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Abstract

A k-limited automaton is a linear bounded automaton that may rewrite each
tape cell only in the first k visits, where k > 0 is a fixed constant. It is known
that these automata accept context-free languages only. We investigate the de-
scriptional complexity of limited automata. Since the unary languages accepted
are necessarily regular, we first study the cost in the number of states when
finite automata simulate a unary k-limited automaton. For the conversion of a
4n-state deterministic 1-limited automaton into one-way or two-way determin-
istic or nondeterministic finite automata, we show a lower bound of n - F(n)
states, where F' denotes Landau’s function. So, even the ability to deterministi-
cally rewrite any cell only once gives an enormous descriptional power. For the
simulation cost for removing the ability to rewrite each cell £ > 1 times, more
precisely, the cost for the simulation of sweeping unary k-limited automata by
deterministic finite automata, we obtain a lower bound of n - F/(n)*. The upper
bound of the cost for the simulation by two-way deterministic finite automata
is a polynomial whose degree is quadratic in k. If the k-limited automaton is
rotating, the upper bound reduces to O(n**!) and the lower bound derived is
Q(n*+1) even for nondeterministic two-way finite automata. So, for rotating
k-limited automata, the trade-off for the simulation is tight in the order of mag-
nitude. Finally, we consider the simulation of k-limited automata over general
alphabets by pushdown automata. It turns out that the cost is an exponential
blow-up of the size. Furthermore, an exponential size is also necessary.

Keywords: Limited automata, descriptional complexity, simulation, finite
automata, pushdown automata, unary languages.

1. Introduction

The cost for the simulation of one formal model by another is one of the main
topics of descriptional complexity, where the cost is measured in close connec-
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tion to the sizes of the models. Such simulations are of particular interest when
both formal models capture the same family of languages. A fundamental re-
sult is that nondeterministic finite automata can be simulated by deterministic
finite automata by paying the cost of exponentially many states (see, for ex-
ample, [16]). Among the many models characterizing the regular languages, an
interesting variant is the linear bounded automata where the time is restricted
as well. It was shown by Hennie [5] that linear-time computations cannot ac-
cept non-regular languages. This result has been improved to o(nlogn) time
by Hartmanis [4]. In particular, the former result implies that a linear bounded
automaton where any tape cell may be visited only a constant number of times
accepts a regular language. Recent results [24] showed that the upper as well as
the lower bound for converting a weight-reducing machine of this type, that is,
each transition is required to lower the weight of the scanned symbol, into a de-
terministic finite automaton is doubly exponential. A related result [1] showed
that if a two-way finite automaton is allowed to freely place a pebble on the
tape, then again no non-regular language can be accepted, even if the time is
unlimited. Doubly exponential upper and a lower bounds for the simulation by
a deterministic finite automaton have been derived [16].

A variant of the machines studied by Hennie [5] was introduced by Hib-
bard [6]. He investigated linear bounded automata that may rewrite each tape
cell only in the first k visits, where k is a fixed constant. However, afterwards the
cells can still be visited any number of times (but without rewriting their con-
tents). Hibbard [6] showed that the nondeterministic variant characterizes the
context-free languages provided k£ > 2, while there is a tight and strict hierar-
chy of language classes depending on k for the deterministic variant. The latter
means that the family of languages accepted with k rewrites is strictly included
in the family of languages accepted with k + 1 rewrites. One-limited automata,
deterministic and nondeterministic, can accept only regular languages. From
these results it follows that any wnary k-limited automaton accepts a regular
language only.

Recently, the study of limited automata from the descriptional complexity
point of view has been initiated by Pighizzini and Pisoni [20, 21]. In [21] it was
shown that the deterministic 2-limited automata characterize the deterministic
context-free languages, which complements the result on nondeterministic ma-
chines. Furthermore, conversions between 2-limited automata and pushdown
automata have been investigated. For the deterministic case the upper bound
for the conversion from 2-limited automata to pushdown automata is doubly
exponential. Conversely, the trade-off is shown to be polynomial. If the au-
tomata are nondeterministic, exponential upper and lower bounds are derived
for the 2-limited automata to pushdown automata conversion. Comparisons be-
tween 1-limited automata and finite automata were done in [20]. In particular, a
double exponential trade-off between nondeterministic 1-limited automata and
one-way deterministic finite automata was shown. For deterministic 1-limited
automata the conversion cost a single exponential increase in size. These results
imply an exponential trade-off between nondeterministic and deterministic 1-
limited automata, and they show that 1-limited automata can have less states



than equivalent two-way nondeterministic finite automata.

For a restricted variant of limited automata, so-called strongly limited au-
tomata, it was shown that context-free grammars as well as pushdown automata
can be transformed in strongly limited automata and vice versa with polynomial
cost [19].

Here, we first consider deterministic k-limited automata accepting unary
languages. The descriptional complexity of unary regular languages has been
studied in many ways. On one hand, many automata models such as one-
way finite automata, two-way finite automata, pushdown automata, or context-
free grammars for unary languages were investigated and compared to each
other with respect to simulation results and the size of the simulation (see,
for example, [3, 15, 18, 23]). On the other hand, many results concerning the
state complexity of operations on unary languages have been obtained (see, for
example, [7, 10, 14, 22]).

The results on the expressive power of limited automata imply that any
unary language accepted by some k-limited automaton is regular. So, it is of
interest to investigate the descriptional complexity in comparison with the mod-
els mentioned above. We establish upper and lower bounds for the conversion
of unary deterministic k-limited automata to one-way and two-way finite au-
tomata. Moreover, the simulation of general k-limited automata by pushdown
automata is considered. It turns out that the cost is an exponential blow-up
of the size. From the case of 2-limited automata [21], it turns out that an
exponential gap is also necessary.

2. Preliminaries

We write 3* for the set of all words over the finite alphabet 3. The empty word
is denoted by A, the reversal of a word w by w®, and for the length of w we
write |w|. We use C for inclusions and C for strict inclusions.

Let k£ > 0 be an integer. A k-limited automaton is a restricted linear bounded
automaton. It consists of a finite state control and a read-write tape whose
initial content is the input word in between two endmarkers. At the outset of
a computation, the automaton is in the designated initial state and the head
of the tape scans the left endmarker. Depending on the current state and the
currently scanned symbol on the tape, the automaton changes its state, rewrites
the current symbol on the tape, and moves the head one cell to the left or one
cell to the right. However, the rewriting is restricted such that the machine
may rewrite each tape cell only in the first k visits. Subsequently, the cell can
still be scanned but the content cannot be changed any longer. So, a 0-limited
automaton is a two-way finite automaton. An input is accepted if the machine
reaches an accepting state and halts.

The original definition of such devices by Hibbard [6] is based on string
rewriting systems whose sentential forms are seen as configurations of automata.
Let wjug---u;—15u;u;y1 -+ - u, be a sentential form that represents the tape
contents ujusg - - u, and the current state s. Basically, in [6] rewriting rules



were provided of the form su; — u}s’, which means that the state changes from
s to §', the tape cell to the right of s is scanned and rewritten from wu; to u}, the
input head is moved to the right, and u;—1s — s'u;_;, which means that the
state changes from s to s’, the tape cell to the left of s is scanned and rewritten
from w;—1 to ui_, the input head is moved to the left. In this context, an
automaton that changes its head direction on a cell scans the cell twice. By
Pighizzini and Pisoni [20, 21] and below, limited automata are defined in a way
that reflects this behavior.

Formally, a (nondeterministic) k-limited automaton (k-LA, for short) is a
system M = (S,%,T,0,>>,<,so, F), where S is the finite, nonempty set of
internal states, Y is the finite set of input symbols, I' is the finite set of tape
symbols partitioned into Ty UTy_; U---UTy where Tg = X, > ¢ T' is the left
endmarker and <1 ¢ T' is the right endmarker, so € S is the initial state, F C S
is the set of accepting states, and & : S x (T U{>, <}) — 25 TU{E<ahx{=1L1} jg
the transition function, where —1 means to move the head one cell to the left, 1
means to move it one cell to the right, and whenever (s',y,d) € 6(s, ) it holds
y =10, d=1and whenever (s',y,d) € §(s,<) it holds y = <1, d = —1.

In order to implement the limited number of rewrite operations, ¢ is required
to satisfy the following condition. For each (s, y,d) € d(s,x) with x € T';:

(1) if i =k then z =y,
(2) ifi <k and d =1 then y € I'; with j = min{[%] -2+ 1,k}, and
(3) if i <k and d = —1 then y € T'; with j = min{[Z£1] - 2, k}.

It is worth mentioning that these conditions make the a priori global condition of
a head turn on some cell local, until the cell cannot be rewritten anymore. The
clever transformation of the original definition to the automata world [20, 21]
gives that, if a cell content is from I'; then the head position is always to the
right of that cell if 7 is odd, and it is to the left of the cell if 7 is even, as long as
i <k.

