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Abstract  22 

Norway spruce is one of the most important conifer tree species in Europe, paramount for timber provision, habitat, 23 

recreation and protection of mountain roads and settlements from natural hazards. Although natural Norway spruce forests 24 

can exhibit diverse structures, even-aged stands can arise after disturbance, and are the result of common silvicultural 25 

practice, including off-site afforestation. Many even-aged Norway spruce forests are actively managed, facing issues such 26 

as senescence, insufficient regeneration, mechanical stability (stem form), sensitivity to biotic disturbances, and restoration. 27 

We propose the use of Density Management Diagrams (DMD), stand-scale graphical models originally designed to project 28 

growth and yield of even-aged forests, as a heuristic tool for assessing the structure and development of even-aged Norway 29 

spruce stands. DMDs are predicated on basic tree allometry and the assumption that self-thinning occurs predictably in 30 

forest stands. We designed a DMD for Norway spruce in temperate Europe based on wide-ranging forest inventory data. 31 

Quantitative relationships between tree- and stand-level variables that describe resistance to selected natural disturbances 32 

were superimposed on the DMD. These susceptibility zones were used to demonstrate assessment and possible management 33 

actions related to, e.g., windfirmness and effectiveness of the protective function against rockfall or avalanches. The 34 

Norway spruce DMD provides forest managers and silviculturists a simple, easy to use, tool for evaluating stand dynamics 35 

and scheduling needed density management actions.  36 

 37 

Keywords 38 

Decision support systems; Natural hazards; Picea abies (L.) Karst.; Protective function; Self-thinning; 39 

Silviculture 40 

41 
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Introduction  42 

Norway spruce (Picea abies (L.) Karst.) is one of the most important tree species in the mountain 43 

ranges of central and southern Europe. Norway spruce stands are important for timber production and 44 

provide important ecosystem services (Pretzsch et al. 2008). In mountain regions, these forests can 45 

provide protection from natural hazards such as avalanches, rockfall or landslides (Bebi et al. 2001; 46 

Mayer and Ott 1991). Norway spruce forests also provide habitat for game, and may harbor endangered 47 

fauna or flora (e.g., Nascimbene et al. 2009). 48 

Vast areas of pure, monolayered Norway spruce plantations are common in many European montane 49 

and lowland landscapes, oftentimes usurping the space of natural forests (Hansen and Spiecker 2004). 50 

The species has been introduced far outside its natural range, both in countries where it occurs 51 

naturally, e.g. in Germany and Norway, and in novel areas such as Denmark, Belgium and Ireland 52 

(Skroppa 2003). Natural and semi-natural Norway spruce forests, on the other hand, are relatively rare 53 

(Parviainen et al. 2000; Motta 2002), and often exhibit multiple structural and compositional attributes 54 

depending in part on the disturbance regime (Shohorova et al. 2009). These structures range from 55 

sparse, multilayered subalpine stands (Kulakowski et al. 2004; Krumm et al. 2011) to monolayered 56 

forests resulting from severe disturbances (Fisher et al. 2002; Angelstam and Kuuluvainen 2004), to 57 

uneven-aged mixtures (Svoboda et al. 2010, 2012). 58 

Windstorms, snow loading, and insects are among the most damaging disturbance agents in Norway 59 

spruce stands (Klopcic et al. 2009; Svoboda et al. 2012). Increasing susceptibility to natural 60 

disturbances (Schlyter et al. 2006; Seidl et al. 2011), in combination with ageing stands and increasing 61 

demand for enhanced structural complexity and close-to-nature forest structures (Gamborg and Larsen 62 

2003), results in a silvicultural conundrum that cannot be adequately addressed using simple 63 
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management tools (e.g., yield tables). Given the importance of Norway spruce in managed montane 64 

forests of central-southern Europe, it is important to develop ecologically based decision support 65 

systems that allow for the development of realistic management scenarios and enable the comparison of 66 

alternative schedules with respect to the evaluation criteria of interest (e.g., volume production, carbon 67 

storage, stand stability, structural diversity, nature conservation and biodiversity).  68 

Density management diagrams (DMD) are empirical models of even-aged stand dynamics (Jack and 69 

Long 1996). They reflect fundamental relationships involving tree size, stand density, site occupancy, 70 

and self-thinning. Allometric relationships between mean tree size, age, height and yield, are portrayed 71 

allowing users to design treatments by plotting both current and desired future stand structure on the 72 

DMD. Alternative management strategies that accomplish diverse objectives can be simultaneously 73 

compared and their efficacy evaluated at a glance. In this paper we analyzed data from Norway spruce 74 

stands to construct a DMD with wide applicability across montane regions of central-southern Europe. 75 

