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Abstract: Scaling is widely recognized as a central issue in ecology. The associated cross-scale
interactions and process transmutations make scaling (i.e., a change in spatial or
temporal grain and extent) an important issue in understanding ecosystem structure
and functioning. Moreover, current concepts of ecosystem stewardship, such as
sustainability and resilience, are inherently scale-dependent. The importance of scale
and scaling in the context of forest management is likely to further increase in the
future because of the growing relevance of ecosystem services beyond timber
production. As a result, a consideration of processes both below (e.g., leaf-level carbon
uptake in the context of climate change mitigation) and above (e.g., managing for
biodiversity conservation at the landscape scale) the traditional focus on the stand
level is required in forest ecosystem management. Furthermore, climate change will
affect a variety of ecosystem processes across scales, ranging from photosynthesis
(tree organs) to disturbance regimes (landscape scale). Assessing potential climate
change impacts on ecosystem services thus requires a multi-scale perspective.
However, scaling issues have received comparatively little attention in the forest
management community to date. Our objectives here are thus first, to synthesize
scaling issues relevant to forest management, and second, to elucidate ways of
dealing with such complex scaling problems by highlighting examples of how they can
be addressed with ecosystem models. We have focused on three current management
issues of particular importance in European forestry: (i) climate change mitigation
through carbon sequestration, (ii) multi-functional stand management for biodiversity
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and non-timber goods and services, and (iii) improving the resilience to natural
disturbances. We conclude that taking into account the full spatio-temporal
heterogeneity and dynamics of forest ecosystems in management decision making is
likely to make management more robust to increasing environmental and societal
pressures. Models can aid this process through explicitly accounting for system
dynamics and changing conditions, operationally addressing the complexity of cross-
scale interactions and emerging properties. Our synthesis indicates that increased
attention to scaling issues can help forest managers to integrate traditional
management objectives with emerging concerns for ecosystem services, and therefore
deserves more attention in forestry.
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Revised manuscript EJFOR-D-12-00195 
 
 
Dear Prof. Berger, dear Prof. Pretzsch, 

 

please find attached the revised version of our manuscript " Scaling issues in forest ecosystem 

management and how to address them with models" (EJFOR-D-12-00195). 

 

We have now thoroughly revised the manuscript following the suggestions of the handling Editor and 

the two Reviewers, and find that this revision has considerably improved the manuscript over the 

original submission. In particular, in line with the suggestions from the Reviewers and Editor we have  

 clarified and sharpened our objectives with the paper, 

 included additional literature and improved the part of the paper explaining scaling theory by 

means of examples, 

 added to a better visibility of the overarching concept guiding us in the selection and synthesis 

of the examples presented in the second part of the paper, and 

 revised and simplified the language throughout the text. 

A complete list of changes including our responses to the issues raised by the Reviewers and Editor is 

attached to this letter. 

 

We hope that the revised manuscript now meets the standards of your journal, and look forward to 

hearing from you soon. 

 

Best regards, 

 

 

Authors' response to reviewers' comments
Click here to download Authors' response to reviewers' comments: cover_letter_scaling_in_mgmt_20130529_complete.pdf 

http://www.editorialmanager.com/ejfor/download.aspx?id=35390&guid=7dbd058f-2c8c-41cb-8c1d-248725267616&scheme=1


Editor 

 

[…] I also share the impression of the 1st reviewer who complains that the analysis remains 

superficial and that the quality of the manuscript still has to be improved. While reading the 

paper, I have the impression, that many things about emergence, scaling up and down, and 

the resilience of complex ecological systems have been said earlier and better. These issues 

are hardly debated among ecologists dealing with individual-based models, which are very 

similar to the single-tree models applied in forest sciences.  

Response: We agree with the editor that many of the things addressed in the manuscript have 

been said before, and are widely accepted in the ecology community. However, we also 

observe that the mainstreaming of these ecological advances in the forestry community is still 

lacking behind considerably (see the analysis of Puettmann et al. 2009, Island Press). 

Furthermore, while issues of scaling are well recognized in the ecological modeling 

community we find that many traditional forest modeling approaches - still widely in use 

today - fall short on such considerations. Our aim here is not to advance ecological scaling 

theory, but rather to present an entry-point into scaling issues for forest managers and 

modelers. We have revised and sharpened the introduction and objectives in this regard, and 

have added sentences (at lines 70-73 and 107-110 - all line numbers pertaining to the new, 

revised version of the manuscript) in order to make the aim and direction of the paper more 

clear. Scale and scaling are increasingly important for forest managers in order to sustainably 

provide a growing number of ecosystem services. As such, we believe this manuscript will be 

a timely contribution to the literature. Furthermore, as the European Journal of Forest 

Research is a leading journal in the field of forestry and forest management it would be good 

fit for efficiently reaching the target audience of such a paper. 

 

In order to improve the manuscript to hand, I thus recommend a comprehensive survey of this 

literature. Some examples: 

1) Reuter et al. (2005)  The concepts of emergent and collective properties in individual-

based models—Summary and outlook of the Bornhöved case studies. Ecological Modelling 

186: 489-501.  

http://dx.doi.org/10.1016/j.ecolmodel.2005.02.014  

2) Breckling et al. (2006) Individual-based models as tools for ecological theory and 

application: Understanding the emergence of organisational properties in ecological systems. 

Ecological Modelling 194: 102-113. http://dx.doi.org/10.1016/j.ecolmodel.2005.10.005  



3) Grimm and Wissel (1997) Babel, or the ecological stability discussions: an inventory and 

analysis of terminology and a guide for avoiding confusion 

http ://dx.doi.org/10.1007/s004420050090  

Response: We thank the editor for pointing us towards additional important literature, which 

we have now included in the manuscript. In addition to bolstering the general scaling 

literature covered in the manuscript (e.g., via the inclusion of the recent synthesis by Chave 

(2013) in Ecology Letters) we have also included further literature on concepts addressed in 

the manuscript (e.g., Rauscher et al. (2000), Computers and Electronics in Agriculture; 

Tierney et al. (2009), Ecology Letters). Furthermore, we have also included (more topical) 

examples on scaling issues in line with the suggestions of the reviewers (e.g., Anderegg et al. 

(2013), Global Change Biology, McDowell et al. (2008) New Phytologist, Medlyn et al. 

(2003), Functional Plant Biology, Landsberg and Waring (1997), Forest Ecology and 

Management). In total we have included additional 16 references in the revised manuscript. In 

reference to the (now sharpened) objectives of the paper we would point out that a 

comprehensive review on the ecological scaling literature was not the scope of this 

manuscript. We in section 2 rather highlight and discuss selected theoretical scaling issues by 

means of examples, which are of importance in the management examples discussed in 

section 3 of the paper. This is now also more clearly stated in the objectives (lines 112-114) in 

order to avoid any confusion for the reader.  

 

Reviewer #1 

 

The conclusions are weak, and the reasoning to some extent appears circular.  

Response: We have now revised and combined the discussion and conclusion section to 

shorten the manuscript (see comments of Reviewer #2 below). This allowed us to provide 

more context to the conclusions we reached in our analysis, increased the clarity of our 

argumentation (as the new combined section features 4+3 bullet points), and reduced 

redundancy with what has been said previously in the manuscript. 

 

The language is somewhat verbose 

Response: The manuscript language has been revised with a view to an easier style of 

writing. 

 



The link to modelling appears logical, but is not sufficiently explained: models are tools to 

analyse certain issues, based on some conceptual approach. The latter is not made sufficiently 

clear.  

Response: We have revised the manuscript in this regard and have clarified the link to 

modeling. We stress that models translate conceptual approaches about ecosystem functioning 

and structure into formal computer code that can then be used to explicitly study the effect of 

drivers and behavior (see lines 93-100). 

 

In general, there appears to be an overemphasis on modelling, which is understandable given 

the background of the authors, but the emphasis should be on the concepts rather than on the 

techniques used to quantify these concepts. As one of the objectives is to synthesize how 

simulation modelling can inform management with regard to scaling issues, this really needs 

clarification. The use of simulation to inform management is a complex issue that is dealt with 

superficially in the paper. 

