
UNIVERSITÀ DEGLI STUDI DI MILANO

PHD SCHOOL ON COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE "GIOVANNI DEGLI ANTONI"

PHD IN COMPUTER SCIENCE - XXX CYCLE

DOCTORAL THESIS

Ontology-based Consistent Specification
and Scalable Execution of Sensor Data

Acquisition Plans in Cross-Domain IoT
Platforms

INF/01

Author:
Luca FERRARI

Advisor:
Prof. Marco MESITI

Co-Advisor:
Prof. Stefano VALTOLINA

School Director: Prof. Paolo BOLDI

Academic Year 2016/17

http://www.unimi.it




iii

UNIVERSITÀ DEGLI STUDI DI MILANO

Abstract

Computer Science

Doctor of Philosophy

Ontology-based Consistent Specification and Scalable Execution of Sensor Data
Acquisition Plans in Cross-Domain IoT Platforms

by Luca FERRARI

Nowadays there is an increased number of vertical Internet of Things (IoT) applica-
tions that have been developed within IoT Platforms that often do not interact with
each other because of the adoption of different standards and formats. Several ef-
forts are devoted to the construction of software infrastructures that facilitate the in-
teroperability among heterogeneous cross-domain IoT platforms for the realization
of horizontal applications. Even if their realization poses different challenges across
all layers of the network stack, in this thesis we focus on the interoperability is-
sues that arise at the data management layer. Starting from a flexible multi-granular
Spatio-Temporal-Thematic data model according to which events generated by dif-
ferent kinds of sensors can be represented, we propose a Semantic Virtualization ap-
proach according to which the sensors belonging to different IoT platforms and the
schema of the produced event streams are described in a Domain Ontology, obtained
through the extension of the well-known ontologies (SSN and IoT-Lite ontologies)
to the needs of a specific domain. Then, these sensors can be exploited for the cre-
ation of Data Acquisition Plans (DAPs) by means of which the streams of events
can be filtered, merged, and aggregated in a meaningful way. Notions of soundness
and consistency are introduced to bind the output streams of the services contained
in the DAP with the Domain Ontology for providing a semantic description of its
final output. The facilities of the StreamLoader prototype are finally presented for
supporting the domain experts in the Semantic Virtualization of the sensors and for
the construction of meaningful DAPs. Different graphical facilities have been devel-
oped for supporting domain experts in the development of complex DAPs. The sys-
tem provides also facilities for their syntax-based translations in the Apache Spark
Streaming language and execution in real time in a distributed cluster of machines.

HTTP://WWW.UNIMI.IT




v

Acknowledgements
I would really want to thank my supervisor Marco. In the last three years we en-
countered considerable difficulties, but thanks to him, to his perseverance, we were
able to complete this course of study. We spent also a lot of funny moments and I
think that now I am not only a Doctor in Philosophy, but I am a better person. I’d like
to thank my co-supervisor Stefano that continuously supported me and stimulated
me in order to achieve the target goals.

I need to thank Professor Bruno Apolloni and Professor Simone Bassis that con-
vinced me to make the decision to start a doctorate and helped me in the first phases
of my PhD.

During the last three years I worked and I collaborated with a lot of researchers and
I have to thank them all. In particular Paolo Perlasca and Barbara Rita Barricelli,
to whom I have continuously asked for help and advices and have always listened
to me and always helped me. I need to thank also Professor Koji Zettsu for the
opportunity he gave me to spend 3 months at the National Institute of Information
and Communications Technology (NICT) in Kyoto and Doctor Minh-Son Dao and
Doctor Sulayman K. Sowe for the help and support they gave me during that period.

I have to thank Doctor Luisa Ferrario and Doctor Anna Paola Bocciarelli who gave
me the opportunity to finish my PhD when I started my work at the Divisione Sis-
temi Informativi and all the DivSI colleagues.

I can not forget to thank Lara for the huge amount of time we spent at the phone
during my "crises". She always convinced me that giving up was not the right choice.

Another important person to thank is Matteo. In the last few years I spent more
time with him (and Davide playing together for the group La Melissa) than with my
family and he always supported me and tolerated all my strange and, sometimes,
stupid ideas.

Finally I have to thank Serena. The most amazing person I have met so far and
thanks to her, to the moments we spent together, has made these last months happier
and carefree.





vii

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

Introduction 1

1 IoT Platforms. Current Features and Future Trends 13
1.1 IoT Architecture Building Blocks . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 The Device Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.2 The Gateway Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.3 The Integration Layer . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.4 The Application Layer . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 IoT Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.1 Vertical IoT Platforms . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.2 Cross-Domain IoT Platforms . . . . . . . . . . . . . . . . . . . . 31

1.3 Comparison of IoT Platforms . . . . . . . . . . . . . . . . . . . . . . . . 36
1.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Semantic Interoperability in the IoT Context 41
2.1 The Issues of Interoperability . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.1 IoT Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1.2 Semantic Interoperability . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Ontologies for IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.1 Km4City . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.2 Stream Annotation Ontology (SAO) . . . . . . . . . . . . . . . . 50
2.2.3 W3C Semantic Sensor Network Ontology (SSN) . . . . . . . . . 51
2.2.4 IoT-Lite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 Semantic Description Techniques . . . . . . . . . . . . . . . . . . . . . . 55
2.4 Mapping Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Big IoT Data Processing 61
3.1 Characteristics of Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 Communication Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.1 Request-Reply Interaction . . . . . . . . . . . . . . . . . . . . . . 64



viii

3.2.2 Push-Based Data Propagation . . . . . . . . . . . . . . . . . . . . 65
3.2.3 Publish-Subscribe Interaction Model . . . . . . . . . . . . . . . . 66

3.3 Batch Processing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4 Stream Processing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5 Hybrid Processing Systems . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.6 Comparison of IoT Streaming Systems . . . . . . . . . . . . . . . . . . . 81

4 Syntactic Data Model and Domain Ontology 85
4.1 The STT Syntactic Data Model . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.1 Spatial and Temporal Granularities and Thematic Dimensions . 86
4.1.2 Temporal and Spatial Types and Values . . . . . . . . . . . . . . 87
4.1.3 STT Events and Stream Data Model . . . . . . . . . . . . . . . . 88

4.2 The Domain Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.1 Spatial Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.2 Temporal Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.3 Thematic Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Semantic Virtualization of Sensors 99
5.1 Semantic Discovery of Sensors . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.1 Dealing with Different Formats . . . . . . . . . . . . . . . . . . . 102
5.1.2 The Sensor Discovery Algorithm . . . . . . . . . . . . . . . . . . 105
5.1.3 Semantic Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Evaluation of Sensor Consistency . . . . . . . . . . . . . . . . . . . . . . 109
5.2.1 Semantic Characterization of Sensors . . . . . . . . . . . . . . . 110
5.2.2 Consistency of Sensor Schema w.r.t. the Domain Ontology . . . 112

5.3 Automatic Transformation of Sensor Events . . . . . . . . . . . . . . . . 114

6 Sound and Consistent Data Acquisition Plans 117
6.1 Data Acquisition Services . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1.1 Non-Blocking Services . . . . . . . . . . . . . . . . . . . . . . . . 118
6.1.2 Blocking Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Data Acquisition Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3 Sound/Consistent Specification of Data Acquisition Plan . . . . . . . . 126
6.4 Verification of Consistency in a Data Acquisition Plans . . . . . . . . . 126

6.4.1 Auxiliary Sensors in the Domain Ontology . . . . . . . . . . . . 127
6.4.2 A Consistent Data Acquisition Plan . . . . . . . . . . . . . . . . 130

7 The StreamLoader Prototype 133
7.1 The Overall StreamLoader Environment . . . . . . . . . . . . . . . . . . 134
7.2 Semantic Virtualization Graphical Specification . . . . . . . . . . . . . . 135
7.3 Data Acquisition Plan Graphical Specification . . . . . . . . . . . . . . 140
7.4 Data Acquisition Plan Translation . . . . . . . . . . . . . . . . . . . . . . 147



ix

7.4.1 JSON Representation of a DAP . . . . . . . . . . . . . . . . . . . 149
7.4.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.4.3 Translation of Sources and Destination . . . . . . . . . . . . . . 154
7.4.4 Translation of Services . . . . . . . . . . . . . . . . . . . . . . . . 156
7.4.5 The Overall Translation Algorithm . . . . . . . . . . . . . . . . . 163

8 Experimental Evaluation 167
8.1 Environment and Tests Configuration . . . . . . . . . . . . . . . . . . . 167

8.1.1 Local and Cluster Configuration . . . . . . . . . . . . . . . . . . 168
8.1.2 Data Acquisition Plan Configuration and Metrics . . . . . . . . 169

8.2 Data Acquisition Plan Execution Experiments . . . . . . . . . . . . . . . 170
8.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.3 Further Data Acquisition Plan Execution Experiments . . . . . . . . . . 172
8.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.4 Semantic Virtualization Experiments . . . . . . . . . . . . . . . . . . . . 174
8.4.1 Type of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Conclusion 183

Bibliography 187





xi

List of Figures

1 The LHD factor, the zones of the city of Milano, and the thresholds for
HD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Formats of the events generated by the sensors in the zones of Milano 5
3 StreamLoader General Architecture . . . . . . . . . . . . . . . . . . . . 7

1.1 Building blocks of an IoT architecture . . . . . . . . . . . . . . . . . . . 16
1.2 Block diagram of a smart home system . . . . . . . . . . . . . . . . . . . 21
1.3 Block diagram of a smart city system . . . . . . . . . . . . . . . . . . . . 22

2.1 Different levels of interoperability . . . . . . . . . . . . . . . . . . . . . 43
2.2 "Knowledge Hierarchy" in the context of IoT . . . . . . . . . . . . . . . 44
2.3 Ontology Macro-Classes and their connections . . . . . . . . . . . . . . 48
2.4 Overview of the SAO Ontology modules . . . . . . . . . . . . . . . . . 50
2.5 Overview of the Semantic Sensor Network ontology modules . . . . . 52
2.6 Overview of the Semantic Sensor Network ontology classes and prop-

erties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.7 Dependencies of the SOSA ontology . . . . . . . . . . . . . . . . . . . . 54
2.8 Iot-Lite concepts and the main relationships between them . . . . . . . 55
2.9 The three possible ways for using ontologies for content explication . . 56
2.10 Classification of schema matching approaches . . . . . . . . . . . . . . 58

3.1 Anatomy of a topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Structure of a Storm topology . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3 The iterative operations on Spark RDD . . . . . . . . . . . . . . . . . . . 75
3.4 The Apache Spark Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5 Spark Streaming working flow . . . . . . . . . . . . . . . . . . . . . . . 76
3.6 The Apache Flink Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . 78
3.7 The Apache NiFi GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.8 The Apache NiFi Architecture . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1 Graphical representation of temporal granularity . . . . . . . . . . . . . 88
4.2 Graphical representation of spatial granularity . . . . . . . . . . . . . . 89
4.3 Relationships between the ontologies that compose our Domain On-

tology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4 Twitter sensor of type T . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5 Temporal dimension of sensor of type T . . . . . . . . . . . . . . . . . . 95



xii

4.6 Thematic dimension of sensor of type T . . . . . . . . . . . . . . . . . . 96
4.7 Thematic dimension of sensor of type TW . . . . . . . . . . . . . . . . . 97

5.1 Formats of the events generated by the sensors in the zones of Milano 103

6.1 BNF predicate of basic conditions . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Graph representation of the Data Acquisition Plan of our running ex-

ample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3 Evaluation of consistency of the running example’s Data Acquisition

Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.1 The overall architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2 Specification of the STT granularities . . . . . . . . . . . . . . . . . . . . 136
7.3 Spatial Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.4 Temporal Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.5 Thematic Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.6 Main screen of the Web Application . . . . . . . . . . . . . . . . . . . . 140
7.7 Identification of an error during the DAP creation . . . . . . . . . . . . 142
7.8 Source tab menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.9 Filter tab menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.10 Enrich tab menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.11 Virtual Property tab menu . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.12 Transform tab menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.13 Aggregation tab menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.14 Union tab menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.15 Join tab menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.16 Trigger Event tab menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.17 Convert Temporal and Spatial menus . . . . . . . . . . . . . . . . . . . 148
7.18 Data Acquisition Plan for the running example realized with the pro-

vided GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.19 Excerpt of the DAP to be translated . . . . . . . . . . . . . . . . . . . . . 149

8.1 Local execution and cluster execution environments . . . . . . . . . . . 168
8.2 Batch information provided by the Spark UI interface . . . . . . . . . . 169
8.3 Composition of blocking and non-blocking services . . . . . . . . . . . 171
8.4 Composition of 10 aggregate services in cascade . . . . . . . . . . . . . 171
8.5 Input rate, Processing time, Scheduling delay and Total Delay of the

blocking and non-blocking experiment . . . . . . . . . . . . . . . . . . . 172
8.6 Input rate, Processing time, Scheduling delay and Total Delay of the

10 aggregation experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.7 Humidex Factor calculation DAP . . . . . . . . . . . . . . . . . . . . . . 173
8.8 Processing time and batch size of different DAPs . . . . . . . . . . . . . 175
8.9 Architectures for the application of the transformation rules . . . . . . 176
8.10 Type of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177



xiii

8.11 Average generated tuples per second for the three experiments . . . . 179
8.12 Processing Times of the considered Data Acquisition Plans . . . . . . . 180
8.13 Scheduling Delay of the considered Data Acquisition Plans . . . . . . . 181
8.14 Total Delay for every experiment and for the different approaches . . . 182





xv

List of Tables

1.1 Examples of IoT Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2 Main IoT Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3 Measures of Interoperability of IoT Platforms . . . . . . . . . . . . . . . 32
1.4 Comparison of IoT Platforms . . . . . . . . . . . . . . . . . . . . . . . . 37
1.5 Comparison of IoT Platforms . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Comparison of IoT application layer messaging protocols . . . . . . . . 67
3.2 Comparison of NiFi and FDP components and their description . . . . 80
3.3 Comparison of IoT Processing Frameworks . . . . . . . . . . . . . . . . 83

5.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 Primitives for the modification of ontology instances . . . . . . . . . . 109

6.1 Formal Sensors, Services, Destination nodes and edges representation 123
6.2 Primitives for the modification of Ontology instances . . . . . . . . . . 128
6.3 Instructions for modifying the Ontology Instances according to the

service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1 Graphical representation of source, services and destination . . . . . . 141





xvii

Dedicated to Davide, because without his help I would never
have managed to reach this goal.





1

Introduction

According to Gartner Inc.1 in 2020 more than 20.8 billion connected things will be
in use worldwide. These devices can be either physical or social sensors which pro-
duce large, complex, heterogeneous, structured or unstructured data that can be
profitably used for generating a wide plethora of services. Dealing with the vast
amount of data produced by the things, their varying capabilities, and an exploding
number of services that can be realized, are around the biggest conceptual and tech-
nological challenges of our time [54]. This challenge is further exaggerated by the
typical ills of early-stage technology that lead to the production of different solutions
and standard formats (e.g. oneM2M [3], OMA NGSI 9/10 [105], ETSI M2M [40]) in
different context of use that rarely are able to collaborate each other. This has led to
the creation of more than 600 IoT platforms (according to a recent survey [5]).

By exploiting these platforms, many "vertical" applications can be developed in dif-
ferent fields (e.g. environment monitoring [106], healthcare service [18], transporta-
tion and logistics [69], Smart Cities [113], Smart Homes [73]). However, these solu-
tions are characterized by the use of hardware and software of a specific industry
and the interoperability with other applications is rarely supported. This means that
if we have an application for monitoring the energy consumption in a Smart Home
platform and one for environment monitoring in a Smart City platform there is no
easy way to combine them in the scope of a new added-value application, like for the
example determining the levels of the internal heater relying on the weather forecast
for the next hours. This lacks of interoperability prevents the emergence of broadly
accepted IoT ecosystems [24]. A recent McKinsey study [93] estimates that a 40%
share of the potential economic value of the IoT directly depends on interoperability
gaps among IoT platforms.

As a result, the development of "horizontal" applications that exploit sensors, ac-
tuators and infrastructures made available by different platforms is complex with
negative effects on the development of vibrant IoT ecosystems. These technological
barriers also have negative impact on the business opportunities, especially for small
innovative enterprises, which cannot afford to offer their solutions across multiple
platforms. This lack of interoperability results in the lost of business opportunities
and prevents innovative business ideas.

1https://www.gartner.com/newsroom/id/3165317 (2016)



2 List of Tables

To overcome these limitations, a number of European Projects are currently under
development with the purpose of generating infrastructures among heterogeneous
platforms that facilitate the development of "horizontal" applications. Even if the re-
alization of these horizontal applications poses different challenges across all layers
of the network stack, we wish to focus on those that arise at the data management
layer. First, data can be represented in different formats (e.g. CSV, XML, JSON) and
present different structures for representing the same kind of information. Second,
data can be represented at different spatial and/or temporal granularities (e.g. tem-
peratures per hour in a room versus temperatures per day in a geographical area),
and according to different thematics (data about traffic jams vs data about pollu-
tions). Moreover, as remarked in [16, 77], data can be incomplete and need to be
enhanced by considering contextual information that can be acquired by knowledge
bases and other information sources. Last but not least, data might have diverse
semantics, including units of measurement (temperatures in Celsius or Fahrenheit
degrees), accuracy, mathematical constructs, sensor types and properties and more.

All these issues, that are common in any situation in which we wish to integrate het-
erogeneous information systems, are further exacerbated from the variability and
frequency with which sensors appear and disappear from the network, and the lack
of a standard ontology for the description of the sensor data that is widely recog-
nized. Only few approaches (like OpenIoT [136] and an extension of Orion Context
Broker [155]) exploit ontologies (like the Semantic Sensor Network ontology [126] and
the IoT-Lite ontology [15]) for characterizing the semantics of the data produced by
sensors. However, they can guarantee on the semantics of the events generated by
sensors but no support is provided for the characterization of the services that are
applied on the sensor data for their manipulation and integration. Even if many
approaches have been proposed for the matching of heterogeneous ontologies, they
are difficult to apply in the context of sensor data where the creation of an ontology
for the description of the sensors and its mapping can require much more time than
the life of the sensors.

In this thesis we have developed a system, named StreamLoader, that supports the
user in the creation of Data Acquisition Plans (DAPs) from physical and social sen-
sors that belong to cross-domain platforms. A DAP is the composition of different
services for filtering, aggregating, joining, enhancing the data generated from sen-
sors in order to make them suitable for conducting experiments or the application
of machine learning algorithms for the actuation of a given behavior. StreamLoader
adopts a very flexible Syntactic Data Model in which the formats adopted in differ-
ent platforms for the representation of sensor data can be easily mapped. As largely
adopted in the context of Smart Cities and smart mobility, we organize the structure
of the events generated by sensors according to the Spatio-Temporal-Thematic (STT)
dimensions. Key point of the model is that the three dimensions are optional as well



List of Tables 3

as the properties of the thematic in order to handle sensors that only produce single-
simple measurements (e.g. temperatures) or sensors that produce structured events
along with their timestamps and locations. The model can be used in different con-
texts in which the sensors are not equipped for associating to the observations the
spatio-temporal coordinates and the thematic. However, this information and other
metadata can be added to the values produced by the sensor during the acquisi-
tion process. For example, a gateway in charge of a set of temperature sensors in
a given zone of a city can calculate the average temperature and assign its location
and current time as spatio-temporal dimensions.

The Syntactic Data Model is anyway independent from semantic associated with the
information in a certain context of use. StreamLoader is also equipped with a Do-
main Ontology in which a specific meaning is given to the used STT dimensions. This
ontology is developed by the domain experts that starting from standard IoT ontolo-
gies (e.g. IoT-Lite ontology [15] and the SSN ontology [31, 126]), include concepts
and relationships that are usually adopted in the specific IoT domain. Moreover, the
ontology can be extended with concepts and relationships of a specific application
domain. Each time new sensors are made available from the underlying platforms,
a Semantic Virtualization process is undertaken in which the attributes belonging
to the sensor schema are semantically labeled with the concepts of the Domain On-
tology. This process can be only partial because the ontology might not represent
the information produced by any kind of sensors. This semantic labeling is then ex-
ploited for the automatic characterization of the sensor in the Domain Ontology and
for the production of transformation rules for automatically translating the event
produced by a sensor into our internal data model eventually labeled with concepts
of the Domain Ontology. When the semantic characterization is full, we say that
the sensor is consistent with the Domain Ontology, that is the semantics of the data
produced by the sensor is well described in the adopted Domain Ontology.

Once sensors are registered in our environment, StreamLoader offers a graphical
environment by means of which a DAP can be graphically specified by composing a
set of different ETL (Extraction, Transform and Load) services that can be exploited
for filtering, integrating, enhancing, and aggregating the streams of sensor events.
The system offers facilities for checking the soundness of the produced DAP and also
for the characterization, at the level of the Domain Ontology, of the schema of the
data produced by each single service and by the entire DAP. In this way it is possible
to check the consistency of the output stream produced by the services. Since the
application of the services can alter the schema of the incoming streams (e.g. by
introducing new properties or modifying the STT dimensions or transforming its
properties) it is possible that non consistent streams become consistent. When no
mismatching are identified between the schema of the final output stream and the
ontology populated with instances for the description of the Data Acquisition Plan,
we argue that the plan is “consistent” w.r.t. the Domain Ontology, that is, it is well



4 List of Tables

zone LHD
1 3.0
2 2.5
3 1.0
4 1.5
5 2.5
6 2.0
7 0.5
8 2.0
9 3.0

(a)

(b)

threshold event
HD < 27 wellbeing

27 ≤ HD < 40 precaution
40 ≤ HD < 55 dangerous

HD ≥ 55 very dangerous
(c)

FIGURE 1: The LHD factor, the zones of the city of Milano, and the
thresholds for HD

described at the semantic level. However, we also give the chance to work with Data
Acquisition Plans that are not consistent. Indeed, the semantics of the final output
stream can be fixed afterwards (when events are stored in a Datawarehouse or in the
Cloud) or asserted by the experts that develop the plan.

The generated DAP is finally automatically translated in a language of new gener-
ation for processing big data streams and executed in a distributed environment in
order to easily scale to the number of sensors and events generated by the sensors.
At the current stage the DAP is translated in Apache Spark Streaming [128] because
it allows to handle both stream and stored data. However, the DAP can be easily
translated also in other frameworks. The events generated by the sensors are made
available to the Spark Streaming script by means of the communication protocol
Apache Kafka [140].

In the remainder of the Introduction we introduce a motivating example that will be
exploited throughout the thesis and the general architecture on which StreamLoader
is based. Finally, the overall structure of the thesis is described.

Motivating Scenario

Suppose that the mayor of Milano wishes to evaluate the Human Discomfort (HD) in
the different zones of the city (depicted in Figure 1(b)) due to excessive heat and hu-
midity. His/her meteorologists started from the Humidex factor [94] and proposed
a formula that takes into account also the mood of people gathered by considering
the tweets exchanged in the city zones. The formula is:

HD = [T + A + (0.555 · (H − 10))] · STweet + LHD

Where, A is the accuracy of the identified temperature T (both expressed in ◦C), H
is the humidity degree (expressed in hPa), LHD is a local correction factor that takes



List of Tables 5

FIGURE 2: Formats of the events generated by the sensors in the zones
of Milano

into account the position of each zone within the area of Milano (the LHD factors are
depicted in Figure 1(a)), and STweet is the percentage of tweets containing the words
hot, heat, and sweat among those exchanged in a given zone. This formula should be
evaluated every hour when the maximal temperature in the area of Milano is greater
than 20oC and the obtained values are used to evaluate the level of alert (Figure 1(c)).

Suppose now that in the area of Milano there are many sensors that can be exploited
for the computation of HD, but these sensors belong to different IoT platforms and
return the events using different formats, and with different spatio-temporal granu-
larities. A first platform contains sensors of type T1 that allow to gather the temper-
atures every 10 minutes in Celsius degree with an accuracy of the retrieved value of
more or less 3 degrees (their JSON format is reported in Figure 2(a)). A second plat-
form contains: i) sensors of type T2 for gathering the temperatures every 20 minutes
in Fahrenheit degree with the XML format in Figure 2(b) (but no geo-spatial location
is provided and they act only during spring 2016); and, ii) sensors of type H1 that
allow to generate the events about humidity every 30 minutes with the CSV format
in Figure 2(c). Finally, a third platform is equipped with sensors of type TW1 that
generate every minutes the list and the total number of tweets that are exchanged in
a given zone of the city in the CSV format in Figure 2(d).

The information needed for computing HD is thus present in the three platforms



6 List of Tables

(and in the metadata associated with their sensors) but need to be acquired, normal-
ized, integrated and elaborated before being ready for the computation. For example
the events of sensors of type T1 presented in Figure 2 has to be enriched with infor-
mation about the accuracy of the gathered temperature, as well as the events of other
sensors need to be integrated with other information about their spatial, temporal
and thematic dimensions. With this goal, a Data Acquisition Plan should be defined
that can be applied to the streams of events that are generated by the different sen-
sors in order to produce the information required for the computation of HD. First,
the schema of the sensors needs to be mapped to an internal data model in which,
when available, the temporal, spatial and thematic dimensions are pointed out. This
guarantees the adoption of a common model within our system (though at this level
we cannot guarantee the adoption of the same semantics). Then, some services are
composed for filtering, combining, aggregating and enhancing the events produced
by the sensors in order to lead to the specific calculus interested in the analysis.

Requirements/Design

In order to guarantee the behavior illustrated in the motivating scenario, we will ex-
ploit the general architecture depicted in Figure 3. In our architecture we assume the
presence of a cross-platform middleware that exposes the sensors made available by
the different architectures. The middleware offers facilities for sensor discovery and
maintenance of queues of currently available sensors with their schema structure
and information about spatio-temporal granularity (when available).

Semantic Virtualization is the process through which the physical and social sen-
sors are associated with the StreamLoader services and described by means of the
adopted Domain Ontology. In this activity, the schema of the events produced by
the sensors are mapped to our Spatio-Temporal-Thematic data model and the corre-
spondences with the concepts of the Domain Ontology are pointed out. Specific
wrappers are then realized for transforming the input formats (e.g. CSV, XML,
JSON) of the sensors of a given type in a JSON representation conforming to our STT
data model. The available/registered sensors are handled by means of a Publish-
Subscribe system that is present in the cross-platform middleware. For each sensor,
when available, the middleware reports the frequency at which events are gener-
ated, the spatial coordinates covered by the sensors, and the produced thematics.
This information is exploited for the retrieval of the sensors that are more adequate
for a given kind of analysis and for establishing the kinds of data sources that can be
exploited for enriching the sensors events.

StreamLoader offers a set of services for the data acquisition process that can be
exploited by the user in the definition of the Data Acquisition Plan (DAP). These
services can be composed in order to work on the events made available from the



List of Tables 7

FIGURE 3: StreamLoader General Architecture

sensors through the virtualization process and lead to establish the flow of events
that need to be stored or analyzed. The composition process is guided by means
of the Ontological model that give feedbacks on the quality of the obtained event
streams. We remark that we wish to obtain a very flexible system that is able to
work also with low quality data and that only partially adheres to the STT model.

In our architecture new services can be added quite easily. The designer has to de-
cide whether the new service will work on each single event (non-blocking service)
or on windows of events (blocking service) and produce the corresponding code and
applicability conditions. The new service will be made available/invokable for the
data acquisition process.

The whole system is executed on a cluster of machines and results are stored on a
database in order to be subsequently analyzed.

Contributions

In this thesis we developed on approaches for handling the variety and velocity of
stream sensor data in the context of Internet of Things. More specifically, we have
worked on the following research issues: i) how to deal with the heterogeneity of



8 List of Tables

the formats with which data streams are produced by sensors belonging to hetero-
geneous contexts; ii) how to easily design Data Acquisition Plans on the sensor data
streams and efficiently execute them.

Due to the heterogeneity of the data produced by sensors, we initially worked on
the definition of Syntactic Data Model that can be used for abstracting the schema of
the data generated by the sensor and represent them in a flexible Spatio-Temporal-
Thematic model that is general purpose and with no predefined semantics. The
main challenge was to address in the most efficient way the issue of time granularity,
as well as that for space granularity. Then, we proposed a semantic annotation of the
sensor data model against a Domain Ontology (i.e. an ontology based on the SSN
and IoT-Lite ontologies) in a semi-automatic way, in order to clearly provide (when
possible) a well-defined semantics of the produced stream. Finally, all these facilities
have been integrated in a semantic virtualization process according to which sensors
made available by heterogeneous IoT platforms can be integrated and semantically
annotated in an environment. In this way the events generated by the sensors can
be treated according to a specific semantics. The semantic virtualization process
is a valuable approach to the problem of interoperability among cross-domain IoT
platforms at the data-management layer.

In the second direction, we proposed a graphical language for the specification of
Data Acquisition Plan on the sensor data by composing data acquisition operations
exploited for filtering, aggregating and integrating the sensor data. The problem
we addressed in this direction has been to propose a tool that could help domain
experts and could be easy to learn and use. Moreover, we developed the concept
of soundness and consistency to be applied both on the original data produced by
the sensors and on the results of the application of a Data Acquisition Plan. Finally,
we defined a syntax-based translation of a Data Acquisition Plan in a Apache Spark
script for its execution in a cluster of machines. The idea is to exploit the natural
scalability of the Spark framework for dealing with the high input rates with which
data produced by the sensors need to be processed. The execution of the Spark
program in realized in a real context in which different heterogeneous sensors are
made available through a Publish-Subscribe system (Apache Kafka) and the data
they produce need to be processed in real (or quasi-real) time.

The overall system, named StreamLoader, has been implemented and an interac-
tive environment has been developed that supports the user in charge of integrat-
ing sensor data belonging to cross-domain platforms to discover the sensors useful
in a given situation, specify the adequate DAP for extracting, filtering, integrating,
aggregating, (eventually) storing, and analyzing the events coming from the identi-
fied sensors. StreamLoader provides domain experts with a visual environment that
according to their competencies can be used for configuring, manipulating, and ac-
cessing the flow of data and events that charactering their IoT domain. Since domain
experts are usually not computer experts, specific attentions have been devoted to



List of Tables 9

create easy-to-use interfaces that support them in the Semantic Virtualization of het-
erogeneous sensors according to the Domain Ontology that easily adapt to their
mental model and in the design of DAPs able to extract meaningful information
and to analyze them.



10 List of Tables

Organization of the Thesis

Chapter 1 is dedicated to the presentation of IoT Platforms. First, it discusses the
main building blocks at the base of any IoT platform according to a four-layer model.
Then, it presents the main features of some of the most relevant IoT platforms avail-
able on the market pointing out those that can be exploited for vertical and hor-
izontal applications. The chapter concludes with a comparison of the presented
platforms and with a discussion on the strategies used to face the problem of in-
teroperability.

Chapter 2 is devoted to present the issues of Interoperability. After presenting the
main form of interoperability issues, it moves to describe the specific issues in the
context of IoT. Since ontologies are the main means for addressing the semantic in-
teroperability issues, we present some ontologies that have been proposed in the
context of Smart Cities and IoT. The last part of the chapter provides an overview of
the common techniques used in Ontology Mapping. These techniques are the stan-
dard approaches for guaranteeing the semantic interoperability based on the use of
ontologies among different applications.

Chapter 3 presents the main characteristics of big data processing systems. The
chapter first presents the main characteristics of big data and then introduce the
communication protocols that can be adopted for passing the sensor data to the pro-
cessing system. The chapter also discusses and compares three categories of systems
(batch, stream and hybrid) developed for processing big static and stream data. For
each category, examples of systems are provided and compared.

Chapter 4 presents the Syntactic Data Model that we propose to model the sensor
data according to the Spatio-Temporal-Thematic (STT) dimensions. The STT dimen-
sions are then formally described along with the spatio-temporal granularities and
the event stream data model. The last part of the chapter focuses on presenting the
concepts and features of our Domain Ontology and how the STT dimensions are
represented through it.

Chapter 5 describes the Semantic Virtualization process. The process allows to dis-
cover a new sensor made available from the cross-domain platform, semi-automatically
extracting its schema, and to semantically annotate it with concepts of the Domain
Ontology. Then, the approach for the characterization of the discovered sensor in
the Domain Ontology is discussed along with the concept of consistency. The last
part of the chapter is dedicated to present the approach for the automatic creation
of transformation rules to translate the sensor observations into our internal data
model.

Chapter 6 gives a formal definition of every service that can be devised for process-
ing and combining the streams produced by the sensors. Then, the concept of Data
Acquisition Plan is introduced along with real-case examples. The definitions of



List of Tables 11

Soundness and Consistency of a DAP are introduced and the algorithm for evaluat-
ing the consistency of a DAP with respect to the Domain Ontology is presented.

Chapter 7 presents the overall StreamLoader system. The first part focuses on its
architecture and the adopted technologies. Then, an exhaustive description on the
interfaces for the Semantic Virtualization and the DAP design is provided. The last
part of the chapter presents the translation of the DAP into a runnable Apache Spark
Script.

Chapter 8 is focused on the presentation of the experimental activity. After present-
ing the working environment and the metrics used for evaluating the system, we
describe the results of two kinds of experiments. The first one is devoted to evaluate
the performances of the execution of the DAP locally or in a cluster of machines. The
second one is devoted to evaluate where the transformation rules should be applied
for transforming the sensor data in the internal format.

Conclusions on the entire work that we carried out on this thesis are reported in the
last chapter. We provide a discussion of the thematics and of the issues that have
been addressed and present possible future work.





13

Chapter 1

IoT Platforms. Current Features
and Future Trends

Kevin Ashton, the British technologist [119, 60, 114, 9], introduced for the first time
the term Internet of Things (IoT) in 1999 to describe the system of physical objects in
the world that connect to the internet via a sensor. He also created a global standard
system for Radio-Frequency Identification (RFID) and other sensors that tags the phys-
ical objects to the internet for the purpose of counting and tracking of goods without any
human interference [119]. Starting from these definitions, many institutions have pro-
posed definitions that promote particular concepts in the whole world. The Internet
Architecture Board (IAB) defines IoT as the networking of smart objects, meaning a
huge number of devices intelligently communicating in the presence of internet pro-
tocol that cannot be directly operated by human beings but exist as components in
buildings, vehicles or the environment. The Internet Engineering Task Force (IETF)
defines IoT as the networking of smart objects in which smart objects have some con-
straints such as limited bandwidth, power and processing accessibility for achieving
the interoperability among smart objects [131]. For the IEEE Communications cat-
egory magazine, the IoT is a framework of all things that have a representation in
the presence of the internet in such a way that new applications and services enable
the interaction in the physical and virtual world in the form of Machine-to-Machine
(M2M) communication in the cloud [160].

More recently, the term IoT has been used also for representing the social sensors,
that is flows of data produced by social networks like Twitter, Facebook, etc. In this
direction there is the definition proposed in [53] as an "omnipresent network, con-
sisting of physical and virtual objects/resources, equipped with sensing, comput-
ing, communication and actuating capabilities" that moves in the direction to realize
ubiquitous computing [149, 51] The research introduced in [97] shows that there is a
tight relationship between the real world events and tweets. Starting from this con-
cept, an interesting research has been conducted in [157] where a new method that
explores Spatio-Temporal-Thematic correlations between physical and social data
streams has been introduced for event detection and pattern interpretation from



14 Chapter 1. IoT Platforms. Current Features and Future Trends

heterogeneous sensors. Other works [156] focus their attention on the recognition
of asthma risk factor from heterogeneous physical and social sensors.

According to Gartner Inc.1 in 2020 more than 20.8 billion connected things will be in
use worldwide. These can be either physical devices or social objects which produce
large, complex, heterogeneous, structured and unstructured data. Dealing with the
vast amount of data produced by the things, their varying capabilities, and an ex-
ploding number of services that can be realized, are around the biggest conceptual
and technological challenges of our time [54]. This challenge is further exaggerated
by the typical ills of early-stage technology that lead to the production of different
solutions in different context of use that rarely are able to collaborate each other.
This has led to the creation of more than than 600 IoT platforms (according to a
recent survey [5]). By exploiting these platforms, many "vertical" applications can
be developed. However, these solutions are characterized by the use of hardware
and software of a specific industry and the interoperability with other applications
is rarely supported. This lacks of interoperability prevents the emergence of broadly
accepted IoT ecosystems [24]. A recent McKinsey study [93] estimates that a 40%
share of the potential economic value of the IoT directly depends on interoperability
gaps among IoT platforms.

As a result, the development of "horizontal" applications that exploit sensors, actu-
ators and infrastructures made available by different platforms is almost complex
with negative effects on the development of vibrant IoT ecosystems. These techno-
logical barriers also have negative impact on the business opportunities, especially
for small innovative enterprises, which cannot afford to offer their solutions across
multiple platforms. In order to face these issues a number of European Projects are
currently under development with the purpose of generating infrastructures among
heterogeneous platforms that facilitate the development of "horizontal" applications.

This Chapter is organized as follows. Section 1.1 introduces the building blocks of
IoT platforms according to a four-layer model that moves from the acquisition of
row data from the sensors to the development of applications in a given applicative
scenario. We provide a description of the main technologies adopted for the acquisi-
tion of data from sensors (device layer), their intermediate collection and processing
by means of gateways (gateway layer) that can be positioned closer to sensors (the
so called edge computing) or on the cloud offering different kinds of service, their
aggregation and processing by means of scalable facilities (integration layer) and the
applications that can be built on top of them (application layer). Section 1.2 provides
a general description of some of the main IoT platforms available on the Market
by means of which vertical applications can be easily deployed and discusses new
trends in the context of cross-domain platforms that are under investigation from
some European Projects for supporting the development of horizontal applications.
Section 1.3 provides a comparison of these middlewares and discusses the solutions

1https://www.gartner.com/newsroom/id/3165317 (2016)



1.1. IoT Architecture Building Blocks 15

adopted for dealing with the barriers of interoperability. The discussion points out
how, at the current stage, there are mainly syntactic strategies that are adopted for
dealing with interoperability. Finally, Section 1.4 provides some remarks regarding
the proposed IoT platforms.

1.1 IoT Architecture Building Blocks

As we will describe in the following section, many IoT Platforms have been pro-
posed to deal with data produced by physical and social sensors in the last few years.
These platforms rely on different architectures and there is no general consensus on
the adoption of single IoT Architecture. Among the proposed architectures we men-
tion the following ones proposed by international bodies and industry consortia.

• the Industrial Internet Consortium has delivered the Industrial Internet Refer-
ence Architecture (IIRA)2, with a strong industry focus specifically on indus-
trial IoT applications.

• The Internet of Things IoT-A EU3 initiative delivered a detailed architecture and
model from the functional and information perspectives.

• The Reference Architecture Model Industrie 4.0 (RAMI 4.0)4 goes beyond IoT,
adding manufacturing and logistics details. This is effectively a reference ar-
chitecture for smart factories dedicated to IoT standards.

• The IEEE P24135 project formed a working group for the IoT architectural
framework, highlighting protection, security, privacy and safety issues.

What all these architectures have in common is a clear separation into layers provid-
ing a separation of concern on how the most important aspects of the architecture
operate. Layers can exploit specific technologies and components or cross-cutting
aspects such as security and management. Conceptually, device, gateway, integra-
tion and application layers can be identified as reported in Figure 1.1 These layers
are the building blocks according to which applications that need to handle big flows
of sensor data (eventually processed in real time) need to be realized. They are dis-
cussed in the remainder of the section.

1.1.1 The Device Layer

This layer is also named Perception or Recognition Layer and its main responsibility
is to collect useful information/data from things/sensors or the environment (such as

2https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf
3http://www.meet-iot.eu/deliverables-IOTA/D1_5.pdf
4http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/rami40-an-

introduction.pdf?__blob=publicationFile&v=4
5http://standards.ieee.org/develop/project/2413.html



16 Chapter 1. IoT Platforms. Current Features and Future Trends

FIGURE 1.1: Building blocks of an IoT architecture

WSN, heterogeneous devices, sensor type real world objects, humidity and temper-
ature etc.) and transform them in a digital object that can be transmitted through the
Internet. These things can be either physical or social and produce large, complex,
heterogeneous, structured or unstructured data.

Physical sensors nodes are hardware components that are able to measure physi-
cal entities or to actuate a given behaviour (e.g. turn on the light of a room). They
can be standalone components or integrated with other kinds of sensors in a single
motherboard. Sometimes they are only able to make available a single measure-
ment (e.g. the temperature), others they (or the device in which they are integrated)
are equipped with an Operating System able to perform local computation. These
thinks can communicate each others by means of wired or wireless networks and
produce data that are collected in a gateway or can transmit their data directly to
the Application Layer for their management. Among the many physical sensors,
we mention: i) devices able to detect data about physical phenomena (e.g. temper-
ature, humidity, wind, rain, pressure, level of see water); ii) phones, tablets, smart
watches, fit bands and fitness trackers; iii) medical devices, smart machinery and
a set of technical instruments used in the context of industry; iv) home automation
and security systems.

There is also a proliferation of social sensors able to collect data from people. In-
ternet transactions, email, video, click streams, Twitter, are Facebook are the major
examples of social sensors that can be exploited for evaluating the social character-
istics of Internet users. The data produced by these social sensors can be combined
with data produced by physical sensors in order to respond to emergency situations.
For example, temperatures and levels of rains detected in a given area can be com-
bined with the tweets posted by people moving on the highway in order to identify
situation of flooding. Moreover, the presence of a peak of tweets containing specific
hashtags (e.g. #rain, #water, #storm) in a specific interval of time can trigger the
analysis of the levels of water in the rivers in order to discovery if certain emergency
condition may occur, for example torrential or heavy rain.



1.1. IoT Architecture Building Blocks 17

1.1.2 The Gateway Layer

Sensors and actuators can be connected or embedded into devices and be connected
to the Internet in two ways. Directly, with the Integration Layer over IP protocols
such as REST, Message Queue Telemetry Transport (MQTT), Extensible Messaging
and Presence Protocol (XMPP) or Advanced Message Queuing Protocol (AMQP)
(described on Section 3.2). Devices can also be connected indirectly by means of an
aggregation node that acts as an intermediary, or gateway, to aggregate data from de-
vices with a small footprint (Constrained Application Protocols), short-range com-
munication (such as Zigbee devices connected via a Zigbee gateway) or Bluetooth
Low Energy devices connecting via a mobile phone. The gateway filters and intelli-
gently reacts to data and sends and receives data or commands to the Internet.

A gateway device is used to connect previously unconnected devices, older devices,
and insecure devices. It can also provide operational efficiency by allowing multiple
devices to share a common connection. Moreover, they can provide functions such
as data filtering, cleanup, aggregation and packet content inspection. The gateway
device might be responsible for managing security on behalf of the locally connected
devices as a proxy for the other devices that are connected to the outside world.

When gateways are positioned closer to the sensors they can allow a form of edge
computing [133, 20]. That is the possibility to forward to the other tiers only useful
events. Moreover, events that occur at the same time can be collected in a single
structured message and contextual information can be included in the measurement
in order to provide sophisticated computations that take into account the environ-
ment in which the data are collected. Sometimes, gateways are also positioned in
the cloud. In this case, they offer more processing power for the management of
the events generated by sensors. Finally, hierarchies of gateways can be generated
when the number sensors to be handled is very high and distributed in a vast area
(like in smart cities, in the context of automotive). For example, connected vehicles
contain many sensors and processors that are themselves unsecured and connected
only to the local controller area network (CANbus) in the vehicle. In this scenario, a
gateway acts as a communication middleware between the vehicle and the outside
world. The gateway aggregates data from the other vehicle subsystems to com-
municate to the Internet and interprets commands or data that are received from
the Internet. The gateway redistributes the data and commands through the local
CANbus to the other vehicle subsystems. In an industrial environment, such as a
manufacturing facility, it is common to find devices that are connected by means
of existing industrial protocols, such as Modbus, Profibus, or DeviceNet, to a local
gateway device. The local gateway can aggregate data, filter data and perform local
analytics. It can also connect to a cloud or back-end server to propagate data up to
higher-level systems and analytics.



18 Chapter 1. IoT Platforms. Current Features and Future Trends

1.1.3 The Integration Layer

Typically hosted in the cloud, this layer is responsible for receiving data from the
connected devices and storing them either in-memory or in databases for their fur-
ther processing. Moreover, this layer hosts many components for the protection,
integration and the processing of data. In this way the events generated by the un-
derlying levels are made available to the Application Layer. This layer has thus the
purpose to generate a bridge from the things that produce events and the applica-
tions by offering an Application Programming Interface (API) for communication,
data management, computation, security, and privacy that allows the developers to
focus on the requirements of applications rather than on interacting with the base-
line hardware.

Among the services offered for the integration layer [127, 30, 117], we need to men-
tion:

• Interoperability and programming abstractions. These services are meant for fa-
cilitating collaboration and information exchange between heterogeneous de-
vices. In the context of IoT, the issue of interoperability can be identified at net-
work, syntactic, and semantic levels. Network interoperability issues are due
to the use of heterogeneous interface protocols for communication between
devices that prevent applications to consider events generated by sensors con-
nected with unknown protocols. Syntactic interoperability issues arise when
events are generated using different formats, structures, and encoding of data.
Even if applications use the same syntax, they might assign different meaning
at the same peace of data that can generate semantic interoperability issues.
A deeper analysis of the interoperability issues will be discussed in Chapter 2
with a discussion of the current efforts for their addressing.

• Device discovery and management. These services allow devices to be aware
of the presence of other devices in the neighborhood and to deal with them.
These services should be scalable and efficient in order to take into account
the dynamism with which a high number of devices can be included (and ex-
cluded) from the IoT. APIs are offered to list the IoT devices, their services, ca-
pabilities and for discovery them relying on their capabilities. Finally, software
components should be made available to perform load balancing, manage de-
vices based on their levels of battery power, and report problems occurring in
devices to the users.

• Security and privacy. Events generated by the monitored sensors can contain
sensitive information about the personal life or the activity of an industry.
Therefore, different mechanisms should be made available to guarantee the
protection of the data from the sensor to the application in charge of its man-
agement, as well as to guarantee the privacy of single users in case of analysis.
Moreover, data should be accessible only from authenticated users.



1.1. IoT Architecture Building Blocks 19

• Context detection. The Integration Layer can be equipped with contextual in-
formation systems that can be exploited for enriching the data generated by
the sensors and for easily identify abnormal values produced by the sensors or
their faulty. The contextual information associated with events can be subse-
quently exploited for the analysis of the data and for taking appropriate actions
on the status of the devices.

• Cloud services. The aforementioned services are usually executed on a central-
ized cloud. There is therefore the need to be able to run on different types of
clouds and to enable users to leverage the cloud to get better insights from the
data collected by the sensors.

These services are offered from a variety of platforms proposed in the market for
dealing with different kinds of sensors. Many of them offer support for interoper-
ability and abstraction. In the next section, we will discuss in more details the chara-
teristics of these middleware systems that can be broadly classified on the basis of
the design [117] in:

• Event-based. In these kinds of platforms, the interact among components is
guided through events. Events have a type and some properties and are ex-
changed through a Publish-Subscribe approach. Consumers interested to a
given type of events can subscribe to such a type and be notified when those
events are generated from the underlying architecture.

• Service oriented. These platforms rely on the Service Oriented Architectures
(SOA) [25], in which independent modules provide services through acces-
sible interfaces. A service oriented middleware views resources as service
providers and abstracts them through a set of services that are used by ap-
plications. There is a service repository containing the services that providers
make publicly available. Consumers can discover them from the repository
and then bind with the provider to access the service. Advertising services are
usually included in these platforms for supporting consumers in the discovery
and use of services.

• Database oriented. In this case, the network of IoT devices is considered as a
virtual relational database system. Accessing, discovering and manipulating
devices is handled through easy-to-use interfaces that pose queries on such
relational database systems. Even if this approach make the management of
devices very easy, it presents scalability issues due to the use of a centralized
model.

• Application specific. This kind of platforms is used specifically for the applica-
tion domain for which it has been conceived. Its whole architecture is fine-
tuned on the basis of requirements of the application and rarely can be ex-
ploited in other contexts.



20 Chapter 1. IoT Platforms. Current Features and Future Trends

1.1.4 The Application Layer

On top of the discussed platforms, many application can be realized that can visual-
ize by means of dashboards the events monitored by the developed sensors, perform
different kinds of analysis by exploiting machine learning algorithms, process and
prepare the data for the generation of reports, actuate different behaviour on the
monitored devices (eventually exploiting the results of machine learning algorithms
on the monitored data).

The size, velocity and variability of the data generated from the sensors can require
to exploit new distributed techniques for processing the data. The term "lambda
architecture" has been introduced for a generic, scalable and fault-tolerant data pro-
cessing architecture, with data, batch, serving and speed layers. It is possible to
build advanced solutions based on such an architecture by exploiting NoSQL frame-
works [74] such as Apache Kafka and Apache Spark for downstream processing.
These systems will be discussed in more detail in Chapter 3.

In the remainder of the section we discuss some application contexts in which appli-
cations have been realized for managing sensors data.

Smart Homes. In the context of home automation, different sensors can be installed
in a house for providing intelligent and automated services to the users. They help
in automating daily tasks and help in maintaining a routine for the individuals who
tend to be forgetful. For example monitoring the internal temperature, humidity, the
presence of gas or smoke, the level of lightness, for checking and activating white
and black equipments (air conditioners, oven, dish and blanket washers, etc.). Many
challenges and issues are connected with smart home and home automation [72]: i)
energy conservation [65], helps on disconnecting or turning off lights and electronic
devices automatically when their are not used; ii) support for elderly and differently
abled users [102, 135, 153], by monitoring their health, relatives can be immediately
informed in case of emergency or in case a person falls on the floor (by installing
pressure sensors on the floor); iii) security and privacy [118], by installing Closed
Circuit Television (CCTV) cameras, motion detection sensors everything is happen-
ing inside and outside the home is being recorded. Figure 1.2 provides a diagram fo
the main issues on Smart Home systems.

Smart Cities. As shown on Figure 1.3 the context of Smart Cities provides a wide
area of interests. Smart mobility application can help on managing traffic in cities, re-
ducing or minimizing the traffic congestions, ensure the parking discovery, avoiding
accidents, car and bike sharing and spotting drunk drivers. Most of these applica-
tions are based on GPS sensors for location, accelerometers for speed, gyroscopes
for direction, RFID for vehicle identification, infrared sensors for counting people
or vehicles and cameras for traffic recording and security [36]. Some of these appli-
cations give visual information and can estimate traffic conditions in a certain area.
Infrared sensors, cameras and GPS sensors can help on detecting traffic congestions



1.1. IoT Architecture Building Blocks 21

FIGURE 1.2: Block diagram of a smart home system

but some applications implement this system by using smartphone sensors, such as
accelerometers and GPS sensors [91].