Using specific examples of: 1) maximizing volume production; 2) mechanical stability against wind 76 

damage; 3), avalanche protective function, and; 4) potential resistance to spruce bark beetle (Ips 77 

typographus L.), we demonstrate the usefulness of the Norway spruce DMD.  78 

 79 

Methods 80 

a) Data sources 81 

The data used to develop the Norway spruce DMD came from multiple sources (Table 1) that 82 

covered many regions of central-southern Europe (Figure 1) and included 5656 plots. Most areas 83 

occupied by temperate European montane forest were represented in the data set. We excluded 84 
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areas with few pure Norway spruce forests (e.g., Balkans) or countries where forest inventory data 85 

were not readily accessible.  86 

1.  Data from France were obtained from the French National Forest Inventory 87 

(http://www/.ifn.fr/spip/) for the inventory period 2005-2009. The French inventory design 88 

implemented three nested fixed-area plots (6, 9, and 15 m radius for trees ~7 to 22.5 cm, 22.6 to 89 

37.5 cm, and 37.5+ cm in diameter at breast height [DBH], respectively) from which trees per 90 

hectare (N) expansion factors were calculated. The French Inventory also included tree height 91 

(H) and estimated tree volume (Vidal et al. 2007).  92 

2. Data from the Czech Republic came from two regions, Sumava and Tajga. In the Sumava 93 

region the inventory design was three nested fixed-area plots (3.5, 7, and 12.6 m radius for trees 94 

7 to 14.9 cm, 15 to 29.9, and 30+ cm DBH, respectively) and did not include estimates of tree 95 

volumes (Čížková et al. 2011). In the Tajga region the inventory consisted of one 12.5 m radius 96 

fixed-area plot where DBH and H were measured and estimates of volume included for all trees 97 

> 10 cm.  98 

3. Data from Romania came from the mountain regions of Călimani and Giumalau (Cenuşă 1992). 99 

The inventory in these regions used either a 500 or 1000 m
2
 fixed-area plot with a lower DBH 100 

cutoff of 10 cm. Individual tree heights for all trees were estimated using locally calibrated 101 

models and there were no estimates of volume (M. Svoboda – unpublished data).  102 

4. Italian data came from multiple regions and inventory designs. At Aosta and Piemonte (IPLA 103 

2003) fixed-area plots ranged from 8 to 15 m radius depending on overstory density and the 104 

lower DBH cutoff was ~7 cm; species- and site-specific volume equations were provided. At 105 

Paneveggio and San Martino (Berretti and Motta 2005) fixed-area plots of 12 m radius with a 106 

lower DBH cutoff of 17 cm were used and no estimates of volume were made. At Val 107 

Pontebbana (Castagneri et al. 2010) 12 m radius fixed-area plots were sampled with a lower 108 
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DBH cutoff of ~7 cm. In Valbona, 400 m
2
 fixed-area plots were used with a lower DBH cutoff 109 

of ~7 cm (Motta et al. 2006). At Burgusio, Lasa, Latemar, Luttago, Meltina, Naturno, Valle 110 

Aurina and for plots of the National Forest Inventory (INFC 2006), variable radius plots (basal 111 

area factor = 4 m
2 

ha
-1

) were employed with a lower DBH cutoff of ~4 cm and volume was not 112 

estimated.  113 

5. Bulgarian data referred to remote-sensed, internally homogenous forest patches in the 114 

Parangalitsa Reserve, including a number of post-disturbance stands (Panayotov et al. 2011). A 115 

total of 227 100-m
2
 plots were sampled with a lower DBH cutoff of 4 cm and no information on 116 

H and volume. 117 

6. German data came from the Second National Forest Inventory of Germany (Schmidt and 118 

Kandler 2009). Trees with a minimum DBH of 7 cm were selected using the angle-count 119 

method (horizontal point sampling) with a basal area factor of 4 m
2 

ha
-1

. The attributes recorded 120 

included species, DBH, tree age, and H.  121 

b) Size-density relationships  122 

Using the tree-level data we calculated N, quadratic mean diameter (QMD), basal area, percent basal 123 

area of Norway spruce, stand density index (SDI), and stand top height (HT100), defined as the average 124 

height of the 100 largest (DBH) trees per hectare. SDI was calculated two ways: 1) Reineke (SDIp: 125 

Reineke 1933, modified by Long and Daniel 1990), 126 

 127 

[1]  SDIp = N (QMD / 25.4)
1.605 

, 128 

 129 

and; 2) summing the SDI of each i-th tree in a stand (SDIsum: Shaw 2000), 130 

 131 
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[2] SDIsum = ΣN [Ni (DBHi / 25.4)
1.605

]  132 

 133 

so that stands with simple structure could be filtered from the data using the SDIsum : SDIp ratio 134 

(SDIratio). SDIratio has been shown to theoretically differentiate even-aged stands, which have strong 135 

unimodal diameter distributions (SDIratio ≥0.9), from uneven- or multi-aged stands, which show 136 

increasing skewness in their diameter distribution (SDIratio <0.9) (Ducey 2009). SDIratio has been used 137 

to indicate relatively even-aged stands for building DMDs (Long and Shaw 2005, Shaw and Long 138 

