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Abstract		
Next	generation	sequencing	(NGS)	technology	 is	currently	employed	to	explore	

the	molecular	profiles	associated	to	different	biological	contexts.	The	application	

of	this	technology	provides	at	same	time	a	high-resolution	and	global	view	of	the	
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genome	and	epigenome	phenomena,	enabling	us	 to	study	the	molecular	events	

underlying	many	human	diseases,	 including	cancer.	 	Our	lab	tries	to	exploit	the	

utility	 of	 high	 throughput	 sequencing	 technologies	 generating	 genomic,	

transcriptomic	 and	 epigenomic	 data	 from	 patient’s	 cohort	 to	 study	 the	

underlying	 molecular	 mechanisms	 that	 characterize	 the	 specific	 diseases	 and	

map	 the	 key	 regulators	 that	 can	 be	 critical	 targets	 for	 relevant	 therapeutic	

measures.	 I	 take	 the	 advantage	 of	 this	 technology	 to	 mainly	 understand	 two	

aggressive	cancers:	Ovarian	Cancer	(OC)	and	Glioblastoma	multiforme	(GBM)	.		

OC	is	a	leading	cause	of	cancer-related	death	for	which	no	significant	therapeutic	

progress	has	been	made	in	the	last	decades.	Also	in	this	case,	despite	multimodal	

treatment	its	prognosis	remains	extremely	poor.	This	is	due	to	the	fact	that	the	

molecular	 mechanisms	 underlying	 OC	 tumorigenesis	 and	 progression	 are	 still	

poorly	 understood	 (Vaughan	 et	 al.,	 2011).	 GBM	 is	 the	 most	 common	 and	

aggressive	 primary	 brain	malignancy	with	 very	 poor	 prognosis	 (Frattini	 et	 al.,	

2013).	The	median	survival	rate	is	of	12-15	months	(Singh	et	al.,	2012)	with	5-

year	 survival	 that	 is	 less	 than	 5%	 despite	 the	 multimodal	 treatment	 which	

include	 	 surgery,	 radiotherapy	 and	 chemotherapy.	 To	 this	 end,	 I	 will	 be	

integrating	 various	 genomic	 and	 transcriptomic	 analysis	 to	 define	 the	 key	

regulatory	 actors	 that	 characterize	 the	 disease	 progression	 paving.	 This	

integrated	analysis	has	been	devised	 in	 form	of	a	computational	workflow	that	

gives	 way	 for	 a	 discovery	 pipeline	 for	 physiopathologically	 meaningful	

epigenetic	targets	that	can	lead	to	therapies.		
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Chapter	1	-	Introduction	

1.1	A	brief	account	on	Cancers	
Cancer	is	one	of	the	most	dreaded	diseases	that	a	human	life	can	be	inflicted	with	

and	 it	has	been	affecting	 lives	 for	several	years.	 It’s	causal	can	be	attributed	 to	

uncontrolled	 cell	 divisions	 thus	 affecting	 the	 nearby	 neighboring	 cells.	 This	

creates	an	environment	that	might	affect	a	specific	tissue/organ	or	other	tissues.	

Considering	 the	 statistics	 provided	 by	 the	 World	 Cancer	 Research	 fund	

International,	the	age-standardized	rate	for	men	and	women	combined	was	182	

per	100,000	in	2012	for	all	cancers	(that	excludes	non-melanoma	skin	cancer).	It	

was	also	 shown	by	 the	 same	agency	 that	 there	were	among	14.2	million	 cases	

recorded	 in	 the	 world	 in	 2012	 of	 which	 Australia	 ranked	 3rd,	 USA	 had	 sixth	

highest	 spot,	 Italy	with	 a	 rank	of	21st	while	UK	was	as	high	as	23rd	 among	 the	

highest	cancer	rate	for	men	and	women	together	with	age-standardized	rate	per	

1000,000	 people.	 The	 ratio	 for	male	 to	 female	 inflicted	with	 cancer	 is	 around	

10:9.		The	Figure	1	in	the	heatmap	shows	the	interactive	map	of	cancer	incidence	

in	the	world	till	2012	
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Figure	1:	Shows	the	interactive	map	of	cancer	incidence	around	the	world	
estimated	in	2012	

It	shows	the	interactive	map	of	cancer	incidence	around	the	world	estimated	in	

2012.	The	color	pink	denotes	a	higher	incidence	of	the	disease	while	blue	shows	

a	 lower	 followed	 by	 white	 for	 average	 or	 mid-level	 incidence.	 The	 color	 grey	

shows	 that	 there	 is	not	 enough	data	quality	 to	 assess	 for	 those	 countries.	This	

figure	 is	 adapted	 from	 the	website	 of	 Cancer	 Research	 UK	 and	 the	 sources	 as	

stated	 in	 the	 websites	 are	 from	 GLOBOCAN	 2012	 v1.0	 and	 United	 Nations,	

Department	of	Economic	and	Social	Affairs,	Population	Division	(2013).	All	these	

data	access	have	been	made	in	2013.		

There	 have	 been	 reportedly	 more	 than	 200	 different	 cancers	 and	 several	

consortiums	 and	 agencies	 have	 been	 working	 effectively	 to	 understand	 the	

causal	 method	 along	 with	 preventive	 measures	 that	 can	 be	 made	 in	 order	 to	

create	 new	 therapies.	 Genomics	 over	 the	 last	 few	 years	 have	 been	 able	 to	

contribute	 a	 lot	 in	 making	 us	 understand	 the	 genomic	 and	 epigenomic	

landscapes	of	different	cancers.	In	this	thesis	I	have	been	providing	my	findings	

and	 understanding	 for	 two	 different	 aggressive	 cancers,	 namely	 high-grade	

serous	Ovarian	carcinoma	(OC)	and	Glioblastoma	Multiforme	(GBM).	Our	lab	

has	 been	 able	 to	 get	 patient’s	 samples	 suffering	 from	 both	 the	 two	 above-

mentioned	 disease	 and	 generated	 genomic,	 transcriptomic	 and	 epigenomic	

profiles	 to	 understand	 the	 progression	 and	 development	 of	 the	 disease	 in	

separate	projects.	There	 is	a	dual	phase	of	 the	OC	studies	where	we	have	been	

able	to	generate	the	transcriptomes	of	OC	tumors	coming	from	high	grade	serous	

ovarian	cancer,	namely	of	epithelial	origin	(EOC)	and	ascetic	fluid	(AS)	and	their	

possible	 tissue	of	origin	which	are	Fimbria	(FI)	and	ovarian	surface	epithelium	
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(OSE).		I	have	intended	to	study	the	transcriptomic	behavior	of	the	tumor	and	the	

normal	 tissues	and	what	molecular	mechanisms	are	associated	with	 the	 tumor	

progression.	 The	 second	 study	 made	 in	 the	 OC	 project	 was	 to	 study	 the	 key	

genetic	players	 contributing	 the	mutant	 landscape	of	 the	 tumor	and	 that	 these	

lethal	variations	in	primary	tumors	were	also	preserved	in	reprogrammed	tumor	

derivatives	achieved	through	somatic	nuclear	reprogramming.		In	order	confirm	

this	 paradigm	 that	 somatic	 reprogramming	 is	 compatible	 with	 keeping	 the	

mutant	 genome	 intact,	 we	 generated	 exome	 profiles	 from	 both	 high	 and	 low	

grade	OC	tumor	patients	and	their	tumor-induced	pluripotent	stem	cell	(tumor-

iPSCs)	clones.	This	study	enabled	us	to	study	how	iPSCs	can	be	used	as	a	tool	to	

reconstruct	 the	 developmental	 history	 of	 a	 disease.	 In	 the	 case	 of	 the	 GBM	

project	we	had	the	resource	of	collecting	samples	from	patients	having	Primary	

and	 recurrent	GBM	with	 collaboration	 from	University	 of	Bonn.	We	have	been	

able	 to	 generate	 the	 genome	 wide	 expression	 profiles	 of	 the	 patients	 with	 a	

unique	partitioning	of	cellular	compartments	of	a	brain	 for	each	patient,	which	

on	critical	assessments	will	reveal	the	core	areas	that	are	more	prone	to	attain	a	

relapse.	 I	 intended	 to	 study	 the	 transcriptomic	 behavior	 of	 these	 topological	

partitioning	 of	 various	 sections	 of	 the	 GBM	 tumor	 in	 light	 of	 capturing	 the	

molecular	mechanisms	underlying	the	primary	GBM	evolution	to	its	relapse.	

	Both	 these	 studies	presented	 in	my	 thesis	will	 be	 able	 to	 find	out	 targets	 that	

might	 help	 in	 understanding	 the	 disease	 development	 and	 also	 elucidate	 key	

genetic	and	transcriptomic	regulators	which	in	turn	can	help	in	better	prognosis.		

Farther	I	provide	a	brief	account	of	the	history	of	OC	and	GBM.	
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1.1.1	A	brief	account	on	Ovarian	Cancer	
Ovarian	 cancer	 (OC)	 is	 a	 leading	 cause	 of	 cancer-related	 death	 for	 which	 no	

significant	 therapeutic	 progress	 has	 been	 made	 in	 the	 last	 decades.	 It	 is	

considered	 to	 be	 one	 of	 the	 fifth	 cause	 of	 cancer-related	 death	 and	 the	 most	

lethal	 gynaecological	 malignancies	 (Bowtell	 2010).	 The	 diagnosis	 is	 usually	

pretty	 late	 as	 far	 as	 the	 stage	 is	 concerned.	 It	 is	 often	 misconstrued	 to	 other	

gastrointestinal	or	reproductive	system	diseases.	No	major	 improvements	have	

been	made	since	cis-platin	treatment	(or	carboplatin	treatment)	was	introduced	

in	1980s	and	more	recently	its	combination	with	the	taxanes.	This	is	due	to	the	

lack	of	markers	and	therapeutic	targets	that	reflects:	i)	our	poor	understanding	

of	the	molecular	mechanisms	underlying	OC	biology;	 ii)	 the	absence	of	suitable	

models,	 since	 available	 OC	 cell	 lines	 fail	 to	 recapitulate	 the	 histopathological	

origin	of	 the	disease	 (Vaughan	et	 al.,	 2011).	The	overall	 5-year	 survival	 rate	 is	

31%.		

	

	

	

Figure	2:	Current	treatments	of	Ovarian	Cancer	have	not	lead	to	great	
patient's	care	

Figure	2	a b 

c 

d 
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a)	Shows	the	different	treatments	that	have	been	developed	for	OC	patients	since	

1960s	till	date	while	2	b),	c),	d)	–	Shows	a	panel	of	disease-free	survival	curves	

since	1980	without	much	of	a	major	improvement	over	the	years	and	highlighted	

by	3	major	units	from	USA,	Australia	and	Canada	which	provides	epidemiologic	

information	 on	 the	 incidence	 and	 survival	 rates	 of	 OC	 here.	 Adapted	 and	

modified	from	(Vaughan	et	al.,	2011)	.	

Ovarian	 cancer	 refers	 to	 a	 heterogeneous	 population	 of	 tumors	 rather	 than	 a	

single	 one,	 which	 can	 arise	 from	 3	 different	 cellular	 types	 accounting	 to	

development	of	different	types	of	tumors:	

i)	 Epithelial	 that	 can	 give	 rise	 to	 tumors	 starting	 from	 the	 cells	 that	 cover	 the	

outer	surface	of	the	ovary	

ii)	oocytes	or	germ	cells	that	give	rise	to	Germ	cell	tumors.	

iii)	Structural	tissue	cells	or	stromal	cells	which	produces	female	hormones	like	

estrogen	and	progesterone.	