A configuration of the k-LA M is a triple (s, v, h), where s € S is the cur-
rent state, v € >I'*< is the current tape content, and h € {0,1,...,|w|+ 1}
gives the current head position, where w is the input word. If A is 0, the
head scans the symbol >, and if it is |w|+ 1, then the head scans the sym-
bol <. The initial configuration for input w is set to (sg,>w<,0). During the
course of its computation, M runs through a sequence of configurations. One
step from a configuration to its successor configuration is denoted by F. Let
n = |w|, ap = >, and a,4+1 = <. Then we set (s,>a1az- -ap---a,<,h) F
(s',>aras---ay, - ap<,h +d) if and only if (s',aj,,d) € 6(s,an).

A k-LA halts, if the transition function is undefined for the current config-
uration. An input is accepted if in some computation the automaton halts at
some time in an accepting state, otherwise it is rejected. The language L(M)
accepted by M is the set of all accepted inputs.

A k-LA is said to be sweeping if the direction of the head movement changes
only on the endmarkers. It is deterministic (k-DLA, for short) when each



configuration has at most one successor, that is, 6 : S x (I U {>,<}) —
S x (TU{>,<}) x {—1,1} is a partial function.

In order to clarify the notions we continue with an example that is later used
for lower bounds.

Example 1. Let & > 1 and n > 2. The finite unary language L = {a”kﬂ},
which consists of one word only, is accepted by a sweeping k-limited automaton
=(S,{a},T,0,>, <, s0, F') with n + 2 states and 2k + 1 tape symbols.

The principal idea of the construction is to sweep k times across the tape,
where in each sweep n — 1 out of every n non-marked symbols are marked. In
this way, in the mth sweep it is checked whether the number of input symbols
is a multiple of n™. In the final (k + 1)st sweep it is checked whether exactly n
non-marked symbols exist. If yes, the length ¢ of the input satisfies % =n
which implies ¢ = n*+1.

Formally, we set S = {so,$1,...,8n-1,5+,5—}, FF = {sy}, and the tape
alphabet I = {a, a1,d},a2,d), ..., ax,a}.

Whenever the head reaches an endmarker, M has to be in state sg. Otherwise
the computation halts and rejects. In this way it is verified whether the input
length is a multiple of n"™

L. 6(807 \>) = (505 >, 1)
2. 5(807 <]) = (80, <, 71)

The first sweep is realized by Transitions 3 and 4.

3. 8(si,a) = (8i41,0a),1), for0<i<n-—2
4. §(sp—1,a) = (so,a1,1)

For sweep m with 2 < m < k, Transitions 5 to 7 are used. Let d =1 if m is
odd and d = —1 if m is even.

5. 8(8iyam-1) = (Si11,a,,,d), for0<i<n-—2
6 6(3n 15 Qm— 1) (So,am,d)
7. 8(si,al, 1) = (si,al,,d), for0<i<n-—1

Finally, in the (k4 1)st sweep the states are reused in the same way to count
up to n unmarked symbols. But after the first cycle state sy is entered instead
of state sg. If M reaches another unmarked symbol in state s, it rejects.
Otherwise the computation halts and accepts on the endmarker in state s.
Let d=1ifk+1isodd and d=—1if k+ 1 is even.

8. d(si,ar) = (8441, ak,d), for0<i<n-—2

9. §(sp— 1,ak) (s4,ak,d)

10. 6(sq,a},) = (si,a),d), for0<i<n-—1

11. 6(s4,a},) = (s4,a;,d)

12. 0(sy,ax) = (s—, ag,d) |



As is often the case in connection with unary languages, Landau’s function
F(n) = max{lem(ci,ca,...,q) |1 >1,¢1,c0,...,¢4 > 1 and ¢1+ca+- - +¢ = n}

plays a crucial role, where lcm denotes the least common multiple. It is well
known that the ¢; can always be chosen to be relatively prime. Moreover, an
easy consequence of the definition is that the ¢; can always be chosen such
that ci,¢a,...,c0 > 2, c1+co+ -+ ¢ < n, and lem(cy,ca,...,¢) = F(n)
(cf., for example, [17]). Since F depends on the irregular distribution of the
prime numbers, we cannot expect to express F'(n) explicitly by n. The function
itself was investigated by Landau [12, 13] who proved the asymptotic growth

rate limy, o % = 1. The upper and lower bounds F(n) € eV n-ln(n)(1+o(1))

and F(n) € Q (e\/ "'ln(")) have been derived in [2, 27].

3. Simulation Cost of 1-DLA

We start with simulations of unary 1-DLA by finite automata. Upper bounds for
general regular languages have been obtained as follows [20]. Any n-state 1-DLA
can be simulated by a one-way deterministic finite automaton (1DFA) with no
more than n-(n+1)" states. The currently best lower bound for the simulations
of unary 1-DLA by two-way nondeterministic finite automata (2NFA) was also
obtained in [20], where it was shown that for infinitely many integers n there is
a unary regular language recognized by an n-state, 3-tape-symbol 1-DLA such
that each equivalent 2NFA requires a number of states which is quadratic in n.
The next theorem improves this lower bound. It is worth mentioning that, to
this end, the number of tape symbols is set to n + 2.

Theorem 2. Let n > 2 be an integer. Then there is a unary 4n-state and
(n + 2)-tape-symbol 1-DLA M, such that n - F(n) states are necessary for any
2NFA to accept the language L(M).

PROOF. As mentioned above, there are positive integers c¢q,co,...,¢ > 2 such
that ¢; +co 4+ -+ + ¢ < nandlem(e, co, ..., ¢) = F(n). The witness language
is L = {a™F™}. We construct a 1-DLA M = (S, {a},T,8,1>, <, 50, {ps})
accepting L with at most 4n states and n + 2 tape symbols, where

I' = {a,u}U{t;;|1<i<,0<j<¢—1}, and

S = {So,p+,p_,T0,...,Tn_g,’l”é,...,7’:1_3,(]“_1,...,(]”}
U{817J|1SZSZ,OSJS61—1}

An input is accepted only if its length is a multiple of n. We consider the in-
put to be partitioned into blocks of length n. The 1-DLA rewrites the input sym-
bols in each block xn+1, xn+2,...,2n4+n, x > 0, by t1 4,2 555 - - - 15,5 -« 5L,
where j1 = (z+1) mod ¢q,...,J; = (x+1) mod ¢. So, a tape symbol ¢; ; occur-
ring in the mth block means that m mod ¢; = j. For each block this rewriting



is successive from left to right. To this end, the states s; ; are used. The idea
of this part of the construction is as follows. When one of the first [ — 1 cells,
say cell £, of the new block has been rewritten (Transition 3), states r;, and r},
are used to move the head back to cell £ 4+ 1 of the previous block. Basically,
state r;, or r}b means to move the head back for another h cells. The content
of cell £+ 1 of the previous block is then used to continue the block counting
modulo ¢y (by states sg41,;, Transition 2) until the next still unwritten cell is
reached (Transition 3). This is cell £+ 1 of the new block. After rewriting cell [
of a block the states ¢; are used to write the symbol u to the remaining cells of
the block (Transitions 4 and 5). Afterwards, states rj, and r}, are again used to
start the rewriting of the next block (Transition 6). Further roles played by the
states rj, and r}, are explained below. Let y € '\ {<, a}.

1. §(s0,>) = (s1,0,>,1)

2. 6(sij,y) = (si5,9,1), for1<i<land0<j<¢ -1

3. 0(si4,a) = (Pn—2,ti (j41) mod ¢;» —1), forl1 <i<l—land0<j<c¢—1
4. 6(s15,a) = (a1, ti,(j41) mod ¢, 1), for0<j <¢—1

5. 8(gi,a) = (¢it1,u,1), forl+1<i<n-1

6. 0(qn,a) = (rp—g,u,—1)

The very first block is treated differently, since there is no predecessor block.
However, whenever the head is moved back to the left endmarker, the index of
states rj, and r}, says how to continue the counting (Transitions 7 and 8).

7. 0(rp—i,>) = (s50,0,1), for2<i<]
8. (5(7“/ l>) = (Si70, >, 1), for 2 <i <1

n—i’

Now we turn to the end of the computation and the roles played by the
states rp, and r},. Let w be the input. Its length |w| is a multiple of n if and
only if there is no partial block at the end. In addition, it is a multiple of
n - F(n) if and only if ! is divisible by all the ¢;, that is, “l mod ¢; = 0. In
order to test whether the length of the input up to and including the current
block is a multiple of n - F/(n), it is sufficient to inspect the first [ cells of the
block. The test is positive if the content of cell £ is ¢, for all 1 < ¢ < [. This
test is performed while M is in states r, and 7}, which move the head to the
left. Moreover, since only the shortest input that meets the criteria may be
accepted, M remembers a negative test result by changing from some state r,
to a primed version r},_; (Transitions 11, 12). Once in a primed state the head
is moved back without further tests (Transition 13).