Many applications aims at the driver security. Sensors (e.g. eye movement detectors,
face detectors, pressure detectors on the steering) help on monitoring the physical
conditions of the drivers by detecting when they are tired or they are falling asleep.
The creation of smart parking grids helps the drivers in discovering free parking
places. Smart traffic lights equipped with sensors sense the traffic congestions at
the intersections. This can modify the interval between red and green light and it
can also helps in emergency situation by giving way to ambulance or police. An-
other field of interest in the context of smart cities is energy and environment. For
example, smart water systems and applications, especially in area where the water
scarcity is a big issues, are used to measure the degree of inflowing and outflowing
water with the aim of discovering and identifying possible leaks [66]. If they are as-
sociated with data from weather satellites and river water sensors can also help on
flooding prediction. Security is another big issue in the context of smart city. Video
surveillance and Closed Circuit Television (CCTV) camera provide monitoring of all
the city areas.

Social Life and Entertainment. The "opportunistic IoT" term [61], is used to refer to
a set of applications that shares information among devices that reside in the same



22 Chapter 1. IoT Platforms. Current Features and Future Trends

FIGURE 1.3: Block diagram of a smart city system

area and based on position and availability of contacts. The main issue of these kinds
of applications is the tracking of human social life and activities. Circle Sense [88],
Camy [120] and LogMusic [86] are applications that have been developed with the
aim of finding people with common interests or purposes and helping them to in-
teract. While Circle Sense is an application for supporting users in detecting their
social activities and habits through the analysis of patterns of social activities and
the people movements around them, the other two belongs to the affective comput-
ing technology [108] that leverages and responds to the emotions of the user. With
the analysis of body gesture, facial expressions, sleep patterns, it is possible to under-
stand the feeling of a person. Camy is a virtual/artificial pet dog that interacts with
the human and her emotions and feelings. It provides emotional support, encour-
ages playful and active behaviour, also with other people, and increases the love for
himself/herself. Logmusic is an applications that proposes and recommends songs
on the basis of location, temperature, weather and time.

Health and Fitness. Thanks to the advent of wearable devices, such as smart watches,
fit bands and fitness tracker and due to the introduction and improvement of ac-
celerometers, gyroscopes, GPS, many health applications have been developed. Most
of them are focused on monitoring fitness activities (e.g. daily number of steps
taken, the distance, the amount of calories burned, real time heart-rate) and let the



1.1. IoT Architecture Building Blocks 23

users connecting with gym apparatus. Some applications help and make indepen-
dent living possible for elderly and patients with critical or serious health problems,
by continuously monitor health conditions and transit warning in case of abnormal
indicators or values. This kind of applications can be linked to Electronic Health
Records (EHR), which is a record of all medical details of a person which may in-
clude a range of data, including demographics, medical history, medication and al-
lergies, immunization status, laboratory test results, radiology images, vital signs,
personal statistics like age and weight, billing information, but also primary care
information (such as General Practitioner) and secondary care inforamtion (such as
hospital). Other applications aim at recognizing stress level [49] by monitoring the
movements during the whole day, the amount of physical activity, amount of rest
and sleep, and, through audio data and calls, they can also monitor interactions and
relationship with other people [148].

Smart Environment and Agriculture. Agriculture can be significantly improved
through the use of smart applications. Sensors measuring temperature, humidity,
soil information and other parameters can be useful used for a better and more ef-
ficient production, or to improve crop quality and yield [159]. For example, auto-
mated irrigation according to weather conditions can sensibly reduce the waste of
water, the use of acetylcholinesterase biosensors [158] give information about size,
time, location and amount of pesticide residues. The introduction of QR code can
help on speed up the process of ordering products and to check the amount of prod-
ucts available online before buying. Regarding environment, air pollution is a great
concern today. The possibility to measure the quality of the air, to identify via RFID
tags polluting vehicles and take action against them is a great challenge that some
applications try to overcome [92].

Supply Chain and Logistics. IoT tries to simplify real world processes in business
and information systems [44]. RFID and NFC can help on easily tracking goods
in the supply chain, from the place of manufacture to the final places of distribu-
tion. RFID tags uniquely identify a product automatically and provide information
about the product in real time along with location information. This system helps
in automatic collection and analysis of all the information related to supply chain
management, which may help examine past demand and come up with a forecast of
future demand. The possibility to access in real time these data by the supply chain
components, give them the possibility to analyze, extract useful information and in-
sights and improve, in the long run, the performance of supply chain systems [151].

Energy Conservation. Smart grid is the information and communication technology
that enable modern electricity generation, transmission, distribution, and consump-
tion system [71]. This technology introduces the concepts of scalable energy and
bidirectional flow of power (back from the consumer to the supplier) and can be
used to make smart electric power generation, transmission, and distribution. In a
real application a smart grid is a set of different microgrids [42] that generate power



24 Chapter 1. IoT Platforms. Current Features and Future Trends

in order to provide enough energy to the local sites, but in case of emergency or in
case of shortfall they can also demand energy from the central grid. Two-way flow
of power also benefits consumers, who are also using their own generated energy
occasionally (say, solar, or wind power); the surplus power can be transmitted back
so that it is not wasted and the user will also get paid for that "unused" power. Some
of the IoT applications in a smart grid provides online monitoring of transmission
lines for disaster prevention and efficient use of power in smart homes by having a
smart meter for monitoring energy consumption [90]. Smart meters read and ana-
lyze consumption patterns of power and send this information to the server. Users
can consult their consumptions and can adjust their use so as to reduce costs.

1.2 IoT Platforms

According to a recent survey [5] in the last few years has been proposed more than
600 IoT platforms that demonstrates a great interest from both the research and
industrial communities in the development of infrastructures for the acquisition,
integration and analysis of events produced by sensors of different types. These
platforms can be divided in vertical and horizontal platforms. Vertical solutions are
characterized by the use of hardware and software of a specific industry and the
interoperability with other applications is rarely supported. This means that if we
have an application for monitoring the energy consumption in a smart home plat-
form and one for environment monitoring in a smart city platform there is no easy
way to combine them in the scope of a new added-value application, like for ex-
ample determining the levels of the internal heater relying on the weather forecast
for the next hours. To overcome these limitations, a considerable amount of work
is dedicated to the construction of IoT infrastructures that allow the development
of horizontal applications, that is applications that exploit sensors, actuators and net-
work components belonging to cross-domain IoT platforms.

In the remainder of the section, the considered platforms are briefly described point-
ing out their main characteristics.

1.2.1 Vertical IoT Platforms

Starting from a comparison among the most relevant and used platforms in the mar-
ket [152, 143], in this section we discuss the main characteristics of a set of vertical
platforms. Table 1.1 introduces the name of these platforms along with their main
drivers and the url where further details can be found. Moreover, Table 1.2 reports
the common domain in which they are usually adopted, the licensing models used
for the distribution and use and their Technological Readiness Level (TRL)6. The

6http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-
wp1415-annex-g-trl_en.pdf



1.2. IoT Platforms 25

Name MAIN DRIVERS URL
BEZIRK Bosch CR Target at Open Source http://www.bezirk.com
Bosch SCP Bosch https://www.bosch-iot-

suite.com/
CSI Piemonte CSI Piemonte http://www.smartdatanet.it/
FIWARE EU Project https://www.fiware.org
WordSensing WordSensing http://www.worldsensing.com
TIC platform VMZ Berlin http://viz-info.de
IFTTT IFTTT Inc. https://ifttt.com
Wubby Econais http://wubby.io
Xively LogMeln http://xively.com
Kaa Kaa Project https://www.kaaproject.org/
Carriots Altair https://www.carriots.com
macchina.io Netidee https://macchina.io/

TABLE 1.1: Examples of IoT Platforms

TRL, as defined by the European Commission, is used to enable comparison of the
maturity of the analyzed technologies.

BEZIRK. It is an open platform by the Robert Bosch Start-up GmbH. It is a peer-to-
peer IoT middleware for both communication and service execution on local devices
following a service-oriented paradigm. It is developed with the idea of facilitating
asynchronous interactions among various components or services of an application
that are distribuited across different devices in a network. It is implemented on
top of UDP over Wi-Fi within local networks, and on top of TCP sockets for inter-
net communications. BEZIRK was primarily developed for consumer IoT domains
(e.g. smart home) but can also be adopted in other domains where IoT devices com-
municate and collaborate in a local environment, or where users desire to manage
and control their privacy. Main features are: i) handling reliable delivery of mes-
sages among devices or services; ii) hiding service distribution; iii) enforcing secu-
rity and privacy policies specified by the user; iv) encrypted communications; and
v) facilitating dynamic service discovery and semantic addressing. Interoperabil-
ity is facilitated by the adoption of Open API, Open Protocol and Open Source. The
decentralized design requires no infrastructure that facilitates local integration with-
out any dependencies on back-end infrastructure or providers. This platform also
enables easy middleware integration with new IoT platforms by adopting standard
communication protocols (e.g. TCP/IP for data transport, JSON for data encoding)
and available Java implementations for different operating systems (Linux, OSX,
Windows, Android).

Bosch’s Smart City Platform (SCP). This tool has been developed for composing
heterogeneous solutions in the Smart City environment (i.e., governance, mobility,
energy, environment, industry life, tourism, etc.) and adopts a SaaS business model.



26 Chapter 1. IoT Platforms. Current Features and Future Trends

Name COMMON DOMAIN LICENSING MODEL TRL
BEZIRK IoT domains Not fixed 5-6
Bosch SCP Smart City SaaS - commercially 7

CSI Piemonte Smart data Common licenses CCO or CC
BY 9

FIWARE Smart Citiy, agriculture and
food safety, health/AAL, etc

Difference depending on func-
tionality 5-6

WordSensing Smart City, smart mobility Not applicable, not for public 8
TIC platform Smart Mobility SaaS (commercially available) 9

IFTTT
Business, commerce, connected
car, connected home, fitness and
wearable, Web etc.

The platform is not open source,
It provides a service free of
charge

9

Wubby Low power 32bit devices Depending on components 5-6

Xively Smart Home and Smart Lab Commercial access through
PaaS 9

Kaa

Agriculture, automotive, health-
care, IoT industry, Smart City
and Smart Home, wearable and
telecom

Open source: Licensed under
Apache Software License 2.0 7-8

Carriots Smart Home and Smart City PaaS - free up to 2 devices 7

macchina.io IoT domains, hardware do-
mains

Open source: Licensed under
Apache Software License 2.0 7

TABLE 1.2: Main IoT Platforms

It offers tools and methods to develop, operate and maintain such systems with-
out sacrificing data security and privacy. The key aspects of the Bosch SCP plat-
form are: secure data routing/fanout, third party and developer tooling, data as a
service/data tooling integration, operational support. The platform has been specif-
ically developed for the Smart City domain, including Smart Mobility and environ-
ment domains. Smart Home and Smart Factory are currently not addressed but
may be required for an IoT platform. This platform has been designed to interoper-
ate with other solution providers and to contribute and rollout artifacts in a quality
controlled multi-staged software provisioning concept. The platform is designed
to be flexible enough to support a wide span of technologies and/or programming
languages and to adapt to new requirements without disrupting installations and
rebuilding them from scratch. Specifically, the following measures for interoperabil-
ity have been stressed in the design: easy deployment on premise (e.g. notebook) or
on varied cloud providers, flexible integration of diverse sensors and devices (with
different protocols/APIs/standards), and ability to provide Data-as-a-Service.

CSI Piemonte Smartdata Platform (SDP). The Piemonte Region (Italy) developed
this platform and made it available to public and private entities of its territories.
SDP is based on project Yucca, a cloud self-service platform enabling to develop ap-
plications based on IoT and big data. SDP works as a Platform-as-a-Service as an
IoT cloud-based platform and supports features such as multi-tenancy. It receives
events from "things", "people" (twitter) and "applications", exposes APIs that real-
ize a Publish-Subscribe paradigm in near real time and APIs with Request-Response



1.2. IoT Platforms 27

paradigm to read historical data. It uses the ODATA protocol, different types of vis-
ibility (opendata, public, private and shared APIs), and makes use of OAUTH2 se-
curity to access non-public APIs. Beyond that it enables Complex Event Process-
ing in near real time to enrich or filter events. SDP can serve different domains,
but is mainly oriented to data for the Piemonte region in Italy. SDP has proven it-
self in operational environment. The interoperability approach is to define Open
APIs and send events to the platform for the data, information and service levels.
It uses HTTP(s)/MQTT(s) for data transport, JSON/ODATA for data encoding, and
OAuth2 for authorization. SDP can interact with other platforms by sending events
over MQTT in JSON format, reading historical events through an ODATA REST API,
or subscribe to events through MQTTs or Web sockets.

FIWARE. This middleware platform has been developed for the future Internet
(FI7) by the EU commission. The FIWARE platform consists of a number of General
Enablers (GEs) that have been developed by different chapters within the FIWARE
and FI-CORE projects [155]. The FIWARE Internet of Things Generic Enablers allows
"things" to become available, searchable, accessible, and usable resources fostering
FIWARE-based Apps interaction with real life objects. The success behind FIWARE
IoT is that all things and IoT resources are exposed to FIWARE App developers just
as other Next Generation Service Interface (NGSI) Context Entities. Therefore, de-
velopers do not have to deal at all with today’s complexity and high fragmentation
of IoT technologies and deployment scenarios. On the contrary, app developers just
need to learn and use the same NGSI Context-Broker API, used in FIWARE to rep-
resent all context information. FIWARE has been defined as a Future Internet core
platform and used in a variety of domains such as Smart Cities, agriculture and
food safety, eHealth/AAL etc8. The interoperability of FIWARE is achieved through
a standard interface, namely NGSI-10 based sources. Core interfaces for the IoT and
Context GEs are the NGSI-9/10 Context Interfaces that were originally developed by
OMA and for which FIWARE defined a REST-like interface with a few extensions. In
addition, the IDAS/IoT Data Edge provides interoperability with a number of exist-
ing technologies, e.g., UL2.0/HTTP, MQTT, OMA LWM2M/CoAP, ThinkingThings
Protocol and SIGFOX protocol. Interoperability takes place at the interface level.

Worldsensing. This platform provides a unique traffic management portfolio for
Smart Cities that includes Bitcarrier, a real time intelligent traffic management and
information solution designed for both road and urban environments, Fastprk, an
intelligent parking system commercially operational since November 2012 and Sense-
fields, an innovative system for detecting and monitoring vehicles and traffic flow.

7https://ec.europa.eu/programmes/horizon2020/en/h2020-section/future-internet
8https://www.fiware.org/tag/applications/



28 Chapter 1. IoT Platforms. Current Features and Future Trends

Worldsensing business relies on providing useful data analysis of their own informa-
tion sources. Worldsensing platform is proprietary code and is not released. World-
sensing transfer data through HTTP(s) in the JSON data format and through a REST
API. Interoperability to other platforms/solutions can be achieved by adopting the
RESTful APIs and an already integrated pull service. No raw access to the "actual"
things/sensors but a bunch of functions/functionalities is provided, based on the
collected data.

TIC mobility platform. The traffic Information Center (TIC) of the City of Berlin
has been extended in the TIC mobility platform to provide comprehensive informa-
tion on all mobility options available in the city. The platform includes real time data
from the traffic information center, mobility operators and infrastructure providers
and offers a multimodal routing platform using the modal router offered by third
parties. The system comprises of three components: i) a data platform integrating
real time data from mobility providers; ii) a routing platform; and iii) an online
monitoring system for air pollution and noise in the arterial street network of Berlin.
Applications developed on top of this platform, such as mobility websites and mo-
bility displays, are implemented and running in various environment, end user apps
based on the mobility platform are qualified and are ready to be launched. The lim-
iting factor for the platform is the provision of data from mobility providers and
low standardization of interfaces. Interoperability on the platform level is enabled
via Open API (charging stations), data level (detector data), service level (modal
routers). The TIC Platform has been connected with the VBB platform (Public trans-
portation data and routing services in the region Berlin/Brandenburg).

IFTTT (If This Then That). IFTTT is a website offering facilities for the definition
of simple IoT applications, i.e., connections between pairs of IoT devices and ser-
vices made available from third-party providers (e.g. Instagram, Dropbox, Google,
Facebook ). Such applications are typically expressed as trigger-action rules, where
an action is automatically executed when an event (the trigger) is detected. It en-
ables users to create chains of simple conditional statements, called "recipes", which
are exposed as web services, between more than 400 supported IoT objects (named
services). The supported objects range from commercial devices (e.g, the Nest ther-
mostat), to web or mobile services (e.g., Facebook). Recipes, at least in the free
version, can include a single trigger and a unique action, and can be composed
by using a wizard-based procedure. Its simple service-based paradigm allows the
interoperability of applications among different platforms even if some limitations
are present. Indeed, as pointed out in [32], IFTTT adopts an highly technology-
dependent representation models according to which devices and services are rep-
resented by manufacturers or brands. This implies that, if we have to specify the
rule "if the bedroom motion sensor detects a movement, then turn the table lamps in the



1.2. IoT Platforms 29

bedroom on", for a set of movement and lamp sensors in our building, we have to
create different rules for each of them. With this lack of discovery and adaptation
features, the expressive power of the definable rules is very poor. Despite that, it al-
lows to monitor the behaviour of the hundreds of connected APIs from other service
providers (e.g., information about the API requests, metrics such as response time
and HTTP status codes etc.) and uses elastic search and its components "Internal
Monitoring and Alerting" and "Developer Dashboard". Manual integration with the
hundreds of APIs is supported by IFTTT.

Wubby. It was created in 2015 as a spin-off of a company (Econais) specialized of
Wi-Fi modules with very unique characteristics (smallest size, lowest power con-
sumption, complete software, etc.). Wubby is an ecosystem of software components
and services for the rapid development of physical objects embedded with electron-
ics, software, sensors and network connectivity to collect and exchange data. The
Wubby VM runs in the microcontroller of these objects and provides a hardware
agnostic environment for the creation of interoperable applications. Wubby is a so-
lution to fuel fast development of low cost, low complexity, low power and high vol-
ume IoT products made on Embedded Microcontroller Unit (MCU) regardless of the
domain for which they will be used. Wubby provides interoperability at the device
level (device-service discovery, initial setup) and new protocols can be added by in-
stalling new python libraries/modules in the device. Wubby allows new platforms
to be integrated by allowing syntactic interoperability whenever possible (e.g. Wi-Fi
Direct service discovery) and enables integration of new protocols by adding new
applications in the Wubby VM. Wubby encourages interoperability on different lev-
els: it is protocol agnostic (where users can add support for their own protocols), it
supports standard wireless technologies (e.g. Wi-Fi, BLE), multiple security schemes
can be integrated, and it supports device and service discovery using MQTT.

Xively. Xively is an enterprise grade IoT cloud-based platform and offers easy-
to-use APIs developed as "microservices". The central goal of Xively is to enable
building of a "Connected Product" and a customer shall be enabled to realize a "Con-
nected Business". Xively is designed to be a centralized PaaS. Thus, its scalability is
global. Xively is generally designed for any domains, but it has mainly been applied
in domains such as Smart Home and Smart Lab. Since Xively is closed source (the
internal implementation details are not disclosed) and uses Open APIs to promote
interoperability. The Open API is defined at the data, information and service levels.
It provides four key functionalities: i) blueprint service, to describe the metadata and
relations between device, user and organization; ii) messaging service, to set up data
messaging streams from devices to services via MQTT protocol; iii) time series service,
to query historical data measured by connected devices via HTTP GET request; and



30 Chapter 1. IoT Platforms. Current Features and Future Trends

iv) identity management. Interoperability on the platform level (as well as its offered
services) is enabled through the public and well documented APIs.

Kaa. It is a highly flexible, multi-purpose, open-source middleware platform for
implementing complete end-to-end IoT solutions, connected applications, and smart
products. Kaa offers a set of out-of-the-box enterprise-grade IoT features that can
be easily plugged in and used to implement a large majority of the IoT use cases
(i.e. agriculture, automotive, healthcare, IoT industry, Smart City and Smart Home,
wearable and telecom). The platform features include device management, data col-
lection, configuration management, messaging, and more. The platform is also de-
signed for broad compatibility of connectivity protocols and data management solu-
tions. Kaa provides a Kaa Sandbox, a preconfigured virtual environment that lets the
user to create a Kaa-based application. By uploading the schema definition for the
device the system allows the automatic generation of a SDK for an application. Kaa
is hardware-agnostic beacuse most of the platforms are already pre-integrated, but
even if a platform is not listed, through the Kaa SDKs (Java, C++, C and Objective-C)
it is easy its integration. It is also transport-agnostic because it allows building ap-
plications that work over any type of network connection, either persistent or inter-
mittent. Kaa is distributed pre-integrated with popular data processing system (i.e.
Apache Spark, Hadoop, CDAP, Apache Flume). Main features are: i) mechanisms
for delivery of configurable event messages across connected devices; ii) endpoints
that perform temporary storage of logs of any predefined structure and implement
triggers that initiate periodic logs upload from the endpoint to the server; iii) client-
side endpoint profile, exposed for the access by Kaa applications; iv) server-side
endpoint profile controlled by Kaa server users via Administration UI or by other
server applications via REST API; v) notification system, based on topics, for the de-
livering of messages from server to subscribed endpoints; vi) updates of operational
data, such as configuration data, from the Kaa server to endpoints; and, vii) support
of multi-tenancy and multi-application configuration.

Carriots. It is a scalable Platform-as-a-Service designed for IoT and M2M appli-
cations. It gives the possibility to connect any type of devices and hardware, like
sensors, gateways, machines, with a web connectivity (e.g. Arduino, Raspberry Pi,
Nanode). Any kind of data, in XML and JSON format, is sent through Carriots HTTP
RESTful API and stored in their NoSQL storage. Data transfer is secured through
Apikeys, checksums and HTTPS. It gives the possibility to build a complete control
panel over Carriots REST API in any language. In order to create rules, Carriots
uses the if-then-else approach. More complex rules could be developed through the
Carriots SDK that relies on the Groovy technology 9. Key features of this platform

9Groovy is a "dynamic language for the Java Virtual Machine that builds upon the strengths of Java
but has additional power features inspired by languages like Python, Ruby or Smalltalk"



1.2. IoT Platforms 31

are: i) remote control, maintenance and interaction with devices; ii) interaction with
data and devices is actuated through simple if-then-else structures or through more
complex rules by using Groovy scripts; iii) listeners and rules are both securely and
efficiently executed by Carriots SDK; iv) integration with other IT systems, creation
of export files, pushing data to another database or just using REST API to manage
outbound data; v) custom alarms and debug logs provide information about the
system status and devices interaction; and vi) a custom control panel able to mange
all Carriots entities and also a user management tool to help managing project and
profiling.

macchina.io. macchina.io is an open source software toolkit, created by Guenter
Obiltschni, Founder and Lead Developer of the POCO C++ Libraries, for embedded
IoT edge and fog computing applications that connect sensors, devices and cloud
services. This platform implements a web-enabled, modular and extensible C++ and
JavaScript runtime environment and provides easy to use building blocks. Applica-
tions can thus talk to various sensors, devices and cloud services, and to process,
analyze and filter sensor data locally, at the edge device or within the local network
("fog"). macchina.io combines the power of V8 JavaScript for rapid application de-
velopment with the power and performance of native C++ code. A unique bridging
system and a code generator make it easy to consume C++ services from JavaScript,
without the need to manually write glue code. It is distributed with a powerful
embedded web application server, providing a flexible module system that makes
it easy to build dynamically extensible applications providing rich web-based user
interfaces. It is equipped with rich APIs for accessing various sensors and devices,
which can be used from both JavaScript and native C++ code and includes HTTP(S)
and MQTT clients for connecting to cloud services and other IoT devices. Security is
guaranteed using my-devices.net for secure remote management and via Web, SSH
and VNC for remote access.

1.2.2 Cross-Domain IoT Platforms

The platforms presented in previous section allow the development of multiple IoT
applications that are deployed independently. In most cases there is no easy way
to combine data and services from diverse IoT platforms, even when these plat-
forms have been conceived for the same application domain. These difficulties are
due from one side to the heterogeneity of the data formats and protocols adopted
by the IoT platforms and from the other to the adoption of different semantic rep-
resentations for the IoT resources, including units of measurement, mathematical
constructs, sensor types and properties and more. This makes the so far proposed



32 Chapter 1. IoT Platforms. Current Features and Future Trends

Name
SOLUTIONS
FOR INTEROP-
ERABILITY

LAYER OF
INTEROPER-
ABILITY

BARRIERS FOR INTEROPERABILITY

BEZIRK

Open API,
Open Pro-
tocol, Open
Source

Protocol-
level,
Interface-
level, Device-
level

Interoperability only with systems in the local
network

Bosch SCP
Data-as-
a-Service
Data-level

FlyBits plat-
form Not-known

CSI Piemonte Open API

Data-level,
Interface-
level, Service-
level

The impossibility of manage lifecycle of smart
objects represents a barrier for a complete inte-
gration with other platforms

FIWARE

OMA
BGSI-9/10,
IDAS/IoT
Data Edge

Interface-level

Lack of easy-to-use SDKs for IoT Platform and
service developers. Lack of semantic expres-
siveness (to describe/discover data and func-
tions). Lack of maturity (TRL of IoT Discovery
around 5)

WordSensing
HTTP(s) (data
transport),
REST API

Interface-level

No row access to the "actual" things/sensors.
Access to the platform will be limited to the
Barcelona pilot, for specific clients just during
the project.

TIC platform Open API Data-level,
Service-level

The platform integrates data via open API, but
also to a great part data provided by 3rd par-
ties. For these data we have no consent to use
the data within interoperable solutions

IFTTT Open API Data-level
For creating IFTTT rules, a developer needs to
know a service/platform that is connected to
IFTTT and IFTTT itself.

Wubby
Adding new
applications
in Wubby VM

Device-level Not-known

Xively Open APIs Device-level Not-known
Kaa REST API Data-level Not-known

Carriots HTTP REST-
ful API Device-level Not-known

macchina.io Open API Device-level
Works only with platforms that supports the
POCO C++ libraries. The build system cur-
rently supports only Linux and OS X

TABLE 1.3: Measures of Interoperability of IoT Platforms (enhanced
version of [68])



1.2. IoT Platforms 33

IoT platforms adapt for the development of vertical applications and provide lim-
ited support for more integrated horizontal applications, that are able to combine
IoT data and services from multiple IoT platforms.

The first platform that has been conceived for creating a bridge among heteroge-
neous vertical IoT platform is the OpenIoT Platform that provides basic facilities for
the development of cross-domain platform. OpenIoT incorporates an enhanced ver-
sion of the popular Global Sensor Network (GSN) middleware (https://lsir.epfl.ch/
research/current/gsn/) and the Linked Sensor Middleware (LSM) projects [85] which
enable the collection of data streams from different IoT sensors and devices along
with their semantics annotation according to the W3C Semantic Sensor Networks
(SSN) ontology (discussed in next chapter) and extension over it. Moreover, In the
context of the Internet of Things European platforms Initiatives (IoT-EPI: http://iot-
epi.eu), eight projects have been financed by the European Commission with the
purpose to develop infrastructures among heterogeneous platforms in order to ad-
dress the interoperability issues at different layers.

In the reminder of the section we will discuss the main features of the OpenIoT
(Open Source cloud solution for the Internet of Things) platform and then present
the characteristics of the technological-oriented projects among those that received
funding: BIG-IoT project (Bridging the Interoperability Gap of the Internet of Things),
Biotope (building an IoT Open Innovation Ecosystem for Connected Smart Objects),
the INTER-IoT project (Interoperability of Heterogeneous IoT Platforms), and Sym-
bIoTe project (Symbiosis of Smart Objects Across IoT Environments).

OpenIoT. This middleware infrastructure is used for implementing and integrat-
ing IoT solutions. The OpenIoT infrastructure provides the following: i) collecting
and processing data from virtually any sensor in the world, including physical de-
vices, sensor processing algorithms, social media processing algorithms and more;
ii) semantically annotating sensor data, according to the W3C Semantic Sensor Net-
works (SSN) specifications [126] ; iii) streaming various sensors data to a cloud com-
puting infrastructure; iv) dynamically discovering/querying sensors and their data;
v) composing and delivering IoT services that comprise data from multiple sensors;
vi) visualizing IoT data based on mashups (charts, graphs, maps etc.); and, vii) op-
timizing resources within the OpenIoT middleware and cloud infrastructure.

The term "sensor" in OpenIoT refers to any components that can provide observa-
tions. OpenIoT facilitates the integration of the above sensors with only minimal
effort (i.e. few man days effort) for implementing an appropriate access driver. Ope-
nIoT combines and enhances results from leading edge middleware projects, such
as the Global Sensor Networks (GSN) [2] and the Linked Sensor Middleware (LSM)
projects [84]. Moreover, it is designed to satisfy different domains, in particular fo-
cusing on providing efficient ways to use and manage cloud environments for IoT



34 Chapter 1. IoT Platforms. Current Features and Future Trends

entities and resources such as sensors, actuators and smart devices. OpenIoT trans-
ports data by using XML and RDF with the standard HTTP protocol. Interoperabil-
ity of the platform level is enabled through public and well documented APIs.

BIG-IOT. BIG-IOT project will develop an architecture as a foundation for build-
ing IoT ecosystems that address the issues of interoperability by adopting: i) a com-
mon API, ii) semantic descriptions of resources and services, as well as iii) a mar-
ketplace as a nucleus of the ecosystem. This will allow new services by combin-
ing data from multiple platforms (e.g., parking information from various smart city
platforms). In addition, platforms from multiple domains (e.g. home and city) and
regions will be combined, such that applications can utilize all relevant information
and work seamlessly across regions (e.g. the same smart parking application works
on top of a smart city platform in Berlin, in Barcelona and in London).

Biotope. This project aims at addressing the following objectives: i) provide the
necessary standardised Open APIs to enable interoperability between today’s verti-
cal IoT silos; ii) enable new forms of co-creation of services ranging from simple data
collection and processing, to intelligent, situation aware and self-adaptive support
of everyday work and life; iii) establish a robust IoT framework for security, privacy
& trust that facilitates the responsible access and ownership of data; iv) develop
large-scale pilots in smart cities to provide proofs-of-concept of bIoTope enabled SoS
ecosystems; v) maintain, grow and sustain the socio-technical and business models
of bIoTope ecosystems by establishing a governance roadmap for ecosystem evolu-
tion. bIoTope technologies enable the publication, consumption and composition
of heterogeneous information sources and services from across multiple systems
(OpenIoT, FIWARE, city dashboards...). Full advantage is taken of recent IoT stan-
dards, notably the O-MI (Open Messaging Interface) and O-DF (Open Data Format)
standards, while an "Everything as a Service" design enables rapid development of
new IoT systems and reduced development costs. The bIoTope platform enables IoT
product and service providers to quickly develop and deploy IoT solutions utilizing
diverse information sources, which are easily integrated to compose more advanced
and higher value solutions without substantial development costs.

symbIoTe. It aims at providing a simplified IoT application and service develop-
ment process over interworking IoT platforms. This will be accomplished by: i) pro-
viding the means to create and manage virtual IoT environments across various IoT
platforms; ii) implementing high-level APIs -enablers- leveraging such virtual envi-
ronments to offer specialized services (e.g., localization in indoor spaces or unified
access to environmental data gathered from various sources), tailored to the needs
of symbIoTe-specific use cases; iii) offering the means for creating dynamic and self-
configurable smart spaces;s and iv) implementing a secure interworking protocol



1.2. IoT Platforms 35

between the platforms in accordance with recommendations from standardization
bodies. This will support SMEs and new entrants in the IoT domain to build innova-
tive IoT services within short development life cycles. symbIoTe is built around the
concept of virtual IoT environments provisioned over various cloud-based IoT plat-
forms. Virtual IoT environments are an abstraction composed of virtual representa-
tions of actual sensors and actuators being exposed by their host platforms to third
parties. Of course, a single virtual sensor may emit raw, aggregated or filtered data
produced by many sensors residing within a host platform. It needs to be noted that
the host platform defines the policies for exposing its virtual sensors to third parties.
symbIoTe envisions dynamic and adaptive virtual environments since resource of-
ferings across symbIoTe-enabled IoT platforms are also continuously changing. Its
architecture is built around a hierarchical IoT stack (motivated by the OneM2M ap-
proach and OpenIoT’s VDK) and spans over different IoT platforms. Smart objects
are expected to be connected to IoT gateways within the smart spaces which also
host various computing and storage resources. The local infrastructure shares the
available local resources (connectivity, computing and storage) and is connected to
platform services (e.g. resource discovery and management, data analytics) running
in the cloud. symbIoTe aims at implementing an Open Source middleware proto-
type, following an agile-like approach. Developers from all consortium partners
will join forces in the implementation of the software components in the aforemen-
tioned domains. Regarding licensing, the consortium is discussing on the selection
of the appropriate licensing scheme. Initial discussions have indicated that for the
licensing of the Application/Cloud domain SW components (i.e., the symbIoTe high
level APIs), a "copyleft" license will be selected (most probably the GNU Library or
’Lesser’ General Public License version 3.0 (LGPL-3.0)), so that updates, bug fixes
and new features are always given back to the Open Source Community. For the
middleware components residing at the platforms’ side (i.e., at the Cloud or Smart
Space domains), the licensing will follow the "non-copyleft" approach (e.g., the BSD
3-Clause "New" or "Revised" License (BSD-3-Clause)).

Inter-IoT. This project is aiming at the design and implementation of an experi-
mentation with, an open cross-layer framework to provide voluntary interoperabil-
ity among heterogeneous Internet of Things (IoT) platforms. The project is driven
by use cases from two domains: (e/m)Health and transportation and logistics in
a port environment. The proposal will allow effective and efficient development
of adaptive, smart IoT applications and services on top of different heterogeneous
IoT platforms, spanning single and/or multiple application domains. The solution
adopted by INTER-IoT will include three main products/outcomes:

1. INTER-LAYER: methods and tools for providing interoperability among and
across each layer (virtual gateways/devices, network, middleware, applica-
tion services, data and semantics) of IoT platforms. Specifically, they will



36 Chapter 1. IoT Platforms. Current Features and Future Trends

propose real/virtual gateways [48] for device-to-device communication, vir-
tual switchers based on SDN for network-to-network interconnection, super
middleware for middleware-to-middleware integration, service broker for the
orchestration of the service layer and the semantics mediator for data and se-
mantics interoperability [111].

2. INTER-FW: a global framework (based on an interoperable meta-architecture
and meta-data model) for programming and managing interoperable IoT plat-
forms, including an API to access INTER-LAYER components and allow the
creation of an ecosystem of IoT applications and services.

3. INTER-METH: an engineering methodology based on CASE (Computer Aided
Software Engineering) tool for systematically driving the integration/intercon-
nection of heterogeneous non-interoperable IoT platforms.

1.3 Comparison of IoT Platforms

In the previous section we presented different IoT platforms that are currently avail-
able on the market or developed in the context of projects funded by Public Institu-
tions. Some of them are open-source, others are commercial and the code is not pub-
licly available, some of them have been realized in the context of European Projects
and sometimes are no-longer maintained. In this section we wish to compare them
from different perspectives in order to better understand the current status of mid-
dleware softwares in the IoT domain.

The issue of interoperability is mainly addressed at the syntactic level by offering
public protocols, interfaces and description of device capabilities. Some of them ex-
ploit semantic web concepts even if mainly as research extensions of the systems.
For each platform, Table 1.3 shows the approach/solution used for interoperability
(e.g. OpenAPI, Open Source, etc.), the level of interoperability (e.g. at data-level,
device-level, interface-level, protocol-level, service-level), and the barriers of inter-
operability that need to be removed. A deeper analysis of the issues of interoper-
ability in the IoT domain will be discussed in Chapter 2 where research approaches
for the semantic interoperability are discussed.

Relying on the work presented in [152], we have outlined the main differences among
the presented platforms for what concern: persistency, communication, interoper-
ability, identity management, marketplace, semantic descriptions, service discov-
ery and orchestration, deployment, and data streaming and processing. Among the
Horizontal Platforms we are considering only OpenIoT because it is the only one
currently available. According to the presented analysis, eleven of the IoT platforms
provide information communication by XML and/or JSON data model, three IoT
platforms support special purpose JSON data format, BEZIRK supports JSON-LD



1.3. Comparison of IoT Platforms 37

Name COMMUNICATION OPENNESS SECURITY PERSISTENCY

BEZIRK
JSON and JSON-
LD, TCP/IP (Ze-
roMQ)

Open API, Open
Protocols and
Open Source

Encryption On device storage

Bosch SCP
XML, JSON,
HTTP, REST,
MQTT

Data-as-a-Service Spring XD secu-
rity

MySQL, Mon-
goDB, and Dy-
namoDB

CSI Piemonte JSON/ODATA,
HTTP(s)/MQTT(s) Open API OAuth2 Yucca Storage

FIWARE
JSON/HTTP,
Orion Context
Broker

OMA NGSI-9/10
IDAS/IoT Data
Edge

OAuth 2.0 Different depend-
ing on GEs

OpenIoT XML, JSON, RDF HTTP Omuth2 OpenIoT RDF
store (LSM light)

WordSensing JSON Not known JWT Not supported

TIC platform JSON Open API Apkey NoSQL (only in-
ternal use)

IFTTT
Not known, de-
pending on sup-
ported services

Open API

Two-step verifi-
cation using user
password and
phone

Amazon Simple
Storage Service (a
cloud storage)

Wubby Anything Protocol agnostic:
MQTT Not known MySQL

Xively
JSON+SenML,
XML +SenML,
CSV (proprietary)

HTTP REST
(GET) Not known Not known

Kaa
Structured and
unstructured
data

HTTP REST API Not known

MongoDB,
Couchbase, Cas-
sandra, Hadoop
Filesystem

Carriots XML and JSON HTTP RESTful
API

Apikeys, check-
sums and HTTPS NoSQL Data Base

macchina.io

Anything sup-
ported by the
POCO C++
Libraries

Open API, MQTT my-devices.net,
SSH, HTTPS SQLite

TABLE 1.4: Comparison of IoT Platforms: Communication, Open-
ness, Security and Persistency (enhanced version of [68])

and CSI Piemonte supports JSON/ODATA. IoT platforms support their functionali-
ties mostly by using HTTP protocol. IoT platforms, which offer message-oriented
communication such as Bosch’s SCP, CSI Piemonte, Wubby and machina.io use
mostly MQTT for communication. To improve interoperability, the IoT platforms
provide programming interfaces, such as BEZIRK, CSI Piemonte, OpenIoT, TIC Plat-
form, IFTTT, Kaa, and macchina.io. Other IoT platforms try to achieve interoper-
ability through an open source approach, such as BEZIRK and OpenIoT. Instead of
opening their functionality, Bosch SCP exchanges their information with other sys-
tems through a data as service approach. Xively and Carriots allow only the delivery
of data over their platform as a platform as a service approach. WorldSensing is cur-
rently a closed system and does not offer specific interoperability measures.



38 Chapter 1. IoT Platforms. Current Features and Future Trends

The IoT platforms BEZIRK and WorldSensing improve system security by encryp-
tion. WorldSensing uses JSON Web Token (JWT)10 while BEZIRK uses its sphere-
based model11, utilizing standard encryption technologies. Moreover, CSI Piemonte,
FIWARE, and OpenIoT provide the AAA (Authentication, Authorization, and Ac-
counting) concept by using OAuth2 protocol12. Bosch SCP supports their security
by using the framework Spring XD security whereas Carriots uses Apikeys, Check-
sums and HTTPS. To store data, Bosch SCP provides MySQL, MongoDB and Dy-
namoDB. Wubby uses MySQL. CSI Piemonte uses the Yucca Storage to save their
data. Amazon Simple Storage Service (AWS S3) provides the IFTTT service platform
with a cloud storage. WorldSensing manages the real time traffic information and
supports no storage. In contrast, OpenIoT uses an RDF store to persist information
according to the used semantic models. Kaa uses MongoDB, Couchbase, Cassan-
dra and Hadoop HDFS to store data. Carriots uses a generic NoSQL database while
macchina.io stores data through a SQLite database.

Support for semantic descriptions is not wide. Three of the thirteen surveyed IoT
platforms support semantic descriptions of their data or services. OpenIoT and FI-
WARE both support the semantic description of their data by using RDF/OWL [11].
Thereby, OpenIoT uses the SSN ontology and OpenIoT Ontology. BEZIRK also uses
semantic descriptions of the information, assuming the use of application or do-
main specific ontologies. Bosch SCP uses semantics for service discovery, but it does
not support semantic description of smart objects. Regarding Service Discovery,
ten IoT platforms support service discovery. Three IoT platforms discovery its ser-
vices based on semantic description. Seven IoT platforms support service discov-
ery through syntactic description of services, whereas the others have no discovery
functionality. None of the analyzed IoT platforms support service orchestration.

Cloud based IoT platforms, Bosch SCP, FIWARE, and the TIC Platform use the Docker
Container. One benefit of using Docker is the automatic synchronization of the de-
velopment environment and runtime environment. Four IoT of the thirteen IoT plat-
forms have provided a marketplace. However, the FIWARE marketplace is platform
dependent. It allows transactions of the data/services that are developed within
FIWARE. IFTTT also has a marketplace, but the details are unknown. Acting as gen-
eral conclusion, the overview Tables 1.4 and 1.5 show the concepts as columns and
the platforms as rows.

1.4 Concluding Remarks

The presented systems do not provide an easy communication with other platforms.
The attempts of guarantee the semantic interoperability by exploiting Ontologies are

10https://jwt.io/
11http://www.sphereproject.org/
12https://oauth.net/2/



1.4. Concluding Remarks 39

Name SEMANTIC
CONCEPT

SERVICE DISCOVERY
AND ORCHESTRATION

DEPLOYMENT MARKETPLACE

BEZIRK

Yes, based on
domain-
specific
semantic
protocols and
ontologies

Semantic based Not supported Not sup-
ported

Bosch SCP
Semantic is
supported.
No ontologies

Syntactic level Docker, provisioner Not sup-
ported

CSI Piemonte Not sup-
ported

Only through user inter-
action Not known Using for free

FIWARE RDF/OWL

Through different GEs:
Syntax based: NGSI-9
Server Semantic based:
Sense2Web

Docker GE in FiWare:
Sagitta. GE in Fi-
Ware: Repository RI

Different GEs:
WMarket and
WStore

OpenIoT
SSN ontol-
ogy, OpenIoT
ontology

Semantic based: depend
on ontology Not known Not sup-

ported

WordSensing Not sup-
ported Not supported Not supported Not sup-

ported
TIC platform Not known No Exist Docker Not exist

IFTTT
Syntax based:
keyword-
based

Not known Not supported Yes, details
unknown

Wubby

Syntax based:
ID-based,
service based,
product based

Not supported

A custom buildbot
approach together
with some logic
in the devices for
automatic updates

it exists

Xively Not known Syntax based: very lim-
ited search criteria Not known Not known

Kaa Not sup-
ported Through Kaa Sandbox Custom Applications Not exist

Carriots Not known Only through user inter-
action Custom Application Yes, details

not known

macchina.io Not known Not Supported Custom Application in the pro ver-
sion

TABLE 1.5: Comparison of IoT Platforms: Semantic Concept, Ser-
vice Discovery and Orchestration, Deployment and Marketplace (en-

hanced version of [68])

quite limited and there is the need to make available (eventually under specific con-
straints) the events generated by their sensors and to allow the reception of com-
mands to be executed on their actuators.

In order to face the last requirement, a common approach that can be exploited is
the use of context brokers, that is systems able to expose the events generated by
the sensors to external platforms by mean of a publish/subscribe communication
protocol. In this way, applications interested in receiving events from a platform can
subscribe to the channel associated with a sensor and be notified of the occurrence of
a new event. Even if this approach does not solve the issue related to the semantics
associated to the events that are published on a given channel, it allows to avoid to



40 Chapter 1. IoT Platforms. Current Features and Future Trends

know the way in which the events are generated and transmitted within the IoT plat-
forms. External applications can simply consume the generated events. Analogous
considerations can be done for sending commands to actuators that are managed
by an IoT platform. We remark that both in the case of reading events from sen-
sors and sending commands to actuators, the need arises to guarantee these services
only to authorized applications and thus to exploit security and privacy techniques
associated with the context brokers.

In the thesis we consider context brokers that make available to our system the
events generated by cross-domain IoT sensors. The sensors and the schema of the
events generated by the sensors are semantically annotated according to the domain
ontology adopted in a given context of use in order to guarantee their semantics and
correct processing. As context broker we will adopt Apache Kafka. However, also
other context brokers can be easily integrated in our architecture.



41

Chapter 2

Semantic Interoperability in the
IoT Context

This chapter describes recent projects and tools in sensor network research area that
have focused their efforts on how to integrate data generated in raw and heteroge-
neous formats by means of a common semantics able to describe their meanings, the
lack of which imposes barriers to interoperability among heterogeneous sensors. In
the IoT domain, users are primarily interested in understanding the meaning of com-
bined streams that can lead to the detection of significant events instead of raw data
flows. Nevertheless, sensors provide raw data that do not contain any additional de-
scription or metadata and require specialized knowledge and manual effort for their
meaningful combination. This chapter aims at tackling this problem by describing
several solutions able to integrate sensor data through Semantic Web technologies
in order to publish data streams in an enriched and standardized way, so that they
can be accessed and consumed by external applications.

One of the key factors of these strategies is the possibility to describe the semantics of
the sensor data taking into account a specific Domain Ontology, that is an ontology
developed by the domain experts that starting from standard IoT ontologies include
concepts and relationships that are usually adopted in the IoT domain. In this way,
the semantics adopted in a given domain is clear and well specified. The use of
a domain-based vocabulary in an ontology-driven approach for the explication of
implicit and hidden knowledge is a possible approach to overcome the problem of
semantic heterogeneity. It allows information exchange such that the data meaning
can be automatically interpreted and useful elaborated by the receiver.

The chapter is structured as follows. Section 2.1 provides a description of the in-
teroperability problem specifically oriented toward semantic interoperability in IoT
field, then Section 2.2 describes some of the most used ontologies in this domain.
Section 2.3 provides an overview of semantic description techniques used for the
explicit presentation of the semantics of the data sources and Section 2.4 focuses
on arguing how to use semantic models for describing data sources in terms of the
concepts and relationships defined by a Domain Ontology.



42 Chapter 2. Semantic Interoperability in the IoT Context

2.1 The Issues of Interoperability

There is no single definition of the word interoperability because it has different mean-
ings in different contexts. In some cases, interoperability is defined as the ability to
describe the extent to which systems and devices can exchange data and interpret the
shared data. For two systems to be interoperable, they must be able to exchange data
and subsequently present them in a way that can be understood by a user1. Other
sources2 define interoperability as the ability of a computer system to run applica-
tion programs from different vendors and to interact with other computers across
local or wide-area networks regardless of their physical architecture and operating
systems. Interoperability is feasible through hardware and software components
that conform to open standards such as those used for internet.

The National Alliance for Health Information Technology (Alliance) introduces the
levels of interoperability and adopts the use of four categories as proposed by the
Center for Information Technology Leadership [67]. At the most basic level is the
exchange of data in non-electronic formats - pieces of paper and phone calls, for
example. The second level are data that can be transmitted electronically, such as
via fax or e-mail. The third level represents another leap: data that machines can
organize, such as labeled documents and images. The fourth level, the highest level
of interoperability can be achieved when machines can interpret data and perform
automatic functions, for example, in the context of Health, integrating lab results
from one facility into the electronic health record (EHR), or electronic medical record
(EMR) system of another facility. Achieving machine interpretable data requires
standards for the acquisition, storage and transmission of data, and involves careful
attention to data integrity, privacy, and security. ETSI divides interoperability in
different categories (Figure 2.1) [142]:

• Technical interoperability: it refers with hardware/software components, sys-
tems and platforms that communicate through machine-to-machine protocols.

• Syntactical interoperability: it is usually associated with data format. The com-
munication protocols need to transmit messages with a well-defined syntax
and encoding. Contents can be represented using high-level formats such as
HTML, XML or JSON.

• Semantic interoperability: it is everything that concern the meaning of the con-
tent and its interpretation by the machines.

• Organizational interoperability: it is the ability of organizations to effectively
communicate and transfer (meaningful) data (information) even though they
may use a variety of information systems over different infrastructures.

1http://www.himss.org/library/interoperability-standards/what-is-interoperability
2http://www.businessdictionary.com/definition/interoperability.html



2.1. The Issues of Interoperability 43

FIGURE 2.1: Different levels of interoperability

Interoperability has been promoted through different projects and approaches [70].
Starting from the LISI (Levels of Information System Interoperability) approach in
1997, a project developed by the C4ISR architecture working group (AWG) in order
to provide maturity level to US Department of Defense (DoD) [87], the IoT Forums
are working to develop a common model that can ensure interoperability among
smart objects.

2.1.1 IoT Interoperability

Interoperability in the Internet of Things is now a hot topic and it is critical for emerg-
ing services and applications. Devices on the Internet of Things (IoT) are connected
to the Internet, are equipped with identifying, sensing and processing capabilities,
they are constantly connected to each other, also to services, and they collaborate or
interoperate in order to discover their context or to create some values. To reach the
full potential of the IoT, however, it is not sufficient for things to be connected to the
Internet; they also need to be found, accessed, managed and potentially linked to
other things. To enable this interaction, a higher degree of interoperability is nec-
essary that goes beyond simple protocol interoperability as provided by the Inter-
net [19]. This means that IoT requires standards to enable the development of hor-
izontal platforms on top of cross-platforms that are communicable, operable and
programmable across devices, regardless of make, model, manufacturer or industry.
The hope is that connectivity between people, processes and things works no mat-
ter what screen type, browser or hardware is used. The reality, however, is that the
IoT is fragmented and lacks interoperability. According to [37], the fragmentation is
mainly due to the following reasons:

• different Original Equipment Manufacturers (OEMs): devices or equipment
that are not made by the same manufacturer can cannot integrate.



44 Chapter 2. Semantic Interoperability in the IoT Context

FIGURE 2.2: "Knowledge Hierarchy" in the context of IoT. Taken
from [121]

• Different Operating Systems (OSs): inability to run on the same OS.

• Different versions or times of purchase: devices that were not made or pur-
chased at the same time.

• Different/incommunicable types of connectors or connectivity frameworks (e.g.
devices).

• Different/inconsistent communication protocol standards (i.e. rules).

• Lack of programmability needed to connect in the first place.

The understanding of a situation (such as the comprehension of a context) enables
services and applications to make intelligent decisions and to respond to the dy-
namics of their environment. As discussed in the previous chapter, sensors data are
usually heterogeneous (temperature, light, sound, video, etc.) and different devices
can produce data with different quality that depends on the time and location where
data is acquired [11]. This data can be analyzed, transformed, enriched in order to
give us better understanding about our physical world and in order to create valu-
able and meaningful information. This data transformation process can be better
illustrated using an adapted version (for IoT) of the "knowledge hierarchy" [121].

As show in Figure 2.2 the lower layer refers to the huge amount of data produced
by sensors and devices. This data is characterized by its low quality, the presence of
different outliers and with values that need to be cleaned, integrated and contextual-
ized in order to be processed. The layer above helps creating structured and machine
readable information from the raw data of various forms to enhance interoperability.
However, applications and services require high-level abstractions and perceptions
that provide human and machine-understandable meanings and insights of the un-
derlying data. The high-level abstractions and perceptions then can be transformed
to actionable intelligence (wisdom) with domain and background knowledge to ex-
ploit the full potential of IoT and create end-to-end solutions [11].

