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Abstract 
 

Introduction Attributable fraction (AF), proposed by Levin, quantifies the 
reduction in the disease prevalence that could be achieved by eliminating the 
exposure (or risk factor) of interest from the population. Disease etiology 
involves multiple risk factors that may act simultaneously in the occurrence 
of disease and the optimal approach to quantify the individual and the joint 
effects of different risk factors on the disease burden is one of the goals in 
epidemiological research. Adjusted AFs quantify the effect of one risk factor 
after controlling of other factors (i.e., risk factors that may act together to 
cause disease, adjustment variables or confounders). Adjusted AFs may add 
up more than the joint AF (i.e., the AF for eliminating all risk factors from 
the population) and in some situation may add up to more than 1, leading to 
the conclusion that adjusted AFs should not be used to the purpose of 
partitioning the joint effect into individual contributions. Eide and Gefeller 
proposed a way to accomplish this task. Sequential AFs quantify the additional 
effect of one risk factor on the disease risk after the preceding risk factors 
have already been removed in a specified order from the population. 
However, sequential AFs depend on the order in which risk factors are 
removed from the population. Average AFs overcome this shortcoming by 
averaging sequential AFs for a risk factor over all orders by which risk factors 
can be removed from the population. Average AFs quantify the additional 
effect of one risk factor on the disease risk after the preceding factors 
selected randomly have already been removed from the population. 

Objective This work aims to illustrate the main methodologies to estimate 
AFs and corresponding confidence intervals in presence of multiple risk 
factors with a focus on case-control study design. Moreover, we provide AF 
estimates for the major risk factors using Italian case-control data on oral 
cavity and breast cancers. 

Modification of case-control study design In the original notation, 
sequential and average AFs could not be used in case-control study design, 
since the ratio of controls to cases in the sample is fixed a priori and the 
resulting AF estimates will be biased. Ferguson et al. proposed a prevalence-
based weighting approach to correct the imbalance between controls and 
cases. The method consists in weighting the likelihood function of the model 
used to estimate sequential and average AFs for the disease prevalence. 
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Variance estimation The main approaches for estimating AF confidence 
intervals (CIs) are based on asymptotic approximation (Delta method) and 
simulations (Monte Carlo method). Ferguson proposed a method based on 
Monte Carlo simulations for constructing average AF variance. They also 
proposed the “averisk” R package for calculating average AFs and 
corresponding CIs in both prospective and case-control studies. In this work, 
we proposed a modification of the Ferguson’s method to account for 
sequential AF variability on the total variability. 

Variances comparison We compared our and Ferguson’s methods to 
estimate average AF variance using simulated data. We generate two classes 
of simulated dataset. Each class included four scenarios according to 
different correlation structure: from independence (scenario 1) to strong 
correlation among risk factors (scenario 4). The two classes differed in the 
prevalence and strength of the association between risk factors. In particular, 
the first class had a high prevalence and modest relative risks, whereas the 
second class had a low prevalence and huge relative risks. 

For both classes of simulated data, standard deviation increment (i.e., the 
relative difference between our and Ferguson’s methods) became gradually 
larger increasing the number of independent risk factors (from two to ten). 
Conversely, standard deviation increment decreased incrementing the 
number of correlated risk factors. Although in some situations (i.e., for 
correlated risk factors) the contribution of our method could have a 
substantial relative impact on total AF variability (up to 88%), the absolute 
standard deviation differences between two methods were very small (less 
than 0.15) indicating a limited contribution of our method than the Feguson’s 
one. 

Application to real data We estimated average AFs using a case-control 
study conducted in Italy on 946 oral cavity cases and 2492 controls. Risk 
factors considered for AF estimation were smoking, alcohol drinking, red 
meat intake, vegetables intake, fruit intake, and family history of oral cavity 
cancer. The final model included also terms for sex, age, study centre, years 
of education, BMI, and non-alcohol energy intake to account for possible 
confounding effect. We set a 581 10  prevalence of oral cavity cancer 
according to statistics from the consortium of Italian Cancer Registry 
(AIRTUM) to adjust average AFs for case-control data structure. Eighty-
eight percent (95% CI: 78%; 98%) of oral cavity cases were attributable to 
the considered risk factors. In particular, the average AF for smoking was 
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0.34 (95% CI: 0.27; 0.41), indicating that 34% of oral cavity cases would not 
has occurred if smoking was randomly removed from the population over all 
possible risk factor removal orders. For the remaining risk factors, average 
AFs were 0.27 (95% CI: 0.17; 0.37) for alcohol drinking, 0.11 (95% CI: 0.06; 
0.17) for low vegetables intake, 0.08 (95% CI: 0.02; 0.15) for low fruit intake, 
0.06 (95% CI: 0.01; 0.12) for high red meat intake, and 0.009 (95% CI: -0.001; 
0.02) for family history. 

We analyzed a further case-control study on 2569 breast cancer cases and 
2588 controls. We set a 52019 10 prevalence of breast cancer to adjust 
average AFs for case-control data structure. The final model included alcohol 
drinking, parity, breastfeeding, use of oral contraceptives (OCs), and family 
history of breast cancer as risk factors; study centre, age, years of education, 
smoking, age at menarche and use of hormonal replacement therapy (HRT) 
as adjusting factors. The joint AF was 0.49 (95% CI: 0.35; 0.63) indicating 
that approximately half of the breast cancer cases would not has occurred if 
all risk factors were simultaneously eliminated from the population. In 
particular, average AFs were 0.27 (95% CI: 0.16; 0.39) for parity, 0.12 (95% 
CI: 0.06; 0.18) for alcohol drinking, 0.04 (95% CI: -0.02; 0.10) for 
breastfeeding (No or <4 months), 0.04 (95% CI: 0.03; 0.06) for family history 
of breast cancer, and 0.01 (95% CI: -0.01; 0.03) for OCs users. 

Conclusions Sequential and average AFs are useful tools to apportion 
exposure-specific contributions in a population exposed to multiple risk 
factors. Sequential and average AFs share some mathematical properties such 
as component-additivity, symmetry, marginal rationality, and internal 
marginal rationality. Average AFs, however, do not represent the actual 
amount of disease ascribable for each risk factors because they assume that 
risk factors are removed from the population in a random order. 
Nevertheless, average AFs could be useful parameters to estimate the average 
burden of disease for each risk factors across all possible removal orders. 

In this work, we proposed an alternative approach to estimate the average AF 
confidence interval accounting for sequential AF variability on the total AF 
one. We compared the performance between our and Fergusons’ methods to 
estimate AF variance. Although our method could have a relative impact on 
total AF variability, the absolute standard deviation differences suggest a 
limited contribution of our method. However, this topic should be further 
analyzed.
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Chapter 1 
 

Introduction 
 

1.1 Background 

One of the research goals in epidemiology concerns quantifying the impact of 
exposures (or risk factors) on the outcome, such as mortality or a certain 
disease, at the population level. In epidemiology, relative risks (RRs) or odds 
ratios (ORs) measure the strength of the association between risk factors and 
an outcome. These parameters, however, do not define the impact of risk 
factors in the population, as their prevalence are not taken into account. The 
parameter that includes both the strength of association between risk factors 
and disease and the risk factor prevalence in the population is the attributable 
fraction (AF). The AF measures the proportion of diseased subjects (cases) 
ascribable to one or more exposures, or, in other words, the percentage 
reduction in the probability of disease that could hypothetically be achieved 
by completely eliminating the risk factors from the population. Over the 
years, the concept of AF has grown in importance because it can be used to 
plan public health actions for the reduction of the disease. Uter and Pfahlberg 
[1] reviewed the epidemiological literature related to the use of the AF from 
1966 to 1996. No publication was observed in the first ten years, but a 
considerable increase in numbers was found in the last ten years (Figure 1.1). 
The mounting literature dealing with AF comes from the wish to quantify the 
number of the observed cases that can be ascribed to risk factors. Indeed, the 
AF answers questions like: “how much do risk factors contribute to the 
burden of morbidity (or mortality) in a population?”, or “how much of 
disease load could be eliminated if risk factors were eliminated from the 
population?”. 

Initially, AF was formulated for a single dichotomous risk factor [2] and was 
later extended to polytomous or continuous ones [3-5]. These expressions, 
however, ignored the presence of other factors (i.e., confounders, effect 
modifications, or other exposures that may act simultaneously in the disease 
onset), assuming the AF as a one-dimensional parameter. The AFs, termed 
also unadjusted or crude attributable fractions, as originally defined, lead to biased 
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estimates. Walter [6] first discussed the biases in the AF estimates when the 
distribution and the effect of other factors are considered. 

Figure 1.1. Temporal distribution (from 1966 to 1996) of publications employing the 
attributable fraction (AF)§. 

 
§Source: Uter W, Pfahlberg A. The concept of attributable risk in epidemiological practice. 
Biometrical J. 1999; 41(8):985-93.  

In practice, disease outcomes have multiple contributing determinants that 
may act together to produce a given instance of disease [7] and may have a 
remarkable impact on the estimation of AF. Adjustment procedures to 
estimate AF were the subject of intensive research activities by several 
authors [4, 6, 8-11]. Stratification and modeling approaches are the main 
adjustment strategies. Thus, the adjusted attributable fraction quantifies the effect 
of removing one or more risk factors after controlling for other risk factors 
and possible confounders. Individual adjusted AF, however, do not sum up 
to their joint AF (i.e., the AF for eliminating all risk factors from the 
population) and frequently may sum up to more than 1, indicating an 
unrealistic scenario in which the cases attributable to the risk factors are more 
than the burden of cases in the population. This depends on both 
interactions and correlations between risk factors that lead to overlapping 
contributions to the occurrence of the disease. 

In a multifactorial setting, the interest is to apportion the joint effect 
attributed to a collection of risk factors into individual contributions. The 
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task of dividing the joint effect into exposure-specific components requires 
methods that do not impose any hierarchy among risk factors. Clearly, 
adjusted AFs violate this requirement and partitioning approaches have been 
developed in order to accomplish this. A sequential approach consists in 
stepwise removal of one risk factor at a time in a pre-specified order. The 
sequential attributable fraction is the AF for eliminating a risk factor in a 
particular order from the risk system. It quantifies the additional effect of one 
risk factor on disease risk after the preceding risk factors in a specified 
sequence have already been taken into account. Thus, the sequential AF 
depends on the ordering in the set of exposures within the sequence. Indeed, 
the sequential AF for a specific risk factor may differ even for the same set of 
risk factors according to different removal orders. One way to avoid this 
ambiguity is to average sequential AFs over all removal orders, leading to the 
average attributable fraction, also termed partial attributable fraction [12]. The 
average AF quantifies the additional effect due to the elimination of a risk 
factor that can be expected after the effect of other risk factors (randomly 
selected) have already been taken into account. The concept of averaging 
sequential AFs is rooted in the principle suggested by Kruskal [13] for 
determining relative importance for independent variables in a multiple 
regression setting. Also Cox Jr. [14] gave a justification for using the average 
AF in a way based on the analogy between game-theoretical reasoning in 
profit allocation among several players that acting together in a coalition and 
the epidemiological task of apportioning disease risk among multiple risk 
factors. 

 

 

1.2 Aim and description of the study 

This works aims to illustrate the main methodologies to estimate the 
attributable fractions and corresponding confidence intervals in presence of 
multiple risk factors with a focus on case-control study design. Moreover, we 
provide AF estimates using Italian case-control data on oral cavity and breast 
cancers. 

The rest of this work is organized as follows. In the chapter 2, we will review 
the concept of AF including adjusted strategies to control for confounders or 
effect modifications and their shortcomings in the presence of multiple risk 
factors. Moreover, sequential and average AFs will be illustrated and their 
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mathematical properties as well. Then, we will describe an approach to 
estimate sequential and average AFs accounting for case-control data 
structure based on incorporating disease prevalence in the regression model 
(chapter 3). We will illustrate the delta [15] and Monte Carlo methods [16] to 
estimate AF confidence intervals. Moreover, we will propose a modification 
of the method based on Monte Carlo simulations to estimate average AF 
confidence intervals (chapter 4). Performance between our and existing 
methods will be compared through simulated datasets (chapter 5). Using 
case-control data, we will provide average AF estimates for the major risk 
factors for oral cavity and breast cancers (chapter 6). Chapter 7 will discuss 
the results, some methodological issues, and future developments. 
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Chapter 2 
 

Review of the literature 
 

2.1 Definition of population attributable fraction (AF) 
The classical definition of attributable fraction (AF) was proposed by Levin 
[2]. Levin’s interest was in quantifying the proportion of lung cancer cases in 
the population that could be ascribed to smoking and he introduced an 
“index S which is the indicative maximum proportion of lung cancer 
attributable to smoking”. This parameter was formulated as follows: 

   
   

1
1 1

RR P E
AF

RR P E
 


  

, 

where  P E  is the probability of risk factor E  in the population (or 

prevalence) and    | |RR P D E P D E  is the relative risk. In the Levin’s 

formula, the denominator represents the disease probability in the overall 
population, whereas the numerator represents the difference between the 
disease probability in the overall population and the probability that would be 
observed if the whole population were unexposed. Indeed, the AF can also 
be formulated in terms of these probabilities (MacMahon and Pugh’s 
formula) [17]: 

   
 

|P D P D E
AF

P D


 , 

where  P D  denotes the probability of disease in the overall population and 

 |P D E  denotes the probability of disease in the unexposed subjects. 

Leviton [18] proved the algebraic equivalence of these formulas (see 
Appendix 1). 

Miettinen [3] proposed the attributable fraction in exposed (AFE) restricting 
the attention to the group of exposed subjects. Levin’s and MacMahon and 
Pugh’s formulas, respectively, can be written as: 

11AFE RR  , 
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and 

   
 

| |
|

P D E P D E
AFE

P D E


 . 

The AFE quantifies the proportion of disease attributable to exposure solely 
in the group of exposed. The AF is related to the AFE by the equation: 

 |AF AFE P E D   

where  |P E D  is the probability of exposure among subjects who 
developed the disease. Miettinen’s formula is also called case-based version of 
the attributable fraction because it is based on the distribution of exposure in 
cases. 

For the AF, Walter [4, 19, 20] developed asymptotic distributions for the 
maximum likelihood estimator in cross-sectional and cohort studies 
providing approximate standard errors. As AFE is a transformation of 
relative risk, standard errors are easily obtaining by transforming it from the 
relative risk scale. AF may also be estimated from case-control data of a rare 
disease where cases are representative of the diseased population [21]. Several 
authors, however, proposed alternative approaches for estimating AF for 
case-control data of common disease (i.e., high disease prevalence) [10, 16, 
22-24].  