9.6
10. ¢
11. ¢
12. ¢

rp,u) = (rp—1,u,—1), for1<h<n-2
r,u) = (r,_,u,—1), for1<h<n-3

(ro—1,ti0,—1), for1<h<n-2,1<i<I
= (r_1,tij, —1),

13. 6(rp,, t;



When the head reaches its destination, M is in state 7o or 7. If the desti-
nation is not the first cell of the block or the test was negative, M takes the cell
contents to continue the counting (Transitions 14 and 15). If the destination
is the first cell of the block and the test was positive, the first cell is tested as
well. Depending on the result, either the rewriting of the next block is started
(Transition 16) or state p; is entered (Transition 17).

14. 6(ro,ti ;) = (81,5, ti5,1), for2<i<[,0<j<¢—1
15. 6(rg,ti;) = (Sij,tij, 1), for1<i<1,0<j<¢—1
16. 5(T0,t1’j) (81];t17]7 1), fOI" 1 S j S C1 — 1

17 5(7’0,t1’0) (p+,t1 0, )

Once in state py it is known that the input length, up to and including the
current block, is the least multiple of n - F/(n). So, it remains to be tested that
there is no further input symbol a to the right of the block. By Transition 18 the
head is moved to the right as long as there appears neither the input symbol a
nor the right endmarker. If the right endmarker appears, the computation halts
in the accepting state py. If there is a further a to the right of the current block,
the rejecting state p_ is entered and the computation halts (Transition 19). Let

yeI'\{g,a}.

18. 6(p+ay) = (p+7y7 1)
19. §(p+7 a’) = (p*7 a, 1)

From the construction it follows that M accepts the shortest input that is a
multiple of n - F(n), that is, it accepts a™ ¥ The numbers of states and tape
symbols claimed follow also from the construction. So, it remains to be verified
that no further inputs are accepted by M.

The only possibility to accept is in state p; on the right endmarker. Since
state p is entered only when the head is on the first cell of a block after the
test was positive, we derive that the input is a multiple of n - F'(n). Since there
is no transition leading from state p; to any other state except for p_, it follows
that the input is the shortest word which is a multiple of n - F(n) and, thus,
L(M) = {a™ T},

Finally, any two-way nondeterministic finite automaton that accepts a unary
singleton language needs as least as many states as the length of the sole word
in the language. O

Since even a 2NFA needs at least n states to accept the unary singleton
language {a"}, Theorem 2 reveals the same lower bound for one-way and two-
way deterministic and nondeterministic finite automata.

Corollary 3. Let n > 2 be an integer. Then there is a unary 4n-state and
(n + 2)-tape-symbol 1-DLA M, such that n - F(n) states are necessary for any
2DFA, 1DFA, or INFA to accept the language L(M).



4. Simulation Cost of Sweeping and Rotating k-DLA

This section is devoted to deriving bounds on the cost for removing the ability
to rewrite each cell k > 1 times, more precisely, the cost for the simulation of
sweeping and rotating k-DLA by deterministic finite automata. We start with
a lower bound for the simulation by 1DFA. Interestingly, this lower bound is
greater than the lower bound n - F(n)*~! known for the simulation of unary
one-way k-head finite automata [11]. Both types of devices accept only regular
unary languages, but only trivial bounds are currently known for the cost of
their mutual simulations.

Theorem 4. Let k > 2 and n > 5 be integers such that n is prime. Then there
s a unary sweeping k-DLA M with at most 2n states and 2k-tape-symbols such
that n - F(n)¥ states are necessary for any 1DFA to accept the language L(M).

PROOF. For any constants k£ > 2 and prime n > 5, we construct a unary sweep-
ing k-DLA M = (S,{a},T',0,>,<, sg, F'). There are integers ¢y, ca,...,¢; > 2
such that ¢1 +co + -+ ¢ < nand lem(eq, ca,...,¢) = F(n). We set p(1) =0,
q(1) =c1 —1,p(i) = q(i—1)+1, q(i) = p(i)+¢; — 1, for 2 <4 <. So, we obtain
in particular ¢(I) < n—1. Now we set S = {S0,81,--,8n—1,54+,1,5+,2,- > S+.i }5
F= {54_71, S4.250- 5 8+,1}, FO = {a}, Fl = {0,1}, and Fi = {ui,ai}, for 2 <3< k.

Let w be an input. In its first sweep, M rewrites every input cell with the
symbol a;. The purpose of the first sweep is to determine the value |w| mod n
(Transitions 1, 2). If the value does not belong to the set {p(1),p(2),...,p(1)},
the computation halts and rejects (Transition 3).

L. 6(807 l>) = (SOa >, 1)
2. 6(Siaa) = (S(i+1) mod n> @1, 1)a for0<i<n-—1
3. 6(3p(j)7 <]) = (3p(j)7 <, —1), for1 <j<lI

The principal idea of the further computation is as follows. In the first sweep
a value p(j) is determined. Now M fixes the j and uses k further sweeps to test
whether the length of the input is a multiple of cf. A detailed analysis of the
language accepted follows after the construction. In the next k — 1 sweeps only
the states s,(;) to s,(;) are used. During a sweep every c;th non-blank symbol is
kept non-blank, while all the others are rewritten by a blank (Transitions 4, 5,
and 6). If the number of non-blank symbols found during the sweep is not a
multiple of ¢;, that is, M reaches the opposite endmarker not in state s ;), the
computation halts and rejects (Transitions 7, 8). The following transitions are
defined for all 1 < j <[. They are used for the mth sweep, 2 < m < k, where
d=11if mis odd, and d = —1 if m is even.

4. 8(si,am—1) = (S(i+1),um,d), for p(j) <i<q(j) —1
5. 5(3q(J)7am 1) (Sp(j)vamvd)

6. 0(si,um—1) = (Si,um,d), for 0 <i<q(l)

7. 3(sp(j): > ) (sp(),>> 1)

8. 6(sp(s)» <) = (sp(j), < —1)



After the kth sweep no further rewriting is possible. However, M contin-
ues with one more sweep for which the states s,y to sq(;) and s J are used,
where s, ; just replaces s, ;) after the first cycle. Let d =1 if k+ 1 is odd, and
d=—-11if k+1 is even.

9. 6(3 )_( (i+1)7ak7d)7 fOI‘p( )S SQ(])fl
10. §(sq(J),ak) (s+j,ak,d)

11. 6(ss,uk) = (s4,uk,d),  for 0 < i <q(l)

12. (5(8+)J,ak) (Sp(j)Jrl,ak,d)

13. 5(8.;,_7],1_%) (S+7j,uk,d)

Finally, if M reaches the endmarker with state s ;, the input is accepted
since the transition function is undefined for s, ; on endmarkers and sy ; € F'.

Now we turn to determining the language L(M). Let £ = |w| be the length
of the input. The first sweep is used to count £ modulo n. If the head arrives at
the right endmarker in any state not in {sp(l Sp(2)7+ 1 Sp(l) }, the computation
halts and rejects. Let us assume the state is s,(;, for 1 < j <. Then we know
£=2x1-n+p(j), for some z1 > 0.

For sweep 2 < m < k, if the head arrives at the endmarker in any state
not equal to s,;), the computation halts and rejects. Otherwise, the number
of non-blank cells has been divided by c¢; and the number of non-blank cells
found during the sweep is a multiple of ¢;. So, we have £ = z,, - c}”fl, for
some z,, > 0. If M accepts after a further sweep, it has checked once more
whether the number of non-blank cells found during the sweep is a multiple
of ¢;. Therefore, we derive £ = x5 - cJ for some xo > 0. The further reasoning
is as for k-head ﬁnlte automata [11]. We recall it for the sake of completeness.

Together we have that the length of the input has to meet the two prop-
erties £ = z1 - n + p(j) and £ = x5 - c?. Since n > 5 is prime and c; is less
than n, the numbers n and c; are relatively prime. We conclude that n and cf
are relatively prime as well. So, there is an z/ > 1 such that c;? is congru-
ent 1 modulo n. We derive that there is a 3 such that x/c;? = y'n + 1. This
implies p(j)x'c;? = p(j)y'n + p(j) and, thus, there exists an £ having the prop-
erties mentioned above. By extending the length of the input by multiples
of nc? an infinite set of input lengths ¢ meeting the properties is derived. More
precisely, given such an ¢, the difference to the next input length longer than ¢
meeting the properties has to be a multiple of n and a multiple of ck Since both
numbers are relatively prime, it has to be a multiple of nc The language L;
consisting of all input lengths having these two properties 1s regular and every
1DFA accepting unary L; has a cycle of at least nc? states.