2007). Before estimating the self-thinning boundary, the plot-level data were filtered for Norway 139 

spruce composition ≥80% (determined by percent basal area) and for even-aged stands (SDIratio ≥0.9), 140 

which resulted in 1609 plots.  141 

We paid particular attention to determining the maximum size-density line. In order to filter for fully 142 

stocked stands, we used a binning method (Bi and Turvey 1997) (200 N bins) from which maximum 143 

observations of SDIsum were extracted before the maximum self-thinning line was fit by ordinary least-144 

squares (OLS) regression. We assessed whether a lower DBH cutoff of 4, 7, 10 or 17 cm had any effect 145 

on SDImax (Curtis 2010) and/or the slope determined during the binning method by refitting the OLS 146 

for each DBH cutoff group. Moreover, since differing self-thinning slopes are reported in the literature, 147 

both between and within tree species (including Norway spruce: Sterba 1987; Hynynen 1993; 148 

Monserud et al. 2005; Pretzsch and Biber 2005; Pretzsch 2006; Schütz and Zingg 2010; Charru et al. 149 

2011), we tested whether Reineke’s (1933) suggested slope of -1.605 was statistically different from 150 

that of our linear fit. Subsequently, we shifted the OLS line to cross the point of maximum stocking. 151 

SDImax indicates maximum growing space occupancy (Yoda et al. 1963), so that plots falling above the 152 

line should be exceedingly rare. Therefore, we assumed the 98
th

 percentile of the SDIsum frequency 153 

distribution appropriately characterized the maximum attainable SDI. Finally, we juxtaposed lines on 154 

the DMD to describe relative stand density (percent of SDImax) following the recommendations of Long 155 
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(1985). That is, 25% of SDImax represents crown closure, 35% of SDImax indicates the beginning of 156 

individual-tree growth reduction due to inter-tree competition, and at 60% of SDImax the onset of severe 157 

competition. 158 

We tested for the existence of a Mature Stand Boundary (MSB) in the maximum self-thinning limit 159 

(Shaw and Long 2007) by fitting the following three-parameter function: 160 

 161 

[3] QMD = a (Nmax + b)
c
, 162 

 163 

where Nmax are observations of maximum N for each 0.01 class of Log10 QMD. Only plots where 164 

QMD >= 15 cm were used, because stands in the smaller size classes are not needed to establish the 165 

MSB. Subsequently, we shifted the curve developed in Equation [3] such that the maximum SDI value 166 

on the curve was asymptotic to the SDImax on the DMD. 167 

c) Top height and volume  168 

When included on a DMD, HT100 can be used with local site index curves to assess and quantify the 169 

temporal development of a particular stand (Jack and Long 1996). Using plot data that included 170 

observations of HT100 we modeled QMD as a function of HT100, attenuated by an inverse logarithmic 171 

function of tree density: 172 

 173 

[4]  QMD = HT100 (b1 – b2 ln N). 174 

 175 

To generate stand level volume (VOL) isolines on the DMD, we modeled VOL as a power function of 176 

QMD and N (Equation [5a]), then rewrote the equation as QMD =f(VOL), where VOL is total standing 177 

volume (m
3
 ha

-1
) for plot data with volume observations:  178 
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 179 

[5a]  VOL = c1 + c2 N QMD
c3

  180 

 181 

[5b] QMD = [(c1 + c2 N)
-1

 VOL]
 (1/c3)

 182 

 183 

We plotted HT100 and VOL isolines on the DMD for ranges of 20-50 m, and 200-1200 m
3 

ha
-1

, 184 

respectively. Different inventories may have used different equations for tree or stand volume, 185 

generating idiosyncrasies when pooling all volume data in one model. However, because we were 186 

missing inventory-specific volume equations, we used original data as much as possible, 187 

acknowledging that DMD isolines merely represent average conditions across the entire dataset.  188 

All models were assessed for parameter significance and goodness-of-fit by computing adjusted R
2
 and 189 

root mean square error (RMSE). We determined that both models had little or no bias by inspecting 190 

residual plots over the predictor variables, elevation when available, SDI, basal area, region, and 191 

whether the plot had a lower DBH cutoff of 4, 7, 10 or 17 cm. 192 

d) Disturbances and site index 193 

To illustrate the advantages of the DMD in designing silvicultural strategies to maximize resistance to 194 

disturbances and protection from natural hazards, we superimposed “susceptibility zones” on the 195 

diagram, which encapsulate combinations of size and density that: (a) fulfill an effective protection 196 

against avalanche release; and (b) result in a low risk of wind damage. Thresholds for (a) were 197 

summarized as follows (after Berretti et al. 2006; Gauquelin and Courbaud 2006): 198 

a. Basal area ≥25 m
2 

ha
-1

 when QMD =25 cm, and ≥7.5 m
2 

ha
-1

 when QMD =10 cm for effective 199 

snowpack stabilization if slope is steeper than 35°; 200 
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b. Live crown ratio ≥60% in trees or cluster of trees supporting the stability of the stand. We 201 