 

 

2.2 Generalization of AF: adjusted AF 
The AF and the AFE are univariate parameters that describe the fraction of 
cases attributable to the elimination of one risk factor. Thus, they are 
considered crude, unadjusted, or marginal parameters. These unadjusted 
parameters are in general biased. Walter [6] worked out the conditions under 
which adjusted AF estimates that account for the distribution and the effect 
of other factors (i.e., risk factors that may act together to cause disease, 
adjustment variables or confounders) differed from unadjusted AF estimates. 
He showed that, if 1E  and 2E  are two dichotomous risk factors and if the 
interest is in the estimating AF for risk factor 1E , the crude and adjusted AFs 
will coincide if and only if at least one of the following conditions is true: 
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i. 1E  and 2E  are independently distributed in the population, that is: 

       1 2 1 2 1 2 1 20, 0 1, 1 0, 1 1, 0P E E P E E P E E P E E           , 
where level 0 denotes the unexposed group and level 1 denotes the 
exposed group; 

ii. exposure to 2E  alone does not increase disease risk, that is: 

   1 2 1 2| 0, 1 | 0, 0P D E E P D E E     . 

Considering a polytomous risk factor or more than one adjustment variable, 
the previous conditions can be extended to a set of sufficient conditions [11]. 

Stratification is one of the approaches proposed for quantifying attributable 
shares of the disease probabilities accounting for other risk factors and 
possible confounders or effect modifications [4, 6, 8, 9, 25]. In particular, 
three adjustment strategies were introduced: 

i. the weighted-sum over all adjustment strata of the stratum-specific 
AFs (type I); 

ii. the use of adjusted relative risk to obtain adjusted AF, exploiting the 
functional relationship between relative risk and AF (type II); 

iii. the extension to the AF parameters of the factorization idea [26] used 
to adjust relative risk (type III). 

Consider a simple 2×2 table, where rows report unexposed and exposed 
subjects and columns report diseased and non-diseased subjects.  

Table 2.1. Two by two table summarizing data of a disease D  and a risk factor E  for the 
thk  stratum of the adjustment factors. 

Exposure level 
Disease 

Total 
D  D  

    

E  ka  kb  k ka b  

E  kc  kd  k kc d  
    

Total k ka c  k kb d  kN  
    

The adjustment procedure leads to a 2 2 K   table, where the third 
dimension is represented by a stratum variable C  with K  levels, which could 
be one observed variable or a combination of two or more variables. 
Formally, the observed data on a disease and a risk factor for the thk  stratum 
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of the adjustment factors is reported in table 2.1. The quantities , , ,N a b c  and 
d  denote the sum of the stratum-specific values over all K  strata, 
respectively. 

 

Type I adjustment strategy 

The type I adjustment strategy has the following expression: 

,
1

K

adj E k E k
k

AF w AF


  , 

where ,E kAF  denotes the AF for the risk factor E in the thk stratum and kw , 

1,2, ,k K  , is a set of weights with 
1

1K
kk

w


 . Any set of weights can 

theoretically be used, but only the following sets have been proposed: 

k k
k

a cw
a c





    1,2, ,k K   

and 

 
 

1

,

1

,
1

E k
k K

E k
k

Var AF
w

Var AF







  
  

  1,2, ,k K  . 

In the first expression, the weights are the proportions of cases in the strata 
among all cases in the sample [8]. This is called “case-load weighting”. The 
second expression, termed “precision-weighting”, employs the inverse 
stratum-specific variance of the AF over the sum of inverse variances over all 
strata in order to obtain increased precision. 

 

Type II adjustment strategy 

Miettinen discussed first the relationship between AF and relative risk [3]. 
Exploiting this relationship, the type II adjustment strategy consists in 
plugging-in an estimate of the common relative risk (or odds ratio in case-
control studies) in the AF expression in order to obtain adjusted AF 
estimates. Several choices are available for the adjusted relative risk estimator. 
Kleinbaum et al [27] suggested using the Mantel-Heanszel estimator for the 
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relative risk [28] in cross sectional and cohort studies (or the Mantel-Heanszel 
estimator for the odds ratio in case-control studies). The general formula of 
the Mantel-Heanszel estimator for the relative risk is: 

 

 
1

1

K
k k k

k k
K

k k k

k k

a c d
NRR

c a b
N





 


 




, 

or the alternative formula:  

 

 
1

1

K
k k k

k k k
K

k k k

k k k

a c d
b dRR

c a b
b d





 



 





. 

Other authors proposed different estimators, such as the “precision 
weighting” of the stratum-specific log relative risks [9, 25], or weighted least-
square estimators of a common relative risk [29]. Moreover, the type I 
adjustment strategy using the case-load weighting set equals to the type II 
adjustment strategy with the Mantel-Heanszel estimator [21]. For more 
details, see A.2. 

 

Type III adjustment strategy 

Walter [4] proposed an approach by adapting Miettinen’s factorization idea 
[26] to adjust relative risk to the context of the AF. This approach assumes 
that the crude AF ( crude AF ) is the sum of two parts: the component due to 
the effect of confounding ( conf AF ) and the adjusted component ( adj AF ). 

The conf AF  is expressed by: 

 

   
1

K
k k

k k
conf

a da d c
cAF

a c c d



  


  


. 

Walter derived the previous formula by calculating the hypothetical number,
b , of all exposed non-diseased subjects that would have occurred if in all 
strata the risk factor had no effect on the disease probabilities (i.e., 1kRR   
for all 1,2, ,k K  ) and all other cell entries were unchanged. Thus, he 
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computed a value k k k kb a d c   for each stratum of C  and summed it over 

all strata of C  to yield b . Taking this hypothetical cell entry b  and the 
observed cell entries ,a c  and d , he estimated the AF which would be 
observed if there were no exposure effect on each stratum of C . Then, he 
yielded the adjusted AF according to the following formula: 

   
1

K
k k

k
k k

adj crude conf

a dc b
c

AF AF AF
a c c d


 
  

   
  


. 

When there is no interaction between factors (“homogeneity model”), the 
type II adjustment strategy is preferable as it produces unbiased estimation 
even for sparse data [30, 31]. When interaction exists (“interaction model”), 
there is no common relative risk to be estimated and the type II approach 
becomes inconsistent [9, 32]. Moreover, the type I adjustment strategy 
assumes that stratum-specific AFs are constant across all strata, which is 
achieved in some situations of the interaction model and it is incompatible 
with the homogeneity model. Indeed, as a consequence of the homogeneity 
model at least two stratum-specific exposure prevalence  |P E C k  and 

 |P E C h  with k h , have to be different, which results in non-identical 

stratum-specific AFs (i.e., , ,E k E hAF AF ) [9, 11, 25]. The adjusted AF using 
type III strategy was criticized by Ejigou who pointed out the heuristic 
argumentation proposed by Walter to determine conf AF . Simulations have 
shown that the adjusted AF estimated with type III strategy, while intuitively 
appealing, was inconsistent exhibiting very severe bias [33]. 

 

Modeling approach 

Another class of adjustment strategies based on a modeling approach exploits 
the generality and flexibility of a regression model. The type I adjustment 
strategy does not impose any structure on the relative risk and its variation 
with risk factors and strata of adjustment factors. It simply requires 
estimating separate relative risks for each stratum of the adjustment factors. 
The type II strategy requires estimating a common adjusted relative risk, 
which corresponds to a regression model with only the main effects for risk 
factors and possible confounders. The regression model, instead, allows for 
taking into account adjustment factors as well as interaction terms (e.g., an 
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interaction between two risk factors or an interaction between a risk factor 
and an adjustment factor). Some authors proposed the use of regression 
models for estimating adjusted AF [4, 34, 35]. Model-based adjusted AFs 
have been developed for case-control [10], cross-sectional [36], and cohort 
studies [11]. Bruzzi and colleagues [10] applied logistic regression models 
with respect to case-control studies. This approach is valid for cohort and 
cross-sectional studies. The method consists in a weighted sum of relative 
risk (or odds ratios in case-control studies) to estimate the adjusted AFs. For 
each stratum of adjustment factors, relative risk estimates are combined with 
the stratum-specific proportion of diseased subjects. The Bruzzi’s formula is: 

,

1 0 |

1
QK

q k
adj E

k q q k

AF
RR


 

  . 

The first sum is taken over all strata of adjustment factors, and the second 
sum is taken over all exposure levels, assuming that the risk factor of interest 
E  presents 1Q   levels, 0,1, ,q Q   (usually one unexposed level and Q  
exposed levels). The quantity ,q k  represents the proportion of cases with 

respect to the thq  exposure level and thk  adjustment stratum, while |q kRR  
represents the relative risk for the thq  exposure level given the thk  
adjustment stratum, that is: 

 
 |

| ,
| 0,q k

P D E q C k
RR

P D E C k
 


 

, 

where 0E   indicates the unexposed level. 

This model-based approach includes the crude and other adjusted 
approaches as special cases but offers additional options. The unadjusted 
approach corresponds to univariate models or models without confounders. 
The type II adjustment strategy corresponds to the model with risk factors of 
interest and adjustment factors, without any interaction term. The type I 
approach corresponds to the model with all interactions terms (saturated 
model). The model-based approach also allows for intermediate models, for 
instance, models with interaction between risk factors and only one 
adjustment factor. Benichou gave a comprehensive discussion including 
examples of the generality and flexibility of model-based adjustment strategy 
[11, 21]. 



Chapter 2 _______________________________________________________________  

20 

2.3 Multifactorial setting 
Questions addressing the joint effect of multiple risk factors or the effect of a 
single risk factor relative to the combination of others factors cannot be 
overcome by simply sum up the adjusted AFs. When several exposures act 
simultaneously in developing of disease, the sum of the individual AFs 
usually exceeds the joint AF (i.e., the proportion of disease that can be 
attributed by eliminating all risk factors from the population). In other cases, 
the sum of adjusted AFs might be more than 1 leading to the conclusion that 
adjusted AFs cannot be used for the purpose of partitioning the joint fraction 
into individual contributions [25, 37-39]. This is a consequence of both 
interaction between risk factors defined on an additive level scale for relative 
risk, and non-independence of the risk factors that leads to overlapping 
contributions to the occurrence of the disease. 

In a multifactorial setting, it is particularly interesting to assess single risk 
factors with respect to their specific contributions to the joint effect of all 
risk factors and compare them to each other in order to identify those risk 
factors have a pronounced impact on the disease load in the population. 
Thus, another conceptual approach to the estimation of the AF is required. 

 

 

2.4 Sequential AF 

A method for calculating the contributions of individual risk factors to the 
disease risk in a multifactorial contest was developed by Eide and Gefeller. 
They introduced the sequential AF, “a proposal of the optimal preventive 
strategy for the elimination of risk factors with respect to the greatest impact 
for a given number of risk factors to be eliminated” [12].  

Let  1 2, , ,    LE E EE   be a set of L  risk factors of interest and 

 1 2, , ,    MC C CC   be another set of M  adjusting factors. All 

combinations of values for the adjustment factors define a total of K  strata, 
1, 2, ,   k K  . Furthermore, all combinations of values for the risk factors 

define 1Q   exposure levels, 0, 1, ,   q Q  . The unexposed subjects, or 
subjects exposed to the lowest exposure level (previously denoted by E  or by 

0E  ) is indicated by 0q  . The 1Q   exposure levels are generated by the 
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L  risk factors according to 
1

1 1L

l l
Q Q


   . The interest lies in the 

potential reduction of disease load when eliminating the L  risk factors, one at 
time, in a given sequence. For instance, a possible order for eliminating risk 
factors is as follows: starting with risk factor 1E , then risk factor 2E , and so 
on, until all L  risk factors are eliminated from the population. A way to 
implement this task is to calculate the adjusted AF for risk factor 1E  
considering all risk factors of interest and adjusting factors. This results in an 

adjusted AF, denoted by 1adj AF  derived from  2
1L

ll
K Q


   adjustment 

strata and 1 1Q   exposure levels. Thereafter, define 12adj AF  as the adjusted 
AF calculated for the combined effect of first and second risk factor 
(generating    1 21 1Q Q    exposure levels), and the remaining risk factors 

and the adjusting factors forming the  3
1L

ll
K Q


   strata. This stepwise 

procedure of calculating adjusted AF for different sets of risk factors can be 
continued until all L  risk factors are incorporated among the exposure levels. 
The last term in this sequence 12adj LAF   corresponds to the joint AF, i.e., the 

total population impact of all L  risk factors controlled for the effect of the 
M  adjustment factors. 

Any difference adj l adj lAF AF   quantifies the additional effect of considering 

the    1 , 1 , ,st nd thl l l     risk factors after having previously taken into 
account the effect of the first l  risk factors in the specified sequence. These 
differences are called sequential AFs. For instance, consider the following 
sequential AF: 2|1 12 1sequential adj adjAF AF AF  , which represents the proportion 

of disease that could be avoided by eliminating the risk factor 2E  after the 
risk factor 1E  has already removed from the population. 

The sequential AF of a specific risk factor may differ even for the same set of 
L  risk factors depending on the sequence considered during the stepwise 
process of elimination. The L  risk factors lead to !L  different sequences of 
removal orders. For instance, consider the simple set of 2L   risk factors, 

 1 2,E EE , leading to 2! 2  possible removal orders. For each risk factor, 
the corresponding sequential AFs will differ according to the removal order 
(i.e., if the risk factor is the first or the second to be eliminated). A way to 
choose a strategy of eliminating risk factors among all possible removal 
orders is to eliminate first the exposure among all L  risk factors which gives 
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the highest attributable fraction (e.g., adj lAF ), and next, to remove the 

exposure among the remaining 1L  which, combined with the first one, 
leads to the highest attributable fraction (e.g., adj llAF  ), and so forth, until all 
risk factors are removed. 

 

 

2.5 Average AF 

The sequential AFs do not yield a unique value for a particular risk factor and 
in particular, there will be !L  sequential AFs for each risk factor. Thus, the 
consistent quantification problem of the contribution of one risk factor to 
the disease load in a population exposed to multiple risk factors remains 
unsolved. The average AF could mitigate this problem by averaging the 
differing sequential AFs over all possible orders by which a risk factor could 
be eliminated from the population. Clearly, the average AFs do not depend 
on the removal orders anymore. The average AF [12] for the thl  risk factor 
is formally defined as: 

|

!
L

sequential l
G

average l

AF
AF

L





, 

where   is the generic permutation of the removal orders in which a risk 
factor can be eliminated and LG  is the set of all possible permutations. 

For a given risk factor, the average AF can be interpreted as the expected 
proportion of preventable cases by the additional elimination of the risk 
factor considered after having already removed a random collection 
(independently from the order) of other risk factors. Finally, among the !L  
different removal orders, some yield an identical value of the sequential AF 
for the same risk factor (see section 3.2 for a more details). 
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2.6 Properties of sequential and average AFs 

Sequential and average AFs share some mathematical properties of particular 
interest, as outlined below.  

Component-additivity 

Sequential and average AFs subdivide the total burden of disease due to all 
risk factors into individual contributions. As result, sequential and average 
AFs satisfy the nice property that individual contributors sum up to the joint 
AF. 

 

Symmetry 

When assessing those fractions of disease burden in the population that can 
be attributed to risk factors of interest, it should be mandatory that the 
method used for dividing the joint AF is not influenced by the number of 
risk factors considered or by any ordering among them. A method that satisfy 
this condition is called symmetric. It is clear that sequential AFs are not 
symmetric, whereas average AFs are symmetric [40]. 