Non-epithelial	 ovarian	 tumors	 roughly	 accounts	 to	 ~40%	 of	 all	 tumors	 which	

rarely	 reaches	malignancy.	 90%	 of	 the	 tumors	 are	 epithelial	 in	 origin	 (will	 be	

referred	as	Epithelial	Ovarian	Cancer,	EOC),	which	is	predominant	in	nature	and	

is	 considered	 to	 be	 very	 heterogeneous.	 These	 can	 be	 farther	 classified	 into	

serous,	endometrioid,	mucinous,	clear	cell,	transitional	cell,	squamous	cell,	mixed	

epithelial,	and	undifferentiated	(Iarc,	Tavassoéli,	&	Devilee,	2003).	These	types	of	

tumors	 are	 further	 classified	 into	 benign,	 malignant	 and	 borderline	 (low	

malignant	potential	 tumors,	LMP),	which	on	tumor	subtypes	classifications,	are	

termed	as	low	or	high-grade.	

Table	1	
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Stage	 Description	

I	 These	types	of	tumors	are	confined	to	the	ovary	or	fallopian	tubes	

II	

These	 types	 of	 tumors	 are	 extend	 or	 metastasize	 from	 ovaries	

and/or	fallopian	tube	to	adjacent	pelvic	structures	

III	

These	 types	 of	 tumors	 are	 metastasis	 extending	 out	 of	 the	 pelvis	

and/or	to	the	regional	lymph	nodes	

IV	

These	 types	 of	 tumors	 include	 metastases	 at	 distant	 sites	 that	

includes	patients	with	metastatic	stages	of	parenchymal	liver/splenic	

and	extra-abdominal	

	

Table	1:	Different	stages	of	epithelial	ovarian	cancers	based	on	the	International	

Federation	of	Gynecological	Oncologists	 (FIGO)	 system	and	 informs	 the	doctor	

about	the	growth	and	spread	of	the	tumor.	

Serous	 ovarian	 cancer	 (SOC)	 are	 conferred	 Type	 I	 and	 Type	 II	 (Vang,	 Shih,	 &	

Kurman,	 2009)	 based	 on	 their	 histopathology	 and	 patterns	 of	 mutation.	 LMP	

tumors	give	rise	to	Type	I	SOC	which	are	regarded	mostly	as	low	grade	or	serous	

borderline	and	characterized	by	BRAF	and	KRAS	mutations	(Singer	et	al.,	2003)	

and	 devoid	 of	 TP53	 mutations	 (Wong	 et	 al.,	 2010)	 while	 the	 Type	 II	 SOC	 is	

frequented	with	TP53	mutations	(A.	A.	Ahmed	et	al.,	2010)	,	absence	of	BRAF	and	

KRAS	mutations	 (Wong	et	all	2010)	and	often	mutations	 in	BRCA1	and	BRCA2	

(Hylander	 et	 al.,	 2013)	have	been	 associated	 in	 this	 type	 as	well.	 Thus	Type	 II	

tumors	 are	 chromosomally	 instable	 and	 also	 referred	 to	 as	 high-grade	 serous	

ovarian	cancer	(HGSOC).	As	a	matter	of	fact	these	HGSOC's	have	been	reportedly	

sensitive	to	platin-	and	PARP	inhibitors-based	treatments	(Bowtell,	2010).	
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The	 origin	 cell	 of	 ovarian	 cancer	 is	 still	 very	 poorly	 understood	 and	 stands	

largely	 debatable	 since	 the	 tumors	 upon	 diagnosis	 are	 found	 to	 have	 already	

invaded	 the	major	 areas	 of	 patient’s	 abdomen,	which	 includes	 ovaries	 as	well.	

Earlier	years	it	was	to	be	believed	that	the	origin	was	ovarian	in	nature.	However	

growing	 evidences	 over	 the	 years	 cite	 HGSOCs	 might	 originate	 from	 distal	

epithelial	 cells	 of	 the	 fimbria	 of	 fallopian	 tube.	 These	 tubes	 are	 usually	 every	

close	 to	 the	 ovaries.	 Gene	 expression	 study	 of	HGSOCs	 demonstrated	 fallopian	

tube	epithelium	as	potent	origin	 (Tone	et	 al.,	 2008).	 Several	 other	 studies	also	

showed	many	 carcinomas	 in	 fallopian	 tube	 of	 both	 invasive	 and	 non-invasive	

nature.	 These	 findings	 made	 scientists	 to	 believe	 that	 primary	 OC	 might	 be	

stimulated	 from	 shedding	 of	 malignant	 cells	 on	 the	 ovary	 from	 the	 fallopian	

tubes	(R.	J.	Kurman,	2013)	.	All	these	theories	established	owing	to	the	evidences	

clearly	hints	 that	both	 tissues	might	pose	as	origin	 for	subset	of	HGSOCs.	Thus	

identification	 of	 signatures	 might	 better	 allow	 us	 to	 understand	 the	

developmental	niches	of	the	disease	namely	the	cell	of	origin	that	precisely	will	

identify	 critical	 pathways	 contributing	 to	 OC	 pathogenesis	 and	 better	 up	 the	

future	prognosis.	There	is	thus	an	acute	need	to	identify	new	therapeutic	targets	

and	 prognostic	 biomarkers	 that	 can	 improve	 OC	 management.	 The	 lack	 of	

markers	and	targets	reflects	our	poor	understanding	of	the	disease.	Available	OC	

cell	 lines	 fail	 to	 recapitulate	 the	 histopathological	 origin	 of	 the	 disease	 this	

strongly	 indicate	 for	 an	 important	 role	 of	 studying	 the	 developmental	

aberrations	leading	to	OC	pathogenesis.	

Moreover,	OC	 is	one	of	 the	 tumor	 types	where	we	have	poor	knowledge	about	

the	 relative	 contribution	 of	 genetic	 versus	 epigenetic	 alterations	 to	 the	 tumor	
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phenotype,	 preventing	 the	 identification	 of	 molecular	 pathways	 as	 prognostic	

signature	or	therapeutic	target.			

1.1.2	A	brief	account	on	Glioblastoma	multiforme	
Glioblastoma	 multiforme	 (GBM)	 is	 one	 of	 the	 most	 common	 and	 aggressive	

primary	 brain	 malignancy	 with	 very	 poor	 prognostic	 and	 less	 efficient	

therapeutic	measures	(Chen	et	al.,	2012)	.		It	has	been	graded	by	WHO	as	Grade	

IV	 astrocytoma	 accounting	 about	 15	 percent	 of	 all	 brain	 tumors	 where	 the	

occurrence	age	in	adults	is	between	45	to	70	years.	The	median	survival	rate	is	of	

12-15	 months	 (Frattini	 et	 al.,	 2013)	 with	 5-year	 survival	 rate	 that	 is	

approximately	 of	 4%	 even	 though	 there	 have	 been	 highly	 advanced	 and	

innovative	techniques	for	detection	like	that	of	spectroscopy	and	perfusion.	Even	

the	 treatments	 over	 the	 years,	 which	 include	 surgery,	 followed	 by	 radiation	

therapy	or	a	combined	radiation	therapy	and	chemotherapy,	have	not	been	able	

to	 improve	the	prognosis.	This	 is	often	attributed	to	the	 fact	 that	GBM	patients	

are	 highly	 resistant	 to	 therapeutic	 drugs	 owing	 to	 its	 heterogeneous	 nature	 of	

the	disease	in	different	patients.		To	ensure	effective	therapies	it	is	important	to	

understand	 the	development	and	progression	of	 the	disease	by	breaking	down	

the	 genetic	 and	 the	 transcriptomic	 background	 of	 the	 disease.	 GBMs	 are	

classified	as	primary	and	secondary.	Primary	GBMs	arise	de	novo	as	there	is	no	

previous	 clinical	 history	 while	 secondary	 are	 believed	 to	 be	 arising	 from	

progressive	 accumulations	 of	 genetic	 alterations	 in	 grade	 III	 anaplastic	

astrocytoma	or	from	low-grade	diffuse	astrocytoma	which	in	turn	have	over	time	

developed	 from	 a	 low	 grade	 tumors	 (grade	 II).	 	 Both	 primary	 and	 secondary	

GBMs	 share	 identical	 histopathological	 features	 along	 with	 wide	 spread	 cell	

proliferation	and	aggressive	 invasiveness.	These	 tumoral	 cells	migrate	beneath	
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the	 subdural	 sheets	 along	 with	 white	 matter	 tracts	 while	 infiltrating	 the	

parenchymal	cells.	These	invasions	while	progressing	into	the	perivascular	space	

coupled	with	 angiogenesis	 can	 lead	 to	hemorrhages.	Patients	with	GBM	 is	 also	

often	 associated	 with	 recurrence	 due	 to	 high	 resistance	 of	 these	 tumor-

infiltrating	cells	to	conventional	chemo	and	radiotherapy	thus	making	it	difficult	

for	prognosis.	

In	recent	year	several	studies	have	highlighted	the	molecular	characterization	of	

GBM	thus	outlining	different	subtypes,	which	shows	over	expression	of	specific	

subset	of	genes.		

The	 cell	 of	 origin	 for	 GBM	 is	 still	 not	 clearly	 understood	 and	 has	 varied	

speculations	and	various	theories	have	been	proposed	about	it.	Ideally	it	should	

stand	 for	 normal	 cells,	which	 upon	 implications	 of	 events	 give	 rise	 to	 a	 tumor	

formation.	However	certain	considerations	have	 led	to	the	proposal	of	 theories	

where	initiators	are	other	cells	and	not	astrocytes	of	oligodendrocytes.	This	can	

be	 stated	 first	 due	 to	 the	 difference	 in	 de	 novo	 versus	 progressive	 GBMs	 (i.e.	

primary	versus	secondary	GBMs)	have	given	rise	to	the	possibility	that	specific	

genetic	or	epigenetic	alterations	can	act	upon	different	cells	which	could	finally	

give	rise	to	different	diseases	of	the	same	order	of	tumor.	The	other	possibilities	

are	 presence	 of	 the	 intra	 and	 inter	 heterogeneity	 of	 the	 GBM	 patients,	 which	

accords	for	complex	cytological	subtypes	with	altering	patterns	of	genetic	lesions	

and	transcriptomic	profiles.	This	 farther	reopened	the	cell	of	origin	debate	and	

thus	it	is	not	clear	if	a	tumor	origin	can	be	solely	classified	based	on	appearance	

even	 they	 look	 similar	under	 the	microscope.	This	 is	due	 to	 the	 fact	 that	 same	

mutations	that	characterize	the	tumor	may	account	for	different	subtypes	of	the	

tumor.	 This	 has	 been	 well	 characterized	 while	 studying	 whole-genome	
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pathology,	 clinical	 aspects	 of	 the	 disease	 and	 glioma	 animal	models.	 This	 was	

well	 documented	 by	 (Zong,	 Verhaak,	 &	 Canoll,	 2012)	 in	 their	 review	 which	

shows	 neural	 stem	 cells	 (NSCs),	 progenitors	 of	 glial	 cells	 which	 also	 includes	

progenitors	 of	 oligodendrocytes	 and	 lastly	 astrocytes	 could	 be	 concluded	 to	

serve	as	origin	cells	for	gliomas.		In	case	of	the	mutations	that	cells	sustain	might	

not	transform	on	its	own	but	their	progenitors	can	actually	transform	to	behave	

as	 cells	 of	 origin	 for	 GBMs.	 Recently	 a	 study	 published	 by	 (Steed	 et	 al.,	 2016)	

developed	a	new	computational	method	that	could	present	the	origin	of	different	

glioblastoma	subtypes	with	the	usage	of	clinical	images	derived	from	217	brain	

tumor	 patients.	 We	 know	 that	 the	 4	 subtypes	 of	 glioblastoma	 are	 classical,	

neural,	pro-neural	and	mesenchymal	(Verhaak	et	al.,	2010)	.	It	is	found	by	Chen's	

team	 that	 sub-ventricular	 zone	 (SVZ)	 serves	 originating	 region	 for	 pro-neural	

and	 neural	 GBMs	 while	 other	 two	 subtypes	 are	 associated	 to	 be	 farther	

distributed	 and	 settled	 away	 from	 SVZ	 and	 serve	 as	 region	 containing	 cells	 of	

origin.	This	could	be	explained	on	the	basis	of	the	mutations	that	give	cancer	in	

NSCs	 of	 the	 SVZ	 produced	 pro-neural	 and	 neural	 GBMs	 while	 the	 similar	

mutation	occurring	in	a	region	far	away	from	SVZ	in	another	cell	population	gave	

the	other	subtypes	of	GBMs	namely	mesenchymal	and	classical.	SVZ	is	accorded	

as	the	region	which	seats	the	neural	stem	cells	and	these	cells	migrate	from	the	

center	of	the	brain	to	its	outward	side	during	developmental	stages	of	the	brain	

and	 thus	 different	 cell	 types	 are	 formed	 that	 human	brain	 is	made	 up	 of.	 This	

hypothesis	that	Chen’s	team	developed	was	confirmed	in	animal	model	that	was	

developed	at	Cincinnati	Children's	hospital	by	pediatric	hematologist-oncologist	

Lionel	Chow.	Thus	more	multi-disciplinary	approaches	 in	 future	will	be	able	 to	
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define	the	cellular	origin	of	GBM	and	help	in	identifying	therapeutic	markers	that	

will	be	able	to	alter	the	tumor	type	and	improve	the	prognosis.		