relaxed this requirement to ≥33%, representing a minimal acceptable level of individual-tree 202 

vigor that should be ensured with a relative SDI <0.60 (Long 1985); 203 

c. H/DBH ratio <80 in dominant trees. H/DBH (mean or dominant) ratio cannot be read directly 204 

off the DMD. However, assuming that DBH is normally distributed in a stand, and that 205 

dominant diameter (DD) is equivalent to the 90
th

 percentile of such distribution (Z value = 206 

+1.64), DD can be computed by 207 

 208 

[6a]  DD = 1.64 DBH + QMD, 209 

 210 

where DBH is the standard deviation of the DBH distribution in the stand. In order to represent 211 

risk zones on the DMD, we assumed that DBH = 0.3 QMD and solved Equation [6a] for QMD: 212 

 213 

[6b]  QMD = 0.67 DD,  214 

 215 

to be substituted in HT100/QMD ratio from Equation [4] and constrained to ≤0.8. This allowed 216 

the influence of smaller, suppressed trees to be removed so that only the slenderness of 217 

dominant trees was considered (Castedo-Dorado et al. 2009); 218 

d. Gap size ≤1.5 times tree height (in order to avoid tree-free patches prone to dangerous snow 219 

gliding). If square spacing is assumed, a Mean Nearest Neighbor Distance (m) (MNND) can be 220 

computed as the square root of the reciprocal of N. We introduced a multiplier to account for 221 

clumped patterns, i.e., the ratio between maximum and observed nearest neighbor index (NNI). 222 

NNI ranges from 0 when trees are highly clumped, to 2.1491 when trees are arranged along a 223 

hexagonal grid (Clark and Evans 1954):  224 
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 225 

[7] MNND = (2.1491 NNI
-1

) 100 N
-0.5 

, 226 

subsequently constrained to <=1.5 HT100 and used to back-calculate critical N-HT100 227 

combinations. 228 

 229 

While the DMD can be used to assess avalanche hazard related to stand structure, other predisposing 230 

conditions (e.g., weather, topography, characteristics of snowpack, and terrain ruggedness) must be 231 

evaluated independently. 232 

Thresholds for live crown ratio followed those by Riou-Nivert (2001), who established low, medium, 233 

and high wind risk zones for conifer species, based on the relationship between QMD and HT100 234 

(Figure 2). Mitchell (2000) suggested that such general zones of stability exist for uniform stands of 235 

temperate zone conifers.  236 

An appropriate site index (SI) curve allows the estimates of HT100 on the DMD to be a surrogate for 237 

time (Drew and Flewelling 1979). SI estimates were not included in the raw data. In order to provide SI 238 

curves applicable to even-aged, pure Norway spruce stands across temperate Europe, we fitted a 239 

modified Richards’ model of height growth (Sterba 1976) to yield tables from Eisacktal, South Tyrol 240 

(Moser 1991), which exhibited a wide range of fertility classes (i.e., HT100: 7.9 – 45.8 m at age 100). 241 

All statistics were performed in the R environment version 2.14.1 (R Development Core Team 2011). 242 

Results 243 

Twenty-nine percent of the original Norway spruce data set, i.e., 1609 of 5656 inventory plots (Table 244 

2) were used to fit a maximum size-density relationship characterizing montane Norway spruce in 245 

central-southern Europe. Slope of the self-thinning line was -1.497 (adjusted R
2
 = 0.94); the 95% 246 

confidence interval of the slope coefficient from OLS regression (-1.671 to -1.324) included Reineke’s 247 
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value of -1.605. SDImax was 1461 (Figure 3); coefficient of variation between the 28 regions was 26%, 248 

mean = 1334.28 and sd = 345.39 (Table 1). Binning by different DBH cutoff values did not change our 249 

results with respect to the significance of -1.605, except for the 17 cm cutoff that produced a non-250 

significant regression slope likely due to limited sample size (Table 3). However, the lowest DBH 251 

cutoff (4 cm) produced the highest SDImax. Parameters of the MSB (Equation [3]) were: a = 3330.105, 252 

b = 185.158, c = -0.0656 (adjusted R
2
: 0.96). 253 

Top height and volume equations were statistically significant (Table 4). Some bias was revealed in 254 

residual plots over observed volume (Figure 4); however, these occurred in poorly stocked stands (i.e., 255 

<50 m
3
 ha

-1
) and do not constitute a concern for using the DMD in practice. The QMD-HT100 model 256 

exhibited some high regional bias (Table 5); a 95% confidence envelope about the mean of QMD 257 

residuals included zero in 7 out of 14 sites for the HT100 model (Equation [4]), and 8 out of 10 sites for 258 

the VOL model (Equation [5b]).  259 

Discussion  260 

1) DMD characteristics 261 

DMDs that cover widely distributed species (e.g., Long and Shaw 2005) are indicative of average 262 

growth patterns and allometric relationships of monospecific stands. We assumed that allometric 263 

equations, when portrayed on the DMD, were invariant across all sites (Weiner 2004). Conditions 264 

under which the self-thinning boundary may shift include, at the local scale, genetic differences 265 