Response: We'd like to stress that the emphasis on modeling is intentional, which is reflected 

in the title, abstract, and objectives of the manuscript. We find that in order to address scaling 

issues in forest management models are powerful tools. Rather than focusing solely on 

discussing scaling issues we aim at presenting tools and ways forward to potentially resolve 

such issues, and have thus made examples from simulation studies an integral part of our 

manuscript. In the revision of the manuscript we have consequently refrained from de-

emphasizing modeling, not least because the comments of the Editor suggest to actually 

extend the modeling literature covered in the manuscript. We, however, tried to sharpen the 

different strengths of different modeling concepts in the text, following the suggestion of the 

reviewer. With regard to synthesizing the role of models, we'd like to stress that we here aim 

not at the role of models in forest management in general, as we agree with the reviewer that 

this is a complex issue and many good analyses exist in this regard (e.g., Pretzsch et al. 2008, 

Ann. Bot., Wolfslehner and Seidl 2010, Environ. Manage.). We rather aim at synthesizing this 

role particularly with regard to scaling issues, and section 4.2 is an attempt to providing such 

a synthesis. 

 

The examples in the paper are useful, but the unifying concept is not clear. 

Response: We have revised the manuscript in order to make the underlying concept and 

structure of our analysis more clear. In order to do so we have added a paragraph leading into 

the examples section (lines 226-232). Furthermore, we have included a new table (Table 1) 



showing how the scaling issues addressed in the examples relate to the general stages of forest 

management planning. 

 

line 117, page 5: what is meant by "the naieve view of scale", does this refer to Urban et al 

(1987)? 

Response: We've revised the sentence (omitting the term "the naive view") in order to clarify 

our point here. 

 

line 124, page 5: the rope analogy does not require figure 1 which appears a bit trivial. Also, 

I find the rope analogy somewhat trivial: what about fractals, networks, or even strings? The 

example of the rope can be shortened, while the conceptual description might be expanded 

with other analogies 

Response: As suggested by the Reviewer we have removed Figure 1 from the revised 

manuscript. Also, we have replaced the rope analogy with (more topical) ecological examples 

for theoretical scaling issues in three instances, explaining the concepts of transmutation (lines 

160-166), Jensens inequality (lines 199-203), and cascading effects across hierarchies (lines 

204-210). However, in order to keep the paper concise (see Reviewer #2) we have refrained 

from adding a discussion on fractals, networks and strings to section 2. 

 

line 140 and onwards, page 6: non-linearity should be discussed in more detail; here I would 

also expect a discussion on scaling in relation to resource availability (notably diffuse vs. 

directional availability - say CO2 vs. light) and gradients in resource availability across a 

landscape 

Response: We have added a remark on the directionality of the resource gradient in order to 

make the underlying process of the non-linear scaling function more clear (line 157). Also, we 

have expanded the discussion on the effects of nonlinearity in the revised manuscript, and 

now given a concrete example of its effects in the context of temporal scaling (lines 161-166).  

 

line 187, page 7: feedbacks leading to cascading effects across the hierarchy, exerting 

constraints to lower levels. Intuitively, I have an idea about what is meant here, but can this 

be clarified? This is too much handwaving to me. Incidentally, rather than the example of 

rope breakdown, one could use the example of runaway cavitation, which I would find more 

convincing that the trivial rope analogy. 



Response: We have revised the section, substituting the suggested example of cavitation 

fatigue during drought stress for the rope analogy (lines 204-210). 

 

line 208, page 8: I have difficulty with the casual mention of sustainability and sustainable 

stewardship of forest ecosystems. What is meant here, and do you really need this for your 

line of reasoning? Is scaling only relevant for sustainable management, and not for 

management that does not specifically aim for sustainability? Is amount of stem wood an 

important ecological indicator for sustainability? Or do you mean volume growth as a proxy 

for productivity? 

Response: We have revised the sentence, and have added more context and two reference in 

lines 321 and 326 in order to clarify our point. 

 

line 226, page 9: yield tables are not designed to predict forest growth over time, they merely 

describe forest growth over time based on empirical data. 

Response: We have reworded the sentence as suggested by the reviewer. 

 

line 232, page 9: which are the information needs of managing for climate change 

mitigation? 

Response: We have added a sentence further specifying what the most important shortcoming 

of such approaches are in the context of climate change mitigation. 

 

line 239, page 9, line 245, page 10: explain what is meant by BGC 

Response: Done. ‘BGC’ in brackets placed after the word ‘biogeochemical’ in line 268.  

 

line 278, page 11, last para: are there other sampling schemes that might capture landscape 

heterogeneity? What is the role of stratification? 

Response: The points we make regarding data aggregation apply regardless of sampling 

schemes or stratification. We've added a sentence to that effect in line 306-307. 

 

line 312, page 12: why is multi-purpose forestry a paradigm? and why does the paradigm 

require the consideration of various constraints? Why not simply focus on multi-purpose 

forestry? 

Response: We have omitted the term paradigm in the revised version of the manuscript. 

 



line 330, page 13: what do you mean by "a top-down target corridor for stand-level 

management, fostering a routine evaluation of stand-level management decisions in the 

context of biodiversity conservation". These are truly terrible sentences, made to impress not 

to clarify. 

Response: We have simplified this particular sentence and have tried to clarify the language 

throughout the manuscript. 

 

lines 373-375, page 14: what exactly is stated here? Again, the sentence is impressive but not 

very clear. 

Response: We have simplified the sentence and clarified our statement. 

 

line 380, page 14: what is meant by ecological integrity? 

Response: Reference to the concept of ecological integrity added (Tierney et al. 2009, line 

409). 

 

line 562-570, page 21: the conclusions are not very convincing, and essentially only state the 

importance of modelling to quantify scaling issues. Could the concluding section be expanded 

by bulleting the main issues and the scaling aspects once more? Can you distinguish between 

scaling issues in space vs. scaling in time? Now the conclusions appear somewhat trivial, 

partly repeating assumptions from the introduction. What is the outcome of model 

applications for forest management? 

Response: As mentioned already above, we have revised and combined the discussion and 

conclusions section in order to improve clarity and increase content depth in the final section 

of the manuscript (while keeping the manuscript as concise as possible, re Reviewer #2). As 

suggested by the Reviewer, the section includes 4+3 bullet points in order to make the main 

findings of our analysis more visible. 

 

 

Reviewer #2 

 

The manuscript topic is limited to spatial and time scales (and don't include hierarchical 

scales). The authors should clarify this early in the manuscript. 



Response: We now explicitly refer to scaling in space and time in the statement of our 

objectives of the paper (line 105). We also mention temporal and spatial scales explicitly in 

the definition of scaling adopted in the manuscript (line 83). 

 

"Transmutation" should be defined. 

Response: We have revised our definition of scaling and have added a sentence and reference 

explaining the term "transmutation" (lines 84-85). We have also included a practical example 

from forest ecosystems for a process transmutation across scales (lines 160-166). 

 

The paper is lengthy, but I can see that any shortening of the text will be at the expense of 

clarity. Maybe this is an option to shorten the manuscript: I appreciate the need to clarify 

basic concepts and the "rope" provides a nice example. However, if the manuscript needs to 

be shortened, this section could be placed in a supplement/appendix and a shortened version 

be used in the text.  

Response: We have revised section 2 also according to the suggestions of the Editor and 

Reviewer #1, and have removed Figure 1 (the rope figure) in order to streamline the paper. In 

addition, we have shortened and streamlined the Discussion and Conclusion sections in line 

with the suggestions of Reviewer #1. However, we refrained from a substantial shortening of 

section 2, not least because the Editor has actually asked for an extension of this (more 

theoretical) review section of the paper.  

 

The manuscript contains many (over-)long sentences that should be split into two or more 

sentences. […] In many cases, these are examples of sentences that will benefit from being 

split (see comment above). 

Response: The manuscript language has been revised with a view to an easier style of 

writing. 