1.2	Somatic	changes	contributing	to	cancers	development	and	
progression	
Cancer	 is	 collective	group	of	 several	different	diseases	 that	 can	develop	 in	 any	

parts	of	the	human	body.	As	we	all	know	that	cells	are	the	basic	units	that	forms	

the	basis	of	human	body.	They	grow	and	divide	to	in	order	to	maintain	the	needs	

of	the	body.	Cells	are	often	replaced	and	replenished	with	new	ones	when	they	

are	either	old	or	damaged	however	if	there	are	certain	genetic	changes	due	to	an	

impairment	 that	disrupts	 the	orderly	process	 then	 it	might	give	 rise	 to	 cancer.		

This	 happens	 if	 the	 autoimmune	 system	 of	 the	 body	 fails	 to	 take	 care	 of	 such	

events.	During	these	phases	uncontrollable	growth	of	cells	may	take	place,	which	

might	give	rise	to	a	tumor	mass	that	can	be	either	malignant	or	benign.	A	tumor	

mass	when	malignant	can	grow	and	spread	in	other	parts	of	the	body	while	the	

benign	 tumor	will	 grow	but	 not	 reach	 out	 to	 other	 parts.	 There	 are	 also	 some	

forms	of	cancer	like	lymphoma	and	myeloma,	which	do	not	form	tumor.	In	this	

thesis	my	focus	of	study	is	GBM	and	HGSOC.	Mutations	in	the	gene	stand	out	to	

be	 one	 of	 the	 major	 hallmarks	 of	 cancer	 that	 may	 be	 central	 to	 its	 evolution.	

Multiple	 mutations	 can	 form	 the	 basis	 of	 cancers	 and	 since	 cancer	 undergoes	

cellular	 inheritance	 it	 is	 likely	 to	 be	 suggestive	 that	 tumor	 progression	 can	 be	

driven	by	mutagenesis.	With	the	advent	of	NGS	technologies	now	it	is	possible	to	

dissect	 the	 entire	human	genome	at	deeper	 resolution.	Thus	we	 can	 zero-in	 at	

nucleotide	 sequences	 and	get	 a	more	unprecedented	power	 to	 catalogue	more	

and	more	mutations.	Tumors	can	be	a	result	of	extensive	heterogeneity	of	cancer	

cells	or	may	be	also	a	result	of	chemo-resistance.	 	This	can	be	attributed	to	the	
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fact	of	specific	mutations	in	genes	which	might	arise	due	to	DNA	damage	that	are	

un-repairable	 or	 incurred	 errors	 during	 DNA	 synthesis.	 According	 to	 the	

Hanahan	and	Weinberg	(Hanahan,	2000)	proposal	genetic	alterations	 in	cancer	

can	be	catalogued	by	6	very	distinct	and	complementary	changes	that	change	the	

physiology	of	cells	thus	enabling	tumor	growth	and	metastasis.	These	are	most	

commonly	 referred	 to	 as	 self-sufficient	 growth	 signals,	 abnormal	 sensitivity	 to	

antigrowth	 signals,	 bypass	 apoptosis,	 possibilities	 of	 illimitable	 replications,	

continued	angiogenesis,	and	metastasis	and	tissue	invasiveness.	According	to	the	

authors	suggestions	all	tumors	should	attain	all	these	6	hallmarks	while	tumor	of	

the	 same	 type	might	be	 composed	of	different	gene	mutations	 in	varied	order.	

Genetic	 alterations	 constituting	 of	 cancers	 might	 not	 be	 only	 dictated	 or	

restricted	to	point	mutations	or	multi-nucleotide	variations	(MNVs)	like	INDELs.	

Even	gains	and	losses	of	large	nucleotide	segments	in	the	genome	spanning	a	few	

to	too	many	kilobases	or	for	that	matter	the	whole	chromosomes	might	give	rise	

to	 the	 tumor	 formation	 and	 growth.	 These	 alterations	 or	 variations	 lead	 to	

aneuploidy	and	chromosomal	aberrations.	Copy	number	alterations	(CNAs)	that	

are	 present	 in	 the	 normal	 genome	 in	 forms	 of	 deletions,	 insertions,	 or	

duplications	are	referred	to	as	germline	while	 those	that	occur	or	are	acquired	

during	 the	 lifetime	 of	 an	 individual	 are	 referred	 to	 as	 somatic	 CNAs	 (SCNAs).	

SCNAs	 are	 often	 dubbed	 as	major	 contributors	 to	 cancer	 development	 as	well	

and	in	particular	for	solid	tumors.	

1.2.1	Somatic	variations	in	cancer	at	point	or	multinucleotide	is	
critical	for	its	development	
Mutations	 in	 somatic	 cells	 may	 be	 a	 result	 of	 i)	 adulteration	 in	 the	 DNA	

replication	machinery,	 ii)	being	subjected	 to	exo-	or	endogenous	mutagens,	 iii)	
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enzymatic	alteration	of	DNA	and	iv)	imperfect	DNA	repair.	Even	long	exposure	to	

radiations	 or	 UVs	 or	 smoking	 addictions	 can	 result	 in	 somatic	mutations	may	

result	in	triggering	specific	cancers.	Several	projects	have	been	laid	in	the	field	of	

cancer	 genomics	 that	 exploit	 the	 power	 of	 high	 throughput	 sequencing	

technologies	to	find	somatic	mutational	signatures	across	different	cancers.	This	

uncovers	 the	diversity	and	complexity	of	 the	process	 in	human	carcinogenesis.	

Better	 resolution	 with	 the	 mutational	 signatures	 referring	 to	 a	 landscape	 is	

expected	 in	 future	with	 definitive	 features	 using	 higher	 reductionist	 approach.	

This	 will	 take	 shape	when	more	whole-genome	 sequencing	 of	 cancer	 patients	

will	 be	 added	 up	 in	 the	 research	 wagon	 thus	 helping	 in	 elucidating	 the	

mechanistic	basis	of	some	signatures	which	as	of	now	are	partially	understood.	

The	paper	of	(Alexandrov	et	al.,	2013)	as	shown	in	Figure	3	and	Figure	4,	which	

tries	 to	 catalogue	 somatic	 mutational	 landscape	 post	 analysis	 of	 over	 several	

cancers	thus	revealing	20	distinct	signature	is	of	high	relevance	as	some	of	these	

signatures	 are	 redundant	 in	most	 cancer	 classes	while	 others	 are	 restricted	 to	

single	 cancer	 classes.	 It	 also	 reveals	 some	 signatures	 association	 with	 age	 of	

cancer	 diagnosis	 or	 with	 DNA	 maintenance	 impairment/mutagenic	 exposures	

and	to	kataegis.		
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Adapted	from	(Alexandrov	et	al.,	2013)		

Figure	3:	Representation	of	median	mutational	scores	of	patient's	across	
different	cancer	types	

Each	 and	 every	 dot	 in	 the	 figures	 represents	 a	 sample	 or	 a	 patient	 while	 red	

horizontal	lines	represent	the	median	mutational	scores	in	the	respective	cancer	

types.	The	vertical	axis	which	is	log	scaled	represents	the	mutation	number	per	

megabase	 while	 somatic	 point	 mutations	 coming	 from	 different	 cancer	

represents	 the	 horizontal	 axis	 with	 median	 red	 line	 as	 the	 median	 somatic	

mutational.		

	

Figure	4:	Different	cancers	are	typically	ordered	in	alphabetical	manner	in	
horizontal	axis	with	mutational	signatures	in	vertical	axis	

Another	paper	(Cyriac	Kandoth,	Michael	D.	McLellan,	Fabio	Vandin,	Kai	Ye,	2013)	

that	 tries	 to	 identify	 significantly	 mutated	 genes(SMGs)	 from	 the	 TCGA	 Pan-

Cancer	 data	 set	 from	 3281	 tumors	 across	 12	 cancer	 types	 provides	 us	 with	

insightful	 revelations	about	127	SMGs.	 	These	SMGs	highlights	 the	 cellular	and	

enzymatic	process	 are	 linked	 to	 tumor	progression.	Out	 of	 these	127	SMGs	67	

was	 given	 driver	 status	 based	 on	 'ratiometric'	 method	 using	 COSMIC	 catalogs.	

This	 paper	 illustrates	 the	 mutational	 frequency	 distributions	 shared	 among	
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different	tumor	or	exclusive	to	specific	tumors,	unifies	the	tissues	of	origin	with	

SMGs,	 to	 DNA	 impairments,	 environmental	 and	 mutagenic	 influences.	 It	 also	

presented	the	mutational	drivers	required	for	oncogenic	drive	and	relevance	of	

mutations	in	tissue	specific	TFs.	Even	histone	modifiers	are	seen	to	be	under	the	

mutational	 burden	 in	 these	 12	 cancers.	 Finally	 it	 scores	 the	 importance	 of	

knowing	the	clonal	architecture	of	each	patients	from	SMGs	and	relevant	effect	of	

these	 genes	 in	 survival	 making	 it	 clinically	 important	 for	 future	 prognosis	 or	

panel	 cancer	 sequencing	 studies.	 The	 importance	 of	 the	 paper	 findings	 can	 be	

seen	in	the	below	Figure	5	

	

Figure	5:	Schematic	representation	of	the	TCGA	Pan-Cancer	mutation	
dataset	identifying	SMGs,	cancer-related	cellular	processes,	and	genes	
associated	with	clinical	features	and	tumour	in	an	orderly	fashion	

1.2.2	Impact	of	somatic	variations	in	forms	of	copy	number	
alterations	in	cancer	initiation	and	development	
A	 copy	number	 alteration	 in	 somatic	 cells	 is	 often	 contributing	 to	 oncogenesis	

and	is	of	high	importance.	Often	large	segments	of	chromosome	might	undergo	

aberrant	 changes	 resulting	 in	 activations	 of	 oncogenes	 or	 silencing	 tumor	

suppressor	 genes	 (TSGs).	 These	 acquired	 changes	might	 be	 detrimental	 to	 the	

patients	and	so	Pan-Cancer	projects	 tried	 to	characterize	 these	SCNA	events	 in	

4934	 cancers.	 The	 project	 observed	 whole-genome	 abnormalities	 having	
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increasing	 frequencies	 with	 varied	 SCNAs,	 TP53	 mutations,	 CCNE1	

amplifications	 and	 changes	 in	 the	 PPP2R	 complexes	 in	 37%	 of	 the	 cancer	

samples	across	11	cancer	type	(Zack	et	al.,	2013)	 .	Out	of	140	regions	revealed	

having	 significant	 SCNAs,	 102	 regions	were	 found	devoid	 of	 known	oncogenes	

and	 TSGs	 targets	 and	 50	 SMGs.	 	 This	 really	 provides	 even	 SCNAs	 affect	 focal	

regions	other	than	oncogenes	and	TSGs	that	might	contribute	to	tumorigenesis.	