Open Internet Consortium (OIC) is currently focusing on the IoT interoperability
to define specifications, integration of billions of smart objects, and scalability is-
sues [79]. Low cost interoperability among smart objects is an important factor for



2.1. The Issues of Interoperability 45

Smart Cities. For example, smart mesh backbone gateways (WRT54GL by Linksys3

and net5501 by Soekris Engineering Inc.4) are IoT gateways that try to solve the com-
munication gap between field control/sensor nodes and customer’s cloud, enabling
field data to be harnessed for manufacturing process optimization, remote manage-
ment, and preventive maintenance. They are developed for smart cities which pro-
vide low cost interoperability. The Grid-Wise Architecture Council (GWAC) mission
is to enable interoperability among the objects that interact with the electric power
system. The GWAC introduced a context setting framework which identifies inter-
operability issues [64].

2.1.2 Semantic Interoperability

The overall challenge in interoperability is first to ensure technical interoperability
from technologies to deliver a mass of information and then complementary chal-
lenges are for the information to be understood and processed. Interoperability can
be solved if communicating smart objects are semantically interoperable [53]. IoT
device’s semantics details, interpretation, and exchange of information must be de-
veloped in order to remove semantics conflicts in interoperability.

Semantic interoperability is the exchange of information with meaningful and un-
derstandable meaning [4, 150]. It is achieved when interacting systems attribute the
same meaning to data exchanged, ensuring consistency of the data through the sys-
tems regardless of individual data format. Semantic conflicts occur whenever two
contexts do not use the same interpretation of the information. Goh identifies three
main causes for semantic heterogeneity [56]:

• Confounding conflicts occur when information items seem to have the same
meaning, but differ in reality, e.g. owing to different temporal contexts.

• Scaling conflicts occur when different reference systems are used to measure a
value. Examples are different currencies.

• Naming conflicts occur when naming schemes of information differ signifi-
cantly. A frequent phenomenon is the presence of homonyms and synonyms.

The use of shared vocabularies either in a schema form and/or in an ontology-
driven approach for the explication of implicit and hidden knowledge is a possible
approach to overcome the problem of semantic heterogeneity. Interoperability can
be seen as a key application of ontologies, and many ontology-based approaches to
information integration to achieve interoperability have been developed [141, 145].

3http://www.linksys.com/us/support-product?pid=01t80000003KOkNAAW
4http://soekris.com/products/eol-products/net5501.html



46 Chapter 2. Semantic Interoperability in the IoT Context

2.2 Ontologies for IoT

As reported in [137] and [53] it is reasonable to believe that semantic technologies,
based on the use of ontologies, have the best chance to facilitate interoperability
among the things, as well as across the IoT platforms. Ontologies can be used for se-
mantic annotation, access management and for discovering resources in the IoT. As
a result, the use of shared ontologies for common interpretation of information and
data is the best pathway to achieve semantic interoperability. It allows information
exchange such that the data meaning can be automatically interpreted and useful
elaborated by the receiver.

The introduction of metadata to describe the contents and context of data to facilitate
its discovery, understanding and (re)usability is a key solution. Metadata is about
reducing the separation between semantics and values by ensuring that data is pro-
vided with context and description. Taxonomies are often build on metadata using
parent-child relationship, and are used to describe the organization of terms within a
specific domain. Ontologies further extend this concept to capture relationship capa-
ble of supporting richer operations and more advanced levels of reasoning. Practical
use of semantic methods and tools requires formulation/existence of explicitly ex-
pressed ontologies, represented using one of ontology languages (currently RDF(S)
or OWL).

Many ontologies for the IoT has been developed. Most of them focus on represent-
ing specific properties and characteristics. For example PROV-O provenance on-
tology5, LinkedGeoData6, WGS84 geo-ontologies7, LSM linked sensor middleware
ontology8, W3C Time Ontology9, TimeLine Ontology10. Most existing ontologies,
capturing the IoT, were developed within individual research projects and, as a con-
sequence, they typically are in prototype stage, often incomplete and sometimes
abandoned. The lack of a clear and widely adopted ontology in different application
contexts is one of the reason for which it is really difficult to create horizontal appli-
cations. As explained later, notable exception due to their usage in real contexts of
use grounded on Smart Cities projects are Km4City an the SAO ontology. Some other
ontologies aim at capturing further and specific information about sensor capabili-
ties, performance, usage conditions and enable contextual data discovery. The most
notable ontology is the Semantic Sensor Network ontology [126], that is one of the most
used in the IoT context and could be eligible to become a standard. On October 2017
a new extension of this ontology, called SOSA (Sensor, Observation, Sample, and Ac-
tuator) [63], has been introduced. A lightweight instantiation of the SSN ontology

5https://www.w3.org/TR/prov-o/
6http://linkedgeodata.org/OSM
7https://www.w3.org/2003/01/geo/9
8http://open-platforms.eu/library/deri-lsm/
9https://www.w3.org/TR/owl-time/

10http://motools.sourceforge.net/timeline/timeline.html



2.2. Ontologies for IoT 47

has been proposed, IoT-Lite ontology [15], that provides a general IoT knowledge
model intended to limit processing time of ontologically demarcated resources.

In the reminder of the section we discuss in more details the Km4City and the SAO
ontologies as general purpose ontologies that allows to model IoT devices and re-
sources. Then, we present the SSN and IoT-Lite ontologies that have been specifi-
cally tailored for the IoT context.

2.2.1 Km4City

In the field of open data for Smart Cities a large work has been done by Public Ad-
ministrations (PAs) on producing data. Open data coming from PA contains typi-
cally statistic information about the city (such as data on the population, accidents,
flooding, votes, administrations, energy consumption, presences on museums, etc.),
location of point of interests on the territory (including, museums, tourism attrac-
tions, restaurants, shops, hotels, etc.), major GOV services, ambient data, weather
status and forecast, changes in traffic rules for maintenance interventions, etc. A
relevant role is covered in city also by private data coming from mobility and trans-
port such as those created by Intelligent Transportation Systems, ITS, for bus man-
agement, and solutions for managing and controlling parking areas, car and bike
sharing, car flow, good delivering services, accesses on Restricted Traffic Zone (RTZ)
etc. Both open and private data may include real time data such as the traffic flow
measure, position of vehicles (buses, car/bike sharing, taxi, garbage collectors, de-
livering services, etc.), railway and train status, park areas status, and Bluetooth
tracking systems for monitoring movements of cellular phones, ambient sensors,
and TV cameras streams for security [12]. This information is typically not semanti-
cally interoperable and a Smart City ontology is not yet standardized. Many research
efforts are needed to identify models that can easily support the data reconciliation,
the management of their complexity and the capability of reasoning on them.

In order to solve the above described problems and provide a unique point of access
for interoperable data of a city metropolitan area, the DISIT Lab (Distributed Sys-
tems and Internet Technologies Lab) of the Department of Information Engineering
of the University of Florence realized an ontological model called Km4City11 and
well formalized and open grounded on ontology standards. This project gathers in-
formation and aims at interconnecting with many different sources, such as various
portals of the Tuscan region (MIIC, Muoversi in Toscana, Osservatorio dei Trasporti),
open data provided by individual municipalities (mainly Florence). The km4City
ontology reuses:

• dcterms,12 a set of properties and classes maintained by the Dublin Core Meta-
data Initiative;

11http://www.disit.org/km4city
12http://dublincore.org/documents/dcmi-terms/



48 Chapter 2. Semantic Interoperability in the IoT Context

FIGURE 2.3: Ontology Macro-Classes and their connections. Taken
from [12]

• foaf,13 a machine-readable ontology describing persons, their activities and
their relations to other people and objects;

• schema.org,14 is a collaborative vocabulary with a mission to create, maintain,
and promote schemas for structured data on the Internet; and

• wgs84_pos,15 a vocabulary for representing latitude and longitude coordinates.

The integrated ontological model proposed by Km4City presents seven main areas
of macroclasses, as shown in Figure 2.3.

• Administration macroclass: it is structured in order to represent the Italian public
administration hierarchy in which each region is divided into several provinces,
within which the territory is divided into municipalities. To represent this situ-
ation the km4City ontology introduces, as main class of administration macro-
class, the class PA, which is defined as subclass of foaf:Organization. Re-
striction on some ObjectProperties bring to the definition of three sublasses:
Region, Province and Municipality. For example, Region is defined as a re-
striction of PA on ObjectProperty hasProvince, so that only the PA that holds
provinces can be classified as regions.

• Street-guide macroclass: it is used to represent the entire road system of Tuscany
and is formed by entities as Road, Node, RoadElement, AdministrativeRoad,

13http://www.foaf-project.org/
14http://schema.org/
15https://www.w3.org/2003/01/geo/



2.2. Ontologies for IoT 49

Milestone, streetNumber, RoadLink, Junction, Entry, and EntryRule Manoeu-
vre. These entities have been modelled into the Km4City ontology by choos-
ing, as the main class, the RoadElement class.

• Point of interest macroclass: it allows to represent services to the citizens, points
of interest, business activities, tourist attractions and is represented by a pair of
coordinates and by a category (Accommodation, GovernmentOffice, Tourism-
Service, TransferService, CulturalActivity, FinancialService, Shopping, Health-
care, Education, Entertainment, Emergency and WineAndFood).

• Public transport macroclass: it includes information relating to public road and
railway transports. For what concern road public transports it is organized
in lots, each composed by a bus/tram line. Each line includes at least one
ascendant direction ride and one descendant direction ride, both identified by
a code. Every ride is scheduled to drive along a specific path, called route. A
route is a series of road segments delimited by subsequent bus stops. Relating
to rail transports, a railway line is composed by a number of railway elements,
a railway direction and a railway section. At the end or the beginning of rail
elements there are train stations or cargo terminals.

• Sensor macroclass: it consists of four parts related to car parks sensors, weather
sensors, traffic sensors installed along roads/rails and to AVM/kit systems
installed on buses, cars and/or bikes. The first part is focused on the real
time data related to parking status. In each status report, there are informa-
tion about the number of free and occupied parking spaces, for the main car
parks. The weather sensors produce real time data concerning the weather
forecast once or twice a day. Every report contains forecast for five days. The
traffic sensors, are placed along the roads of the region, and produce real-time
data, different measures and assessment related to traffic situation. The AVM
(Automatic Vehicle Monitoring) systems part concerns the sensors systems in-
stalled on most of buses, which, at intervals of few minutes, send a report to
the management center. They provide information about: the last stop per-
formed, current GPS coordinates of the vehicle, the identifiers of vehicle and
of the line, a list of upcoming stops with the planned passage time.

• Temporal macroclass: it is based on the Time ontology [43] as it has been used
into OSIM ontology [101]. It requires the integration of the concept of time as
it is really relevant the capability to compute intervals between timestamps.

• Metadata macroclass: it is used to keep track of the status and descriptors associ-
ated with the various ingested dataset. To the various graph identified within
the ontology is assigned a name (i.e., an identifier) by means of Sesame16.

16www.openrdf.org



50 Chapter 2. Semantic Interoperability in the IoT Context

FIGURE 2.4: Overview of the SAO Ontology modules. Taken from
http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao

2.2.2 Stream Annotation Ontology (SAO)

The Stream Annotation Ontology (SAO)17 is a lightweight semantic model, which
is built on top of well-known models to represent IoT data streams. It has been
developed within the realm of CityPulse project18 that contains four main modules,
namely Stream Annotation Ontology (SAO), Quality, Complex Event Ontology, and
User Profiles information models [77]. Figure 2.4 shows an overview of the proposed
information model.

The SAO module can be used to express the features of stream data. It allows
publishing content-derived data about IoT streams and provides concepts such as
sao:StreamData, sao:Segment, sao:SegmentAnalysis on top of the TimeLine19 and
IoTest models. Using the SAO module, it is possible to describe a data stream and a
timeline instance to link the segment description with the time extent of a temporal
entity representing the data stream. Thus, it allows to express a stream data as a
time interval on the universal timeline, and also to relate such an interval with the
corresponding interval on the discrete timeline along with its discrete sampling rate.

The Quality module is used to represent the quality of information for data streams
in smart cities. The Quality itself has five categories with subcategories to describe
the attributes of the annotated data stream regarding its quality. In addition, it pro-
vides a concept of trustworthiness for data sources. This concept is realized by two
additional object properties hasProvenance and hasReputation to link the Stream-
Data with an Agent as the owner and its Reputation.

The Complex Event Ontology module is used to define, detect and react to com-
plex events. It defines a Complex Event Service (CES) that makes part of the over-
all event-driven service oriented architecture. The CES is strictly event driven: it

17http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao
18http://www.ict-citypulse.eu/
19Timeline Ontology extends OWL-Time with various timelines (e.g. universal or discrete),

temporal concepts, such as instants and intervals, and interval relationships. Available at:
http://motools.sourceforge.net/timeline/timeline.html

http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao


2.2. Ontologies for IoT 51

catches events and triggers CES when it detects them based on their definition and
member events occurrences.

The User Profile module is used to represent users’ information for applications in
Smart Cities. It describes the users with three main concepts: personal information,
interest and ability. Interest and Ability are clustered in InterestType and Ability-
Type respectably.

2.2.3 W3C Semantic Sensor Network Ontology (SSN)

W3C Semantic Sensor Network ontology (SSN) [31, 126] was developed as a joint effort
of several research organizations and it is one of the most used in the IoT context
and for the semantic description of sensors. Some previously developed ontologies
contributed to development of the W3C SSN ontology:

• CSIRO Sensor Ontology20: it was an early attempt for the development of a
generic ontology for describing functional, physical and measurement aspects
of sensors. It was created at the Commonwealth Scientific and Industrial Re-
search Organization (CSIRO), Australia. Its main classes include sensors, fea-
tures, operations, results, processes, inputs and outputs, accuracy, resolution,
abstract and physical properties, and metadata links.

• SWAMO Ontology21: the aim of the SWAMO project was to use collabora-
tive, distributed set of intelligent agents for supervising and conducting au-
tonomous mission operations. SWAMO ontology enables automated decision
making and responses to the sensor Web environment. One of its advantages
was compatibility with the Open Geospatial Consortium (OGC) standards, en-
abling geo-data consumption and exchange.

• MMI Device Ontology22: an extensible ontology of marine devices (hence, an
ontology that is slightly more "domain-specific" than others) that integrates
with models of sensor descriptions. Its main classes include component, sys-
tem, process, platform, device, sensor, and sampler.

• SEEK Extensible Observation Ontology (OBOE23): it is a suite of ontologies
for modeling and representing scientific observations. It can express a wide
range of measurement types, includes a mechanism for specifying measure-
ment context, and has the ability to specify the type of entity being measured.
In this way it is focused more on the results produced by sensors than sensors
themselves.

20http://www.w3.org/2005/Incubator/ssn/wiki/SensorOntology2009
21http://www.w3.org/2005/Incubator/ssn/wiki/Review_of_Sensor_and_Observations_Ontologies#SWAMO
22https://marinemetadata.org/community/teams/ontdevices
23https://semtools.ecoinformatics.org/oboe



52 Chapter 2. Semantic Interoperability in the IoT Context

FIGURE 2.5: Overview of the Semantic Sensor Network ontology
modules. Taken from [83]

• OGC SensorML standard: it provides a robust and semantically-tied means of
defining processes and processing components associated with the measure-
ment and post-measurement transformation of observations.

The Semantic Sensor Web (SSW) proposes the description of sensor data with se-
mantic metadata [132] able to specify the capabilities of sensors, the measurement
processes and the resultant observations. This approach uses the current OGC (Open
Geospatial Consortium) and SWE (Sensor Web Enablement) [22] specifications and
attempts to extend them with semantic web technologies to provide enhanced de-
scriptions to facilitate access to sensor data. W3C Semantic Sensor Networks (SSN)
Incubator Group [126] worked on developing an ontology for describing sensors.
The core concepts and relations of the SSN ontology concern the description of
sensors, features, properties, observations, and systems. Then, measuring capa-
bilities, operating and survival restrictions, and deployments were added in turn.
More specifically, the SSN consists of 10 conceptual modules (Deployment, Sys-
tem, OperatingRestriction, PlatformSite, Device, Process, Data, SSOPlatform, Mea-
suringCapability, ConstraintBlock) (Figure 2.5) which contains 41 concepts and 39
object properties (Figure 2.6). It directly inherits 11 concepts and 14 object properties
from the top-level DOLCE-UltraLite ontology24 and the core of the Stimulus-Sensor-
Observation (SSO) ontology design pattern [126]. The W3C SSN ontology has been
widely used, and both extended and specialized. Among the notable extensions are
the Wireless Sensor Networks ontology (WSSN) [13], and Sensor Cloud Ontology
(SCO) [100]. The specializations include the AEMET meteorological ontology [7], at-
mosphere observation ontology SWROAO [147], flood prediction ontology SemSor-
Grid4Env [57], and Stream Annotation Ontology SAO25 [77]. In order to improve the

24http://www.ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite
25http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao



2.2. Ontologies for IoT 53

FIGURE 2.6: Overview of the Semantic Sensor Network ontology
classes and properties. Taken from [31]

capability of the SSN ontology, especially for what concern the new aspects of sens-
ing (such as actuators), a new extension has been introduced, on October 2017. The
new SSN ontology has been designed to provide a flexible but coherent perspective
for representing the entities, relations, and activities involved in sensing, sampling,
and actuation. The main innovation of this generation of SSN has been the intro-
duction of the Sensor, Observation, Sample, and Actuator (SOSA) ontology, which
provides a lightweight core for SSN (see Figure 2.7). SOSA aims at broadening the
target audience and application areas that can make use of Semantic Web ontologies.
Other SSN modules add additional elements, additional ontological commitments,
and/or clarify and support the alignment of SSN with other ontologies [63].

With their different scope and different degrees of axiomatization, SSN and SOSA
are able to support a wide range of applications and use cases, including satellite im-
agery, large-scale scientific monitoring, industrial and household infrastructures, so-
cial sensing, citizen science, observation-driven ontology engineering, and the Web
of Things. An exhaustive Mapping Table for a comparison of SOSA with the prece-
dent models and ontologies can be found at [144].

2.2.4 IoT-Lite

While SSN ontology describes, in more detail, sensors and observations of data
streams by merging sensor-focused, observation-focused and system-focused views,



54 Chapter 2. Semantic Interoperability in the IoT Context

FIGURE 2.7: Dependencies of the SOSA ontology. Taken from https:
//www.w3.org/2015/spatial/wiki/SOSA_Ontology

IoT-Lite ontology26 aims at defining a lightweight ontology to represent IoT re-
sources, entities and services. The lightweight allows the representation and use
of IoT platforms without consuming excessive processing time when querying the
ontology. However it is also a meta ontology that can be extended in order to repre-
sent IoT concepts in a more detailed way in different domains.

As shown in Figure 2.8 the main purpose of the IoT-Lite ontology is to define only the
most-used terms when searching for IoT concept. Concepts are described in three
classes: entity or objects, device or resources and services, namely iot-lite:Object,
ssn:Device and iot-lite:Service. The interrelations between these three concepts
are also well-known relationships, that is, an object (or entity) iot-lite:Object has
an attribute iot-lite:Attribute which is associated with a device (or resource)
iot-lite:Device, which is exposed by a service iot-lite:Service. In order to pro-
vide responses to the standard queries, the rest of the ontology has been built around
these three concepts, adding the necessary concepts and relationships [15]. IoT de-
vices are classified into, although not restricted to, three classes: sensing devices, ac-
tuating devices and tag devices (ssn:Sensor, iot-lite:Actuator, iot-lite:Tag). IoT-
Lite is focused on sensing, although it has a high level concept on actuation that
allows any future extension on this area. Services are described with a coverage.
This coverage represents the 2D-spatial covered by the IoT device and it can be a
point or an area (such as circle, rectangle or polygon). IoT-Lite ontology is created
to be used with a common quantity taxonomy, qu-taxo, to describe the Units and
QuantityKind that IoT devices can measure. This taxonomy is represented by indi-
viduals in the ontology and is based on well-known taxonomies such as qu and qudt.

26http://www.w3.org/Submission/iot-lite/

https://www.w3.org/2015/spatial/wiki/SOSA_Ontology
https://www.w3.org/2015/spatial/wiki/SOSA_Ontology


2.3. Semantic Description Techniques 55

FIGURE 2.8: Iot-Lite concepts and the main relationships between
them. Taken from http://www.w3.org/Submission/iot-lite/

Similarly, some other classes, such as Object, Service or Attribute, can be linked to a
vocabulary to choose the terms from a set of individual and existing concepts.

2.3 Semantic Description Techniques

In nearly all ontology-based integration approaches ontologies are used for the ex-
plicit description of the information source semantics. The way ontologies are used
can be identified in three ways [145] that are shown on Figure 2.9.

Single Ontology approach. It is the simplest approach. It uses one global ontol-
ogy providing a shared vocabulary for specification of the semantic. All pieces of
information are related to a global ontology, that could be also a combination of sev-
eral specialized ontologies. A reason for the combination of several ontologies can
be the modularization of a potentially large monolithic ontology. This approach can
be applied in situation where all the information sources provide the same view on
a domain. In the case of one information source providing another level of granu-
larity, finding the minimum ontology commitment becomes a difficult task. Single
Ontology approach is susceptible to changes in the information sources. Depending
on the nature of the changes in one information source it can imply changes in the
global ontology and in the mappings to the other information sources. Examples of
this approach are SIMS [6] and ONTOLINGUA [58]

http://www.w3.org/Submission/iot-lite/


56 Chapter 2. Semantic Interoperability in the IoT Context

FIGURE 2.9: The three possible ways for using ontologies for content
explication

Multiple Ontology approach. In this approach each information source is described
by its own ontology. It could be represented as a single ontology approach for each
source. OBSERVER [95] is an example of this approach. The difference is that we
cannot assume that the different source ontology share the same vocabulary. The
advantage of this approach is that no common and minimal ontology commitment
about one global ontology is needed [59]. This simplifies the change, the modifi-
cation, the integration in one information source or the adding and removing of
sources. However the lack of a common vocabulary needs to introduce a formal-
ism to define the inter-ontology mapping. The inter-ontology mapping identifies
semantically corresponding terms of different source ontologies, e.g. which terms
are semantically equal or similar. However, the mapping also has to consider dif-
ferent views on a domain e.g. different aggregation and granularity of the ontology
concepts. We are aware that in practice the inter-ontology mapping is very difficult
to define, because of the many semantic heterogeneity problems which may occur.

Hybrid approach. In the Hybrid approach every sources is described by its own
ontology but, in order to compare source ontologies to each other, a global shared



2.4. Mapping Techniques 57

vocabulary is introduced between the source ontologies [56, 124]. The shared vocab-
ulary contains basic terms (the primitives) of a domain. In order to build complex
terms of a source ontologies the primitives are combined by some operators. The
interesting point, introduced by this approach, is how the terms of the source ontol-
ogy are described by the primitives of the shared vocabulary. It could be simply an
attribute value vector, or combining the primitive terms from a shared vocabulary
and annotated by a label indicating the semantics of the information. In some cases,
the shared vocabulary is an ontology, which covers all possible refinements. E.g. the
general ontology defines the attribute value ranges of its concepts. A source ontol-
ogy is one (partial) refinement of the general ontology, e.g. restricts the value range
of some attributes. Since the source ontologies only use the vocabulary of the gen-
eral ontology, they remain comparable. The advantage of this solution is that new
sources can be easily added without the modification of mappings in the shared vo-
cabulary. The drawback of hybrid approaches however is that existing ontologies
cannot be reused easily, but they have to be re-developed from scratch, because all
source ontologies have to refer to the shared vocabulary. Examples of this approach
are COIN [56], MECOTA [124] and BUSTER [138].

2.4 Mapping Techniques

In the literature we can find two different approaches to map concepts belonging
to different ontologies: schema matching and ontology matching. Both problems have
been widely investigated in the literature and a number of approaches and tools
have been proposed both in the area of data and knowledge management [28]. Re-
garding the first problem, an exhaustive survey has been proposed by [112] and
Figure 2.10 shows part of the proposed classification scheme together with some
sample approaches.

The implementation of a schema matching may require the use of match algorithms
or matchers that depend on the application domain and schema types. The real-
ization can be further categorized in: i) individual matchers, each of which com-
putes a mapping based on a single matching criterion; and ii) combined matchers
of individual matchers, either by using multiple matching criteria (e.g., name and
type equality) within an integrated hybrid matcher or by combining multiple match
results produced by different match algorithms within a composite matcher. For
individual matchers, we consider the following classification criteria:

• Instance vs schema: matching approaches can consider instance data or only
schema-level information.

• Element vs structure matching: match can be realized for individual schema ele-
ments (e.g. attributes) or combinations of elements (e.g. complex structures).



58 Chapter 2. Semantic Interoperability in the IoT Context

FIGURE 2.10: Classification of schema matching approaches. Taken
from [112]

• Language vs constraint: a matcher can use a linguistic based approach or a
constraint-based approach.

• Matching cardinality: the overall match result may relate more elements of one
schema to more elements of the other (1:1, 1:n, n:1, and n:m cases).

• Auxiliary information: most matchers rely not only on the input schemas S1

and S2 but also on auxiliary information, such as dictionaries, global schemas,
previous matching decisions, and user input.

For what concern combined matchers we can categorize them in two ways:

• Hybrid matchers, they directly combine several matching approaches to deter-
mine match candidates based on multiple criteria or information sources (e.g.,
by using name matching with namespaces and thesauri combined with data
type compatibility).

• Composite matchers, they combines the results of several independently exe-
cuted matchers, including hybrid matchers.

Regarding the problem of ontology matching in [103] two major architectures for map-
ping discovery between ontologies have been identified. For the first approach, re-
call that the goal of ontologies is to facilitate knowledge sharing. As a result, on-
tologies are often developed with the explicit goal of providing the basis for future
semantic integration. The second set of approaches comprises heuristics-based or
machine learning techniques that use various characteristics of ontologies, such as
their structure, definitions of concepts, instances of classes, to find mappings. In the
field of ontology mapping in the context of IoT we can consider the related work
that has been conducted and reported within the Ontology Alignment Evaluation
Initiative (OAEI) contest [41]. In this context a number of tools have been evaluated



2.4. Mapping Techniques 59

and reported [41] and most importantly, a number of challenges have been identi-
fied [134]. Another interesting work has been the one proposed by Kotis, Katan-
sonov and Leino [78] that reports on a recent approach towards implementing a
configurable, multilingual and synthesis-based ontology alignment tool.

In the context of IoT research field, for favoring data integration and exchange, we
need to reconcile the semantic heterogeneity among sources by defining logical map-
pings between source schemes and a common target schema. In the IoT field, data
integration problem is usually decomposed in a schema matching phase followed by
schema mapping phase. Schema matching finds correspondences between elements
of the source and target schemes. Instead, schema mapping defines an appropriate
transformation that populates the target schema with data from the sources. An in-
teresting approach based on this data integration procedure is presented in [139]. In
this approach the semantic labeling step allows the learning of candidate semantic
types for each source attribute and the use of the selected semantic type for mapping
an attribute to an element in the domain ontology (a class or property in the domain
ontology). Instead, the schema mapping technique is based on a learning semantic
model that proposes a mapping able to capture more closely the semantics of the
target source in ways that schema constraints could not disambiguate. In details,
the semantic model allows the description of a data source in terms of the concepts
and relationships defined by the domain ontology.

The first step in building this semantic model for a data source is semantic labeling
that relies on determining the semantic types of its data fields, or source attributes.
That is, each source attribute is labeled with a class and/or a data property of the do-
main ontology. However, simply annotating the attributes is not sufficient. Unless
the relationships between the columns are explicitly specified, a precise model of
the data will be lacking. To build a semantic model that fully recovers the semantics
of the data, a second step, that determines the relationships between the source at-
tributes in terms of the properties in the ontology, is required. This kind of approach
has been proposed within the Karma Modeling and Integration Framework27 [76]. This
framework allows users importing data from a variety of sources including rela-
tional databases, spreadsheet, XML files and JSON files and also allows importing
Domain Ontologies they want to use for modeling the data. The system then auto-
matically suggests a semantic model for the loaded source.

27http://usc-isi-i2.github.io/karma/





61

Chapter 3

Big IoT Data Processing

Big data is a blanket term for the non-traditional strategies and technologies needed
to organize, process, and gather insights from large datasets [146]. While the prob-
lem of working with data that exceeds the computing power or storage of a single
computer is not new, the pervasiveness, scale, and value of this type of computing
has greatly expanded in recent years. Even if giving an exact definition of big data
is not an easy task, we can surely associate this term to: i) large datasets, or datasets
that are too large to be processed or stored with traditional tools or on a single com-
puter; ii) the types and sets of strategies and technologies that are used to handle
large datasets. Most of the information produced comes from different devices and
sensors and must be processed and analyzed in order to clean the data for further
analysis, to be stored and to extract meaningful information, by some specific tools
named Data Processing Frameworks.

Depending on the nature of data, the computation can be performed in batch mode,
in the case of persistent large datasets, or in real time/streaming mode, when data re-
quires to be processed in the same instant when it is produced. Another mode is
a composition of the two previous approach and it is called hybrid mode. Data Pro-
cessing Frameworks are systems developed for processing data collected in stored
databases or generated on the fly by sensors like the one discussed in Chapter 1.
These systems have the goal to extract knowledge from the data and also make them
actionable, that is being able to actuate a given behavior relying on the verification
of events in the analysed data. Processing Frameworks and Processing Engines are
responsible for computing over data in a data system. While there is no authoritative
definition setting apart "engines" from "frameworks", it is sometimes useful to define
the former as the actual component responsible for operating on data and the latter
as a set of components designed to do the same. Many of these frameworks have
been designed with the aim of processing data with respect of their nature: batch or
stream. For instance, Apache Hadoop1 can be considered a processing framework
with MapReduce [35, 109] as its default processing engine that has been specifically

1http://hadoop.apache.org/



62 Chapter 3. Big IoT Data Processing

developed for batch processing. Apache Storm2, on the other hand, has been de-
signed with the idea of elaborating streams of data. Some other frameworks, for
example Apache Spark3, are hybrid systems that can manage the elaboration of data
in batch and in stream mode. Data, in order to be analyzed need to be transmitted
from the physical device to the processing frameworks. There is the need to have a
common language or common communication rules and this is the task of the Com-
munication Protocols.

The chapter is organized as follows. Section 3.1 provides a description of the main
characteristics of Big Data. Section 3.2 describes some of the most used Commu-
nication Protocols. Batch Processing Systems are described in Section 3.3, whereas
Section 3.4 presents Stream Processing Systems. Hybrid approaches are discussed in
Section 3.5. Finally, Section 3.6 provides a comparison among the different systems.

3.1 Characteristics of Big Data

Big data has been initially associated with the "three Vs" description that, during the
last years, has evolved in "five Vs" and recently "six Vs" [39].

• Volume: big data means large datasets with an order of magnitude larger than
traditional ones. Hundreds of Gigabytes (GB), Terabytes (TB) and also Petabytes
(PB) of data can be produced and analyzed.

• Velocity: data flows at an unprecedented speed. Data, frequently flowing form
different sources like RFID tags, sensors, smart metering devices, increase the
request to handle and processed them in real time.

• Variety: the variety of devices that produce data increases the variety of formats
and types of media. Big data systems should handle structured and unstruc-
tured data, numerical data, text files, emails, videos, audios, ecc.

• Veracity: the variety of sources and the complexity of the processing can lead to
challenges in evaluating the quality of the data (and consequently, the quality
of the resulting analysis).

• Variability: variation in the data leads to wide variation in quality. Additional
resources may be needed to identify, process, or filter low quality data to make
them more useful.

• Value: the ultimate challenge of big data is delivering value. Sometimes, the
systems and processes in place are complex enough that using the data and
extracting the actual value can become difficult.

2http://storm.apache.org/
3http://spark.apache.org/



3.1. Characteristics of Big Data 63

In general we can define four categories of activities involved with data processing:

• Ingesting raw data into the system. In this phase some level of analysis, sorting
and labelling usually take place. Typical operations might include modifying
the incoming data to format them, categorizing and labelling data, filtering
out unneeded or bad data, or potentially validating that it adheres to certain
requirements. Technologies such as Apache Sqoop4, Apache Flume5 and Apache
Kafka6 have been specifically designed for this activity.

• Persisting the data in storage. This activity can be though as the most sim-
ple one, but the volume of incoming data, the requirements for availability,
and the distributed computing layer make more complex storage systems.
Many solutions have been proposed, from distributed file systems like Apache
Hadoop’s HDFS7 filesystem, where large quantities of data are written across
multiple nodes in a cluster of machines, to distributed databases, especially
NoSQL databases [29]. They are often designed with the aim of handling
heterogeneous, unstructured or semi-structured, large, complex, diverse and
distributed data. Examples of NoSQL databases are MongoDB8, Cassandra9,
HBase10 and Neo4J11.

• Analysis. Once the data is available, computing and analyzing data are not
easy tasks as the requirements and the best approach can vary significantly de-
pending on what type of insights is desired. Sometimes the goal of this phase
is to predict the class or value of new instances in the data stream given some
knowledge about the class membership or values of previous instances in the
data stream. Machine learning techniques can be used to learn this prediction
task from labeled examples in an automated fashion.

• Visualizing the results. It is one of the most useful ways to spot trends and make
sense of a large number of data points. Due to the type of information be-
ing processed in big data systems, recognizing trends or changes in data over
time is often more important than the values themselves. Techniques for the
visualization of results are: Elastic Stack12, composed of Logstash for data col-
lection, Elasticsearch for indexing data, and Kibana for visualization. These
approaches can be used with big data systems to visually interface with the
results of calculations or raw metrics. Jupyter Notebook13 and Apache Zeppelin14

4http://sqoop.apache.org/
5https://flume.apache.org/
6https://kafka.apache.org/
7https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
8https://www.mongodb.com/
9http://cassandra.apache.org/

10http://hbase.apache.org/
11https://neo4j.com/
12http://www.elastic.co/products
13http://jupyter.org/
14https://zeppelin.apache.org/



64 Chapter 3. Big IoT Data Processing

provide visualization interfaces called notebook which allow for interactive ex-
ploration and visualization of the data in a format conducive to sharing, pre-
senting, or collaborating.

3.2 Communication Protocols

All communications between devices require that the devices agree on the Commu-
nication Protocol, that is the rules defining the data formats. It covers authentication,
error detection and correction, and signaling and can also describe the syntax, seman-
tic, and synchronization of analog and digital communications. To reach agreement
upon the parties involved, a protocol may be developed into a technical standard.
Communicating systems use well-defined formats for exchanging messages, each of
which has an exact meaning intended to provoke a defined response of the receiver.
Protocols should therefore specify rules governing the transmission.

In the context of Web applications can be identified three different interaction mod-
els of communication [8]: Request-Reply Interaction, Push-Based Data Propagation and
Publish-Subscribe Interaction Model, that are discussed in the remainder of the section.

3.2.1 Request-Reply Interaction

The Request-Reply Interaction, or also called Pull-Based Data Access, or Synchronous
Data Delivery is specifically tailored for service-oriented applications. It assumes
that clients issue requests or queries to a service provider for specific data and the
service provider replies with appropriate data. In the following a description of the
main approaches based on this model is presented.

Representational State Transfer (REST). It is an architectural style for distributed
hypermedia systems such as the World Wide Web (WWW). It issues the standard
HTTP request, choosing one of the methods such as GET, POST, PUT, and DELETE,
and a server responds with appropriate data. The REST architectural style denotes
interaction between a client and a server based on resources that are accessed using
the HTTP protocol and represented by XML, HTML, or JSON formats.

Standard Web Service. It is a Web service with the aim to provide communica-
tion interoperability among different software platforms where the interface is de-
scribed by Web Services Description Language (WSDL) [98] and messages are ex-
changed through the Simple Object Access Protocol (SOAP) [96], which is based on
the HTTP protocol and XML data format. However, the standard Web service can be
used only from the browser’s plug-ins, and not from the standard HTML-JavaScript
based platforms.



3.2. Communication Protocols 65

Remote Object Method Call. This method is available in various Web frame-
works Application Programming Interfaces (API) and is based on the standard HTTP
request. A remote procedure call allows the invocation of a proxy object with certain
methods saved on the server and its invocation is propagated to the remote object.
The common approach is that the client just passes parameters and obtains result
when the operation is completed. This approach is suitable if the client and the
server have compatible programming platforms and this happens if client objects
can actually be mapped to server objects and vice versa.

Constrained Application Protocol (CoAP). It is designed for machine-to-machine
(M2M) applications, such as smart energy and building automation, due to the con-
strained nature of devices and environment [130]. CoAP can be easily translated
to more resource demanding HTTP thus enabling the integration of wireless sen-
sor networks (WSN), for example, with the Web through proxies. As an extension
of standard REST style discussed above, CoAP allows clients to issue request for
observing specific server’s resource, which results in receiving asynchronous notifi-
cations about the resources from the server.

3.2.2 Push-Based Data Propagation

The Push-Based Data Propagation (the Asynchronous Data Delivery) is a client-
server interaction model on which the server, as soon as data are available, immedi-
ately sends data to the client. In the following a description of the main approaches
that relies on this model is presented.

Long-Polling. A client sends a HTTP request and waits for the data from a Web
server. The connection is "kept alive" from the server until new data are available, a
timeout event arises, or the client disconnects. A new HTTP request is initiated by
the client when data is delivered by the server. Therefore, the server is able to send
data to the users at any time because there is always a pending request. The benefit
of the Long-Polling technique is the use of a standard port that is not blocked by
firewalls; it is robust and works together with the proxy server. The disadvantage is
the allocation of a connection per client even if the data are not transferred.

HTTP Streaming. A Web server does not terminate the response message or con-
nection as usual, but rather keeps it open and only appends new data to the response
message. This can be implemented through the HTTP content type multipart, which
enables the server to send data in multiple pieces [62]. To prevent the large size of
the response message at the client side, the connection must be terminated and a
new HTTP request should be issued periodically.



66 Chapter 3. Big IoT Data Processing

Socket connections. Sockets are a TCP-based technology for providing bidirec-
tional network communication over a single connection. HTML5 specifications in-
troduced the WebSocket protocol [45], which enables communications over sockets
from Web browsers. A WebSocket connection is initiated by upgrading an HTTP re-
quest and when the connection is established, the involved parties can start sending
messages without the need of header exchange between the parties, so the control
data overhead is minimal.

3.2.3 Publish-Subscribe Interaction Model

The last model is the Publish-Subscribe (Pub/Sub) Interaction Model. It enables the
client (subscriber) to subscribe on data that are associated with a certain topic and
to receive the data on that topic published in broadcast by producers (publishers).
This approach can be seen as a filtering process in which the receiver/subscriber
can define which type of messages to receive. For the delivering of messages from
the publishers to the subscribers, for ensuring the quality of service, for messages
persistence and similar functionalities, the Pub/Sub Model introduces the concept
of message broker. A message broker is a program module that reside in between of
two components which need to communicate and it translates a message from the
formal messaging protocol of the sender to the formal messaging protocol of the
receiver. This approach is widely used and many protocols has been proposed. In
the following, some approach relying on this model are presented.

Message Queue Telemetry Transport (MQTT). MQTT15 was designed by IBM
in 1999 for lightweight M2M communication with the goal of providing a
Publish-Subscribe messaging protocol with as minimal as possible bandwidth re-
quirements, code footprint size, power consumption and message data overhead [89].
Clients are allowed to use wildcards while subscribing to topics in order to easily
match multiple topics. MQTT provides three level of Quality of Service: i) At Most
Once, messages are delivered according to the best efforts of the underlying TCP/IP
network but message lost or duplication may occur; ii) At Least Once, messages are
assured to arrive but duplicates may occur; and iii) Exactly Once, messages are as-
sured to arrive exactly once.

Advanced Message Queuing Protocol (AMQP). AMQP16 is a binary, open stan-
dard protocol for high performance messaging middleware, primarily designed for
enterprise environment, but it is used in various application areas. AMQP 1.017 is the

15http://mqtt.org/
16https://www.amqp.org/
17https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp



3.2. Communication Protocols 67

Protocol INITIAL
TARGET

STANDARD TRANS-
PORT

PUB/SUB
MODEL

QOS WITH-
OUT CON-
FIRMATION

QOS
WITH
CON-
FIRMA-
TION

QOS
EXACTLY-
ONCE

COAP REST
on Con-
strained
Devices

IETF RFC
7252

UDP Observing
feature

+ + +

MQTT Lightweight
M2M

OASIS
Standard

TCP Hierarchical
topics

+ + +

AMPQ Enterprise
apps

ISO and
IEC

TCP 4 Exchange
types

? + +

XMPP Instant
messaging

IETF RFC
6120, 6121

TCP Node in
pub/sub
plug-in

- - -

DDS High-
Performance
apps

Open Man-
agement
Group
(OMG)

UDP,
TCP

Typed top-
ics

23 QoS policies

Kafka Logging
system

Apache
Foundation

TCP Topics + - -

TABLE 3.1: Comparison of IoT application layer messaging protocols

current version and is a wire-level protocol that defines what is exchanged in the net-
work and, as MQTT, the protocol ensures reliable communication with three-modes
of message-delivery: at-most-once, at-least-once, and exactly-once. Message format is
composed of common data types, whereby additional meta-data could be provided
for data interpretation, thus achieving interoperability between different vendors.
Depending on the exchange type, there are four ways of routing messages between
publishers and subscribers: i) direct, messages are delivered to queues based on a
message routing key; ii) fan out, routes messages to all of the queues that are bound
to it; iii) topic, a wildcard match between the routing key and the routing pattern
specified in the binding; and iv) header, uses the header attributes for routing.

Extensible Messaging and Presence Protocol (XMPP). XMPP18 is a set of tech-
nologies for real time messaging having in its core XML streaming technology. The
protocol was developed in 1999 by Jabber open source community for instant mes-
saging (IM) applications. The protocol contains the core specification standardized
by Internet Engineering Task Force (IETF) [123] and over 300 extensions through
XMPP Extension Protocols (XEPs). In XMPP, clients exchange XML messages called
stanzas and can be of three types: message, presence, and iq (info/query). The message
stanza kind can be seen as a "push" mechanism whereby one entity pushes informa-
tion to another entity, similar to the communications that occur in a system such as
email. The presence stanza can be seen as a basic broadcast or "Publish-Subscribe"
mechanism, whereby multiple entities receive information about an entity to which
they have subscribed (in this case, network availability information) while the iq is a
request-response mechanism, similar in some ways to HTTP. The protocol provides
also alternative lightweight implementations for constrained devices [14, 75].

18http://xmpp.org/



68 Chapter 3. Big IoT Data Processing

Data Distribution Service (DDS). DDS19 is an open standard middleware Com-
munication Protocol that proposes serverless architecture for high-performance in-
teroperable data sharing using the Data-Centric Publish-Subscribe (DCPS) model.
This model assumes typed interfaces by allowing DDS participants to define topics
of certain data types that correspond to data types of data objects which applica-
tions want either to publish or receive. DataWriter of the given data type are used
to publish data objects to certain topic over Publishers component within applica-
tions, whereas DataReader of the given data type are used for receiving data objects
over Subscriber component. Dynamic discovery of DDS participants is the matching
of their publications and subscriptions based on topics of the same name and data
type. Interface Definition Language (IDL) is used for defining data types. QoS can
be defined at the level of Publishers/Subscribers as well as the level of DataWriter-
s/DataReaders. DDS protocol specifies use of multicast UDP within LAN, and TCP
transport for communication over WAN.

Apache Kafka. Kafka is a distributed streaming platform that allows building real
time streaming data pipelines that reliably get data between systems or application.
Streams of Kafka messages are organized into topics. A topic is a handle to a logical
stream of data, consisting of many partitions. A partitions is an ordered, immutable
sequence of records of the data served by the topic that reside in different physical
node and that is continually appended to a structured commit log. As shown in
Figure 3.1, a sequential id number called the offset is associated with each records in
the partition that uniquely identifies each record within the partition.

Each Kafka node (broker) is responsible for receiving, storing and passing on all of
the events from one or more partitions for a given topic. In this way, the process-
ing and storage for a topic can be linearly scaled across many brokers. Similarly,
an application may scale out by using many consumers for a given topic, with each
pulling events from a discrete set of partitions. When a partition is replicated (for
durability), many brokers might be managing the same partition. Then, one of these
brokers is designated as the "leader", and the rest are "followers". Kafka is assigning
each message within a partition a unique id, the so-called "message offset", which
represents a unique, increasing logical timestamp within a partition. This offset al-
lows consumers to request messages from a certain offset onwards, essentially con-
suming data from a given past logical time.

Table 3.1 provides a comparison of characteristics of some of the application layer
messaging protocols presented. We can see that only CoAP belongs to the Request-
Reply Interaction while the other are Publish-Subscribe Model. All the protocols
have been developed over TCP with the exceptions of DDS, that provides communi-
cation also over UDP and CoAP, that does not provide communication over TCP but
over UDP. The most important features belong to QoS management. While CoAP

19http://portals.omg.org/dds/



3.3. Batch Processing Systems 69

FIGURE 3.1: Anatomy of a topic. Taken from kafka.apache.org

and MQTT guarantee three different QoS, AMPQ does not provide QoS without
confirmation and Apache Kafka bases its protocol only over QoS without confirma-
tion. XMPP does not guarantee any type of QoS while DDS has a different approach
and provides 23 different QoS policies. Regarding the Pub/Sub Model all the ap-
proaches, except from CoAP (that is not a Publish-Subscribe Model) uses topics with
some differences. MQTT uses hierarchical topics, DDS defines topics based on their
type, AMQP introduces four fixed exchange types while XMPP represents topics as
a node and Kafka uses a simple abstraction to define topics.

3.3 Batch Processing Systems

Batch processing has a long history within the big data world. Batch processing
involves operating over a large, static dataset and returning the result at a later time
when the computation is complete. The common characteristics of data in Batch
Processing Systems are: i) bounded and finite dataset or collection of data; ii) data
is persistent and almost always stored in permanent storage; and iii) data processed
is always extremely large. Batch processing is well-suited for calculations where
access to a complete set of records is required and operations require that state be
maintained for the duration of the calculations. Whether the datasets are processed
directly from permanent storage or loaded into memory, batch systems are built
with large quantities in mind and have the resources to handle them. The trade-off
for handling large quantities of data is longer computation time and for this reason,
batch processing is not appropriate in contexts where processing time is significant.

Traditional systems rely o the use of OLAP (On-Line Analytical Processing) facilities
made available by means of data warehouse. The most important and most used
framework, suited especially for massive data storage of data and exclusively for
batch processing, is Apache Hadoop. Other alternatives, like Google’s Big Query, has
similar performances but they can do also real time processing. Apache Hadoop is

kafka.apache.org


70 Chapter 3. Big IoT Data Processing

a processing framework that exclusively provides batch processing. Hadoop was
the first big data framework to gain significant traction in the open source commu-
nity. Based on several papers and presentations by Google about how they were
dealing with tremendous amounts of data at the time, Hadoop reimplemented the
algorithms and the component stack to make large scale batch processing more ac-
cessible. A number of tools and layers in the Hadoop ecosystem are useful far be-
yond supporting the original MapReduce algorithm. Among them we mention:

• HDFS is a Java-based distributed file system that provides scalable and reliable
data storage, on a large cluster of commodity servers. It handles storage and
replication of a large number of files, even of considerable size (in the order
of GB, TB and even PB) through the use of clusters that contain thousands of
nodes and ensure that data remains available in spite of inevitable host failures.

• YARN (Yet Another Resource Negotiator), is the cluster coordinating compo-
nent of the Hadoop stack. It is responsible for coordinating and managing the
underlying resources and scheduling jobs to be run.

Hadoop’s MapReduce processing stack relies on the following procedure: i) read
and map the dataset from the HDFS filesystem; ii) divide the dataset into chunks
and shuffle them among the available nodes; iii) each node computes on the sub-
set of data; iv) intermediate results (stored in the HDFS) are redistributed to group
key; v) the value of each key is reduced by summarizing and combining the results
calculated on each individual node, and vi) write the result back to HDFS.

This kind of approach has some advantages and limitations. Because this method-
ology heavily leverages permanent storage, reading and writing multiple times per
task tends to be fairly slow. On the other hand, since disk space is typically one
of the most abundant server resources, it means that MapReduce can handle enor-
mous datasets. This also means that Hadoop’s MapReduce can typically run on less
expensive hardware than some alternatives since it does not attempt to store every-
thing in memory. MapReduce has incredible scalability potential and has been used
in production on tens of thousands of nodes.

As a target for development, MapReduce is known for having a rather steep learning
curve. Other additions to the Hadoop ecosystem can reduce the impact of this steep
learning curve on varying degrees, but it can still be a factor in quickly implementing
an idea on a Hadoop cluster. Hadoop has an extensive ecosystem, with the Hadoop
cluster itself frequently used as a building block for other software. Many other
processing frameworks and engines have Hadoop integrations to utilize HDFS and
the YARN resource manager.



3.4. Stream Processing Systems 71

3.4 Stream Processing Systems

Differently from the Batch Processing Systems, these systems execute a set of con-
tinuous queries over a stream of data and produce in outputs new results on the fly.
Instead of defining operations to apply to an entire dataset, stream processors define
operations that will be applied to each individual data item as it passes through the
system (or to windows of data). This kind of process "handles" unbounded datasets,
that is datasets with the following characteristics: i) datasets on which it is possi-
ble to define the total size as the amount of data that has entered the system yet;
ii) datasets limited to a single item at a time; and iii) datasets where processing is
event-based, results are immediately available and will be continually updated as
new data arrives. Stream processing systems can handle a nearly unlimited amount
of data, but they only process one (true stream processing) or very few (micro-
batch/window processing) items at a time, with minimal state being maintained
in between records.

In the first generation of Stream Processing Systems, stand-alone prototypes or ex-
tensions of existing database engines have been proposed. They were developed
with a specific use case in mind and were very limited regarding the supported oper-
ator types as well as the available functionalities (examples include Niagara20, Tele-
graph21 and Aurora [1]). Advanced features were included in the second generation
like fault tolerance and adaptive query processing (examples include Borealis22 [1],
CEDR [10], System S [55] and CAPE [122]). The key properties of the last generation
include high scalability and robustness that are conceived by means of cloud com-
puting. Well-known systems of this generation include Apache Storm23 and Apache
Samza24. A central feature of these cloud-based data Stream Processing Systems is
parallelization. This feature is handled differently within the various systems, from
the definition of the number of parallel tasks per operator to the creations of new
key in the data stream and of the processing element, which is than executed one of
the running processing node. In both approaches, the user needs to understand the
data parallelism and explicitly enforce in its code the sequential ordering.

An alternative approach is taken by Hadoop Online and StreamMapReduce [23],
which present methods to implement stream-based tasks through the MapReduce
programming paradigm. The authors extend the notion of map and reduce with a
stateful reducer to overcome the strict phasing and thus allowing the usage of the
MapReduce paradigm for streaming use cases, which allows a custom and highly
parallelized execution.