(Buford and Burkhardt 1987) and severe resource deficiencies, e.g., in treeline environments (Körner 266 

2003). However, despite deviations at certain localities (Table 5), our allometric models should be 267 

robust, in that the high number of plots used for calibration should average out local peculiarities.  268 

Previous research has observed disparities in mortality rates of Norway spruce stands located on 269 

different elevations and aspects (Krumm et al. 2012). However, we consider these to be an effect of the 270 
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different rates at which stands may progress along their trajectories of development in size-density 271 

space, while following the same overarching, species-specific self-thinning boundary. Differences in 272 

topography, temperature, light and soil fertility affect growth rates and, in turn, the rate of mortality 273 

during the stem-exclusion phase (Aulitzky 1984; Schönenberger 2001). In other words, a Norway 274 

spruce stand on a high quality site will reach the boundary more quickly than the same density of trees 275 

on a lower quality site, even though both eventually achieve the same boundary (Jack and Long 1996). 276 

This constancy is fundamental to the general utility of DMD, and allows the use of site index curves to 277 

determine the time required to attain particular stand structural characteristics. Our aim was to 278 

characterize Norway spruce stands across the montane forest region in central-southern Europe using a 279 

single tool. Therefore, when using the DMD to portray stands at a specific location, managers should 280 

choose the appropriate dominant height curve, in order to account for differences in local productivity.  281 

Maximum SDI for Norway spruce in montane forests of central-southern Europe was 1461, which was 282 

intermediate in the range of previous regional estimates (Pretzsch 2005 - Germany: SDImax =1609; 283 

Monserud et al. 2005 - Austria: SDImax =1571; Sterba 1981 – Austria: SDImax =1547; Castagneri et al. 284 

2008 – NE Italy: SDImax =1380), independent of the DBH measurement cutoff. Consistent with 285 

previous studies (Shaw and Long 2007), we detected a convex pattern to the self-thinning limit at high 286 

tree size-low density combinations, i.e., a mature stand boundary (MSB). The most commonly 287 

suggested explanation for this process is so-called ‘self-tolerance’ (Zeide 1985), by which growing 288 

space resulting from the death of very large trees can not be promptly reclaimed by con-specific 289 

neighboring trees, lowering the limit of possible size-density combinations. Maintaining stand size-290 

density below the MSB is crucial for management as combinations above the line are ecologically 291 

improbable (DeRose et al. 2008).  292 
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2) Application of the DMD  293 

The DMD is depicted in log(QMD)-log(Density) space with a superimposed self-thinning line and 294 

HT100 and VOL isolines (Figure 5). Application of the DMD proceeds as follows: (i) identify starting 295 

conditions on the DMD (i.e., current stand structure); (ii) identify target stand structure at end of 296 

rotation (EOR) and track the likely trajectory of unmanaged stand development (i.e., asymptotic to the 297 

self-thinning boundary); (iii) ascertain the need for stand density regulation, e.g., to prevent the onset of 298 

competition related mortality (~ 60% SDI), and represent the planned thinning entries on the DMD; 299 

(iv) assess time to reach EOR by tracking the starting and ending HT100 on SI curves (Figure 6).   300 

 301 

2a) Maximize volume production 302 

When the goal is timber production, one can use the DMD for minimizing the time required to reach 303 

EOR at a desired mean stem diameter. In addition, by using the HT isolines in combination with site-304 

specific potential productivity, one can incorporate future revenue and future costs into the density 305 

management regime. For example, if the desired EOR QMD was 40 cm, and the current stand has ~ 306 

2600 N (see Figure 5), a thinning would be necessary to forestall density-dependent mortality when 307 

relative SDI approaches 60%. This could be achieved by pre-commercially thinning the stand to ~ 400 308 

N. This would drive stand development on a trajectory to meet the desired EOR of 40 cm at 309 

approximately the same time maximum stand growth is achieved (relative SDI = 60%). Both the timing 310 

and volume of the pre-commercial thinning, or any subsequent commercial thinnings could be 311 

estimated using the HT and VOL isolines, respectively, and the return or cost associated with that 312 

treatment discounted to today’s values to compare management alternatives. Similar to a volume-based 313 

regime, by using appropriate biomass conversion factors, and assuming a carbon conversion factor of 314 

0.5, one could plan a density management regime to maximize aboveground carbon sequestration for a 315 

particular stand.  316 
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 317 