 

Marginal rationality 

Let  1, , LE EE   be a set of L  risk factors and let a  and b  be two 
separate subpopulations. For instance, subpopulations might be defined with 
respect to the categories of an external variable like sex or race. The marginal 
rationality is defined as [41]: 

   12 1212 \ 12 \
a a b b

L LL l L lAF AF AF AF      for all L . 

where 12, LAF   and  12, \L lAF   are the joint AF and the AF due to the L -1 risk 

factors (excluding the thl ), respectively. 

Then for all permutations LG  of the L  risk factors the following expressions 
are valid: 

, ,L L

a b
sequential l G sequential l GAF AF , 

and 
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a b
average l average lAF AF . 

The sequential and average AFs fulfill this condition. The marginal rationality 
means that whenever the effect of eliminating the thl  risk factor in 
subpopulation a  is higher than the effect in subpopulation b , this ranking 
among subpopulations is valid independently from the choice of risk factors 
that have been eliminated before. Thus, the thl  risk factor has a more 
pronounced impact on disease load in subpopulation a  than subpopulation 
b . Marginal rationality ensures a consistent comparison of the population 
impact of one risk factor with respect to separate subpopulations.  

 

Internal marginal rationality 

While the marginal rationality ensures a reasonable ranking of the same risk 
factor when its population impact in different strata of population is 
compared, the internal marginal rationality deals with the comparison of 
different risk factors concerning their respective impact on the disease load in 
one population [41]. Suppose that the following expression is valid for the 
thl  and the thl  risk factors: 

   12 \ 12 \L l L lAF AF    for all L . 

The partitioning procedure used to create average AF has the property of 
internal marginal rationality, which implies: 

average l average lAF AF  . 

Internal marginal rationality means that whenever the thl  risk factor 
contributes more to the joint AF than the thl  risk factor, this ranking among 
the risk factors is valid independently from the choice of risk factors that 
have been eliminated before. While average AF fulfill this condition, the 
sequential AF do not. Internal marginal rationality thus ensures a consistent 
comparison of the respective population impact of different risk factors to 
each other. 
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2.7 Sequential and average AFs in a group of multi-exposed 
subjects 

The principle of sequential and average AFs outlined for a population that 
comprises unexposed and exposed subjects was extended by Eide and Heuch 
to a subpopulation of exposed subjects, i.e., the group of multi-exposed 
subjects [42]. 

 

Two dichotomous risk factors 

Recalling the formula of AF in exposed (AFE) showed in section 2.1 for a 
single dichotomous risk factor E : 

   
 

| |
|

P D E P D E
AFE

P D E


 , 

and considering the simple case of two dichotomous risk factors, 1E  and 2E , 
various AF in the exposed (AFEs) can be defined corresponding to various 
choices of exposed group: 

   
 

1 2 1 2
1

1 2

| |
|crude

P D E E P D E E
AFE

P D E E
  




, 

   
 

1 2 1 2
2

1 2

| |
|crude

P D E E P D E E
AFE

P D E E
  




, 

   
 

1 2 1 2
12

1 2

| |
|

P D E E P D E E
AFE

P D E E
  




. 

The problem is how to calculate the contribution of each risk factor to the 
joint AF in those simultaneously exposed to 1E  and 2E , i.e., 12AFE . 
According to the procedure developed by Eide and Gefeller [12], the starting 
point is to determine adjusted AFEs to both risk factors and then the 
sequential AFs in these double-exposed subjects. 

The adjusted AFs are defined as: 

   
 

1 2 1 2
1

1 2

| |
|adj

P D E E P D E E
AFE

P D E E
  




, 
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and 

   
 

1 2 1 2
2

1 2

| |
|adj

P D E E P D E E
AFE

P D E E
  




. 

The first expression is the AF of disease due to risk factor 1E  adjusted for 
risk factor 2E  in those people who are exposed to both risk factors. Likewise, 
the second expression is the AF of disease due to 2E  adjusted for 1E  in those 
simultaneously exposed to 1E  and 2E . The sequential AFs are defined as: 

1| 1sequential adjAFE AFE  , 

where the subscript 1|  indicates that risk factors 1E  is removed first (given 
no other risk factor have been already removed) from the subpopulation of 
exposed (for details see section 4.2); 

   
 

2|1 12 1 12 1|

1 2 1 2

1 2

| |
|

                     

sequential adj sequentialAFE AFE AFE AFE AFE

P D E E P D E E
P D E E

   

  




 

where the subscript 2 |1 indicates that 2E  is eliminated after having already 
removed 1E  from the subpopulation of exposed. 

Similarly, for the reverse order: 

2| 2sequential adjAFE AFE  , 

   
 

1|2 12 2 12 2|

1 2 1 2

1 2

| |
.

|
                     

sequential adj sequentialAFE AFE AFE AFE AFE

P D E E P D E E
P D E E

   

  




 

Finally, the average AFs is given by: 

1| 1|2
1 2

sequential sequential
average

AFE AFE
AFE   , 

2| 2|1
2 2

sequential sequential
average

AFE AFE
AFE   . 

By construction, sequential and average AFEs, i.e., the fraction of diseased 
subjects belonging to the subpopulation exposed to both risk factors, sum to 
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the joint AFE, i.e., the fraction of diseased subjects who are exposed to both 
risk factors (component-additivity). 

 

Multiple risk factors 

The method described above for two dichotomous risk factors can be easily 
generalized to the situation with any number of risk factors having any 
categories. 

Consider a set of L  risk factors with 1Q   exposure levels, 0,1, ,q Q  . 
Each risk factor has 1lQ   categories that generate the 1Q   exposure levels, 

i.e.,  1
1 1L

ll
Q Q


   . The unexposed group is indicated by 

     0 1 20 0 0Le E E E       , whereas the group of subjects 
exposed to the highest level for all risk factors is indicated by 

     1 1 2 2Q L Le E Q E Q E Q       . Thus, each exposure level is 

defined by a unique set of values for the L  risk factors: 
     1 1 2 2q L Le E q E q E q       . Cox Jr. [43] defined this as the risk 

profile for the thq  exposure level:  1 2, , Lq q q . 

The joint AF in the exposure level q  is defined as: 

   
 

0| |

|q

q
e

q

P D e P D e
AFE

P D e


  for 0,1, ,q Q  . 

The task is to describe the contribution of the thl  risk factor to joint AFE in 
qe  in accordance with the average AFs principle, i.e., to define the average 

AF in qe  for the thl  risk factor, ,qe lAFE . As usual, the L  risk factors can be 

ordered in !L  ways. For the th  order, the AFE in qe  for the l  first risk 

factors adjusted for the L l   last risk factors is: 
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     

 

   

 

| | | | |
1 1 1

, |

| |
1

| | |
1 1

| |
1

| | 0

|

| 0
1 .

|

          

  

    

      

    

         

q

L l L

l l l l l
l l l l

e l L

l l
l

l L

l l l
l l l

L

l l
l

P D E e P D E E e
AFE

P D E e

P D E E e

P D E e

    



 

  

 

   



  



  
     

    
 

 
 

 
  

  
 

 
 









  



 



 

Here,  1 2
, , ,

L
q q q    are the permuted values corresponding to the th

order of the risk profile’s  1 2, , , Lq q q  defining qe . The sequential AFE in 

qe  for the thl  risk factor in the th  order is: 

 , | , | , 1 |      q q qsequential e l e l e lAFE AFE AFE    , 

with 1, 2, ,l L   and 1, 2, , !L    

Finally, the average AFE in qe  for the thl  risk factor is the average of the 

sequential AFs in qe  over all orders: 

, , |
1
!   q q

L

average e l sequential e l
G

AFE AFE
L 



  . 

By construction, the average AFEs in qe  sum over l  to the joint AFE in qe . 

 

 

2.8 Bridge with game-theory 

The epidemiological problem of apportioning the joint AF among multiple 
exposures could be formalized in a way that is equivalent to the following 
economics problem. Assume that several players of different companies 
intend to divide the profit among them by acting together in a coalition. In 
their work, von Neumann and Morgenstern gave a solution to this economic 
problem [44]. They approached the problem of analyzing the complex 
structures of strategic and economic behavior by reducing cooperative L -
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person games to a numerical description in terms of characteristic functions. 
These functions are defined as: 

  1 2: | , , LP P P  C C   , 

where 1 2, , , LP P P  denote the players acting in the coalition C .  

Table 2.2 gives a summary of the correspondences between the game-
theoretic and epidemiologic formalisms. The term   C  can be interpreted 
as the minimal (or expected) profit of the coalition C . It corresponds to the 
joint risk  r E  attributable to all risk factors that are included in a risk 

system. The space   of all L–person games corresponds to the system of all 
risk functions   (table 2.2). 

Cox Jr. [14, 43] adapted the principles of game theory of profit allocation to 
epidemiological task of assessing the population impact of each risk factor in 
the context of several risk factors that jointly affect a disease. 

Table 2.2. Correspondence between game-theoretic and epidemiologic formalisms.  

Game theory Epidemiology 
  

Players: 

1 2, , LP P P  
Risk factors: 

1 2, , LE E E  

  

Coalition: 
 1 2, , , LP P PC   

Set of risk factors: 
 1 2, , LE E EE   

  

Cooperative L -person game: 

  1 2: | , , LP P P  C C    

Risk function: 

  1 2: | , , Lr E E E E E    

  

Method of payoff allocation: 
: n    satisfying 

   1 21
, ,L

Ll
P P P 


    

Risk allocation function: 
: n   satisfying 

   1 21
, ,L

Ll
r r E E E


    

  

Worth or profit of the coalition: 
  C  

Joint risk of all risk factors included in the set E :  
 r E  

  

In the game theory the two fundamental procedures for dividing up the total 
profit that several players gain by acting together in coalition are the Shapley-
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solution [45], also termed standard solution, and the solution termed proportional 
division. In the game theory, these approaches are considered to be the two 
fundamental models of fair allocation of profits. In epidemiology, the 
standard solution corresponds to the average AF suggested by Eide and 
Gefeller [12], and the proportional division corresponds to the solution of 
McElduff et al. [46] for AFE, which was extended to AF by Llorca and 
Delgado-Rodrìguez [47]. 
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Chapter 3 
 

Estimation based on case-control design  
 

3.1 AF expression using predicted cases 

As described in previous chapters, our interest lies in estimating the AF for 
one risk factor, for example 1E , in a population exposed to L  risk factors, as 
the proportional decrease in disease prevalence if 1E  was eliminated, but the 
distribution of other risk factors and confounders remained unchanged. The 
unadjusted AF cannot be interpreted in this way; instead, it summarizes the 
effects of both other relevant risk factors and confounders potentially 
overstating the effect of 1E . Obviously, the adjusted AF that takes in account 
for other risk factors and potential confounders is necessary. One of the 
adjustment strategies for estimating AFs adopts a modeling approach. It 
consists in fitting a regression model for disease occurrence with all variables 
of interest (risk factors and/or confounders). The model is used to predict 
the total number of cases that would have been observed in the sample under 
the scenario that no individual had the risk factor of interest, but with the 
levels of all other factors (other relevant risk factors and/or confounders) left 
unchanged. 

 

Adjusted AF 

In the general formula, the adjusted AF can be expressed in terms of 
predicted cases by: 

 ˆ
cases

adj
cases

N N
AF

N


 , 

where N̂  denotes the predicted cases from the model that would have been 
observed if no sample subject had been exposed to the risk factor (or risk 
factors) of interest and casesN  denotes the observed cases in the sample. 
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Sequential AF 

The previous notation can be easily extended to sequential AFs. Consider 
two risk factors 1E  and 2E . Suppose that the interest is the proportion of 
disease attributable to eliminating the risk factor 1E  after the risk factor 2E  
has already been removed from the population. The sequential AF for 1E , 
after the removal of 2E  is represented by the difference: 

1|2 12 2 12 2|sequential adj sequentialAF AF AF AF AF     , 

where 12AF  is the fraction of disease ascribable to both 1E  and 2E  (i.e., the 
joint AF for both risk factors) and 2adj AF  is the fraction of disease ascribable 

to 2E  adjusting for 1E  (i.e., the adjusted AF for 2E ). The expression above 
can be expressed as: 

     12 2 2 12
1|2 12 2

ˆ ˆ ˆ ˆ
cases cases

sequential adj
cases cases cases

N N N N N N
AF AF AF

N N N

  
     , 

where 2N̂  and 12N̂  represent, respectively, the predicted number of cases that 
would have been observed when 2E  and both risk factors were eliminated 
from the population. Clearly, since the predicted probabilities are calculated 
from a regression model that include both risk factors 1E  and 2E , 2adj AF  is 

the attributable fraction for risk factor 2E  adjusted for risk factor 1E . 

This formula can be extended to any number of risk factors. Suppose that 
there are L  risk factors of interest, 1 2, , , LE E E ; then the sequential AF for 

the risk factor l , with 2 l L  , after the removal of risk factors  1, 2, , 1l   
is: 

   
    

  

12 12 1
12|12 1 12 1

1212 1

ˆˆ

ˆ ˆ
,                         

casescases l l
sequential l adjl l l

cases cases

ll

cases

N NN N
AF AF AF

N N

N N

N



 




    




 
 
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where 12 lAF   and  12 1adj lAF   denote the joint and the adjusted AFs for risk 

factors 1 2, , , lE E E , and  1 2 1, , , lE E E  , respectively. Since the regression 

model includes all risk factors of interest 1 2, , , LE E E , and adjustment 
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factors, the generic adj lAF  is the attributable fraction for the risk factor thl , 

adjusted for the remaining risk factors  1 2, , , \L lE E E E  and possible 
confounders. 

 

Average AF 

Let   be a permutation and invertible function over the integers 1, 2, , L , 

   : 1,2, , 1, 2, ,L L   . For example, a permutation   with  1 5   

represents a removal order where risk factor 1E  is the 5th  factor to be 
removed from the risk system. For L  risk factors of interest, the set of all 
possible permutation functions is denoted by LG . The average AF for risk 
factor l  can be represented as: 

 
      

 
1 1 1| | 1 2 1

: 1 : 1

!

   
L L

sequential l sequential l l
G l G l

average l

AF AF
AF

L

   
   

   
   

 
  

 
  

, 

where     1 1| 1 1sequential l l
AF

      is the sequential AF from removing risk factor l  

having already removed the 1l   risk factors in the order indicated by  . For 
example, consider a situation with 4L   risk factors. Moreover, consider the 
sequential AF corresponding to removing 2E , after having removed first 4E , 
then 3E  and then 1E , that is: 2|431sequential AF . Then, since 4E  is the first risk 

factor to be removed,  4 1  . Similarly,  3 2  ,  1 3   and  2 4  . 

Applying the inverse permutation, it follows that  1 1 4   ,  1 2 3   , 

 1 3 1   , that are the three risk factors 4E , 3E  and 1E  that are removed 

before removing risk factor 2E ,  1 4 2   . 