20http://datalab.cs.pdx.edu/niagaraST/
21http://telegraph.cs.berkeley.edu/telegraphcq/v0.2/
22http://cs.brown.edu/research/borealis/public/
23http://storm.apache.org/
24http://samza.apache.org/



72 Chapter 3. Big IoT Data Processing

Apache Storm. It is a Distributed Stream Processing Computation Framework that
focuses on extremely low latency and is perhaps the best option for workloads that
require near real-time processing. It can handle very large quantities of data and de-
liver results with less latency than other solutions. One of the main concepts in Storm
is the Storm Topology. A topology is a Direct Acyclic Graph (DAG) of computation in
which each node contains processing logic, and links between nodes indicate how
data should be routed around. A topology describes the various transformations or
steps that will be taken on each incoming piece of data as it enters the system. In
order to better understand this concept, a closer look at the components is provided.

• Tuple: it is a list of ordered elements and is the Apache Storm main data struc-
ture. By default, a Tuple supports all data types. Every node in a topology
must declare the output fields for the tuples it emits.

• Stream: it is an unordered sequence of tuples.

• Spouts: they are sources of stream. Generally, Storm accepts input data from
raw data sources like Twitter Streaming API, Apache Kafka queue, Kestrel
queue, etc. Otherwise, customized spouts can be developed to read data from
datasources.

• Bolts: they are logical processing units. Spouts pass data to bolts and bolts
process and produce a new output stream. Bolts can perform the operations
of filtering, aggregation, joining, interacting with data sources and databases.
Bolt receives data and emits to one or more bolts.

FIGURE 3.2: Structure of a Storm topology

Spouts and bolts are connected together and form a topology. Figure 3.2 depicts
the structure of a simple Storm Topology. The input comes from Twitter Streaming
API. Spout reads the tweets of the users using Twitter Streaming API and output
as a stream of tuples. Then, this stream of tuples is forwarded to the bolt and the



3.4. Stream Processing Systems 73

bolt splits the tweets into individual word, calculate the word count, and persist the
information to a configured datasource.

There are two kinds of nodes on a Storm cluster: the master node and the worker nodes.
The master node runs a daemon called Nimbus that is responsible for distributing
code around the cluster, assigning tasks (execution of a spout or a bolt) to machines,
and monitoring for failures. Each worker node runs a daemon called Supervisor that
listens for work assigned to its machine and starts and stops worker processes as
necessary based on what Nimbus has assigned to it.

By default, Storm offers at-least-once processing guarantees, meaning that it can
guarantee that each message is processed at least once, but there may be duplicates
in some failure scenarios. Storm does not guarantee that messages will be processed
in order. In order to achieve exactly-once, stateful processing, an abstraction called
Trident is also available. To be explicit, Storm without Trident is often referred to as
Core Storm. Trident significantly alters the processing dynamics of Storm, increasing
latency, adding state to the processing, and implementing a micro-batching model
instead of an item-by-item pure streaming system.

Storm, probably, is currently the best solution for near real time processing. It is able
to handle data with extremely low latency for workloads that must be processed
with minimal delay. The introduction of Trident allows users to use micro-batches
instead of pure stream processing but, while this gives users greater flexibility to
shape the tool for their needs, it also tends to negate some of the software’s biggest
advantages over other solutions (for example the use of micro-batch at the expense
of single element). Core Storm does not offer ordering guarantees of messages, it
offers at-least-once processing guarantees, so the processing of each message can be
guaranteed but duplicates may occur. Trident offers exactly-once guarantees and
can offer ordering between batches, but not within. Storm provides, as most of the
processing framework, a wide number of APIs for different languages.

Apache Samza. It is a Stream Processing Framework that is tightly tied to the
Apache Kafka messaging system. While Kafka is a distributed streaming platform,
that can be used by many Stream Processing Systems, Samza is designed specif-
ically to take advantage of Kafka’s unique architecture and guarantees. It uses
Kafka to provide fault tolerance, buffering, and state storage and uses YARN for
resource negotiation. For this reason, a Hadoop cluster (at least HDFS and YARN),
relying on the features built into YARN, is required. Samza deals with immutable
streams, that represent Kafka’s immutable logs. This means that transformations
create new streams that are consumed by other components without affecting the
initial stream. The strong connection with Kafka affords the system some unique
guarantees and features like replicated storage of data that can be accessed with low



74 Chapter 3. Big IoT Data Processing

latency, easy and inexpensive multi-subscriber model to each individual data parti-
tion and writing of all output, including intermediate results, to Kafka and indepen-
dently consumed by downstream stages. In many ways, this tight reliance on Kafka
mirrors the way that the MapReduce engine frequently references HDFS. While ref-
erencing HDFS between each calculation leads to some serious performance issues
when batch processing, it solves a number of problems when stream processing.
Samza’s strong relationship to Kafka allows the processing steps themselves to be
very loosely tied together. An arbitrary number of subscribers can be added to the
output of any step without prior coordination. This can be very useful for orga-
nizations where multiple teams might need to access similar data. Teams can all
subscribe to the topic of data entering the system, or can easily subscribe to top-
ics created by other teams that have undergone some processing. This can be done
without adding additional stress on load-sensitive infrastructure like databases.

Writing straight to Kafka also eliminates the problems of backpressure. Backpressure
is when the amount of data produced, in a certain instant, is much more bigger than
the amount of data that can be processed. This can lead to processing stalls and
potentially data loss. Kafka is designed to hold data for very long periods of time,
which means that components can process at their convenience and can be restarted
without consequence.

Samza is able to store state, using a fault-tolerant checkpointing system implemented
as a local key-value store. This allows Samza to offer an at-least-once delivery guar-
antee, but it does not provide accurate recovery of aggregated state (like counts) in
the event of a failure since data might be delivered more than once. Samza offers
high level abstractions that are in many ways easier to work with than the primi-
tives provided by systems like Storm and only supports JVM languages at this time,
meaning that it does not have the same language flexibility as Storm.

3.5 Hybrid Processing Systems

Some processing frameworks have been developed with the aim of handling both
batch and stream workloads. These frameworks simplify diverse processing re-
quirements by allowing the same or related components and APIs to be used for
both types of data. The way that this is achieved varies significantly between Apache
Spark, Apache Flink and Apache NiFi, the three frameworks we will discuss. This is
largely a function of how these approaches combine an bring together the two pro-
cessing paradigms and what assumptions are made about the relationship between
bounded and unbounded datasets. While projects focused on one processing type
may have a close fit for specific use-cases, the Hybrid Processing Frameworks at-
tempt to offer a general and wider solution for data processing. For example Apache
Spark and Apache Flink do not only provide methods for processing data, they have



3.5. Hybrid Processing Systems 75

their own integrations, libraries, and tooling for doing things like graph analysis,
machine learning, and interactive querying over structured data.

Apache Spark. It is an opensource, general-purpose, lightning fast cluster com-
puting and Batch Processing Framework with stream processing capabilities. Spark
focuses primarily on speeding up batch processing workloads by offering full in-
memory computation and processing optimization and provides high-level API in
Java, Scala, Python and R.

FIGURE 3.3: The iterative operations on Spark RDD. Intermediate re-
sults are stored in a distributed memory instead of a Stable storage

For what concern batch processing, Spark processes all data in-memory, only inter-
acting with the storage layer to initially load the data into memory and at the end to
persist the final results. All intermediate results are managed in memory. While in-
memory processing contributes substantially to speed, Spark is also faster on disk-
related tasks because of holistic optimization that can be achieved by analyzing the
complete set of tasks ahead of time. It achieves this by creating Directed Acyclic
Graphs, or DAGs which represent all of the operations that must be performed, the
data to be operated on, as well as the relationships between them, giving the pro-
cessor a greater ability to intelligently coordinate work. At the core of the Apache
Spark architecture there is the resilient distributed dataset (RDD), a read-only multiset
of data items distributed over a cluster of machines, that is maintained in a fault-
tolerant way [154]. It is an immutable distributed collection of objects. Each dataset
in RDD is divided into logical partitions, which can be computed on different nodes
of the cluster (Figure 3.3). Formally, RDD is a read-only, partitioned collection of
records. It can be created by parallelizing and existing collection in a driver program,
by referencing a dataset in an external storage system or by applying transformation
operations on existing RDDs.

Stream processing capabilities are supplied by Spark Streaming, a library provided
in the Spark ecosystem (see Figure 3.4), that enables powerful interactive and data
analytics applications across live streaming data. Spark itself is designed with batch-
oriented workloads in mind. To deal with the disparity between the engine design
and the characteristics of streaming workloads, Spark implements a concept called
micro-batches which are executed on top of Spark core. This strategy is designed
to treat streams of data as a series of very small batches that can be handled using



76 Chapter 3. Big IoT Data Processing

FIGURE 3.4: The Apache Spark Ecosystem

the native semantics of the batch engine. The Spark Streaming data abstraction is
called DStream (or Discretized Stream) which represents a continuous stream of data.
Internally, a DStream is represented as a sequence of RDDs. Figure 3.5 shows how

FIGURE 3.5: Spark Streaming working flow. Taken
from https://spark.apache.org/docs/2.0.0-preview/

streaming-programming-guide.html

Spark Streaming works internally. It receives live input data streams and divides
the data into batches ready to be processed by the Spark engine. Spark Streaming
works by buffering the stream in sub-second increments. These are sent as small
fixed datasets for batch processing. In practice, this works fairly well, but it does
lead to a different performance profile than true Stream Processing Frameworks.

The obvious reason to use Spark over Hadoop MapReduce is speed. Spark can
process the same datasets significantly faster due to its in-memory computation
strategy and its advanced DAG scheduling. The Spark versatility is exploit for a
deploy that as a standalone cluster or integrated with an existing Hadoop cluster,
to perform both batch and stream processing. Beyond the capabilities of the en-
gine itself, Spark also has an ecosystem of libraries that can be used for machine
learning (MLib),for structured data queries (Spark SQL) and for graph management
(GraphX)25. Spark tasks are almost universally acknowledged to be easier to write

25All available from https://spark.apache.org/

https://spark.apache.org/docs/2.0.0-preview/streaming-programming-guide.html
https://spark.apache.org/docs/2.0.0-preview/streaming-programming-guide.html


3.5. Hybrid Processing Systems 77

than MapReduce, which can have significant implications for productivity. Adapt-
ing the batch methodology for stream processing involves buffering the data as it
enters the system. By mean of the buffer, it is possible to handle a high volume of
incoming data, increasing overall throughput, but waiting to flush the buffer also
leads to a significant increase in latency. This means that Spark Streaming might not
be appropriate for processing where low latency is imperative.

Since RAM is generally more expensive than disk space, Spark can cost more to run
than disk-based systems. However, the increased processing speed means that tasks
can complete much faster, which may completely offset the costs when operating
in an environment where you pay for resources hourly. One consequence of the in-
memory design of Spark is that resource scarcity can be an issue when deployed on
shared clusters. In comparison to Hadoop’s MapReduce, Spark uses significantly
more resources, which can interfere with other tasks that might be trying to use the
cluster at the time.

Apache Flink. It is an efficient distributed general-purpose data analysis and data
processing platform that provides API for Java, Scala, Python and SQL program-
ming support.26 It considers batches to simply be data streams with finite bound-
aries, and thus treats batch processing as a subset of stream processing. In this
stream-first approach, called the Kappa architecture [80], streams are used for ev-
erything (in contrast with the Lambda architecture, where batching is used as the
primary processing method) and, due to the recent grown of performances of pro-
cessing engines, it is now possible to simplify the model.

The core computational element of Flink, the Flink dataflow Runtime on Figure 3.6, is
a distributed system that accepts streaming dataflow programs and executes them
in a fault-tolerant manner in a cluster of machines. This runtime can be executed
taken in a cluster, as an application of YARN (Yet Another Resource Negotiator) or
in a Mesos cluster (under development), or within a single machine, which is very
useful for debugging Flink applications [52]. Apache Flink includes two core APIs:
a DataStream API for bounded or unbounded streams of data and a DataSet API for
bounded data sets. Its stream processing model handles incoming data on an event-
at-a-time rather than a series of batches. This is an important distinction, as this is
what enables many of its resilience and performance features. The basic components
that Flink works with are:

• streams, e.g. immutable, unbounded datasets that flow through the system.

• Operators, e.g. functions operating on data streams to produce other streams.

• Sources, e.g. the entry point for streams entering the system.

26http://flink.apache.org/



78 Chapter 3. Big IoT Data Processing

FIGURE 3.6: The Apache Flink Ecosystem. From flink.apache.org

• Sinks, e.g. the place where streams flow out of the Flink system. They might
represent a database or a connector to another system.

Stream processing tasks take snapshots at set points during their computation to use
for recovery in case of problems. For storing state, Flink can work with a number
of state backends depending with varying levels of complexity and persistence. Ad-
ditionally, Flink’s stream processing can guarantee ordering and grouping with the
introduction of the concept of "event time". It means that is able to understand the
time that the event actually occurred, and can handle sessions as well.

The Flink batch processing model is an extension of the stream processing model so
far discussed. Instead of reading from a continuous stream, Flink reads a bounded
dataset of persistent storage as a stream and uses the exact same runtime for both
of these processing models. Flink offers some optimizations for batch workloads.
For instance, since batch operations are backed by persistent storage, Flink removes
snapshotting from batch loads. Data is still recoverable, but normal processing com-
pletes faster. Another optimization involves breaking up batch tasks so that stages
and components are only involved when needed. This helps better coordination
between users of the cluster and gives Flink the ability of analyze preemptively the
tasks. It can optimize the processing by seeing the entire set of operations, the size of
the data set and the requirements of steps coming down the line. Flink is currently
a unique option in the processing framework world. While Spark performs batch
and stream processing, its streaming is not appropriate for many use cases because
of its micro-batch architecture. Flink’s stream-first approach offers low latency, high
throughput, and real entry-by-entry processing. Somewhat unconventionally, Flink
manages its own memory instead of relying on the native Java garbage collection
mechanisms for performance reasons. Unlike Spark, Flink does not require manual
optimization and adjustment when the characteristics of the processed data change.
It handles data partitioning and caching automatically as well.

flink.apache.org


3.5. Hybrid Processing Systems 79

Flink analyzes its work and optimizes tasks in a number of ways. Part of this anal-
ysis is similar to what SQL query planners do within relational databases, mapping
out the most effective way to implement a given task. It is able to parallelize stages
that can be completed in parallel, while bringing data together for blocking tasks.
For iterative tasks, Flink attempts to do computation on the nodes where the data is
stored for performance reasons. It can also do "delta iteration",27 or iteration on only
the portions of data that have changes.

In terms of user tooling, Flink offers a web-based scheduling view to easily manage
tasks and view the system. Users can also display the optimization plan for submit-
ted tasks to see how it will actually be implemented on the cluster. As proposed by
Spark, Flink offers libraries for SQL-style querying, graph processing and machine
learning libraries, and in-memory computation.

Flink operates well with other components. It integrates with YARN, HDFS, and
Kafka easily and can run tasks written for other processing frameworks like Hadoop
and Storm with compatibility packages. One of the largest drawbacks of Flink at the
moment is that it is still a very young project. Large scale deployments in the wild
are still not as common as other processing frameworks and there has not been much
research into Flink’s scaling limitations. With the rapid development cycle and fea-
tures like the compatibility packages, there may begin to be more Flink deployments
as organizations get the chance to experiment with it.

Apache NiFi. Differently from the previous two described frameworks, Apache
NiFi is a software designed to automate the flow of data between the software sys-
tems28. It is a tool for the ingestion of streaming and batch data, and allows the user
to enrich and modify data and store it in a database or in a file system. It stems
from the need to collect data from different IoT sources and for this reason it comes
equipped with different input and output connectors.

It is based on the "NiagaraFiles", a lightweight software previously developed by the
NSA [104] able to receive data from different sources and apply a basic "preparation"
of the data before storing it on different devices. Subsequently it becomes part of the
Apache Software Foundation and becomes an open-source software in 2014.

The main characteristic, that let it differ from the other frameworks, is the presence
of a web-based interface through which a graphical dataflow of services that data
should follow is created (see Figure 3.7). Each node that composes the dataflow is
called processor and they are connected to each other through queues. Depending on
the type of processor there could be different queues based on the response of the
eleaboration (e.g. failure or success). Processors are placed on the canvas by dragging
and dropping them.

27https://www.slideshare.net/wadkarsameer/flink-batchanditerationsv2
28http://nifi.apache.org/



80 Chapter 3. Big IoT Data Processing

FIGURE 3.7: The Apache NiFi GUI

NIFI FDP DESCRIPTION

FlowFile Information Packet A FlowFile represents each object moving through the system and for
each one, NiFi keeps track of a map of key/value pair attribute strings
and its associated content of zero or more bytes.

FlowFile Processor Black Box Processors actually perform the work. A processor is doing some com-
bination of data routing, transformation, or mediation between systems.
Processors have access to attributes of a given FlowFile and its content
stream. Processors can operate on zero or more FlowFiles in a given unit
of work and either commit that work or rollback.

Connection Bounded Buffer Connections provide the actual linkage between processors. These act as
queues and allow various processes to interact at differing rates. These
queues can be prioritized dynamically and can have upper bounds on
load, which enable back pressure.

Flow Controller Scheduler The Flow Controller maintains the knowledge of how processes connect
and manages the threads and allocations thereof which all processes use.
The Flow Controller acts as the broker facilitating the exchange of Flow-
Files between processors.

Process Group Subnet A Process Group is a specific set of processes and their connections,
which can receive data via input ports and send data out via output
ports. In this manner, process groups allow creation of entirely new
components simply by composition of other components.

TABLE 3.2: Comparison of NiFi and FDP components and their de-
scription. From https://nifi.apache.org/docs.html

Apache NiFi is based on the fundamental design concepts closely related to the main
ideas of Flow Based Programming [99]. The main concepts are explained on Table 3.2.

The NiFi Architecture is presented on Figure 3.8. NiFi executes within a JVM on a
host operating system. The primary components of NiFi on the JVM are as follows:

• Web Server, its purpose is to host NiFi’s HTTP-based command and control
API.

• Flow Controller, is the brains of the operation. It provides threads for ex-
tensions to run on, and manages the schedule of when extensions receive re-
sources to execute.

• Extensions, they operate and execute within the JVM. There are various types
of NiFi extensions.

https://nifi.apache.org/docs.html


3.6. Comparison of IoT Streaming Systems 81

FIGURE 3.8: The Apache NiFi Architecture. From https://nifi.
apache.org/docs.html

• FlowFile Repository, it is where NiFi keeps track of the state of what it knows
about a given FlowFile that is presently active in the flow. The implementa-
tion of the repository is pluggable. The default approach is a persistent Write-
Ahead Log located on a specified disk partition.

• Content Repository, it is where the actual content bytes of a given FlowFile live.
The implementation of the repository is pluggable. The default approach is a
fairly simple mechanism, which stores blocks of data in the file system. More
than one file system storage location can be specified so as to get different
physical partitions engaged to reduce contention on any single volume.

• Provenance Repository, it is where all provenance event data is stored. The
repository construct is pluggable with the default implementation being to use
one or more physical disk volumes. Within each location event data is indexed
and searchable.

NiFi is also able to operate within a cluster.

3.6 Comparison of IoT Streaming Systems

In this chapter we provide a description of different options for big data process-
ing. We discover three different methods and approaches to handle the different
type and nature of data and also the way to extract meaningful information. Ta-
ble 3.3 provides a comparison of the main characteristics of the proposed solutions.
Hadoop is the only "batch-only" framework present in the table and is not possible
to campare it with the other frameworks that have been developed with the aim of
processing data streams. We can see that Hadoop is the oldest framework (since
December 2011) while Apache Flink is the most recent. The fact that Apache Flink
is still in the early stage of adoption can lead to choosing a more mature system,

https://nifi.apache.org/docs.html
https://nifi.apache.org/docs.html


82 Chapter 3. Big IoT Data Processing

like Apache Spark or Apache Storm and it can be also deduced by the number of
contributors. Another feature that can support the choice to a system rather than an
other is latency. Hadoop provides a high latency, but if we decide to use this frame-
work, we can work on workloads that are not time-sensitive and we cannot provide
real time results. Storm offers a very low latency but the fact that it can deliver du-
plicates and is not able to guarantee ordering can be a problem in certain situations.
The introduction of trident helps and resolves these issues but leads to an higher
latency. Spark provides a medium latency due to the use of micro-batch instead of
single record, while in Apache Flink latency can also be configurable. The strong
point of all the solutions is the availability of different APIs for different languages
and the fact that many notable users use them can confirm their effectiveness and
performances. Apache Spark and Apache Flink provide wide support, integrated
libraries and tools to use them flexibly in different contexts. By contrast the tight
integration of Apache Samza with Apache Kafka can limit its use and make it too
sectorial.

The best solution on adopting one system rather than another strongly depends
upon the state of data to process, how time-bound the requirements are, what kind
of results the application expects. For sure, for batch processing, Apache Hadoop
is the best solution due to its strong community and the long history. Regarding
stream processing systems Apache Samza is a good solution, but its strong connec-
tion with Apache Kafka makes it too sectorial while Apache Storm has been the
leader in stream processing from the beginning, but the unordered sort of the pro-
cessed results and duplications leads to choose other systems for some specific real
time use.

Apache Spark is nowadays the best solution for stream processing. It provides high
speed batch and micro-batch (streaming) processing and it widely used (more than
800 contributors) but its micro-batching nature can introduce some limitations that
Apache Flink tries to resolve with its heavy optimization an the use of single event
process. However, it is not already enough mature and bugs are still a constant.



3.6. Comparison of IoT Streaming Systems 83

HADOOP STORM STORM+
TRIDENT

SAMZA FLINK SPARK
STREAM-
ING

NIFI

Current
Version

2.9.0 1.0.5 1.0.5 0.13.0 1.3.2 2.0.0 1.5.0

Category BPS ESP/CEP ESP/CEP ESP ESP/CEP ESP CEP
Event Size - Single Micro-batch Single Single Micro-batch Single
Available
Since

Dec 2011 Sep 2014 Sep 2014 Jan 2014 Dec 2014 Feb 2014 Nov 2014

Contributors 148 206 206 48 159 838 Unbounded
Main Back-
ers

Hortonworks,
Cloudera

Backtype,
Twitter

Backtype,
Twitter

Linkedin dataArtisan AMPLab,
Databricks

Hortonworks

Delivery
guarantees

- At least
once M2M

Exactly
once

At least
once

Exactly
once

Exactly
once,
at least
once (with
non-fault-
tolerant
sources)

-

State man-
agement

- Record,
acks

Record,
acks

Local and
distributed
snapshots

Distributed
snapshots

Checkpoints Failure,
Success,
Not-Match

Fault Toler-
ance

Yes Yes Yes Yes Yes Yes Yes

Event prior-
itization

- Programmable Programmable yes Programmable Programmable Programmable

Windowing - Time-based,
count-
based

Time-based,
count-
based

Time-based Time-based,
count-
based

Time-based -

Back-
pressure

- No No Yes Yes No -

Primary ab-
straction

Record Tuple TridentTuple Message DataStream DStream -

Latency High Very low Medium Low Low (con-
figurable)

Medium

Resource
manage-
ment

HDFS,
YARN

YARN,
mesos

YARN,
mesos

YARN YARN YARN,
mesos

HDFS, FTP,
File, etc.

API Declarative Compositional Compositional Compositional Declarative Declarative -
Primarily
written in

Java Clojure Java Scala Java Scala -

API lan-
guages

C++, Java,
Python,
PHP, Ruby,
Erlang,
Perl,
Haskell,
C#, Cocoa,
Smalltalk,
OCaml

Scala, Java,
Clojure,
Python,
Ruby

Java,
Python,
Scala

Java Java, Scala Scala, Java,
Python

-

Notable
users

Yahoo!,
Facebook,
Twitter,
Linkedin,
Google

Twitter,
Yahoo!,
Spotify,
Groupon,
Flip-
board, The
Weather,
Channel,
Alibaba,
Baidu, Yelp,
WebMD

Klout,
GumGum,
Crowd-
FLower

Linkedin,
Netflix,
Intuit, Uber

King, Otto
Group

Kelkoo,
Localytics,
AsiaInfo,
Opentable,
Faimdata,
Guavus

-

TABLE 3.3: Comparison of IoT Processing Frameworks (en-
hanced version of https://twitter.com/ianhellstrom/status/

710917506412716033)

https://twitter.com/ianhellstrom/status/710917506412716033
https://twitter.com/ianhellstrom/status/710917506412716033




85

Chapter 4

Syntactic Data Model and Domain
Ontology

The Syntactic Data Model is extracted from information represented by sensors in ac-
cording to Spatio-Temporal-Thematic (STT) dimensions. The adoption of this three
dimension representation is largely used in the context of Smart Cities and smart
mobility to define and represent data. This model is, however, flexible in order to be
used in different contexts especially where missing information can be enriched and
added through other sources of data.

The syntactical data model is anyway independent from the semantics associated
with the information in a certain context of use. For this reason the adoption of
an ontology is needed to represent sensors and the information they produce. As
shown in Chapter 2 different ontologies have been proposed in the context of IoT.
We decided to start from the SSN ontology in order to define a Domain Ontology
(DO) because it is one of the most used in the context of IoT. This ontology has been
extended with other ontologies to represent in the most adequate way the STT di-
mensions that we use in the syntactical data model and to represent the different
spatio-temporal granularities. The resulting Domain Ontology is a general ontology
that can be adapted in every application domain and that can be further extended
in order to represent specific concepts and relationship of a specific application do-
main. In our motivating scenario, for instance, we extended the ontology to describe
tweets coming from social sensors.

The chapter is organized as follows. Section 4.1 presents our STT Syntactic Data
Model and provides a formal description of the three dimensions. Moreover, the
definitions of spatio-temporal granularities are provided along with the structure
of an event stream. Section 4.2 initially gives a formal and general definition of
the concepts and of the structure of our Domain Ontology. Then, the ontological
representation of each STT dimension is discussed. Finally, on Section 4.3, a brief
summary of the concepts and requirements discussed in the chapter is provided.



86 Chapter 4. Syntactic Data Model and Domain Ontology

4.1 The STT Syntactic Data Model

In the database research field the concept of temporal granularity is a well-known
notion used to temporally qualify and aggregate classical information. Different
temporal granularities in a lattice represent different qualification levels. We can
say, for example, that an article has been published on December 2017 or considering
a finer temporal granularity (i.e., finer temporal level of detail) on December 12th,
2017. Transposing the same idea to the spatial context, we obtain the notion of spatial
granularity. We can define spatial granularity as the representation of any partition
of a space domain (e.g., R2) in non-overlapped areas (e.g., Italian regions), called
granules. This concept is not meant to represent the same object in different ways
at different levels of detail, as happen in the multi representation approach [129],
but to study and aggregate objects at different levels. For example, the position of
a Congress Hall can be represented by a pair of coordinates but we can consider
it at several levels, e.g., city, province, and region [161]. Relying on the concepts of
temporal and spatial granularities, we exploit the concept of event, that is an instance
of a thematic associated with a spatio-temporal granularity [110]. Granularities are
used for identifying correlations among events produced by different sensors and
for imposing consistency constraints in the composition of sensor events produced
by heterogeneous devices.

We remark that all the dimensions of a given event are considered optional in our
data model as well as the properties of the thematic. Indeed, some sensors might not
be adequately equipped for associating all the required contextual information of a
given concept of the Domain Ontology (e.g. a sensor can only provide a real num-
ber representing the temperature), or the time/location where the event has been
generated. Further metadata (e.g. unit of measure, precision) can be associated with
the event during the acquisition process. The possibility offered through this model
to represent the STT dimensions generated by the sensors is somehow a "semantic"
information extracted from data. For example a gateway in charge of a set of tem-
perature sensors disseminated in a given zone of a city can calculate the average
temperature and assign the time/location this observation refers to. However, this
kind of semantic can be directly desumed by the events generated from the data
and their formats and needs to be validated from the domain experts (as we will
discuss in the following chapters). For what concern the spatial dimension, the tech-
nical report proposed by W3C [38], describes the best practices and requirements
that support the publication of spatial data on the Web.

4.1.1 Spatial and Temporal Granularities and Thematic Dimensions

For the representation of spatio-temporal information of different granularities we
adopt the notation developed in [26, 27]. Temporal and spatial granularities are



4.1. The STT Syntactic Data Model 87

mapping functions from an index set IS to the power sets of the temporal and spa-
tial domains, respectively. The temporal domain is represented as a pair (IN,≤),
where IN is the set of natural numbers representing the set of time instants and ≤ is
a relation order on IN. The spatial domain contains geometric objects represented
in one or two dimensions (e.g. points, lines, and regions)1. Examples of temporal
granularity include second, minute, day with the usual meaning adopted in the Gre-
gorian calendar, whereas, meter, kilometer, feet, yard, zone and city are examples
of spatial granularities. Let GT and GS denote a set of time and spatial granularities.

As shown graphically in Figure 4.1(a), a granule is a sub set of a domain correspond-
ing to a single granularity mapping, that is, given a granularity G and an index
i ∈ IS , G(i) is a granule of G that identifies a subset of the corresponding domain.
Granules of the same granularity are disjoint, so there are no granule overlapping.
Figure 4.1(b) shows a violation of this definition while Figure 4.1(c) presents another
violation of the definition of granule: non-empty temporal granules preserve the
order of the temporal domains. Each non-empty granule of a granularity G is rep-
resented by means of the “textual representation” as a label (e.g. a label for day can
be in the form mm/dd/yyyy). Granules are used to specify the valid spatio-temporal
bounds on attribute values.

Different granularities provide different partitions of their domains because of the
diverse relationships that can exist among granularities, depending on the inclu-
sion and the overlapping of granules [26, 27]. A granularity G is said to be finer
than a granularity H, denoted G � H, if for each index i, there exists an index
j s.t. G(i) ⊆ H(j) [17]. For example, temporal granularity second is finer than
minute, and granularity month is finer than year. Likewise, spatial granularity zone

is finer than city. Figure 4.2 shows different four granularities that are in the finer-
than relationship. Indeed, zone � city � province � region. In the example,
the zone/granule z1 is a part the city/granule Milan which in turn is a part of the
province/granule MilanProvince and of the region/granule Lombardy.

A semantically rich sensor network, besides spatial and temporal information, would
provide thematic information for discovering and analyzing sensor events. Themat-
ics represent the type of event that is generated by a sensor. Examples of thematic
are temperature, humidity, wind speed, etc. In the following, T H represents the set
of available thematics.

4.1.2 Temporal and Spatial Types and Values

Starting from basic domains (like int, real, boolean), denoted by Di, we consider
structured types, like records and lists, represented according to the JSON format.
The set of types is denoted by T and is used for the representation of the thematic

1points are modeled by two coordinates; lines by a list of points, regions by their boundary lines.



88 Chapter 4. Syntactic Data Model and Domain Ontology

FIGURE 4.1: Graphical representation of temporal granularity

properties. Let A be a set of labels, the set of legal values V for the types T is
inductively defined as follows:

• if d ∈ Di and a ∈ A, then (a : d) ∈ V ;

• if d1∈D1,. . ., dn∈Dn anda∈ A,(a : [d1,. . ., dn])∈V ;

• if {d1, . . . , dn}⊆V and a∈A, (a : [d1, . . . , dn]) ∈ V ;

• if (a1 : d1) ∈ V , . . . , (an : dn) ∈ V with ai 6= aj (i 6= j), then (a1 : d1, . . . , an :
dn) ∈ V .

Given a type τ ∈ T , a spatial granularity GS ∈ GS , and a temporal granularity
GT ∈ GT , we denote with: SpatialGS(τ), a spatial type; TemporalGT (τ), a temporal
type, and Spatio-Temporal(GT ,GS)(τ) a spatio-temporal type ([26, 27]). Their legal
values are defined as partial functions that map each granule i ∈ IS (or pair of
granules (i, j) for spatio-temporal types) to the legal values for τ.

4.1.3 STT Events and Stream Data Model

Relying on the temporal and spatial granularities, we are now ready for the presen-
tation of the concept of event. Our definition covers different kinds of events that



4.1. The STT Syntactic Data Model 89

FIGURE 4.2: Graphical representation of spatial granularity

can be associated with the STT dimensions. In the definition ⊥ denotes a missing
component.

Definition 4.1 (Event Type). Let τ ∈ T be a type, GT ∈ GT ∪{⊥} a temporal granularity,
GS ∈ GS ∪ {⊥} a spatial granularity, and th ∈ T H ∪ {⊥} a thematic. An Event Type,
denoted Eventth

〈GT ,GS〉(τ), can be:

• if GT = GS = ⊥, a list of pairs 〈th, τ〉.

• if GT = ⊥ and GS 6= ⊥, a partial function that maps GS-granules (referred to by their
indices) to pair 〈th, τ〉 (SpatialGS(〈th, τ〉)).

• if GT 6= ⊥ and GS = ⊥, a partial function that maps GT-granules to pair 〈th, τ〉
(TemporalGT (〈th, τ〉)).

• if GT 6= ⊥ and GS 6= ⊥, a partial function that maps (GT, GS)-granules to pair
〈th, τ〉(Spatio-Temporal(GT ,GS)(〈th, τ〉). �

Example 4.1 Consider the scenario described in our motivating example. In this scenario
we can identify four types of events generated by sensors as follows:



90 Chapter 4. Syntactic Data Model and Domain Ontology

• T1: Event{temperature}〈10 minute,point〉(temperatureVal:real).

• T2: Event{temperature}〈20 minute,⊥〉 (temperatureVal:real).

• H1: Event{humidity}〈30 minute,point〉(humidityVal:real).

• TW1: Event{tweet}〈minute,zone〉((tweets:list(string), numTweets:int)).

This representation of the event type of each sensor is exploited for modeling the events gen-
erated by the sensors in our JSON format. This uniform representation of the sensor data
is used for simlifying their processing. Note that the temperatures in T1 are expressed in
Celsius, where those in T2 are expressed in Fahrenheit, and the notation point indicates the
event geo-position (latitude, longitude). �

Relying on the concept of events, we can characterize an event stream.

Definition 4.2 (Event Stream). Let τ ∈ T be a type, GT ∈ GT ∪ {⊥} a temporal granu-
larity, GS ∈ GT ∪ {⊥} a spatial granularity, th ∈ T H∪ {⊥} a thematic, [ts, te] a temporal
interval, and S a set of spatial values. An event stream is a 6-tuple

〈GT, GS, th, [ts, te], S, Eventth
〈GT ,GS〉(τ)〉

where: if GS 6= ⊥ then GS � GranS(S), and if GT 6= ⊥ then GT = GranT(ts) =

GranT(te). �

An event stream is thus a sequence of events that is associated with meta information
related to the interval in which the flow is acquired and the STT dimensions (when
available). The meta information is exploited for imposing the integrity constraints
on the produced events.

Example 4.2 Consider the event type associated with the sensors of type TW1 in our sce-
nario. The event streams of each zone of Milano produced in the year 2016 can be char-
acterized by the tuple 〈minute, zone, tweet, [”1/1/2016-00 : 00”, ”1/1/2017-00 : 00”],
{z1, .., z9}, Event{tweet}〈minute,zone〉(tweets :list(string), numTweets:int)〉, where
{〈”15/05/2016-12 : 00”, z1, tweet, {tweets : [’today is very hot’, ’My home is an heater’],
numTweets : 2}〉, 〈”15/05/2016-12 : 01”, z1, tweet, (tweets : [ ’a nice day for me’,
’hot,hot,hot’,’I am walking’], numTweets : 3)〉, 〈”15/05/2016-12 : 01”, z1, tweet, (tweets :
[’I am sweat’, ’today is very warm’], numTweets : 2)〉} is a stream of legal values. �

4.2 The Domain Ontology

The STT data model so far presented allows one to produce events whose correct-
ness is left to the user in charge of its creation. To support the user in this activity,
a Domain Ontology is included within our system for each supported domain. The
purpose of the adopted ontology is to guarantee that the properties specified for a
given concept (in a certain domain) actually occur in the events produced by the



4.2. The Domain Ontology 91

sensors and that the final events (i.e. those generated at the end of the Data Acqui-
sition Plan) are compliant with the spatial, temporal and thematic concepts made
available in the adopted Domain Ontology. When this requirement is addressed we
can say that the generated events are consistent with respect to the adopted Domain
Ontology.

For the design of the Domain Ontology we take into account two of the most no-
table works in this field, the IoT-Lite ontology [15] and the SSN ontology [31, 126]
from which IoT-Lite ontology is derived. Then, these ontologies are aligned with
other foundational ontologies in order to make spatial, temporal and thematic com-
mitments explicit by using further concepts and relations for better explaining their
intended meaning. They have been chosen as the upper ontologies because they
have ontological frameworks and concepts (e.g. qualities, temporal entities, units
of measurements, geospatial positions info) that are needed for making our Domain
Ontology consistent with respect to the STT model. Figure 4.3 depicts the concepts
of the ontologies integrated in our Domain Ontology and the main relationships be-
tween them. For example, DOLCE-UltraLite (DUL) [21] introduces the concept of
DUL:Amount that is used to identify and specify the type of a value (real, integer, list-
String, etc). qu:QuantityKind, and qu:Unit derives from QU2 and they provides, re-
spectively, information about instances for thematic values and measurement units
(celsius, fahrenheit, kilometers, etc). Time3 is used to label temporal instants or inter-
val while Geo4 introduces the class Geo:Point that is necessary in order to define lati-
tude and longitude. Two new classes, used to represent instances coming from social
sensors and characteized by the prefix do: in the Domain Ontology, have been intro-
duced without taking into consideration any other existing ontologies: do:Facebook
and do:Twitter. The ontology obtained by the integration of these components can
be further extended by domain experts with concepts and relationships specifically
tailored for representing peculiar characteristics of a given domain of interest. In our
graphics we use standard notations for representing our Domain Ontology and its
instances. Specifically, dashed rectangles represent instances, whereas dashed lines
are used for linking related instances according to a given relation. The dashed cir-
cle is used for modeling the data value linked to an instance and created by the data
property assertion hasDataValue. I(C) denotes the set of instances of class C, and
C1 v C2 denotes that C1 is subclass of C2.

In the remainder of the section we discuss the ontological representation of the STT
dimensions included in our Domain Ontology.

2http://purl.oclc.org/NET/ssnx/qu/qu-rec20
3http://motools.sourceforge.net/timeline/timeline.html
4http://www.w3.org/2005/Incubator/geo/XGR-geo-ont/



92 Chapter 4. Syntactic Data Model and Domain Ontology

FIGURE 4.3: Relationships between the ontologies that compose our
Domain Ontology

4.2.1 Spatial Dimension

The spatial dimension provides information regarding the sensor location, in terms
of either a geographical reference system or named location. According to the spec-
ification of classes of the IoT-Lite ontology, the spatial information can be modeled
using the class iot-lite:Coverage that acknowledges that a location can be related
to the coverage of an IoT device (i.e. a temperature sensor inside a room has a cov-
erage of that room).

The property hasPoint of the iot-lite:Coverage class states its location by using
the geo:Point class and its latitude and longitude properties. By contrast, to specify
that a location is a country, a region, a province, a city, etc new subclasses of the class
iot-lite:Entity (subclass of iot-lite:Coverage) are inserted in the ontology. The
spatial granularity GS of a location is specified through a relation of order among
the individuals of the subclaesses of the class iot-lite:Entity and is guaranteed
by the unary association isPartOf that, for instance, can be used for describing that
a province is a part of a region that, in turn, is a part of a country. The spatial granu-
larity GS can be also specified by using the association hasSystemReference between
the class iot-lite:Entity and the class GeoSubdivisionStandard that we defined
for instantiating concepts concerning Standard Geographical Administrative Subdi-
visions. A possible instance of this class can be used for referring to the International



4.2. The Domain Ontology 93

FIGURE 4.4: Twitter sensor of type T

Standard for country codes and the ISO 31665 codes for their subdivisions. This stan-
dard defines the codes for the names of countries, dependent territories, special areas
of geographical interest, and their principal subdivisions (e.g., provinces or states).

In the IoT-Lite ontology, the class iot-lite:Coverage is then associated to the classes:
iot-lite:Rectangle, iot-lite:Polygon, and iot-lite:Circle in order to repre-
sent the coverage area. Instances of the class iot-lite:Rectangle are used for de-
scribing that the coverage is made up by giving two geographical points (instances
of the class geo:Point) which are the opposite corners of a rectangle. Instances of
the class iot-lite:Polygon describe that the coverage is made up by linking several
geographical points by straight lines. Finally, instances of the class iot-lite:Circle
specify that the coverage of a sensor is a circle with the center in a geographical point
and with a given radius. The radius is specified by using the class iot-lite:Radius
that has to be then associated with an unit of measure (instance of the class qu:Unit
for indicating that the value of the radius is expressed in meter, kilometer, feet,
yard, etc.).

For specifying the relation of order among different units of measurement (i.e. me-
ters vs kilometers or minutes vs hours), the class qu:Unit can be linked to the class
qu:SystemOfUnits that represents the concept of "system of units". This concept is
defined as set of base units and derived units, together with their multiples and sub-
multiples, defined in accordance with given rules, for a given system of quantities.
For example, the most widely accepted and used systems of quantities and system of
units are the International System of Quantities (ISQ) and the International System
of Units (SI).

Example 4.3 In our running example we wish to represent a Domain Ontology for evalu-
ating the human discomfort in differ zones of Milano. With this aim, domain experts have
specified a Domain Ontology with a set of classes and relationships useful to detect human

5www.iso.org/iso/home/standards/country_codes.htm



94 Chapter 4. Syntactic Data Model and Domain Ontology

discomfort events. For modeling the spatial dimension, we wish to represent the single points
where the sensors are located, the zones of Milano and the entire city. Moreover, we wish to
model the finer-than relationships existing among these granularities. Figure 4.4 reports an
example of spatial dimension instantiation for a sensor of type T of our running example.
In this case the sensor is located in zone 1 of Milano (instance of the new class do:zone

we inserted as subclass of the class iot-lite:Entity) whose shape is rounded by using
a circle (instance of the class iot-lite:Circle). The Circle coverage is made up by giv-
ing the location of the sensor as the center of the circle (e.g. a geo point instance of the
class geo:Point) and the radius as a DataProperty. The granularity is specified though
the properties isPartOf that connect the instances z1, Milano and Lombardia of the new
classes do:zone, do:city and do:region we introduced in the Domain Ontology. The
other zones in Milano are represented in a similar way through the class iot-lite:Polygon
for modeling the vertices delimiting each area. �

4.2.2 Temporal Dimension

The temporal dimension in sensor events and its observation and/or measurement
data are used for describing attributes such as time zone and measurement times-
tamp. For modeling such concepts, the ontology is integrated with the Timeline
Ontology [116] that extends OWL-Time with various temporal concepts such as
Instant, Interval, and Interval relationships. In detail, we are interested in two
main subclasses of Temporal Entity: tl:Instant and tl:Interval. The instances of
the class tl:Instant are used for describing instants of time, and the instances of
the class tl:Interval are used for specifying intervals by means of which we de-
scribe that a sensor gathers events from time t1 to time t2 by means of the prop-
erties Interval starts and Interval finishes of the class tl:Proper Interval

subclass of the class tl:Interval. As with the iot-lite:Coverage, through the as-
sociation between the temporal entities and the class qu:Unit, it is possible to specify
the granularity of the detected time (day, hour, minute, second) and evaluate their
relationships.

Example 4.4 Figure 4.5 describes an instance of the temporal dimension associated with a
sensor. In this case, the sensor of type T is linked to a temporal interval (instance of the class
tl:Proper Interval) that states that this sensor gathers events during a interval of time
specified by using the properties Interval starts and Interval finishes. �

The temporal dimension t ∈ T of events coming from a sensor at a granularity GT,
is strictly related to the instant (the timestamp) of gathering of the feature of inter-
est we want to monitor in an event such as temperature, humidity, etc. This infor-
mation is modelled by using an instance of the of the class tl:Instant. Through
the property hasMeasurementProperty it is possible to link a sensor to the class
ssn:ResponseTime, subclass ssn:MeasurementProperty (v iot-lite:Property) of



4.2. The Domain Ontology 95

FIGURE 4.5: Temporal dimension of sensor of type T

the SSN ontology for specifying the time of sampling. Therefore, the concept “re-
sponse time” is used for describing the granularity at which events are generated by
a sensor.

Example 4.5 In our motivating example, a sensor of type T gathers temperature every 20
minutes. This situation is described in Figure 4.5 by introducing an instance of the class
ssn:ResponseTime. An instance of the class qu:Unit is then used for specifying the time
granularity minute. Moreover, through an instance of the class tl:Instant we describe
that the sensor granularity is expressed by using a timestamp . �

4.2.3 Thematic Dimension

This dimension refers to the type of events that is observed and is described by a
record of property-values pairs. We use this representation because the single ob-
servation can be enriched by other information that can be directly generated by the
sensor or added during the data acquisition process.

In our ontology a thematic is an instance of the class qu:QuantityKind of the IoT-
Lite ontology, and is used for describing the meaning of the values dispatched by
a sensor. The abstract classifier qu:QuantityKind represents the concept of "kind of
quantity" that is defined as "aspect common to mutually comparable quantities" [34]. A
quantity is defined as a characteristic of a phenomenon, where it has a magnitude
that can be expressed as a number (i.e. the degree of a thermometer) and a reference
(i.e. the temperature). Through the instances of this class we are able to represent the
kind of values gathered by a sensor such as temperature, humidity, wind speed, etc.
Quantities of the same kind (e.g. the values gathered by two thermometers) have the
same quantity dimension. However, quantities of the same dimension are not nec-
essarily of the same kind (e.g. sensors T1 and T2 in our running example gather the



96 Chapter 4. Syntactic Data Model and Domain Ontology

FIGURE 4.6: Thematic dimension of sensor of type T

temperatures using two different units of measurement: Celsius and Fahrenheit).
For this reason a sensor associated with a given theme (e.g. temperature) can be
linked to an instance of the class qu:Unit for specifying the unit of measure of the
detected values (e.g. Celsius for a temperature).

In order to model the event type associated with a sensor, the class iot:Metadata is
used. Its instances model the data type of the entity whose thematic is observed. As
an example, for the representation of a temperature value, an instance of the class
iot:Metadata is linked to the instance of the sensor by means of a hasMetadata

link. The instance of the class iot:Metadata is then linked to an instance of the class
DUL:Amount for expressing its domain.

In some contexts of use, the events gathered by sensors are coupled with some mea-
surement properties that characterize their thematic. Measurement properties (e.g.
accuracy, range, precision of ssn:Property) identify observable characteristics of
a sensor’s events or ability to make observations. Specifically, these properties can
refer to: i) the observed characteristics of the measurement or; ii) other information
that can be used for a given kind of analysis (e.g. the number of tweets related to
high temperature). The first kind of properties can be modeled in the SSN ontol-
ogy by means of the classes: ssn:Accuracy, ssn:DetectionLimit, ssn:Frequency,
ssn:Latency, ssn:MeasurementRange, ssn:Precision, ssn:Resolution, ssn:Drift,
ssn:Sensitivity and ssn:Selectivity v ssn:MeasurementProperty. The second
kind of properties can be modeled by introducing new classes in the Domain Ontol-
ogy.

Example 4.6 Figure 4.6 shows how sensors of type T are semantically described by the class
ssn:SensingDevice and whose thematics are modeled by the instance temperature of the
class qu : QuantityKind. A sensor gathers temperature values in Celsius (instance of the
class qu : Unit) and it is then linked to an instance of the class iot : Metadata for modeling



4.3. Concluding Remarks 97

FIGURE 4.7: Thematic dimension of sensor of type TW

the temperature data type. Moreover the sensor of type T presents a measurement property
for reporting the accuracy of the retrieved value (more or less 3 Celsius degrees), which is
expressed by means of an instance of the class ssn : Accuracy. The instances of the class
qu : Unit are used for specifying the unit of measurement (Celsius) of the accuracy.

As indicated in Figure 4.7 the sensor of type TW deals with the Twitter thematic. This con-
cept is modeled by using the thematic Tweets instance of the class qu : QuantityKind.
The data type associated to this sensor is a list of strings (tweets) modeled by using an in-
stance of the class iot : Metadata. The set of properties of the retrieved tweets, that is,
the total number of tweets, and the number of positive tweets (i.e. those that contain the
terms hot, heat, and sweat) is modeled by the instances of the subclasses do : NumTweets
and do : NumPosTweets of a new class do:TwitterPropv ssn:MeasurementProperty.
Two properties are linked to the sensor of type TW that are used for modeling the number of
tweets and the number of positive tweets. In a similar way, we can introduce the instance
HumanDisc for representing the thematic Human Discomfort and its properties required
for the computation of the formula. �

4.3 Concluding Remarks

In this chapter we described the Syntactic Data Model used to define the Spatio-
Temporal-Thematic (STT) dimensions that a sensor can provide. Moreover, we de-
fined a Domain Ontology able to describe each STT dimension discussed before.
This work is the basis for the Semantic Virtualization phase that we will discuss in
Chapter 5. In this phase we are able to semantically characterize the information pro-
duced by every sensor into the dimensions provided by our Syntactic Data Model



98 Chapter 4. Syntactic Data Model and Domain Ontology

and we are able to generate transformation rules that generate instances and links in
the Domain Ontology for the representation of the sensor and of its schema.



99

Chapter 5

Semantic Virtualization of Sensors

In a cross-domain context we assume the presence of different context brokers, one
for each platform, that expose to external services the sensors and actuators that are
public. However, the events observed by the sensors can be represented according
to different formats (XML, JSON, CSV) and the associated semantics might not be
expressively specified. In this context, there is the need to discover the presence of
new sensors and to associate a semantics to the information they provide according
to the Domain Ontology that we wish to adopt.

In this chapter we provide an approach that moves into this direction by introduc-
ing the "Semantic Virtualization" of sensors and the automatic translation of sensor
data into our internal data model eventually labeled with concepts of the Domain
Ontology. The Semantic Virtualization process is a complex activity that can require
the interaction with the user and has the purpose to discover the presence of new
sensors made available by a context broker, extract the sensor schema (i.e. the at-
tributes that are generated by the sensor according to a given format), the semantic
annotation of the sensor attributes with concepts of the Domain Ontology and the
characterization of the sensor (and its schema) by means of instances of the Domain
Ontology. We remark that both the semantic annotation and the semantic characteri-
zation of the sensor can be partial, because we do not assume it is always possible to
associate a semantic annotation to the attributes contained in the sensor data model.
The annotations (and also the semantic characterization) can be added by means of
the data acquisition plan during the processing of the data generated by the sensors.