This	study	gave	mechanistic	insights	of	functional	consequences	of	these	SCNAs	

in	 tumorigenesis	 and	 their	 phenotypic	 effects.	 	 This	 study	 also	 underlines	 the	

critical	 role	of	SCNAs	 in	oncogene	activation	or	TSG	 inactivation	 that	 is	a	great	

leap	 in	cancer	diagnostics	and	prognosis	 in	addition	 to	 the	new	regions	having	

erroneous	 copy	 alterations.	 However	 there	 lies	 a	 challenge	 of	 segregating	 the	

driver	and	passenger	SCNAs	in	cancers.	Thus	it	 is	critical	not	only	to	assess	the	

positively	 selected	 SCNAs	 but	 also	 track	 the	 increased	 generation	 rates	 or	

decreasing	 negative	 selections	 of	 the	 same.	 This	 will	 help	 in	 understanding	

underlying	mechanisms	of	their	generation	and	outline	functional	context.		Apart	

from	 this,	 whole-genome	 sequencing	 also	 provides	 specific	 information	 of	

rearrangements	 in	 sequences	 that	 forms	 each	 SCNA.	 	 This	 information’s	 can	

assesses	 the	genetic	heterogeneity	within	 tumors	 separating	early	 events	 from	

the	later.	Thus	mechanistic	insight	of	SCNAs	generation	and	selective	pressures	

reshaping	them	can	also	be	known.	

1.3	Epigenetics	
Epigenetics,	 coined	 by	 embryologist	 and	 geneticist,	 C.H	 Waddington	

(Waddington,	 1942)	 is	 a	 field	 of	 study	 where	 variations	 at	 cellular	 and	

phenotypic	 level	 are	due	 to	 external	 or	 environmental	 factors	which	 results	 in	

turning	genes	"on	and	off"	thus	affecting	the	gene	expressions.	They	do	not	alter	
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the	nucleotide	sequences	and	thus	DNA	remains	unscathed.	Although	the	field	is	

still	ever	growing	and	debatable	but	things	like	phenotypic	changes	that	includes	

expression	 of	 genes,	 which	 can	 be	 passed	 on	 mitotically,	 and/or	 meiotically	

without	affecting	an	individual's	DNA	sequence	are	widely	accepted.	A	molecular	

event	can	be	epigenetic	when	it	 is	transmitted	to	its	progeny	on	its	own	with	a	

mechanism	 that	 is	 still	 maintained	 post	 DNA	 replication	 and	 rounds	 of	 cell	

divisions	 and	 finally	 result	 in	 expression	 of	 genes.	 Histone	 modifications	 and	

DNA	methylations	 are	bona	fide	marks	 that	alter	 the	gene	expression	without	

affecting	the	parental	DNA	sequence.	The	first	report	of	epigenetics	being	linked	

to	 any	 disease-affecting	 humans	 was	 that	 of	 a	 cancer	 in	 the	 year	 1983.	 It	

reported	that	patients	with	colorectal	cancers	showed	striking	differences	when	

their	 normal	 tissues	 were	 compared	 to	 the	 affected	 tissues.	 The	 level	 of	

methylation	was	higher	 in	normal	tissues	 in	the	same	patients	when	compared	

to	 their	 diseased	 tissue	 counterparts	 (Feinberg	 &	 Vogelstein,	 1983)	 .	 The	

consequence	that	could	be	derived	was	the	turning	off	methylated	genes	results	

in	activating	certain	other	genes	that	ensues	chromatin	rearrangement.	CpG	sites	

seats	 the	 DNA	 methylation	 and	 DNA	 in	 proximity	 to	 promoter	 regions	 have	

higher	concentrations	of	CpG	sites	or	even	defined	as	CpG	 islands	but	 they	are	

free	 of	 methylation	 in	 normal	 cells.	 These	 islands	 are	 heavily	 coded	 with	

methylation	in	cancer	cells,	which	in	turn	silences	some	important	genes.	This	is	

pretty	much	evidently	documented	in	early	cancer	development	as	an	epigenetic	

alteration	 (Egger,	 Liang,	 Aparicio,	 &	 Jones,	 2004)	 ,	 (Jones	 &	 Baylin,	 2002),	

(Robertson,	2002).	In	my	study	however	we	are	trying	to	use	DNA	methylation	

as	 a	 developmental	 tracer	where	we	 are	 trying	 to	 find	 the	 origin	 of	 tissue	 for	

unknown	 primary	 tumors.	 (Sproul	 et	 al.,	 2012)	 and	 (Moran	 et	 al.,	 2016)	
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previously	 did	 this	 work	 as	 described	 in	 details	 in	 the	Results	 section	 of	 the	

thesis.	 They	 used	 information	 from	 DNA	 methylation	 to	 trace	 back	 the	

developmental	 tissue	 type	 for	different	 tumors	 for	which	either	 the	origin	was	

known	 or	 unknown.	 Taking	 a	 cue	 from	 those	 study	 we	 developed	 a	 similar	

strategy	on	those	lines.	This	enabled	us	to	understand	the	real	origin	of	these	OC	

tumors	and	then	studying	the	transcriptional	landscapes	(Detail	of	the	strategy	is	

mentioned	in	the	Results	section).	Epigenetic	alteration	has	also	been	dubbed	to	

cause	mutation	even	though	the	DNA	sequence	is	unaltered.	Familial	or	inherited	

cancers	have	most	of	 the	genes	silenced	due	to	methylation,	which	also	 in	turn	

shuts	down	TSGs,	and	thus	the	DNA	repair	machinery	is	at	stake.		Some	of	them	

include	genes	like	MGMT,	MLH1	cyclin-dependent	kinase	inhibitor	2B	(CDKN2B),	

and	 RASSF1A.	 Even	 hypermethylation	 have	 been	 reported	 to	 microsatellites	

instabilities,	which	 in	 turn	have	been	 involved	 in	many	 cancers	 like	 colorectal,	

endometrial,	ovarian,	and	gastric	cancers	(Jones	&	Baylin,	2002).	These	are	a	few	

examples	in	cancers	where	epigenetic	changes	have	been	discovered	which	are	

important	 for	 transforming	 cells	 to	 cancer.	 Thus	 understanding	 these	

mechanisms	will	be	very	important	to	dissect	the	key	regulator	that	develop	and	

maintains	 the	 cancer	 progression	 leading	 to	 finding	 better	 prognostic	markers	

for	 therapies.	 There	 are	 even	 some	 other	 mechanisms	 that	 change	 the	 gene	

expression	 like	 different	 histone	 posttranslational	 modifications,	 nucleosome	

repositioning	and	remodeling	and	small	noncoding	RNAs.		

Other	 epigenetic	modifications	 like	 that	 of	 the	histones	 can	 intervene	with	 the	

transcriptional	 landscape	regulating	 its	maintenance	and	transmission	 like	that	

of	 Polycomb	 and	 Trithorax	 protein	 group	 of	 proteins	 mediated	 histone	

modifications	 (Kouzarides	 2007,	 Orkin	 &	 Hochedlinger,	 2011a),	 (Laugesen	 &	
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Helin,	 2014),	 Steffen	 and	 Ringrose	 2014*).	 Most	 commonly	 and	 well	

characterized	is	H3K4	and	H3K27	methylation,	which	is	in	effect	of	the	Trithorax	

(TrxG)	and	polycomb	(PcG)	protein	groups.	The	trimethylation	at	lysine	residues	

for	H3K4	 is	associated	activation	of	genes	 (Byrd	&	Shearn,	2003)	while	 that	of	

H3K27me3	with	repression	(Kirmizis	et	al.,	2004).	There	are	4	chromatin	states	

that	 are	 critical	 to	 tumor	 considering	 the	 genome-wide	 distribution	 of	 these	 2	

epigenetic	marks.	These	are	i)	repressed	state	which	is	due	to	only	H3K27me	at	

gene	promoters,	ii)	an	active	state	characterized	by	H3K4me3	genes,	iii)	bivalent	

state	where	both	marks	 are	present	 at	 the	promoters	 and	 finally	 iv)	 the	 silent	

state	where	 both	 are	 absent	 and	RNA	polymerase	 is	 not	 bound	 as	well.	 These	

tight	 interplays	 when	 disrupted	 associates	 with	 tumors.	 As	 e.g.,	 in	 metastatic	

prostate	 (Varambally	 et	 al.,	 2002),	 breast	 (Kleer	 et	 al.	 2003,	 Raaphorst	 et	 al.	

2003),	and	bladder	cancer	(Arisan	et	al.,	2005)	EZH2	is	often	seemed	to	be	over	

expressed	which	is	a	catalytic	subunit	of	polycomb	repressive	complex2	(PRC2),	

that	can	give	way	to	cancer	progression	through	p14	and	p16	(Ink4A/ARF	locus)	

(Bracken	et	al.,	2007)	silencing.	In	ovarian	cancer	EZH2	over	expression	is	found	

in	 advanced	 stage	 (Rao	 et	 al.,	 2010)	 and	 associated	 with	 poor	 survival	 and	

cisplatin	resistance	(L.	Hu,	McArthur,	&	Jaffe,	2010).	Thus	it	is	indicative	that	late	

progression	 of	 OC	 is	 implicated	 with	 histone	 mark	 repression.	 Another	

interesting	revelation	in	OC	epigenetics	world	was	seen	in	the	(Chapman-Rothe	

et	 al.,	 2013)	 article,	 which	 defined,	 that	 bivalent	 marked	 genes	 promotes	

malignancy	 and	 leads	 to	 chemoresistance.	 All	 these	 findings	 clearly	 scores	 the	

importance	 of	 histone	 modifications	 in	 cancer	 and	 epigenetic	 tweaking	 might	

help	 in	 understanding	 the	 tumor	 biology	 and	 also	 lead	 to	 finding	 new	 novel	

drugs	that	are	otherwise	ineffective	and	posing	a	strong	resistance	in	prognosis.	
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1.4	Induced	pluripotent	stem	cell	reprogramming	as	a	tool	to	
reconstruct	disease	history	and	developmental	aberrations		
As	we	 know	 cancer	 is	 considered	 to	 portray	 a	 tight	 interplay	 between	 genetic	

and	 epigenetic	 changes.	 Thus	 it	 is	 important	 to	 dissect	 this	 contribution	 of	

epigenetic	 from	 genetic	 in	 cancer	 pathogenesis.	 Established	 cell	 line,	 tumor	

xenografts	or	even	engineered	murine	models	can	capture	early	stages	of	cancer	

progression	 but	 still	 not	 to	 its	 entirety.	 The	 scope	 is	 limited	 and	 unable	 to	

elucidate	 heterogeneity	 among	 patients	 from	 same	 tumor	 phenotypes.	 Even	

fresh	 samples	 cannot	 grow	 in	 culture	 for	 indefinite	 time.	 We	 also	 know	 that	

human	embryonic	stem	cells	(ESCs)	can	provide	us	with	plethora	of	information	

but	 its	 derivation	has	major	 ethical	 bottlenecks.	All	 these	 can	be	handled	with	

that	 of	 induced	pluripotent	 stem	cell	 reprogramming	of	 somatic	 tissues.	 It	 is	 a	

multi-step	 process	 that	 requires	 epigenetic	 resetting	 keeping	 the	 genetic	

background	conserved	with	the	establishment	of	a	transcriptional	landscape	that	

is	very	much	compatible	with	pluripotency	stages.		