The language L(M) is the union of the languages L;, 1 < j < . Since
all ¢; and n are pairwise relatively prime, all cé? and n are pairwise relatively
prime. So, an immediate generalization of the proof of the state complexity for
the union of two unary 1DFA languages [30] shows that every 1DFA accepting
L(M) has a cycle of at least lem{ncf |1 <j <1} =n(cico---)¥ =n-F(n)k
states. U
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Now we turn to an upper bound that shows that removing the ability to
rewrite each cell £ > 1 times, but keeping the two-way head movement, cost
only a polynomial number of states. From the resulting unary sweeping 2DFA
an upper bound for one-way devices can be derived by the known bounds for
removing the two-way head movement.

Theorem 5. Let k,n > 1 be integers and M be a unary n-state sweeping
K24k

k-DLA. Then O(n" =2 ) states are sufficient for a sweeping 2DFA to accept
the language L(M). The 2DFA can effectively be constructed from M.

PRroOOF. Let w be some input long enough and M be a unary n-state sweeping
k-DLA. At first we consider the structure of the tape inscription after the first
m < k sweeps. Since M is sweeping and has n states, its first sweep starts by
rewriting the leftmost at most n input symbols. Then the behavior becomes
cyclic with a cycle length of at most n. At the end, there may appear an
incomplete cycle whose length is again at most n. So, after the first sweep the
tape inscription has the form

*
x1xo - xy (Y1ye Yy ) 2122 2y

where all symbols x;, y;, and z; are from I'y, and I1,j1,71 < n. Let in the
following the block xixzo---x;, be the left block, the block yiy2---y;, be the
maddle block, and the block z129 - - - 2, be the right block. In general, the blocks
and their lengths depend on M and on the length of the input (for the first
sweep only the right block depends on the length of the input, but for further
sweeps all blocks do).

In order to argue inductively, assume that after the mth sweep, m < k — 1,
the tape inscription is of the form

wywy-xy (s oy, ) 2z 2

where all symbols 2/, y/, and 2} are from Ty, Ly, 7 <n+n%+ -+ +n™, and
Jm < n™. Depending on the parity of m, during the (m + 1)st sweep M first
rewrites the left or right block. When it reaches the middle block, it again
becomes cyclic after another at most j,, - n steps, where the cycle length is at
most n™ 1. At the end, M enters the opposite, that is right or left, block.
Again, there may appear an incomplete cycle of the middle block that gives the
maximal number of symbols added to the opposite block. So, after the (m-+1)st
sweep the tape inscription is of the form

n"_n " "1 " * I I "
wywy xR R

where all symbols z//, ¥/, and 2! are from Ty, 11, jmi1 < n™F1, and the lengths
of the left and right block are 11, 7my1 < n+n?+ - +nmHL,

We conclude that after the kth sweep the lengths [ of the left and rj of
the right block are limited by k - n*, and the length jj of the middle block is
limited by n*. These lengths and the structures of the tape inscriptions after
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each sweep depend on M and the length of the input. However, in total there
are only finitely many different structures that may appear: During the first
sweep, M may be in one of n states when it leaves the last copy of the middle
block. This implies that all inputs long enough are partitioned into at most n
classes. To each class a fixed structure can be associated and the structure can
be precomputed from M. In the second sweep, each class is further partitioned
into subclasses that are defined by the state in which M leaves the last copy of
the middle block. Again, for each subclass its associated fixed tape structure
can be precomputed. Arguing in the same way, in every further sweep up to
sweep k, each subclass is further partitioned into subclasses that are defined
by the state in which M leaves the last copy of the middle block, and for each
subclass its associated fixed tape structure can be precomputed.

Next we turn to the construction of an equivalent deterministic sweeping
finite automaton M’. Basically, the idea is to use a subset of states for every
possible input tape structure that allow M’ to mimic M.

The first sweep of M is simulated by M’ directly. To this end, the 2DFA M’
takes at most n states. When M’ reaches the right endmarker in some state s1,
this state gives the class the input belongs to and, thus, the tape structure
including the values of Il1, ji, and 7. Depending on s;, now M’ starts the
second sweep with a subset of states that mimic the behavior of M on the
right block of the tape inscription. Since M’ only sees the original unary tape
content, to this end a number of states corresponding to the length of the block
is necessary. So, at most n + n? states are used in this subset. When this
sequence of states has been passed through, M’ uses another subset of states
to process the cycle of the middle block. Since the length of the cycle is at
most n?, at most n? states are used in this subset. While M’ runs through
this cycle it cannot detect the position on the tape where the left block begins,
since it only sees the original unary input. Therefore, M’ will reach the left
endmarker in some state s of the cycle. However, the subset of states used in
the cycle is only used for the particular tape structure computed by M in the
second cycle on the same input. Therefore, by exploiting the precomputations
it can be determined in which state M’ has left the last copy of the middle
block. Since the content of the left block is precomputed too, it can further
be determined whether M would have halted and accepted on the left block.
In the latter case, s, is made an accepting state and the transition function
is undefined for state sj on the left endmarker t>. In this way, M’ accepts as
well. In the former case, depending on the state in which M would have left
the left endmarker, now M’ starts the third sweep with a new subset of states
that mimic the behavior of M on the left block of the tape inscription. So, this
second sweep takes at most n + n? + n? = 2n? + n states.

However, a different subset of states for the second sweep is required for
each of the n states that may appear when the last copy of the middle
block is left in the first sweep. So, altogether, at most n - (2n% +n) < cg - n3
states are sufficient for M’ to mimic the second sweeps of M, where cy is
a constant. Arguing in the same way, for each fixed state M’ can be in
at the end of the second sweep, the third sweep can be mimiced with at
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most another n + n? +n? +n? = 2n3 + n? + n states. So, altogether, at most
ca-n® - (2n® +n? +n) < c3 - nb states are sufficient for M’ to mimic the third
sweeps of M, where c3 is a constant. For the kth sweeps we obtain altogether
2
at most ¢y, - n’c > states, where ¢y is a constant.
12

Summing up n+cy-n34c3-n 4 +cp-n 3% the number of states needed
by M’ to mimic the first k sweeps of M is a polynomial of degree ’“%k

In addition, possible further sweeps of M have to be considered. Since
after the kth sweep the tape inscription is fixed but is read from both ends,
the states for the kth sweeps can be doubled to sweep across the tape in the
opposite direction. Moreover, to simulate further sweeps the states used for the
kth sweeps and their reversals can be used together with an additional register
that maintains the n states of M.

Finally, all input words not long enough have to be considered, this means,
all input words whose lengths are at most O(k - n*). In order to deal with these
words, M’ performs a sweep with at most O(k - n¥) states. All of these words
are accepted at the end of this very first sweep. If a word is longer, subsequently

the deterministic sweeping finite automaton described above is simulated.
+k

2
We derive that M’ takes no more than O(nk =) states. O

Example 1 provides the witness language L = {a”kH} for a lower bound.
Since L is a unary singleton, every 2NFA, 2DFA, 1NFA, or 1DFA needs at
least n**1 states to accept it. Since the example shows that L is accepted by
some sweeping (n + 2)-state k-DLA, the following lower bound follows.

Theorem 6. Let k > 1 and n > 2 be integers. Then there is a unary sweep-
ing (n+ 2)-state, (2k + 1)-tape-symbol k-DLA M, such that n**' states are
necessary for any 2NFA, 2DFA, INFA, or 1DFA to accept the language L(M).

The quadratic degree of the polynomial for the upper bound shown in The-
orem 5 is essentially due to the fact that the non-unary tape contents after the
first sweep cannot be recomputed. Instead, the computation has to be simu-
lated by states that reflect the contents. The problem with the recomputation is
caused by the alternating directions of the sweeps. So, a recomputation would
require reversibility of the single sweeps. But in general these sweeps have an
irreversible nature. Further restrictions of sweeping two-way automata studied
in the literature are so-called rotating automata [8]. A rotating k-DLA is a
sweeping k-DLA whose head is reset to the left endmarker every time the right
endmarker is reached. So, the computation of a rotating machine can be seen
as on a circular input with a marker between the last and first symbol. While
every unary 2DFA can be made sweeping by adding one more state [9], and
unary sweeping 2DFA can be made rotating without increasing the number of
states, for unary 2DFA all these modes are almost the same. However, the situ-
ation might be different for limited automata. The next theorem shows that the
simulation of rotating k-DLA by 2DFA is cheaper even for arbitrary alphabets.
Moreover, it will turn out that the upper and lower bounds are tight in the
order of magnitude. The degree of the polynomials is the same.
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Theorem 7. Let k,n > 1 be integers and M be an n-state rotating k-DLA.
Then O(n**1) states are sufficient for a (rotating or sweeping) 2DFA to accept
the language L(M). The 2DFA can effectively be constructed from M.