In other approaches such as the one proposed in [76], the semantic model of a struc-
tured data source is carried out by means of a mapping from the source itself to a
Domain Ontology. In this approach, each attribute of the data source is properly
mapped to a concept of the Domain Ontology. If the relationship between the at-
tribute and an instance is not specified in a direct way, the corresponding relation-
ship is expressed in terms of properties of the path can be inferred from the ontology.
The main goal of this solution is to provide a complete mapping between the data
source schema and the Domain Ontology concepts by trying to infer and, when nec-
essary, disambiguate relationships between the attributes. The goal of our approach



100 Chapter 5. Semantic Virtualization of Sensors

is different. The semantic labelling, we propose aims at providing a partial descrip-
tion of the data source schema according to three dimensions: spatial, temporal and
thematic. The final goal is not to provide a formal semantic model associated to the
data source schema but to describe for each schema, the set of attributes that are nec-
essary for combining the data flows coming from sensors according to the semantic
of the themes they provide and aligning their temporal and spatial granularities.

The chapter is organized as follows. Section 5.1 discusses the Semantic Virtualiza-
tion process. Specifically, it points out the sensor data model that can be determining
by consider the format of the data produced by the sensor and a sample. Then, the
different steps required for determining the sensor data model are discussed and fi-
nally the approach for associating a semantic labeling to each attribute in the sensor
data model is discussed. Section 5.2 first introduces an algorithm for the semantic
characterization of a sensor in the Domain Ontology. The algorithm has the purpose
to create instances and links in the Domain Ontology for the representation of the
sensor and of its schema. Since the characterization is partial, we then discuss the
condition for considering it complete. With this aim, we introduce the concept of
consistency and how it can be evaluated by considering the STT dimensions. Finally,
in Section 5.3 we exploit the concepts presented in the chapter for the automatic
creation of transformation rules that can be applied for the translation of sensor ob-
servations into our internal model eventually annotated with semantic concepts.

5.1 Semantic Discovery of Sensors

Context brokers are components of different IoT platforms that make available chan-
nels representing sensors producing different kinds of data according to different
formats (XML, JSON, CSV). Sometimes these data can be coupled with meta infor-
mation for simplifying their management and also their integration. However, this
meta information can be heterogeneous in format and semantics and their manage-
ment in an uniform way can be difficult. For this reason, we do not rely on them for
the processing of data within our system.

In order to interact with the context broker, we assume that they provide a simple
set of primitives that can be invoked by our system. These primitives allow us to
realize the following services:

• Check the presence of a new sensor. This corresponds to the creation of a new
channel in the context broker. The name of the created channel corresponds to
the identifier of the sensor.

• Collect a sample of data produced by the sensor in its specific format.

• Read new observations from the sensor.



5.1. Semantic Discovery of Sensors 101

• Identify when the sensor is active (i.e. it produces observations that regularly
appears in the context broker) or is inactive (i.e. for a certain amount of time,
no data have been produced by the context broker, or the channel in the context
broker has been removed).

Starting from that, we wish to create a process that is able to discover the presence of
a new sensor by querying a context broker, extract its schema and provide a seman-
tic annotation of the schema attributes with respect to the Domain Ontology. This
semantic labeling of the information produced by a sensor is the first step towards
the semantic characterization of the information produced by heterogeneous sensors
made available by different context brokers and the automatic translation of the ob-
servations produced by the sensors in our internal data model. As discussed earlier,
this labeling is only partial because we cannot assume that a Domain Ontology is al-
ways able to correctly represents all possible situations. Therefore, it is possible that
attributes produced by a sensor cannot be directly labeled with concepts/properties
of the Domain Ontology.

In the current stage of development, the user intervention is mandatory in order to
produce meaningful semantic labeling. We are aware that when the number of sen-
sors to be semantically labeled becomes quite high, the human effort can become too
high. However, domain experts are the only people who have the adequate knowl-
edge about the context in which these sensors are placed and can make proper de-
cisions. Involving all these stakeholders in problem solving, providing them with
opportunities to construct their own understanding and have control in the descrip-
tion of problems is necessary to foster successful solutions [46]. For this reason, we
wish to maintain the interaction with the user and produce services that support his
work from different points of view in order to maintain a great accuracy of the gen-
erated semantic labels. The final system is designed around an interaction strategy
[33], [47], [107] able to support non-experts in computer science but experts in the
domain of interest in describing the data source schema according to a specified Do-
main Ontology. That does not mean that in future we cannot integrate our solution
with machine learning approaches for automatically suggesting to the user possi-
ble labeling for a given sensor. These suggestions will take into account previous
classifications conducted by the user as well as by other users with similar charac-
teristics, both positive and negative evaluation of the suggested classifications, and
the context broker that makes available the data produced by the sensor.

In our setting, the context broker is an external service that can be simply queried.
The sensor information along with the schema of the produced data, the seman-
tic labeling and all the processes required for accessing and transforming the data
generated from the sensors in our internal representation are maintained in our en-
vironment and stored in a internal database. The primitives reported in Table 5.1 are
exploited for determining the format of a value produced by a sensor, for extracting



102 Chapter 5. Semantic Virtualization of Sensors

a sample, for generating the syntactic data model of the schema of a sensor, and for
the application of a selector for extracting a component of the value.

In the remainder of the section, we first introduce the Syntactic Data Model for the
representation of the sensor schema. This model is not yet compliant with the event
stream data model discussed in Definition 4.2 of Chapter 4, but it is the first step
towards such direction. Then, we present an algorithm for the extraction of the
Syntactic Data Model from a new sensor that appears in a context broker. Finally,
we discuss the semantic labeling approach used for annotating the attributes of the
sensor schema.

5.1.1 Dealing with Different Formats

The goal is to produce data according to our internal data model presented in Chap-
ter 4. However, data are produced according to different formats (CSV, XML, JSON)
and there is the need to properly deals with these formats.

We need an intermediate data structure (denoted Syntactic Data Model) that is used
for passing from the external data format of the sensor to our internal syntactic data
model. We need to select attributes belonging to the data produced by sensors ac-
cording to the different formats. In case of CSV format, the selector is simply the
position in the list of values separated by a separator (a tab, a comma, or another
symbol). We remark that we consider also structured values in the CSV that are list
of values delimited by {} or [] brackets. In case of XML format, the selector is a
path expression for the identification of a single element/attribute or a set of ele-
ments/attributes. A position can be specified for selecting a specific element among
those with the same tag identified from the current step of the path expression. In
case of JSON format, a path expression (similar to the one for XML) can be speci-
fied that takes into account the record and array constructors made available by the
language. The following definition formally presents the different kinds of selectors
depending on the source format.

Definition 5.1 (Selector). Let v be a value produced by a sensor s according to a format f
( f ∈ {XML, JSON, CSV}). A selector is an expression for identify an attribute of the value v
depending on the format f . A selector can be:

• i[p], when f = CSV, i ∈ IN, v = (v1, . . . , vn), 1 ≤ i ≤ n, and p is a position that can
be specified when vi starts with { or [.

• x-path, when f = XML. x-path is a path expression in the hierarchical structure of
an XML document that takes in account the presence of elements and attributes in the
document; therefore x-path = /a1[p1]/. . . /an[pn], where ai ∈ A, 1 ≤ i ≤ n− 1 is
an element name in the XML document, an can be an element or attribute name (in
the last case is represented as @an), and pi is a position for distinguishing subelements



5.1. Semantic Discovery of Sensors 103

FIGURE 5.1: Formats of the events generated by the sensors in the
zones of Milano

with the same name (pi can be omitted when subelements are distinct or a set of values
should be retrieved).

• j-path, when f = JSON. j-path is a path expression in the hierarchical structure of
a JSON document that takes into account the presence of set values associated with
object properties; therefore, j-path = /a1[p1]/. . . /an[pn], where ai ∈ A, 1 ≤ i ≤ n
is an object property name, and pi is a position for accessing the i-esime component of
an array value (for non-array values pi can be omitted). �

Example 5.1 For the sake of readability, Figure 5.1 reports the formats of our running ex-
ample presented in the Introduction. The followings are examples of selectors for these values:

• /metadata/location/latitude, /data/dataType, /data/value[1] are examples of
path expressions for the JSON value in Figure 5.1 a). In the first and third case a
single value is identified, whereas in the second case an array of values is identified.

• /event/temperature, /event/time are examples of path expressions for the XML
value in Figure 5.1 b).

• 1, 2 are examples of selectors for the CSV value in Figure 5.1 c). In the first case a
single value is identified, whereas in the second case an array of values is identified. �

A selector is thus able to identify a component of a value v and to return a pair
(ai, vi), where vi is the selected component (either a single value of a set of values)
and ai is the associated label. The label is the name of the element/attribute in case



104 Chapter 5. Semantic Virtualization of Sensors

of XML, the name of the property in case of JSON, and is a system-generated label
in case of CSV.

Example 5.2 Consider the selector of previous example, the following pairs can be returned
by their application:

• (latitude, 45.464161), (dataType, [”date”, ”real”]), (value, ”2016− 05− 1512 :
10”) are the values returned in the first case.

• (temperature, 71.24), (time, ”2016/05/1512:10”) are the values returned in the
second case.

• (csv_1, ”15-05-201613:08”), (csv_2, [45.441524, 9.085241]) are the values returned
in the third case. �

Relying on a set of values on which the selector can be applied, it is possible to de-
termine the basic domain (or a list of basic domain) that represents them. When the
structure complexity of the values generated by sensor is limited, the selector can be
automatically determined. For the general case, user interaction is required. In the
remainder we consider cases in which the selector can be automatically determined.

Relying on the definition of selector, we introduce an intermediate abstract repre-
sentation of the sensor schema. This representation points out the structure of the
value generated by the sensor that is independent from the adopted format. With
this representation we are also able to handle all the formats that can be translated
(by means of a wrapper) to this format.

Definition 5.2 (Syntactic Data Model). A sensor s produces data according to the format
f ( f ∈ {XML, JSON, CSV}). Let A be a set of labels, and Di be basic domains or an array of
values of basic domains, like numeric, string, date, boolean. The Syntactic Data Model
of s is an abstract representation of the schema of the data that it produces and is represented
as a 3-tuple:

〈 f , status, {〈s1, a1, D1〉, . . . , 〈sn, an, Dn〉}〉

where: s1, . . . , sn are selectors according to Definition 5.1, {a1, . . . an} ⊆ A and status ∈
{active, inactive}. �

Example 5.3 The syntactic data model of the JSON value in Figure 5.1 a) is

〈JSON, active, {〈/metadata/thematic, thematic, string〉,
〈/metadata/location/latitude, latitude, numeric〉,
〈/metadata/location/longitude, longitude, numeric〉,
〈/metadata/location/longitude, longitude, numeric〉,
〈/data/parameter/value, timestamp, numeric〉,
〈/data/parameter/value, measurement, numeric〉, }〉

The syntactic data model of the XML value in Figure 5.1 b) is

〈XML, active, {〈/event/temperature, temperature, numeric〉, 〈/event/time, time, timestamp〉}〉



5.1. Semantic Discovery of Sensors 105

Notation Meaning
format(s) Given a sensor s, it returns the format (either XML, JSON, CSV) of the pro-

duced data
sampleB(s) Given a sensor s, it returns a sample of the data produced by s and made

available by the context broker B
schema(s, f , sampleB(s)) Given a sensor s that produce data in the format f and a sample of the

produced data, it returns its syntactic data model
extractself (v) Given a value v specified according to the format f , it extracts a value

component according to the selector sel in a JSON format

TABLE 5.1: Notations

The syntactic data model of the CSV value in Figure 5.1 c) is

〈CSV, active, {〈1, csv_1, timestamp〉,
〈2[1], csv_2, numeric〉
〈2[2], csv_3, numeric〉
〈3, csv_4, string〉
〈4, csv_5, numeric〉}〉

The syntactic data model of the CSV value in Figure 5.1 d) is

〈CSV, active, {〈1, csv_1, timestamp〉, 〈2, csv_2, string〉〈3, csv_3, list(string)〉〈4, csv_4, numeric〉}〉�

5.1.2 The Sensor Discovery Algorithm

The Syntactic Data Model presented in previous section allows the association of an
abstract representation to the schema of data produced by a sensor in an automati-
cally (or semi-automatically) way depending on the complexity of the formats used
for the representation of the sensor data. We now present the SensorDiscovery Al-
gorithm 1 which is a monitor associated with a given context broker that checks the
introduction (or removal) of sensors and keeps updated the list of current available
sensors.

The algorithm exploits the primitives reported in Table 5.1 for determining the for-
mat of a value produced by a sensor, for extracting a sample, for generating the
Syntactic Data Model of the schema of a sensor, and for the application of a selector
for extracting a component of the value.

The algorithm is a continuous procedure that, at a given instant of time, checks
whether in the context broker a new sensor appears (i.e. a new channel is activated
in the context broker). When this happens two cases need to be handled. In the first
case, the sensor is a new one (its identifier is not registered in our database). There-
fore, the algorithm extracts its format, collects a sample of data, and generate the
Syntactic Data Model for this sensor. Then, the sensor and its Syntactic Data Model
are stored in our database and the sensor is marked active. In the second case, the
sensor identifier is already present in our database. Therefore, the algorithm gen-
erates a Syntactic Data Model that is compared with the one already stored in the



106 Chapter 5. Semantic Virtualization of Sensors

Algorithm 1 The SensorDiscovery Algorithm
1: Let S be the set of known sensors
2: Let SX be the sensor schema associated with S
3: Let B be a context broker made available by the cross-domain platform
4: while (true) do
5: if (a new sensor s appears in B and s 6∈ S) then
6: f = format(s)
7: sx = schema(s, f , sampleB(s))
8: S = S ∪ {s}
9: Mark s as active

10: SX = SX ∪ {(s, sx)}
11: end if
12: if (a sensor s disappears from B and s ∈ S) then
13: Mark s as inactive
14: end if
15: if (a new sensor s appears in B and s ∈ S) then
16: f = format(s)
17: sx′ = schema(s, f , sampleB(s))
18: Let sx ∈ SX the schema of s
19: if sx 6= sx′ then
20: SX = SX ∪ {(s, sx′)} \ {(s, sx)}
21: end if
22: Mark s as active
23: end if
24: end while

database. If there are differences the new one is updated in the database in order to
maintain fresh data in the database.

The algorithm also considers the possibility that a sensor is removed from the con-
text broker. This can happen when the sensor is deactivated in its domain or its data
are not any longer accessible from our applicative context. In this case the algorithm
marks the sensor as inactive. Its information (sensor identifier and Syntactic Data
Model) are kept in the database for future references. Periodically, sensors that are
inactive for a given period of time are removed from the database.

We have to remark that in principle the syntactic data model is automatically gen-
erated. Therefore, no semantic information (in term of the STT dimensions) can be
directly associated with it. However, by taking into account previous semantic la-
beling conducted by the user on similar data, it is possible to classify the sensor
attributes in one of the three STT dimensions in order to reduce the effort required
to the user in the semantic labeling process. It is an implementation of the Publish/-
Subscribe that will provide different interfaces to perform several operations. This
operation includes sensor registration, update sensor information, notify context in-
formation, and query context information. The context broker runs as a cluster on
one or more servers that can span multiple data stores. The cluster stores streams of
records in categories called topics.

5.1.3 Semantic Labeling

Given an ontology O, we denote with Class(O) the set of classes/entities specified
within O, with Property the properties associated with classes in Class(O), with
Property(C) the properties associated with a specific class C ∈ Class(O), and with



5.1. Semantic Discovery of Sensors 107

I the set of instances of the ontologyO. In order to simplify the presentation we de-
note with C::p a specific property belonging to Property(C) and with subClasses(C)
the set of subclasses (direct or indirect) of class C.

In our Domain Ontology, classes have been classified according to the STT dimen-
sions. We thus use the notation C lass(O)|d with d ∈ {time, space, thematic} to
identify the classes belonging to a specific dimension (we adopt the notation also for
the class properties). This classification is particularly useful for showing to the user
only the classes that can be used for each dimension and thus reducing the possi-
bility of mistakes. Moreover, given an attribute ai of the the syntactic data model
associated with a sensor s, we denote with Dim(ai) ∈ {time, space, thematic} at
which dimension the user has deemed more accurate to classify this attribute (the
default value is thematic).

As said in the previous section, we consider domain experts as the only people who
have the adequate knowledge about the context in which these sensors are placed
and about the real meaning of the data schemas in order to make proper decisions.
For this reason, in our solution the user is in charge of generating the semantic la-
bels to maintain a great accuracy of the semantic description process. Relying on
these notations, we can introduce the concept of semantic labeling in our context.
A semantic labeling is a partial function that associates the sensor schema attributes
to concepts of the Domain Ontology. At the current stage, this function is specified
by the user by means of a graphical interface that will be described in Chapter 7.
The Web interface is a good means for supporting the user in this activity and in
future we are planning to integrated the user’s interaction with machine learning
algorithms able to support him in the identification of concepts/properties and in-
stances of the Domain Ontology to be associated with the syntactic schema of the
sensor by taking into account the specific features of sensor data and the peculiarity
of the adopted Domain Ontology.

The function is created by the user for steps depending on the STT dimension on
which the user classifies an attribute in the sensor schema. When the attribute rep-
resents a temporal information, the class representing the instance of time when
the measurement has been acquired is used to label the attribute. Since we usually
adopt the Gregorian calendar, the class is tl:Instant. However, in case also other
calendars are used, specific classes for representing them can be shown. When,
the attribute represents a spatial dimension, either a class or a class property can
be associated with the sensor attribute. This depends on the spatial granularity
that is selected by the user. The labeling for an attribute of the thematic dimen-
sion is a tuple with two components. The first one is a class C among the sub-
classes of ssn:MeasurementProperty and those of iot:Metadata used for represent-
ing the properties of a thematic in the Domain Ontology (which is an instance of
I(qu:QuantityKind)). The second component is optional and represents the unit of



108 Chapter 5. Semantic Virtualization of Sensors

measure according to the measurement has been acquired (for example in case of a
temperature, the unit of measure can be Celsius).

We remark that in our context, it might happen that the concept represented by
a sensor attribute is not included in the Domain Ontology. Therefore, a semantic
labeling cannot be associated with such sensor attribute. However, it is possible to
associate a label (eventually the same or a new one – named in the following a′i)
to the attribute when we wish to maintain it. Attributes in the sensor schema that
do not belong to the domain of the semantic labeling function are dropped and no
longer considered. This can be useful, when the sensor produces many information,
but we consider relevant for the analysis that we have to conduct only a subset of
them. The following definition formally presents the semantic labeling function.

Definition 5.3 (Semantic Labeling). Let 〈 f , status, {〈s1, a1, D1〉, . . . , 〈sn, an, Dn〉}〉 be the
Syntactic Data Model associated with a sensor s andO be our Domain Ontology. A semantic
labeling Label is a partial function

Label : {a1, . . . , an} → ((Class(O) ∪ Property)× I(qu:Unit)) ∪A

such that

Label(ai) =



(C, unit) if Dim(ai) ∈ {time, space}, C ∈ Class(O)|Dim(ai),
unit ∈ I(qu:Unit) ∪ {⊥}

(C::p, unit) if Dim(ai) = space, C::p ∈ Property(C)|space,
unit ∈ I(qu:Unit) ∪ {⊥}

(C, unit) if Dim(ai) = thematic, unit ∈ I(qu:Unit) ∪ {⊥},
C ∈ subClasses(ssn:MeasurementProperty)∪
∪{iot:Metadata}

a′i otherwise �

Example 5.4 Consider the syntactic data model associated with the CSV value in Figure
5.1 c) in Example 5.3. The following semantic labeling function can be associated with it:

Label(csv_1) = (tl:instant,⊥)
Label(csv_2) = (geo:long, degree)
Label(csv_3) = (geo:lat, degree)
Label(csv_5) = (iot:Metadata, percentage) �

The semantic labeling function is used for labeling the attributes of the sensor schema
to concepts of the Domain Ontology. By means of the Web interface, it is also possi-
ble to associate further information that is used to better characterize the sensor itself
and the values that it produces. The following definition details the meaning of such
properties and characterizes the description of the sensor at the ontology level.



5.2. Evaluation of Sensor Consistency 109

Operation Meaning
i=new(”CLASS”) Create a new instance of the class CLASS
i.addLink(j, ”REL”) Include a link between i and j instance of the relationship REL

TABLE 5.2: Primitives for the modification of ontology instances

Definition 5.4 (Sensor Descriptor). Let s be a sensor, by means of the Web interface, the
tuple 〈t-gran, s-gran, theme, t-start, t-end〉 can be associated by the user to s, where:

• t-gran is a pair of values (unit, num) such that unit ∈ I(qu:Unit), and num ∈ IN,
representing the number of unit of times according to which data are gathered from the
sensor (i.e. the temporal granularity), when it is specified (⊥ otherwise).

• s-gran is a class belonging to {geo:Point} ∪ subClasses(iot-lite:Entity) the
spatial granularity a measurement refers to, when it is specified (⊥ otherwise).

• theme is an instance of the class qu:QuantityKind.

• t-start and t-end are two instants of time delimiting the interval of time in which the
sensor produces observations, when they are specified (⊥ otherwise). �

Example 5.5 Consider the Syntactic Data Model associated with the CSV value in Figure
5.1 c) in Example 5.3. The following information is associated with the corresponding sensor.

• t-gran = (minute, 10);

• s-gran = geo:Point;

• theme = humidity;

• t-start = 2018-01-01T00:00:00.000;

• t-end = 2019-01-01T00:00:00.000. �

5.2 Evaluation of Sensor Consistency

In the previous section we outlined the Semantic Virtualization process according to
which when sensors are registered in our system, the sensors’ themselves and their
schema are annotated with concepts of the Domain Ontology.

In this section we first exploit the annotations for the semantic characterization of
the sensors. With this aim, we introduce an algorithm that automatically generates
instances of the Domain Ontology for the representation of the sensor and of its
schema. Instances are generated only when the required classes are present in the
Domain Ontology. Otherwise, it means that the concept contained in the sensor
schema is not covered by the ontology, that is the expressive power of the ontology is
not sufficient for representing it. This situation can happen for two kinds of reasons.
First, the Domain Ontology designers forgot to include a concept that is required in
the domain. This kind of problem can be solved by evolving the Domain Ontology



110 Chapter 5. Semantic Virtualization of Sensors

and introduce missing concepts. The second reason is that the Domain Ontology
designers considered such attributes illegal in the domain. Therefore, it is better to
not consider such attributes.

Once the sensors are semantically characterized, there is the need to check their con-
sistency with respect to the Domain Ontology. In the second part of this section we
propose the concept of consistency and define it according to the STT dimensions
exploited for the representation of the sensor schema.

5.2.1 Semantic Characterization of Sensors

By means of the information generated by Algorithm 1 (SensorDiscovery), the se-
mantic labeling function discussed in Definition 5.3, and the sensor descriptor de-
scribed in Definition 5.4, we are now able to create a semantic characterization of
the sensor at the ontology level. This characterization is used for providing a uni-
form description of the sensors that are handle by our system, for simplifying their
discover when a Data Acquisition Plan needs to be formulated, and also for assess-
ing the consistency of a data acquisition plan with respect to the adopted Domain
Ontology.

The semantic characterization consists in creating an instance for a new sensor s in
the Domain Ontology and to provides values that represents the STT dimensions
specified for its schema. The basic operations reported in Table 5.2 are used for this
purpose that allow us to create instances of a class and include links between pairs
of instances.

Algorithm 2 (SensorSemanticCharacterization) provides the semantic character-
ization as follows. First, an instance of class ssn:SensingDevice is created for the
representation of the new sensor and, by exploiting the information contained in the
sensor description, properties are specified for representing the temporal granular-
ity, the spatial granularity, the thematic, and the interval of time in which observa-
tions are generated by the sensor (from line 1 to line 16). Then, for each attribute
a in the syntactic data model for which a semantic labeling has been specified, a
representation of the attribute in the Domain Ontology is provided according to the
dimension in which the attribute has been classified. Specifically, if a is a temporal
information (representing an instance of time), a link named hasTime is created be-
tween the sensor and an instance of the class tl:Instant (from line 19 to 22). If a is
a spatial information, it can represent a coordinate (e.g. latitude, longitude, etc.) or
a coarser granularity (e.g. zone, city, region, etc.). A specific instance is thus created
and linked to the instance representing the sensor through the property hasLocation

(from line 23 to 33). If a is a thematic information, it can represent a measurement
property (for representing observable characteristics of sensor’s events) or a meta-
data (for representing the type of the data coming from the sensor). An instance
of this class is created and linked with the sensor (from line 34 to 42). Finally, when



5.2. Evaluation of Sensor Consistency 111

Algorithm 2 The SensorSemanticCharacterization Algorithm
Require: the sensor s,

the syntactic data model 〈 f , status, {〈s1, a1, D1〉, . . . , 〈sn, an, Dn〉}〉 of s
the sensor descriptor 〈t-gran, s-gran, theme, t-start, t-end〉
the semantic labeling function Label on the attributes {a1, . . . , an} of the schema of sensor s.

1: s1 = new(”ssn:SensingDevice”)
2: /* Temporal Granularity */
3: tG = new(”ssn:ResponseTime”)
4: s1.addLink(tG , ”ssn:MeasurementProperty”)
5: tG .addLink(t-gran.unit, ”hasUnit”)
6: tG .addLink(t-gran.num, ”hasDataValue”)
7: /* Spatial Granularity */
8: sG = new(”s-gran”)
9: s1.addLink(sG , ”hasLocation”)

10: /* Thematic Granularity */
11: s1.addLink(theme, ”hasQuantityKind”)
12: /* Validity Interval */
13: interval = new(”properInterval”)
14: s1.addLink(interval, ”hasTime”)
15: interval.addLink(t-start, ”interval starts”)
16: interval.addLink(t-end, ”interval finishes”)
17: /* Representation of Sensor Attributes */
18: for each a ∈ {a1, . . . , an} s.t. Label(a) is defined and Label(a) = (x, unit) do
19: if Dim(a) = time then
20: ts = new(”tl:Instant”)
21: s1.addLink(ts, ”hasTime”)
22: end if
23: if Dim(a) = space then
24: if x = C::p then
25: pt = new(”C”)
26: s1.addLink(pt, ”hasLocation”)
27: coord = new(”p”)
28: pt.addLink(coord, ”p”)
29: else
30: sp = new(”x”)
31: s1.addLink(sp, ”hasLocation”)
32: end if
33: end if
34: if Dim(a) = thematic then
35: if x = iot:Metadata then
36: th1 = new(”iot:Metadata”)
37: s1.addLink(th1, ”hasMetadata”)
38: else
39: th1 = new(”x”)
40: s1.addLink(th1, ”hasMeasurementProperty”)
41: end if
42: end if
43: if unit 6= ⊥ then
44: s1.addLink(unit, ”hasUnit”)
45: end if
46: end for



112 Chapter 5. Semantic Virtualization of Sensors

present, the information about the unit of measurement is associated with the sensor
(from line 43 to 45).

5.2.2 Consistency of Sensor Schema w.r.t. the Domain Ontology

In the previous section, we have seen an algorithm for the semantic characteriza-
tion of a new sensor with respect to the Domain Ontology. In this section we wish
to introduce a mechanism for the verification of the consistency of its data model.
This verification is required because of the flexibility of our approach that does
not impose a complete match between the event streamM = 〈GT, GS, th, [ts, te], S,
Eventth

〈GT ,GS〉(τ)〉 associated with a sensor according to Definition 4.2 and the seman-
tic characterization discussed in previous section. In order to guarantee the consis-
tency w.r.t. a given Domain Ontology O, we need to verify the exact match of its
spatial, temporal and thematic dimensions with the related concepts expressed in
O.

We remark that a Domain Ontology contains a set of classes and relationships con-
sidered valid by the experts of such domain. For what concern the thematic dimen-
sion, this means that, in order to be consistent, the properties specified in the streams
should be conceptualized as classes and links in advance in the Domain Ontology
by the experts. That is, the experts require that sensors of type T1 for being consis-
tent need to present a measurement property ssn:Accuracy, and that sensors of type
TW1 need to be connected with an instance of the class TwitterProp that contains
the total number of tweets and positive tweets.

A sensor is "not consistent" w.r.t. the Domain Ontology if it does not provide all the
spatial, temporal and thematic dimensions according to the following definitions.

Definition 5.5 (Spatial Consistency).M is spatially consistent w.r.t. O if:

1. ∀s ∈ S, an instance of the class iot-lite:Entity v iot-lite:Coverage corre-
sponding to s exists at the granularity GS;

2. GS is guaranteed by the unary association isPartOf defined on one of the subclasses
of the class iot-lite:Entity or by using the association hasSystemReference be-
tween the class iot-lite:Entity and the class GeoSubdivision-Standard (used
for describing Standard Geographical Administrative Subdivisions);

3. the instance of one of the subclasses of the class iot-lite:Entity is linked to an in-
stance of one of the classes iot-lite:Rectangle, iot-lite:Polygon, and
iot-lite:Circle for specifying the coverage area. �

Example 5.6 Consider the situation described in Example 4.3 and depicted in Figure 4.4.
A sensor of type T1 is spatially consistent because its location is described by an instance of
the class do:zone subclass of the class iot-lite:Entity that is a part of the city Milano
(instance of the class do:city) that in turn is part of the region Lombardia (instance of



5.2. Evaluation of Sensor Consistency 113

the class do:region) thus fulfilling the relation of order defined by the granularity GS.
Moreover, the instance ZoneT1 is linked to an instance of the class iot-lite:Circle. �

Definition 5.6 (Temporal Consistency).M is temporally consistent w.r.t. O if:

1. the timestamp of the data gathered form the sensor is described by means of an instance
of the class tl:Instant;

2. [ts, te] is described by means of an instance of the class tl:Proper Interval where ts

and te are specified by using the properties Interval starts and Interval finishes;

3. ∀t ∈ T, an instance of the class ssn:ResponseTime exists associated with the in-
stance of the sensor that produces the stream at the granularity GT;

4. GT is specified through a link between the instance of the class ssn:ResponseTime

with an instance of the class qu:Unit for specifying the unit of measure and by the
subsequential link to the instance of the class qu:SystemOfUnits that represents the
concept of “system of units”. �

Example 5.7 Consider the situation described in Example 4.4 and Example 4.5 and depicted
in Figure 4.5. A sensor of type T1 is temporally consistent because the timestamp of the data
coming from the sensor is described by an instance of the class tl:Instant. Then, the sensor
is linked to a temporal interval (instance of the class tl:Proper Interval) that states that
this sensor gathers events during a specified interval of time. Moreover, the sensor is also
linked to an instance of the class ssn:ResponseTime that specifies that the temperature is
acquired once every 20 minutes. The instance of the class qu : Unit is used for specifying
the time granularity Minute. �

Definition 5.7 (Thematic Consistency). Let Prop(o) and GranT(o)/GranS(o) denote the
set of properties occurring in o and the temporal/spatial granularity of o, respectively. Con-
sider an instance ith ∈ I(qu : QuantityKind) corresponding to th. M is thematically
consistent w.r.t. O if:

1. a link (ith, hasQuantityKind, s) exists in O s.t. s ∈ I(ssn:SensingDevice) cor-
responds to the sensor that produces the events; ith ∈ I(qu:QuantityKind) corre-
sponds to the sensor thematic, and the two instances are linked by the hasQuantityKind
association;

2. the data type associated to the sensor s is described by means of an instance of the class
iot : Metadata which is in turn assocaited at an instance of the class DUL:Amount

for expressing its domain;

3. ∀a ∈ Prop(τ), a link (s, hasMeasurementProperty, ia) exists in O s.t. ia ∈ I(a)
and av ssn :Property;

4. ∀ia∈I(a)s.t. a link (s, hasMeasurementProperty, ia) exists, a∈Prop(τ). �

Example 5.8 Consider the situation depicted in Figure 4.6 and in Figure 4.7. T1 and TW1

are thematically consistent w.r.t. the adopted Domain Ontology because these instances are



114 Chapter 5. Semantic Virtualization of Sensors

linked to instances of the qu:QuantityKind class for representing their thematic, they are
linked to instances of the class iot:Metadata for modeling the data type and in turn are
linked to instances of the class DUL:Amount for describing the corresponding domains. More-
over, they provide a complete semantic description of the properties as specified in the Domain
Ontology. In fact, T1 and TW1 present the connections with proper measurement properties
ssn:Accuracy and do:NumTweets and do:NumPosTweets. �

Finally, we can specify that an event stream is consistent only if it is temporally,
spatially and thematically consistent according to the adopted Domain Ontology.

Definition 5.8 (Consistent Specification).M is consistent if it is temporally, spatially and
thematically consistent w.r.t. O. M is partially consistent if at least one of the dimensions
is consistent. �

Example 5.9 Let O be the Domain Ontology. Sensors of type H1 are consistent w.r.t. O.
Sensors of type T1 are not thematic consistent w.r.t. O because they lack the accuracy. Sen-
sors of type T2 are not spatially consistent w.r.t. O because the spatial coordinates are miss-
ing. Sensors of type TW1 are temporally and spatially consistent w.r.t. O, but thematically
inconsistent because they lack the property about the number of positive tweets, as discussed
in previous examples. �

5.3 Automatic Transformation of Sensor Events

Starting from the definitions introduced in previous section, we are now able to au-
tomatically generate a set of translation rules that are able to translate the value gen-
erated by a sensor in its own format, in our formal specification of Event Stream (see
Definition 4.2 in Chapter 4). This representation is also labeled with the concepts
occurring in the Domain Ontology (by means of the semantic labeling function pre-
viously described).

Definition 5.9 (Set of Transformation Rule). Let 〈 f , status, {〈s1, a1, D1〉, . . . , 〈sn, an, Dn〉}〉
be the Syntactic Data Model associated with a sensor s, and Label be the semantic labeling
function associated with the attributes of the schema of sensor s. A set of transformation rules
T R can be automatically created starting from Label. The cardinality of T R is equal to the
cardinality of the domain of Label. Each transformation rule ri, where ai is an attribute for
which Label(ai) is defined, is a tuple:

〈seli, dimi, namei, typei, uniti〉

where:

• seli is the selector associated with an attribute ai.

• dimi = Dim(ai) is the dimension in which the attribute ai has been classified (in case
the dimension is not specified, it is assumed to be thematic).



5.3. Automatic Transformation of Sensor Events 115

• if Label(ai) = (x, unit), with x ∈ {C::p, C}, then namei = x, typei = Di, and
uniti = unit. if Label(ai) = a′i, then namei = a′i, typei = Di, and uniti = ⊥. �

Example 5.10 Consider the semantic labeling function described in Example 5.4. The fol-
lowing set of transformation rules are generated:

〈1, time, tl:instant, timestamp,⊥〉
〈2[1], space, geo:long, numeric, degree〉
〈2[2], space, geo:lat, numeric, degree〉

〈4, thematic, iot:Metadata, numeric, percentage〉 �

At this point we can present the algorithm used for transforming the value produced
by the sensor and made available by means of the context broker in our internal
representation. Algorithm 3 contains the pseudo-code.

The algorithm takes as input the set of transformation rules associated with the at-
tributes belonging to a sensor s, the information specified by the user for the sensor
s, and the context broker B. The algorithm checks for a new value v made available
in the context broker B for the sensor (channel) s. When the value v is detected, each
transformation rule is applied on v for extracting a component vi and associate it to
a set of pairs (Time, Space, and Thematic) that depends on the dimension on which
vi has been classified. The name to be associated with the value vi as well as its
classification dimension is reported in the the tranformation rule adopted. Once this
process is concluded, a record is generated with these sets (the function rec is used
for generating a record from a set of pairs). Moreover, the STT dimensions, the in-
terval of time in which values are acquired by the sensor, and the possible values for
the spatial dimension are retrieved from the information associated with the sensor
s. All these data are used for the generation of the 6-tuple used for representing a
value in the Event Stream model.

Theorem 5.1 Let T R be the set of transformation rules generated according to Definition
5.9 for a sensor s. The value v, generated by a sensor s according to Algorithm 3, is an event
stream according to Definition 4.2.

This theorem can be easily proved for induction on the structure of the possible
values that can be generated for the Event Stream.

The proposed algorithm can be applied at different points of the data acquisition
process. It can be applied:

• directly in the sensor or in the gateway in charge of handling the sensor;

• when the observation is posted on the context broker;

• in the cloud, before its processing.

Each one of these solutions presents advantages and disadvantages.



116 Chapter 5. Semantic Virtualization of Sensors

Algorithm 3 The SensorAcquisitionValues Algorithm
Require: the sensor s,

the context broker B,
the sensor descriptor specified by the user: 〈t-gran, s-gran, theme, t-start, t-end〉
the set of transformation rules T R.

1: while (true) do
2: Time = ∅
3: Space = ∅
4: Thematic = ∅
5: Let v be a new value occurring in B for s
6: for each ri = 〈seli , dimi , namei , typei , uniti〉 ∈ T R do
7: (ai , vi) = extract

seli
f ormat(v)(v)

8: if dimi = time then
9: Time = Time ∪ {(namei , vi)}

10: end if
11: if dimi = space then
12: Space = Space ∪ {(namei , vi)}
13: end if
14: if dimi = thematic then
15: Thematic = Thematic ∪ {(namei , vi)}
16: end if
17: end for
18: GT = t-gran
19: GS = s-gran
20: th = theme
21: S = {inst|inst ∈ I(GS)}
22: return 〈GT , GS, th, [t-start, t-end], S, (rec(Time), rec(Space), rec(Thematic))〉
23: end while

The first solution has the advantage that the observation is directly communicated
in the internal format when it is produced. However, the algorithm should be imple-
mented taking into account the operating system that works on the sensor/gateway
and requires a deep control on the sensor that, in our cross-domain context, hap-
pens rarely. The second solution can be applied on the edge of the network when
the observations are transferred from the sensors to the Cloud where they can be
processed. The advantage of this solution is that transformations can be executed
locally to where the data are produced, but it cannot take advantage of the process-
ing power that the Cloud can offer. The last option has the advantage of taking
advantage of the use of a scalable architecture as the one of Cloud, but the quantity
of data collected by heterogeneous sensors can have negative effects on the quantity
of observations to be handled in each second.



117

Chapter 6

Sound and Consistent Data
Acquisition Plans

In the previous chapter we presented the services developed in order to transform
sensor data in a common format and how is possible to semantically describe them
in order to understand their meaning.

In this chapter we propose a set of basic services that can be exploited for manipu-
lating the data generated by the sensor. These services allow to filter, aggregate, join,
union the data generated by sensors. For aggregation we develop a specific operator
to change the spatio-temporal granularities of data. The second ones can occur more
often in our context and are easier to specify and understand. Moreover, sensor
data can be enriched with meta information contained in the Domain Ontology or
available in external databases. A trigger service is also included for activating/de-
activating a stream relying on a condition on the values assumed by another stream.
Finally, virtual attributes can be generated relying on a formula specified by the user
and transformation functions can be applied for changing for example format, unit
of measures, cases of the values generated by the sensors.

The proposed services can be combined in a Data Acquisition Plan (DAP) which is
a direct acyclic graph presenting many sources and a single destination. Conditions
for expressing the soundness of the DAP (i.e. when the DAP can be executed with-
out errors on the sensor data) and consistency (e.g. when the output of the DAP is
well described by the adopted Domain Ontology) are proposed along with an algo-
rithm for the semantic characterization of the entire DAP and the evaluation of its
consistency with respect to the Domain Ontology.

In the remainder of the chapter we discuss the available services with their applica-
bility conditions in Section 6.1, then, in Section 6.2 a formal definition of Data Ac-
quisition Plan is provided. Definitions of sound and consistent Data Acquisition Plan
are presented in Section 6.3 and, finally, on Section 6.4 we describe how consistency
of a DAP is checked with respect to our Domain Ontology.



118 Chapter 6. Sound and Consistent Data Acquisition Plans

Cond ::= BasicCond | Cond "and" Cond | Cond "or" Cond | "not(" Cond ")"
BasicCond ::= ValCond | ExistsCond | SizeCond | TypeCond
ValCond ::= Path CompOp Val | Val SetOp Path
ExistsCond ::= "exists(" Path ")"
SizeCond ::= "size(" Path ")" CompOp Number
TypeCond ::= "type(" Path ")" EqOp StructType
Path ::= PName | PName"["IdxPos"]" | Path "/" Path
IdxPos ::= Number | "last()" | "first()"
StructType ::= "KV" | "list" | "record"
EqOp ::= "=" | "!="
CompOp ::= "<=" | ">=" | "<" | ">" | EqOp
SetOp ::= "=" | "∈" | "⊆" | "⊇"

FIGURE 6.1: BNF predicate of basic conditions

6.1 Data Acquisition Services

Data Acquisition Services can be devised for processing and combining the streams
produced by the sensors that adopt the event stream model. Other services are pro-
vided for manipulating the streams (for filtering, transforming, aggregating, com-
posing and for event detection). Stream manipulation services are classified in non-
blocking and blocking services. In the remainder of the section we discuss and detail
the developed services. In the presentation we use the following notations. Prop(o)
denotes the set of properties occurring in o, whereas GranT(o)/GranS(o) represents
the temporal/spatial granularity of o and T ype(a, s) denotes the type domain of
property a in the event stream s.

6.1.1 Non-Blocking Services

These services are applied on each single event and thus do not require to maintain
caches.

Filter. The filter service allows to remove events that do not adhere to a condition
cond expressed on the values of the event stream s. cond is a boolean expression
on the properties specified in the schema of the stream s that follows the syntax
reported in Figure 6.1. The syntax takes into account the use of records and sets in
the structured value of an event.

Definition 6.1 (filter service). Let s = 〈GT, GS, th, [ts, te], S, Eventth
〈GT ,GS〉(τ)〉 be an

event stream and cond a boolean expression that follows the syntax reported in Figure
6.1 such that Prop(cond) ⊆ Prop(τ). The application of the filter service, named
σ(s, cond), on s produces a new stream s′ having the same structure of s and containing
only the events that meet the constraints imposed by cond. �



6.1. Data Acquisition Services 119

Enrich. The enrich service allows to include extra information to the stream ac-
cording to a knowledge base KB or the Domain Ontology or static information
sources. The binding between the current event and one of these sources is realized
through the join predicate pred. This service is particularly important for enriching
the events with contextual information that are local to where the event is gener-
ated (for example for associating the local correction factor LHD in the computation
of HD). The spatio-temporal granularity of s needs to be compliant with the one
adopted in KB for a sound enrichment of the event stream.

Definition 6.2 (enrich service). Let s = 〈GT, GS, th, [ts, te], S, Eventth
〈GT ,GS〉(τ)〉 be an

event stream and KB be a table belonging to a relational database or extracted from a knowl-
edge base presenting the following schema (b1, ..., bn, bn+1, ..., bk) whose data are compliant
with the spatio-temporal granularities of s. Let {b1, . . . , bn} be a subset of attributes of KB
that are in common with Prop(τ) ({b1, . . . , bn} = {b1, . . . , bk} ∩ Prop(τ)). The appli-
cation of the enrich service, named ∝KB

pred s, on s produces a new stream s′ whose struc-
ture is 〈GT, GS, th, [ts, te], S, Eventth

〈GT ,GS〉(τ
′)〉 where τ′ is τ enhanced with the attributes

(bn+1, ..., bk) whose values are taken from KB where the attributes (b1, ..., bn) assume the
same values in a event of s. �

Virtual Property. The virtual property service allows to include a new property
p to the schema of s according to the specification spec. spec is an arithmetic expres-
sion allowing to determine the value of p relying on the properties of s.

Definition 6.3 (virtual property service). Let s = 〈GT, GS, th, [ts, te], S, Eventth
〈GT ,GS〉(τ)〉

be an event stream, spec be an arithmetic expression such that Prop(spec) ⊆ Prop(τ),
and p the name of a properties not used in τ (p 6∈ Prop(τ)). The application of the
virtual property service, named ]s〈p, spec〉, on s produces a new stream s′ whose struc-
ture is 〈GT, GS, th, [ts, te], S, Eventth

〈GT ,GS〉(τ
′)〉 where τ′ is τ enhanced with the attribute p

whose value is calculated according to the expression spec. �

Transform. The transform service allows to apply the transformation function
trans on the properties a1, ..., an of events in s. At the current stage the following
transformation functions have been considered: i) for changing the unit of measure
(e.g. from yards to meters) or geographical coordinates (e.g. from one standard to
another one); ii) for checking that data conform to given validation rules (e.g. dates
conforming to given patterns); and iii) for changing the case of letters. However,
further functions can be easily integrated in our framework.

Definition 6.4 (transform service). Let s = 〈GT, GS, th, [ts, te], S, Eventth
〈GT ,GS〉(τ)〉 be

an event stream, trans a transformation function that takes a single input a generates a
new value, and {a1, . . . , an} ⊆ Prop(τ) a subset of the properties of s. The application of
the transform service, named ♦{a1,...,an}

trans s, on s produces a new stream s′ having the same



120 Chapter 6. Sound and Consistent Data Acquisition Plans

structure of s, and the values of attributes {a1, . . . , an} ⊆ Prop(τ) transformed according
to trans. �

6.1.2 Blocking Services

These services are window-based, that is they require to maintain a cache of events
for a temporal interval t. At the end of the interval, the events collected in the cache
are processed by the operator and the obtained result produced to the upcoming
operators.

Aggregation. The aggregation service allows to aggregate the events of s on the
properties a1, ..., an and apply the aggregation function op ∈ {count, avg, sum, min, max}
on the other properties. The temporal granularity of t needs to be compatible with
the one of s. Moreover, the properties a1, ..., an need to be included in those appearing
in s. Note that since this service can be applied to spatio-temporal data, it requires
that the aggregation is also applied on the spatio-temporal dimensions in order to
produce meaningful data according to our event stream data model.

Definition 6.5 (aggregation service). Let s = 〈GT, GS, th, [ts, te], S, Eventth
〈GT ,GS〉(τ)〉

be an event stream, a1, ..., an the attributes on which the aggregation should be applied, and
op ∈ {count, avg, sum, min, max} the aggregation function. Let a1, .., an, an+1, ..., ak be the
properties in τ. The application of the aggregation service, named @t,{a1,...,an}

op (s), on s
in the interval of time t produces a new stream s′ with the same structure of s. The events
collected in the interval t are grouped according to the attributes a1, ..., an and the spatio-
temporal dimensions. For each group, a representative is generated by applying op on the
values associated with each of the properties an+1, ..., ak. �

Union. The union service allows the union of the events produced by different
sensors and produces a new stream of events of thematic th′. Indeed, in this case
the user can specify whether the generated sequence of events has a new thematic
or maintain one of those of the incoming streams. We remark that this operation
is allowed only when common properties of different incoming streams present the
same type. However, no constraints is imposed on the other properties.

Definition 6.6 (union service). Let s1 = 〈GT1, GS1, th1, [ts1, te1], S1, Eventth1
〈GT1,GS1〉

(τ1)〉
and s2 = 〈GT2, GS2, th2, [ts2, te2], S2, Eventth2

〈GT2,GS2〉
(τ2)〉 be two event streams such that:

• Prop(τ1) = {a1, . . . , an, an+1, . . . , ak} and Prop(τ2) = {a1, . . . , an, a′n+1, . . . , a′h}
are the properties of the two streams with the first n properties presenting the same
label and type;

• GT1 = GT2 and GS1 = GS2;

• th′ is the thematic chosen by the user for the result of the application of this service.



6.1. Data Acquisition Services 121

The application of the union service, named ∪t,th′({s1, s2}), on s1 and s2 in the interval of
time t produces a new stream s′ with the following structure

〈GT1, GS1, th′, [max(ts1, ts2), min(te1, te2)], S1 ∪ S2, Eventth′
〈GT1,GS1〉(τ

′)〉

where τ′ is a record formed with the properties {a1, . . . , an, an+1, . . . , ak, a′n+1, . . . , a′h}whose
types are the same of the original basic types of s1 and s2. The events in s′ are {(a1 :
v1, . . . , an : vn, an+1 : vn+1, . . . , ak : vk, a′n+1 : null, . . . , a′h : null)|(a1 : v1, . . . , an :
vn, an+1 : vn+1, . . . , ak : vk) ∈ s1} ∪ {(a1 : v′1, . . . , an : v′n, an+1 : null, . . . , ak : null,
a′n+1 : v′n+1, . . . , a′h : v′h)|(a1 : v′1, . . . , an : v′n, a′n+1 : v′n+1, . . . , a′h : v′h) ∈ s2}. �

Join. The join service allows to make in correspondence events of two streams
when their temporal and spatial granularities are identical and the join predicate
pred is verified. It is executed on the events collected from the two streams in the
temporal interval t and produces events of thematic th′.

Definition 6.7 (join service). Let pred ≡ a1 = b1 ∧ ... ∧ an = bn be the join predicate,
s1 = 〈GT1, GS1, th1, [ts1, te1], S1, Eventth1

〈GT1,GS1〉
(τ1)〉 be an event stream and

s2 = 〈GT2, GS2, th2, [ts2, te2], S2, Eventth2
〈GT2,GS2〉

(τ2)〉 be another event stream such that:

• GT1 = GT2 and GS1 = GS2;

• Prop(τ1) = {a1, . . . , an, an+1, . . . , ak} and Prop(τ2) = {b1, . . . , bn, b′n+1, . . . , b′h}
are the properties of the two streams;

• ∀a ∈ {a1, . . . , an}, a ∈ Prop(τ1), and ∀b ∈ {b1, . . . , bn}, b ∈ Prop(τ2), and
T ype(a, s1) = T ype(b, s2);

• th′ is the thematic chosen by the user for the result of the application of this service.

The application of the join service, named s1 ./t,th′
{a1,...,an} s2, on s1 and s2 in the interval of

time t produces a new stream s′ with the following structure

〈GT1, GS1, th′, [max(ts1, ts2), min(te1, te2)], S1 ∪ S2, Eventth′
〈GT1,GS1〉(τ

′)〉

where τ′ is a record formed with the properties {a1, . . . , an, an+1, . . . , ak, a′n+1, . . . , a′h}whose
types are the same of the original basic types of s1 and s2. The events in s′ are {(a1 :
v1, . . . , an : vn, an+1 : vn+1, . . . , ak : vk, bn+1 : v′n+1, . . . , bh : v′h)|(a1 : v1, . . . , an :
vn, an+1 : vn+1, . . . , ak : vk) ∈ s1 and (b1 : v1, . . . , bn : vn, bn+1 : v′n+1, . . . , bh : v′h)}. �

Trigger. The trigger on/off service is a kind of semaphore that allows to acti-
vate/deactivate the production of events from a streams s1 when an aggregate con-
dition cond is verified on the events collected from s in the time interval t. The
following definition introduces the trigger on service. The other is equivalent (the
semaphore is green when the condition is false).