In	 recent	 years	 there	 have	 been	 great	 advances	 in	 the	 reprogramming	 of	

differentiated	 somatic	 cells	 to	 pluripotency	 induced	 by	 only	 four	 transcription	

factors	(TFs)-	OCT3/4,	SOX2,	KLF4	and	c-MYC	(Carette	et	al.,	2010)	.	It	is	known	

that	 oncogenic	 transformation	 frequently	 involves	 procurement	 of	 de	 novo	

developmental	 programs	 that	 is	 comparable	 to	 cellular	 reprogramming.	 This	

provides	an	 immense	self-renewal	potential	 to	cells,	which	 is	a	distinct	 feature	

shared	with	 induced	pluripotent	 stem	cells	 (iPSCs)	 (K.	Takahashi	&	Yamanaka,	

2006).	 This	 agreement	 is	 fortified	 at	 a	 mechanistic	 level	 by	 coordinators	 and	

impeding	 agents	 shared	 between	 the	 two	 processes	 of	 tumorigenesis	 and	 cell	

fate	 reprogramming	 (Kazutoshi	 Takahashi	 &	 Yamanaka,	 2006)	 .	 Most	 of	 the	

reprogramming	TFs	are	considered	to	be	bona	fide	oncogenes	while	some	might	
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act	 as	 reprogramming	 barriers	 which	 commonly	 belong	 to	 known	 tumor	

suppressors	 e.g.	 p53	 and	 Ink4A/Arf	 can	 take	 part	 both	 in	 proliferation	 and	

apoptosis.	 In	 addition	 to	 this,	 chromatin	 regulators	 that	 are	 also	 established	

reprogramming	modulators	have	been	observed	mediating	oncogenesis	 (Orkin	

&	 Hochedlinger,	 2011).	 These	 proof	 of	 concepts	 indicates	 the	 partly	

recapitulation	of	epigenetic	circuitry	essential	for	cellular	reprogramming	during	

transformation	 of	 cells.	 By	 the	 same	 token,	 the	 epigenetic	 rewiring	 that	

accompanies	 cellular	 reprogramming	 can	 thus	 be	 used	 to	 also	 erase	 cancer-

specific	 epigenetic	 aberration	 by	 reprogramming	 cancer	 cells	 from	 primary	

tumors	 into	 iPSC	 lines.	 This	 in	 turn	 would	 open	 up	 access	 solely	 to	 genetic	

lesions,	which	remain	intact.	The	utility	of	this	approach	has	been	demonstrated	

recently	 for	 several	 types	 of	 cancer	 cells,	 for	 which	 the	 epigenetic	 rewiring	

resulted	also	in	reduced	tumorigenicity	upon	differentiation	and	transplantation	

in	vivo	(Stricker	et	al.,	2013).	The	Table	2	shows	the	usage	of	cell	derived	 iPSC	

lines	in	different	cancers.		

Table	2	

CANCER	

TYPES	

CELL	 LINE	 OR	

PRIMARY	

CELLS	

REPROGRAMMING	

METHOD	

REFERENCE	

Melanoma	 Colo	 Retroviral	mir-302s	 (S.-L.	 Lin	 et	 al.,	

2008)	Prostate	

cancer	

PC-3	

Melanoma	 R545	 Lentiviral	 OCT4,	 KLF4,	

and	c-MYC	

(Utikal,	

Maherali,	
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Kulalert,	 &	

Hochedlinger,	

2009)	

Chronic	

myeloid	

leukemia	

(blast	 crisis	

stage)	

KBM7	 Retroviral	OSKM	 (Carette	 et	 al.,	

2010)	

Colorectal	

cancer	

DLD-1,	HT-29	 Combination	 of	

retroviral	 or	 lentiviral	

OSKM,	 NANOG,	 LIN28,	

BCL2,	KRAS,	and	shRNA	

for	 tumor	 suppressors	

optimized	 for	 each	 cell	

line	

(Miyoshi	 et	 al.,	

2010)	

Esophageal	

cancer	

TE-10	

Gastric	

cancer	

MKN45	

Hepatocellul

ar	cancer	

PLC	

Pancreatic	

cancer	

MIAPaCa-2,	

PANC-1	

Cholangiocel

lular	cancer	

HuCC-T1	

Chronic	

myeloid	

leukemia	

(chronic	

Patient-derived	

bone	 marrow	

cells	

Episomal	 OSKM,	

NANOG,	LIN28,	SV40	LT	

(K.	 Hu	 et	 al.,	

2011)	
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phase)	

Lung	cancer	 A549	 Lentiviral	 OSNL	 and	

nondegradable	HIFα	

(Mathieu	 et	 al.,	

2011)	

Chronic	

myeloid	

leukemia	

(chronic	

phase)	

Patient-derived	

bone	 marrow	

cells	

Retroviral	OSKM	 (Kumano	 et	 al.,	

2012)	

Breast	

cancer	

MCF-7	 Retroviral	OSKM	 (Corominas-

Faja	 et	 al.,	

2013)	

Juvenile	

myelomonoc

ytic	leukemia	

(JMML)	

Patient-derived	

mononuclear	

cells	 with	 E76K	

missense	 in	

PTPN11	gene	

Lentiviral	OSKM	 (Gandre-Babbe	

et	al.,	2013)	

Pancreatic	

ductal	

adenocarcin

oma	(PDAC)	

Patient-derived	

pancreatic	

ductal	

adenocarcinoma	

Lentiviral	OSKM	 (J.	 Kim	 et	 al.,	

2013)	

Glioblastoma	

multiforme	

(GBM)	

GBM	 neural	

stem	 (GNS)	 cell	

lines	

PiggyBac	 driving	 OCT4	

and	KLF4	

(Stricker	 et	 al.,	

2013)	

Osteosarcom SAOS2,	 HOS,	Lentiviral	 OSKM,	(X.	 Zhang,	 Cruz,	
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a	 MG63	 NANOG,	LIN28	 Terry,	 Remotti,	

&	 Matushansky,	

2013)	

Liposarcoma	SW872	 		

Ewing’s	

sarcoma	

SKNEP	 		

Myelodyspla

stic	

syndromes	

(MDS)	

Two	 patients	

with	 del(7q)-

MDS	

Lentiviral	OSKM	 (Kotini	 et	 al.,	

2015)	

Li	 Fraumeni	

syndrome	

(LFS)	

Three	 patients	

with	 G245D	

missense	 in	 p53	

gene	

Sendai	viral	OSKM	 (Lee	 et	 al.,	

2015)	

Ewing	

sarcoma	

(EWS)	

CHLA-10	 Episomal	OKSM	 (Moore	 et	 al.,	

2015)	

	

This	table	is	adapted	and	modified	from	(J.	J.	Kim,	2015)	

This	technology	has	the	potential	to	be	used	to	model	and	treat	human	disease.	

This	 can	 be	 seen	 in	 figure	 6	 a	 where	 the	 patient	 has	 been	 shown	 having	 a		

neurodegenerative	disorder.		This	figure	shows	the	generation	of	patient	specfici	

iPSCs	 generated	 by	 ectopic	 co-expression	 of	 TFs	 in	 cells	 isolate	 dfrom	 skin	

biopsy.	There	are	two	complementary	approaches	that	have	been	shown	in	the	

figure.	 In	 case	 of	 diseases	 which	 are	 dominated	 by	 a	 single	 disease-causing	

mutations	 (e.g.	 familial	 Parkinson's	 disease),	 gene	 targeting	methods	 could	 be	

employed	leading	to	DNA	repair	(represents	the	rigt	part	of	the	figure	6a).	This	is	
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followed	by	differentiation	of	 the	 corrected	 gene	 in	 specific	 patients	 for	which	

the	 iPSCs	 are	 derived	 into	 affected	 neuronal	 subtype	 (e.g.	 midbrain	

dopaminergic	 neurons)	 and	 transplantation	 of	 it	 in	 the	 patients	 brain.	 The	

alternative	 approach	 relies	 on	 directed	 differentiation	 of	 specific	 patient	 iPSCs	

into	 affected	 neuronal	 subtype	 (represents	 the	 left	 part	 of	 the	 Figure	 6a)	 and	

model	the	disease	in-vitro	giving	way	to	drug	screen	which	in	turn	might	aid	the	

discovery	of	new	therapeutic	drugs.	This	approach	can	be	in	fact	be	implemented	

on	 tumor-iPSCs	 that	 can	 be	 in	 be	 indefinitely	 expanded	 and	 differenetiated	 in	

cells	 	 post	 derivation	 from	 all	 three	 germ	 layers.	 This	 would	 need	 usage	 of	

relevant	 protocols	 of	 differentation	 towrads	 cancer	 lineages	 that	 can	 be	

exploited	 from	the	of	vast	number	of	available	differentiation	protocols	(Cheng	

et	al.	2012,	Ye	et	al.	2013,	Sampaziotis	et	al.	2015).	This	scores	a	perfect	setting	

not	 only	 capturing	 the	 genetic	 architecture	 of	 the	 parental	 tissue	 but	 also	 the	

epigenetic	 memory.	 So	 we	 can	 finally	 also	 understand	 the	 epigenetic	

mechanisms	at	the	early	onset	of	tumor	(Figure	6b).	Thus	we	will	also	be	able	to	

uncover	 the	 molecular	 pathways	 that	 are	 specifically	 susceptible	 of	 altering	

tumor	malignancy	and	aggressiveness	as	a	result	of	epigenetic	alterations.	

	

Modified	from	Jungsum	K	et	al.,	The	EMBO	Journal	(2015)	embj.201490736			
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Figure	6:	A	representation	of	how	iPSC	technology	can	be	used	to	model	
diseases	in	humans	

However	one	of	 the	most	 important	bottlenecks	 in	using	 iPSC	directly	 towards	

clinical	applications	for	disease	modeling	is	having	the	risk	of	genomic	instability	

that	is	induced	by	reprogramming	factors.	This	genomic	instability	at	times	also	

includes	malignant	 growth.	 There	 have	 been	 reports	where	 genetic	mutations	

have	 been	 identified	 in	 the	 iPSCs	 that	 were	 supposed	 to	 be	 incorporated	 in	

second	phase	of	human	clinical	iPSC-based	therapy.	Although	direct	consequence	

of	 these	mutations	 leading	 to	 any	 adverse	 effects	have	not	been	evidenced	yet	

but	 it	 still	 raises	 a	 concern	 about	 the	 genomic	 instability	 that	 reprogramming	

induces.	 IPSCs	have	shown	and	evidenced	 to	be	carrying	genomic	 instability	 in	

forms	of	chromosomal	aberration,	point	mutations	and	CNVs.	However	they	are	

also	pretty	much	evidenced	to	bring	 in	the	parental	variations	that	existed	 in	a	

line	that	were	subjected	to	iPSC	reprogramming.	The	genetic	variations	of	iPSCs	

are	 envisaged	 to	 be	 originating	 from	 i)	 pre-existing	 variations	 in	 its	 parental	

somatic	cells	(this	is	what	can	be	targeted	to	understand	the	genetic	background	

while	 studying	 tumor	 mutational	 landscape	 that	 are	 reprogrammed	 to	 tumor	

iPSCs),	ii)	mutations	arising	during	the	reprogramming	process	and	iii)	different	

passaging	 brings	 forth	 a	 mutational	 burden	 that	 arises	 during	 prolonged	

culturing	conditions	(Figure	7	top	panel).	In	my	thesis	of	using	tumor-iPSCs	as	a	

disease	 modeling	 tool,	 I	 am	 more	 concerned	 in	 identifying	 the	 parental	 pre-

existing	 variations	 in	 forms	 of	 SNV,	 CNV	 and	 chromosomal	 aberrations	 that	

passes	 from	 tumor	 to	 its	 tumor-iPSC	 derivative.	 However,	 according	 to	 the	

review	of	Mahashito	Yoshihara	et	al.	we	should	be	take	 into	account	that	 these	

pre-existing	 parental	 variations	 are	 randomly	 captured.	 These	 random	
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variations	are	then	passed	on	to	and	expanded	in	subsequent	iPSC	generations.	