 

In the literature list: The name "Loeffler" is spelled in two different ways (in the two Lischke 

et al. references). 

Response: This is now corrected, consistently using the German Umlaut ö. 

 

Keane et al. 2009 (line 324) is not in the reference list. There may be others, but after one 

omission, I stop checking, but encourage the authors to do so.  



Response: We have added the particular reference, and have once more cross-checked and 

homogenized the entire reference list with the citations in the text. 

 

 "for instance" should have a comma before and after it if used in the middle of a sentence.  

Response: OK. 

 

Some colloquial phrases (e.g., we can say that"; line 172) and value statement (e.g., "naïve") 

should be avoided (e.g., not all assumptions of linearity are naïve). 

Response: We have omitted these statements in the revised manuscript. 
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Abstract 25 

Scaling is widely recognized as a central issue in ecology. The associated cross-scale interactions and 26 

process transmutations make scaling (i.e., a change in spatial or temporal grain and extent) an 27 

important issue in understanding ecosystem structure and functioning. Moreover, current concepts of 28 

ecosystem stewardship, such as sustainability and resilience, are inherently scale-dependent. The 29 

importance of scale and scaling in the context of forest management is likely to further increase in the 30 

future because of the growing relevance of ecosystem services beyond timber production. As a result, 31 

a consideration of processes both below (e.g., leaf-level carbon uptake in the context of climate change 32 

mitigation) and above (e.g., managing for biodiversity conservation at the landscape scale) the 33 

traditional focus on the stand level is required in forest ecosystem management. Furthermore, climate 34 

change will affect a variety of ecosystem processes across scales, ranging from photosynthesis (tree 35 

organs) to disturbance regimes (landscape scale). Assessing potential climate change impacts on 36 

ecosystem services thus requires a multi-scale perspective. However, scaling issues have received 37 

comparatively little attention in the forest management community to date. Our objectives here are 38 

thus first, to synthesize scaling issues relevant to forest management, and second, to elucidate ways of 39 

dealing with such complex scaling problems by highlighting examples of how they can be addressed 40 

with ecosystem models. We have focused on three current management issues of particular importance 41 

in European forestry: (i) climate change mitigation through carbon sequestration, (ii) multi-functional 42 

stand management for biodiversity and non-timber goods and services, and (iii) improving the 43 

resilience to natural disturbances. We conclude that taking into account the full spatio-temporal 44 

heterogeneity and dynamics of forest ecosystems in management decision making is likely to make 45 

management more robust to increasing environmental and societal pressures. Models can aid this 46 

process through explicitly accounting for system dynamics and changing conditions, operationally 47 

addressing the complexity of cross-scale interactions and emerging properties. Our synthesis indicates 48 

that increased attention to scaling issues can help forest managers to integrate traditional management 49 

objectives with emerging concerns for ecosystem services, and therefore deserves more attention in 50 

forestry. 51 
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Key words: scale, scaling, ecosystem modelling, sustainable forest management, multi-scale approach, 52 

emergence 53 

 54 

 55 

1 Introduction 56 

Sustainably providing ecosystem services to society and fostering resilience to changing 57 

environmental conditions are central aspects of current forest ecosystem management. Both 58 

sustainability and resilience are by their very nature multi-scale concepts (see Forest Europe, UNECE, 59 

and FAO 2011). Ecosystem services linked to the utilization of forest biomass, for instance, depend on 60 

the tree- to stand-level extraction of resources. This extraction, however, is only sustainable at the 61 

landscape scale, where patches in different stages of stand development ensure the continuous supply 62 

of such services to society and maintain the integrity of ecosystem functions. Likewise, climatic 63 

changes affect ecosystem processes from the level of tree organs (photosynthesis) to the landscape 64 

level (disturbances), which makes considering their impacts on ecosystems and managing for 65 

increased resilience a multi-scale endeavour (Lindner et al. 2010). Issues of scale are thus central to 66 

sustainable forest ecosystem management (Hobbs 2003; Walker et al. 2004). Widely used concepts in 67 

forest management such as the “Normalwald” model of equally distributed age-classes over a 68 

management unit, or the mean tree model where a tree of average proportions represents a forest stand, 69 

implicitly apply (at times simplistic) scaling assumptions. However, recent developments in ecological 70 

scaling theory have not yet been made operational by the forestry community (Puettmann et al. 2009). 71 

This paper is an effort to redress that lack, and bring an appreciation of scaling issues to the 72 

researchers, model developers and forest practitioners responsible for sustainable forest management. 73 

Theoretical and applied ecologists have long recognized scaling as a crucial issue in ecology. 74 

In fact, scaling has been proposed as the central problem in ecology, unifying population ecology and 75 

ecosystem ecology (Levin 1992). The observed variability in a system is conditional on the scale of 76 

observation (Wiens 1989), and predictability often increases when moving from individual cases to 77 

collectives. Scale is thus fundamental to all ecological inquiry (e.g., Osmond et al. 2004). Scaling of 78 

key ecosystem processes such as the metabolic rate (Enquist et al. 2003) or the frequency – size 79 
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distribution of disturbance (Moritz et al. 2005) have received much attention in ecological research 80 

recently, and are even proposed to be the underlying “laws” of ecosystem structure and functioning 81 

(West et al. 2009). For the purpose of this paper we define scaling as a change in grain and/or extent 82 

with regard to the temporal and/or spatial representation of the system (see O'Neill 1989). Associated 83 

with such changes are issues of cross-scale interactions and transmutations (i.e., changes in processes 84 

or functions as one moves from one level of scale to another (Bissonette 1997)). In simpler terms, 85 

scaling is concerned with changing the viewpoint of observation (close range or long) and the effects 86 

thereof (e.g., on understanding and predicting ecosystems and their services to society). 87 

As a result of the variability in space and time and the non-linear interactions between 88 

processes across scales such a scaling of ecosystem properties is not trivial (Green and Sadedin 2005). 89 

An approach frequently applied to deal with these complexities is simulation modelling. Simulation 90 

models are vehicles for scaling and extrapolation, and a wide variety of approaches have been 91 

developed to address scaling in forest ecosystems (Bugmann et al. 2000; Urban 2005, Lischke et al. 92 

2007). They translate our conceptual understanding about ecosystem functioning and structure into 93 

formal computer code, allowing for a quantitative analysis of its drivers and behaviour. For example, 94 

simulation models can be used as diagnostic tools to attribute the influence of processes acting at 95 

different scales on ecosystem development (e.g., Seidl et al. 2012a). They can give insight into how 96 

short-term variation in environmental drivers scale to long-term ecosystem behaviour (e.g., Sierra et 97 

al. 2009). They are furthermore powerful tools for making predictions about how trajectories of 98 

complex systems emerge from the multi-scale interactions of adaptive agents and their environment 99 

(e.g., Smithwick et al. 2003, Breckling et al. 2006). Although such simulation models have been 100 

predominately developed for research purposes, they are increasingly applied in the context of forest 101 

management planning and decision support (Wolfslehner and Seidl 2010). Models thus offer 102 

considerable potential with regard to a more explicit consideration of scaling issues in forest 103 

management; potential that has, however, as yet only been exploited to a limited extent. 104 

Focusing on scaling in space and time our specific objectives in this contribution are (i) to 105 

highlight scaling issues of importance for managing forest ecosystems, and (ii) to synthesize how 106 

simulation modelling can inform management with regard to such issues. Rather than advancing 107 
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ecological scaling theory our goal here is to present a synthesis and entry point for forest managers 108 

and modellers into concepts of scaling. We aim at raising awareness of the importance of scaling 109 

issues for current problems of forest ecosystem management. To that end we first describe selected 110 

theoretical aspects of scaling in forest ecosystems (e.g., emergence) by means of examples (section 2). 111 