2b) Mechanical stability against wind damage  318 

Windstorms are the most destructive disturbance agent in temperate European forests (judged by the 319 

volume of timber damaged: Schelhaas et al. 2003), often causing extensive damage in Norway spruce, 320 

and in particular in structurally homogeneous stands (Schmidt-Vogt et al. 1987). Tree damage begins at 321 

wind speeds of 15 m s
-1

 and can be catastrophic at 25 m s
-1

 (Zajaczkowski 1991). Susceptibility is 322 

higher for slender trees (e.g., Rottmann 1986; Thomasius 1988; Riou-Nivert 2001; Dobbertin 2002) 323 

and short, broad crowns (Schütz et al. 2006), a condition created through stand dynamics characterized 324 

by intense inter-tree competition. When risk zones for wind damage are superimposed on the DMD 325 

(Figure 7), two types of management action are supported: 1) the ability to assess current conditions 326 

relative to risk, and 2) the possibility of projecting the effect of interventions which aim to maintain or 327 

drive stand structures into low risk areas as long or quickly as possible. For example, the second 328 

management approach is depicted in the example of an unmanaged stand trajectory portrayed in Figure 329 

7. Among structural attributes, a threshold of ~1800 trees ha
-1

 strongly differentiates high and medium 330 

susceptibility to wind damage. By contrast, the threshold to low susceptibility is mainly determined by 331 

tree slenderness, where “safe” values are typically encountered in low-density stands. From such 332 

results, we conclude that the typical even-aged Norway spruce stand (either natural or planted) is 333 

characterized by a medium risk of wind damage.  334 

First glance at our Norway spruce stand plotted on the DMD might indicate that a heavy thinning may 335 

effectively lower stand susceptibility to wind damage, but in dense stands it may result in sudden 336 

isolation of trees with high height-to-diameter ratio, and hence increase the probability of damage by 337 

breakage or uprooting (Thomasius 1980).  338 

While uneven-aged stands are acknowledged to have higher resistance to wind (e.g., Shorohova et al. 339 

2008), they can not be accurately represented on the diagram. Additional limitations of DMD are: (a) 340 
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they cannot track risk factors unrelated to stand structure, e.g, soil (trees are much more vulnerable to 341 

wind damage on shallow or wet soils), weather, building beetle populations; and (b) they cannot track 342 

the long-term influence of climate change on either autogenic, or allogenic growth factors.  343 

 344 

2c) Avalanche and rockfall protective function  345 

Because Norway spruce predominates in the upper montane and subalpine belt, it can be quite effective 346 

against the release of avalanches (although not on their transit), provided that stands meet given 347 

structure and density standards (Motta and Haudemand 2000). Like wind damage, required stand 348 

structures can be represented as risk zones on the DMD (Figure 8). Although individual-tree resistance 349 

parameters are similar to those required for windfirmness, effective stand structures differ because open 350 

stands with thicker trees are more prone to avalanche release due to the presence of tree-free gaps 351 

(Meyer-Grass and Schneebeli 1992; Bebi et al. 2009). By experimenting with different management 352 

regimes on the DMD (Figure 8), we concluded that Norway spruce stands could remain within a low-353 

risk zone for as long as 60 years, provided that site index is not too high, such as most subalpine stands 354 

(e.g., 25.2 m on average for stands at elevations >1700 m on the Eastern Alps, data from Cantiani et al. 355 

2000). Even for high potential productivity, the low-risk period could extend up to 30 years, which 356 

would allow for spatial planning of silvicultural interventions in avalanche-prone catchments, with a 357 

goal to maintain some proportion of Norway spruce stands in the catchment as active protection forests. 358 

Boundaries for the low-risk zone could be extended by relaxing the tree slenderness or competitive 359 

status requirements. However, this would come at the expense of individual vitality and stand-scale 360 

resistance. When the degree of tree clumping is high, it is very difficult to contrast the presence of gaps 361 

large enough to trigger potentially hazardous snow movements. Management can mitigate the tendency 362 

for large gap creation at lower elevations. For example simulations by Cordonnier et al. (2008) suggest 363 

that by creating small gaps every 20 years, uneven-aged structure can be initiated, thereby increasing 364 
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the protective function of mountain Norway spruce stands in the western Alps. In subalpine forests, 365 

which exhibit clumped spatial arrangements (Motta and Lingua 2005), stabilization of avalanche 366 

channels has to be pursued by alternative means or structures. Similar considerations could be made for 367 

rockfall, albeit using different thresholds on the DMD (Vacchiano et al. 2008). 368 

 369 

2d) Resistance to spruce bark beetle  370 

In central-southern Europe, spruce bark beetle outbreaks are a part of the natural disturbance regimes of 371 