There	is	also	another	second	possibility	that	these	pre-existing	parental	 lesions	

that	 pass	 from	 tumor	 to	 tumor-iPSCs	 can	 also	 add	 to	 reprogramming	 and	

proliferative	 power	 of	 iPSCs	 via	 selective	 advantage	mechanisms.	WGS	 studies	

on	iPSCs	have	revealed	numerous	point	mutations	occurring	after	onset	of	iPSC	

reprogramming	 and	 also	 confirmed	 the	 heterogeneity	 of	 SNVs	 in	 a	 single	 iPSC	

clone	 by	 studying	 subclones	 from	 a	 distinct	 iPSC	 clone.	 Ideally	 the	 parental	

lesions	 in	 forms	of	SNVs	have	~50%	allelic	 frequency	since	they	are	present	 in	

one	 of	 the	 allele	 of	 all	 iPSCs	 generated	 from	 one	 parental	 cell.	 However,	

reprogramming	 induced	 mutations	 are	 very	 immediate	 even	 before	 a	 cell	

division	 setting.	 These	 mutations	 can	 be	 seen	 having	 frequencies	 of	 ~50%,	

~25%	 and	~12.5%	 (Figure	 7	 lower	 panel).	 This	 is	 one	 reason	 it	 is	 difficult	 to	

state	all	the	SNVs	with	50%	frequencies	are	from	parental	cell	but	Suguira	et	al	

showed	 that	 mutations	 arising	 from	 reprogramming	 have	 a	 pattern	 of	

transversion-dominant	 while	 that	 coming	 from	 parental	 and	 passage-induced	

show	pattern	of	 transition-dominant.	Even	Gore	et	al	confirmed	that	mutations	

happen	stochastically	within	the	cell	populations	and	a	single	iPSC	derived	from	

human	exhibit	additional	mutations	when	these	iPSCs	are	compared	at	early	and	

later	 passaging	 via	 WES	 analysis.	 It	 was	 confirmed	 that	 prolonged	 culture	

conditions	 are	 also	 testament	 to	 bring	 forth	 new	mutations.	 So	 one	 important	

way	 to	 capture	 the	 parental	 tumor	 clonality	 and	 parental	 point	 mutational	

landscape	via	tumor-iPSC	should	be	creating	more	iPSC	clones	from	the	tumors	

at	 similar	 passaging	 conditions	 and	 then	 delineate	 the	 differences	 of	 acquired	

and	pre-existing	mutations	thus	reconstructing	the	tumor	clonality	 from	all	 the	

tumor-iPSC	clones	derived	from	it.	
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Figure	7:	A	representation	of	genetic	variations	origin	in	iPSCs	adapted	
from	Mahashito	Yoshihara	et	al.	

The	figure	is	divided	into	two	panels.		

The	top	panel	shows	genetic	make	up	of	iPSCs	can	be	originating	from	parental	

pre-exiting	 variations,	 reprograming	 induced	 variations	 during	 processing	 of	

reprogramming	and	finally	variations	arising	during	passaging	during	prolonged	

culture.		The	lower	panel	shows	the	distribution	of	the	variant	allele	frequency	in	

pre-existing	variations,	variations	arising	due	to	reprogramming	and	variations	

arising	due	to	passaging	in	iPSC	generations.		

1.5	Impact	of	Transcription	Factors	in	cancer	development,	
progression	and	maintenance	
	Transcription	 factors	 (TFs)	 are	 group	 of	 proteins	 that	 follow	 the	 conversion	

process	 or	 specially	 transcribe	 DNA	 into	 RNA.	 They	 cover	 a	 great	 number	 of	

proteins,	 which	 is	 involved	 in	 genes	 transcriptional	 machinery	 (initiation	 and	

regulation).	 An	 important	 feature	 of	 them	 is	 the	 presence	 of	 DNA-binding	
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domains	 that	 allows	 them	 to	 bind	 specific	 regions	 on	 the	 DNA	 sequences	

commonly	known	as	enhancers	or	promoters.	These	bindings	can	be	referred	to	

as	 as	 promoter	 specific	 (the	binding	occurs	 at	 the	promoters	 sequences	 of	 the	

DNA)	 nearby	 the	 transcription	 start	 sites	 (TSS)	 initiating	 the	 transcription	

initiation	 complex	 (TIC).	 Conversely	when	 the	 binding	 is	 at	 regulatory	 regions	

far	away	from	the	TSS	that	controls	the	expression	of	other	genes,	it	is	known	as	

enhancer	 specific.	 These	 bindings	 lead	 to	 activation	 or	 repression	 of	 the	

transcriptional	status	of	the	related	gene.	These	regulatory	regions	can	be	either	

upstream	 or	 downstream	 of	 the	 gene	 to	 be	 transcribed	 ranging	 from	 a	 few	 to	

over	thousands	of	bases.	These	TFs	have	been	seen	to	be	dysregulated	in	cancer.	

The	 cancer	 cells	 are	 majorly	 dependent	 on	 them	 for	 their	 development,	

progression	 and	 maintenance.	 A	 plethora	 of	 human	 TFs	 have	 been	 identified,	

validated	 and	 recorded	 as	 candidates	 by	 several	 databases	 like	 JASPAR	

(Mathelier	et	al.,	2016),	TRANSFAC	(Wingender,	Dietze,	Karas,	&	Knüppel,	1996),	

AnimalTFdb	(H.	M.	Zhang	et	al.,	2012).	These	databases	records	for	lists	of	genes	

regarded	 as	 TFs	 based	 on	 experimental	 and	 predicted	 findings.	 TFs	 have	 also	

been	regarded	as	either	having	an	oncogenic	or	 tumor	suppressing	effect.	This	

indicates	 that	 TFs	 that	 binds	 other	 genes	 promoting	 the	 tumorigenicty	 are	

oncogenic	 while	 others	 that	 rescue	 of	 the	 tumor	 phenotype	 whose	 down-

regulation	 again	 promotes	 oncogenesis	 are	 tumor	 suppressors.	 In	 order	 to	

achieve	 the	 maximum	 from	 this	 TF	 mediated	 implications	 in	 cancer,	 one	

important	discovery	 is	to	 find	these	sites	on	the	genes	that	are	being	regulated	

by	 the	TFs.	This	 referred	 to	as	motifs	 (D’haeseleer,	2006),	which	are	 recurring	

DNA	 or	 amino-acid	 sequences	 that	 has	 seats	 proteins	 or	 upstream	 TFs.	 This	

binding	 allows	 the	 gene	 regulation	 presumably	 implicating	 some	 biological	
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functions.	This	is	fairly	important	since	gene	expressions	are	often	controlled	by	

upstream	TFs,	which	has	a	consensus-binding	site	on	these	genes.	This	binding	

of	upstream	TFs	with	a	target	group	of	genes	having	motifs	leads	to	regulation	of	

expression	of	 the	 target	genes.	This	expression	can	be	detrimental	 in	nature	 to	

normal	 cells	 or	 initiate	 tumor	 cells	 to	develop	 farther,	migrate,	 proliferate	 and	

invade	nearby	cells	giving	way	 to	 tumorigenesis.	So	 targeting	 these	TFs	can	be	

highly	 efficient	 in	 treating	 specific	 types	 of	 tumors	 that	 will	 eventually	 target	

nuclear	 hormone	 receptors	 improving	 clinical	 efficiency.	 Several	 chemical	

approaches	are	being	worked	upon	these	days	to	regulate	the	effect	of	these	TFs	

to	understand	their	potential	in	driving	cellular	transformation,	which	accounts	

for	making	them	favorite	targets	for	drug	discovery.	

1.6	Aim	of	the	thesis		
This	thesis	is	divided	into	two	subparts	where	I	am	trying	to	identify	molecular	

mechanisms	 underlying	 to	 aggressive	 states	 of	 cancer,	 namely	 Ovarian	 Cancer	

(OC)	and	Glioblastoma	multiforme	(GBM)	through	an	approach	involving	genetic	

and	transcriptomic	data	that	has	been	acquired	and	generated	in	our	lab.		

The	 initial	 part	 of	 the	 thesis	 involves	 transcriptomic	 data	 and	 genetic	 data	 of	

patient’s	samples	from	OC.	This	part	is	sub-divided	into	two.		The	initial	phase	of	

the	OC	 studies	 relies	 on	 assessing	 the	 transcriptomic	differences	of	OC	 tumors	

coming	from	high	grade	serous	ovarian	cancer,	namely	of	epithelial	origin	(EOC)	

and	ascitic	 fluid	 (AS)	and	 their	possible	 tissue	of	origin	which	are	Fimbria	 (FI)	

and	 ovarian	 surface	 epithelium	 (OSE).	 	 Since	 from	 the	 availability	 of	 the	 OC	

tumors	 at	 the	 time	 of	 surgery	 is	 a	 multi-order	mass	 which	 is	 formed	 of	 solid	

tumor	floating	in	the	ascetic	fluid	and	so	we	chose	to	profile	the	transcriptomes	

of	both	and	compare	them	to	their	both	possible	tissue	of	origin	(FI	and	OSE).	We	
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select	 both	 these	 tissue	 as	 normal	 since	 the	 tumors	 associated	 to	 them	 are	 in	

close	 proximity	 as	 their	 cell	 of	 origin	 is	 still	 debatable.	 Thus	 study	 the	 of	

transcriptomic	behavior	between	the	tumor	and	the	normal	tissues	will	help	in	

identifying	molecular	mechanisms	associated	with	 the	 tumor	progression	 from	

either	of	the	candidate	normal	tissues	of	origin	in	OC.	

The	 second	 phase	 of	 the	 OC	 project	 involves	 whole	 exome-sequencing	 (WES)	

analysis	to	predictively	identify	the	mutant	lesions	underlying	OC	tumors	coming	

from	 high-grade	 (HG)	 and	 low-grade	 tumors	 (LG)	 and	 assess	 the	 extent	 these	

parental	lesions	are	maintained	in	their	tumor-	iPSC	clones	which	are	generated	

from	 their	 corresponding	 tumors	 through	 induced	 reprogramming	 technique.		

This	 gives	 an	 assurance	 that	 somatic	 reprogramming	 is	 able	 to	 maintain	 the	

mutant	 landscape	 in	 the	 tumor-IPSCs	 intact	 and	 their	 epigenetic	 features	 are	

erased.	I	was	primarily	interested	to	identify	the	genetic	lesions	associated	with	

the	 tumors	 and	 the	 derivative	 tumor-iPSCS	 that	 are	 maintained	 in	 both	 the	

parental	 tumor	 and	 their	 iPSC	 derivatives.	 This	would	 be	 able	 to	 confirm	 that	

reprogramming	 tumor	 to	 its	 pluripotent	 state	 was	 compatible	 in	 keeping	 the	

mutant	genome	intact.		

The	 second	 part	 of	 the	 thesis	 is	 concerning	 GBM	 project	 where	 we	 collected	

samples	 from	 patients	 having	 primary	 and	 recurrent	 GBM	 with	 collaboration	

from	University	of	Bonn.	We	generated	the	genome	wide	expression	profiles	of	

the	 patients	 with	 unique	 topological	 compartments	 of	 brain	 sections	 for	 each	

patient	(refer	to	Figure	28),	which	upon	critical	assessments	will	reveal	the	core	

areas	 that	 are	more	 prone	 to	 attain	 a	 relapse	 through	 the	 study	 of	 underlying	

molecular	 mechanisms.	 This	 will	 be	 providing	 us	 with	 the	 opportunity	 to	

precisely	 trace	human	GBM	evolution	avoiding	 the	 confounding	effect	 of	 inter-



	 32	

individual	genetic	heterogeneity	and	capture	the	molecular	events	underlying	its	

transition	to	its	recurrent	stage.		In	light	of	achieving	the	above	I	have	developed	

a	computational	workflow	that	will	perform	both	the	genetic	and	transcriptomic	

analysis	in	the	respective	tumor	types	to	revealing	the	key	hubs	contributing	to	

tumorigenesis.	