 

 

3.2 Exact computation for the average AF 

As outlined in section 2.5, there are some identical sequential AFs for a risk 
factor in the determination of the average AF. For example, consider the 
sequential AF: |321sequential lAF  corresponding to a permutation   with 
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 1 1 3   ,  1 2 2   ,  1 3 1   , and  1 4 l   . It represents the 
proportional decrease in disease prevalence from removing the thl  risk factor 
from the population, given that the risk factors 3E , 2E , and 1E  were already 
removed in that order. This calculation is the same regardless the order in 
which 3E , 2E , and 1E  were removed. In particular, the sequential AFs for the 
risk factor l  are identical: 

|321 |312 |123 |132

|213 |231.                    
sequential l sequential l sequential l sequential l

sequential l sequential l

AF AF AF AF
AF AF

   

 
 

Similarly, if there are 10 risk factors, the sequential AF |312sequential lAF  does not 

depend on which of the  10 1 3 ! 6!    orders the remaining risk factors are 

deleted from the population, after deleting l . In general, let ,L l
rC   be the set 

of all subsets of size r  (i.e., unordered choices of r  integers) from the set 
 1 2, , , \L lE E E E . For ,L l

rs C  , let |sequential l sAF  be the sequential AF for the 
risk factor l , given that risk factors corresponding to the subset s  were 
already removed from the population. Denoting the cardinality of the subset 
s , as s r , the average AF formula can be re-expressed as: 

 
,

|1

0

1 ! !

!

    
L l
r

sequential l sL
s C

average l
r

L r r AF
AF

L






 
     

 


 , 

where |sequential l sAF   indicates that risk factors l  is removed first from the 

population. In this formula, the number of summands is 2L  as opposed to 
!L  summands included in the previous average AF’s formula and thus can 

result in a substantial computational saving for large L . 

 

 

3.3 Modification for case-control study design 

Sequential and average AFs can best be developed in prospective longitudinal 
cohort studies, as such studies allow optimal measurements of risk factors, 
outcome, and direct estimation of relative risk (i.e., unbiased predicted 
probabilities). Cohort studies may require a large sample size or long follow-
up duration for rare diseases. In contrast, case-control studies are more 
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efficient, as they require fewer subjects and can be performed in a shorter 
timeframe than cohort studies. Thus, case-control sampling is widely used 
study design. For instance, van der Laan [24] searched for case-control 
analysis on PubMed resulting in a list of approximately 56,000 articles. Their 
use is not confined to public health applications; case-control studies are also 
frequently performed in econometric applications [48, 49]. However, if not 
explicitly nested within a cohort study, case-control studies are generally 
deemed less suitable for developing AFs due to their inability to allow the 
calculation of unbiased predicted probabilities. Case-control studies differ 
from cohort studies in that they sampled diseased (cases) and non-diseased 
(controls) subjects rather than exposed and unexposed ones. Thus, since the 
ratio of controls to cases in the sample is fixed a priori, the resulting 
predicted probabilities from the model will be biased, as will the AFs. 

Ferguson et al. [16] proposed an approach for estimating sequential AF 
accounting for case-control study design by incorporating disease prevalence 
in the model used to estimate predicted cases. In particular, the method 
requires to find the coefficient vector β̂  to maximize: 

   
1

log | , log | ,
N

i i
i

L w L


 β E C β E C , 

where  1 2, , LE E EE   is the set of risk factors,  1 2, , , MC C CC   is the 

set of confounders,  0 1, , L M   β   is the set of coefficient, 

 log | ,i L β E C  is the individual log-likelihood contribution for the thi  

observation, and  1 2, , Nw w ww   is the set of weights. Suppose that the 
ratio of controls to cases in the sample is :1v  and the prevalence of disease 
in the population is p . If each case is given a weight of 1, then each control 
should be given a weight of  1 p v p  . In the case that  1 p v p   is an 
integer, the estimated probabilities of disease from the weighted model are 
identical to those estimates that would be found from an unweighted model 
with an altered design matrix where the row for each control is repeated 
 1 p v p   times, and the row for each case only once. The formula for the 
sequential AF also need to be adjusted to account for the imbalance between 
cases and controls, as follows: 
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  
  ,12,12 1

1 1
|12 1

ˆ ˆ
N N

i i i li l
i i

sequential l l

cases

w p w p
AF

N


 



 
   

 
  

 , 

where  ,12 1ˆi lp   is the predicted probability that the thi  individual is a case, 

assuming the values of the risk factors  1 2 1, , , lE E E   and ,12ˆ i lp   is the 

predicted probability that the thi  individual is a case, assuming the values of 
the risk factors  1 2 1, , , , llE E E E . 

The average AF for risk factor l , can be estimated by substituting the 
sequential AFs adjusted for the case-control structure, in the expression 
described previously: 




 

       
 

1 1 1| | 1 2 1
: 1 : 1

!

   

L L

sequential l sequential l l
G l G l

average

AF AF
AF

L

   
   

   
   

 
  

 
  

. 

Haaf and Steyerberg [50] discussed a number of aspects of weighting controls 
to calculate absolute risk in non-nested case-control studies. They focused on 
the issue regarding the selection process of the cases and controls. A major 
limitation of case-control studies is the difficulty to ensure that cases and 
controls are a representative sample of the same source of population [28]. 
By weighting the controls, the assumption that there are no factor influencing 
the selection of controls other than those considered in the weighting 
formula (i.e., the prevalence of disease) should be carefully considered. 
However, this method can be easily applied. It does not require 
approximating relative risks with odds ratios and is a valid approach for 
common disease (i.e., disease with high prevalence). Van der Laan discussed 
the approach of applying weights to maximum likelihood estimator in case-
control studies in a more general context [24]. 

 

 

3.4 AF estimate comparisons 

As an example, we estimated crude, adjusted, sequential and average fractions 
attributable to tobacco smoking and alcohol drinking for oral cavity cancer. 
We used data from an Italian multicentre case-control study on 946 cases and 
2492 controls [51]. This analysis was conducted on 942 cases and 2490 
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controls with complete information about smoking and alcohol to ensure 
comparability across results. Overall, 324 subjects were not exposed to both 
risk factors (i.e., subjects who never smoked and drank during their lifetime), 
892 subjects were never smokers and ever (current or former) drinkers, 185 
subjects were ever smokers and never drinkers, and 2031 subjects were 
jointly exposed to smoking and alcohol. We set a -581×10  prevalence of oral 
cavity cancer [52] to adjust sequential and average AF estimates for the study 
design. 

AF estimates were dependent on the method applied for their estimation 
(table 3.1). For example, the crude fraction of oral cavity cases attributable to 
smoking was 66%. The AF for smoking was 65% adjusting for alcohol 
consumption. The effect of removing tobacco smoking as first risk factor 
from the population yielded a sequential AF of 65%; when smoking was 
removed after alcohol yielded a sequential AF of 33%. The average AF for 
smoking was 49%. 

Table 3.1. AFs for tobacco smoking and alcohol drinking for oral cavity cancer according 
to different methods.  

Risk factors 
Method 

Crude 
AF 

Adjusted AF§ 
(Bruzzi’s formula) 

Sequential 
AF† 

Sequential 
AF‡ 

Average 
AF 

      

Smoking 0.66 0.65 0.65 0.33 0.49 
Alcohol 0.61 0.48 0.16 0.48 0.32 
      

Sum 1.27 1.13 0.81 0.81 0.81 
      

§Mutually adjusted; †Smoking was removed first and then alcohol; ‡Alcohol was removed 
first and then smoking. 

For alcohol consumption, the crude and adjusted AFs were 61% and 48%, 
respectively. The sequential AFs were 48% and 16% according to the 
removal order considered and the average AF was 32%.  

Note that, both crude and adjusted AFs did not sum up to the joint AF 
(81%) and their sum exceeded 100% (table 3.1). Moreover, if the risk factors 
are independent (i) and if there is no interaction among the risk factors in the 
logistic model (ii) and if the disease is rare (iii), so that: 

 1 2
1

| , , ,
L

L l l
l

P D E E E E 


  , 



Chapter 3 _______________________________________________________________  

38 

then 

       
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 
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 

   

  

 

E E
E E

 

In the example, applying this formula to adjusted AFs, we get a joint AF of 
82%, which is very close to the joint AF in table 3.1, suggesting that the 
assumptions were not violated. Although there is some correlation between 
risk factors ( =0.25 ), leading us to expect a difference in joint AFs, the high 
exposure prevalence (65% of the sampled subjects were smokers and 85% 
were drinkers) could explain the converge in values. Finally, the sequential 
and average AFs summed up to the joint AF according to the component-
additivity property. 
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Chapter 4 
 

Variance estimation 
4.1 Introduction 

Several authors dealt with the problem of estimating confidence intervals for 
AFs. Walter derived variance estimates for the AF using data from case-
control studies with dichotomous risk factors [19]; later Denman and 
Schlesselman extended this work to risk factors with several levels [53]. 
Whittemore examined the role of confounders and proposed the type I 
stratification approach for estimating adjusted AFs together with variance 
estimates [8]. The method applies whether controls are selected at random or 
with frequency matching [54]. Using the delta method, Benichou and Gail 
[15, 54] gave variance estimates for AFs in case-control studies. Greenland 
provided for both cohort and case-control studies the maximum likelihood 
estimator for AF based on logistic regression model and corresponding 
variance estimators [22]. Kooperberg and Petiti [55] used Bruzzi’s formula 
for AF to obtain a bootstrap confidence interval for case-control data. 
Graubard and Fears [56] considered AF estimates for unmatched, frequency 
matched, and individual matched case-control, cross-sectional, and cohort 
studies. They used influence function method to obtain Taylor deviates for 
estimating variances. Natarajan and Rimm [57] proposed a simple method to 
calculate AF confidence intervals using the Bonferroni inequality. In 2006, 
Ferguson and colleagues [16] introduced the “averisk” R package [58] for 
calculating average AFs and corresponding confidence intervals in 
prospective and case-controls studies. They derived confidence intervals 
using Monte Carlo simulations. 

 

 

4.2 Delta Method 

Benichou and Gail [15] proposed an approach for estimating the confidence 
intervals for AFs from logistic models based on case-control data using the 
implicit-function theorem [59] and the delta method [60]. The relative risk 
obtained from a logistic regression model may be correlated with the risk 
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factor prevalence, and the usual likelihood equations for the logistic model do 
not yield estimates of the covariances between these two quantities that are 
needed to compute AF variance. The authors used the delta method for 
implicitly defined random variables to estimate all required terms for 
constructing confidence intervals for AFs. 

 

Implicit function theorem 

Let S  be an open subset of the  p m -dimensional space with elements 

   1 2 1 2, , , ; , , , ,p mx x x y y y  X Y  . Let p  real functions ig , be continuous in 

S  that have continuous first partial derivatives in S  and satisfy
 1 2 1 2, , , ; , , 0i p mg x x x y y y    for all 1, 2, ,i p   at some point  0 0,x y  in 

S . Define J  as the p p  matrix with elements  i jg x   for , 1,2, ,i j p  . 

If the determinant 0J  at  0 0,x y , there exists an open rectangular region 
in S  satisfying: 

1 1 10 1 2 20 2 0: , , , p p pR x x a x x a x x a      , 

and  

2 1 10 1 2 20 2 0: , , , m m mR y y b y y b y y b      . 

Thus, there exists a set of p  real functions if , that map each element Y  in 
the region 2R  to a single element X  in the region 1R  such that: 

        1 2 1 2, , , , , ,p px x x f f f X Y Y Y  , 

and  

 , 0ig X Y  for 1, 2, ,i p  . 

Moreover, the functions if  are continuous and have continuous first partial 

derivatives  i jf y  , which are the matrix product 1J H , where the p m  

matrix H  has elements  i jg y  . 
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The implicit function theorem asserts the existence, in a neighborhood of 
 0 0,x y , of the explicit functions if  needed to apply the delta method 
theorem. 

 

Delta method theorem 

Let nY  be a random vector that converges in probability to y : 

p
n yY , 

and  n yn Y  converge to a multivariate normal distribution with mean 0  

and variance Σ : 

   0,p
n yn N Y Σ . 

Let the p  real functions as  ij i nx f Y  with 1, 2, ,i p  , have m  
continuous first partial derivatives at y , where at least one of these 

derivatives is non-zero. Then, the 1 p  vector with elements   ij i yn x f   

converges to a multivariate normal distribution with mean 0 and covariance 
MΣM , where M  is the p m  matrix with elements  i jnf y  . 

In their work, Benichou and Gail [15] proposed the following corollary based 
on the implicitly defined random variables. 

 

Benichou and Gail’s corollary 

Let nY  be a random vector as defined in the delta method theorem. Suppose 
that there exists a unique 1 p  vector x n  X  satisfying the system of p  

equations  , 0i n yg  X . The functions ig  are continuous with continuous 

first partial derivatives in an open set containing  ,x y  . Let J  be a p p  

matrix defined as in the implicit function theorem with non-zero determinant 
J  at  ,x y  . Moreover, each row of the p m  matrix 1J H  defined in the 

implicit function theorem contains at least one non-zero element. Then, as n  
increases, to each nY  there corresponds a unique solution nX  to the system 

of equations  , 0i n ng X Y  with 1, 2, ,i p  , and  n xn X  converges to 
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a p -variate normal distribution with mean 0 and covariance matrix 

 1 1  J HΣH J , where H  and J  are evaluated at  ,x y  . 

 

Proof. Let    0 0, ,x y   X Y  as in implicit-function theorem. When 2n RY , 

then       1 2 2, , ,n n p nf f fX Y Y Y . 

Since       1 2, , ,n y y p yf f f      it follows that: 

                
     

1 2 1 2

2 2 1 2

, , , , , ,

,                      

n x n n p n y y p y

n n x n n n

n n f f f f f f

I R n I R

   



   

       

X Y Y Y

Y X Y Z Z

 

 

where   1I    is an indicator variable. Since  n yn Y  converges in 

distribution to a normal distribution with mean 0 , then: 

p
n yY . 

Thus,  2 1nP R Y  and  2 1p
nI R Y , which implies that 2 0p

n Z . 

Moreover, the delta method theorem implies that  1 2n nZ I RY  has a 
limiting normal distribution with mean 0  and covariance matrix 

 1 1  J HΣH J . 

 

Remarks If Σ̂  is a consistent estimate of Σ  evaluated at nY , then the 

asymptotic covariance  1 1  J HΣH J  may be consistently estimated by 

substituting Σ̂  for Σ  and by substituting 1J H  evaluated at  ,n nY X  for 
1J H  evaluated at  ,y x  . This follows from the continuity of J  and H  in 

an open space containing  ,y x  . 

If two set of random variables, nY  of dimension 11 m  and nW  of dimension 

11 m , are separately defined by implicit functions  , 0i n ng X Y  for 

11,2, ,i m   and  , 0i n ng W Y  for 1 1 1 21, 2, ,i m m m m    , then under 

the conditions of the corollary,  n xn X  and  n wn W  converge to 
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a multivariate normal distribution with mean 0 , and the 1 2m m  partition of 

the covariace matrix is  1 1
x x w w
  J H ΣH J , where .  ,x xJ H  and  ,w wJ H  are 

evaluated at  ,x y   and  ,w y  , respectively. 

In 1989, Benichou and Gail proposed the variance estimation for the AFs 
using the results of these theorems as follows.  

 

Univariate case 

Let nY  be an underlying random variable, and nX  be a derived random 
variable. Assume that nY  converges in probability to y : 

p
n yY , 

and  n yn Y  is asymptotically distributed as a normal random variable 

with mean 0  and finite variance 2 : 

   20,n yn N Y  . 