Norway spruce forests (Svoboda et al. 2012). However, mortality induced by bark beetle may severely 372 

alter structure and functionality of stands that are managed for important ecosystem services, such as 373 

protection from geological hazards (Amman 2006) or water quality (Huber 2005).  Outbreaks are 374 

primarily triggered by climate and abundance of infestation source such as recent deadwood; droughts, 375 

windthrow, or pollution may decrease tree vigor and increase susceptibility, although evidence is still 376 

contradictory to this extent (Baier 1996; Dutilleul et al. 2000; Wermelinger 2004). Norway spruce trees 377 

have recently been found to be potentially more resistant to spruce bark beetle when the density of 378 

foliage, or foliage packing is high (Jakuš et al. 2011), presumably as a result of the inability of adults to 379 

reach the stem. This suggests Norway spruce trees that maintain longer crowns throughout stand 380 

development are more likely to resist spruce bark beetle infestation. Although the DMD was developed 381 

using stand-level data, it is relatively easy to visualize stand-density combinations necessary to 382 

maintain long live crowns. If we were to assume that full canopy closure in Norway spruce stands 383 

occurs at 25-35% SDI (Long 1985), we would seek to maintain stands on average below that level 384 

when portrayed on the DMD. While it may be possible to enhance individual-tree growth and 385 

potentially resist the beetle under this regime, it would come at the expense of stand-level growth and 386 

would almost certainly result in low-quality logs by the EOR because of large lower branches. This 387 
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shows that trade-offs associated with management goals must be considered. Fortunately, they can be 388 

simultaneously portrayed on the DMD.  389 

 390 

An overlay of low-risk zones from Figures 7 and 8 demonstrates potential conflicting management 391 

goals, or desired conditions that cannot be simultaneously maximized. The ability of Norway spruce 392 

stands to meet various management objectives can be assessed on the DMD provided that associated 393 

requirements can be expressed by average (or distributional) stand parameters. Possibilities include 394 

habitat quality for ungulates (Smith and Long 1987) and birds (Shaw and Long 2007). For example, the 395 

DMD can be used to project which density regime would promote tree growth of the dominant cohort 396 

and speed up the creation of future veteran trees that will serve as habitat when alive or standing dead, 397 

or to estimate the time necessary for conversion from monocultures to mixed natural forest by using the 398 

MSB to manage for time required to form stable canopy gaps.  399 

Conclusion 400 

The proposed DMD represents a marked improvement in Norway spruce density management over 401 

conventional approaches, because it characterizes ecological processes that drive growth and mortality. 402 

Statistical results for the stand-scale DMD suggest it is adequately robust for use over the geographic 403 

area covered by our analysis. The DMD allows the silviculturist to graphically display current stand 404 

conditions and project stand development after treatment with respect to density-dependent mortality 405 

and susceptibility of stand structure to natural hazards or disturbance agents. Multiple management 406 

scenarios can be simultaneously portrayed on the DMD to assess which EOR goals in terms of tree 407 

size, density, volume, and ecosystem services can be met, how much time is required to meet them, and 408 

how long they can be maintained by management.  409 
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Figure captions 595 

Fig. 1 Distribution of Norway spruce in central-southern Europe (after Schmidt-Vogt 1977) and location code for data used 596 

for DMD construction. Refer to Table 1 for location names 597 

Fig. 2 Wind stability zones for even-aged coniferous stands based upon HT100 and QMD (after Riou-Nivert 2001) 598 

Fig. 3 Selected Norway spruce stands in size-density space, SDI lines and Mature stand boundary  599 

Fig. 4 Residual plots from HT100 (a) and VOL (b) models (Equations [4] and [5b]). Black lines represent loess fit 600 

Fig. 5 DMD for Norway spruce in the central-southern European montane ecoregion, and working example of stand 601 

trajectories for unmanaged and a pre-commercial thinning alternative (starting stand conditions: N =2500, QMD =10 cm; 602 

end-of-rotation: QMD =40 cm). Competition-related mortality onsets at 60% SDI and higher. Target QMD is reached in 70 603 

years in the working example, as opposed to 90 years in the unmanaged alternative, on a medium fertility site (SI = 23.6 m, 604 

see Figure 6) 605 

Fig. 6 Site index curves from Eisacktal (South Tyrol) yield tables  606 

Fig. 7 DMD and risk zones for windfirmness of Norway spruce stands. Starting stand conditions, EOR and unmanaged 607 

stand trajectory as in working example for Figure 6 608 

Fig. 8 Low risk zone for avalanche release hazard (slope = 35°). Low risk boundaries express: (a.) minimum basal area; (b.) 609 

SDI for minimum crown ratio; (c.) maximum HT100/DD ratio. (d. – red lines) maximum gap size for NNI =0.5 (clumped 610 

tree spatial pattern) and 1 (random pattern) according to Equation [7]. Starting stand conditions, EOR and unmanaged stand 611 

trajectory as in working example for Figure 6 612 
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 Tables 615 

 616 

Table 1 Source of data for the Norway spruce DMD and estimates of SDImax by location (SDIp for pure, even-

aged Norway spruce stands) 

ID Dataset Name (region) Country No. 

plots 

DBH cutoff 

[cm] 

Plot size 

[m
2
] 