122 Chapter 6. Sound and Consistent Data Acquisition Plans

Definition 6.8 (trigger on service). Let s1 = 〈GT1, GS1, th1, [ts1, te1], S1, Eventth1
〈GT1,GS1〉

(τ1)〉
and s = 〈GT, GS, th, [ts, te], S, Eventth

〈GT ,GS〉(τ)〉, and cond an aggregate condition on the
properties of s (Prop(cond) ⊆ Prop(τ)). The application of the trigger on service,
named 	t

tg,sg(s, c f ), on s in the interval of time t produces a new stream s′ having the
same structure of s1. s′ corresponds to the events generated by the event stream s1 in the
same interval of time t, if the evaluation of cond on s is true, the empty set, otherwise. �

Convert. The convert service allows to apply a coercion function c f for changing
the spatio-temporal granularity of the stream s. The temporal/spatial granulari-
ties tg and sg should be coarser than the one used in s. Coercion functions [26]
can be classified into three categories: selective, aggregate, and user-defined coercion
functions. Selective coercion functions are first, last, proj(index), main, and all.
Coercion function proj(index), for each granule in the coarser granularity, returns
the value corresponding to the granule of position index at the finer granularity. Co-
ercion function first and last are the obvious specializations of the previous one.
Coercion function main, for each granule in the coarser granularity, returns the value
which appears most frequently in the included granules at the finer granularity. Co-
ercion function all, for each granule in the coarser granularity, returns the value
which always appears in the included granules at the finer granularity if this value
exists, the null value otherwise. Aggregate coercion functions are min, max, avg, and
sum corresponding to the well-known SQL aggregate functions. User-defined coer-
cion functions (named UDF ) correspond to services that can be dynamically loaded
in the system and preserve the relationships among granularities.

Definition 6.9 (convert service). Let s = 〈GT, GS, th, [ts, te], S, Eventth
〈GT ,GS〉(τ)〉 be an

event stream, tg and sg the target temporal and spacial granularities, and c f ∈ {first, last,
proj(index), main, all, min, max, avg, sum} ∪ UDF a coercion function. When GT � tg
and GS � sg, the application of the convert service, named 	t

tg,sg(s, c f ), on s produces a
new stream s′ with the following structure

〈tg, sg, th, [ts1, te1], S1, Eventth
〈tg,sg〉(τ)〉

where the events of s are aggregated according to the coercion function c f . �

6.2 Data Acquisition Plan

A Data Acquisition Plan is a graph that represents the flow of operations on sensor
data. This representation helps the user on composing services in order to transform,
aggregate, filter and store information. In order to depict the concepts connected
with the Data Acquisition Plan, in this chapter we use a formal graphical repre-
sentation for its composition. The meaning of each Sensor, Service and Destination
nodes and of the edges are explained on Table 6.1.



6.2. Data Acquisition Plan 123

Symbol Description

Source node. It can have only 1 outgoing edge and no incoming edge.

filter, enrich, virtual property, transform, aggregation and convert ser-
vice. All these services have a single incoming and outgoing edge.

Destination node. No outgoing edges are allowed and it can receives data from
a single node.

union service. It has two incoming edges and a single outgoing edge.

join service. It presents the same shape of the union because it allows two
incoming edges and a single outgoing edge.

trigger service. It represents both the trigger event and action. It has 2 incom-
ing edges and 1 outgoing edge.

Edge that connects each node and service and expresses the flow direction.

TABLE 6.1: Formal Sensors, Services, Destination nodes and edges
representation

The following formal definition presents the concept of Data Acquisition Plan as a
directed acyclic graph in which the previously presented services can be composed.

Definition 6.10 (A Data Acquisition Plan). A Data Acquisition Plan is a direct acyclic
graph DAP = (V, E), where V is a set of vertices representing sensors (Vs), data acquisition
services (Vop), and destination (Vd), and E represents the flow of events that adheres to our
model. �

Example 6.1 We are now ready for the construction of the Data Acquisition Plan for com-
puting the human discomfort as described in our motivating example. We remark that stan-
dard wrappers are employed for transforming the format used for the representation of the
events (see Figure 2) in a JSON format.

First, we have to take all the temperatures measured by the sensors of type T1 and T2. Before
computing the union of the observed temperatures, we need to convert them to the same
spatio-temporal granularity, the same unit of measure, and include the accuracy. Therefore,
on the streams produced by sensors of type T1 the following services are invoked:

(enrich) t1
1 =∝O

accuracy t1

(convert) t2
1 	1hour

hour,zone (t
1
1, avg)

By exploiting the Domain Ontology the accuracy and zone of the sensors are included in the
stream. Then, by exploiting the relationship between the point and zone spatial granular-
ities and the relationship between the 10 minute and 1 hour temporal granularities, the



124 Chapter 6. Sound and Consistent Data Acquisition Plans

FIGURE 6.2: Graph representation of the Data Acquisition Plan of our
running example

average temperature is computed for each hour and zone. Therefore, the event type stream of
t2
1 is (hour, zone, temperature, {temperatureVal:real, accuracy:real}).

Similar behavior is followed for the streams produced by sensors of type T2 with the excep-
tions that: i) the temperature values are expressed in Fahrenheit and need to be transformed;
ii) the spatial dimension is missing and can be included by means of the information con-
tained in the Domain Ontology; and iii) temperatures are collected every 20 minutes.

(trans f orm) t1
2♦

temperature
f ar2celsius t2

(enrich) t2
2 =∝O

zone t1
2

(convert) t3
2 	1hour

hour,zone (t
2
2, avg)

(hour,zone,temperature,{temperatureVal:real}) is the event type stream of t3
2. Since

the STT dimensions of t3
2 and t2

1 are the same, the union of the generated events is possible
by the invocation t1

3 = ∪1hour,temperature({t2
1, t3

2}). We remark that the types produced by the
two kinds of sensors are different (accuracy is missing in t3

2). Therefore the value 0.0 is asso-
ciated for this property to the events of t3

2 because its type is real. At this point we can enrich
the stream t1

3 with the local correction factor LHD (that are specified for each zone of Milan as
specified in Figure 1(a)) by means of the service invocation t2

3 =∝table(lhd)
zone t1

3 . The resulting
event type is therefore (hour,zone,temperature,{temperatureVal:real,accuracy:real,
lhd:real}).

For what concern the humidity, we need to exploit the relationship between the point and
zone spatial granularities and the relationship between the 30 minute and 1 hour temporal
granularities to compute the average humidity per hour and per zone. By contrast, for the
tweets we need to select those containing the terms hot, heat and sweat and add a virtual
property containing the number of selected tweets.



6.2. Data Acquisition Plan 125

(convert) h1
1 	1hour

hour,zone (h1, avg)
( f ilter) tw1

1 = σ(tw1, like(tweets, ”.*hot*.”)||
like(tweets, ”.*heat*.”)||
like(tweets, ”.*sweat*.”))

(virtual property) tw2
1 = ]tw1

1
〈numPos, COUNT(tweets)〉

(hour,zone,humidity,{humidityVal:real}) is the event type stream of h1
1, whereas the

event type stream of tw2
1 is (minute,zone,tweet,{tweets:list(string),numTweets

:int,numPos:int}).

At this point the information about temperature, humidity and tweets are organized accord-
ing to the same spatio-temporal granularities and can be joined to obtain the terms of the
formula and a virtual property can be included in the resulting stream for storing the value
of the human discomfort for each hour.

(join) hd1
1 = h1

1 ./1hour,humanDisc
h1

1 .zone=tw2
1 .zone

tw2
1

(join) hd2
1 = hd1

1 ./1hour,humanDisc
hd1

1 .zone=t2
3 .zone

t2
3

(virtual property) hd3
1 = ]hd2

1
〈hd, (numPos/numTweets)

∗(temperature + accuracy+
(0.555 ∗ (humidity− 10))) + lhd〉

(hour,zone,humanDisc,{temperatureVal:real,accuracy:real,lhd:real,

humidityVal:real,tweets:list(string),numTweets:int,numPos:int,hd:real}) is
the event type stream of hd3

1.

The process for the calculation of the human discomfort is triggered only when the maximal
temperature in Milan in the last hour is greater than 20o Celsius. Supposing to use only the
sensors of type T1 for the trigger, the events produced by these sensors need to be converted
to the hour time granularity and city spatial granularity. The following two services are
thus invoked:

(convert) t1
3 = 	1hour

hour,city(t1, max)

(trigger on) hd = ⊕ON,1hour,humanDisc(t1
3, {hd3

1}, temperature > 20).

Therefore, the process for the calculation of the stream hd3
1 is activated only when the trigger

condition is verified in the last hour. The event type of the final stream is the same of hd3
1.

A graphical representation of this Data Acquisition Plan is reported in Figure 6.2. The
figure points out the flows of events that are generated by the physical and social sensors
and those produced by the application of the different services. Different symbols are used
for representing physical and social sensors (bold circles), services (rectangles with rounded
corners, the triangle for representing the event trigger and the corresponding action, and the
thin rectangles for representing the union and join services) and the destination node (bold
double line circle). �

In the graph representing a Data Acquisition Plan we can specify constraints for ob-
taining sound execution. Given a Data Acquisition Plan DAP = (V, E), the follow-
ing functions are used: deg−(v) represents the number or edges incoming in v ∈ V,
whereas deg+(v) is the number of outgoing edges from v.



126 Chapter 6. Sound and Consistent Data Acquisition Plans

6.3 Sound/Consistent Specification of Data Acquisition Plan

A Data Acquisition Plan is considered sound if: i) the number of input streams is
equal to inputS; ii) the required parameters are specified; and iii) its conditions
conds can be evaluated on the input stream s and are verified.

Definition 6.11 (A Sound Data Acquisition Plan). Let op1, . . . , opn be the services used in
a Data Acquisition Plan DAP = (V, E).1 DAP is sound when: Vs 6= ∅, |Vd| = 1; ∀v ∈
Vs, deg−(v) = 0, ∀v ∈ Vd, deg+(v) = 0; for each opi, vi ∈ Vop, deg−(vi) corresponds to
the number of input streams for opi, each parameter required by opi is correctly specified, the
conditions associated with each service are verified on the the events of the incoming edges.

�

According to our definition of sound Data Acquisition Plan, we are able to acquire
streams for which someone of the spatio-temporal-thematics dimensions are not
specified or are specified but are not consistent according to Definition 5.8. This
is particular useful in order to flexibly adapt to different situations and to post-pone
the inclusion of the STT dimensions in the cloud. However, we provide here the
notion of a consistent Data Acquisition Plan which is a sound plan where the on-
tology O and the event model associated with the destination node of the graph are
consistent according to Definition 5.8.

Definition 6.12 (A Consistent Data Acquisition Pan). Let G = (V, E) be a sound Data
Acquisition Plan according to Definition 6.11, M and O be the event model and ontology
generated for the destination node. G is consistent if: GT 6= ⊥, GS 6= ⊥, and M is
consistent w.r.t. O. �

Example 6.2 The Data Acquisition Plan described in example represented on Figure 6.2 is
sound according to Definition 6.11. Moreover, the event type of the last instruction (hd) is
consistent w.r.t. our Domain Ontology. �

6.4 Verification of Consistency in a Data Acquisition Plans

In our setting sensors can produce streams of events that can be consistent, partial
consistent or inconsistent w.r.t. the Domain Ontology. However, the application of
the presented services can alter the schema of the events produced by the sensors
and thus modify their consistency. There is therefore the need to check the consis-
tency of the schema produced by the application of single services and of the entire
Data Acquisition Plan.

We wish to allow internal nodes of a Data Acquisition Plan to be not consistent (or
only partially consistent) w.r.t. the Domain Ontology in order to generate a flexible
tool that is able to handle heterogeneous streams that do not perfectly match the

1For the sake of simplicity, we assume that the service opi corresponds to vertex vi.



6.4. Verification of Consistency in a Data Acquisition Plans 127

constraints imposed by the Domain Ontology. This is a key characteristic in the
context of IoT where sensors can be included in the platforms in different moments
and might not adhere to any pre-established constraints. However, when the final
stream produced by the destination node of the Data Acquisition Plan is consistent
we can guarantee that its semantics is well described at the ontological level.

In the remainder of the section we first introduce the operations required for the
description of the event schema produced by each data acquisition service at the
ontological level. Then, an algorithm is presented that starting from a sound Data
Acquisition Plan, populates the instances of the Domain Ontology for its description,
and determines whether its output is consistent.

6.4.1 Auxiliary Sensors in the Domain Ontology

Once a Data Acquisition Plan is considered sound (according to Definition 6.11), we
wish to check its consistency w.r.t. the Domain Ontology (Definition 5.8). With this
aim, at the ontological level we need to describe each service (that can be applied
to the streams produced by the sensors) as an auxiliary sensor, instance of the class
ssn:SensingDevice. An auxiliary sensor receives one or more incoming streams
and produces a single stream whose schema, that is compliant with the STT model,
can be made in correspondence with the concepts and relationships available in the
Domain Ontology. Also for these auxiliary sensors we can check the consistency
w.r.t. the Domain Ontology.

Example 6.3 Consider the situation depicted in Figure 4.6 and in Figure 4.7, T11 and TW21

described in Example 6.1 present ontological schemas similar to those depiched in the figures.
In this case, the two sensors are examples of auxiliary sensors generated as result of the Data
Acquisition Plan, which properties depend on the applied operator and on the streams of the
incoming sensors (either physical or social). Instances are included in our Domain Ontology
to represent such data acquisition services and then check the consistency on the resulting
Ontology. �

An auxiliary sensor is obtained in two steps. First, a new sensor j is generated (either
by cloning the incoming sensor i or by generating a new one). Then, the new instance
and its links are modified or other links are added in order to comply to the operator
specification. These operations are specified by means of the simple primitives re-
ported in Table 6.2. Starting from an instance i of the class ssn:SensingDevice, these
operations introduce new instances and links in the Ontology (when this is possible
according to the conceptualization).

The only exception to this general rule are the treatment of the filter service and
of the of the trigger service. In the first case, we simply need to clone the incoming
sensor and no further operations are required, while in the other case we need to
clone and check if a trigger condition is verified. In both cases the schema of the



128 Chapter 6. Sound and Consistent Data Acquisition Plans

Operation Meaning
i=clone(j) Create a copy of the instance j with all the links that involve j
i=new(”CLASS”) Create a new instance of the class CLASS
i.addLink(j, ”REL”) Include a link between i and j instance of the relationship REL
i.delLink(j, ”REL”) Remove the link between i and j instance of the relationship REL

TABLE 6.2: Primitives for the modification of Ontology instances

incoming sensor is the same produced as output. By contrast, for the other services
(transform, enrich, virtual property, aggregation, union, join and convert) the
operations reported in Table 6.3 need to be applied.

For the services enrich and virtual property, new instances of the class a are
added in the ontology O in order to model the new properties that are inherited
by other sensors (by using the enrich service) or created as new virtual properties
(by using the virtual property service). The service transform enables to change
the units of measurement of the sensor properties a according to the function trans
or it applies a transformation by executing a specific code. The service aggregation

creates a new auxiliary sensor whose values are gathered according to a new time
value defined by a new instance of the class ssn:ResponseTime with a new unit of
measure. The service join creates a new auxiliary sensor whose properties are the
union of the properties of the two input sensors a ∈ Prop(s1) ∪ Prop(s2) whereas
the service union allows us to union the events produced by different sensors and
generates a new thematic (instance of the class qu : QuantityKind) and collect all
properties of the input sensors. Finally, the service convert simply changes the tem-
poral or spatial dimension according to the target granularity specified in input.

Example 6.4 Example 6.1 presents two auxiliary sensors T11 and TW21 generated by sensors
of type T1 and TW1. T11 is created by applying an enrich service. As result of the application
of this service, the instance T1 is cloned in T11 and a new link hasMeasurementProperty

is added for connecting the auxiliary sensor to an instance of the class ssn : Accuracy for
modeling the accuracy property. In the same way, TW21 is cloned by TW1 as result of the
application of a virtualProperty service. Two new links hasMeasurementProperty are
added for connecting the new auxiliary sensor to new instances of the class do : NumTweets
and do : NumPosTweets used for reporting the number of tweets and positive tweets.

Now, consider the situation described in Example 6.1. The final formula used for calcu-
lating the human discomfort is based on the creation of the auxiliary sensor HD31 which
thematic HumanDisc is an instance of the class qu:QuantityKind. The auxiliary sensor
is in turn linked to instances of the class iot:Metadata for modeling the associated data
type temperatureVal, humidityVal, TweetsList and hd, and to instances of the class
ssn:MeasurementProperty for modeling the measurement properties that characterize the
thematic (i.e. accuracy, numTweets, numPos and lhd). Once the final auxiliary sensor HD31
is generated, its consistency w.r.t Definition 5.8 is checked. As result, let O be the Domain
Ontology that we have described in the previous examples, we can say that the sensor of type
HD31 is consistent w.r.t. O. �



6.4. Verification of Consistency in a Data Acquisition Plans 129

Service(Symbol) InsOntology

Enrich –
∝KB

pred s

j=clone(i)
for a ∈ Prop(KB) \ Prop(s) do

j.addLink(new(”a”), ”t”) (where t is the type of a)
end for

Virtual property –
]s〈p, spec〉

j=clone(i)
Let t be the type of p
j.addLink(new(”p”), ”t”)

Transform –
♦{a1 ,...,an}

trans s

j=clone(i)
for a ∈ {a1, . . . , an} do

if trans = CHANGE_UNIT then
Consider ia ∈ I(qu : Unit) corresponding to a for instance i
j.delLink(ia, ”hasUnit”)
j.addLink(new(”a”), ”hasUnit”)

end if
if trans = X then

exec specific code for the function X
end if

end for

Aggregation –
@t,{a1 ,...,an}

op (s)

j=clone(i)
Let it ∈ I(ssn : ResponseTime) s.t. a link (i, hasMeasurementProperty, it) exists
j.delLink(it, ”hasMeasurementProperty”)
jt = new(”ssn : ResponseTime”)
j.addLink(jt, ”hasMeasurementProperty”)
Consider ju ∈ I(qu : Unit) corresponding to the temporal granularity of t
jt.addLink(ju, ”hasUnit”)

Join –
s1 ./t,th′

pred s2

j = new(”ssn : SensingDevice”)
jth′ = new(”qu : QuantityKind”)
jth′ .namedIndividual = th′
j.addLink(jth′ , ”hasQuantityKind”)
for a ∈ Prop(s1) do

Let (i1, ”t”, ia) be a link to the instance of class a
j.addLink(ja, ”t”)

end for
for a ∈ Prop(s2) \ {b1, . . . , bn} do

Let (i2, ”t”, ia) be a link to the instance of class a
j.addLink(ja, ”t”)

end for

Union –
∪t,th′ ({s1, s2})

j = new(”ssn : SensingDevice”)
jth′ = new(”qu : QuantityKind”)
jth′ .namedIndividual = th′
j.addLink(jth′ , ”hasQuantityKind”)
for k ∈ {1, ..., n} do

for a ∈ Prop(sk) do
Let (ik , ”t”, ia) be a link to the instance of class a
j.addLink(ja, ”t”)

end for
end for

Convert –
	t

tg,sg(s, c f )

j=clone(i)
if tg 6= GranT(s) then

Let (i, ”hasMeasurementProperty”, it) be a link s.t. it ∈ I(ssn : ResponseTime)
j.delLink(it, ”hasMeasurementProperty”)
jt = new(”ssn : ResponseTime”)
j.addLink(jt, ”hasMeasurementProperty”)
Consider ju ∈ I(qu : Unit) corresponding to the temporal granularity of tg
jt.addLink(ju, ”hasUnit”)

end if
if sg 6= GranS(s) then

Let (i, ”hasLocation”, is) be a link s.t. is ∈ I(iot-lite : Entity) or its subclasses
j.delLink(is, ”hasLocation”)
js = new(”ssn : hasLocation”)
j.addLink(js, ”hasLocation”)
Consider ju ∈ I(qu : Unit) corresponding to the spatial granularity of sg
jt.addLink(ju, ”hasUnit”)

end if

TABLE 6.3: Instructions for modifying the Ontology Instances accord-
ing to the service



130 Chapter 6. Sound and Consistent Data Acquisition Plans

FIGURE 6.3: Evaluation of consistency of the running example’s Data
Acquisition Plan

6.4.2 A Consistent Data Acquisition Plan

Starting from the operations reported in Table 6.2 for the representation of each sin-
gle service at the ontological level, we here discuss the algorithm for populating the
instances of the Domain Ontology with the information about a Data Acquisition
Plan and for verifying whether it is also consistent.

Given a sound Data Acquisition Plan DAP = (V, E) and a Domain Ontology O,
we need to create a binding between the schema of the sensors occurring in DAP
and the concepts of O. The user carries out this activity by means of a Web tool for
specifying a mapping between the properties of the sensor schema and the concepts
of the Domain Ontology (details of the GUI are in Section 7.2).

Once the sensors have been mapped to the Domain Ontology, the Data Acquisition
Plan is visited in post-order starting from the destination node, and for each service
the operations reported in Table 6.3 are applied to provide their representation at
the ontological level. These activities are automatically executed and do not require
any human interaction and lead to the introduction of the ontology instances for
representing the Data Acquisition Plan. The user can check the consistency of each
service by means of the graphical interface. At this point it is possible to check
the consistency of the entire Data Acquisition Plan DAP according to the following
definition.

Definition 6.13 (A Consistent Data Acquisition Plan). Let DAP = (V, E) be a sound
Data Acquisition Plan according to Definition 6.11,M and O be the event model and On-
tology generated for the destination node. DAP is consistent if: GT 6= ⊥, GS 6= ⊥, andM
is consistent w.r.t. O. �

Example 6.5 Figure 6.3 reports the graph representation of the Data Acquisition Plan dis-
cussed in Example 6.1 annotated with the consistency of the initial flows produced by the



6.4. Verification of Consistency in a Data Acquisition Plans 131

sensors and of the streams produced by the application of the internal services. The triple
(Y/N, Y/N, Y/N) is used to denote whether the stream is spatially, temporally, and themati-
cally consistent with respect to the adopted Domain Ontology. The triple is reported within
the rounded rectangles denoting services for representing that the consistency of the stream
produced by the service. Note that, in this case, even if some services are not consistent, the
entire Data Acquisition Plan is consistent because the last stream (hd) is consistent w.r.t.
our Domain Ontology. �

Starting from the consistency of the sensors adopted in a Data Acquisition Plan, it is
possible to determine the consistency of its services and of the produced final stream
without the need to verify the consistency conditions as specified by the following
lemma.

Lemma 6.1 LetMb1 , . . . ,Mbn be the event data models of the incoming streams to a service
op and Ob be the ontology before the application of op. LetMa be an event data model and
Oa be the ontology after the application of op. The following statements hold:

• if op = filter, then n = 1 and Oa = Ob, and the consistency w.r.t Oa is the same
of Ob.

• if op ∈ {enrich, virtualproperty} andMb1 is consistent w.r.tOb, thenMa loses
the thematic consistency w.r.t. Oa.

• if op = convert and the thematic of s is t, the consistency w.r.t Oa is the same of Ob.

• if op = union and the thematics of s1 and s2 are th′, the consistency w.r.t Oa is the
same of Ob. �

This lemma can be easily demonstrated for induction by taking into account the
specification of each single data acquisition service.





133

Chapter 7

The StreamLoader Prototype

The facilities so far described have been implemented in the context of the Stream-
Loader system. This system is specifically tailored for domain experts that need to
develop different kinds of analysis on streams of events produced by sensors be-
longing to cross-domain platforms. Since domain experts are usually not computer
experts, specific attentions have been devoted to create easy to use interfaces that
support them in the Semantic Virtualization of heterogeneous sensors according to
the Domain Ontology and in manipulating the flow of events that they produce
by means of Data Acquisition Plans that easily adapt to their mental model. The
key concept is to involve domain experts in activities for labeling and translating
their professional knowledge into proper vocabularies, notations, and suitable vi-
sual structures of navigation among interactive systems interface elements. In our
context of use, the purpose is to obtain a system that allows the domain experts to
focus on the analysis of data-flows rather than on technical details related to the con-
figuration of software and hardware components and on the development of code.

The obtained system thus leverages the complexity of generating code in sophisti-
cated processing systems, configure cluster of machines and set up communication
protocols in a easy to use Web application in which the user can focus on the kind
of Data Acquisition Plan that he/she wishes to develop, specify the basic service
parameters and configuration options, and graphically draw the Data Acquisition
Plan. The system takes care to check the soundness and consistency of the devel-
oped plan and provide feedbacks for correcting mistakes. Once the DAP is ready, all
the required code is automatically generated and deployed in a cluster of machines
for its execution.

The chapter is organized as follows. Section 7.1 provides an overview of the graph-
ical environment along with details on the technologies used for its development.
Section 7.2 discusses the graphical facilities for the Semantic Virtualization process
of sensors made available from the cross-domain IoT platform, while Section 7.3
presents the facilities for the specification of a DAP and for checking its soundness
and consistency. Finally, Section 7.4 reports the details for translating a DAP into a
Spark Streaming script.



134 Chapter 7. The StreamLoader Prototype

FIGURE 7.1: The overall architecture

7.1 The Overall StreamLoader Environment

The architecture at the base of our system is depicted in Figure 7.1, which extends
with further details the one presented in Figure 3. By taking into account the func-
tions exploited by the architecture components, we can identify four main layers:

• User Environment. It contains the graphical interfaces for the Semantic Virtu-
alization of the attributes of the sensors’ schema and for the composition of
sound and consistent Data Acquisition Plans.

• Engines. They are responsible for the generation of the transformation rules
and the translation of the graphical specification of DAPs into executable Scala
scripts containing the Apache Spark Streaming primitives.

• Flow of Data. Once the spark process corresponding to the script is executed,
the events generated from the sensors are collected and transmitted to the
spark process by means of the Kafka context broker. The obtained results are
finally stored in the MongoDB storage for further analysis.

• Context Information. Static data, context information, transformation rules, reg-
istered sensors and the corresponding sensor schemas, semantic labeling are
maintained in a MongoDB storage and exploited in different parts of the ar-
chitecture by means of its query language. Moreover, the Domain Ontology



7.2. Semantic Virtualization Graphical Specification 135

and the instances created for representing sensors and services exploited in the
DAP are maintained in Apache Jena server1 and queried/updated by means
of SparkQL.

As shown in the Flow of Data layer in Figure 7.1, the context broker, the evaluation
environment and the result storage are executed in a cluster of machines. Even if the
cluster should be set up in advance with respect to the execution of the Spark script,
it is quite easy to change its configuration without having to modify the Stream-
Loader structure.

In the development of the graphical interfaces we use HTML 5, CSS 3 and JavaScript
(JS) technologies. Specifically, Cytoscape.js [50], an open source graph library, has
been used for the specification of a DAP. Cytoscape.js is implemented as a stan-
dalone JS library that does not have dependencies and does not require browser
plugins or the installation of other libraries. However, it includes hooks to several
useful libraries and environments, including CommonJS/Node.js, AMD/Require.js,
jQuery, Bower, npm, spm and Meteor. This allows Cytoscape.js to integrate into a
wide variety of JS-based software systems and to be used heedlessly (i.e. without a
graphical user interface) or as a visualization component of a HTML 5 canvas. Cy-
toscape.js can be used in several domains (e.g. biological networks, social graphs).

For what concern the Semantic Virtualization of sensors, the graphical interface has
been realized through JSP pages that interact from one side with Apache Kafka for
discovering the presence of new sensors and with our MongoDB database for the
management of registered sensors and, from the other side, with our Domain On-
tology that is represented through an RDF file [115]. We use SPARQL to query the
Domain Ontology using Apache Jena. Apache Jena is an open source framework
that provides utilities to build semantic web and linked data applications. This
framework offers several APIs that are used to query our Domain Ontology and
to introduce instances. It can be seen as a SPARQL [125] server that provides facili-
ties doe querying and updating an Ontology by means of SPARQL query language
over HTTP.

7.2 Semantic Virtualization Graphical Specification

In order to semantically label the sensor schema, a graphical interface has been cre-
ated that supports domain experts on this activity.

Our interface shows the list of sensors that are exposed by the context broker and
stored in our MongoDB database according to the following criteria: i) Not mapped,
sensors that have been just discovered and none of their attributes have been yet
semantically annotated with a concept of the Domain Ontology; ii) Partially mapped,

1http://jena.apache.org/



136 Chapter 7. The StreamLoader Prototype

FIGURE 7.2: Specification of the STT granularities

sensors that are partially consistent with the Domain Ontology according to Defini-
tion 5.8 (e.g. only a part of their attributes have been semantically labeled); and, iii)
Fully mapped, sensors in which their schema is consistent with the Domain Ontology
according to Definition 5.8. Different colors are used to provide a visual distinc-
tion among the different categories of sensors: red, for newly arrived and unmapped
sensors; yellow for partially mapped and green for fully mapped. This graphical dis-
tinction can be seen in Figure 7.2.

The interaction with the context broker is realized by means of the SensorDiscovery
Algorithm 1 discussed in Chapter 5. When the SensorDiscovery Algorithm starts,
it creates a consumer object that discovers the list of available sensors (channels) and
then list all registered sensors if there are already in the pool. Then, periodically
(based on a configured interval of time), it checks the available list of registered sen-
sors against the current list. When a new sensor shows up in the context broker,
it is detected and the format of the observed data. In the data format identifica-
tion phase, the algorithm checks the first few characters of the data to determine its
format (JSON, XML or CSV). According to the detected format, the algorithm deter-
mines the name and type (for example string, number, date) of each attribute of the
sensor schema by inspecting a sample of the observations produced by the sensor
through the context broker. Then, the new sensor is labeled Not mapped and added
to the unmapped sensor collection of our MongoDB storage.

Whenever a new unmapped sensor is stored in the database, it becomes accessible
by our Semantic Labeling Editor for semantic labeling. The new unmapped sensor
is appended at the list of unmapped sensors on the left panel of the interface in Fig-
ure 7.2. At this point, the domain expert can select it (or any other sensors that he
wishes to inspect) and specify the semantic labeling. The Semantic Labeling Editor
serves two purposes: firstly, to support domain experts in specifying, for each at-
tribute of the sensor schema which of the ontology concepts is related to; secondly,



7.2. Semantic Virtualization Graphical Specification 137

FIGURE 7.3: Spatial Labeling

to allow domain experts to describe some information related to the granularities of
the retrieved data.

Once a sensor from the Not mapped list is selected, an interface is shown to the do-
main expert on the right panel of the interface for the specification of its thematic
and the spatial and temporal granularities (see Figure 7.2).

This information is not indicated in the sensor schema but the expert has to specify
it according to his/her knowledge of the domain context. For example, in Figure 7.2
the domain expert specifies the Sensor Reading Interval that indicates the sensor starts
to gather data from to a Start Date and finishes to an End Date. After that, the do-
main expert can specify the granularites related to the sensor. For the specification
of the spatial granularity, a list of concepts related to location (geographic entities
– do:zone, do:city, do:region and the geographic point – geo:Point class) are ex-
tracted from the Domain Ontology with the support of Apache Jena and presented
to the used.

The same approach is used for the temporal granularity by showing all the concepts
related to the ssn:ResponseTime class that have unit object property and value data
property. Specifically, the system retrieves from the Domain Ontology concepts re-
lated to temporal duration class (i.e. time:temporalUnit, time:DurationDescription)
to represent the unit (such as second, minute, hour, week) of the response time while
its value is a data property manually inserted by the domain expert. Finally, for the
thematic, the system presents all concepts related to the iot-lite:QuantityKind

class.

Once the thematic and spatio-temporal granularities have been specified, the do-
main expert can continue with the semantic labeling procedure in order to describe
how each attribute of the sensor is linked to a proper concept of the Domain Ontol-
ogy. A new interface is shown through which it is possible to specify and/or modify



138 Chapter 7. The StreamLoader Prototype

FIGURE 7.4: Temporal Labeling

the semantic labeling w.r.t. the Domain Ontology according to the three STT dimen-
sions (see Figure 7.3). For each attribute of the schema showed in the central wall,
the right side of the interface presents the ontology concepts that can be used for the
semantic labeling classified according to the STT dimensions in three tabs. More-
over, in the bottom part of the interface a sample of the data produced by the sensor
is shown to the user. The sample is useful to the domain expert for better identifying
the concepts to be used for annotating the attributes of the sensor schema.

The concepts that can be selected for the three tabs are retrieved from the Domain
Ontology through SPARQL queries posed to Apache Jena. The queries also ex-
ploit the data-modeling vocabulary available in the RDF Schema to retrieve, for
example, all sub-classes of geographic entity. In this case the SPARQL query is
?geoEntity rdfs:subClassOf iot-lite:Entity. For the spatial dimension, con-
cepts related to geographical point are presented (such as latitude and longitude
by using the SPARQL query: ?allGeoPoints rdfs:domain wgspos:Point) along
with the concepts related to the geographic entity ?allGeoEntity rdfs:subClassOf

iot-lite:Entity. In the same way, for the temporal dimension, the interface presents
concepts and classes that are related to the timestamp. For thematic dimension,
the query ?allMeasProp rdfs:subClassOf ssn:MeasurementProperty is used to re-
trieve and present all concepts related to the class ssn:MeasurementProperty (such
as ssn:Frequency, ssn:Accuracy, ssn:Latency, do:NumTweets, do:NumPosTweets,
and so on). We remark that since the Domain Ontology is represented through
RDF, the SPARQL queries return the URIs that identify the corresponding concepts
such as http://purl.oclc.org/NET/ssnx/ssn#Accuracy that is used for pointing
the class ssn:Accuracy, or http://www.w3.org/2006/time#Instant that is used for
the class tl:Instant. For the sake of readability, a dictionary is maintained for the
automatic translation of the URIs in more meaningful terms (in the example the URIs
are substituted with the terms Accuracy and Timestamp).



7.2. Semantic Virtualization Graphical Specification 139

FIGURE 7.5: Thematic Labeling

By exploiting the SPARQL queries so far proposed, the content of our interface can
be dynamically populated. Therefore, in case of modifications to the Domain On-
tology, the new introduced concepts can automatically be shown in the interface
without having to modify its structure. This is an important feature to exploit the
developed interface in different context of use.

Figure 7.3 provides an example of labeling of the sensor attribute csv_2 with a con-
cept belonging to the spatial tab. By looking at the sample, the domain expert sees
that the possible value is z1 that are used for representing city zones and can identify
in the do:zone class a right concept with which the attribute can be annotated. In the
same way, Figure 7.4 shows an example of labeling of the sensor attribute csv_1 with
a concept belonging to the temporal tab. Since, in the current version of the Domain
Ontology only the timestamp concept is present, this annotation can be expressed
by the domain expert. timestamp is a more readable and meaningful term that can
used in place of the URI http://www.w3.org/2006/time#Instant that identifies the
class tl:Instant.

An example of thematic labeling is shown in Figure 7.5 where the sensor attribute
csv_4 can be annotated with one of the concepts of the provided list. Since, its type
is numeric and sample points out that it is used to report the number of tweets, the
domain expert can associate it with the Number of tweets that is linked to the class:
do:NumTweets of the Domain Ontology.

If each attribute of the sensor schema is properly annotated with a concept of the
Domain Ontology according to one of the three STT dimensions, and the conditions
specified in Definition 5.8, the sensor can be moved to the list of mapped or partially
mapped sensors. The specified annotations are then stored in the MongoDB along
with the sensor and its schema. Moreover, the SensorSemanticCharacterization

Algorithm 2 presented in Chapter 5 is applied for the semantic characterization of
the sensor in the Domain Ontology. The algorithm introduces an instance of the



140 Chapter 7. The StreamLoader Prototype

FIGURE 7.6: Main screen of the Web Application

class ssn:SensingDevice for the representation of the sensor. In turn, proper in-
stances and properties are generated in the Domain Ontology for representing all
three dimensions. For instance, for the sensor discussed so far, since the sensor pro-
duce events related to a city zone, the instance representing the sensor is linked to
an instance of the class do:zone through the property hasLocation.

7.3 Data Acquisition Plan Graphical Specification

This interface supports domain expert on the composition of the services that consti-
tute a Data Acquisition Plan. It is an HTML web page developed with the Bootstrap
framework.

As shown in Figure 7.6 the interface is composed of a left sidebar menu. The menu
offers the following functionalities: Projects, for the management of the data acqui-
sition projects (create, delete, save, and open projects); Sources, for selecting and dis-
covering sensors from which event streams can be acquired; Services, for selecting
one of the services described in Section 6.1 of Chapter 6; Destination for specifying
the repository where the resulting stream should be stored. If a sensor, which is
shown on the Sources menu, is not mapped or it is partially mapped is it possible
to directly move to the Semantic Virtualization Graphical Specification application
(presented on Section 7.2), in order to semantically label its attributes to the con-
cepts of the Domain Ontology. By clicking on each of them, a modal menu appears
through which it is possible to select icons to be included in the main canvas of the
web interface. Moreover, connections can be drawn in the canvas among the ser-
vices, the sensors and the destination nodes.



7.3. Data Acquisition Plan Graphical Specification 141

Service Symbol Service Symbol

Source Filter

Enrich Virtual Property

Transform Aggregation

Join Union

Convert Trigger Event

Trigger ON-OFF Destination

TABLE 7.1: Graphical representation of source, services and destina-
tion

When the icon is placed in the canvas its border is colored in red to represent the
fact that the domain expert needs to specify parameters to obtain a sound specifica-
tion. Once the parameters are specified, the associated conditions are evaluated and,
when it is sound, the border of the icon is colored in blue. The border color becomes
green when also the consistency constraints are met.

At the bottom of the canvas, a horizontal tab menu area appears when icons (e.g.
services or connections) are double-clicked. Relying on the type of element, it shows
different buttons and information and is used to define the name of the services, the
type of sensors, the filtering conditions, and the trigger condition. It also provides
the event types that are processed and the conditions for being sound and consistent.
The consistency of the STT dimensions of each node is provided by the 3 icons (a
point for the spatial dimension, a clock for the temporal dimension, a tag for the
thematic dimension) on the right hand side of the horizontal tab menu header. When
the consistency is met, the icon is coloured green. The consistency of the entire Data
Acquisition Plan is shown in the top right border of Figure 7.6 by means of a traffic
light (green is consistent, yellow is partially consistent, red is not consistent).

As specified in Section 6.1 several services are provided by the interface for process-
ing and combining the streams produced by the sensors. Table reftbl:sloper reports
the graphical representation of the services.



142 Chapter 7. The StreamLoader Prototype

During the creation of the Data Acquisition Plan, the interface implements the con-
trol of soundness and shows the identified errors. These messages support the do-
main expert in the development of sound and consistent Data Acquisition Plans.
Figure 7.7 provides an example of an error that is shown to the user during the cre-
ation of a DAP with two sensors and an union service. Sensor s1 has been success-
fully connected to union service, while, if the domain expert tries to connect sensor
s2, that have a different temporal and/or spatial granularity, the system does not
allow this operation and raises an error with a suggestion of the type of service that
should be added on the Data Acquisition Plan.

FIGURE 7.7: Identification of an error during the DAP creation

Horizontal tab menus consist of sections that provide different information based
on the type service and there are some difference between every operator. In the
remainder we describe how each service has been developed on the interface and
what kind of information can be added to each of them.

Source. It represents the sensor. The horizontal tab provides information about
STT dimensions and granularity and allows the domain expert to modify the name
of the sensor (to be shown in the interface). Figure 7.8 shows the source horizontal
tab. The second tab (Schema tab) provides the stream event type that is produced by
the sensor.

FIGURE 7.8: Source tab menu

Filter. This service allows domain experts to remove events that do not adhere to
specific conditions. This tab allows domain expert to define if the filtering conditions



7.3. Data Acquisition Plan Graphical Specification 143

must be combined with AND or OR clause, by clicking on the two blue buttons, as
shown on Figure 7.9. The add and remove buttons allow domain expert to add/re-

FIGURE 7.9: Filter tab menu

move a three fields conditions to the filter service. The first field is the attribute that
the domain expert needs to filter and it is the list of the attribute inherited from the
incoming node. The second field is the comparison operator (<, >, <=, >=, ==, !=)
while the last field is the value.

Enrich. This operator has been developed with the aim of adding stored infor-
mation to the sensor. It gives the possibility to add information taken from tables
stored on a database or it gives the possibility to enrich the sensor with information
provided from the Domain Ontology. For this reason the horizontal tab menu is
composed of three elements: Table, Domain Ontology and Schema. Figure 7.10 shows
the element of the Table tab. This tab is similar to the Join Setting tab (described
below) because the enrich can be seen as a join of a stream of data with some stored
information. The tab is composed of the service name, a new thematic name, the
enrich window size, the selection of the stored table and the predicate. With add and
remove buttons domain expert can add or remove conditions to the enrich predicate.

Virtual property. This service allows the domain expert to create a new property
based on arithmetic expression. As shown in Figure 7.11 at the bottom of horizontal
tab a list of all the properties (from the incoming sensor) is provided. In a text area
the domain expert can create a function using the mathematical operators (+, -, *, /),
using brackets and by adding the properties of the incoming streams by just clicking
on their names shown in the list. Before applying the calculation, the domain expert
is asked to give a name to the new (virtual) property. The function calculated in the
text area is the Human Discomfort formula of our motivating scenario. The second
tab (Schema tab) is used to show the event type that is generated by the service. In
this tab the domain expert can check whether the included virtual property is also
described at the ontological level.



144 Chapter 7. The StreamLoader Prototype

FIGURE 7.10: Enrich tab menu

FIGURE 7.11: Virtual Property tab menu

Transform. This service is used to transform or modify the value of some attributes
applying some transformation functions. As shown on Figure 7.12, the tab menu
allows the domain expert to select either the attribute to transform and the transfor-
mation function. By applying the transform function the thematic associated with
the node may no longer adhere and for this reason the operator allows the domain
expert to specify a new thematic dimension.

Aggregation. It allows to perform an aggregation function to a selected attribute,
taken in a specific time interval. The three parameters (aggregation function, at-
tribute, aggregation interval) can be selected directly from the horizontal tab menu,
as presented on Figure 7.13. Also in this case a new thematic can be provided.



7.3. Data Acquisition Plan Graphical Specification 145

FIGURE 7.12: Transform tab menu

FIGURE 7.13: Aggregation tab menu

Union. It is used to merge events produced by different sensors. This operator
can be applied only if the two sensors have the same temporal and spatial dimen-
sions, otherwise an error is raised to the domain expert, as shown on Figure 7.7. The
horizontal tab is used to specify the union interval and shows the thematic of the
two incoming streams. The domain expert can choose one of these two thematics
or define a new one for the outgoing stream of events. Figure 7.14 shows the union
horizontal tab menu.

Join. This service corresponds to the SQL JOIN and the associated icon has two
incoming edges and a single outgoing edge. It easily allows the join between the dif-
ferent attributes of the schema coming from the ingoing streams. Figure 7.15 shows
the Settings sections that compose a join service. It contains the name associated with
the join service, the temporal windows according to which the join is evaluated, the



146 Chapter 7. The StreamLoader Prototype

FIGURE 7.14: Union tab menu

FIGURE 7.15: Join tab menu

generated thematic, and the join predicate. By means of the add and remove buttons
a domain expert can add/remove conditions to the join predicate.

We remark that the domain type of the join result is composed by the union of the
properties of the incoming streams (even if the domain expert can decide which
properties should be made available to the outgoing service). Property names are
disambiguated relying on the names of the incoming services.

Trigger. It is composed of two different services: the trigger event and the trigger
actions (ON and OFF). This service, differently from the other services, has three
different sections. The Schema tab is similar to the others with the exception that
introducesthe Settings ON tab and Settings OFF tab. Figure 7.16 shows the Settings
ON section (Settings OFF section is exactly the same). First, domain expert must se-
lect the trigger event ON or OFF count conditions. In other word the condition that



7.4. Data Acquisition Plan Translation 147

FIGURE 7.16: Trigger Event tab menu

"activates" a Trigger Action ON or OFF and it can be greater or less than a certain nu-
meric value. In order to activate a Trigger Action the tuples must meet the specified
conditions (that are combined with AND or OR clause), similarly to the definition of
filtering conditions.

Convert. This service has been defined with the aim of modify temporal and spa-
tial granularities. Similarly to the Trigger Event service it has three different sections.
The Schema tab is similar as the other but it introduces Temporal tab and Spatial tab as
shown on Figure 7.17. These two sections show to the domain expert the actual
temporal and spatial granularities and give the possibility to the domain expert to
change them. The new granularities must be a multiple of the actual ones otherwise
an error will be raised.

Example 7.1 Figure 7.18 shows the Data Acquisition Plan that is created for our running
example and corresponds to the plan of Example 6.1. Note that the shapes of the icons are
coloured in blue or green depending on the consistency of the operator w.r.t. the Domain On-
tology and that the traffic light in the top right corner is green because the Data Acquisition
Plan is consistent w.r.t. Definition 6.13. �

7.4 Data Acquisition Plan Translation

Once the DAP has been graphically drawn by means of the Cytoscape.js library and
we have checked that is sound according to Definition 6.11 in Chapter 6, it can be
translated in a language that allows the execution of the defined services in a cluster
of machines. In Chapter 1 we have described many frameworks that can be ex-
ploited for processing big streams of sensor data. Among them we decided to adopt
Apache Spark Streaming because it allows to handle both stored and stream data.
However, also other frameworks can be adopted (with a slightly modification of
the supported services). Among the possible languages that support Apache Spark



148 Chapter 7. The StreamLoader Prototype

FIGURE 7.17: Convert Temporal and Spatial menus

FIGURE 7.18: Data Acquisition Plan for the running example realized
with the provided GUI

Streaming we decided to translate the DAP in Scala code because of its functional
programming support.

For the presentation of the DAP translation we will refer to an excerpt of our running
example reported in Figure 7.19. In the example we use this part of the running
example to provide enough details of the translation process with a limited amount
of code to be reported in the text.

In the remainder of the section we first discuss the JSON representation of the DAP.
Then, we show its translation in a Spark streaming script. Specifically, we describe
the general configuration, the representation of the sources and destination, the rep-
resentation of the single services, and finally we provide an example of translation
of an entire DAP.



7.4. Data Acquisition Plan Translation 149

FIGURE 7.19: Excerpt of the DAP to be translated

7.4.1 JSON Representation of a DAP

As discussed in previous chapter, a DAP is a graph and its JSON representation
points out this model. Specifically, the JSON representation of a DAP is a list of data
elements used for modeling:

• sensors, destination, and, configuration parameters for the deployment of the
code in a specific architecture;

• services for the manipulation of sensor data;

• edges for determining the preceding ordering among the services.

In the remainder we present these representations that are then exploited for the
translation of the DAP in the Scala code.

Sensors, Destination, and Configuration Sensors are represented by means of a
data object presenting a property object whose value is source. Beside a sys-
tem generated identifier (id) and the name specified by the domain expert in the
graphical representation, the object contains the information about the STT dimen-
sions through the key thematic, temporal_gran and spatial_gran. Moreover, the
attributes belonging to the sensor schema are represented by means of the array
named nodesattributes array and is composed of arrays of three elements: i) the
attribute name; ii) the attribute type (e.g., string, numeric or datetime); and iii) the
(optional) unit of measure. The general structure of this object is reported in the
following code.

1 " data " : {
2 " id " : " node_id " ,
3 "name" : " node_name " ,
4 " thematic " : " node_thematic " ,
5 " o b j e c t " : " source " ,
6 " temporal_gran " : " node_temporal_granularity " ,
7 " s p a t i a l _ g r a n " : " node_spatial_granularity " ,
8 " n o d e s a t t r i b u t e s " : [
9 [ " attribute_name1 " , " attribute_type1 " , " attribute_unit1 " ] , . . .

10 [ " attribute_namen " , " attribute_typen " , " attribute_unitn " ] ] }

CODE 7.1: Node representation



150 Chapter 7. The StreamLoader Prototype

The representation of a destination is analogous with the exception of the value
that assume the key object (which is destination) and the presence of three extra
keys. The first one, source, contains the identifier of the service/source from which
the events arrive and needs to be stored in the destination node. The second one,
configuration, contains information about the Spark cluster master node host, batch
dimension and the url of the Apache Kafka server, whereas the last one, storage, re-
ports the type of storage, the location of the database, the name of the database and
of the collection/table where data must be saved.

Consider the sensors H1 and Tw1, and the destination on the DAP in Figure 7.19. The
following JSON representation is generated for them.

1 " data " : {
2 " id " : " s 1 " ,
3 "name" : "h1 " ,
4 " thematic " : " humidity " ,
5 " o b j e c t " : " source " ,
6 " temporal_gran " : " minutes 30 " ,
7 " s p a t i a l _ g r a n " : " point " ,
8 " n o d e s a t t r i b u t e s " : [
9 [ " timestamp " , " datetime " , " " ] , [ " geo : l a t " , " numeric " , " degree " ] ,

10 [ " geo : long " , " numeric " , " degree " ] , [ " humidityVal " , " numeric " , " percentage " ] ] } ,
11 " data " : {
12 " id " : " s 2 " ,
13 "name" : " tw1 " ,
14 " thematic " : " t w i t t e r " ,
15 " o b j e c t " : " source " ,
16 " temporal_gran " : " hours 1 " ,
17 " s p a t i a l _ g r a n " : " zone z1 " ,
18 " n o d e s a t t r i b u t e s " : [
19 [ " timestamp " , " datetime " , " " ] , [ " zone " , " s t r i n g " , " " ] ,
20 [ " tweets " , " s t r i n g " , " " ] , [ " numTweets " , " numeric " , " " ] ] } ,
21 " data " : {
22 " id " : " dest 1 " ,
23 "name" : " d e s t i n a t i o n " ,
24 " o b j e c t " : " d e s t i n a t i o n " ,
25 " sources " : " j 1 " ,
26 " thematic " : " humanDisc " ,
27 " temporal_gran " : " hours 1 " ,
28 " s p a t i a l _ g r a n " : " zone z1 " ,
29 " n o d e s a t t r i b u t e s " : [
30 [ " zone " , " s t r i n g " , " " ] , [ " v1_timestamp " , " datetime " , " " ] ,
31 [ " v1 _tweets " , " s t r i n g " , " " ] , [ " v1_numTweets " , " numeric " , " " ] ,
32 [ " v1_numPos" , " numeric " , " " ] , [ " c 1_timestamp " , " datetime " , " " ] ,
33 [ " c 1_geo : l a t " , " numeric " , " degree " ] , [ " c 1_geo : long " , " numeric " , " degree " ] ,
34 [ " c 1 _humidityVal " , " numeric " , " percentage " ] ] ,
35 " c o n f i g u r a t i o n " : [ " spark : //0 . 0 . 0 . 0 : 7077 " , " hours " , " 1 " , " ht tp : //0 . 0 . 0 . 0 : 9092 " ] ,
36 " s torage " : [ "mongodb" , " ht tp : //0 . 0 . 0 . 0 : 27017 " , " StreamLoader " , " Resul t s " ] }

Services for the Manipulation of Sensor Data Each service made available in the
StreamLoader system is associated with a data object presenting a key object whose
value is the name of the service. The attributes of the data object are similar to the



7.4. Data Acquisition Plan Translation 151

one presented for the sensors. In addition, it provides other keys for the representa-
tion of the service parameters.

Consider the four services reported in Figure 7.19. The following JSON represen-
tation is generated. As we can see each service provides different parameters and
attributes. For example the filter service has the connector and filterconditions

attributes that contain the connector (AND or OR) used for binding the filtering con-
ditions. For the convert service, the JSON representation contains the initial spatial
and temporal granularities (old_temporal_gran and old_spatial_gran) and the tar-
get ones (temporal_gran and spatial_gran). For the virtual property service, the
JSON representation contains the name of the new property (new property) and the
function (function), manually defined by the domain expert, used for calculating its
value. The function is represented as a string and it is assigned to the function key.
For the join service, the nodesattributes key contains the list of the attributes of
the two incoming streams, while the newnodesattributes key contains the schema
generated by the application of the join operator. The sensor attributes used for the
specification of the join condition are reported in the onattributes key while the
type of join is contained in the policy key. Finally, rates contains the dimension of
the join window.