PRrROOF. Let M = (S,%,T,4,>,<, s, F) be an n-state rotating k-DLA. An
equivalent sweeping 2DFA M’ = (S',%, ', s(, F') is constructed as follows. Ba-
sically, M’ simulates M in left-to-right sweeps. To this end, states with up
to k + 1 registers are used in which computations of M are simulated. The first
register is used to simulate the first input scan of M once and again in any
left-to-right sweep of M’. When the first input scan of M ends, the state in
which the second scan begins is known. So, M’ starts to simulate the second
scan once and again in the second register in any left-to-right sweep. The same
behavior is applied to the first k registers. Subsequently, another register is used
to simulate all further scans of M in which the tape inscription does not change
anymore. Whenever M’ reaches the right endmarker, it moves its head back to
the left endmarker.

For a formal construction the state set S’ of M’ is defined as S’ = S; U
where S; = L_JkJrl S? and g = {5 | s € S1}. The states in S are used to
simulate M and the states in E are used to move the head back to the left. The
set of final states F” is {(51,52,...,51),151,52,..., s))|1<i<k+1,s; € F},
and the initial state sj is set to s.

The next two transitions are used to move the head from the right endmarker
to the left. For all s € S; and a € X:

1 o(s,<) = (5,-1)
2. 0'(%,a) = (%5, -1)

The following transitions simulate scan m of M with 1 < m < k by a left-to-right
sweep of M'. For all s1,89,...,8,+1 € S and a1 € X

3. &' (sp,>) = (s',1), where §(so,>) = (s/,>,1)

4. 0'(s1,892, .-, 8m,a1) = (s),85,...,5.,1),
where (sj,aﬁl, ) =46(sj,a;), for 1 <j<m
(§17527 Smyb) (8/178/27"'7Sm78;n+ )

Where(5]71>71):5(5j—17 ), for 1<j<m+1

So, in every left-to-right step on an input symbol all the symbols that are written
during the previous scans are recomputed. For all scans m with m > k + 1 the
tape inscription does not change anymore. They are simulated as follows.

6. 6'(s1,52,. -+, 8k41,a1) = (81,85, -+, 841, 1),
where (s},a;11,1) = 0(s;5,a;), for 1 <j <k,
and (s}, 1, pt1,1) = 6(Skt1, arg1)

7.8 (51,52, s, ) = (81, shy oy Shu 1),
where (s},>,1) = d(sj-1,>), for 1 <j <k,
and (s} 1,>,1) = d(sp41,>)
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When M halts on a non-endmarker in the ith step of the jth scan, then M’
will halt in the ith step of the jth left-to-right sweep. When M halts on the
endmarker, M’ will halt on the left endmarker. The last state component of M’
is the currently simulated state of M. So, by definition of the set of accepting
states, M accepts if and only if M’ accepts. For the number of states of M’ we
obtain |S| = 2 M i < 2(k + 1)nh ! € O(nF+1).

So far we have constructed M’ to be sweeping. For the case that M’ has
to be rotating, essentially the same construction can be used. However, mov-
ing the head back to the left endmarker is now for free. That is, the states
from the set S; are unnecessary and Transitions 5 and 7 have to be adjusted
straightforwardly. O

The construction of the sweeping k-DLA accepting the singleton language
L= {a"kﬂ} given in Example 1 can easily be modified to the construction of an
equivalent rotating k-DLA. So, we have the following lower bound that matches
the upper bound in the order of magnitude.

Theorem 8. Let k > 1 and n > 2 be integers. Then there is a unary rotat-
ing (n+ 2)-state, (2k + 1)-tape-symbol k-DLA M, such that n**' states are
necessary for any 2NFA, 2DFA, INFA, or 1DFA to accept the language L(M).

5. From k-Limited to Pushdown Automata

From the results by Hibbard, it is known that for each k > 2, k-LAs recognize
exactly the context-free languages, that is, they are equivalent to nondetermin-
istic pushdown automata (PDAs). The proof by Hibbard was given in several
steps. Roughly, a simulation of 2-LLAs by PDAs was provided. Furthermore,
for k > 2 it was shown that each k-LA can be expressed as the combination
of a transducer with a (k — 1)-LA. In turns, the combination of a transducer
with a PDA can be simulated by another PDA. By repeatedly applying these
constructions, from each k-LA it is possible to obtain an equivalent PDA.

Here we provide a direct simulation from which we are able to show that the
resulting PDA has a description whose size is exponential with respect to the
size of the description of the given k-LA. We point out that an exponential size
is also necessary. In fact, an exponential gap between the sizes of 2-LAs and
equivalent PDAs is already known [21].

The simulation we present is an extension of the one given by Pighizzini
and Pisoni [21] for 2-LAs. Furthermore, we also use some ideas from [29],
where the authors gave a construction to convert (for each function f) any
one-tape Turing machine that on inputs of length n can rewrite each tape cell
only in the first f(n) visits into an equivalent PDA equipped with an f(n)-
space bounded auxiliary tape. In the particular case f(n) = k this gives a
simulation of k-LAs by PDAs. However, the argument used in [29] requires a
preliminary transformation of the given machine in a special form and, from

that construction, we do not get any information on the size of the resulting
PDA.

15



The fundamental tools used in our simulation are crossing sequences and
transition tables. Both of them have been introduced at the beginning of au-
tomata theory to prove, in two different and independent ways, the equivalence
between two-way and one-way automata [25, 26].

We recall that given an accepting computation on an input w of a two-way
automaton A, we can associate with each boundary between consecutive tape
cells the sequence of states entered by the automaton when the boundary is
crossed by the head. Such a sequence is called a crossing sequence. Given an
input symbol a, by inspecting the transition function of A it is possible to verify
whether or not two crossing sequences are “compatible” with respect to a, which
means that they may appear at the left and at the right boundaries of a tape cell
containing a in some accepting computation. A one-way machine simulating A
can be obtained by guessing consecutive crossing sequences while scanning the
input tape, and locally verifying the compatibility of crossing sequences guessed
for the left and right boundaries of each tape cell. Since for each accepted input
there exists an accepting computation such that each crossing sequence does
not contain any repeated state, it turns out that this can be implemented in a
finite control, that is, by a one-way finite automaton.

We could try to use crossing sequences also for k-LAs. However, there are two
main differences. First of all, each tape cell is rewritten in the first k visits. Since
the rewriting depends on “local” information, it is possible to take it into account
by suitably extending the compatibility relation between crossing sequences (see,
for example, [5]). The second and more relevant difference is that even in the
shortest accepting computation we could have crossing sequences of unbounded
length (for example, linear in the length of the input), so they cannot be stored
in a finite control. To overcome this problem, in our simulation we will represent
only some initial parts of crossing sequences. Roughly, these parts correspond
to active wvisits, that is, to computation steps that modify cell contents (the
transitions used in these steps will be also called active transitions). The lengths
of these parts are bounded by & + 1.

For the remaining parts of the computations, which are the steps working
on “frozen” tape cells (that is cells that cannot be further rewritten), we make
use of transition tables. Essentially, the transition table associated with a string
(written in a frozen tape segment) is a relation which specifies for each possible
entrance in the segment (that is, each pair defined by a state used to enter the
tape segment and a side, left or right) the possible exits.

In the restricted case of sweeping k-LAs, each computation can be split
into two parts. In the first part, corresponding to the first k sweeps, the tape
is modified. This part can be simulated by inspecting from left to right all
tape cells, by nondeterministically generating, for each cell, the sequence of
transitions used in the active visits, and by verifying that the crossing sequence
obtained in this way at the left boundary of the cell coincides with the crossing
sequence which has been obtained for the right boundary of the previous cell. At
the end of this part all the tape is frozen. The remaining part of the computation
can be verified using the transition table corresponding to the final tape content.
Notice that this simulation produces a finite state device. Indeed, the language
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29 30

Figure 1: The trajectory of the head in an accepting computation of a 4-LA. The top and
bottom lines represent the initial and the final tape content, respectively. The parts in boldface
represent active transitions. The numbers count computation steps. The crossing sequence
at a cell boundary can be obtained by replacing those numbers (from top to bottom) by the
states reached in the corresponding steps (for example, the crossing sequence at the boundary
between cell 4 and 5 consists of states qo, q10, 911, q16, g27, Where g; denotes the state reached
at step j).

accepted by any sweeping k-LA is regular.

In the general case, the situation is more complicated because, due to head
reversals, it is not possible to decompose the computation in two parts as in the
sweeping case. In particular, transitions on frozen cells could be followed in a
computation by active transitions on other cells and vice versa (see Figure 1 for
an example). A pushdown store will be helpful to solve this problem.