Our aim in this section is not to provide a comprehensive synthesis of the broad literature on scaling 112 

theory in ecology (for a recent synthesis on theoretical aspects of scaling we refer to Chave 2013), but 113 

rather to set the stage for discussing particular scaling issues in forest management in section 3. The 114 

latter section also includes results from simulation exercises, giving examples of how models have 115 

been successfully used to address scaling. We conclude with a discussion and synthesis across 116 

individual issues (section 4), highlighting why scaling should play a (more) prominent role in forest 117 

ecosystem management, and what can be learned from models in this regard.  118 

 119 

2 Scaling in forest ecosystems- a short primer by means of examples 120 

Ecosystems are often viewed in terms of being hierarchies, in the sense that the elements of the system 121 

at a particular level contain elements below or smaller than themselves, and are contained within the 122 

elements above them (Urban et al. 1987). As a starting point for scaling one can assume that these 123 

nested hierarchies are sufficient to describe a multi-scale system, in the sense that the system at one 124 

level is simply the sum of its components at lower levels. Forest ecosystems, however, are vastly more 125 

than just the sum of their parts. In these systems, where higher levels cannot be explained in terms of 126 

characteristics of the lower-level elements (i.e., complex adaptive systems, (Levin 1999)), scaling 127 

becomes a more complex issue. Selected aspects of this complexity with particular relevance to forest 128 

management (and the examples presented in section 3) will be highlighted in the following 129 

paragraphs. 130 

 131 

2.1 Holons and hierarchy 132 

The hierarchical nature of ecosystems can be explained by analogy to a piece of rope, where individual 133 

fibres are twisted together to form yarns, which combine to form strands, which in turn, combine to 134 

form the rope. This nested hierarchy could be extended in either direction, with the fibres being 135 
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formed of cells, and several ropes combining to form a cable. Each of these components are known as 136 

‘holons’ (Koestler 1967; Bland and Bell 2007), defined as units that are simultaneously an entity in 137 

themselves, but are made up of other entities. If we look at a rope (or, through analogy, a forest 138 

ecosystem) from a top-down perspective, it is simply a rope, with various characteristics of stiffness, 139 

suppleness, strength etc. (corresponding to, for instance, the productivity, carbon storage etc. of a 140 

forest). From a bottom up perspective, we can see that the rope is comprised of individual fibres (i.e., 141 

individual trees of a forest) with characteristics of their own. 142 

In its simplest form scaling assumes that if we know the characteristics of an individual strand, 143 

and if we know how many there are, then we know the characteristics of the rope. For some properties, 144 

this is true. The mass of the rope is the sum of the masses of the strands. If we assume that the strands 145 

are identical, then the mass of one strand and the number of strands is sufficient to tell us the mass of 146 

the rope. In other words, it scales linearly with the number of strands. A suitable way to deal with the 147 

considerable heterogeneity in ecosystems (e.g., trees in a stand are hardly identical) with regard to 148 

additive properties is sampling, i.e., if we count the strands of the rope and sample enough of them to 149 

estimate their mean mass then we can estimate the rope’s mass to a certain level of confidence. In the 150 

case of forest ecosystems many properties are, however, asymmetric (Cumming et al. 2008), i.e., with 151 

characteristics and their contributions to processes distributed unevenly among the holons of the 152 

system, which inhibits linear scaling. We can, for instance, derive the stand leaf area from knowing the 153 

average area of a leaf and the number of leaves in a stand (linear scaling), but we cannot in analogy 154 

derive the light absorbed by the canopy via absorption of the average leaf, because light reaching 155 

leaves situated lower in the canopy depends on the absorption of leaves higher up, and averaging 156 

would lead to disregarding the directional nature of the resource gradient. In other words, while leaf 157 

area scales linear and behaves symmetrical, radiation interception is a non-linear process with 158 

asymmetric behaviour (i.e., leaves on top of the canopy contribute disproportionally to absorbed 159 

radiation). If we are now interested in how stand-level radiation interception relates to primary 160 

productivity we can make use of scaling to increase the predictability of a complex system: While the 161 

relationship between radiation interception and primary productivity (i.e., radiation use efficiency) is 162 

highly non-linear at hourly to daily time scales, it scales linearly at monthly time scales (Medlyn et al. 163 
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2003), a fact that is harnessed in widely applied forest production models (e.g., Landsberg and Waring 164 

1997). This change in the relationship between radiation interception and primary productivity with a 165 

change in scale is a prime example of a process transmutation (see Bissonette 1997). 166 

 167 

2.2 Emergent properties 168 

A rope however is more than just the sum of its strands. The interactions between the strands and their 169 

arrangement in relation to each other are what gives the rope its cohesion and stiffness. A simple 170 

bundle of individual fibres would have very different characteristics. Cohesion (the tightness of the 171 

rope’s twists) and stiffness are ‘emergent properties’ that only appear when fibres are combined in a 172 

particular way. Even if we precisely knew the stiffness of every fibre, we could not predict the 173 

stiffness of the rope without a great deal more information that cannot be obtained from studying only 174 

fibres. 175 

This leads us to three fundamentally different characteristics of the rope as a metaphor for 176 

hierarchical systems: Mass is present at both fibre-level and rope-level, and scales linearly across 177 

hierarchies. The same is true for mass-based properties of forest ecosystems, such as the standing 178 

volume. Stiffness is present at both levels, but to predict the stiffness of the rope from that of the fibres 179 

requires knowledge of the interactions between holons at all levels below that of the rope itself. The 180 

resistance to disturbances is an example of a corresponding property of ecosystems. Resistance to 181 

strong winds can be quantified for individual trees, but considerable additional information on the 182 

distribution and spatial arrangement of trees is required to estimate the resistance to wind at the stand 183 

or landscape level. Finally, predicting the rope’s cohesion requires the same multi-level knowledge, 184 

but it is a property that has no meaning at the fibre level. An analogue in forest ecosystems would be 185 

community assembly, which is dependent on both top-down constraints (e.g., climate) and bottom-up 186 

interactions (e.g., local competition for resources between trees), but whose description is only 187 

meaningful at an aggregated level. The system is thus comprised of additive (non emergent) 188 

characteristics and two kinds of emergent characteristics: those that exist at lower levels but cannot be 189 

simply scaled in combination (also referred to as ‘connective properties’ by Reuter et al. (2005)), and 190 

those that come into existence only with the act of combination (i.e., ‘emergent measurements’ sensu 191 
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Bissonette (1997), or ‘aggregational properties’ sensu Reuter et al. (2005)). Just as the concept of 192 

cohesion has no meaning at the strand level of a rope, biodiversity or resilience have no meaning at the 193 

level of an individual organism.  194 

 195 

2.3 Feedbacks and path dependence 196 

It is important to note that we have until now discussed a static system, visualizing scaling over spatial 197 

levels only. However, space and time are linked, and scaling thus frequently requires considering both 198 

dimensions simultaneously. Ecophysiological processes such as photosynthesis and respiration, for 199 

instance, react strongly non-linearly to climate. Scaling up in time via using averaged climatic 200 

variables rather than considering the effect of lower-level variability (e.g., variability at daily to hourly 201 

time scales) on such ecophysiological processes will result in erroneous results, a phenomenon known 202 

as Jensen's inequality (Ruel and Ayres 1999, Sierra et al. 2009). Moreover, feedbacks between 203 

processes at different levels can lead to cascading effects across the hierarchy. For instance, an 204 

important mechanism in tree death from drought is the embolism of individual xylem cells (i.e. when 205 

air bubbles enter the xylem due to exceedingly high xylem water tensions), ultimately blocking water 206 

conductance and transport (McDowell et al. 2008). The embolism of individual cells leads to increased 207 

pressure and higher vulnerability of the remaining vessels (a phenomenon called cavitation fatigue), 208 

and thus exerts an amplifying feedback that can eventually lead to the death of the entire tree 209 

(Anderegg et al. 2013). At the level of ecosystems, insights on the importance of such cascading 210 

effects and cross-scale interactions have increased the awareness of nonlinear system trajectories and 211 

tipping points (Pietsch and Hasenauer 2005; Andersen et al. 2009), and underline the possibility of 212 

alternative stable states as a result of amplifying feedbacks to external drivers (Hirota et al. 2011). 213 