Let the totally differentiable function  , 0n n G X Y  define nX  uniquely for 

each nY . The derived random variable nX  converges in probability to x : 

p
n xX , 

which satisfies  , 0n n G X Y . Because G  is constant, then  

   0 n x n y n
n n

d R 
    

            

G GG X Y
X Y

. 

Ignoring the remainder nR  and assuming   0n  G X ,  n xX  can be 
expressed as: 

     
1

1
n x n y n y

n n n

  


       
                  

G G GX Y J Y
X Y Y

, 

consequently: 
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  1 2 10,n x
n n

n N       
           

G GX J J
Y Y

 , 

i.e.,  n xn X  is asymptotically normal with mean 0  and variance 

   1 2 1
n n    J G Y G Y J . 

 

Multivariate extension 

Suppose that  1 2, , , pg g gG   is a vector of p  functions of nX  and nY . 

Denote J  the p p  matrix with elements  i jng x  , where 

 1 2, , ,n n n pnx x xX   and let H  denote the p m  matrix with elements 

 i mng y  , where  1 2, , ,n n n mny y yY  . Then, the random vector

 1 2, , ,n n n pnx x xX   may be normalized so that: 

   1 10,n xn N     
 

X J HΣH J , 

where Σ  is the covariance matrix of nnY . In the special case 

 i in i ng x h  Y  the Jacobian matrix J  is the p p  identity matrix, and the 
results of the classical delta method follow. 

 

 

4.3 Confidence interval for AF using the delta method: an 
example 

As an example, consider the hypothetical case-control study in the work of 
Benichou and Gail [15]. The study includes one risk factor E  with 1 4Q    
levels ( 0,1, 2,3q  ), for a given disease (table 4.1). Denote 1qn  and 0qn  the 
number of cases and controls at exposure level q , respectively. Moreover, 
denote by qn  the total number of individual in the thq  exposure level. 

Denote 1n   and 0n   the total number of cases and controls, respectively. 
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Table 4.1. Hypothetical case-control data for a risk factor E  with four levels. 

Subjects 
Exposure level 

Total 
0q   1q   2q   3q   

      

Controls 00 132n   01 36n   02 22n   03 10n   0 200n    

Cases 10 45n   11 33n   12 55n   13 67n   1 200n    
      

Total 0 177n   1 69n   2 77n   3 77n    
      

As outlined in the previous section, the interest is the estimation of the 
covariance between relative risk and exposure levels, i.e., between  qRR  and 

1ˆ q  with 0,1, 2,3q  . The log-likelihood for the logistic model is: 

      
3

1 0 0
0

log | log 1 expq E q E
q

L E n q n q   


        β . 

Logistic regression model yields the estimates 1ˆ 9.94 10E
   and 

   2ˆ 1.19 10EVar    . The variance is obtained from the information matrix 

evaluated at iq iq in n  , with 1, 2i   and 0,1, 2,3q  . Furthermore, from the 

Bruzzi’s formula the AF for the risk factor E  can be estimated by: 

  
3 3

0 0

ˆ ˆˆ1 1 exp 0.695q
adj E iq E

q q q
AF q

RR


 

 

        . 

To apply the delta method for implicitly defined random variables, denote 
the vectors  00 01 02 03 10 11 12 13ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , ,       ρ  and  0

ˆ ˆ ˆ, E β  by nY  and 

nX  respectively. The maximum likelihood estimates 0̂  and ˆ
E  are implicit 

functions of nY  as defined by the score equations: 

   
3

1 1 1 1 1 0 0
0

ˆ ˆ ˆ, 0n n q q q q
q

g n n n     


         X Y , 

and 

   
3

2 1 1 1 1 0 0
0

ˆ ˆ ˆ ˆ, 0n n q q q q
q

g n n n     


         X Y , 
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where      1

0 0
ˆ ˆ ˆ ˆˆ exp 1 expq E Eq q    



     . 

Let    00 01 02 03 10 11 12 13, , , , , , ,n yE p p p p p p p p Y . The vector  n yn Y  

converges to an 8-dimensional multivariate normal distribution with mean 0  
and block-diagonal covariance matrix Σ  because the estimates 0ˆ q and 1ˆ q  

are from independent multinomial samples. The upper left block of Σ  is 
multinomial covariance matrix 0Σ  of the 1 4  vector  00 01 02 03ˆ ˆ ˆ ˆ, , ,n     ; 

the lower right block is the multinomial covariance matric 1Σ  of the 1 4  

vector  10 11 12 13ˆ ˆ ˆ ˆ, , ,n     . Let    3
1 1 0 00

ˆ ˆ ˆ ˆ1i
i q q q qq

I q n n    
        . 

The estimate of the Jacobian matrix xJ  is: 

0 1

1 2

ˆ ˆ 75.20 74.76
ˆ ˆ 74.76 158.30

 
x

I I

I I

   
     

   
J , 

at the point  ,n nX Y , and ˆ 0x J . Moreover, the estimate of the 2 8  

matrix xH  is: 

50.82 95.86 142.70 174.10 149.20 104.10 57.35 25.90
0.00 95.86 285.30 522.30 0.00 104.10 114.70 77.70

 
       

       x

    
     

H  

at the point  ,n nX Y ; each row of the 2 8  matrix 1ˆ ˆ
x x
J H  has non-zero 

elements at  ,n nX Y . Note that all the condition of the Benichou and Gail’s 

corollary are satisfied at the point  ,n nX Y . 

From corollary,  n xn X  tends to normality with 0  mean and covariance 

matrix estimated by  1 1ˆ ˆ ˆ ˆ ˆ
x x x x
   J H ΣH J , where Σ̂  is the estimate of Σ  at nY . 

In particular, an estimate of the covariance matrix of  0
ˆ ˆ ˆ, E β  is obtained 

without relying on likelihood theory except for the functional form of the 
estimating score equations. Likewise, it is possible to compute the covariance 

between  qRR  and 1ˆ q , which are not obtainable from the logistic regression 

model. From the corollary, the quantities  n xn X  and  n yn Y  

tend to normality with mean 0 , and the corresponding 2 8  partition of the 
covariance matrix can be estimated by 1ˆ ˆ ˆ

x x
J H Σ . This covariance matrix is 
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obtained by n nW Y  (see remarks in the previous section). Thus the 

covariance between  qRR  and 1ˆ q  are: 

   3
10

ˆ ˆ, 1.986 10ECov      ;    6
11

ˆ ˆ, 5.989 10ECov      

   4
12

ˆ ˆ, 9.441 10ECov     ;    3
13

ˆ ˆ, 1.036 10ECov     . 

From the delta method: 

     21 ˆ
E EVar AF k Var k

n
      B B BC , 

where  3
10

expq Eq
k q q 


   , B  is the 1 4  matrix with elements 

 exp Eq  and Ĉ  is the 1 4  matrix with elements   1
ˆ ˆ,E qCov   , with 

0,1, 2,3q  . By replacing parameters by their estimates, the variance of AF is: 
   31.768 10EVar AF   . Thus, a  100 1 %   confidence interval for the AF 

for the risk factors E  may be compute by: 

 
    3

1 2 0.695 1.96 1.768 10 0.577;0.742E EAF Z Var AF


       . 

 

 

4.4 Monte Carlo confidence interval for average AF 

The Monte Carlo confidence interval is a computer-based approach for 
constructing variance parameter via simulation in place of the theoretical 
analysis [61]. Ferguson et al. used a Monte Carlo approach to compute the 
confidence interval for the average AF [16]. The average AF can be regarded 
as a function,  ˆ,f X β  of both the estimated regression model coefficients, β̂  

that is used to generate the predicted probabilities and the observed design 
matrix, X . Moreover, the sampling variance of β̂  is the most important 

factor in the determination of  average lVar AF : 

       ˆ ˆ,
ˆ ˆ, , |average lVar AF Var f Var f X β βX β X β X . 
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The method consists of simulating B  vectors, 1 2, , , Bβ β β  from the 

estimated asymptotic sampling distribution of β̂ . The simulated values follow 

a multivariate normal distribution with mean β̂  and covariance Ĉ : i.e., 

 ˆ ˆ ˆ,b Nβ β C . For a risk factor of interest l , separate estimates 
1 2, , , B

average l average l average lAF AF AF  for the average AF of that risk factor are 

produced from each sampled bβ  vector ( 1, 2, ,b B  ), by setting 

 ,b
average l bAF f X β . In practice, each Monte Carlo simulation yields an 

average attributable fraction, b
average lAF , where the estimated sequential 

attributable fractions, |  
b

sequential lAF  , are calculated using the coefficient vector 

bβ  rather than β̂ , and the same design matrix X . The variance of average lAF  
can be estimated as: 

  
 

 

2

1

1

B
b

average l laverage
b

average l

AF AF
Var AF

B








, 

where 1

B
b

average l
b

average l

AF
AF

B



. 

Now, a  100 1 %   confidence interval is produced using: 

 
  1; 1 2average l average lBAF t Var AF   . 

The t -distribution quantile is used to reflect the fact that the variance is 
estimated, as opposed to a Delta Method using a normal distribution 
quantile. 

This method is valid both for cohort and case-control study designs. In case-
control studies, the sample size of the weighted likelihood is artificially high 
to account for the imbalance between cases and controls. Thus, the matrix Ĉ  
is estimated using the covariance matrix from the unweighted model because 
it correctly respects the actual number of cases and controls in the sample. 
Efron and Tibshirani [61] compared the standard error estimates for various 
values of B . They suggested 100B   replicates because “there is little 
improvement in the standard error estimates for values of 100B  ”. 
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4.5 Variance of average AF: law of the total variance 

In probability theory, the law of the total variance (also termed variance 
decomposition formula) states that if X  and Y  are random variables on the 
same probability space, and the variance of X  is finite, then 

     | |Var X E Var X Y Var E X Y        . 

The first term is the expectation of the conditional variance of X  given Y
and it is also termed “unexplained component of the variance”, whereas the 
second term is the variance of the conditional expectation of X  given Y , 
also termed the “explained component of the variance”. For a proof of the 
variance decomposition formula, see appendix A.3. 

Recalling the approach proposed by Ferguson to estimate average AF 
variance, a generic Monte Carlo simulation, b , yield !L  sequential AFs and 
one average AF for each risk factor. Now, B  simulations generate a total of 

!B L  sequential AFs and B  average AFs for the thl  risk factor, as reported 
in table 4.2. 

Table 4.2. Sequential and average AFs generated by B  simulations and !L  removal orders 
for a generic risk factor l . 

Simulation 
Removal order  

1   l    !L   
       

1  
1
| 1seq l lAF       

1
|seq l l lAF       

1
| !seq l l LAF    1

ave lAF  

            

b   | 1
b

seq l lAF      |
b

seq l l lAF      | !
b

seq l l LAF    b
ave lAF  

            

B   | 1
B

seq l lAF       |
B

seq l l lAF       | !
B

seq l l LAF    B
ave lAF  

       

For a generic risk factor l , we can assume that average lAF  and the vector of 

simulated parameters 1 2, , , Bβ β β  are realizations of two random variables 
belonging to the same probability space, and that the variance of average lAF  is 
finite. Thus, according to the law of the total variance, the variance of 
average lAF  can be expressed as: 
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    
 

 
 

 
 

1 2

1 2

2 2

1 1

| , , ,

| , , ,

! 1 1

                        

                         L

average l average l B

average l B

B B
b b b

average lsequential l average l average l
b G b

Var AF E Var AF

Var E AF

AF AF AF AF

L B B
  

   
   

 
 

  

 

β β β

β β β





.

 
The formula proposed by Ferguson et al. to estimate average AF variance 
corresponds to the second summand: i.e., the variation of average AFs from 
their total mean ( average lAF ) across the B  simulations. In the formula above, 
we introduce an additional variability source given by  the variation of 
sequential AF for a fixed b  across the !L  permutations. Then, we compute 
the average of such within-simulation variances (internal component of 
variance).  

In the next chapter, we will compare the performance between our and 
Ferguson’s methods using different simulated datasets. 
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Chapter 5 
 

Variance estimate comparisons 
5.1 Variance behavior: an example 

The behavior of the AF variability may vary according to the number of the 
risk factors and the correlation among them. Let 1E  and 2E  be two 
independent risk factors with a 0.5 prevalence and a relative risk equals to 2, as 
reported in table 5.1. For risk factor 1E , sequential AFs are 0.33 when 1E  is 
the first risk factor removed and 0.22 when 1E  is eliminated after having 
already removed 2E  from the population. The corresponding average AF is 
0.275. 

Table 5.1. Prevalence  P  and relative risk  RR  for two independent risk factors. 

Risk factor  
P  

 
RR  

1E  2E    
      

0 0  0.25  1.0 

0 1  0.25  2.0 

1 0  0.25  2.0 

1 1  0.25  4.0 
      

Let 3E  be a third independent risk factor with the same prevalence and RR as 
before (table 5.2). Now, when 1E  is the first risk factor removed, the 
corresponding sequential AF is 0.28. This calculation is the same no matter the 
order in which risk factors 2E  and 3E  are removed after 1E . For the other 
removal orders, sequential AFs are 0.24 when 1E  is eliminated after 2E  or 
after 3E , and 0.16 when 1E  is the last risk factor eliminated regardless of the 
order in which 2E  and 3E  have been already removed. The average AF is 
0.227. Note that increasing the number of independent risk factors increases 
the sequential AF variability. Sequential AFs ranges from 0.22 to 0.33 
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considering only 1E  and 2E , whereas they ranges from 0.16 to 0.28 when 3E  
is also considered. 

Table 5.2. Prevalence  P  and relative risk  RR  for three independent risk factors. 

Risk factor  
P  

 
RR  

1E  2E  3E  
  

       

0 0 0 
 0.125 

 1.0 

0 1 0 
 

0.125 
 2.0 

0 0 1  0.125  2.0 

0 1 1  0.125  4.0 

1 0 1  0.125  2.0 

1 1 1  0.125  4.0 

1 0 1  0.125  4.0 

1 1 1  0.125  6.0 
       

Let 1E  and 2E  be two correlated risk factors with a 0.5 prevalence and a RR 
equal to 2 as shown in table 5.3. Sequential AFs for 1E  are 0.375 and 0.208 
according as 1E  is eliminated before or after 2E , respectively. The average AF 
is 0.292. 

Table 5.3. Prevalence  P  and relative risk  RR  for two correlated risk factors. 

Risk factor  
P  

 
RR  

1E  2E  
  

      

0 0 
 0.4 

 1.0 

0 1 
 

0.10 
 2.0 

1 0  0.10  2.0 

1 1  0.40  4.0 
      

Again, let 1E , 2E  and 3E  be three correlated risk factors with the same 
prevalence and RR as before (table 5.4). Sequential AFs for 1E  are 0.3 when 
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1E  is eliminated as first risk factor, 0.26 when 1E  is eliminated after having 
already removed 2E , 0.26 when 1E  is eliminated after 3E , and 0.16 when 1E  is 
eliminated as last risk factor. 

Table 5.4. Prevalence  P  and relative risk  RR  for three independent risk factors. 