From now on, let M be the k-LA we have to simulate. We remind the reader
that each computation starts in the initial state with the head on the leftmost
tape cell which contains the left endmarker. For technical reasons, we assume
that M accepts the input in any state after violating the right endmarker. No
other moves can be done in this situation, that is, once the head is moved to
the right of the right endmarker the computation stops. Finally, without loss of
generality, we can also assume that in each accepting computation all the cells
become frozen, that is, the final tape content is a string from I'} surrounded by
the endmarkers. This can be implemented by increasing the number of states
by a constant value.
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Active visits and crossing sequences

Our simulation tries to construct an accepting computation of M on the
given input string by (implicitly) guessing, for each tape cell, the sequence of
transitions used in the active visits to the cell. These transitions define a crossing
sequence at the left boundary of the cell, the final cell content, and a crossing
sequence at the right boundary. To formalize this idea, we now introduce and
then we will discuss the following definition:

Definition 9. Given a € X, let active(a) be the subset of S* x T'y x S* con-
sisting of all triples (s182 -+~ 81, b, t1te -+ t,), with $1,82,...,81,t1,t2,...,t. €S,
Il >1,r >0, b€y, such that there is an integer h, 1 < h < k, states
P1,D2,---,P2n € S, symbols 70,71, V-1 € T'\ Tk, n € T', do = —1,
dy,da,...,dn € {—1,4+1}, satisfying:

(Z) Yo = a, Yh = b7 and (inu’yiydi) € 6(p2i717’7i71)7 fOT’i = 17 .. '7h7

(i1) s1s2---s; is the subsequence of p1pa - - - pan, consisting of all p;’s such that
dijje) =1,

(1it) tita---t. is the remaining subsequence consisting of all p;’s such that
dij2) = +1.

Furthermore, in order to consider endmarkers, the definition is extended as
follows:

e active(r>) = {(sg,>,t) | (¢,>,+1) € 6(sp,>>)}, and

e active(<) = {(s,<,t) | (¢, <,+1) € d(s, <)} U {(st, <, ) | (¢t,<,—1) €
8(s, <)}

We point out that the transitions considered in Definition 9(i) give a sequence of
possible active visits to a tape cell, whose initial content is the input symbol a.!
According to the definition of transition function, the value d;, ¢ = 1,...,h,
represents the head movement in the ith transition, so specifying the side on
which the cell is left by the head after the i¢th transition. This is also the side
from which the cell is re-entered in the next visit, if any. Since in the first visit
a cell is always entered from the left, we set dy = —1. Hence, transition ¢ occurs
after entering the cell in the state ps;_1 from the d;_;-side and leaves it in the
state pg; to the d;-side. So, when d; = —1 (d;—1 = —1, resp.), the state py;
(p2i—1, resp.) belongs to the crossing sequence at the left of the cell, other-
wise it belongs to the crossing sequence at the right. The sequences of states
$189 -+ -8 and tytg - - - t, so defined (items (ii) and (iii)) are initial parts of cross-
ing sequences at the left and at the right boundary of the cell, in an accepting
computation in which the cell is rewritten using these active transitions. (See
Figure 2 for some examples.) Furthermore, in the sequence sjss - --s;, all the

1We remind the reader that, by definition, the transitions reversing the head direction are
counted as double visits. For this reason h < k.
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Figure 2: One tape cell of a 4-DLA with 2 — 4 active transitions that rewrite the initial
cell content a by b. The corresponding tuples in active(a) are: (a) (p1papsps, b, p2p3Pep7),
(b) (p1ps; b, p2p3paps), (c) (P1p2papa,b,A), (d) (p1,b, P2p3papsps), (e) (P1p2p3; b, Papspe), (f)
(p1p4p5, b, P2P3PEPTDS).-

states in odd positions are reached while entering the cell from the left, while
all states in even positions are reached while leaving the cell to the left. On the
other hand, in the sequence t1t5 - - - t,., all the states in odd positions are reached
while leaving the cell to the right, while all states in even positions are reached
while entering the cell from the right. Since to accept the input the machine
has to visit each tape cell at least one time, we have [ > 1. However, all active
visits to a cell could move the head to the left. For this reason, the value of r
can also be 0. Notice that [ 4+ r is an even number. If [ and r are odd, then the
last active transition is the one entering the state ¢, and leaving the cell to the
right. In a similar way, if [ and r are even, then the last active transition is the
one entering s; and leaving the cell to the left.

Finally, we point out that the sets active(>>) and active(<1) have been in-
troduced for technical reasons and represent the first possible visits to the cells
containing the endmarkers.

Further notations

We are now almost ready to present our simulation. We only need a few
further notions.

e We consider relations from S x {—1,+1} x S x {—1,+1}, called transition
tables. We associate with each w € (I'y U {>, <})* a transition table 7,
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such that (q,d’,p,d") € 7, if and only if M has a computation path which
starts in the state ¢ on the d’-side of a tape segment containing w and
leaves the segment in the state p to the d”’-side, where, as usual, —1 and +1
are used to indicate left and right, respectively. In the case w # A a path
which starts on the d’'-side is a path starting on the d’-most cell of the
segment. In the degenerate case w = A, the only possible computation
paths consist only of one state and no transitions. It is useful to stipulate
that these paths enter the empty segment from one side and leave it on the
opposite side. Hence, (q,d’,p,d"”) € 7\ if and only if ¢ = p and d’ = —d'.

Notice that the number of possible transition tables is finite.

e We can define the composition of transition tables, denoted by the sym-
bol -, in such a way that 7,, = 7 - 72, for w, z € (T U {>, <})*.

e We are also interested in computation paths starting at some point inside
a tape segment. Given two frozen tape segments u; and wu,., suppose that
they are adjacent, so they form a tape segment v = wu,. Given a state q,
we consider the set of pairs (p,d) € S x {—1,+1} such that M has a
computation path which starts in the state g on the right side of the
segment u; and ends in the state p leaving the entire segment u to the
d-side. This set of pairs depends only on the transition tables 7; and T
associated with the segments u; and u,., and on the starting state q. Hence,
it will be denoted as exit(7}, g, T;.).

In the simulation we will also make use of the following macros:

e nSelect(P): returns a nondeterministically selected element belonging to
the set P. If P is empty then the computation rejects. In the case P
is a set of n-tuples and we need to restrict the selection to tuples having
specified values in some components, we write nSelect(P,), where « is an
n-component vector, specifying the values of such components and having
the symbol - in the remaining positions. For instance nSelect(7j,,11,.,.))
selects a vector in T with first component p and second component +1.
If T does not contain any vector satisfying this restriction then the com-
putation rejects.

e read() returns the tape symbol on the currently scanned cell and moves
the head one position to the right.

The simulation

Let us start to present a high level description of the PDA M’ simulating the
given k-LA M. The PDA M’ scans the input string w from left to right and,
step by step, it guesses and collects information on the parts of computation
involving the already scanned input prefix. This information is stored on the
stack. When the head reaches the ith input symbol a, M’ guesses a triple
(s182 -+ 81,b,t1te - - - t,.) € active(a), corresponding to a sequence of active visits
to the cell 7 of the tape of M. Notice that any further transition on this cell
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Algorithm 1: The simulation

1 stack initially empty, head on cell 1
2 (So,D>,t1t2 - - t,) < nSelect(active(>)) // r=1
3T 71
4 repeat // main loop
5 push(tity - t,.T)
6 T+ X
7 a < read()
8 (s182++-81,b,t1ta - - t,) + nSelect(active(a))
9 | s< pop()
10 if s # s1 then REJECT

11 for j <1 to [(I —1)/2] do connectLeft(sa;, s2;41)
12 if [ is odd then T < T -7,

13 else

14 s < nSelect(S)
15 t < nSelect(S)
16 connectLeft(s;, s)
17 T+ T- Tb

18 connectLeft (s, t)
19 r<r+1

20 t. <t

21 if stack top is a table then
22 T + pop()

23 T« T -T

24 until a = <
25 if stack is empty then ACCEPT
26 else REJECT

should be compliant with the transition table 73, associated with the symbol b
finally written on this cell. Then, using the information on the stack, M’ verifies
that the sequence siss - - - s; matches the parts of computation which have been
guessed in the previous steps while inspecting the input prefix of length i — 1. If
the verification is successful, then M’ leaves on the stack the information on the
possible transitions on the cell ¢ after the active visits, by saving the transition
table 7, (or, as we will see, a transition table corresponding to a frozen tape
segment ending in cell 7), and the states t1,%s,...,t, which are now “pending”
and should be connected, in the future simulation steps, with some parts of the
computation visiting the cells to the right of cell i.