Chapter	2:	Materials	and	Methods	

2.1	Sample	selection	and	collection	

2.1.1	Glioblastoma	samples	
A	key	asset	of	 this	 study	 is	 the	availability	of	 a	uniquely	 large	and	 informative	

cohort	of	matched	primary	and	recurrent	GBM	samples	of	37	(in	total)	collected	

at	 tumor	 resection	 site	 from	 7	 patients	 (Prof.	 Scheffler,	 Bonn).	 At	 primary	

resection	GICs	were	derived	 from	biopsies	of	 the	 tumor	core	and	 from	at	 least	

two	 additional	 biopsy	 sites	 of	 the	 resection	 wall.	 Marking	 of	 the	 peripheral	

biopsy	sites	with	MRI-detectable	radio	opaque	clips	permitted	then	to	establish,	

upon	recurrence,	which	of	the	initial	biopsied	sites	sustained	relapse,	from	which	

GICs	were	in	turn	established.	Cells	were	received	frozen	and	kept	 in	 liquid	N2	

until	use,	already	classified	 in	prior	with	patient	number	and	origin	(OC,	PGRT,	

PDGRT,	 etc.).	 These	 cells	 were	 thawed	 and	 cultured	 in	 polyornithine	 coated	

plates	 with	 F-Complete	 medium	 (Neurobasal	 containing	 laminin	 (5ng/mL),	

glutamine	1:100,	B27	1:100	and	N2	1:200)	including	5%	of	EF	medium	(DMEM-

F12	 with	 FBS	 (10%)	 and	 FGF	 and	 EGF	 at	 final	 concentration	 of	 20	 ng/	 mL.).		

Culture	medium	was	changed	once	a	week.	Additional	feeding	with	EF	medium	

(5%	 v/v)	was	 performed	 every	 48	 h.	 Cells	were	 harvested	 at	 80%	 confluence	

and	 between	 passages	 5-15.	 At	 the	 beginning	 of	 the	 project	 we	 dissected	 the	
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transcriptomes	 of	 a	 uniquely	 rare	 cohort	 of	 27	 human	 glioma	 samples	 from	 5	

patients	derived	from	the	infrequently	conducted	surgery	at	disease	recurrence.	

These	27	samples	were	primarily	subjected	 to	mRNA	sequencing	on	which	 the	

initial	 transcriptomic	 analysis	 were	 performed.	 Currently	 two	 more	 patients	

have	been	added	to	scale	up	the	cohort	and	the	number	of	patients	have	raked	

up	 to	 7	while	 total	 number	 of	 samples	 have	 gone	 up	 to	 37.	 	 For	 each	 patient,	

glioma	 initiating	 cells	 (GICs)	 samples	 were	 derived	 from	 the	 tumor	 core	 and	

peripheral	 biopsies	 at	 resection	 of	 both	 primary	 and	 recurrent	 GBM	 samples.	

These	cells	were	cultured	in	vitro	and	then	the	mRNA	was	extracted	from	them.	

This	 unique	 cohort	 thus	 provides	 us	 with	 the	 opportunity	 to	 precisely	 trace	

human	GBM	evolution	avoiding	the	confounding	effect	of	inter-individual	genetic	

heterogeneity.	

2.1.2	Ovarian	Cancer	samples	
We	 have	 analyzed	 a	 total	 of	 8	 samples	 that	 were	 subjected	 to	 whole	 exome	

sequencing,	of	which	there	were,	2	tumors	(one	from	each	grade	of	high	and	low	

grade	 serous	 epithelial	 ovarian	 cancer;	 hereafter	 referred	 to	 as	HG	 and	 LG),	 2	

normal	(peripheral	blood	samples	same	patients	to	serve	as	genetically	matched	

controls)	and	4	iPSC(2	clones	of	tumor-iPSCs	derived	from	each	grade	of	tumor).	

These	 HG	 and	 LG	 tumor	 were	 subjected	 to	 transcription	 factor	 induced	

reprogramming	 to	 generate	 tumor	 iPSC	 derivate	 (HG-iPSC	 and	 LG	 iPSC	

respectively)	in	the	laboratory	of	Stem	Cell	Epigenetic	headed	by	Prof.	Giuseppe	

Testa	at	the	Department	of	Experimental	Oncology	of	IEO.	Two	clones	of	tumor	

iPSCs	 were	 generated	 per	 grade	 of	 patients	 used	 in	 the	 study.	 Additionally,	

peripheral	blood	from	the	same	patient	was	used	as	genetically	matched	normal	

control.	 The	 primary	 tumor	 samples	 one	 from	 each	 grade	 of	 tumor	 are	made	
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available	 from	a	unique	panel	of	human	ovarian	cancer	samples	along	with	the	

corresponding	 archive	of	medical	 records,	 characterized	 in	 the	Unit	 of	Medical	

Gynecology	 at	 IEO,	 headed	 by	Dr.	Nicoletta	 Colombo,	 in	 collaboration	with	Dr.	

Ugo	Cavallaro	from	the	Molecular	Medicine	Program	of	IEO	

2.2	Exome	Library	Preparation	
The	 sequencing	 facility	 of	 the	 Campus	 IFOM-IEO	 processed	 gDNA	 that	 was	

extracted	from	tumor,	iPSC	and	blood.	The	protocol	starts	with	10ng	of	DNA.	T4	

DNA	polymerase,	E.	coli	DNA	polymerase	I	large	fragment	(Klenow	polymerase),	

and	 T4	 polynucleotide	 kinase	 were	 used	 to	 convert	 the	 DNA	 overhands	 into	

phosphorylated	 blunt	 ends.	 These	 enzymes	 underwent	 3'	 to	 5'	 exonuclease	

activity	 that	 removed	 3’	 overhangs	 and	 the	 polymerase	 activity	 filled	 in	 the	 5'	

overhangs.	 Polymerase	 activity	 of	 Klenow	 fragment	 (3'	 to	 5'	 exo	 minus)	

recruited	 the	 addition	 of	 single	 ‘A’	 nucleotide	 to	 the	 3'	 end	 of	 the	 blunt	

phosphorylated	DNA	fragments.	The	NDA	fragments	were	thus	able	to	 ligate	to	

the	 adapters	 that	 constitutes	 a	 single	 ‘T’	 base	 overhang	 at	 their	 3'	 end.	 For	

proper	hybridisation	of	 the	DNA	 fragments	 to	 the	 flow	cell,	 adapter	 ligation	 to	

end	was	 performed.	DNA	was	 run	 on	 a	 TAE	2%	agarose	 gel	 to	 remove	 excess	

adaptors	and	selects	a	size	range	of	templates;	a	gel	slice	containing	the	material	

in	 the	 300±50	 bp	 range	 was	 cut	 from	 the	 gel	 and	 purified	 with	 QIAquick	 Gel	

Extraction	Kit	 (Qiagen)	according	to	manufacturer	 instructions.	Processed	DNA	

was	 then	subjected	 to	exon	enrichment	with	 the	TruSeq	exome	enrichment	kit	

(Illumina)	 as	 per	 instructions	 of	manufacturer’s	manual.	 This	was	 followed	 by	

gDNA	inucubation	with	capture	probes	of	exonic	regions.	The	captured	regions	

were	purified	with	streptavidin	beads	 followed	by	a	second	enrichment	round.	

Post	 this	adapter-modified	DNA	fragments	were	selected	 in	 the	 final	steps	 that	
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were	enriched	by	PCR	amplification.	The	DNA	library	which	was	enriched	with	

exon	 underwent	 dilution	 to	 16	 pM	 and	 then	 used	 for	 cluster	 generation	 and	

sequencing	with	 the	 Illumina	 HiSeq	 2000	machine.	 The	 coverage	 obtained	 for	

tumors	were	70x	while	that	for	iPSCs	and	normal	blood	samples	were	35x	paired	

end	with	100	bp	fragment	length.	

2.3	RNA-Seq	library	preparation	
RNA	Samples	were	processed	with	the	TruSeq	Stranded	Total	RNA	Library	Prep	

Kit	 (Illumina).	 The	 amount	 of	 RNA	 to	 start	 with	 was	 1	 μg	 per	 sample,	 as	

quantified	by	Agilent	RNA	600	Nano	kit	(RNA	integrity	number:	0.9-1).	Post	step	

of	bead-mediated	ribosomal	RNA	depletion	(rRNA	removal	beads,	ribo-zero	kit),	

the	 RNA	 fragmentation	 was	 carried	 out	 using	 divalent	 cataions	 at	 higher	

temperature	 and	 primed	 for	 cDNA	 synthesis	 with	 random	 hexamers.	 Reverse	

transcriptase	 and	 random	primers	were	 used	 on	 the	 primed	 and	 cleaved	RNA	

fragments	 for	 reversal	 into	 first	 strand	 cDNA.	 The	 double-stranded	 (ds)	 cDNA	

was	 generated	 with	 DNA	 polymerase	 I	 post	 removal	 of	 RNA	 template.	 Beads	

(AMPure	 XP	 beads)	 are	 used	 to	 separate	 the	 ds	 cDNA	 from	 the	 second	 strand	

reaction	mix.	Overhangs	resulting	from	fragmentation	were	converted	into	blunt	

ends	 using	 an	 End	 Repair	 Mix:	 the	 3'	 to	 5'	 exonuclease	 activity	 of	 this	 mix	

removes	the	3'	overhangs	and	the	polymerase	activity	fills	in	the	5'	overhangs.	A	

single	 ‘A’	 nucleotide	 was	 added	 to	 the	 3'	 ends	 of	 the	 blunt	 fragments	 for	

precautionary	 measure	 to	 prevent	 them	 ligating	 to	 one	 another	 during	 the	

adapter	ligation	reaction.	A	corresponding	single	 ‘T’	nucleotide	on	the	3'	end	of	

the	adapter	provided	a	complementary	overhang	for	ligating	the	adapter	to	the	

fragment.	 This	 is	 a	 low	 rate	 of	 chimera	 (concatenated	 template)	 formation	

strategy.	 Multiple	 indexing	 adapters	 were	 ligated	 to	 the	 ends	 of	 the	 ds	 cDNA,	
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thus	preparing	them	for	hybridization	process	onto	a	flow	cell.	PCR	amplification	

was	performed	 to	enrich	 the	DNA	 fragments	having	adapter	molecules	at	both	

ends	and	ensure	DNA	amplification	for	 library	generation.	There	are	fragments	

with	 one	 or	 missing	 adapters	 at	 the	 ends,	 which	 shows	 the	 inefficacy	 of	 the	

ligation	reaction	process.	These	will	not	hybridize	to	the	surface-bound	primers	

in	 the	 flow	 cell	 and	 thus	 cannot	 form	 clusters,	 so	 they	 are	discarded.	 PCR	was	

performed	with	 a	 PCR	primer	 cocktail	 that	 has	 annealing	 effect	 at	 the	 adapter	

ends.	The	sequencing	was	performed	with	an	Illumina	HiSeq	2000,	with	paired	

end	50	bp	reads	to	achieve	a	coverage	of	35x	for	the	 initial	runs	made	in	2015	

but	post	our	publication	of	RNAonthebench	paper	(Germain	et	al.,	2016),	which	

effectively	 showed	 the	 power	 of	 quantification	 and	 DE	 analysis	 can	 still	 be	

performed	 over	 paired	 end	 data	 with	 as	 low	 as	 19x	 coverage	 so	 the	 new	

sequencing	runs	were	performed	with	20x	coverage.	

2.4	Computational	analysis	

2.4.1	Exome	data	of	Ovarian	Cancer	project	
Quality	 check	 of	 the	 raw	 reads	 using	 Fastqc	 tool	

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).	 Each	 lane	 of	

sequencing	 data	 underwent	 alignment	 to	 the	 hg19	 assembly	 using	 BWA	

(Burrows-Wheeler	 Aligner)	 algorithm	 [5]	 resulting	 in	 sorted	 sequence	

alignment/mapping	 file	 (SAM)	 format	 that	 was	 converted	 to	 binary	 format	

(BAM)	 using	 SAMtools.	 The	 optical	 duplicate	 reads	 have	 been	 marked	 with	

Picard	MarkDuplicates	1.84	(http://picard.sourceforge.net).		

2.4.2	Somatic	SNV	variant	detection	
High	 confidence	 somatic	 variant	 calling	 were	 done	 on	 the	 GATK	 2.3-4	 post	

filtered	 and	processed	BAM	 files	 using	 two	 callers	 i)	 VarScan2	with	 its	 default	
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setting	 for	 the	 reads	 coverage	 while	 the	 p-value	 threshold	 set	 to	 0.05	 and	 ii)	

Mutect	 with	 default	 coverage	 for	 normal	 (8	 reads)	 and	 for	 tumor	 and	 tumor	

iPSCs	 (14	 reads).	 Only	 high	 confidence	 somatic	 variants	 were	 considered	

identified	 by	 both	 the	 methods	 where	 no	 evidence	 in	 the	 matched	 germline	

sample	was	included.		