1 " data " : {
2 " id " : " f 1 " ,
3 "name" : " f i l t e r " ,
4 " o b j e c t " : " f i l t e r " ,
5 " n o d e s a t t r i b u t e s " : [
6 [ " timestamp " , " datetime " , " " ] , [ " zone " , " s t r i n g " , " " ] ,
7 [ " tweets " , " s t r i n g " , " " ] , [ " numTweets " , " numeric " , " " ] ] ,
8 " thematic " : " t w i t t e r " ,
9 " temporal_gran " : " hours 1 " ,

10 " s p a t i a l _ g r a n " : " zone z1 " ,
11 " connector " : "AND" ,
12 " sources " : " s 2 " ,
13 " f i l t e r c o n d i t i o n s " : [
14 [ " tweets " , "MATCHES" , " hot " ] , [ " tweets " , "MATCHES" , " sweat " ] ,
15 [ " tweets " , "MATCHES" , " heat " ] ] } ,
16 " data " : {
17 " id " : " c 1 " ,
18 "name" : " convert " ,
19 " o b j e c t " : " convert " ,
20 " old_temporal_gran " : " minutes 30 " ,
21 " o l d _ s p a t i a l _ g r a n " : " point " ,
22 " thematic " : " humidity " ,
23 " sources " : " s 1 " ,
24 " temporal_gran " : " hours 1 " ,
25 " s p a t i a l _ g r a n " : " zone z1 " ,
26 " n o d e s a t t r i b u t e s " : [
27 [ " timestamp " , " datetime " , " " ] , [ " geo : l a t " , " numeric " , " degree " ] ,
28 [ " geo : long " , " numeric " , " degree " ] , [ " humidityVal " , " numeric " , " percentage " ] ] } ,
29 " data " : {
30 " id " : " v1 " ,
31 "name" : " v i r t u a l " ,
32 " o b j e c t " : " v i r t u a l _ p r o p e r t y " ,
33 " new_property " : "numPos" ,
34 " sources " : " f 1 " ,



152 Chapter 7. The StreamLoader Prototype

35 " thematic " : " t w i t t e r " ,
36 " temporal_gran " : " hours 1 " ,
37 " s p a t i a l _ g r a n " : " zone z1 " ,
38 " n o d e s a t t r i b u t e s " : [
39 [ " timestamp " , " datetime " , " " ] , [ " zone " , " s t r i n g " , " " ] , [ " tweets " , " s t r i n g " , " " ] ,
40 [ " numTweets " , " numeric " , " " ] , [ "numPos" , " numeric " , " " ] ] ,
41 " funct ion " : " tweets . count ( ’ hot ’ , ’ heat ’ , ’ sweat ’ ) " } ,
42 " data " : {
43 " id " : " j 1 " ,
44 "name" : " j o i n " ,
45 " o b j e c t " : " j o i n " ,
46 " sources " : [ " c 1 " , " v1 " ] ,
47 " thematic " : " humanDisc " ,
48 " temporal_gran " : " hours 1 " ,
49 " s p a t i a l _ g r a n " : " zone z1 " ,
50 " n o d e s a t t r i b u t e s " : [
51 [ " v1_timestamp " , " datetime " , " " ] , [ " v1_zone " , " s t r i n g " , " " ] ,
52 [ " v1 _tweets " , " s t r i n g " , " " ] , [ " v1_numTweets " , " numeric " , " " ] ,
53 [ " v1_numPos" , " numeric " , " " ] , [ " c 1_timestamp " , " datetime " , " " ] ,
54 [ " c 1_geo : l a t " , " numeric " , " degree " ] , [ " c 1_geo : long " , " numeric " , " degree " ] ,
55 [ " c 1 _humidityVal " , " numeric " , " percentage " ] ] ,
56 " newnodesattr ibutes " : [
57 [ " zone " , " s t r i n g " , " " ] , [ " v1_timestamp " , " datetime " , " " ] ,
58 [ " v1 _tweets " , " s t r i n g " , " " ] , [ " v1_numTweets " , " numeric " , " " ] ,
59 [ " v1_numPos" , " numeric " , " " ] , [ " c 1_timestamp " , " datetime " , " " ] ,
60 [ " c 1_geo : l a t " , " numeric " , " degree " ] , [ " c 1_geo : long " , " numeric " , " degree " ] ,
61 [ " c 1 _humidityVal " , " numeric " , " percentage " ] ] ,
62 " o n a t t r i b u t e s " : [ " v1 _ l o c a t i o n . name" , " c 1 _ l o c a t i o n . name" ] ,
63 " p o l i c i e s " : " inner " ,
64 " r a t e s " : [ " 1 " , " hours " ] }

Edges The sensors, destination, and service nodes so far discussed are connected
by means of edges that specify the precedence relationships among the nodes. This
precedence needs to be maintained in the generated code in order to guarantee its
correct representation. Edges are represented by means of data objects containing
two properties source and target besides the object identifier. The following code
contains the representation of the edges of our running example.



7.4. Data Acquisition Plan Translation 153

1 " data " : { " id " : " s 1 c 1 " , " source " : " s 1 " , " t a r g e t " : " c 1 " }
2 " data " : { " id " : " s 2 f 1 " , " source " : " s 2 " , " t a r g e t " : " f 1 " }
3 " data " : { " id " : " f 1v1 " , " source " : " f 1 " , " t a r g e t " : " v1 " }
4 " data " : { " id " : " c 1 j 1 " , " source " : " c 1 " , " t a r g e t " : " j 1 " }
5 " data " : { " id " : " v1 j 1 " , " source " : " v1 " , " t a r g e t " : " j 1 " }
6 " data " : { " id " : " j 1 dest 1 " , " source " : " j 1 " , " t a r g e t " : " dest 1 " }

7.4.2 Configuration

In order to efficiently manipulate the information coming from the sensors, each sen-
sor is treated as a scala case class. Case classes are like regular classes which export
their constructor parameters and provide a recursive decomposition mechanism via
pattern matching that is particularly useful for modeling immutable data. The use of
scala case class allows domain expert to easily define the attributes (with the cor-
responding types) obtained by the application of the service. In our system, classes
are created to handle sensor data in our internal data model and for the represen-
tation of the STT dimensions. Specifically, the Location case class models the
latitude, longitude and zone, province or region name where an event has been
generated. The STT dimensions are defined by the case class Stt that contains
the properties: spatial, temporal and thematic. The object values associated with
these properties are instances of the case class Spatio, Time and Thematic. These
classes are defined at the beginning of the code because are common to every DAP
and used for the representation of the sensors.

For what concern the Spark and Kafka communication environment, it is necessary
to configure the Spark cluster and the Kafka server correctly. The sparkConf prop-
erty provides the Spark Context, the host of the Master node in the Spark cluster,
while the ssc property sets the size of the streaming batch. The size of the batch is
defined manually by the domain expert and it is a multiple of the temporal granu-
larity of the last service that compose the DAP. These settings of the configuration
are provided by the destination node of the JSON representation of the DAP. The
following Kafka parameters are defined in the kafkaParams key: i) the Kafka server
URL; ii) the group.id, that is a string that uniquely identifies the group of consumer
processes to which this consumer belongs for balance the records over the consumer
instances; iii) the use of a Deserializer (keyword used to identify a Kafka Con-
sumer); and, iv) the auto.offset.reset, that is the policy used for consuming data
when a failure occurs in a topic (from the beginning or from the "point of failure").

The following code presents the case classes for our running example and the con-
figuration of the Spark and Kafka environment.

1 case class Thematic(
2 name: String,
3 metadata: JObject)
4 case class Time(



154 Chapter 7. The StreamLoader Prototype

5 unit : String,
6 count: Double,
7 metadata: JObject)
8 case class Spatio(
9 unit : String,

10 metadata: JObject)
11 case class Stt (
12 spatial : Spatio,
13 temporal: Time,
14 thematic: Thematic)
15 case class Location(
16 latitude : Double,
17 longitude: Double,
18 name: String)
19
20 val sparkConf = new SparkConf().setAppName("SparkScript").setMaster("spark://0.0.0.0:7077")
21 val ssc = new StreamingContext(sparkConf, Hours(1))
22
23 val kafkaParams = Map[String, Object](
24 "bootstrap.servers" −> "http://0.0.0.0:9092" ,
25 "key.deserializer " −> classOf[StringDeserializer].getCanonicalName,
26 "value. deserializer " −> classOf[StringDeserializer].getCanonicalName,
27 "group.id" −> "test_luca",
28 "auto. offset . reset " −> "latest")

Internally, the Apache Spark script works as follows. Spark Streaming receives live
input data streams and divides the data into batches of a fixed dimension specified in
the StreamingContext. Spark Streaming provides a high-level abstraction called dis-
cretized stream or DStream, which represents a continuous stream of data. DStreams,
in our case, are input data streams generated by Kafka. Internally, a DStream is
represented as a sequence of RDDs.

7.4.3 Translation of Sources and Destination

As described above we use case classes to manipulate the data model of each
sensor and common information about each sensor are instantiated at the beginning
of the code. Since each sensor presents a specific schema of data and topic, two case
classes are created for each sensor included in the DAP. The first one, named Data

concatenated to the Id of the sensor, contains the properties (name and type) of the
sensor. The second one, named Sensor concatenated to the Id of the sensor, contains
the following properties: i) sensor_name, the name of the sensor; ii) start_date and
end_date, representing the interval of time in which the sensor produces data; iii)
data, it is the schema of the data produced by the sensor and its type is the Data case

class that has been dynamically defined; and, iv) stt, a property of type Stt that
reports the spatio-temporal granularity and the thematic of the sensor. Moreover, a
specific topic is created in Kafka for gathering the data produced by the sensor and
made available through Kafka.



7.4. Data Acquisition Plan Translation 155

Once a sensor is connected with a stream of Kafka records, it is needed its parsing
in the right format defined by the Sensor case class. If the incoming data are al-
ready in the internal format we do not need to perform any other specific operation.
Otherwise, it is necessary to apply the transformation rules in order to convert the
sensor format into the internal data model, and then parse it in the right format de-
fined by the Sensor case class. An example of a sensor in our running example is
provided by the code below.

1 //Source s1
2 case class Data_s1(
3 location : Location,
4 timestamp : String,
5 humidityVal : Double)
6 case class Sensor_s1(
7 sensor_name: String,
8 start_date : String,
9 end_date: String,

10 data: Data_s1,
11 stt : Stt )
12 //Topic s1
13 val topics_s1 = Array("topics1")
14 //Kafka Stream s1
15 val stream_s1 = KafkaUtils.createDirectStream[String, String ]( ssc , PreferConsistent, Subscribe[String,

String ]( topics_s1, kafkaParams))
16 //Sensor map s1
17 val s1 = stream_s1.map(record => { implicit val formats = DefaultFormats

parse(record.value). extract [Sensor_s1]})

As we can see from the code, the schema of the data is defined by the class Data_s1
and the class Sensor_s1, representing the internal data model of the specific sensor,
is defined. The sensor needs to be initialized as a Kafka Consumer. The KafkaUtils

.create DirectStream takes as parameters the Spark Context, a LocationStrategies

.PreferConsistent, in order to distribute partitions evenly across available execu-
tors and a Subscribe method, where information about the topic and the Kafka en-
vironment must be provided and instantiate a new Kafka stream. In the last part of
the code, the sensor already transformed before the transmission, is parsed into the
internal data model.

For what concern the destination, besides providing configuration information, it
contains also information about the storage of the processed data into a database.
The storage attribute included in the JSON representation of the DAP allows to
generate the code below in the Spark script. MongodbConfig.Host, mongoDbDatabase
and mongoDbCollection contain the configuration of the DB while in the foreachRDD
every processed tuple is converted into a specific schema and then saved on the
mongodb database.

1 val mongoDbFormat = "com.stratio.datasource.mongodb"
2 val mongoDbDatabase = "StreamLoader"
3 val mongoDbCollection = "Results"
4
5 val MongoDbOptiops = Map(MongodbConfig.Host −> "http://0.0.0.0:27017",



156 Chapter 7. The StreamLoader Prototype

6 MongodbConfig.Database −> mongoDbDatabase,
7 MongodbConfig.Collection −> mongoDbCollection)
8
9 val dest = j1 .foreachRDD { rdd =>

10 val destination=spark.read.schema(Sensorj1).json(rdd)
11 destination.write.format(mongoDbFormat).mode(SaveMode.Append).options(MongoDbOptiops).save()

7.4.4 Translation of Services

We describe now the format of every service in the translation. We use the variables
PN, PN1 or PN2 in order to define the id of the node associated with the service. The
operations are executed on each DStream which is a sequence of Spark RDD collected
in every batch.

Filter. This operator takes in input two parameters: the filtering conditions and the
connector that concatenate every conditions. The default connector is AND and if there
is only one condition it is omitted in the Spark generation.

Suppose we wish to filter the temperature events whose values are contained in the
interval 20 and 30 Celsius degrees. The following code is generated.

1 val f1 = PN. filter { r => r.data.temperatureVal.>(20) && r.data.temperatureVal.<(30) }

The variable r in the filter method represents a single tuple in the sequence of
RDDs that is currently processed. The result of its execution is "stored" in a new
DStream named f1.

Virtual Property. This service requires two parameters to be executed: the name of
the new property and the function to compute the value to be assigned to the new
property. Since this service modifies the schema of the sensor, a new Sensor case

class is introduced. This class has the same structure of the incoming data flow plus
the new attribute. The code allows to copy all the incoming information to the new
data structure and to assign the calculated value to the new attribute.

In our running example we add a new property numPos to the Tw1 sensor for count-
ing the number of tweets that contain the words "hot", "heat" and "sweat". As
shown in the code below, the new schema is provided by the case class Data_v1

and the new Sensor class Sensor_v1 is defined. The function for computing the
value of the property numPos is defined as (r.data.tweets.count((_ == ’hot’)

|| (_ == ’heat’) || (_ == ’sweat’)).

1 case class Data_v1(
2 location : Location,
3 timestamp : String,
4 zone : String,



7.4. Data Acquisition Plan Translation 157

5 tweets : String,
6 numTweets : Double,
7 numPos : Double)
8 case class Sensor_v1(
9 sensor_name: String,

10 start_date : String,
11 end_date: String,
12 data: Data_v1,
13 stt : Stt )
14 val v1 = PN.map { r => new Sensor_v1(r.sensor_name, r.start_date, r.end_date,
15 new Data_v1(new Location(r.data.location.latitude,
16 r .data.location .longitude,
17 r .data.location .name),
18 r .data.timestamp,
19 r .data.zone,
20 r .data.tweets,
21 r .data.numTweets, (r.data.tweets.count((_ == ’hot’) || (_ == ’heat’) || (_ == ’sweat’)) ) ) ,
22 new Stt(new Spatio(r.stt . spatial .unit , r . stt . spatial .metadata),
23 new Time(r.stt.temporal.unit,
24 r . stt . temporal.count,
25 r . stt . temporal.metadata),
26 new Thematic(r.stt.thematic.name, r. stt . thematic.metadata)))}

Transform. This operator is similar to the Virtual Property service but the functions
are not manually defined, they are taken from a list of functions stored in a DB. It
takes in input an array composed of: i) the attribute on which the function must be
applied; ii) the name of the function; iii) the value to replace (optional, used on the
replace function); iv) the replaced value (optional, used on the replace function); and
v) a Spark code of a function (optional, used for some specific transformation like
Celsius to Fahrenheit or Fahrenheit to Celsius).

Suppose that one of the sensor produces temperatures in Fahrenheit and we need to
generate the corresponding temperatures in Celsius. It is necessary to apply a func-
tion that convert the value in Fahrenheit to Celsius. The following code presents this
transformation applied to the temperatureVal attribute with the function
r.data.temperatureVal.*(1.8).+(32).

1 val t1 = PN.map { r => new Sensor_PN(
2 r .sensor_name,
3 r . start_date ,
4 r .end_date,
5 new Data_PN(
6 new Location(r.data.location. latitude ,
7 r .data.location .longitude,
8 r .data.location .name),
9 r .data.timestamp,

10 r .data.temperatureVal.∗(1.8).+(32)) ,
11 new Stt(new Spatio(r.stt . spatial .unit ,
12 r . stt . spatial .metadata),
13 new Time(r.stt.temporal.unit,
14 r . stt . temporal.count,
15 r . stt . temporal.metadata),
16 new Thematic(r.stt.thematic.name,



158 Chapter 7. The StreamLoader Prototype

17 r . stt . thematic.metadata)))}

Aggregation. The following parameters should be specified in the JSON repre-
sentation of the service for the application of the aggregation: i) the attributes on
which grouping the events; ii) the aggregation function to apply to the remaining
attributes; and iii) the temporal dimension of the aggregation.

Given a sensor that produces data about temperature every 10 seconds on differ-
ent zones, it could be necessary, for example, to have the minutes average value of
temperature of that sensor and it should be aggregated on the same location name.
The function reduceByKeyAndWindow shown in the code below allows to apply aux-
iliary functions to the events that have been grouped togethers. These functions are
specific for any basic data type (e.g. integer, string, double) and allow to identify a
specific element (e.g. the first, the last) or to apply an aggregation (e.g. AVG, MAX,
MIN). For example, if we group the events according to the location name, in a sin-
gle group we might have different values associated with the attribute sensor_name

(which is of type string). By means of the auxiliary function RetStr we impose to re-
turn the last sensor name among those occurring in the current processed DStream.
Moreover, we can apply the auxiliary function AVGD on the attribute temperatureVal
which is of tye Double for returning the average temperature.

1 val a1map = PN.map { r => (r.data.location.name,
2 (r .sensor_name, r.start_date, r .end_date, r.data.location . latitude ,
3 r .data.location .longitude, r .data.temperatureVal, r.data.timestamp, r. stt . spatial .unit ,
4 r . stt . spatial .metadata, r . stt . temporal.unit, r . stt . temporal.count, r. stt . temporal.metadata,
5 r . stt . thematic.name, r. stt . thematic.metadata)) }
6 val a1red = a1map.reduceByKeyAndWindow(
7 (a :( String, String, String, Double,
8 Double, Double, Long, String,
9 JObject , String, Int , JObject ,

10 String, JObject) ,
11 b:(String, String, String, Double,
12 Double, Double, Long, String,
13 JObject , String, Int , JObject ,
14 String, JObject)
15 )=> ( retStr (a._1,b._1) , retStr (a._2,b._2) ,
16 retStr (a._3,b._3) , retD(a._4,b._4) ,
17 retD(a._5, b._5) , AVGD(a._6,b._6),
18 retLong(a._7,b._7) , retStr (a._8,b._8) ,
19 retMeta(a._9,b._9) , retStr (a._10,b._10),
20 retI (a._11,b._11), retMeta(a._12,b._12),
21 retStr (a._13,b._13), retMeta(a._14,b._14)) ,
22 Minutes(1))
23 val a1 = a1red.map(x => new Sensor_PN(x._2._1, x._2._2, x._2._3
24 new Data_PN(new Location(x._2._4, x._2._5, x._1), x._2._6, x._2._7) ,
25 new Stt(new Spatio(x._2._8, x._2._9) ,
26 new Time(x._2._10, x._2._11, x._2._12),
27 new Thematic(x._2._13, x._2._14))) )



7.4. Data Acquisition Plan Translation 159

Join. This service applies the join operation between two incoming streams PN1

and PN2. The two streams need to be specified at the same spatio-temporal granular-
ities. In the JSON representation of this service, the join predicate is specified along
with the kind of join to be applied and the dimension of the join window. The two
nodes that needs to be joined are defined as a couple of DStreams. The first element of
the couple corresponds to the type of the join attribute whereas the second element
has the same type of the class sensor of the node itself. The window is not applied
directly on the join because it introduces further delays in the processing time but
it is applied on the result of each couple of DStream previously defined. After these
phases the join is applied. A new class is defined that present the attributes of the
join predicate and all the PN1 and PN2 specific attributes. A prefix is added to the
name of the attributes of the new class for distinguish them on the base of the node
from which they have been taken. This operation is necessary to map the result of
the join into the new sensor case class.

Consider our running example. The streams produced by the sensors H1 and Tw1

need to be joined each hour according to the x.data.location.name attributes. As
we can see from the following code, the join attribute for each source is specified
and the result is a window of DStream couples (j1PN1win and j1PN2win). The join
operation on line 5 introduces a new schema of the data. For this reason the new
Sensor_j1 case class is defined and the attributes of the resulting tuples are mapped
to this class.

1 val j1PN1 = PN1.map(x => (x.data.location.name, (x)))
2 val j1PN2 = PN2.map(x => (x.data.location.name, (x)))
3 val j1PN1win = j1PN1.window(Hours(1), Hours(1))
4 val j1PN2win = j1PN2.window(Hours(1), Hours(1))
5 val j1pre = j1PN1win.join(j1PN2win)
6 case class Data_j1(
7 location : Location,
8 zone : String,
9 v1_timestamp : String,

10 v1_tweets : String,
11 v1_numTweets : Double,
12 v1_numPos : Double,
13 c1_timestamp : String,
14 c1_humidityVal : Double)
15 case class Sensor_j1(
16 sensor_name: String,
17 start_date : String,
18 end_date: String,
19 data: Data_j1,
20 stt : Stt )
21 val j1 = j1pre .map { r => new Sensor_j1("j1",
22 r ._2._1.start_date ,
23 r ._2._1.end_date,
24 new Data_j1(new Location(r._2._1.data.location.latitude ,
25 r ._2._1.data.location .longitude,
26 r ._2._1.data.location .name),
27 r ._2._2.data.zone,
28 r ._2._2.data.timestamp,
29 r ._2._2.data.tweets,



160 Chapter 7. The StreamLoader Prototype

30 r ._2._2.data.numTweets,
31 r ._2._2.data.numPos,
32 r ._2._1.data.timestamp,
33 r ._2._1.data.humidityVal),
34 new Stt(new Spatio(r._2._1. stt . spatial .unit ,
35 r ._2._1. stt . spatial .metadata),
36 new Time(r.._2._1stt . temporal.unit,
37 r ._2._1. stt . temporal.count,
38 r ._2._1. stt . temporal.metadata),
39 new Thematic(r._2._1.stt .thematic.name,
40 r ._2._1. stt . thematic.metadata)))}

Enrich. This service is a special case of the join operator between stream and static
data. The Spark application and execution of this operation is similar to the join. It
is done by defining a join attribute between the stream and the static information.

The first thing that we have to do is load a table and cache it so that it can be joined
with streams. Then, as the join requires, we need to identify the "join" attributes for
the stream and for the static data. At this point we proceed as we hae done for the
join service.

Suppose we wish to enrich sensor T2 with data contained in the LHD table that
contains a tuple for each zone of Milan. The following code is generated.

1 val lhdInfo = sqlContext.table("LHD").rdd.map(row => (row(0).toString(),
2 row(1).toDouble())).partitionBy( partitioner ) .cache()
3 val e1PN1 = PN1.map(x => (x.data.location.name, (x)))
4 val e1PN2 = lhdInfo.map(x => (x.(0), (x)) )
5 val e1PN1win = e1PN1.window(Minutes(20), MInutes(20))
6 val e1pre = e1PN1win.join(e1PN2)
7 case class Data_e1(
8 location : Location,
9 timestamp : String,

10 temperatureVal : String,
11 accuracy : Double,
12 lhd: Double)
13 case class Sensor_e1(
14 sensor_name: String,
15 start_date : String,
16 end_date: String,
17 data: Data_e1,
18 stt : Stt )
19 val e1 = e1pre.map { r => new Sensor_e1(
20 r ._2._1.sensor_name,
21 r ._2._1.start_date ,
22 r ._2._1.end_date,
23 new Data_e1(new Location(
24 r ._2._1.data.location . latitude ,
25 r ._2._1.data.location .longitude,
26 r ._2._1.data.location .name),
27 r ._2._1.data.timestamp,
28 r ._2._1.data.temperatureVal,
29 r ._2._1.data.accuracy,
30 r ._2._2._2) ,
31 new Stt(new Spatio(r._2._1. stt . spatial .unit , r ._2._1. stt . spatial .metadata),



7.4. Data Acquisition Plan Translation 161

32 snew Time(r._2._1.stt . temporal.unit,
33 r ._2._1. stt . temporal.count,
34 r ._2._1. stt . temporal.metadata),
35 new Thematic(r._2._1.stt .thematic.name,
36 r ._2._1. stt . thematic.metadata)))}

Trigger On/Off. This service is a composition of Trigger Event and Trigger

Actions. The Trigger works on two different streams of data. The first one is used
to verify certain conditions on a specific time interval. The second one is activated
only if the trigger conditions on the first flow are verified. Depending on the type
of trigger condition that has been verified a specific type of Trigger Actions is ac-
tivated.

Suppose to have two sensors H1 and T1 that produce respectively humidity and tem-
perature values and we wish to obtain the humidity values greater than 50%, pro-
duced by sensor H1, only if in the last hour the number of temperature values less
than 15 degrees produced by sensor T1 exceeds 10. In the following code we de-
fine a trigger event boolean value teon that allows the script to activate the Trigger

Action ON if true.

1 var teon = false
2
3 val f1 = t1 . filter { r => r.data.temperatureVal.<(15)}
4 val f1win = f1 .window(Hours(1), Hours(1))
5 f1win.foreachRDD{ rdd =>
6 var count = rdd.count
7 teon = count > 10
8 count = 0
9 }

10
11 if (teon){
12 val ta = h1. filter {r => r.data.humidityVal.>(50)}
13 }

Union. This service, as the join, takes in input two incoming streams. If the
schema of the data of the two streams is exactly, the same it does not introduce
a new sensor case class otherwise a new sensor case class has to be defined.
The schema of the new class is composed of all the attributes that the two sensors
have in common, taken only one time, and the attributes that are not present in one
or in the other sensor.

Consider our running example. The temperatures produced by sensors T1 and T2

need to be included in a single stream. The STT dimensions of the two sources are
the same with the exception of accuracy that is missing in T2. In order to create the
union of the values produced by the two sensors this attribute needs to be included
in the schema of T2 with the values 0.0. The code below shows that a new sensor



162 Chapter 7. The StreamLoader Prototype

case class is defined and the two sources are mapped to the new case class. After
that an union is performed every hour on the two DStreams.

1 case class Data_u1(
2 location : Location,
3 timestamp : String,
4 temperatureVal : String,
5 accuracy : Double)
6 case class Sensor_u1(
7 sensor_name: String,
8 start_date : String,
9 end_date: String,

10 data: Data_u1,
11 stt : Stt )
12 val u1PN1 = PN1.map { r => new Sensor_u1(
13 r .sensor_name,
14 r . start_date ,
15 r .end_date,
16 new Data_u1(new Location(
17 r .data.location . latitude ,
18 r .data.location .longitude,
19 r .data.location .name),
20 r .data.timestamp,
21 r .data.temperatureVal,
22 r .data.accuracy),
23 new Stt(new Spatio(r.stt . spatial .unit ,

r . stt . spatial .metadata),
24 new Time(r.stt.temporal.unit,
25 r . stt . temporal.count,
26 r . stt . temporal.metadata),
27 new Thematic(r.stt.thematic.name,
28 r . stt . thematic.metadata)))}
29 val u1PN2 = PN2.map { r => new Sensor_u1(
30 r .sensor_name,
31 r . start_date ,
32 r .end_date,
33 new Data_u1(new Location(
34 r .data.location . latitude ,
35 r .data.location .longitude,
36 r .data.location .name),
37 r .data.timestamp,
38 r .data.temperatureVal,
39 0.0) ,
40 new Stt(new Spatio(r.stt . spatial .unit ,

r . stt . spatial .metadata),
41 new Time(r.stt.temporal.unit,
42 r . stt . temporal.count,
43 r . stt . temporal.metadata),
44 new Thematic(r.stt.thematic.name,
45 r . stt . thematic.metadata)))}
46 val u1 = u1PN1.union(u1PN2).window(Hours(1), Hours(1))

Convert. This service is responsible of converting the temporal and spatial granu-
larities. It is not mandatory that both new granularity must be defined. Rules that
allows to efficiently and correctly convert the temporal and spatial granularities are
stored on collections in a DB. These collections define the hierarchy of granularity



7.4. Data Acquisition Plan Translation 163

(i.e. seconds is finer than minutes, city coarser than zone) and the way to compute
the conversion (i.e. a minute is composed of 60 seconds, city Milan is composed of 9
zones).

Suppose that we need to convert the temporal granularity of the sensor T1. First of all
we need to identify the attribute that provides information about timestamp. Then,
the conversion is realized by means of the reduceByKeyAndWindow method. It takes
in input the sequence of RDDs and converts them to the new temporal granularity.
Example of this operator is presented on the code below.

1 case class Data_c1(
2 location : Location,
3 timestamp : String,
4 humidityVal : Double)
5 case class Sensor_c1(
6 sensor_name: String,
7 start_date : String,
8 end_date: String,
9 data: Data_s1,

10 stt : Stt )
11 val c1map = PN.map(x => (x.data.timestamp, (x)))
12 val c1pre = c1map.reduceByKeyAndWindow((a:Int, b:Int) => (a+b), Minutes(20), Hours(1))
13 val c1 = c1pre.map { r => new Sensorc1(
14 r .sensor_name,
15 r . start_date ,
16 r .end_date,
17 new Data_c1(new Location(
18 r .data.location . latitude ,
19 r .data.location .longitude,
20 r .data.location .name),
21 r .data.timestamp,
22 r .data.humidityVal),
23 new Stt(new Spatio(r.stt . spatial .unit , r . stt . spatial .metadata),
24 new Time(r.stt.temporal.unit,
25 r . stt . temporal.count,
26 r . stt . temporal.metadata),
27 new Thematic(r.stt.thematic.name, r. stt . thematic.metadata)))}

7.4.5 The Overall Translation Algorithm

We now provide the description of how an entire DAP is translated into an Apache
Spark Streaming Scala script. The most important issue in the translation of a DAP
is to maintain the order of the operators as defined in the DAP. In our system we
demand the right "ordering" of the DAP to the internal way of handling RDDs by
Apache Spark. As described in [81] Spark implements a stage-oriented scheduling
that transforms a Logical Execution Plan (i.e. RDD lineage of dependencies) to a
Physical Execution Plan through a DAG scheduler. RDD Lineage (also named RDD
operator graph or RDD dependency graph) is a graph of all the parent RDDs of a
RDD. Each RDD maintains a pointer to one or more parents along with the metadata
about what type of relationship it has with the parent. For example, when we call



164 Chapter 7. The StreamLoader Prototype

val b = a.map() on a RDD, the RDD b keeps a reference to its parent a, that is a
lineage. It is built as a result of applying transformations to the RDD and creates a
Logical Execution Plan [82]. A Logical Execution Plan starts with the earliest RDDs
(those with no dependencies on other RDDs or reference cached data) and ends with
the RDD that produces the result of the action that has been called to execute. In
this way the execution order is maintained also if the operations are written in the
Apache Spark script without following the right order as they appear in the DAP.

Anyway in order to have a clearer an more maintainable script in the translation
phase we first provide all the information about the imports of packages and li-
braries that are required for the right execution of the code, then the information
about the configuration of the Spark and Kafka environment are included and sub-
sequently all the sensor nodes are written on the script. The nodes that represent
the operations are then translated and included in the code while in the last part we
provide the translation of the storage information defined by the destination node.

The example that we provide on Figure 7.19 will be translated as follows.

1 object App {
2 def main(args : Array[String]) {
3 case class Thematic(
4 name: String,
5 metadata: JObject)
6 case class Time(
7 unit : String,
8 count: Double,
9 metadata: JObject)

10 case class Spatio(
11 unit : String,
12 metadata: JObject)
13 case class Stt (
14 spatial : Spatio,
15 temporal: Time,
16 thematic: Thematic)
17 case class Location(
18 latitude : Double,
19 longitude: Double,
20 name: String)
21
22 val sparkConf = new SparkConf().setAppName("SparkScript").setMaster("spark://0.0.0.0:7077")
23 val ssc = new StreamingContext(sparkConf, Hours(1))
24
25 val kafkaParams = Map[String, Object](
26 "bootstrap.servers" −> "http://0.0.0.0:9092" ,
27 "key.deserializer " −> classOf[StringDeserializer].getCanonicalName,
28 "value. deserializer " −> classOf[StringDeserializer].getCanonicalName,
29 "group.id" −> "test_luca",
30 "auto. offset . reset " −> "latest"
31 )
32 //Source s1
33 case class Data_s1(
34 location : Location,
35 timestamp : String,
36 humidityVal : Double)
37 case class Sensor_s1(



7.4. Data Acquisition Plan Translation 165

38 sensor_name: String,
39 start_date : String,
40 end_date: String,
41 data: Data_s1,
42 stt : Stt )
43 //Topic s1
44 val topics_s1 = Array("topics1")
45 //Kafka Stream s1
46 val stream_s1 = KafkaUtils.createDirectStream[String, String ]( ssc , PreferConsistent, Subscribe[String,

String ]( topics_s1, kafkaParams))
47 //Sensor map s1
48 val s1 = stream_s1.map(record => { implicit val formats = DefaultFormats

parse(record.value). extract [Sensor_s1]})
49 //Source s2
50 case class Data_s2(
51 location : Location,
52 timestamp : String,
53 zone : String,
54 tweets : String,
55 numTweets : Double)
56 case class Sensor_s2(
57 sensor_name: String,
58 start_date : String,
59 end_date: String,
60 data: Data_s2,
61 stt : Stt )
62 //Topic s2
63 val topics_s2 = Array("topics2")
64 //Kafka Stream s2
65 val stream_s2 = KafkaUtils.createDirectStream[String, String ]( ssc , PreferConsistent, Subscribe[String,

String ]( topics_s2, kafkaParams))
66 //Sensor map s2
67 val s2 = stream_s2.map(record => { implicit val formats = DefaultFormats

parse(record.value). extract [Sensor_s2]})
68 //Filter f1
69 val f1 = s2. filter { e => e.data.tweets.contains("hot") && e.data.tweets.contains("sweat")

e.data.tweets.contains("heat") }
70 //Convert c1
71 case class Data_c1(
72 location : Location,
73 timestamp : String,
74 humidityVal : Double)
75 case class Sensor_c1(
76 sensor_name: String,
77 start_date : String,
78 end_date: String,
79 data: Data_c1,
80 stt : Stt )
81 val c1map = s1.map(x => (x.data.timestamp, (x)))
82 val c1pre = c1map.reduceByKeyAndWindow((a:Int, b:Int) => (a+b), Minutes(30), Hours(1))
83 val c1 = c1pre.map { r => new Sensor_c1(r.sensor_name, r.start_date, r.end_date, new Data_c1(new

Location(r.data.location.latitude, r .data.location .longitude, "z1") , r .data.timestamp,
r.data.humidityVal), new Stt(new Spatio("zone", r. stt . spatial .metadata), new Time(r.stt.temporal.unit,
r . stt . temporal.count, r. stt . temporal.metadata), new Thematic(r.stt.thematic.name,
r.stt . thematic.metadata)))}

84 //Virtual v1
85 case class Data_v1(
86 location : Location,
87 timestamp : String,
88 zone : String,



166 Chapter 7. The StreamLoader Prototype

89 tweets : String,
90 numTweets : Double,
91 numPos : Double)
92 case class Sensor_v1(
93 sensor_name: String,
94 start_date : String,
95 end_date: String,
96 data: Data_v1,
97 stt : Stt )
98 val v1 = f1 .map { r => new Sensor_v1(r.sensor_name, r.start_date, r.end_date, new Data_v1(new

Location(r.data.location.latitude, r.data.location .longitude, r .data.location .name), r.data.timestamp,
r.data.zone, r .data.tweets, r .data.numTweets, (r.data.tweets.count((_ == ’hot’) || (_ == ’heat’) || (_
== ’sweat’)) ) ) ) , new Stt(new Spatio(r.stt . spatial .unit , r . stt . spatial .metadata), new
Time(r.stt.temporal.unit, r . stt . temporal.count, r. stt . temporal.metadata), new
Thematic(r.stt.thematic.name, r.stt . thematic.metadata)))}

99 //Join j1 rates : 1 hours
100 val j1c1 = c1.map(x => (x.data.location.name, (x)))
101 val j1v1 = v1.map(x => (x.data.location.name, (x)))
102 val j1c1win = j1c1 .window(Hours(1), Hours(1))
103 val j1v1win = j1v1.window(Hours(1), Hours(1))
104 val j1pre = j1c1win.join(j1v1win)
105 case class Data_j1(
106 location : Location,
107 zone : String,
108 v1_timestamp : String,
109 v1_tweets : String,
110 v1_numTweets : Double,
111 v1_numPos : Double,
112 c1_timestamp : String,
113 c1_humidityVal : Double)
114 case class Sensor_j1(
115 sensor_name: String,
116 start_date : String,
117 end_date: String,
118 data: Data_j1,
119 stt : Stt )
120 val j1 = j1pre .map { r => new Sensor_j1(j1, r ._2._1.start_date , r ._2._1.end_date, new Data_j1(new

Location(r._2._1.data.location.latitude, r ._2._1.data.location .longitude, r ._2._1.data.location .name),
r._2._2.data.zone, r ._2._2.data.timestamp, r._2._2.data.tweets, r ._2._2.data.numTweets,
r._2._2.data.numPos, r._2._1.data.timestamp, r._2._1.data.humidityVal), new Stt(new
Spatio(r.stt . spatial .unit , r . stt . spatial .metadata), new Time(r.stt.temporal.unit,
r . stt . temporal.count, r. stt . temporal.metadata), new Thematic(r.stt.thematic.name,
r.stt . thematic.metadata)))}

121 //Destination
122 val mongoDbFormat = "com.stratio.datasource.mongodb"
123 val mongoDbDatabase = "StreamLoader"
124 val mongoDbCollection = "Results"
125 val MongoDbOptiops = Map(MongodbConfig.Host −> "http://0.0.0.0:27017",
126 MongodbConfig.Database −> mongoDbDatabase,
127 MongodbConfig.Collection −> mongoDbCollection)
128 val dest = j1 .foreachRDD { rdd =>
129 val destination=spark.read.schema(Sensorj1).json(rdd)
130 destination.write.format(mongoDbFormat).mode(SaveMode.Append).options(MongoDbOptiops).save()
131 }
132 //Execution of the script
133 ssc . start ()
134 ssc .awaitTermination()
135 }
136 }



167

Chapter 8

Experimental Evaluation

In this chapter we provide the experiments that we have carried out for evaluat-
ing the performances of the Apache Spark Streaming scripts generated by means of
the StreamLoader system. These experiments are mainly focused on the evaluation
of the performances of the generated scripts and to determine the number of events
that can be handled for each second by our Data Acquisition Plans. The experiments
are oriented both in the evaluation of the Data Acquisition Plan when the data pro-
duced by the sensors are already organized according to our internal data model
and when the transformation rules presented in Chapter 5 need to be applied for the
transformation of the data from the original format into our internal representation.

The chapter is organized as follows. Section 8.1 presents the environment that we
have exploited for the experiments and the metrics that will be used for comparing
the performances of the Apache Spark scripts generated from the Data Acquisition
Plans. Section 8.2 discusses the experiments in the execution of simple Data Ac-
quisition Plans in a single machine or in a cluster of machines. In Section 8.3 we
describe further experiments that we conducted to better understand the scalability
of Apache Spark Streaming and to determine the number of events that can be han-
dled. Section 8.4 deals with Data Acquisition Plans that require the transformation
of the sensors data into the internal format. The section discusses two architectures
in which the transformation rules can be applied and the associated advantages and
disadvantages. Some concluding remarks are finally drawn in Section 8.5

8.1 Environment and Tests Configuration

In this section we provide details on the machines used for conducting our experi-
ments and on the kinds of experiments that will be shown in the chapter along with
the metrics for evaluating the performances of our system.



168 Chapter 8. Experimental Evaluation

8.1.1 Local and Cluster Configuration

Experiments have been conducted on a single machine and in a cluster with a vari-
able number of machines (3, 5 and 10 machines). Figure 8.1 represents the two ap-
proaches. In the remainder we detail the characteristics of the machines used.

FIGURE 8.1: Local execution and cluster execution environments

• Local: an Ubuntu 16.04 LTS (GNU/Linux 4.4.0-96-generic x86_64) machine
with 8GB RAM, 2 core processor, 250 GB HDD and 2799.202 MHz CPU clock
speed. Apache Kafka, Kafka Producer and Apache Spark run on this machine.

• Cluster 3: three Ubuntu 16.04 LTS (GNU/Linux 4.4.0-96-generic x86_64) ma-
chines with 8GB RAM, 2 core processor, 250 GB HDD and 2799.202 MHz CPU
clock speed. A machine acts as Master while two machine are the worker-
s/slaves. In order to reduce the CPU consumption we run Apache Kafka
Server and the Kafka Producer on a machine and the Apache Spark script on a
different machine.

• Cluster 5: five Ubuntu 16.04 LTS (GNU/Linux 4.4.0-96-generic x86_64) ma-
chines with 8GB RAM, 2 core processor, 250 GB HDD and 2799.202 MHz CPU
clock speed. A machine acts as Master while four machine are the worker-
s/slaves. In order to reduce the CPU consumption we run Apache Kafka
Server and the Kafka Producer on a machine and the Apache Spark script on a
different machine.

• Cluster 10: ten Ubuntu 16.04 LTS (GNU/Linux 4.4.0-96-generic x86_64) ma-
chines with 8GB RAM, 2 core processor, 250 GB HDD and 2799.202 MHz CPU
clock speed. A machine acts as Master while nine machine are the worker-
s/slaves. In order to reduce the CPU consumption we run Apache Kafka
Server and the Kafka Producer(s) on a machine and the Apache Spark script
on a different machine.

All the machines are virtual machines that reside on an Ovirt Virtual Datacenter1

1oVirt is a complete open-source virtualization management platform that builds on the powerful
kernel based virtual machine (KVM hypervisor) and on the RHEV-M management server. Details in
https://www.ovirt.org/.



8.1. Environment and Tests Configuration 169

FIGURE 8.2: Batch information provided by the Spark UI interface

8.1.2 Data Acquisition Plan Configuration and Metrics

When a Spark script is launched, its activity is monitored by the SparkContext dae-
mon. The execution activities can be shown to the user by means of a web applica-
tion that displays useful information about the application. Among the information
reported to the user, the most useful in our context are:

• a list of scheduler stages and tasks,

• a summary of RDD sizes and memory usage,

• environmental information, and

• information about the running executors.

For what concern the execution of an Apache Spark script, the Spark UI interface
provides these metrics: Processing Time, Scheduling Delay and Total Delay.

• Processing Time: The time required to compute a given batch for all its jobs, end
to end. This means a single job which starts at the first operation in the script
and ends at the last operation, and assumes as a prerequisite that the job has
been submitted.

• Scheduling Delay: The time taken by the Spark Streaming scheduler to submit
the jobs of the batch. If the batch reads from the source every 4 seconds and a
given batch takes 8 seconds to compute this means that we are now 8 - 4 = 4

seconds behind, thus making the Sheduling Delay 4 seconds long.

• Total Delay: it is composed of Scheduling Delay + Processing Time. Follow-
ing the same example, if we are 4 seconds behind, meaning our Scheduling
Delay is 4 seconds, and the next batch takes another 8 seconds to compute, this
means that the Total Delay is now 8 + 4 = 12 seconds long.

Figure 8.2 shows an excerpt of the Web application. For each batch reports the time
in which it has been scheduled, the number of tuples that need to be processed in
the batch, the Scheduling Delay, the Processing Time and total times required for
processing the batch and the execution result.



170 Chapter 8. Experimental Evaluation

8.2 Data Acquisition Plan Execution Experiments

We conducted a set of experiments in order to provide information about the per-
formances of the Apache Spark Data Acquisition Plan that is generated with our
interface when it is executed locally and on a cluster of different dimension (3 or 5
machines). In order to have an high throughput, data is randomly produced by a
scala script and sent, in the internal format, through an Apache Kafka producer. The
code below reports an example of a tuple that is randomly generated.

1 {
2 " sensor_name " : " s 1 " ,
3 " s t a r t _ d a t e " : " 2016−03−01T00 : 00 : 00 . 000 " ,
4 " end_date " : " 2018−09−01T00 : 00 : 00 . 000 " ,
5 " data 1 " : {
6 " l o c a t i o n " : {
7 " l a t i t u d e " : 45 . 00 ,
8 " longi tude " : 12 . 00 ,
9 "name" : " z1 "

10 } ,
11 " timestamp " : 1521204365 ,
12 " temperatueVal " : 24 . 5
13 } ,
14 " s t t " : {
15 " s p a t i a l " : {
16 " uni t " : " point " ,
17 " metadata " : " "
18 } ,
19 " temporal " : {
20 " uni t " : " Minutes " ,
21 " count " : 10 ,
22 " metadata " : " "
23 } ,
24 " thematic " : {
25 "name" : " temperature " ,
26 " metadata " : " "
27 } }
28 }

CODE 8.1: Node representation

In the first experiment we have considered the Data Acquisition Plan reported in
Figure 8.3 that is composed by a different combination of blocking (union) and non-
blocking (filter, transform and virtual property) services. These services are
applied on data made available through the Kafka context broker from two different
sensors. Each sensor ingests 1 million tuples that are organized according to our
internal data model (i.e. no transformation of the format is required).

The second experiment is a sequence of 10 cascaded aggregate services as repre-
sented in Figure 8.4.

Both experiments have been conducted on a single machine and on a cluster with 3
machine (1 master and 2 workers) and in a cluster with 5 machines (1 master and 4



8.2. Data Acquisition Plan Execution Experiments 171

FIGURE 8.3: Composition of blocking and non-blocking services

FIGURE 8.4: Composition of 10 aggregate services in cascade

workers). In this way we were able to compare the performances of the scripts with
clusters of different sizes.

8.2.1 Results

As shown in Figure 8.5 and Figure 8.6 the performances have definitely improved,
in both experiments, from the local execution to the cluster execution. The Process-
ing Time in the first experiment passed from 5,3 seconds locally to 2,3 seconds in
the 3 node cluster and 2,5 seconds in the 5 node cluster, while the seconds exper-
iment passed from 2,3 second in the local mode to 1,41 seconds and 1,48 seconds
respectively for the cluster of 3 machines and the cluster of 5 machines.

The Scheduling Delay (SD) has significantly improved from the local execution to
the cluster execution. Locally we have a Scheduling Delay of 10 seconds for the first
experiment and 5,3 seconds for the second experiment. In the cluster of 3 machines
we have 71 ms delay for the first experiment and 4 ms for the second one. By con-
trast, the cluster with 5 machines introduces in both experiments a Scheduling Delay
of 4 ms.

The Total Delay follows the same trend of the previous described metrics. The local
execution produces the worst results in both experiments (152 seconds and 253 sec-
onds) while the execution in the cluster improves the results with 101 seconds and
156 seconds for the experiments conducted on the cluster with 3 machines and 99
seconds and 152 seconds on the cluster with 5 machines.

The observation that we can point out from these experiments is that the execution
of the script in a cluster of machines is always better than the local execution even if
the improvement from three to five machines, in this case, is limited. As highlighted



172 Chapter 8. Experimental Evaluation

FIGURE 8.5: Input rate, Processing time, Scheduling delay and Total
Delay of the blocking and non-blocking experiment

from the experiments, the Scheduling Delay has been deeply effected from the exe-
cution on the cluster, whereas, in some case, the Processing Time has been slightly
worsened. We suppose that this is mainly due to the limited size of the batch that
did not influenced the Processing Time.

8.3 Further Data Acquisition Plan Execution Experiments

In these experiments we modified the number of machines that execute the script
and the number of Apache Kafka producer that publish data. The experiments have
been conducted locally and on clusters of 5 and 10 machines. These experiments
are mainly focused on the evaluation of the horizontal scalability of Apache Spark
Streaming and to determine the number of events that can be handled per second.
The data is randomly generated as in the previous experiments.

The DAPs that we used for these experiments contain both non-blocking and block-
ing services at increasing complexity. The first is a simple DAP that reads data from
a sensor and stores the obtained value in a file. The second one applies a filter con-
dition and only the events that meet the condition are stored in a file. The third
one applies an aggregation on the considered events and the aggregated events are
stored in a file. The last one compute a simplified version of the Humidex Factor
(see Figure 8.7) described in the motivating scenario. A first set of sensors of type
H1 gathers humidity, expressed in hPa, every 10 minutes. The sensor observations
are associated with the sensor identifier but no geo-spatial locations of the sensors
are provided (but we have a database that associates each sensor with its longitude



8.3. Further Data Acquisition Plan Execution Experiments 173

FIGURE 8.6: Input rate, Processing time, Scheduling delay and Total
Delay of the 10 aggregation experiment

FIGURE 8.7: Humidex Factor calculation DAP

and latitude). A second set of sensors of type T1 gathers the temperature every 15
minutes in Fahrenheit degree for each zone of the city. These sensors provide the
needed information for computing the Humidex, but the sensor data need to be
transformed, converted in coarser spatio-temporal granularities, integrated and en-
hanced in order to correctly compute the formula.

For the first four DAPs we have considered a single flow of 30 million events, whereas
for the last one we have considered two flows of 30 millions events each.

8.3.1 Results

Figure 8.8 reports for each row the processing time and the size of the batch for
different DAPs executed on a single node, a cluster of 5 nodes, and a cluster of 10
nodes.



174 Chapter 8. Experimental Evaluation

As we can note from all the considered DAPs the processing time is deeply affected
by the number of machines in which the DAP is executed. In the passage from one
node to 5 nodes, the average processing times is reduced of at least one third. The
reduction is less in the passage from the cluster of 5 to the one of 10 nodes, but we
believe that this is due to the reduced number of processed events. Moreover, by
increasing the complexity of the DAP (from the one in the first row to the last raw)
the processing time increases but not linearly with respect to the number of services
that are included in the DAP. This is an important factor for dealing with DAPs of
different complexity.

For what concern the computation of the Humidex factor, we can note that Spark is
able to process 222.000 tuple per second. Moreover, the processing time improves
deeply by considering clusters with 5 and 10 nodes. The local execution of a 10
seconds batch (with a range of events between 1.8 millions and 2.2 millions) requires
an average time of 121 seconds, whereas in a cluster of 5 nodes requires 37 seconds,
and 10 seconds in the cluster of 10 machines (thus an improvement of 12 times w.r.t.
the local execution). Note that the scheduling delay is null for the cluster of 10 nodes
(the average processing time – 3 ms. – is equal to the batch size), wheres this time is
around 13 s. for the cluster of 5 nodes and 114 s. for the single node.

8.4 Semantic Virtualization Experiments

The data in the previous experiments were directly generated in the internal data
model. For this reason no transformation need to be performed. In this experimental
activity we performed a set of different experiments in order to understand how the
system behave with the introduction of the transformation phase. The test executed
can be defined within two main approaches:

• Producer-Side (PS). Relying on this approach, data transformation in the in-
ternal format is realized before the transmission to the Apache Spark cluster
(Figure 8.9(a)).