98
th

 p-ile 

SDImax 

1 Aosta Italy 156 7 201-707 1209 

2 Piemonte Italy 65 7 201-707 1701 

3 National Forest Inventory Italy 401 4 relascopic 1571 

4 Burgusio Italy 91 4 relascopic  1080 

5 Lasa Italy 251 4 relascopic 1473 

6 Latemar Italy 322 4 relascopic 1745 

7 Luttago Italy 72 4 relascopic 1007 

8 Meltina Italy 256 4 relascopic 1383 

9 Naturno Italy 304 4 relascopic 1220 

10 Valle Aurina Italy 155 4 relascopic 1493 

11 Paneveggio Italy 91 17 452 1321 

12 San Martino Italy 91 17 452 1278 

13 Valbona Italy 66 7 400 1592 

14 Val Pontebbana Italy 33 7 452 1162 

15 Tajga Czech Republic 78 7 491 755 

16 Sumava Certovo Czech Republic 66 7 38-499 1278 

17 Sumava NP Czech Republic 38 7 38-499 1221 

18 Sumava large plots Czech Republic 15 7 1000-2500 1121 

19 Sumava Trojmezna Czech Republic 18 7 38-499 826 

20 Călimani Romania 40 10 500-1000 1425 

21 Giumalau Romania 41 10 500-1000 1270 

22 Baden-Wurttnenberg Germany 399 7 relascopic 1464 

23 France 2005 France 522 7 113-707 1206 

24 France 2006 France 526 7 113-707 1277 

25 France 2007 France 558 7 113-707 1305 

26 France 2008 France 489 7 113-707 1086 

27 France 2009 France 471 7 113-707 1238 

28 Parangalitsa Bulgaria 227 4 100 2653 
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 620 

Table 2 Summary statistics for pure, even-aged Norway spruce stands (SDIratio ≥0.9, 

percent Norway spruce on total basal area ≥0.8) 

Variable unit n min max mean S.E. 

N trees ha
-1

 1609 14 5058 564.1 13.03 

QMD cm 1609 7.8 115.0 34.8 0.31 

HT100 m 876 4.2 46.0 24.1 0.23 

VOL m
3
ha

-1
 505 0.8 1163.6 316.4 9.69 

BA m
2
ha

-1
 1609 0.4 130.0 40.3 0.50 

PRCPA % 1609 0.8 1.0 1.0 0.002 

SDIsum - 1609 14 2057 705.0 8.45 

SDIratio - 1609 0.9 1.0 1.0 0.001 

Age Years 669 8.0 338.0 108.5 2.40 

Elevation m a.s.l. 748 82 2230 1240.6 16.26 
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 623 

Table 3 Fit statistics of the self-thinning line computed using different DBH cutoff values 

DBH cutoff 

[in] SDImax  slope 95%min  95%max  p Adjusted R
2
 No. Plots 

0 1461 -1.50 -1.67 -1.32 0.00 0.94 1609 

4 1587 -1.61 -1.85 -1.36 0.00 0.90 633 

7.5 1287 -1.53 -1.95 -1.10 0.00 0.82 635 

10 1447 -1.52 -1.83 -1.20 0.00 0.91 250 

17 1355 -1.87 -3.77 0.04 0.053 0.56 91 

 624 

 625 

Table 4 Model fit and parameters for Equation 4 and 5b (HT100 in m, QMD in cm, VOL in m
3
 ha

-1
) 

Parameter Estimate  S.E. 95%min  95%max  Adjusted R
2
 n 

 

QMD = HT100 (b1 – b2 ln N) 

b1 3.148 0.056 3.038 3.259 0.663 1491 

b2 0.297 0.009 0.278 0.315   

 

VOL = c1 + c2 N QMD
c3

  

c1 -25.795 5.238 -36.087 -15.503 0.937 505 

c2 1.79 *10
-4

 1.6*10
-5

 1.46 *10
-4

 2.11 *10
-4

   

c3 2.432 0.025 2.383 2.480   
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 628 

Table 5 QMD mean bias (predicted-observed, 95% confidence interval) for HT100 and VOL models 

(Equations [4] and [5b]), by location 

Location Mean Bias QMDHT100 (cm) Mean Bias QMDVOL (cm) 

95% c.i. lower upper lower upper 

Aosta   1.31 3.17 -0.14 0.37 

Piemonte -5.49 1.88 -1.82 -0.37 

Italy -0.30 1.33 - - 

Valbona  -3.67 -1.23 -0.39 1.00 

Val Pontebbana -3.52 0.68 -0.62 1.05 

Tajga 2.34 3.57 0.74 2.82 

Sumava NP -2.99 -1.10 - - 

Călimani 3.29 5.22 - - 

Giumalau 5.41 8.14 - - 

France 2005 -3.57 -0.13 -0.43 1.78 

France 2006 -3.05 -0.47 -0.52 1.06 

France 2007 -3.46 0.77 -0.48 2.24 

France 2008 -1.22 2.80 -0.04 2.67 

France 2009 -2.51 0.50 -0.76 0.89 
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