An additional aspect to consider in scaling over temporal scales is that forest ecosystems can 214 

have a long-term system memory (via legacies such as deadwood pools, seed banks, a skewed age 215 

distribution, or a spatially heterogeneous species distribution), causing considerable inertia and 216 

distinctly influencing ecosystem dynamics (Franklin et al. 2002). Small initial differences, e.g., in a 217 

forests’ species composition, can lead to alternative trajectories of forest development, a phenomenon 218 

known as path-dependence (e.g., Eastaugh and Hasenauer 2011; Donato et al. 2012).  219 
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In the following section we proceed to give examples of how the concepts of scaling theory 220 

described above (issues of heterogeneity, asymmetry, emergence, nonlinearity, feedbacks, and path-221 

dependence) relate to concrete, real-life issues in forest management. 222 

 223 

 224 

3 Scaling issues in forest ecosystem management 225 

The general process of forest ecosystem management consists of planning, implementing, monitoring, 226 

and evaluating management measures. The scaling issues in this section mostly relate to the 227 

management planning process, which comprises problem identification, alternative development, 228 

alternative selection, and authorization of implementation (Rauscher et al. 2000). Our analysis here 229 

focuses on the first two processes of management planning, as these are the main domain of ecological 230 

indicators and models (Wolfslehner and Seidl 2010). Table 1 gives an overview of the scaling issues 231 

addressed in the following sections and their relation to the steps of the management planning process. 232 

 233 

3.1 Scaling process information to the level of information needs 234 

3.1.1 The scaling issue 235 

A prerequisite for effective forest ecosystem management is a comprehensive knowledge about the 236 

system, founded in an accurate description of states and trajectories of relevant ecological indicators 237 

(e.g., Forest Europe, UNECE, and FAO, 2011). Traditional indicators such as the amount of stem 238 

wood volume are directly observable and draw upon the mensurational experience of centuries 239 

(Mohren et al. 2012). However, satisfying the information needs with regard to a growing number of 240 

ecosystem functions and services of relevance for sustainable forest management (sensu MCPFE 241 

1993) is more complex, since the grain and extent of ecosystem processes (and their measurement) 242 

often differ from those relevant in management decision making. Despite our advances in 243 

understanding and measuring leaf-level C exchange from seconds to days, for instance, management 244 

requires integrated information on the C dynamics of stands or landscapes over years and decades. 245 

Scaling operations are thus frequently required to derive the information needed in operational 246 

management planning. While linear scaling assumptions are commonly used, their appropriateness 247 
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and effects on management decisions are rarely explicitly scrutinized. Here we use the example of 248 

forest C sequestration – an increasingly relevant ecosystem function in the context of climate change 249 

mitigation (Canadell and Raupach 2008) – to describe how modelling can address heterogeneity and 250 

asymmetry in the context of providing information on C for management decision making. 251 

 252 

3.1.2 Example 1: Managing for climate change mitigation 253 

Empirical models such as yield tables are designed to describe forest growth over time. They assume 254 

constant site conditions for a given stand, and were never intended to address possible changes due to, 255 

for example, global warming or changing atmospheric concentrations of nutrients such as nitrogen or 256 

carbon dioxide. Incorporation of such factors calls for the explicit consideration of the nonlinear and 257 

interacting processes driving the fluxes of carbon, nitrogen, water, and energy in forest ecosystems. 258 

Furthermore, traditional approaches such as yield tables focus on a single ecosystem compartment, 259 

bole wood, and thus are not sufficient to represent the forest C cycle and fulfil the information needs 260 

of managing for climate change mitigation. Their most important lack in this regard is the inability to 261 

track changes in soil, litter, and deadwood carbon pools.  262 

Ecophysiological process models can combine data and process understanding from many 263 

different scales (Fontes et al. 2010), harnessing knowledge of processes such as photosynthesis 264 

(Farquhar et al. 1980; de Pury and Farquhar 1997), stomatal conductance (Jarvis 1976) and 265 

autotrophic respiration (Ryan 1991). Changes in temperature or availability of nitrogen and carbon 266 

dioxide are thus accounted for at the cellular level, with varying temporal resolution. The 267 

biogeochemical (BGC) model BIOME-BGC (Thornton et al. 2005), for instance, models these 268 

interactions on a daily time step, while allocation proportions of carbon to ecosystem compartments 269 

(stems, coarse roots etc.) are determined on an annual basis according to various empirical and 270 

modelled relationships (Running and Coughlan 1988).  271 

These processes have been scaled to the stand (Cienciala and Tatarinov 2006), national 272 

(Lagergren et al. 2006), continental (VEMAP Members 1995) and even up to the global scale 273 

(Running and Hunt 1993) via different BGC models. As the grain of the assessment increases, so does 274 

the within-grain variability; large ‘grid-based’ simulations implicitly assume that processes over areas 275 
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of many square kilometres can be represented and modelled adequately by using average values as 276 

model inputs – a clear assumption of linearity that can lead to biased results (see for instance Turner et 277 

al. 1996). Many process models are however scale indeterminate, in that the user may either define the 278 

grain assuming that any within plot variation is irrelevant, or leave the grain undetermined. The 279 

outputs are thus akin to individual point samples from an infinite population. Even if the per-point 280 

outputs are all precise and accurate, the question of how representative they are of the wider 281 

population should be carefully considered. At times the undetermined ‘point-based’ approach is 282 

necessary, such as when using forest data derived from angle-count sampling (Bitterlich 1948), which 283 

itself does not apply to a particular fixed area. However, many plots must be aggregated to define the 284 

population that is being measured and modelled – the meaning in the data emerges from this statistical 285 

aggregation. The appropriate level of aggregation for the outputs to have meaning will depend on the 286 

statistical variation in the input data (cf. Kennedy et al. 2006) as well as the level of accuracy which 287 

should be achieved.  288 

Data inputs for such models are thus crucially important to capture asymmetry and 289 

heterogeneity in ecosystems, and they may come from various scales. For modelling of particular 290 

research plots it is generally possible to collect the necessary data from the plots, but in applications 291 

over wider geographic areas this is more complex. For simulations over large areas the model can be 292 

run over a large number of points, in order to explicitly account for the heterogeneity of the landscape. 293 

Eastaugh et al. (2011) for example applied the BIOME-BGC model to Norway spruce (Picea abies 294 

(L.) Karst.) forests across Austria by operating the model on 1188 plots of the Austrian national forest 295 

inventory (NFI, Gabler and Schadauer 2006). Input data may be derived from downscaled gridded 296 

data (i.e., the Austrian nitrogen deposition maps of Placer and Schneider 2001) and interpolated to the 297 

particular sites of interest (Petritsch and Hasenauer 2007). To account for the asymmetry in the 298 

contribution of individual patches to the landscape-scale C exchange, it is useful to consider them 299 

explicitly rather than assuming average conditions. However, it is important to recognize that if input 300 

data is drawn from sampling schemes such as an NFI, each datum will only be accurate for the precise 301 

point where it was measured. The points cannot be said to be ‘representative’ of a wider area (e.g., a 302 

grid cell surrounding the point), but are each simply single random samples from the broader 303 
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population. The data only acquire meaning across larger scales when sufficient points have been 304 

aggregated, and the strength of the model prediction is largely influenced by the statistical adequacy of 305 

the sample set (Liang et al. 2012). These issues apply regardless of the sampling scheme or any 306 

stratification method that may be used. 307 

In summary, managing for climate change mitigation requires a synthesis and quantitative 308 

integration of leaf-level processes understanding to forest stands and landscapes. Ecophysiological 309 

process models allow the application of what is known about carbon fluxes from experimental or 310 

monitoring sites to develop better understanding of ecosystem flux dynamics and carbon storage in 311 

forests over larger areas (e.g., Hasenauer et al. 2012). Crucially important in this regard is to choose an 312 

appropriate grain to capture the heterogeneity in the landscape and its potentially asymmetric 313 

contribution to ecophysiological processes.  314 

 315 

 316 

3.2 Scaling management objectives to management entities 317 

3.2.1 The scaling issue 318 

The increasing importance of C storage in ecosystem management is just one example of the changes 319 

in societal demands on forest ecosystems in recent decades. While the prime objective of forestry 320 

since the beginnings of the discipline was sustainable timber production (Perry 1998), today’s forests 321 

are valued by society for providing a multitude of ecosystem services (e.g., Forest Europe, UNECE, 322 

and FAO, 2011). Consequently, the complexity of forest management decision making has increased 323 

considerably over recent decades. While the traditional spatial entity of timber production was the 324 

stand, the broadening of the management paradigm from sustainable timber yield to sustainable forest 325 

management (sensu MCPFE 1993) also considerably widened the range of scales of immediate 326 

relevance to forest management. The imperative of producing timber under a regime of close-to-nature 327 

forests, for instance, has brought individual tree attributes into the focus of forest management (i.e., 328 

the level of the management objective is smaller than the level of the management entity; see 329 