• Consumer-Side (CS). Data are transmitted by the Kafka Client in the same for-
mat as they are generated. Data transformation in the internal format is per-
formed directly on the Apache Spark cluster (Figure 8.9(b)).

Data, for this kind of experiments, is not randomly generated as in the previous
case. We need to have information that is not already in the internal format, but is
acquired, in csv format, from the (ARPA) (the Lombardy Regional Meteorological
Agency)2. Specifically, we get temperature and humidity data from some sensors
located inside the city of Milan. Below an example of some temperature measure-
ment.

2http://www.arpalombardia.it/siti/arpalombardia/meteo/richiesta-dati-
misurati/Pagine/RichiestaDatiMisurati.aspx



8.4. Semantic Virtualization Experiments 175

FIGURE 8.8: Processing time and batch size of different DAPs



176 Chapter 8. Experimental Evaluation

(a) PS architecture (b) CS architecture

FIGURE 8.9: Architectures for the application of the transformation
rules

1 45 . 466667 , 9 . 216667 , 2015/01/02 06 : 40 , 0 . 6
2 45 . 466667 , 9 . 216667 , 2015/01/02 06 : 50 , 0 . 6
3 45 . 466667 , 9 . 216667 , 2015/01/02 07 : 00 , 0 . 5
4 45 . 466667 , 9 . 216667 , 2015/01/02 07 : 10 , 0 . 4
5 45 . 466667 , 9 . 216667 , 2015/01/02 07 : 20 , 0 . 5

CODE 8.2: Node representation

The first two attributes are the latitude and longitude of the sensor, the third is date
and time of the measurement while the last attribute corresponds to the average tem-
perature measured in Celsius degree in the last 10 minutes. Even if we considered
the data produced in a long period of time, they are quite small. For this reason, the
Kafka producer reads cyclically the same csv files.

8.4.1 Type of Experiments

The experiment for comparing the execution times on the transformation Producer-
Side and Consumer-Side, have been conducted on a single machine and on a clus-
ter of 5 machines, as shown in Figure 8.1. We here report the most representatives
depending on the data acquisition services adopted (blocking and non blocking).
Specifically, we detail the following three types of experiments:

• Print: 10 million records are ingested through the Kafka client in the system
according to a specific topic. The Spark script receives the data and every 3
seconds prints the result on the console log (Figure 8.10 (a)). This is the easiest
operation in which no elaboration of the data is required.

• Aggregate: the Kafka client ingests 10 million records to one topic. The Spark
script receives the data and aggregates the records on a specific attribute every
6 seconds. The aggregation function is applied on the other attributes (Fig-
ure 8.10 (b)). This is an example of blocking service that requires to collect a
certain number of tuples, from a single source, before the application of the
transformation.

• Join: the number of ingested data through the Kafka client is 20 million records
through two different topics (10 million records for each topic). The Spark



8.4. Semantic Virtualization Experiments 177

FIGURE 8.10: Type of experiments

script performs a Streaming Join on the records every 6 seconds (Figure 8.10
(c)). This is the most complicated experiment because tuples from different
sources need to be collected and different transformation should be applied
before performing the Join according to the specific time window.

In the presentation of results we use the following notation that is a combination
of the approach used (Producer-Side or Consumer-Side) and the type of experiment
(Print, Aggregate, or Join):

• PSP is the Producer-Side Print. Data is transformed in the internal format on
the Kafka Producer-Side and the Apache Spark cluster only needs to print the
incoming "raw" data, without elaborations.

• CSP is the Consumer-Side Print. Differently from the PSP, data is transmitted
as arrive, without transformations. The Apache Spark cluster needs to gather
the data transform them into the internal data format and then print the result.

• PSA is the Producer-Side Aggregate. The information produced by the sensors
is transformed in the internal format before being transmitted to the Apache



178 Chapter 8. Experimental Evaluation

Spark cluster. Data is then aggregate every 6 seconds.

• CSA is the Consumer-Side Aggregate. Raw data from sensor on the Apache
Spark cluster is first of all transformed from the original format into the inter-
nal data format. Then, every 6 seconds, it is aggregated.

• PSJ is the Producer-Side Join. Data from two sensors is acquired and trans-
formed by the Kafka Producer and is then joined on the Apache Spark cluster.

• CSJ is the Consumer-Side Join. This experiment performs a join of data of two
sources but the information they produce must be transformed on the internal
format before being elaborated.

In our tests the Apache Kafka Server runs in one of the worker of our cluster of
machines. In the Print and Aggregate experiments the Kafka clients runs on the
same machine of the Kafka Server while in the Join experiments, we need to have
two different Kafka Producer that generate data on two different topics. For this
reason one Kafka Producer runs on the same machine of the Apache Server and the
second one runs on one of the cluster worker.

8.4.2 Results

These experiments aim at discovering the cost of performing the transformation be-
fore or after the transmission of the data. By means of the experimental activity we
can point out some interesting observations. Before discussing the results on Pro-
cessing Time, Scheduling Delay and Total Delay of each test we need to give a look
to the diagram on Figure 8.11. This diagram reports the number of tuples that are
transmitted every second in the Producer-Side architecture and in the Consumer-
Side architecture by Apache Kafka. From the diagram is quite evident that in our
setting the application of transformations "producer" side has negative effectiveness
on the number of records produced every second. The average rate in the PS ap-
proach is around 24 thousand tuples while in the CS we have an average size of
55 thousand records. This means that the Consumer-Side approach generates more
than the double of tuples per second. This is probably caused by the introduction of
computation in order to transform the raw data into the internal data model.

For what concern the Join the average number of data per second is exactly the
double in both approaches: 48 thousand tuples per second for the PS approach and
110 thousand tuples per second in the CS approach.

Processing Time. Figures 8.12(a) and 8.12(b) show the performance of the Producer-
Side and Consumer-Side approach for the Print example. The interesting result is
that the cluster execution has, in both approaches, worse performance than the local
execution. Locally, the Processing Time, lasts 32 ms in the PS approach and 47 ms



8.4. Semantic Virtualization Experiments 179

FIGURE 8.11: Average generated tuples per second for the three ex-
periments

in the CS, while in the cluster execution the Processing Times are 46 ms for PS and
63 ms for CS. Spark script executes a simple operation. The time it takes to route
the execution of the operation through the machines of the cluster worsens the per-
formances. In this case we can see that in the CS execution the Processing Time are
higher than the PS, but if we take in account the batch size presented in Figure 8.11
we can see that the amount of data to process is more than the double.

In the Aggregate and Join operations (blocking operators) we have better Process-
ing Times. If, in the Aggregate tests (Figure 8.12(c) and Figure 8.12(d)) we have an
improvement of more than a second (from 2,8 seconds to 1,5 seconds in the PS ap-
proach and form 6,6 seconds to 4,6 seconds in the CS approach), in the Join tests
(Figure 8.12(e) and Figure 8.12(f)) we have a remarkable improvement (from 16,5
seconds to 5,70 seconds in the PS approach and from 20,1 to 7,9 seconds in the CS
approach).

Scheduling Delay. The second feature to analyze is the Scheduling Delay. The tests
provided us with interesting results, especially in the comparison of Producer-Side
and Consume-Side.

In the Print experiments (Figures 8.13(a) and 8.13(b)) both, PS and CS approaches
and both, local and cluster execution there are no remarkable differences. The av-
erage Scheduling Delay is around 1,5 ms for the PS approach and 1,8 ms for the CS
approach. The main differences are shown in the other two tests. In the Aggregate
case, Scheduling Delay in the PS approach is around 405 ms locally and 1,5 ms in
the cluster while in the CS approach the local Scheduling Delay is more than 2 min-
utes and the local is close to 1 minute. If we take a look at the graph represented in
Figures 8.13(c) and 8.13(d) we can see how the trend of the Scheduling Delay in the
PS approach is similar to a constant in the cluster case and in the local case is more



180 Chapter 8. Experimental Evaluation

(a) PS Print (b) CS Print

(c) PS Aggregate (d) CS Aggregate

(e) PS Join (f) CS Join

FIGURE 8.12: Processing Times of the considered Data Acquisition
Plans

floating, while in the CS approach the graph tends to grow constantly, especially in
the local case.

The interesting point is given with the execution of the Join experiments. As shown
on Figures 8.13(e) and 8.13(f) the Scheduling Delay of the local execution in the PS
is smaller that the cluster execution in the CS approach (the highest value in our
experiments are 390 seconds for the PS local approach and 580 seconds for the CS
cluster approach). Another feature to notice is that in the cluster execution of the
PS approach the Scheduling Delay is almost constant while in all the other cases the
Scheduling Delay is represented as an increasing function.



8.4. Semantic Virtualization Experiments 181

(a) PS Print (b) CS Print

(c) PS Aggregate (d) CS Aggregate

(e) PS Join (f) CS Join

FIGURE 8.13: Scheduling Delay of the considered Data Acquisition
Plans

Total Delay. Figure 8.14 provides details about the Total Delay for every experi-
ment we conducted. As we can see the Print operation gives the best results in the
Consumer-Side approach by taking more the half of the time of the Producer-Side
approach either in the local and cluster mode. For what concern the Aggregation
Total Delay is quite similar to every experiment we have conducted. The local ex-
ecution takes the same time in both approaches (7 minutes and 30 seconds) while
in the cluster execution there is an improvement of more than 1 minutes from the
Producer-Side approach an the Consumer-Side approach.

The Join operator is the one that introduces the main differences between the two
approaches. If we consider the difference of the local and cluster execution, in both



182 Chapter 8. Experimental Evaluation

FIGURE 8.14: Total Delay for every experiment and for the different
approaches

approaches the cluster execution gives the better results. For what concern the dif-
ference between the PS and CS approach we can see that also the execution of the
Join locally is sensibly better than the execution in Cluster mode of the CS approach
(770 seconds compared to 1200 seconds). The best performances are the ones pro-
vided by the execution in a Cluster with the PS approach. It takes 670 seconds to
join 20 million tuples.

8.5 Concluding Remarks

The introduction of the transformation phase has definitely worsened the perfor-
mances compared to the first experiments. However, in a real situation and as de-
scribed in the whole thesis, the format of the data is heterogeneous and transfor-
mation from one format to another is often required. For what concern the two
approaches we can highlight some interesting observations. Surely in the Producer-
Side architecture the tuples are processed by Apache Spark not exactly in the same
moment that they are produced. The elaboration performed with the transformation
introduced a delay in the transmission of tuples. On the other hand the Consumer-
Side approach has the advantage that the information are sent as they arrive to the
Kafka Server but the larger size of the batch introduces a higher Scheduling Delay.
This leads to a longer time to perform the same amount of informations, especially
for the high computational services as Aggregation or Join and, if too many batches
will be queued the system will come to a grinding halt eventually.



183

Conclusions and Future Research
Directions

In this thesis we presented StreamLoader, a system developed with the aim of han-
dling the heterogeneity of data produced by sensors in the field of Internet of Things.
The thesis has been focused, in the first part, on the presentation of the issue of
the Semantic Virtualization of sensors belonging to different cross-domain IoT plat-
forms. We identified and introduced a flexible multi-granular Spatio-Temporal-
Thematic data model according to which the schema of heterogeneous sensors be-
longing to cross-domain IoT platforms can be easily transformed by using standard
wrapping tools. Then, ta Semantic Virtualization process has been introduced ac-
cording to which both the sensors and the schema of the events generated by the
sensors are semantically characterized by means of ontology instances. This has
been conceived by introducing a Domain Ontology, that is the conceptualization of
a domain of interest, that extends concepts and ideas of some of the most important
IoT ontologies already available. The process of Semantic Virtualization is carried
out by taking into account the Spatio-Temporal-Thematic dimensions according to
which the events generated by the sensors are observed and has the purpose to move
towards the adoption of a common semantics of the sensor event streams.

In our system the description can be partial in order to deal with situations in which
sensors are not equipped with the facilities or the properties for associating the
Spatio-Temporal-Thematic dimensions specified in the model. Conditions are spec-
ified for guaranteeing the consistency of a sensor relying on the consistency of the
Spatio-Temporal-Thematic dimensions of the produced events. It allows us also to
enrich the description of the sensors with static information or with metadata taken
from the concept of the Domain Ontology or external data sources.

The second part addressed the sound and consistent generation of Data Acquisi-
tion Plans by filtering, joining, aggregating and transforming events produced by
the sensors and their execution on a real environment. A set of services has been
proposed and described. The result of application of each service produces a new
stream whose consistency can be evaluated w.r.t. the Domain Ontology for its se-
mantic characterization. The Data Acquisition Plans are then automatically trans-
lated in a language of new generation for processing big data streams, specifically



184 Chapter 8. Experimental Evaluation

Apache Spark Streaming. Then the execution is performed in a distributed environ-
ment in order to easily scale to the number of sensors and events generated by the
sensors.

The proposed solution allow us to create "soft bridges" among the sensor belonging
to cross-domain IoT platforms for the definition of Data Acquisition Plans required
by the users. This means that if a user wishes to develop another analysis in the
context of another Domain Ontology a new "soft bridge" can be easily specified.
The whole system is supported by a visual environment that provides interfaces
that support domain experts during the Semantic Virtualization phase and in the
design of the DAP interfaces that allows them to specify services or configuration
parameters on different levels without the use of specific programming languages.

The results obtained through this thesis can be the starting point for new research
challenges. As future work we aim at investigating how to include different kinds
of constraints into the Domain Ontology. We wish to include restrictions on the
mandatory occurrence of properties and on the verification of logical formulas on
the ontological instances. The introduction of these constraints will give the chance
to introduce a new definition of consistency and to produce Data Acquisition Plan
that are more meaningful.

Another research direction is the investigation of machine learning algorithms for
supporting the user in the semi-automatic semantic labeling of the attributes be-
longing to the schema of new discovered sensors. This is a relevant feature to be
considered when dealing with new sensors belonging to an external IoT Platform.
The approach could also suggest possible annotation with a level of confidence of
the quality of the suggestion. Moreover, it would be nice to exploit the semantic
annotations of sensors for the identification of components of the Domain Ontology
that need to be evolved in order to better describe a certain domain context.

Regarding the execution of the Data Acquisition Plan, we wish to introduce the
possibility to translate the DAP in other Stream Processing Frameworks. From the
plethora of systems available the most interesting and promising is surely Apache
Flink. The aim of this work is to compare the different framework both from the
point of view of expressiveness of the different platforms and from the point of view
of scalability and efficiency of the generated scripts. Moreover, the current organi-
zation of the services in our graphical environment easily allows the introduction of
new services that work on the event stream data model. For this reason, it would
be nice to extend the set of services made available by StreamLoader with machine
learning algorithms and user-defined applications that allow to execute sophisti-
cated manipulation of sensor data streams and compare their execution in different
stream processing frameworks.

At the current stage, once the script is generated and executed in the cluster of ma-
chines, it is not possible to monitor its execution. Therefore, an interesting research



8.5. Concluding Remarks 185

direction is related to the extension of the system for monitoring the execution of
the single services and of the entire DAP. This extension requires to modify the code
of the generated scripts for keeping track of the processed events and to identify
visualization approaches of the generated statistics.





187

Bibliography

[1] D. Abadi et al. “The Aurora and Borealis Stream Processing Engines”. In:
Data Stream Management (2016), pp. 337–359.

[2] K. Aberer, M. Hauswirth, and A. Salehi. The Global Sensor Networks Middle-
ware for Efficient and Flexible Deployment and Interconnection of Sensor Networks.
Tech. rep. Distributed Information Systems Laboratory LSIR, 2006.

[3] M. B. Alaya et al. “Toward Semantic Interoperability in OneM2M Architec-
ture”. In: IEEE Communications Magazine 53.12 (2015), pp. 35–41.

[4] C. Ambrosio and S. Widergren. “A Framework for Addressing Interoperabil-
ity Issues”. In: IEEE Power Engineering Society General Meeting, PES ’07. 2007.

[5] IoT Analytics. List Of 640+ Enterprise IoT Projects. URL: https://iot-analytics.
com/product/list-of-640-iot-projects/.

[6] Y. Arens, C. N. Hsu, and C. A. Knoblock. “Query Processing in the SIMS
Information Mediator”. In: Readings in Agents (1998), pp. 82–90.

[7] G. Atemezing et al. “Transforming Meteorological Data into Linked Data”.
In: Semantic Web 4.3 (2013), pp. 285–290.

[8] Z. B. Babovic, J. Protic, and V. Milutinovic. “Web Performance Evaluation for
Internet of Things Applications”. In: IEEE Access 4 (2016), pp. 6974–6992.

[9] D. Bandyopadhyay and J. Sen. “Internet of Things: Applications and Chal-
lenges in Technology and Standardization”. In: Wireless Personal Communica-
tions 58 (2011), pp. 49–69.

[10] R. S. Barga et al. Consistent Streaming Through Time: A Vision for Event Stream
Processing. Tech. rep. CERN, 2006.

[11] P. Barnaghi et al. “Semantics for the Internet of Things: Early Progress and
Back to the Future”. In: International Journal on Semantic Web and Information
Systems 8.1 (2012), pp. 1–21.

[12] P. Bellini et al. “Km4City Ontology Building vs Data Harvesting and Clean-
ing for Smart-city Services”. In: Journal of Visual Languages and Computing 25.6
(2014), pp. 827–839.

[13] R. Bendadouche et al. “Extension of the Semantic Sensor Network Ontology
for Wireless Sensor Networks: the Stimulus-Wsnnode-Communication Pat-
tern”. In: 5th International Workshop on Semantic Sensor Network, SSN12. 2012.

[14] S. Bendel et al. “A Service Infrastructure for the Internet of Things Based on
XMPP”. In: IEEE International Conference on Pervasive Computing Community
Workshop, PERCOM Workshop. 2013.

https://iot-analytics.com/product/list-of-640-iot-projects/
https://iot-analytics.com/product/list-of-640-iot-projects/


188 BIBLIOGRAPHY

[15] M. Bermudez-Edo et al. “IoT-Lite: A Lightweight Semantic Model for the In-
ternet of Things”. In: International IEEE Conferences on Ubiquitous Intelligence
and Computing, Advanced and Trusted Computing, Scalable Computing and Com-
munications, Cloud and Big Data Computing, Internet of People, and Smart World
Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). 2016.

[16] E. Bertino, S. Nepal, and R. Ranjan. “Building Sensor-Based Big Data Cyber-
infrastructures”. In: IEEE Cloud Computing 2.5 (2015), pp. 64–69.

[17] C. Bettini, S. Jajodia, and S. Wang. Time Granularities in Databases, Data Mining,
and Temporal Reasoning. Springer, 2000.

[18] O. Bibani et al. “A Demo of IoT Healthcare Application Provisioning in Hy-
brid Cloud/Fog Environment”. In: IEEE International Conference on Cloud Com-
puting Technology and Science, CloudCom. 2016.

[19] M. Blackstock and R. Lea. “IoT Interoperability: A Hub-Based Approach”. In:
2014 International Conference on the Internet of Things (IOT). 2014.

[20] F. Bonomi, J. Milito R. Zhu, and S. Addepalli. “Fog Computing and its Role
in the Internet of Things”. In: Federated Conference on Computer Science and
Information Systems, Fed-CSIS ’14. 2014.

[21] S. Borgo and C. Masolo. “Ontological Foundation of Dolce”. In: Springer,
2010, pp. 279–295.

[22] M. Botts et al. “Ogc R© Sensor Web Enablement:Overview and High Level
Architecture”. In: International Conference on GeoSensor Networks. 2006.

[23] A. Brito et al. “Scalable and Low-Latency Data Processing with Stream MapRe-
duce”. In: 2011 IEEE 3rd International Conference on Cloud Computing Technol-
ogy and Science, CloudCom. 2011.

[24] A. Bröring et al. “Enabling IoT Ecosystems through Platform Interoperabil-
ity”. In: IEEE Software (2017).

[25] H. Cai et al. “Service-Oriented Architecture”. In: Services Computing (2007),
pp. 89–113.

[26] E. Camossi, E. Bertino, and M. Bertolotto. “Multi-Granular Spatio-Temporal
Object Models: Concepts and Research Directions”. In: Second international
conference on Object databases, ICOODB’09. 2009.

[27] E. Camossi et al. “Handling Expiration of Multigranular Temporal Objects”.
In: Journal of Logic and Computation 14.1 (2004), pp. 23–50.

[28] S. Castano et al. “Ontology and Instance Matching”. In: Knowledge-Driven
Multimedia Information Extraction and Ontology Evolution 6050 (2011), pp. 167–
195.

[29] R. Cattel. “Scalable SQL and NoSQL Data Stores”. In: ACM SIGMOD Record
39.4 (2010), pp. 12–27.

[30] M. A. Chaqfeh and N. Mohamed. “Challenges in Middleware Solutions for
the Internet of Things”. In: 3th International Conference on Collaboration Tech-
nologies and Systems, CTS’12. 2012.



BIBLIOGRAPHY 189

[31] M. Compton et al. “The SSN Ontology of the W3C Semantic Sensor Network-
Incubator Group”. In: Web Semantics: Science, Services and Agents on the World-
Wide Web 17 (2012), pp. 25–32.

[32] F. Corno, L. De Russis, and A. M. Roffarello. A Semantic Web Approach to
Simplifying TriggerAction Programming in the IoT. URL: https://ifttt.com/
channels.

[33] M.F. Costabile et al. “Visual Interactive Systems for End-User Development:
A Model-Based Design Methodology”. In: Systems, Man and Cybernetics, Part
A: Systems and Humans, IEEE Transactions on 37.6 (2007), pp. 1029–1046.

[34] P. De Bièvre. “The 2012 International Vocabulary of Metrology: "VIM””. In:
Accreditation and Quality Assurance 17.2 (2012), pp. 231–232.

[35] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on Large
Clusters”. In: 6th Symposium on Operating System Design and Implementation,
OSDI’04. 2004.

[36] G. Dimitrakopoulos. “Intelligent Transportation Systems Based on Internet-
Connected Vehicles: Fundamental Research Areas and Challenges”. In: 11th
International Conference on ITS Telecommunications, ITST ’11. 2011.

[37] M. Doyle. Who’s Going to Service All Those "Things" in the IoT? URL: https:
//www.ptc.com/en/product-lifecycle-report/whos-going-to-service-

all-those-things-in-the-iot.
[38] L. van den Drink, J. Tandy, and P. Barnaghi. Spatial Data on the Web Best Prac-

tices. W3C Note. W3C, 2017.
[39] J. Ellingwood. An Introduction to Big Data Concepts and Terminology. URL: https:

//www.digitalocean.com/community/tutorials/an-introduction-to-

big-data-concepts-and-terminology.
[40] ETSI. Machine-to-Machine Communications (m2m); Mia, Dia and Midinterfaces.

URL: http://www.etsi.org/deliver/etsi_ts/102900_102999/102921/02.
01.01_60/ts_102921v020101p.pdf.

[41] J. Euzenat et al. “Ontology Alignment Evaluation Initiative: Six Years of Ex-
perience”. In: Journal of Data Semanics 15 (2011), pp. 158–192.

[42] H. Farhangi. “The Path of the Smart Grid”. In: IEEE Power and Energy Maga-
zine 8.1 (2010), pp. 18–28.

[43] P. Feng and J. R. Hobbs. “Temporal Aggregates in OWL-Time”. In: AAAI Fall
Symposium on Agents and the Semantic Web. 2005.

[44] P. Ferreira, R. Martino, and D. Domingos. “Iot-Aware Business Processes for
Logistics: Limitations of Current Approaches”. In: Inforum Conference. 2010.

[45] I. Fette. The WebSocket Protocol. Tech. rep. Internet Engineering Task Force
(IETF), 2011.

[46] G. Fischer. “Social Creativity, Symmetry of Ignorance and Meta-design”. In:
Knowledge-Based Systems Journal 13.7-8 (2000), pp. 527–537.

[47] G. Fischer et al. “Meta-design: A Manifesto for End-user Development”. In:
Commun. ACM 47.9 (2004), pp. 33–37.

https://ifttt.com/channels
https://ifttt.com/channels
https://www.ptc.com/en/product-lifecycle-report/whos-going-to-service-all-those-things-in-the-iot
https://www.ptc.com/en/product-lifecycle-report/whos-going-to-service-all-those-things-in-the-iot
https://www.ptc.com/en/product-lifecycle-report/whos-going-to-service-all-those-things-in-the-iot
https://www.digitalocean.com/community/tutorials/an-introduction-to-big-data-concepts-and-terminology
https://www.digitalocean.com/community/tutorials/an-introduction-to-big-data-concepts-and-terminology
https://www.digitalocean.com/community/tutorials/an-introduction-to-big-data-concepts-and-terminology
http://www.etsi.org/deliver/etsi_ts/102900_102999/102921/02.01.01_60/ts_102921v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/102900_102999/102921/02.01.01_60/ts_102921v020101p.pdf


190 BIBLIOGRAPHY

[48] G. Fortino et al. “BodyCloud: A SaaS Approach for Community Body Sensor
Networks”. In: Future Generation Computing Systems (2014), 35:62–79.

[49] K. Frank et al. “Sensor-Based Identification of Human Stress Levels”. In: IEEE
International Conference on Pervasive Computing and Communications Workshops,
PerCom Workshops ’13. 2013.

[50] M. Franz et al. “Cytoscape.js: a graph theory library for visualisation and
analysis”. In: Bioinformatics 32.2 (2016), pp. 309–311.

[51] M. Friedewald and O. Raabe. “Ubiquitous Computing: an Overview of Tech-
nology Impacts”. In: Telematics and Informatics 28.2 (2011), pp. 55–65.

[52] E. Friedman and K. Tsoumas. Introduction to Apache Flink: Stream Processing
for Real Time and Beyond. O’Reilly, 2016.

[53] M. Ganzha et al. “Semantic Interoperability in the Internet of Things: An
Overview from the INTER-IoT Perspective”. In: Journal of Network and Com-
puter Applications (2016).

[54] M. Ganzha et al. “Semantic Technologies for the IoT - an INTER-IoT Perspec-
tive”. In: IEEE First International Conference on Internet-of-Things Design and
Implementation, IoTDI. 2016.

[55] B. Gedik et al. “SPADE: the System S Declarative Stream Processing Engine”.
In: 2008 ACM SIGMOD International Conference on Management of data, SIG-
MOD’08. 2008.

[56] C. H. Goh. “Representing and Reasoning about Semantic Conflicts in Hetero-
geneous Information Sources.” PhD thesis. MIT, 1997.

[57] A. J. G. Gray et al. “A Semantically Enabled Service Architecture for Mashups
over Streaming and Stored Data”. In: The Semanic Web: Research and Applica-
tions. ESWC 2011. Lecture Notes in Computer Science 6644 (2011).

[58] T. Gruber. “A Translation Approach to Portable Ontology Specifications”. In:
Knowledge Acquisition 5.2 (1993), pp. 199–220.

[59] T. Gruber. “Toward Principles for the Design of Ontologies Used for Knowl-
edge Sharing”. In: International Journal of Human-Computer Studies 43.5-6 (1995),
pp. 907–928.

[60] J. Gubbi et al. “Internet of Things (IoT): A Vision, Architectural Elements,
and Future Directions”. In: Future Generation Computing Systems 29.7 (2013),
pp. 1645–1660.

[61] B. Guo et al. “Opportunistic IoT: Exploring the Harmonious Interaction Be-
tween Human and the Internet of Things”. In: Journal of Network and Computer
Applications 36.6 (2013), pp. 1531–1539.

[62] C. A. Gutwin, M. Lippold, and T. C. Graham. “Real-time Groupware in the
Browser: Testing the Performance of Web-Based Networking”. In: ACM 2011
conference on Computer supported cooperative work, CSCW’11. 2011.

[63] A. Haller et al. “The SOSA/SSN Ontology: A Joint W3C and OGC Stan-
dard Specifying the Semantics of Sensors, Observations, Actuation, and Sam-
pling”. In: Semantic Web Journal (2018).



BIBLIOGRAPHY 191

[64] S. L. Hamilton et al. “Interoperability - a Key Element for the Grid and DER
of the Future”. In: IEEE Power Engineering Society Transmission and Distribution
Conference. 2006.

[65] D. M. Han and J. H. Lim. “Design and Implementation of Smart Home En-
ergy Management Systems Based on ZigBee”. In: IEEE Transactions on Con-
sumer Electronics 56.3 (2010), pp. 1417–1425.

[66] G. Hauber-Davidson and E. Idris. “Smart Water Metering”. In: Water 33.3
(2006), pp. 56–59.

[67] Healthcare Information and Management Systems Society (HIMSS). What is
Interoperability? 2013. URL: http://www.himss.org/library/interoperability-
standards/what-is?navItemNumber=17333.

[68] Big IoT. Deliverable 2.1 Analysis of Technology Readiness – and Annex. URL: http:
//big-iot.eu/media/deliverables/.

[69] S. Jabbar et al. “A Rest-Based Industrial Web of Things’ Framework for Smart
Warehousing”. In: The Journal of Supercomputing (2016), pp. 1–15.

[70] S. Jabbar et al. “Semantic Interoperability in Heterogeneous IoT Infrastruc-
ture for Healthcare”. In: Wireless Communications and Mobile Computing (2017).

[71] S. Karnouskos. “The Cooperative Internet of Things Enabled Smart Grid”. In:
14th IEEE International Symposium on Consumer Electronics, ISCE ’10. 2010.

[72] W. Keith Edwards and Grinter R. E. “At Home with Ubiquitous Comput-
ing: Seven Challenges”. In: International Conference on Ubiquitous Computing,
Ubicomp 2001. 2001.

[73] M. Khan et al. “Context-Aware Low Power Intelligent Smart Home Based
on the Internet of Things”. In: Computers & Electrical Engineering 52 (2016),
pp. 208–222.

[74] J. Kinley. The Lambda Architecture: Principles for Architecting Realtime Big Data
Systems. URL: http://jameskinley.tumblr.com/post/37398560534/the-
lambda-architecture-principles-for.

[75] M. Kirsche and R. Klauck. “Unify to Bridge Gaps: Bringing XMPP into the
Internet of Things”. In: IEEE International Conference on Pervasive Computing
Community Workshop, PERCOM Workshop. 2012.

[76] C. Knoblock et al. “Semi-Automatically Mapping Structured Sources into the
Semantic Web”. In: 9th Extended Semantic Web Conference. 2012.

[77] S. Kolozali et al. “A Knowledge-based Approach for Real-Time IoT Data
Stream Annotation and Processing”. In: IEEE International Conference on In-
ternet of Things, iThings 2014, Green Computing and Communications, GreenCom
2014, and Cyber-Physical-Social Computing, CPSCom 2014. 2014.

[78] K. Kotis, A. Katasonov, and J. Leino. “Aligning Smart and Control Entities in
the IoT”. In: Internet of Things, Smart Spaces, and Next Generation Networking
7469 (2012), pp. 39–50.

http://www.himss.org/library/interoperability-standards/what-is?navItemNumber=17333
http://www.himss.org/library/interoperability-standards/what-is?navItemNumber=17333
http://big-iot.eu/media/deliverables/
http://big-iot.eu/media/deliverables/
http://jameskinley.tumblr.com/post/37398560534/the-lambda-architecture-principles-for
http://jameskinley.tumblr.com/post/37398560534/the-lambda-architecture-principles-for


192 BIBLIOGRAPHY

[79] M. Kranz. IoT Meets Standards, Driving Interoperability and Adoption. URL: https:
//blogs.cisco.com/digital/iot-meets-standards-driving-interoperability-

and-adoption.
[80] J. Kreps. Questioning the Lambda Architecture. URL: https://www.oreilly.

com/ideas/questioning-the-lambda-architecture.
[81] J. Laskowski. DAGScheduler - Stage-Oriented Scheduler. URL: https://jaceklaskowski.

gitbooks.io/mastering-apache-spark/spark-dagscheduler.html.
[82] J. Laskowski. RDD Lineage - Logical Execution Plan. URL: https://jaceklaskowski.

gitbooks.io/mastering-apache-spark/spark-rdd-lineage.html.
[83] D. Le-Phuoc. Semantic Sensor Network Ontology. W3C Recommendation. W3C,

2017.
[84] D. Le-Phuoc et al. “The Linked Sensor Middleware - Connecting the Real

World and the Semantic Web”. In: Semantic Web Challenge. 2011.
[85] D. Le Puoch et al. “A middleware framework for scalable management of

linked streams”. In: Web Semantics: Science, Services and Agents on the World
Wide Web 16 (2012), pp. 42–51.

[86] M. Lee and J. D. Cho. “Logmusic: Context-Based Social Music Recommen-
dation Service on Mobile Device”. In: ACM International Joint Conference on
Pervasive and Ubiquitous Computing, UbiComp ’14. 2014.

[87] A. H. Levis and L. W. Wagenhals. “C4ISR Architectures: I. Developing a
Process for C4ISR Architecture Design”. In: System Engineering 3.4 (2000),
pp. 225–247.

[88] G. Liang, J. Cao, and W. Zhu. “CircleSense: a Pervasive Computing System
for Recognizing Social Activities”. In: 11th IEEE International Conference on
Pervasive Computing and Communications, PerCom ’13. 2013.

[89] R. A. Light. “Mosquitto: Server and Client Implementation of the MQTT Pro-
tocol”. In: The Journal of Open Source Software 2.13 (2017).

[90] J. Liu et al. “Applications of Internet of Things on Smart Grid in China”.
In: 13th International Conference on Advanced Communication Technology: Smart
Service Innovation through Mobile Interactivity, ICACT ’11. 2011.

[91] M. Lv et al. “Detecting Traffic Congestions Using Cell Phone Accelerome-
ters”. In: International Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp ’14. 2014.

[92] S. Manna and N. Bhunia S. S.and Mukherjee. “Vehicular Pollution Monitor-
ing Using IoT”. In: International Conference on Recent Advances and Innovations
in Engineering, ICRAIE 2014. 2014.

[93] J. Manyika. “The Internet of Things: Mapping the Value Beyond the Hype”.
In: McKinsey Global Institute (2015).

[94] J. Masterton and R. Fa. A Method of Quantifying Human Discomfort Due to Ex-
cessive Heat and Humidity. Ministere de l’Environnement, 1979.

[95] E. Mena et al. “Observer: An Approach for Query Processing in Global Infor-
mation Systems Based on Interoperability Between Pre-Existing Ontologies”.

https://blogs.cisco.com/digital/iot-meets-standards-driving-interoperability-and-adoption
https://blogs.cisco.com/digital/iot-meets-standards-driving-interoperability-and-adoption
https://blogs.cisco.com/digital/iot-meets-standards-driving-interoperability-and-adoption
https://www.oreilly.com/ideas/questioning-the-lambda-architecture
https://www.oreilly.com/ideas/questioning-the-lambda-architecture
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-dagscheduler.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-dagscheduler.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-rdd-lineage.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-rdd-lineage.html


BIBLIOGRAPHY 193

In: 1st IFCIS International Conference on Cooperative Information Systems, CoopIS
’96. 1996.

[96] N. Mitra and Y. Lafon. SOAP Version 1.2 Part 0: Primer (Second Edition). W3C
Recommendation. W3C, 2007.

[97] Y. Mizunuma et al. “Twitter Bursts: Analysis of their Occurrences and Classi-
fications”. In: 8th International Conference on Digital Society, ICDS 2014. 2014.

[98] J.-J. Moreau et al. Web Services Description Language (WSDL) Version 2.0 Part 1:
Core Language. W3C Recommendation. W3C, 2007.

[99] J. P. Morrison. Flow-Based Programming, 2nd Edition: A New Approach to Appli-
cation Development. CreateSpace, 2010.

[100] H. Mueller et al. “From RESTful to SPARQL: A Case Study on Generating
Semantic Sensor Data”. In: 6th International Conferenceon Semantic Sensor Net-
work, SSN13. Vol. 1063. 2013, pp. 51–66.

[101] P. Nesi et al. “Assisted Knowledge Base Generation, Management and Com-
petence Retrieval”. In: International Journal of Software Engineering and Knowl-
edge Engineering 22.8 (2012).

[102] N. Noury et al. “Monitoring Behavior in Home Using a Smart Fall Sensor
and Position Sensors”. In: 1st Annual International IEEE-EMBS Special Topic
Conference on Microtechnologies in Medicine and Biology, MMB ’00. 2000.

[103] N. F. Noy. “Semantic Integration: a Survey of Ontology-Based Approaches”.
In: ACM Sigmod Record 33.4 (2004), pp. 65–70.

[104] National Security Agency (NSA). NSA Releases First in Series of Software Prod-
ucts to Open Source Community. 2014. URL: https://www.nsa.gov/news-
features/press-room/press-releases/2014/nifi-announcement.shtml.

[105] Open Mobile Alliance (OMA). Open Mobile Alliance (OMA) Specification. URL:
http://technical.openmobilealliance.org/Technical/release_program/

docs/NGSI/V1_0-20120529-A/OMA-TS-NGSI_Context_Management-V1_0-

20120529-A.pdf.
[106] D. Pavithra and R. Balakrishnan. “Iot Based Monitoring and Control System

for Home Automation”. In: Global Conference on Communication Technologies,
GCCT. 2015.

[107] M. Petre and A. F. Blackwell. “Children as Unwitting End-User Program-
mers”. In: Proc. of VL/HCC 2007. 2007, pp. 239–242.

[108] R. W. Picard. Affective Computing. MIT Press, 1997.
[109] R. Pike et al. “Interpreting the Data: Parallel Analysis with Sawzall”. In: Sci-

entific Programming Journal 13.4 (2003), pp. 227–298.
[110] G. Pozzani. Temporal, Spatial, and Spatio-temporal Granularities. 2009. URL: http:

//www.di.univr.it/documenti/OccorrenzaIns/matdid/matdid955973.

pdf.
[111] J. Pradilla, C. Palau, and M. Esteve. “Lightweight Sensor Observation Service

(SOS) for Internet of Things (IoT)”. In: Processing of ITU Kaleidoscope Confer-
ence (2015).

https://www.nsa.gov/news-features/press-room/press-releases/2014/nifi-announcement.shtml
https://www.nsa.gov/news-features/press-room/press-releases/2014/nifi-announcement.shtml
http://technical.openmobilealliance.org/Technical/release_program/docs/NGSI/V1_0-20120529-A/OMA-TS-NGSI_Context_Management-V1_0-20120529-A.pdf
http://technical.openmobilealliance.org/Technical/release_program/docs/NGSI/V1_0-20120529-A/OMA-TS-NGSI_Context_Management-V1_0-20120529-A.pdf
http://technical.openmobilealliance.org/Technical/release_program/docs/NGSI/V1_0-20120529-A/OMA-TS-NGSI_Context_Management-V1_0-20120529-A.pdf
http://www.di.univr.it/documenti/OccorrenzaIns/matdid/matdid955973.pdf
http://www.di.univr.it/documenti/OccorrenzaIns/matdid/matdid955973.pdf
http://www.di.univr.it/documenti/OccorrenzaIns/matdid/matdid955973.pdf


194 BIBLIOGRAPHY

[112] E. Rahm and P. A. Bernstein. “A Survey of Approaches to Automatic Schema
Matching”. In: The VLDB Journal 10.4 (2001), pp. 334–350.

[113] V. Rajaraman et al. “Enabling Plug-n-Play for the Internet of Things with Self
Describing Devices”. In: International Conference on Information Processing in
Sensor Networks. 2015.

[114] N. Rao et al. “Design of Architecture for Efficient Integration of Internet of
Things and Cloud Computing”. In: International Journal of Advanced Research
in Computer Science 8.3 (2017), pp. 392–396.

[115] J. Rapoza. SPARQL Will Make the Web Shine. URL: http://www.eweek.com/
development/sparql-will-make-the-web-shine.

[116] Y. Raymond et al. The Timeline Ontology. URL: http://motools.sourgeforge.
net/timeline/timeline.html.

[117] M. A. Razzaque et al. “Middleware for Internet of Things: a Survey”. In: IEEE
Internet of Things Journal 3.1 (2016), pp. 70–95.

[118] R. J. Robles et al. “A Review on Security in Smart Home Development”. In:
International Journal of Advanced Science and Technology 15 (2010), pp. 13–22.

[119] K. Rose, S. Eldridge, and L. Chapin. The Internet of Things (IoT): An Overview
Understanding the Issues and Challenges of a More Connected World. Internet So-
ciety, 2015.

[120] Y. K. Row and T. J. Nam. “CAMY: Applying a Pet Dog Analogy to Everyday
Ubicomp Products”. In: ACM International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp ’14. 2014.

[121] J. Rowley. “The Wisdom Hierarchy: Representations of the DIWK Hierar-
chy”. In: Journal of Information Science 33.2 (2007), pp. 163–180.

[122] E. A. Rundensteiner et al. “CAPE: A Constraint-Aware Adaptive Stream Pro-
cessing Engine”. In: Stream Data Management (2005), pp. 83–111.

[123] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core. URL:
http://www.rfc-editor.org/info/rfc6120.

[124] T. Scholz et al. “An Integration Method for the Specification of Rule-Oriented
Mediators”. In: International Symposium on Database Applications in Non-Traditional
Environments, DANTE’99. 1999.

[125] A. Seaborn and E. Prud. SPARQL Query Language for RDF. W3C Recommen-
dation. W3C, 2008.

[126] Semantic Sensor Network Ontology. 2005. URL: https://www.w3.org/2005/
Incubator/ssn/ssnx/ssn.

[127] M. Sengupta et al. “Role of Middleware for Internet of Things: A Study”.
In: International Journal of Computer Science & Engineering Survey 2.3 (2011),
pp. 94–105.

[128] J. G. Shanahan and L. Dai. “Large Scale Distributed Data Science Using Apache
Spark”. In: 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD’15. 2015.

[129] S. Shekhar, H. Xiong, and X. Zhou. Enciclopedia of GIS. Springer, 2017.

http://www.eweek.com/development/sparql-will-make-the-web-shine
http://www.eweek.com/development/sparql-will-make-the-web-shine
http://motools.sourgeforge.net/timeline/timeline.html
http://motools.sourgeforge.net/timeline/timeline.html
http://www.rfc-editor.org/info/rfc6120
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn


BIBLIOGRAPHY 195

[130] Z. Shelby, K. Hartke, and C. Bormann. “The Constrained Application Proto-
col (CoAP)”. In: (2014).

[131] Z. Sheng et al. “A survey on the ietf protocol suite for the internet of things:
standards, challenges, and opportunities”. In: IEEE Wireless Communications
20.6 (2013), pp. 91–98.

[132] A. Sheth, C. Henson, and S. S. Sahoo. “Semantic Sensor Web”. In: IEEE Inter-
net Computing 12.4 (2008), pp. 78–83.

[133] W. Shi et al. “Edge Computing: Vision and Challenges”. In: IEEE Internet of
Things Journal 3.5 (2016), pp. 637–646.

[134] P. Shvaiko and J. Euzenat. “Ontology Matching: State of the Art and Future
Challenges”. In: IEEE Transaction on Knowledge and Data Engineering (2011).

[135] A. Sixsmith. “A Smart Sensor to Detect the Falls of the Elderly”. In: IEEE
Pervasive Computing 3.2 (2004), pp. 42–47.

[136] J. Soldatos et al. “OpenIoT: Open Source Internet-of-Things in the Cloud”.
In: Interoperability and Open-Source Solutions for the Internet of Things (2015),
pp. 13–25.

[137] S. Staab and R. Studer. Handbook on Ontologies. Springer, 2009.
[138] H. Stuckenschmidt et al. “Enabling technologies for interoperability”. In: 14th

International Symposium of Computere Science for Environmental Protection. 2000.
[139] M. Taheriyan et al. “Learning the Semantics of Structured Data Sources”. In:

Web Semantics: Science, Services and Agents on the World Wide Web 37-38 (2016),
pp. 152–169.

[140] K. M. M. Thein. “Apache Kafka: Next Generation Distributed Messaging Sys-
tem”. In: International Journal of Scientific Engineering and Technology Research
3.47 (2014), pp. 9478–9483.

[141] M. Uschold and M. Gruninger. “Ontologies: Principles, Methods and Appli-
cations”. In: Knowledge Engineering Review 11.2 (1996), pp. 93–155.

[142] H. van der Veer and a. Wiles. Achieving Technical Interoperability - the ETSI
Approach. Tech. rep. ETSI, 2008.

[143] O. Vermesan and P. Friess. “Digitising the Industry: Internet of Things Con-
necting the Physical, Digital and Virtual Worlds”. In: vol. IoT Platforms Ini-
tiative. River Publisher, 2016, pp. 265–291.

[144] W3C. SOSA, SSN, O&M Mapping Table. 2017. URL: https://www.w3.org/
2015/spatial/wiki/Mapping_Table.

[145] H. Wache et al. “Ontology-Based Integration of Information - A Survey of
Existing Approaches”. In: IJCAI-01 Workshop. 2001.

[146] S. J. Walker. “Big Data: A Revolution That Will Transform How We Live,
Work, and Think”. In: International Journal of Advertising 33.1 (2015), pp. 181–
183.

[147] C. Wang et al. “A General Sensor Web Resource Ontology for Athmosferic
Observation”. In: IEEE International Geoscience and Remote Sensing Symposium,
IGARSS 2011. 2011.

https://www.w3.org/2015/spatial/wiki/Mapping_Table
https://www.w3.org/2015/spatial/wiki/Mapping_Table


196 BIBLIOGRAPHY

[148] C. Wang et al. “Studentlife: Assessing Mental Health, Academic Performance
and Behavioral Trends of College Students Using Smartphones”. In: ACM
International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp
’14. 2014.

[149] M. Weiser. “The Computer for the 21st Century”. In: SIGMOBILE Mobile Com-
puting and Communication Review 3.3 (1999), pp. 3–11.

[150] G. Xiao et al. “User Interoperability with Heterogeneous IoT Devices Through
Transformation”. In: IEEE Transactions on Industrial Informatics 10.2 (2014),
pp. 1486–1496.

[151] B. Yan and G. Huang. “Supply Chain Information Transmission Based on
RFID and Internet of Things”. In: 2nd ISECS International Colloquium on Com-
puting, Communication, Control, and Management, CCCM ’09. 2009.

[152] W. Yong. Deliverable 2.1: Analysis of Technology Readiness of Technologies and
Platforms for the Internet of Things. 2016. URL: http://big-iot.eu/media/
deliverables/.

[153] M. Yu et al. “A Posture Recognition-Based Fall Detection System for Monitor-
ing an Elderly Person in a Smart Home Environment”. In: IEEE Transactions
on Information Technology in Biomedicine 16.6 (2012), pp. 1274–1286.

[154] M. Zaharia et al. “Spark: Cluster Computing with Working Sets”. In: 2nd
USENIX conference on Hot topics in cloud computing. 2010.

[155] T. Zahariadis et al. “FIWARE Lab: Managing Resources and Services in a
Cloud Federation Supporting Future Internet Applications”. In: IEEE/ACM
7th International Conference on Utility and Cloud Computing, UCC 14. 2014.

[156] K. Zettsu et al. “Complex Asthma Risk Factor Recognition from Heteroge-
neous Data Streams”. In: IEEE International Conference on Multimedia and Expo
Workshops, ICMEW. 2015.

[157] K. Zettsu et al. “Exploring Spatio-Temporal-Theme Correlation Between Phys-
ical and Social Streaming Data for Event Petection and Pattern Interpretation
from Heterogeneous Sensors”. In: IEEE International Conference on Big Data.
2015.

[158] G. Zhao et al. “A System for Pesticide Residues Detection and Agricultural
Products Traceability Based on Acetylcholinesterase Biosensor and Internet
of Things”. In: International Journal of Electrochemical Science 10.4 (2015), pp. 3387–
3399.

[159] J. Zhao et al. “The Study and Application of the IOT Technology in Agricul-
ture”. In: 3rd IEEE International Conference on Computer Science and Information
Technology, ICCSIT ’10. 2010.

[160] J. Zheng et al. “The Internet of THings”. In: IEEE Communications Magazine
49.11 (2011), pp. 30–31.

[161] E. Zimànyi and G. Pozzani. “Defining Spatio-Temporal Granularities for Raster
Data”. In: British National Conference on Databases, BNCOD 2010. 2010.

http://big-iot.eu/media/deliverables/
http://big-iot.eu/media/deliverables/

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	IoT Platforms. Current Features and Future Trends
	IoT Architecture Building Blocks
	The Device Layer
	The Gateway Layer
	The Integration Layer
	The Application Layer

	IoT Platforms
	Vertical IoT Platforms
	Cross-Domain IoT Platforms

	Comparison of IoT Platforms
	Concluding Remarks

	Semantic Interoperability in the IoT Context
	The Issues of Interoperability
	IoT Interoperability
	Semantic Interoperability

	Ontologies for IoT
	Km4City
	Stream Annotation Ontology (SAO)
	W3C Semantic Sensor Network Ontology (SSN)
	IoT-Lite

	Semantic Description Techniques
	Mapping Techniques

	Big IoT Data Processing
	Characteristics of Big Data
	Communication Protocols
	Request-Reply Interaction
	Push-Based Data Propagation
	Publish-Subscribe Interaction Model

	Batch Processing Systems
	Stream Processing Systems
	Hybrid Processing Systems
	Comparison of IoT Streaming Systems

	Syntactic Data Model and Domain Ontology
	The STT Syntactic Data Model
	Spatial and Temporal Granularities and Thematic Dimensions
	Temporal and Spatial Types and Values
	STT Events and Stream Data Model

	The Domain Ontology
	Spatial Dimension
	Temporal Dimension
	Thematic Dimension

	Concluding Remarks

	Semantic Virtualization of Sensors
	Semantic Discovery of Sensors
	Dealing with Different Formats
	The Sensor Discovery Algorithm
	Semantic Labeling

	Evaluation of Sensor Consistency
	Semantic Characterization of Sensors
	Consistency of Sensor Schema w.r.t. the Domain Ontology

	Automatic Transformation of Sensor Events

	Sound and Consistent Data Acquisition Plans
	Data Acquisition Services
	Non-Blocking Services
	Blocking Services

	Data Acquisition Plan
	Sound/Consistent Specification of Data Acquisition Plan
	Verification of Consistency in a Data Acquisition Plans
	Auxiliary Sensors in the Domain Ontology
	A Consistent Data Acquisition Plan


	The StreamLoader Prototype
	The Overall StreamLoader Environment
	Semantic Virtualization Graphical Specification
	Data Acquisition Plan Graphical Specification
	Data Acquisition Plan Translation
	JSON Representation of a DAP
	Configuration
	Translation of Sources and Destination
	Translation of Services
	The Overall Translation Algorithm


	Experimental Evaluation
	Environment and Tests Configuration
	Local and Cluster Configuration
	Data Acquisition Plan Configuration and Metrics

	Data Acquisition Plan Execution Experiments
	Results

	Further Data Acquisition Plan Execution Experiments
	Results

	Semantic Virtualization Experiments
	Type of Experiments
	Results

	Concluding Remarks

	Conclusion
	Bibliography