More into details, the PDA M’ implements Algorithm 1, also using the
macro in Algorithm 2. To simplify the exposition, we suppose that the right
endmarker < is appended to the input of M’. Hence, if L is the language
accepted by the given k-LA M, then M’ will accept the language L<i. This
requirement will be removed by guessing the symbol <1 (proof of Theorem 11).
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The symbols on the pushdown store are states and transition tables. At
the beginning of the computation the stack is empty. The algorithm is written
in such a way that at each iteration (after the execution of line 5) the stack
contains alternately nonempty sequences of states and transition tables, where
the sequence of states on the top has an odd length, while the other sequences
have an even length. (For examples see Figure 3 and Figure 4.) Hence, the

qs3
qa
qr gs
q2 qi8 qi7
qs q19 q20
g6 Tho Thobg
q23 q23 q23
q1 g24 q24 q24
a1 > as Ti>by as T>by aq T>by
qi12
q9 q13
q10 q14
q11 Tbs
q16 qi6
q27 qz27 q29
as 7'>b1mb4 ae T>b14ub4 5 T>b1-“be

Figure 3: Snapshots of the PDA M’ during the simulation of the computation in Figure 1.
Each snapshot is taken after executing line 5 of Algorithm 1 and shows the symbol scanned
by the head and the pushdown content.

stack content, from top to bottom, is a string

tapTog—1Th—105—2 - a1y

wheret € S, for j =1,...,k, oj € S* and |a;| is even, with || > 2 when j < k,
and Tj is a transition table.

The transition tables 17,75, ..., Ty correspond to a factorization of the final
content of the part of the tape so far inspected, while ay,as,...,ar are the
sequences of states pending at the right boundaries of the corresponding tape
segments. In other words, there exist indices 0 = ip < i3 < -+ < i < |w|+1
such that iy = i is the current head position and, for j = 1,...,k, T; = 7.,
where z; is the string finally written on cells 4;_1,...,7; — 1.
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> <
I
1
I
I I
21 22
I I I I I
> by by b3 by <
qs
q1 q4
ay T> q5
de
qr qs
q2 Thy Tbabs
q11 qi1 qi1
q12 q12 q12
qi7 q17 qi7
q18 qis qi18 q21
as T>by as T>by a4 T>by I’ T>by---by

Figure 4: Another example of accepting computation of a 4-LA M and the corresponding
snapshots of the PDA M’ simulating it, taken after executing line 5 of Algorithm 1.

Each «; contains the states which are pending at the boundary between
cells i; —1 and 7;. These states should be entered alternately while moving from
cell #; to cell ¢; — 1 and while re-entering cell 7;. The computation of M should
enter the cell under inspection, that is, cell i, for the first time in the state
stored on the top. For instance, the third snapshot in Figure 3 represents the
stack content before inspecting the cell containing as. Hence, k = 2, T1 = 7,
Ty = Tp,, Q1 = 23qo4, Q2 = G4q7q18G19, t = g3, 10 = 0, i3 = 2, i = 3. The
states go3 and go4 are pending at the boundary between cells 1 and 2; the cell 3
should be entered for the first time in state g3. The next times the head moves
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from cell 3 to 2 and vice versa, the states should be q4, g7, ¢18, and ¢i9.

During the simulation, the finite state control keeps a transition table in a
variable T'. This table is called the current transition table and it is the transition
table associated with the final content of the current tape segment, which is the
longest tape segment ending at the left boundary of the currently scanned cell
and such that for all cell boundaries inside the segment there are no pending
states.? At the beginning of each iteration of the main loop (lines 4-24), the
current transition table and the states t1,ts,...,%¢, which are pending at the
right of the last inspected cell are pushed on the stack with 7" at the bottom
and t; at the top. As we will see, r is always odd.

At the beginning of the first iteration the current tape segment consists of
the cell containing the left endmarker. For this reason, the value assigned to T,
before executing the loop, is the transition table 7. Furthermore, r = 1 and ¢;
is a state entered in the first computation step, while moving from the left
endmarker to the right.

After saving t1ts - - - t,. T on the stack, the current tape segment becomes the
one starting to the right of the last inspected cell, so it has length 0. For this
reason, on line 6 the transition table 7, is assigned to the variable T

The current cell is inspected by choosing (s182 - -« 81, b, t1to - - - 1) € active(a),
where a € ¥ is the cell content (line 8). It should be verified that sysz---s
matches the information saved on the stack. To this aim, first of all the state s;
which is reached while entering the cell for the first time is compared with
the state on the stack top (the “previous” t1), rejecting if they are different
(line 10). Then, the remaining states so,...,s; in the sequence are inspected
with respect to the information saved on the stack. Each state s;; with even
index corresponds to a transition moving from the current cell to the left, while
the state sgj41, for 25 + 1 < [, should be reached by the first among the fol-
lowing transitions which re-enters the current tape cell. Hence, for each j such
that 1 <25+ 1 <1, M’ has to verify that there is a computation path which
starts to the left of the current tape cell in the state sy; and reaches the cur-
rent tape cell in the state so;41, without visiting it in between. This is done on
line 11 by the macro connectLeft. This macro uses the information stored in the
stack and, if necessary, it can enlarge the current tape segment to the left, thus
modifying the content of T'. A detailed presentation of the macro is postponed.
For the moment, we can say that in the special case of T containing the empty
transition table 7, and two states ¢’ and t” at the stack top, connectLeft(s’, s”)
verifies that s’ =t/ and s’ = " (rejecting in negative case), popping ¢’ and t”
off the stack, without changing the content of T'.

Example 10. In the simulation of the accepting computation in Figure 1, in
the initial phase (line 2) M’ selects (sg,>,q1) € active(t>), so guessing that,

2With other words, these are no pending states at the right boundaries of cells other than
the rightmost one in the segment or, equivalently, at the left boundaries of the cells other than
the leftmost one. Hence, the current tape segment should start either at the cell containing
the left endmarker, or at one cell having some pending states at its left boundary.
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after reading the left endmarker, cell 1 is entered for the first time in state ¢ .
To prepare the inspection of cell 1, at the beginning of the first iteration this
state is pushed on the stack with the transition table 7. associated with the left
endmarker. On line 8, the tuple (g1, b1, ¢2¢5¢6¢23924) is guessed and, on line 10,
it is verified that the first (and only) state in the first component, i.e., ¢,
matches the state saved on the top of the stack. Since [ = 1 and, thus, there
are no active transitions from this cell moving to the left, the loop on line 11
ends without executing any iteration. |

When [ is odd, with this procedure all the sequence of states siss---s; is
matched with the previously guessed parts of computation (lines 10-11). So,
what remains to be done is to enlarge the current tape segment, “appending” to
it the current tape cell. This is done by multiplying the variable T (whose con-
tent could have been changed, as we will discuss later, by the macro connectLeft)
by the transition matrix 7, associated with the final cell content (line 12). It
may happen that at the end of the above described operations (or of the oper-
ations described later in the case of [ even), the stack top contains a transition
table. This means that there are no more pending states for the corresponding
tape segment which can then be safely attached to the left of the current one.
This is done by updating T' (lines 21-23).

Example 10 (cont.) After the assignment on line 6, the content of the
variable T' has not been changed. Hence, by multiplying it by the transition
table 7, associated with the symbol finally written on cell 1, the content of T’
becomes 73, . Furthermore, since the stack top contains the table 7., on line 23
the content of T is further modified assigning to it 754,. At the beginning of
the next iteration, this table is pushed on the stack and, over it, the sequence of
states g2¢596g23q24- In the second iteration, the tuple (¢g2¢5¢s, b2, ¢3¢197q18919) €
active(ag) is guessed. The matching between the sequence of states in the
first component and the information previously saved on the stack is verified
on lines 10-11. (In this case, after using g2 on line 10, connectLeft(gs, gs)
pops the two elements on the top of the stack and verifies that they are g5
and gg, without any change on 7', whose content remains 7.) Since even in this
case [ is odd, it only remains to update T and to start the next iteration, by
saving ¢3q4q7qi18qi9Ts, before inspecting the next input symbol. |

When [ is even, the state s; represents a move to the left. If the computation
is accepting, then at some time the current cell should be re-entered from the
left. The algorithm guesses the state s reached while re-entering the current cell
for the first time and the state ¢ that will be reached when, after that moment,
the cell will be left for the first time to the right. The state ¢ will be appended to
the sequence t1ts - - - t,-, so obtaining an odd length sequence of pending states,
to be stored in the stack at the beginning of the following iteration. Before
doing that, the algorithm has to verify the guesses of s and t. The state s is
verified by calling connectLeft(s;, s) (lines 14-16). Notice that when the cell
is re-entered in the state s, its content is already frozen. For this reason, on
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Algorithm 2: The macro connectLeft(q, ¢’)

27 (q,+1,p,d) < nSelect(T}(g,+1,.,-))
28 while d = -1 do

29 Y « pop()

30 if Y = p then

31 p" < pop()

32 (p',—1,p,d) < nSelect(Tj —1,..))
33 else if Y is a table then

34 (p, d) < nSelect(exit(Y,p,T))

35 T+Y-T

36 else REJECT
37 if p # ¢’ then REJECT

line 17, the variable T is updated, as in the case of [ odd, by multiplying its
content by the table 7, associated with the final cell content. At this point, ¢
is verified by calling connectLeft(s,t). Lines 19-20 are used to append ¢ to the
sequence at the right of the cell that, in this way, becomes of odd length.