Hasenauer (2006)). In contrast, as a result of the importance of conserving biodiversity in managed 330 

forests, the landscape scale has also received considerable attention (where the level of the 331 
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management objective is larger than the level of the management entity; see Loehle et al. (2002)). 332 

Nonetheless, operational forest management is still almost exclusively executed at the stand scale, not 333 

least because machinery has been optimized for applications at this scale (e.g., Suchomel et al. 2011), 334 

and a large body of experience with stand-centred silvicultural systems exists. A major scaling issue is 335 

thus how these new objectives (pertaining to a variety of scales) can be folded into operational stand 336 

level management. The following examples highlight such scaling issues with regard to levels both 337 

hierarchically below and above the stand level, and demonstrate how simulation modelling can help 338 

managers to deal with issues of bottom-up emergence and top-down constraints. 339 

 340 

3.2.2 Example 2: Achieving multifunctionality in stand level management 341 

In order to be operationally addressed at the stand level, multi-purpose forest management requires the 342 

consideration of both higher level constraints and lower level processes (see also Walker et al. 2004). 343 

In other words, if not only timber production but also the conservation of biodiversity and the 344 

provisioning of non-timber goods and services are important objectives, stand level management 345 

decisions need to be evaluated with regard to both their tree level consequences and landscape level 346 

context. The scale above the stand scale is particularly important for conserving biodiversity in 347 

managed forests, since connectivity and spatial patterns on the landscape are important attributes for 348 

species habitat (Lindenmayer and Franklin 2002). To aid conservation of biodiversity it has been 349 

proposed, for instance, to keep key system properties (e.g., deadwood stores, species composition, 350 

share of old forests) within their natural historical range of variability (HRV). This concept assumes 351 

that the HRV describes the conditions that many species of conservation value have co-evolved with 352 

and are adapted to, while acknowledging that ecosystems are never static by specifying a range of 353 

conditions rather than a singular target (Keane et al. 2009). The assessment of the HRV frequently 354 

relies on landscape simulation models which are able to factor out historical interference by 355 

management (e.g., in historically strongly human-dominated areas such as many parts of Europe). 356 

Furthermore, such models can address the complex spatio-temporal drivers that constitute the HRV 357 

explicitly (e.g., Wimberly et al. 2000, Nonaka and Spies 2005). It is important to note that the HRV 358 

cannot be assessed at the stand scale; it is an emergent property at the landscape scale. The HRV thus 359 
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provides a top-down target corridor for evaluating stand-level management decisions in the context of 360 

biodiversity conservation. However, in addition to using historical conditions as a yardstick for 361 

management, conservation in managed forests also requires a proactive consideration of potential 362 

vulnerabilities to future changes in the environment (Lexer and Seidl 2009). A particularly important 363 

aspect in this regard is landscape connectivity, not least since climate change might require species to 364 

migrate rapidly (Milad et al. 2011). Spatially explicit simulation approaches can help to determine 365 

migration rates and corridors considering scenarios of climate change (e.g., Meier et al. 2012; Hamann 366 

and Aitken 2012). Such analyses at the landscape scale provide additional, spatially explicit top-down 367 

constraints to stand level management, and grant an operational consideration of conservation 368 

objectives at the stand scale. 369 

While the previous paragraph has illustrated the importance of top-down constraints for multi-370 

purpose forest management at the stand level, bottom-up processes are frequently of equal importance, 371 

e.g., in the context of sustainably providing many (non-timber) goods and services. To exemplify the 372 

latter aspect we here relate a case study from the Belasitsa mountains of southern Bulgaria, contrasting 373 

traditional coppicing (which epitomizes homogenous stand level management, cf. Zlatanov and Lexer 374 

(2009)) with a spatially heterogeneous group selection system (i.e., management at the level of 375 

individual trees). The study site is located at approximately 450 m asl., and the current vegetation can 376 

be described as uneven-aged mixed broadleaved forest (mainly consisting of Castanea sativa Mill., 377 

and Quercus petraea (Mattuschka) Liebl., Figure 1a) with a distinct share of individuals originating 378 

from vegetative propagation. An important objective for management in these stands is to contribute 379 

to local fuel wood supply (via coppicing), while maintaining a sufficient number of generatively 380 

regenerated C. sativa individuals, which are of high value for fruit production. The latter individuals 381 

further contribute to forest health in these ecosystems, as they are known to be more robust than 382 

vegetatively regenerated individuals against the spreading disease of chestnut blight (Cryphonectria 383 

parasitica (Murrill) Barr.).  384 

To address how these multiple management objectives (i.e., timber, fruits, forest health) 385 

could best be met, a simulation experiment with the individual-based model PICUS v1.5 (Lexer and 386 

Hönninger 2001; Seidl et al. 2005) was conducted. PICUS combines detailed three-dimensional light 387 
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regime calculations with physiological principles of growth modelling, and was recently extended to 388 

include generative regeneration (resprouting) and coppice management. To illustrate the effects of 389 

scale in the management system (stand-level vs. plot/ tree-level management) a typical clear cut 390 

(coppice) system was simulated and contrasted it with an irregular group selection system. Simulation 391 

results document that irregular management at the sub-stand scale was considerably more efficient in 392 

maintaining a satisfactorily stocking with seed-originating C. sativa (Figure 1b,c). Early gap-cuts, for 393 

instance, create regeneration opportunities for seed-originating individuals and thus foster their 394 

continued occurrence in the canopy (cf. path-dependence), while selective thinning further promotes 395 

healthy and vital individuals. Scaling management down to the individual tree level thus resulted in a 396 

better fulfilment of the management objectives with regard to fruit production, and facilitated forest 397 

health in this example (see also Zlatanov 2006). 398 

Overall, these examples from biodiversity conservation and novel coppice management demonstrate 399 

that both the consideration of top-down constraints (e.g., landscape-scale migration corridors) as well 400 

as bottom-up emergence (e.g., stand-level species composition emerging from tree-level management 401 

decisions) is crucial for multi-purpose forest management at the stand scale. They furthermore 402 

illustrate the utility of simulation models in aiding stand-level management with regard to these 403 

scaling issues. 404 

 405 

 406 

3.3 Managing for emergent ecosystem properties 407 

3.3.1 The scaling issue 408 

A key aspect of sustainability is the conservation of ecological integrity (Tierney et al. 2009) in order 409 

to maintain ecological functions over time. Consequently, important considerations of sustainable 410 

forest management are related to fostering, maintaining, or improving ecological conditions and 411 

processes. In other words, ecosystem management is not only concerned with managing for the 412 

extraction of natural resources, but equally with sustaining the ecological potentials that ensure the 413 

ability to obtain these ecosystem goods and services also in the future. Ecological theory suggests that 414 

stability in ecological functions over time is an emergent property of processes across multiple levels 415 
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of organization in general, and of the interplay between fast and slow processes in ecosystems in 416 

particular (Levin 1999; Holling and Gunderson 2002). Ecological resilience, defined here as the ability 417 

of a system to absorb changes (in state variables, driving variables, and/ or system parameters), and 418 

still persist in its integrity and functioning (Holling (1973), but see also Grimm and Wissel (1997), 419 

