crucial factors for the reg-
ulation of NPMc+ shuttling. The accessibility of the NPMc+ epitope
for the scFv is probably critical for regulating the binding kinetics:
too rapid release from its antigen would impair nucleolar import,
whereas too strong binding could block NPMc+ export.

Altogether, these data suggest that our strategy of relocating
NPMc+ could be feasible whether a suitable NLS, alone or in com-
bination with adaptor proteins [41], would be available to compete
with the super-physiological NES. There are very few scientific
reports that investigated quantitatively the molecular parame-
ters controlling the effectiveness of leader sequences [22,42] and
no obvious candidate is available for our model. We believe that
an effort in discovering leader sequences to tune the delivery
of recombinant antibodies with different binding features would
be very useful and allow the modulation of protein sub-cellular
(re)localization for therapeutic applications.
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