Example 10 (cont.) In the third iteration, the tuple (¢3qaqraqis,bs, gsqi7) €
active(ag) is selected. As in the previous iteration, on lines 10-11 the match-
ing between g3, q4, g7 and the states saved on the top of the stack is verified.
However, as [ is even, it remains to verify the last state g5 in the left compo-
nent. M’ guesses s = qi9 as the state in which the cell is re-entered from the
left and ¢ = g9 as the state that will be used to leave the cell to the right for
the first time after the sequence of active visits. The correctness of the first
guess is checked by calling connectLeft(¢is,¢19) on line 16. Since ¢15 and ¢i9
are at the top of the stack, the outcome of the verification is positive. After
updating the variable T, the correctness of the second guess is checked by call-
ing connectLeft(q19,g20) on line 18. In this case, the required path consists of
just one transition moving to the right from the current cell of M, now contain-
ing the symbol b3. The macro connectLeft makes this verification, just using
the transition table 7, which, after the assignment on line 17, is stored in T
Finally, on lines 21-23, the value of T' is updated by multiplying it to the left
by table 75, which was on the top of the stack, obtaining 7,4, . |

Now we describe the macro connectLeft (Algorithm 2).

Given two states ¢,q¢' € S the macro has to check the existence of a com-
putation path which starts in the state ¢ on the right side of the current tape
segment, visits only cells in the current tape segment or to the left of it, and
ends in the state ¢’ leaving the current tape segment to the right.

First of all, a tuple (g, +1,p,d) is selected from the table T. This tuple
corresponds to a path inside the current segment, starting in the state g on the
right side, and leaving the segment in the state p to the d-side. There are two
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possibilities:3

e If d = +1, that is, the segment is left to the right, the macro has only to
verify that p = ¢’. This is done on line 37, by rejecting if the test fails. In
this case the body of the loop on lines 28-36 is ignored.

e If d = —1 then the segment is left to the left. The state p is expected to be
on the top of the stack, as pending. This is verified on line 30. This means
that the cell boundary at the left of the current segment is traversed from
the right in the state p and the next traversal of it should be from left to
right in the state p’, which was saved on the stack below p (line 31). At
this point, the original computation of M re-enters the current segment
from the left side in state p’. To compute the next exit from the segment,
a tuple (p/, —1,p,d) is selected from T and the same process is repeated.

However, while reconnecting the computation with pending states, it may
happen that the stack top contains a table Y instead of a state. This
means that all previously pending states at the left boundary of the current
segment have been successfully reconnected to the computation and Y is
the transition table of a frozen segment which ends at that boundary. At
this point, we have to determine what happens by entering the segment
represented by Y from the right in the state p. We are interested to know
in which state and direction the whole segment corresponding to Y and T
is left. To this aim, the values of p and d are updated using a pair chosen
in exit(Y,p,T) (line 34). Since there are no more pending states inside the
whole segment, the current segment can be enlarged to the left, attaching
the segment represented by Y. This is done by updating the table T" with
its product to the left by the table Y (line 35).

Example 10 (cont.) The fourth iteration starts by pushing gsqi7¢207Tp,b, 00
the stack. The tuple (gsqi7,b4,G9q10q11q16) € active(ay) is selected. At the
beginning, it is verified that the first state in the left sequence, which is gsg,
matches the state at the top of the stack. Since [ = 2, the loop on line 11 does
not have to verify any pair of states. Then the block from lines 1420 is executed,
by firstly guessing s = g0 and ¢ = ¢o7. The verification connectLeft (g7, g20) on
line 16 is easily done, as in the previous iteration, using the two states at the top
of the stack. In fact, since T' contains the empty transition table 7y, the only
possible choice on line 27 is (g17,+1,¢17, —1), which assigns ¢;7 to p and —1
to d. Hence, the body of the loop on lines 28-36 should be executed. First, the
stack top, which is ¢;7, is assigned to the variable Y. Hence, the test on line 30
is positive and on line 31 the current stack top, the state goq, is assigned to p'.
Again, being T = 7,, the only possible choice on line 32 is (g20, —1, 20, +1),
which assigns g2 to p and +1 to d and leads to the end of the loop. Since the
test on line 37 is negative, the macro ends without rejecting.

3 Actually, in the case T = Ty, the only possible tuple is (¢, +1,¢, —1).
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To verify the existence of a path starting in gy with the head scanning the
current tape cell, possibly moving in the cells to the left, and finally leaving
the current cell in go7 to the right, connectLeft(go0,g27) is called on line 18.
First we notice that, as a consequence of previous steps, the stack content
i Th,b5G23¢24T>p, and the variable T' contains 73,. The macro, using the infor-
mation stored on the stack, reconnects the parts of the path from gog to go7 in
the computation depicted on Figure 1 in the following way.

On line 27, the tuple (g20,+1, 21, —1) is selected. The loop is entered, by
removing the stack top, which is the transition table 7,p,. This means that all
pending states at the right boundary of the segment represented by this table
have been inspected. So, the current segment can be enlarged to the left by
including that segment. To this aim, the current transition table is multiplied
to the left by 7p,p,, SO obtaining 74,5,, (line 35). However, before doing that,
the exit from the resulting segment needs to be computed. This is done on
line 34, selecting as (p, d) the pair (go3, —1), which represent a path leaving the
segment to the left. This leads to a further iteration of the loop body, in which
the state in the variable p coincides with the one that, at the beginning of the
iteration, is popped off the stack (line 29). This state represents the entering
point from the right in a further tape segment located at the left of the current
segment and which is left in the state which is popped off the stack on line 31
(g24), to re-enter the current segment from the left. Finally, on line 32, a new
exit is selected, by choosing the tuple (g24,—1,¢g27,+1). Since d = +1, the
execution of the loop ends. Furthermore, the state so obtained matches the one
expected when the macro was called. Thus the test on line 37 is negative and
the execution of the macro ends without rejecting.

Summarizing, as a side effect of the execution of the macro the value of T
is changed and now it contains 7p,p,5,, the stack content is 7., and, after the
execution of line 20 of Algorithm 1, ¢1ts - - ¢, iS g9qi10g11916927. On lines 21-23
the value of T is updated to enlarge the current segment, including the table
on the stack top. The fifth iteration starts by saving, on line 5, information on
the stack (see Figure 3). The execution is continued in a similar way with the
inspection of the remaining tape cells. |

If Algorithm 1 correctly guessed an accepting computation, then after in-
specting the right endmarker no pending states are left on the stack and the
current tape segment should coincide with the entire tape. So, its transition ta-
ble is stored in the variable T" while ending the execution of the main loop, with
no information on the stack. For this reason, the algorithm ends by accepting
the input if and only if the stack is empty.

As a consequence of the simulation, we obtain the following:

Theorem 11. For any integer k > 1, each n-state k-LA which accepts the
mput by violating the right endmarker and rewriting all input cells by symbols
from Ty, can be simulated by a PDA M’ with 20"*) states and a pushdown
alphabet of n + 94n* symbols, such that in each transition at most k+ 2 symbols
are pushed on the stack.
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PROOF. First of all, we observe that if the given k-LA M accepts a language L,
then the PDA resulting from Algorithm 1 accepts the language L<1. However,
it can be easily modified in order to accept L, by guessing the end of the input
at the beginning of each iteration of the main loop.

To estimate the size of the resulting PDA, we observe that the number of
possible transition tables is 24n° At each step the finite state control of M’ has
to remember the current transition table, the current input symbol, two state
sequences whose total lengths are in O(k), the symbol finally written on the
tape cell, a fixed number of variables ranging on the set of states and on the
set {—1, 41}, plus control flow information. Hence the total number of states is
bounded by the product of g4n* by a polynomial in n. This gives 20(n%) many
states.

The pushdown alphabet consists of states and transition tables. Hence its
cardinality is n + 247" Push operations are executed only on line 5 of Algo-
rithm 1 where it can be observed that at most k + 1 states and one transition
table are pushed in one single operation. O

Corollary 12. For any k > 1, each k-LA M can be simulated by a PDA whose
description has a size which is exponential in the size of the description of M.
Furthermore, an exponential size is also necessary.

PROOF. The upper bound is an immediate consequence of Theorem 11. For
k > 2, the lower bound follows from an exponential gap between the size of
2-LAs and equivalent pushdown automata proved in [21].

Now we discuss the case £k = 1 for which limited automata recognize only
regular languages [28]. There is an exponential gap between the size of 1-LAs
and the size of equivalent nondeterministic finite automata. The gap becomes
doubly exponential when the simulating automaton is required to be determinis-
tic. These results have been proved in [20] by presenting for each n > 1 a witness
language L,, which is accepted by a 1-LA whose description has size O(n). The
argument used in [21, Thm. 4.3] to prove the exponential separation between
2-LAs and PDAs can be immediately adapted to show that each PDA accept-
ing L,, should have size at least exponential in n. O
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