Brand and Jax (2007)). This resilience is an emergent property of an ecosystem, one that cannot be 420 

defined simply by the attributes of some ecosystem components. Since resilience is inherently scale-421 

dependent (O'Neill 2001), its management too requires a multi-scale perspective. Not surprisingly, 422 

addressing the complex interactions across scales that constitute ecological resilience is a challenging 423 

task, and studies have shown that decision makers, when presented with complex management 424 

problems, tend to revert to short-cut solutions (Hoogstra and Schanz 2008) or simplistic ‘one size fits 425 

all’ regulatory responses (Sayer and Maginnis 2005). Yet, considering the increasing pressure on 426 

ecosystems from global change, managing for stability and resilience will likely increase in 427 

importance in the future (Millar et al. 2007). Addressing aspects of cross-scale emergence and 428 

complexity more explicitly in management is thus increasingly important (Puettmann et al. 2009). 429 

 430 

3.3.2 Example 3: Improving resilience to natural disturbances through management 431 

Natural disturbances (abrupt and often large-scale events of tree mortality and biomass destruction) are 432 

important constituents of natural forest ecosystem dynamics (Turner 2010). However, they are 433 

increasingly a concern for forest management, as disturbance regimes have been intensifying in many 434 

forest ecosystems (Schelhaas et al. 2003), fuelled by recent changes in climate as well as in forest 435 

structure and composition (Seidl et al. 2011a). Scenario analyses indicate that a trend towards more 436 

frequent and severe disturbances will likely continue with progressing climate change (e.g., Blennow 437 

and Olofsson 2008; Seidl et al. 2009), with the potential for detrimental effects on ecosystem services 438 

including C storage and timber production (Seidl et al. 2008; Pfeifer et al. 2011). Accounting for 439 

disturbances in forest management planning is thus imperative for sustainability under changing 440 

environmental conditions. 441 

With regard to disturbance management, the pertinent scaling issues for foresters are twofold. 442 

Firstly, while management can positively influence traits of stability at the individual-tree level and 443 
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reduce stand-level predisposition to disturbance (Jactel et al. 2009), disturbance regimes play out at the 444 

landscape level, and it is the spatial dynamics at this scale that to a large degree drive disturbance 445 

patterns and damages. Secondly, a variety of disturbance agents interact (in space and time) to form a 446 

disturbance regime, making the task of reducing disturbance impacts a multi-scale effort. Process-447 

based multi-scale models, for which examples are given by Kramer et al. (2003) and Seidl et al. 448 

(2012b), can help managers to address these issues via their ability to consistently integrate processes 449 

across scales, predict resulting systems trajectories, and highlight spatio-temporal trade-offs of 450 

management strategies with regard to resilience to disturbances. 451 

To illustrate this ability we here give an example of simulating the ungulate browsing – 452 

wildfire regime of a mixed Scots pine (Pinus sylvestris L.) – broadleaved forest landscape with 453 

heathlands in the Veluwe region, central Netherlands, using the model FORSPACE (Kramer et al. 454 

2003; 2006). FORSPACE simulates vegetation as vertically layered cohorts (at 30 m horizontal 455 

resolution), employing a radiation use efficiency approach to derive ecosystem productivity. 456 

Herbivory is modelled by keeping track of the population dynamics of different browser species, their 457 

energy intake (consumption of vegetation) and loss (respiration, mortality), as well as their fecundity 458 

and progeny. Wildfire is driven by dynamically simulated fuel availability, and spatial fire spread is 459 

calculated depending on fuels and vegetation structure. Impacts on vegetation are estimated in relation 460 

to fire intensity. 461 

With regard to the above outlined scaling issues simulations with FORSPACE underscored the 462 

importance of a multi-scale perspective on emergent properties of ecosystem resilience and stability. 463 

Stand level management measures aimed to reduce the negative effects of herbivory (fencing) and 464 

foster regeneration (gap cuts), for instance, actually increased the overall disturbance pressure on the 465 

landscape, as a result of a reduced viable area for browser populations (exclusion through fencing) and 466 

improved foraging conditions (abundant forage in gaps) exerting positive feedbacks on browser 467 

populations (Kramer et al. 2006). Further analyses documented strong interactions between small- and 468 

large-scale disturbance agents (i.e., browsing and wildfire), highlighting the importance of cross-scale 469 

interactions on ecosystem trajectories. Simulated large-scale disturbances by wildfire were, for 470 

instance, negatively correlated with small-scale browsing through a reduction in available fuel on the 471 
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landscape in general, and of ‘ladder-fuels’ (i.e., fuels that allow the fire to vertically develop from a 472 

ground fire to a canopy fire) in particular (Kramer et al. 2003). Furthermore, under a regime of high 473 

fire frequency and high population density of browsers the simulated system was shown to switch 474 

from a forested landscape to a sparsely vegetated open woodland, a behaviour that is not displayed if 475 

disturbance by browsing or wildfire individually is considered (Figure 2). In other words, if 476 

disturbances at one level (here: wildfires) are neglected in management decision making for the 477 

Veluwe landscape, the capacity of the system to return to a pre-disturbance state (i.e., its resilience) 478 

might be overestimated, and the risk of its flipping into an alternative stable state – with possible 479 

detrimental effects on ecosystem services – might be disregarded.  480 

 481 

 482 

4 Discussion and conclusions 483 

4.1 Why scaling should play a prominent role in forest ecosystem management 484 

Our review of selected management problems in section 3 highlights that scaling is central to many 485 

current issues in forest management. Scaling has a well-defined theoretical background in ecology 486 

(Urban et al. 1987; Wiens 1989). Yet the diffusion of theory into applications is often a slow and 487 

gradual process, not at least because theory has the potential to fail practitioners in manifold ways (see 488 

Driscoll and Lindenmayer 2012). In our analysis we have found that a (more) explicit consideration of 489 

scaling in forest management could help managers in at least four regards: 490 

 491 

(i) To avoid spurious interpretation of data 492 

Forestry, although traditionally a data-limited field, is increasingly benefiting from the dawning age of 493 

"big data" (Howe et al. 2008) in the form of an increasing availability of remote sensing products 494 

(Wulder et al. 2012) and a wider public availability of National Forest Inventory data. However, as 495 

highlighted in the context of inventory plot information in section 3.1, to make sense of data their 496 

associated scale and context need to be understood. Put more generally, awareness of how ecosystem 497 

services emerge from underlying processes (Currie 2011), and how heterogeneity and asymmetry 498 
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affect the spatio-temporal provision of these services, will help managers to determine appropriate 499 

scales to monitor and manage ecosystems (Urban et al. 1987). 500 

 501 

(ii) To omit scaling errors and reduce uncertainty 502 

Assuming linear scaling, e.g., via averaging or adding up information across scales, can oftentimes 503 

lead to errors in assessing ecosystem properties. In the context of forest management planning, 504 

neglecting scaling issues in comparing alternative management strategies can thus introduce a 505 

significant bias into the decision process (Wolfslehner and Seidl 2010). Likewise, ignoring feedback 506 

mechanisms and path dependence in temporal scaling can create an illusion of stability and facilitate 507 

ignorance of imminent tipping points (see section 3.3.2). Considering scale and scaling more explicitly 508 

in management planning can thus help to reduce uncertainty and increase the robustness of 509 

management decisions. 510 

 511 

(iii) To improve the integration of multiple ecosystem services 512 

Considering scales above and below the stand scale in management decision making has significant 513 

potential to improve management performance with regard to a variety of ecosystem services. While 514 

traditional stand level management was developed with one single ecosystem service in mind, namely 515 

sustainable timber production, considering scales from tree- to landscape-level can benefit ecosystem 516 

services from fruit production to biodiversity conservation (see section 3.2.2). Such ecosystem 517 

services beyond timber are gaining importance, but their integration with more traditional 518 

management objectives remains a major challenge. The explicit consideration of multiple scales in 519 

management can help to foster a more integrated approach of ecosystem services provisioning, and 520 

allows the assessment of the inherent trade-offs more explicitly and comprehensively. 521 