Risk factor  
P  

 
RR  

1E  2E  3E  
  

       

0 0 0 
 0.2375 

 1.0 

0 1 0 
 

0.05 
 2.0 

0 0 1  0.05  2.0 

0 1 1  0.125  4.0 

1 0 1  0.05  2.0 

1 1 1  0.125  4.0 

1 0 1  0.125  4.0 

1 1 1  0.2375  6.0 
       

Unlike the case of independent risk factors, increasing the number of 
correlated risk factors leads to reduced sequential AF variability. Here, 
sequential AFs ranges from 0.208 to 0.375 and from 0.3 to 0.16 for two and 
three risk factors, respectively. 

As outlined in the previous chapter, we propose a different formula for the 
average AF variance which it includes the variation of average AFs from their 
total mean across simulations (Ferguson’s component) and the average of the 
variation of sequential AF for across simulations and permutations (internal 
component). We simulated two classes of datasets to compare the 
performance of average AF variance estimates between our and Ferguson’s 
formulas.  

 

 

5.2 Simulated data 
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Each class of simulated data included four datasets according to different 
correlation structures, from independence (scenario 1) to strong correlation 
(scenario 4). The two classes differed in the prevalence and strength of the 
association between risk factors: the first class had an high risk factor 
prevalence and modest relative risks; the second class had a low risk factor 
prevalence and huge relative risks. In particular, we generated scenario 1 for 
the first class simulating ten independent risk factors,  1 2 10, , ,E E EE  , with 

a prevalence of 0.5,      1 2 10 0.5P E P E P E    , and a relative risk 

ranging from 1.2 to 1.5. We simulated the binary outcome,  1 2, , , ny y yy  , 
fixing a 0.05 log odds of y  in the unexposed group. We generated the 
remaining three scenarios increasing the magnitude of the correlation and 
leaving the number of the risk factors, the prevalence, the relative risk, and the 
log odds of the outcome in the unexposed group unchanged. Therefore, we 
generated data considering weak ( 0.4  ), moderate ( 0.6  ), and strong (

0.8  ) correlation among risk factors (table 5.5).  

Table 5.5. Setting of parameters for two classes of simulating data. 

Class Risk factors   lP E   RR  
      

First      

Scenario 1 – Independence 1 2 10, , ,E E E
 


 0.5 

 1.2-1.5 

Scenario 2 – Weak correlation ( 0.4  ) 1 2 10, , ,E E E
 


 

0.5 
 1.2-1.5 

Scenario 3 – Moderate correlation ( 0.6  ) 1 2 10, , ,E E E
 

 0.5  1.2-1.5 

Scenario 4 – Strong correlation ( 0.8  ) 1 2 10, , ,E E E
 

 0.5  1.2-1.2 

      

Second      

Scenario 1 – Independence 1 2 10, , ,E E E
 


 0.1 

 5.0-10.0 

Scenario 2 – Weak correlation ( 0.4  ) 1 2 10, , ,E E E
 


 

0.1 
 5.0-10.0 

Scenario 3 – Moderate correlation ( 0.6  ) 1 2 10, , ,E E E
 

 0.1  5.0-10.0 

Scenario 4 – Strong correlation ( 0.8  ) 1 2 10, , ,E E E
 

 0.1  5.0-10.0 

      

The second class of simulated data is the same as the first with the prevalence 
set to      1 2 10 0.1P E P E P E     and the relative risk from 5.0 to 10.0 
(table 5.5). We set 1,000n   observations for each dataset. 
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5.3 Method comparisons 

We computed variability increment between our and Ferguson’s methods to 
estimate average AF variance (figures 5.1 and 5.2), as follows: 

 
 

1 Ferguson average l

our average l

SD AF

SD AF
 , 

where  average lSD AF  denote average AF standard deviation for the thl risk 

factor. 

Figure 5.1. Standard deviation increment between our and Ferguson’s methods to estimate 
average AF variance for the first class of simulated data§. 

§Data have been simulated for ten risk factors with a prevalence of 0.5, a RR ranging from 

1.2 to 1.5 and different correlation structures; †Computed by  1 Ferguson ourSD SD ; Black 

circles indicate risk factor 1E ; Gray circles indicate risk factor 2E . 
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In particular, for each class of simulated data, we reported standard deviation 
increment for risk factor 1E  (black circles) and risk factor 2E  (gray circles) 
according to an increasing number of risk factors considered (from two to ten) 
and different scenarios. 

Figure 5.2. Standard deviation increment between our and Ferguson’s methods to estimate 
average AF variance for the second class of simulated data§. 

§Data have been simulated for ten risk factors with a prevalence of 0.1, a RR ranging from 

5.0 to 10.0 and different correlation structures; †Computed by  1 Ferguson ourSD SD ; Black 

circles indicate risk factor 1E ; Gray circles indicate risk factor 2E . 

Standard deviation increment became gradually larger increasing the number 
of independent risk factors for both 1E  and 2E  (figure 5.1; upper-left panel). 
For example, standard deviation increment for risk factor 1E  ranged from 
0.3% (when only 1E  and 2E  were considered) to 29% (when all risk factors 
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were considered). Risk factor 2E  showed a similar pattern. As described in the 
previous section, increasing the number of independent risk factors increased 
the sequential AF variability and consequently the total AF variability tended 
to be large. Conversely, standard deviation increment ranged from 71% to 9%, 
indicating that the contribution of the internal component decreased with 
increasing number of correlated risk factors (figure 5.1; upper-right and 
bottom panels). 

The second class of simulated data showed similar trends in standard deviation 
increment as those observed for the first class (figure 5.2). Increasing the 
number of independent risk factors led to a larger variability. Standard 
deviation estimates were similar between two methods up to seven risk 
factors, whereas the total variability became slightly larger for eight or more 
independent risk factors (figure 5.2; upper-left panel). Standard deviation 
increment decreased from 88% to 26% increasing the number of correlated 
risk factors (figure 5.2; upper-right and bottom panels). 

Although in some situations (i.e., for correlated risk factors) the contribution 
of the internal component could have a substantial relative impact on total AF 
variability, the absolute standard deviation differences between two methods 
were very small (<0.15) indicating a limited contribution of our method than 
the Feguson’s one. 
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Chapter 6 
 

Application to real data 
6.1 Epidemiology of oral cavity cancer 

Oral cavity cancer is the 8th most frequent cancer in the world among males 
and the 14th among females, accounting for nearly 3% of all cancer worldwide 
[62]. The annual global incidence of oral cavity cancer is estimated at 
approximately 263,000 cases, and the corresponding number of deaths at 
127,000 [63]. Incidence and mortality rates vary widely according to 
geographical areas. In particular, less developed and few developing countries 
(i.e., India, Pakistan, Bangladesh, Hong Kong, Singapore, and the Philippines) 
report higher incidence rates. Conversely, mortality rates are highest in the less 
developed and developing countries [64, 65]. As with most upper aerodigestive 
tract cancers, tobacco smoking and alcohol drinking are the major risk factors 
for oral cavity cancer [66]. Betel-quid and smokeless tobacco chewing play a 
role in oral carcinogenesis [67, 68]. Other risk factors include diet, hot mate 
consumption, human papillomavirus (HPV) infection, and oral hygiene [69-
72]. 

 

Tobacco smoking 

The risk of oral cavity cancer increases with the intensity (number of 
cigarettes, cigars or pipe smoked per day), duration of consumption and 
lifetime cumulative consumption of tobacco smoking. Moreover, several 
studies reported a dose-response relationship between intensity and oral cavity 
cancer risk [73]. Tobacco smoking contains a number of carcinogens known 
to cause cancers. These carcinogens are derived from various chemical classes 
such as polycyclic aromatic hydrocarbons, nitrosamines, aromatic amines, 
volatile hydrocarbons, nitro compounds, and other organic and inorganic 
compounds [74]. Nicotine is generally accepted as non-carcinogenic, but it 
may promote cancer by activating signaling pathways facilitating cancer cell 
growth, angiogenesis, migration, and invasion [75]. Moreover, nicotine can 
undergo chemical conversions into carcinogenic substances during the process 
of curing or smoking. The majority of nicotine can be metabolized to cotinine 
and aldehyde oxidase, and the remaining nicotine may be converted to other 
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metabolites such as nicotine-N-oxide [76, 77]. Nicotine and nitrosamines are 
implicated in tumor promotion by activating signal transduction pathways that 
facilitate tumor progression [78]. 

 

Alcohol drinking 

The risk of oral cavity cancer increases with the daily quantity, duration of 
consumption and lifetime cumulative consumption of alcohol drinking [73, 
79]. However, a large pooled analysis in the International Head and Neck 
Cancer Epidemiology (INHANCE) consortium found a low and non-
significant risk for oral cavity cancer in non-smokers for both frequency and 
duration of alcohol consumption [80]. The mechanism by which ethanol 
promotes oral cavity cancer remains unclear and several explanations have 
been suggested. First, alcohol may act as a solvent facilitating the transport of 
carcinogens through cellular membranes [81]. Second, ethanol may enhance 
liver metabolizing activity contributing to the activation of carcinogenic 
substances (e.g., polycyclic aromatic hydrocarbons or benzopyrene). Other 
mechanisms include nutritional deficiencies due to chronic alcohol abuse, 
which may impair some cellular functions such as mitochondrial function and 
DNA repair system. 

 

Other factors 

Other factors are associated with oral cavity carcinogenesis. Briefly, many 
studies conducted in Asia, where betel consumption is common, assessed the 
relationship between betel-quid and tobacco smokeless chewing and the risk 
of oral cavity cancer. Dietary factors (diet low in fruits and vegetables and high 
in red meat) are associated with oral cavity cancer. Mate consumption (an 
herbal tea), particularly widespread in South America, increases the risk of oral 
cavity cancer up to 2-fold. The role of HPV infection in the occurrence of 
upper aero digestive tract cancers, especially of pharynx and oral cavity, has 
been widely discussed in literature, confirming a positive association between 
HPV and the risk of oral cavity cancer. Finally, poor oral and dental hygiene 
was related to an increase risk of oral cavity cancer [73]. 
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6.2 Case-control data on oral cavity cancer 

Data came from a hospital-based case-control study on oral cavity cancer 
conducted between 1991 and 2009 in the provinces of Milan and Pordenone 
in Northern Italy and Latina and Rome in Central Italy [51]. Cases were 946 
patients aged 18 years or older with incident histologically confirmed oral 
cavity cancer diagnosis admitted to major general hospitals. The control group 
included 2492 patients frequency-matched to the cases by sex and age (table 
6.1). Controls were admitted to the same network of hospitals as the cases for 
a wide spectrum of acute, non-neoplastic conditions unrelated to tobacco and 
alcohol consumption, to known or likely risk factors for oral cavity cancer, or 
to other conditions associated with long-term diet modification. All patients 
enrolled in the study signed an informed consent, according to the 
recommendations of the Board of Ethics of study hospitals. 

Trained interviewers administered a structured and validated questionnaire to 
cases and controls during their hospital stay [82-84]. The questionnaire 
collected information on socio-demographic characteristics, anthropometric 
measures, lifetime smoking and alcohol drinking habits, dietary habits related 
to two years before diagnosis/interview. 

Anthropometric measures included self-reported height and weight one year 
prior to diagnosis/interview and at age 30 and 50 years.  

Information on tobacco smoking included smoking status (never, former, or 
current smokers), daily number of cigarettes, cigar and grams of tobacco pipe 
smoked during lifetime, age at starting to smoke, duration of the habit, and, 
for former smokers, age at stopping. The intensity of smoking habit was 
measured as daily number of cigarettes smoked. Taking into account the 
different types of smoking, one gram of tobacco pipe was considered as 
corresponding to one cigarette and one cigar as corresponding to three 
cigarettes. Current smokers were people who had smoked at least 1 cigarette, 
cigar, or one gram of tobacco pipe within one year previous to the interview. 
Former smokers were people who had abstained from any type of tobacco 
smoking within one year previous to the interview. 

Information on alcohol consumption included drinking status (never, former, 
and current drinkers), daily number of drinks consumed for the most common 
Italian and Swiss alcoholic beverages (i.e., wine, beer, and spirits which 
included amari, grappa, whisky, cognac, brandy, etc.), age at starting to drink, 
duration of alcohol consumption, and, for former drinkers, age at stopping. 
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Table 6.1. Distribution of 946 oral cavity cancer cases and 2492 controls according to socio-
demographic characteristics and selected risk factors. Italy, 1991-2009. 

Variable 
Cases Controls 

n (%) n (%) 
     

Study centre     
Pordenone 494 (52.2) 1053 (42.3) 
Milan 348 (36.8) 1001 (40.2) 
Rome/Latina 104 (11.0) 438 (17.6) 

Sex     
Men 756 (79.9) 1497 (60.1) 
Women 190 (20.1) 995 (39.9) 

Age (years)     
<55 328 (34.7) 940 (37.7) 
55-64 341 (36.1) 778 (31.2) 
≥65 277 (29.3) 774 (31.1) 

Education (years)     
<7 558 (59.0) 1283 (51.5) 
7-11 260 (27.5) 726 (29.1) 
≥12 128 (13.5) 438 (19.4) 

BMI (Kg/m2)     
<25 545 (57.6) 1049 (42.1) 
25-<30 322 (34.0) 1101 (44.2) 
≥30 79 (8.4) 342 (13.7) 

Non-alcohol energy intake (kcal/day)     
<1884.6 300 (31.7) 832 (33.4) 
1884.6-<2395 289 (30.6) 831 (33.4) 
≥2395 357 (37.7) 829 (33.3) 

Smoking§     
Never 137 (14.5) 1079 (43.3) 
Former 268 (28.3) 764 (30.7) 
Current (cigarettes/day)     

<15 175 (18.5) 357 (14.3) 
≥15 362 (38.3) 290 (11.6) 

Alcohol drinking§     
Never 66 (7.0) 445 (17.9) 
Ever (drinks/day)     

<2 197 (20.8) 1023 (41.1) 
≥2 681 (72.0) 1019 (40.9) 

Red meat intake (servings/week)     
<3 242 (25.6) 908 (36.4) 
3-<4.5 271 (28.7) 779 (31.3) 
≥4.5 433 (45.8) 805 (32.3) 
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Variable 
Cases Controls 

n (%) n (%) 
     

Vegetables intake (servings/week)     
<10.75 456 (48.2) 838 (33.6) 
10.75-<15.375 256 (27.1) 834 (33.5) 
≥15.375 234 (24.7) 820 (32.9) 
     

Fruit intake (servings/week)     
<14.17 457 (48.3) 840 (33.7) 
14.17-<23.375 282 (29.8) 826 (33.2) 
≥23.375 207 (21.9) 826 (33.2) 

Family history     
No 905 (95.7) 2449 (98.3) 
Yes 41 (4.3) 43 (1.7) 

     

§The sum does not add up to the total because of missing values. 

Taking into account the different alcohol concentrations, one drink 
corresponded approximately to 125 ml of wine, 330 ml of beer and 30 ml of 
spirit (i.e., about 12 gram of ethanol). 

A food frequency questionnaire (FFQ) assessed patients’ habitual diet in two 
years before diagnosis/interview. The FFQ included information on weekly 
intake of 78 foods or recipes according to the following 6 sections: (i) milk, 
hot beverages and sweeteners; (ii) bread, cereals and first courses; (iii) second 
courses (e.g., meat and other main dishes); (iv) side dishes (i.e., vegetables); (v) 
fruits; (vi) sweets, desserts and soft drinks. For 40 out 78 food items, the 
portion size was defined in “natural” units (e.g., 1 teaspoon of sugar, 1 egg, 1 
apple, etc.), whereas for the remaining ones, it was defined as small, average, 
or large with the help of pictures. Seasonal variation in fruit and vegetable 
consumption was also considered to account for the fluctuations in food 
intake. 

 

 

6.3 Attributable fraction for oral cavity cancer 

We estimated average AF and Bruzzi’s AF estimates for oral cavity cancer. We 
set a -581×10  prevalence of oral cavity cancer [52] to adjust average AF 
estimates for case-control design. The final model included smoking, alcohol 
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drinking, red meat intake, vegetables intake, fruit intake, and family history of 
oral cavity cancer as risk factors; study centre, sex, age, years of education, 
BMI and non-alcohol energy intake as adjusting factors. 

Table 6.2. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs), Bruzzi’s 
attributable fraction (AF) estimates, and average AF estimates for oral cavity cancer 
according to selected risk factors. Italy, 1991-2009. 

Risk factor OR (95% CI)§ Bruzzi’s AF Average AF  
(95% CI) 

    

Smokinga    
Never Ref 

0.60 0.34 (0.27; 0.41) 

Former 2.04 (1.58; 2.63) 
Current (cigarettes/day)  

<15 2.82 (2.14; 3.72) 
≥15 6.40 (4.89; 8.42) 

Alcohol drinking    
Never Ref 

0.51 0.27 (0.17; 0.37) 

Ever (drinks/day)  
<2 1.15 (0.83; 1.60) 
≥2 2.70 (1.93; 3.81) 

Red meat intake (servings/week)    
<3 Ref. 

0.14 0.06 (0.01; 0.12) 
3-<4.5 1.08 (0.87; 1.36) 
≥4.5 1.42 (1.14; 1.78) 

Vegetables intake (servings/week)    
<10.75 1.74 (1.39; 2.18) 

0.24 0.11 (0.06; 0.17) 
10.75-<15.375 1.11 (0.89; 1.40) 
≥15.375 Ref 

Fruit intake (servings/week)    
<14.17 1.35 (1.07; 1.70) 

0.18 0.08 (0.02; 0.15) 
14.17-<23.375 1.22 (0.97; 1.55) 
≥23.375 Ref. 

Family history    
No Ref. 

0.02 0.009 (-0.001; 0.02) Yes 2.40 (1.44; 3.99) 
    

Joint  0.88 0.88 (0.78; 0.98) 
    

§Adjusted for study centre, age (<55; 55-64; ≥65 years), education (<7; 7-11; ≥12 years), 
BMI (<25; 25-<30; ≥30 Kg/m2), tertiles of non-alcohol energy intake (kcal/day). 

Cases had lower years of education and had more frequently a BMI <25 
kg/m2 than controls. Cases were more likely current smokers and drinkers and 
consumed more frequently red meat than controls. Moreover, cases consumed 
vegetables and fruit less frequently than controls. Finally, cases had more likely 
a first-degree relative with oral cavity cancer than controls (table 6.1). 
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Smoking and alcohol drinking were strongly associated with oral cavity cancer 
risk. In particular, former smokers had approximately a 2-fold higher oral 
cavity cancer risk than never smokers (OR=2.04 - 95% CI: 1.58; 2.63 - table 
6.2). People who smoked up to 15 cigarettes per day had a higher oral cavity 
cancer risk with an OR of 2.82 (95% CI: 2.14; 3.72), whereas people who 
smoked more than 15 cigarettes per day had more than 6-fold higher risk 
(OR=6.40 - 95% CI: 4.89; 8.42). Likewise, heavy drinkers (≥2 drinks/day) had 
a higher oral cavity cancer risk (OR=2.70; 95% CI: 1.93; 3.81) than abstainers. 
High red meat consumption (≥4.5 servings/week) increased the risk of oral 
cavity cancer with an OR of 1.42 (95% CI: 1.14; 1.78). People who had a low 
intake of both vegetables and fruit had a higher risk of oral cavity cancer 
compared with people who had a high intake. In particular, the ORs for a low 
vegetables intake (<10.75 servings/week) and fruit intake (<14.17 
servings/week) were 1.74 (95% CI: 1.39; 2.18) and 1.35 (95% CI: 1.07; 1.72), 
respectively. 

Eighty-eight percent of oral cavity cases were attributable to risk factors 
considered (table 6.2). In particular, the average AF for smoking was 0.34 
(95% CI: 0.27; 0.41), indicating that 34% of oral cavity cases would not have 
occurred if smoking were randomly removed from the population over all 
possible risk factor removal orders. The average AF for alcohol drinking was 
0.27 (95% CI: 0.17; 0.37), whereas average AFs for high red meat intake, low 
vegetables intake and low fruit intake were 0.06 (95% CI: 0.01; 0.12), 0.11 
(95% CI: 0.06; 0.17), and 0.08 (95% CI: 0.02; 0.15), respectively. The average 
AF for family history of oral cavity cancer was 0.009 (95% CI: -0.001; 0.02). 
According to the Bruzzi’s method, AFs were 0.60 for smoking, 0.51 for 
alcohol drinking, 0.14 for high red meat intake, 0.24 for low vegetables intake, 
0.18 for low fruit intake, and 0.02 for family history (table 6.2). 
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6.4 Epidemiology of breast cancer 

Breast cancer is the second most common cancer in the world and the most 
common frequent cancer among women with an estimated 1.67 million new 
cases diagnosed in 2012 (25% of all cancers) [63]. It is the most common 
cancer in women both in more and less developed countries with slightly more 
cases in less developed (883,000 cases) than in more developed (794,000 cases) 
countries. Incidences rates vary nearly 4-fold across the world regions, with 
rates ranging from 27 per 100,000 new cases in Middle Africa and Eastern 
Asia to 92 per 100,000 in Northern America. Breast cancer ranks as the fifth 
cause of death from cancer overall (522,000 deaths), and while it is the most 
frequent cause of cancer death in women in less developed countries (324,000 
deaths, 14.3% of total), it is the second cause of cancer death in more 
developed countries (198,000 deaths, 15.4% of total) after lung cancer. The 
range in mortality rates between world regions is less than that for incidence 
because of the more favorable survival of breast cancer in (high-incidence) 
developed regions, with rates ranging from 6 per 100,000 deaths in Eastern 
Asia to 20 per 100,000 in Western Africa [63]. Established risk factors for 
breast cancer include genetics, race/ethnicity, overweight, alcohol, diet, and 
reproductive factors. 

 

Genetics 

About 5% to 10% of breast cancers are thought to be hereditary, caused by 
abnormal genes passed from parent to child. Most inherited cases of breast 
cancer are associated with two abnormal genes: BRCA1 (breast cancer gene 
one) and BRCA2 (breast cancer gene two). The function of the BRCA genes is 
to repair cell damage and keep breast, ovarian, and other cells growing 
normally. Abnormalities or mutations in BRCA genes may increase breast, 
ovarian and other cancer risk [85]. 

 

Race/ethnicity 

White women are slightly more likely to develop breast cancer than African, 
America, Hispanic, and Asian women. But African American women are more 
likely to develop more aggressive and more advanced-stage breast cancer that 
is diagnosed at a young age [86]. 
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Overweight 

Overweight and obesity are involved in breast carcinogenesis. Overweight and 
obese women have a higher breast cancer risk compared to women who 
maintain a healthy weight, especially after menopause. This higher risk is 
because fat cells make estrogen; extra fat cells mean more estrogen in the 
body, and estrogen can make hormone-receptor-positive breast cancer 
develop and grow [87]. 

 

Alcohol drinking 

Alcohol intake is consistently associated with breast cancer risk. Alcohol can 
increase levels of estrogen and other hormones associated with hormone-
receptor-positive breast cancer. Alcohol also may increase breast cancer risk 
by damaging DNA in cells [88]. 

 

Reproductive factors 

Age at menarche 

Age at menarche has been consistently associated with breast cancer risk. 
Several mechanism have been proposed. Menarche marks the onset of the 
mature hormonal milieu, that is cyclic hormonal changes that result in 
ovulation, menstruation, and cellular proliferation in the breast [89]. The 
earlier the age at menarche, the earlier a young woman starts experiencing 
increased steroid hormone levels. An earlier age at menarche also has been 
related to an earlier onset of regular ovulatory cycles. In addition, women with 
an earlier menarche may have higher circulating estrogen levels for a number 
of years afterward [90]. 

Age at first birth and parity 

Overall, nulliparous women have a higher breast cancer risk than parous 
women [91]. Moreover, women who have not had a full-term pregnancy or 
have their first child after age 30 have a higher risk of breast cancer compared 
to women who gave birth before age 30. The biological mechanisms behind 
this have been studied extensively. The ductal system of the breast undergoes 
profound changes from birth through adulthood. After menarche but prior to 
a first pregnancy, the breast contains relatively undifferentiated ducts and 
associated alveolar buds. Differentiation of the glandular epithelial cells takes 
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place gradually, culminating in terminally differentiated tissue. These changes 
occur largely after a first full-term pregnancy and, to a lesser extent, after 
subsequent pregnancy. When the first pregnancy occurs at an early age, fewer 
cells are likely to have been initiated and the period of protection, afforded by 
the terminal differentiation of the breast glandular epithelium, covers a larger 
fraction of the woman’s remaining lifetime [92]. 

Breastfeeding 

Breastfeeding can lower breast cancer risk, especially if a woman breastfeeds 
for longer time. Breastfeeding may result in further terminal differentiation of 
the breast epithelium, thus making it more resistant to carcinogenic change. 
Additionally, breastfeeding delays the post-pregnancy reestablishment of the 
menstrual cycle and hence may reduce the risk [93]. 

Age at menopause 

The positive relationship between age at menopause and breast cancer risk is 
well established. The reduction in risk associated with an earlier menopause is 
due to the cessation of ovarian function and the consequent reduction in 
circulating steroid hormone level [93]. 

Oral contraceptives and hormonal replacement therapy 

Users of oral contraceptives and hormonal replacement therapy (HRT) have a 
higher risk of breast cancer. Hormones play a central role in the aetiology of 
breast cancer. For instance, after menopause, adipose tissue is the major 
source of estrogen, and obese postmenopausal women have both higher levels 
of endogenous estrogen and higher breast cancer risk [94, 95]. Further, 
estrogens and progesterone promote mammary tumors in animal [96]. 

Diet 

Fruit and vegetable consumption is related to a decreased breast cancer risk 
[87, 97, 98]. Moreover, data support a protective role for vitamin A and 
carotenoids in the aetiology of breast cancer [99]. Inadequate folate levels may 
result in abnormal DNA synthesis and disrupted DNA repair and hence may 
influence breast cancer risk. Several studies suggest that adequate folate levels 
could reduce breast cancer risk [100-103]. 



_______________________________________________________ Application to real data 

69 

6.5 Case-control data on breast cancer 

Data came from an hospital-based case-control study on breast cancer 
conducted between 1991 and 2006 in the provinces of Milan, Genoa, 
Pordenone, and Forlì in Northern Italy, Latina and Rome in Central Italy, and 
Naples in Southern Italy, on a total of 2569 cases and 2588 controls (table 6.3) 
[51]. Cases were women aged 18 years or older with incident histologically 
confirmed breast cancer diagnosis admitted to major general hospitals. 
Controls were women aged 18 years or older admitted to the same network of 
hospitals as the cases for a wide spectrum of acute non-neoplastic and non-
gynecologic diseases, and for other conditions unrelated to known or likely 
risk factors for breast cancer. All women enrolled in the study signed an 
informed consent, according to the recommendations of the Board of Ethics 
of study hospitals. 

Trained interviewers administered a structured and validated questionnaire to 
cases and controls during their hospital stay [82-84]. The questionnaire 
collected information on socio-demographic characteristics, anthropometric 
measures, lifetime smoking and alcohol drinking habits, dietary habits related 
to two years before diagnosis/interview, reproductive factors, and family 
history of cancer. Information on anthropometric measures, smoking and 
alcohol drinking habits, and diet was the same as the questionnaire used for 
oral cavity cancer.  

In a detailed section, women were asked to report their menstrual and 
reproductive histories, including age at menarche, menopausal status 
(menopause was defined as lack of menstruation for at least 12 months), type 
of menopause (natural or surgical), age at menopause, number of births and 
abortions, and age at each child delivery. Information was specifically collected 
on lifelong use of oral contraceptives (OCs) and hormonal replacement 
therapy (HRT), including age at start and duration of each episode of use. 

Women were asked to report their family history of cancer in first-degree 
relatives (parents, siblings, and children), including the site of the tumor, type 
of relatives, and age at diagnosis. 
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6.6 Attributable fraction for breast cancer 

We estimated average AF and Bruzzi’s AF estimates for breast cancer. We set 
a -52019×10  prevalence of breast cancer [52] accounting for case-control data 
structure to estimate average AFs. 

Table 6.3. Distribution of 2569 breast cancer cases and 2588 controls according to socio-
demographic characteristics and selected risk factors. Italy, 1991-2006. 

Variable 
Cases Controls 

n (%) n (%) 
     

Study centre     
Pordenone  1046 (40.7) 1015 (39.2) 
Milan 585 (22.8) 623 (24.1) 
Genoa 290 (11.3) 310 (12.0) 
Forlì 212 (8.3) 213 (8.2) 
Naples 258 (10.0) 249 (9.6) 
Rome/Latina 178 (6.9) 178 (6.9) 

Age (years)     
<45 470 (18.3) 472 (18.2) 
45-54 772 (30.1) 694 (26.8) 
55-64 799 (31.1) 802 (31.0) 
≥65 528 (20.6) 620 (24.0) 

Education (years)     
<7 1273 (49.6) 1592 (61.5) 
7-11 714 (27.8) 642 (24.8) 
≥12 582 (22.7) 354 (13.7) 

BMI (Kg/m2)     
<25 1399 (54.5) 1353 (52.3) 
25-<30 824 (32.1) 844 (32.6) 
≥30 346 (13.5) 391 (15.1) 
     

Smoking     
Never 1684 (65.6) 1759 (68.0) 
Former 344 (13.4) 252 (9.7) 
Current (cigarettes/day)     

<15 324 (12.6) 347 (13.4) 
≥15 217 (8.5) 230 (8.9) 

Alcohol drinking§     
Never 769 (29.9) 910 (35.2) 
Ever (drinks/day)     

<2 1093 (42.6) 1009 (39.0) 
≥2 703 (27.4) 666 (25.7) 
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Variable 
Cases Controls 

n (%) n (%) 
     

Age at menarche§     
<14 years 1717 (66.8) 1636 (63.2) 
≥14 years 848 (33.0) 949 (36.7) 

Parity      
0 401 (15.6) 380 (14.7) 
1 584 (22.7) 494 (19.1) 
2 968 (37.7) 909 (35.1) 
3 406 (15.8) 489 (18.9) 
≥4 210 (8.2) 316 (12.2) 

Breastfeeding      
No or <3 months 1114 (43.4) 1095 (42.3) 
≥3 months 1455 (56.6) 1493 (57.7) 

Hormonal replacement therapy     
No 2375 (92.5) 2396 (92.6) 
Yes 194 (7.6) 192 (7.4) 
Oral contraceptive use     

No 2208 (86.0) 2298 (88.8) 
Yes 361 (14.1) 290 (11.2) 

Family history     
No 2309 (89.9) 2465 (95.3) 
Yes 260 (10.1) 123 (4.8) 
     

§The sum does not add up to the total because of missing values. 