 522 

(iv) To address novel management objectives 523 

Objectives such as managing for increased resilience and integrity of ecosystems, albeit founded in 524 

mature ecological theory (Holling and Gunderson 2002), are relatively new additions to the growing 525 

portfolio of objectives to be met by forest managers. Nonetheless, the potential vulnerability of 526 
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ecosystem services to climate change (Schröter et al. 2005; Seidl et al. 2011b) makes their timely 527 

mainstreaming into management practices all the more important (Millar et al. 2007). Such properties 528 

only emerge at scales larger than the stand scale, yet are fundamentally dependent on a variety of 529 

agents and processes and their cross-scale interactions. Understanding (and subsequently managing) 530 

these properties thus requires a multi-scale perspective explicitly addressing the complexity of forest 531 

ecosystems. 532 

 533 

It is important to note that we have focused solely on ecological issues of scale and scaling here. Yet 534 

also social, economical, and political aspects of scale are of relevance for forest management (see #1, 535 

#5 and #6 in Table 1). A concerted, multi-scale management, for instance, is often complicated by 536 

multiple ownerships particularly in the highly fragmented landscapes of Europe, requiring cooperation 537 

and organizational structures facilitating landscape-scale planning (Fischer and Charnley 2012). 538 

 539 

4.2 What we can learn from models 540 

Recognizing the importance of scaling for forest management inevitably leads to the question how to 541 

operationally tackle this at times daunting task. We here argue that ecosystem models are powerful 542 

tools to address scaling issues in forest management, as they are designed to consistently 543 

(mathematically) integrate processes and their dynamic interactions across scales. In particular, they 544 

can support scaling in management with regard to at least three major aspects: 545 

 546 

(i) Assess quantities that cannot be directly measured 547 

We are currently unable to physically measure crucial ecosystem components such as the ecosystem C 548 

cycles at the scales required for management decision making (e.g., in the context of climate change 549 

mitigation). We thus require models to integrate observed proxies (e.g., Hall et al. 2012) or scale 550 

measurements and process understanding at the level of tree organs to these respective scales of 551 

interest (e.g., Running and Coughlan 1988). Moreover, models have also considerable advantages in 552 

assessing ecosystem characteristics such as resilience and quantifying management indicators such as 553 
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the historical range of variability (e.g., Nonaka and Spies 2005). They can thus serve as instruments to 554 

synthesize the information needs of the manager from a complex, multi-level reality. 555 

 556 

(ii) Account for system dynamics and changing conditions 557 

Climate change affects ecosystem processes at multiple levels, and its effect on ecosystem services is 558 

likely going to depend on the interactions and feedbacks between the responses of individual processes 559 

across different scales. Facing a “no analogue” future, experience-based knowledge is no longer 560 

sufficient to assess potential future trajectories of ecosystems. Furthermore, global change 561 

simultaneously affects ecosystem processes at a variety of scales, rendering the consideration of cross-562 

scale interactions and feedbacks - and thus scaling - of paramount importance in assessing impacts on 563 

ecosystems (Chave 2013). Models have great potential in this regard, not at least because they offer 564 

efficient means to conduct scenario analyses and allow managers to ask “what if” questions, e.g. with 565 

regard to species migration or changing disturbance regimes, and incorporate the lessons learned in 566 

their management considerations. 567 

 568 

(iii) Address the increasing complexity in ecosystem management 569 

Ecosystems are complex (in the sense of containing diverse agents interacting among each other and 570 

with a heterogeneous environment), a fact that has recently been “rediscovered” by foresters (see 571 

Puettmann et al. 2009). However, this also leads to increasing complexity for management decision 572 

makers, who will need to consider an increasing number of processes, interactions, services and 573 

constraints in decision making. Models can help managers to navigate this complexity and to make 574 

informed and transparent decisions on how ecological complexity at different levels contributes to 575 

ecosystem services. Another aspect adding to the complexity experienced by the management decision 576 

maker is the accelerated broadening of the set of forest services demanded by society. Social 577 

uncertainties, i.e., the unknowable nature of future local, regional, and global preferences of society 578 

for ecosystem services, were recently found to be in at least the same order of magnitude as climatic 579 

uncertainties (Seidl and Lexer 2013). Models can help in this regard to quantify trade-offs between 580 
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current (and potential future) ecosystem services, and in so doing increase the robustness of 581 

management strategies.  582 

 583 

It has to be noted that while scaling is a strength of ecosystems models in the context of management, 584 

it is at the same time a major challenge for modelling. For instance, while thinning and harvesting 585 

operations have by far the most profound impacts on forest ecosystems in most parts of the world 586 

(most particularly at small scales), their incorporation into process modelling is still in its infancy, and 587 

relies largely on a priori assumptions or large scale statistical modelling (i.e., Eastaugh and Hasenauer 588 

2012). This illustrates that there is no one single model (or family of models) that particularly 589 

commends itself to address scaling issues in forest management; the specific question, ecosystem 590 

service, and study system at hand determine which models are best suited to address a particular 591 

scaling issue. This is reflected in section 3, where we have highlighted examples using a variety of 592 

different models, all with their particular strengths and domains of application. It is thus important to 593 

choose and apply models wisely. As good decision making ultimately depends on the analyst and not 594 

the model (Nelson 2003) asking questions about the scales, processes, and interactions addressed by a 595 

model can be seen as a focused scoping process for management problems. Using models to more 596 

explicitly recognize the spatio-temporal hierarchies of ecosystems can thus be an important step 597 

towards an ecosystem-oriented stewardship of forests. 598 

 599 
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Figure captions 868 

 869 

Figure 1: (a) Diameter distribution (year 2000) of an overstood coppice with standards in the Belasitsa 870 

mountains, Bulgaria. Simulated composition of species and their origin (vegetative or generative 871 

propagation) simulated over 100 years under (b) traditional coppice management and (c) group 872 

selection management. Note that mortality from chestnut blight was not explicitly considered in these 873 

simulations. 874 

 875 

 876 

Figure 2: State-space diagram of producers (horizontal) versus consumers (vertical) in the Veluwe 877 

landscape (approximately 10,000 ha). Ignoring large-scale disturbances from wildfire (panel a) the 878 

system trajectory gravitates around a single attractor (a forest landscape), while if fires are considered 879 

(panel b) a flip towards an alternative stable state (open woodland) is possible. For more details see 880 

Kramer et al. (2003; 2006). 881 
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 1 

Table 1: Selected scaling issues in the stages of the forest management planning. 2 

# Process
1
 Description highlighting scaling issues 

1 Problem identification Management problems are identified. Scaling issues in this planning 

stage are not explicitly addressed in this contribution, as the 

management problems addressed in section 3 were selected a priori. 

2 Analysis of current condition In order to assess the current condition with regard to the 

management problem at hand (e.g., climate change mitigation) 

information on ecological processes (often available at scales above 

or below the scale of management decision making) need to be 

scaled to the level where the information is needed by the decision 

maker (section 3.1). 

3 Identification of desired future 

condition 

The desired future condition needs to be deduced from the high-level 

management goal. In this step of translating the desired future 

condition to the operational unit of forest management (i.e. the stand 

level) both top-down constraints from higher hierarchical levels as 

well as bottom-up emergence from lower levels need to be accounted 

for (section 3.2). 

4 Design and assessment of 

management alternatives 

Alternatives are designed and assessed with regard to their potential 

to achieve the desired future condition. If the management goal is an 

emergent phenomenon (such as, e.g. improved resilience) rather than 

an additive system property, the assessment of alternatives needs to 

explicitly consider the cross-scale interactions and spatio-temporal 

complexity underlying such phenomena (section 3.3). 

5 Selection of an alternative Judgment of the alternatives based on values, beliefs, and 

preferences, and alternative selection. Scaling issues in this stage are 

not explicitly addressed in this contribution. 

6 Authorization to implement Approval of the decision is sought inside (and outside) the 

institutional hierarchy. Scaling issues in this stage are not explicitly 

addressed in this contribution. 

1 modified from Rauscher et al. (2000) 3 

Table1
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