The final model included alcohol drinking, parity, breastfeeding, use of OCs, 
and family history of breast cancer as risk factors; study centre, age, years of 
education, smoking, age at menarche, and use of HRT as adjustment factors. 

Cases had higher years of education than controls. Cases were more likely 
drinkers and nulliparous or with one child that controls. Women with breast 
cancer used more likely OCs and had a first-degree relative with breast cancer. 
Smoking, BMI, age at menarche and HRT use were similar in cases and 
controls (table 6.3).  

Women who consumed alcohol had a higher risk of breast cancer (OR=1.25 
for those who consumed <2 drinks/day – 95% CI: 1.10; 1.43 and OR=1.27 
for those who consumed ≥ drinks/day – 95% CI: 1.10; 1.48 – table 6.4). Parity 
increased breast cancer risk. In particular, nulliparous women (OR=1.54; 95% 
CI: 1.18; 2.00), women with one child (OR=1.72; 95% CI: 1.36; 2.16), and 
women with two children (OR=1.52; 95% CI: 1.24-1.88) had a significantly 
higher breast cancer risk compared with women with 4 or more children. The 
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risk of breast cancer increased for women who used OCs with an OR of 1.16 
(95% CI: 0.96-1.40) compared to non-users. Family history of breast cancer 
was strongly associated with the risk of breast cancer. Women with first-
degree relatives with breast cancer had an higher risk (OR=2.28; 95% CI: 1.82-
2.86) compared with women who did not have a family history of breast 
cancer. Age at menarche and breastfeeding were not associated with breast 
cancer. (data not shown). 

Table 6.4. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs), Bruzzi’s 
attributable fraction (AF) estimates, and average AF estimates for breast cancer according to 
selected risk factors. Italy, 1991-2006. 

Risk factor OR (95% CI)§ Bruzzi’s AF Average AF 
(95% CI) 

    

Alcohol drinking  

0.15 0.12 (0.06; 0.18) 

Never Ref 
Ever (drinks/day)  

<2 1.25 (1.10; 1.43) 
≥2 1.27 (1.10; 1.48) 

Parity   

0.32 0.27 (0.16; 0.39) 

0 1.54 (1.18; 2.00) 
1 1.72 (1.36; 2.16) 
2 1.52 (1.24; 1.88) 
3 1.16 (0.94; 1.47) 
≥4 Ref 

Breastfeeding   

0.04 0.04 (-0.02; 0.10) 
No or <4 months 1.11 (0.97; 1.27) 
≥4 months Ref 

Oral contraceptive use  

0.02 0.01 (-0.01; 0.03) 
No Ref 
Yes 1.16 (0.96; 1.40) 

Family history  

0.05 0.04 (0.03; 0.06) 
No Ref 
Yes 2.28 (1.82; 2.86) 

    

Joint  0.49 0.49 (0.35; 0.63) 
    

§Adjusted for study centre, age (<45; 45-54; 55-64; ≥65 years), education (<7; 7-11; ≥12 
years), BMI (<25; 25-<30; ≥30 Kg/m2), smoking (never; former; current <15; current ≥15 
cigarettes/day), age at menarche (<14; 14≥ years), use of HRT. 

The joint AF was 0.49 (95% CI: 0.35; 0.63 – table 6.4) indicating that 
approximately half of breast cancer cases would not have occurred if all risk 
factors were eliminated simultaneously from the population. In particular, the 
greatest fraction of breast cancer cases was attributable to parity with an 
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average AF of 0.27 (95% CI: 0.16; 0.39). Alcohol drinking accounted for 12% 
(95% CI: 6%; 18%) of breast cancer cases. The impact of the remaining risk 
factors was lower with average AFs of 0.04 (95% CI: -0.02; 0.10) for 
breastfeeding (No or <4 months), 0.01 (95% CI: -0.01; 0.03) for OCs, and 
0.04 (95% CI: 0.03; 0.06) for family history (table 6.4). Attributable fractions 
of breast cancer cases for risk factors considered according to Bruzzi’s formula 
were 0.15 for alcohol, 0.32 for parity, 0.04 for breastfeeding, 0.02 for OCs and 
0.05 for family history. 
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Chapter 7 
 

Conclusion 
7.1 Discussion 

Preventive strategies have to take into account the magnitude of risk factors 
and their prevalence in the population for which the intervention is planned. 
The AF provides a useful tool to address this issue. Disease aetiology involves 
multiple risk factors that may act simultaneously on the occurrence of disease 
and the problem of apportioning exposure-specific contributions in a 
population exposed to multiple risk factors is the primary interest. There is an 
intensive literature on the topic of estimating individual fractions in a 
population exposed to various risk factors. 

Levin proposed the concept of AF [2] that describes the proportion of cases 
that could be attributable to eliminating a risk factor from the population. The 
original formula ignored the presence of other factors (i.e., other risk factors 
that may act together to cause disease, adjustment variables or confounders), 
considering the AF as a univariate parameter. This unadjusted estimator is 
generally biased. Water discussed the conditions under which unadjusted AFs 
differ from adjusted ones [6]. The adjusted AFs quantify the effect of one after 
controlling for other factors. Stratification and modeling approach are the 
main approaches. The Mantel-Haenszel approach, based on stratification, 
allows one to control for confounders but not for effect modifications. The 
weighted-sum approach, also based on stratification, allows one to control 
both for confounders and effect modifications, but bias in estimating the AF 
occurs when the data are sparse [21]. The approach based on regression model 
is more flexible and general [5, 10, 22]. It includes stratification approaches as 
special cases and provides a unified framework for estimation. However, the 
sum of individual AFs usually exceeds the joint AF and in some situation 
might be more than 1. Adjusted AFs should not be used for partitioning the 
joint risk into exposure-specific contributions. 

Because of a similar problem in game theory, Cox Jr. [14] and later Eide and 
Gefeller [12] suggested a solution to estimate the individual shares attributable 
to multiple risk factors by calculating the sequential and average AFs. The 
epidemiological problem of partitioning the joint AF into individual 
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contributions for each risk factor is formally analogous to the economic 
problem of dividing the profit among several players of different companies 
that act together in a coalition. Game-theoretic results on “fair” allocation 
rules have been used to develop sequential and average AFs as a “reasonable 
procedure of partitioning the joint risk in epidemiology”. Sequential AF is the 
AF for eliminating a risk factor in a particular order from the population. It 
quantifies the additional effect of one risk factor after the preceding risk 
factors have already been removed in a specified order from the population. 
The sequential AFs depend on the order in which risk factors are removed. 
Average AF overcome this shortcoming by averaging sequential AFs for a risk 
factor over all possible orders by which risk factors can be removed from the 
population. Average AFs quantify the additional effect of one risk factors after 
the preceding factors selected randomly have already been removed from the 
population. Sequential and average AFs satisfy some mathematical properties 
such as symmetry, marginal rationality and internal marginal rationality. In 
addition, these parameters share another nice property, they guarantee that the 
individual contributions sum up to the joint AF (component-additivity 
property).  

Although these parameters overcome the mathematical problem of 
partitioning the joint effect ascribable to each risk factor, some considerations 
are required. Sequential AFs are meaningful numbers from a public health 
preventive perspective, but average AFs may not be so meaningful. Indeed, 
sequential AFs indicate what the effect would be for a particular intervention 
order (i.e., we first will do a smoking campaign, then an alcohol campaign, and 
so on until the last campaign will be performed). Average AFs, instead, might 
not represent the actual proportion of cases caused by each risk factor as 
average AFs assume that risk factors are removed in a random order [104]. In 
some circumstances, the assumption of random removal order can be 
implausible. Taking an epidemiological view, risk factors are not all equally 
modifiable; some risk factors are easier to target via public health 
interventions. Suppose, for example, that the disease of interest is myocardial 
infarction and the analyzed risk factors are tobacco smoking, hypertension and 
hypercholesterolemia. The problem is that the probability of removing the 
three risk factors in a given order (for example smoking-hypercholesterolemia-
hypertension) could be different from the probability of any other order (for 
example hypertension-smoking-hypercholesterolemia), whereas the average 
AF assume that all orders have the same probability of occurring [47].  
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In the original notation, sequential and average AFs was designed for 
prospective studies. Case-control studies differ from cohort studies in that 
they sampled diseased (cases) and non-diseased (controls) subjects rather than 
exposed and unexposed subjects. Thus, the ratio of controls to cases in the 
sample is fixed a priori and the resulting AF estimates will be biased. Several 
methods to estimate AFs accounting for case-control data structure have been 
developed [10, 22, 23]. Ferguson and colleagues proposed an interesting 
approach to estimate sequential and average AFs in case-control studies. This 
method consists in weighting the likelihood function of the model, used to 
estimate sequential and average AFs, for the disease prevalence [16]. Although 
this method can be easily applied, an important issue regarding the selection 
process of the cases and controls should be considered. In case-control 
studies, it is often difficult to ensure that cases and controls are a sample of the 
same source of population [28]. The assumption that there are no factors 
influencing the selection of controls other than the prevalence of disease used 
to weight the regression model is crucial [50]. 

The problem of estimating confidence intervals for AFs has been intensively 
researched. Asymptotic approximation and simulation are the main 
approaches. Variance estimation for AFs is a complex task because it involves 
covariances between relative risk estimates and risk factor prevalence that are 
related implicitly through score equations. Benichou and Gail derived 
estimates of standard errors for AFs using an extension of the delta method 
for implicitly related random variables [15, 54]. However, their computational 
formulas are complicated and difficult to implement. Simulation methods, also 
known as Monte Carlo simulation, do not make any distributional assumption. 
The Monte Carlo method is a computer-based approach for constructing 
variance parameter via simulation in place of the theoretical analysis. The idea 
is the generation of AFs using simulated datasets that are similar to the 
experimental one, but each one with different random noise normally 
distributed. Llorca and Delgado-Rodriguez compared several procedures to 
estimate confidence intervals for AF under different scenarios, discussing their 
asymptotic behavior, strengths, and limitations [105]. When risk factor 
prevalence is low, the delta method tends to fail. If the AF is close to zero or 
one, asymptotic normality cannot be assumed and log-transformed confidence 
intervals are preferred. Generally, Monte Carlo confidence intervals showed 
the more accurate estimates. As has been shown by Efron and Tibshirani, the 
delta method “can be viewed as approximation to the Monte Carlo estimate of 
variance” [106].  



Chapter 7 ________________________________________________________________  

78 

In this work, we proposed an alternative method to estimate average AF 
confidence intervals. Our approach is a modification of the Ferguson’s 
method that is based on Monte Carlo simulation. Our method accounts for 
sequential AF variability on the total AF variability. We compared our and 
Ferguson’s methods to estimate average AF variance using simulated data. 
Standard deviation increment (i.e., the relative difference between standard 
deviations of our method and the Ferguson’s one) became gradually larger 
with increasing number of independent risk factors. Conversely, standard 
deviation increment decreased with increasing number of correlated risk 
factors. Although the contribution of our method on the total AF variability 
could have a substantial relative impact (up to 88%), the absolute standard 
deviation differences are very small indicating a limited contribution of our 
method. 

Ferguson and colleagues proposed the “averisk” R package [58] to estimate 
average AFs and corresponding confidence intervals for a set of risk factors in 
both prospective and case-controls studies. This package allows one to 
consider either binary or ordinal risk factors. The “averisk” R package, 
however, yielded biased estimates when two risk factors were considered. We 
analyzed the architecture of “averisk” and found the bug in the code. During 
the third year of this Ph.D., we proposed to the authors some code to estimate 
average AF correctly (appendix A.4). 

Finally, although AF for continuous risk factors is well defined, the available 
statistical software allows one to consider only binary or categorical risk 
factors. Although dichotomizing a continuous risk factor, such as blood 
pressure, into two (or more) categories represents a practical solution, the 
resulting estimated AF will be probably underestimate the effect of optimal 
blood pressure control on the disease risk. 

 

 

7.2 Conclusions 

Sequential and average AFs are useful tools to apportion exposure-specific 
contributions in a population exposed to multiple risk factors. Sequential and 
average AFs share some mathematical properties such as component-
additivity, symmetry, marginal rationality, and internal marginal rationality. 
Average AFs, however, do not represent the actual amount of disease 
ascribable for each risk factors because they assume that risk factors are 
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removed from the population in a random order. Nevertheless, average AFs 
could be useful parameters to estimate the average burden of disease for each 
risk factors across all possible removal orders. 

In this work, we proposed an alternative approach to estimate the average AF 
confidence interval accounting for sequential AF variability on the total AF 
one. We compared the performance between our and Fergusons’ methods to 
estimate AF variance. Although our method could have a relative impact on 
total AF variability, the absolute standard deviation differences suggest a 
limited contribution of our method. This final topic should be further 
analyzed. 
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Appendix 
 

A.1 

MacMahon and Pugh attributable fraction formula is: 
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which is the attributable fraction formula proposed by Levin. 

 

 

A.2 

The type II strategy allows adjustment for one (or more) variable. Formally, 
the adjustment is represented by a stratum variable C  with K  level,

1 2, , , KC c c c  . By definition of the case-load weighting and of AF: 
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from Bayes’ theorem: 
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by definition of conditional probability:  
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by definition of conditional probability and of the common relative risk RR: 
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Therefore, if the relative risk is to be assume common to all K  strata, the AF 
estimated through type I adjustment strategy with case-load weighting 
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approach has the same expression as the AF estimated through type II 
adjustment strategy with Mantel-Heanszel approach.  

 

 

A.3 

The law of the total variance can be proved using the law of the total 
expectation. First, 

     22Var Y E Y E Y   

from the definition of variance. Then, applying the law of the total expectation 
to each term by conditioning on the random variable X : 

    22 | |x xE E Y X E E Y X       . 

Now, the conditional second moment of Y  can be rewritten in terms of its 
variance and first moment: 
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Since the expectation of a sum is the sum of expectations, the terms can now 
be regrouped: 
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Finally, the term     22| |x xE E Y X E E Y X        is the variance of the 

conditional expectation  |E Y X , and then: 
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A.4 

We analyzed the “averisk” R package and discovered a bug in the average 
AFs estimates when the user considered two risk factors. 

The problem lied in the “create_frame” function. This function creates all 
possible permutations of removal order. In particular, the following code: 

if(n==1) return(matrix(c(1,1),nrow=1)), 

yielded only one out of two possible removal orders. 

We suggested to replace the code above, as follows: 

if(n==1) return(matrix(c(1,1,0,1),nrow=2,byrow=F)). 

In a updated version of the “averisk” R package, published 03-20-2017, the 
authors modified some bugs in the package including our code.
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