2.4.3	Somatic	Copy	Number	Variation	(CNV)	detection	
Somatic	CNV	calling	was	made	with	Control-FREEC	with	window	size	500	and	

step	size	250	while	the	other	parameters	were	considered	as	mentioned	in	the	

manual	 for	 exome	 data	 using	 the	 normal/tumor	 bam	 files	 and	 normal/tumor-

IPSC	bam	files.	 	The	algorithm	is	a	three-step	process	as	described	below	in	the	

figure	how	to	assign	the	somatic	copy	number	regions	with	proper	significance.	

	

Figure	8:	A	three-step	flow	of	Control-FREEC	tool	to	infer	somatic	CNVs	
from	both	normal	and	tumor	samples	

2.4.4	Driver	analysis	on	the	exome	data	
Driver	 analysis	 to	 distinguish	 between	 the	 passenger	 and	 the	 driver	mutation	

that	characterize	the	tumorigenic	drive	was	done	with	the	help	of	the	tool	called	

IntOGen	(Gonzalez-Perez	et	al.,	2013).	This	tool	relies	on	either	BAM	file	or	even	

somatic	 variant	 file	 (.vcf)	 to	be	provided	as	 input	 and	 then	 through	a	 series	of	

rate	 limiting	 steps	 a	 mutation	 is	 assigned	 with	 a	 driver	 status.	 The	 tool	 is	

available	 both	 as	 standalone	 or	 a	 web	 tool.	 The	 analysis	 was	 performed	 here	

with	the	web-based	version	as	single	tumor	analysis	and	post	analysis	the	data	

was	 filtered	 to	 find	 mutations	 that	 were	 conferred	 upon	 as	 high-confidence	

Normalization	of	copy	
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counts	or	GC-content		

Segmentation	is	
then	applied	to	the	

normalized	
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Finally	assignment	
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loss	or	gains	
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variant	 by	 the	 tool	 and	 also	 by	 other	 databases	 that	 are	 embedded	 with	 the	

system	 having	 validated	mutations	 as	 driver	 thus	 giving	more	 strength	 to	 the	

analysis.	Currently	the	database	hosts	around	4,623	exomes	from	13	cancer	sites	

and	thus	help	in	scoring	mutations	according	to	their	ranks	of	driver	status	for	

improved	clinical	decisions.	The	database	comprises	of	datasets	coming	from	31	

projects	that	encompasses	13	anatomical	sites	relying	data	from	repositories	like	

ICGC,	 TCGA	 and	 independent	 lab	 data.	 The	mutation	 pipeline	 is	 a	 resource	 of	

several	 tumor	 genomes	 that	 have	 results	 of	mutations	 analyzed	with	 different	

mutational	 callers	 thus	 having	 thousands	 of	 tumor	 samples.	 The	 pipeline	 is	

associated	 with	 a	 workflow	 management	 system,	 which	 executes	 all	 the	

operations	in	a	proceeding	manner.	The	first	state	is	consequence	association	of	

mutation	 using	 VEP	 from	 ENSEMBLE	 thus	 attributing	 the	 functional	 impact	

scores	 to	 non-synonymous	 mutations	 using	 popular	 methods	 like	 SIFT,	

PolyPhen2	 and	 MutationAssessor(annotation	 phase).	 This	 is	 followed	 by	

transformation	of	these	scores	to	distinguish	the	baseline	tolerance	among	genes	

with	 the	 transFIC	 tool	 and	 classifying	 mutations	 in-group	 of	 impacts,	 ranging	

from	 “None”	 to	 “High,"	 in	 accordance	with	 the	 consequence	 type	 and	 transFIC	

Mutation	Assessor	score.	There	is	also	computation	of	mutational	frequency	of	in	

sample	and	across	projects	and	then	there	are	two	major	algorithms	that	identify	

the	 drivers	 across	 the	 cancer	 samples	 by	 grouping	 variants	 of	 same	 gene	 (or	

pathway).	 The	 algorithm	OncoDriveFM	 relies	 on	 significant	 detection	 of	 genes	

that	 have	 high	 functional	 impact	 and	 tend	 to	 accumulate	 together	 while	

OncodriveCLUST	 identifies	 genes	 for	 which	 mutations	 cluster	 in	 protein	

sequence	region	in	reference	to	synonymous	mutations,	which	is	the	CLUST	bias	

method.	Finally	the	pipeline	uses	a	combinatorial	p-value	computation	from	the	
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different	 p-values	 that	 have	 been	 calculated	 for	 each	 gene	 by	 the	 different	

methods.	 Below	 is	 the	 schematic	 representation	 of	 the	 pipeline	 in	 the	 figure	9	

below.		

	

Figure	9:	Representative	analytical	workflow	of	IntOGen	tool	conferring	
driver	status	from	variant	datasets	

	
The	algorithm	works	 in	a	series	of	5	steps	where	a)	represents	 the	step	where	

the	 mutational	 consequences	 and	 their	 functional	 impact	 are	 assessed	 b)	 this	

step	 is	 the	mutational	 frequency	 assessment	 c,d)	 this	 two	 steps	 are	 using	 the	

functional	impact	bias	and	the	mutational	clustering	algorithms	while	e)	is	final	

step	 that	 aggregates	 the	mutations	 gene-wise	 in	 different	 samples	 and	 project	

and	finally	identifies	the	drivers	among	those	genes.	

Adapted	and	modified	from	(Gonzalez-Perez	et	al.,	2013)	

2.4.5	RNAseq	analysis		

2.4.5.1	Quantification	method	
Salmon	 (a	 tool	 developed	 by	 group	 of	 Rob	 Patro)	 (Patro,	 Duggal,	 &	 Kingsford,	

2015)	was	used	to	perform	gene-level	quantification	of	RNA-Seq	data	that	has	a	

two	step	workflow:	indexing	and	quantification.	This	is	a	quasi-mapping	method,	
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which	is	highly	accurate	in	terms	of	errors	that	might	originate	in	the	read	or	in	a	

variant	 genome	 thus	 providing	 a	 pretty	 robust	 output.	 This	 is	 pretty	 fast	

algorithm	 that	 is	 mapping	 reads	 to	 transcript	 positions	 that	 are	 computed	

without	 performing	 a	 base-to-base	 alignment	 of	 the	 read	 or	 fragments	 to	 the	

transcript.	The	transcriptome	index	was	built	on	hg19.		Salmon	was	chose	for	the	

quantification	 purpose	 keeping	 in	 mind	 its	 high	 consistencies	 from	 our	

publication	RNAontheBench	(Germain	et	al.,	2016)	which	was	used	 to	quantify	

the	mRNA	abundance	at	gene	 level	providing	TPM	estimates	across	samples	 in	

both	 the	 projects	 of	 the	 OC	 and	 GBM.	 Few	 key	 observations	 from	 our	

benchmarking	paper	which	 led	 to	 the	 selection	of	 the	 Salmon	was	 the	 yield	of	

relative	 quantification	 across	 heterogeneous	 samples	 which	 is	 very	 crucial	 in	

projects	 involving	 RNA-Seq	 and	 their	 growing	 importance	 in	 deciphering	 and	

addressing	key	events	 in	 transcriptomic	changes	 in	human	diseases.	The	paper	

could	present	the	need	of	relative	differences	within	heterogeneous	samples	and	

show	that	relative	quantification	of	transcriptomes	was	taking	precedence	over	

the	 absolute	 quantification	 across	 genes	 in	 each	 sample.	 Another	 key	

observation	that	led	to	the	selection	of	tool	was	its	speed	with	which	it	quantifies	

each	 samples	 in	 few	minutes	deviating	 from	 the	 conventional	 alignment	based	

method.	All	 these	key	 features	 led	 to	 the	 selection	of	 employing	Salmon	as	 the	

key	 method	 for	 estimating	 the	 relative	 quantification	 of	 the	 transcriptomes	

across	 samples	 in	 both	 the	 project.	 An	 important	 feature	while	measuring	 the	

gene-level	differences	it	was	found	in	our	benchmarking	paper	that	count-based	

methods	 performed	 better	 than	 other	 methods	 thus	 making	 it	 easy	 to	 be	

employable	 for	 downstream	 analysis	 for	 tools	 that	 are	 able	 to	 accommodate	

count	based	gene	estimates	for	assessing	the	cross	samples	or	cross	conditional	
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transcriptomic	 changes	 and	 Salmon	 is	 one	 such	 tool	 that	 performs	 seemingly	

well	in	such	gene	level	counting.	

2.4.5.2	Differential	analysis	and	tool	selection	
The	 differential	 analysis	 was	 performed	 was	 performed	 with	 DESeq2	 (Love,	

Huber,	 &	 Anders,	 2014)	 with	 the	 count-based	 data	 that	 was	 obtained	 from	

Salmon.	This	tool	was	selected	post	assessing	the	down-sampling	methods	since	

the	 library	 sizes	 of	 the	new	 samples	 run	 in	2016	were	 scaled	down	 to	20x	PE	

reads	 for	 both	 the	Ovarian	 Cancer	 and	 the	GBM	project.	 All	 the	 3	 count-based	

methods	 like	 edgeR/DESeq2/voom	was	 applied	 on	 down-sampled	 data	 of	 the	

ovarian	cancer	project	prior	to	receiving	the	new	samples	of	2016	where	limma-

voom	did	not	give	any	differential	expressed	genes	for	the	standard	practices	of	

comparison	of	 normal	 tissues	 (FI)	 and	 tumor	 tissues	 (EOC/ASC).	 	DESeq2	was	

found	 to	 be	 yielding	 more	 differential	 expressed	 genes	 than	 edgeR	 so	 it	 was	

selected	 to	 be	 used	 as	 standard	 DE	 analysis	 tool	 for	 all	 the	 for	 new	 incoming	

samples	in	2016.		

In	 case	 of	 the	 glioblastoma	 samples	 both	 limma-voom	 and	 DESeq2	 was	

employed	 to	 characterize	 the	 genome-wide	 expression	 profile	 that	 would	 not	

only	 characterize	 to	 uncover	 the	 transcriptomic	 differences	 between	 primary	

and	secondary	glioblastoma	but	also	in	addition	would	characterize:	i)	the	center	

of	primary	tumor;	 ii)	 the	peripheries	of	the	primary	tumor	that	give	rise	to	the	

recurrence;	iii)	the	peripheries	of	the	primary	tumor	that	do	not	give	rise	to	the	

recurrence;	 vi)	 the	 center	 of	 the	 recurrent	 tumor;	 v)	 the	 periphery	 of	 the	

recurrent	tumor.		Limma-voom	was	found	to	only	yield	results	of	DE	genes	with	

that	 of	 primary	 vs	 secondary	GBM	 samples	while	DESeq2	was	 able	 to	 find	DE	
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genes	associated	to	each	and	every	comparisons	that	could	be	used	to	make	for	

down-stream	analysis	for	DE	assessment.	Since	DESeq2	emerged	as	front-runner	

in	 both	 the	 project	 in	 terms	 of	 univocally	 representing	DE	 genes	 computation,	

thus	 it	 was	 employed	 in	 both	 the	 project	 for	 all	 the	 samples	 for	 various	

comparisons	 that	 could	 be	 exploited	 for	 unraveling	 the	 various	 transcriptomic	

changes	 associated	 with	 different	 tissues	 types	 (Ovarian	 Cancer)	 and	 cellular	

compartment	(GBM	project).		

2.4.5.3	Extracting	Human	TFs	and	Oncogenic	TFs	in	DEGs	and	association	of	
DEGs	with	TCGA	samples	

The	 AnimalTFDB	 1.0	 (http://bioinfo.life.hust.edu.cn/AnimalTFDB1.0/)	

provides	with	an	exclusive	 list	of	human	TFs,	which	was	obtained	and	used	 to	

extract	 the	 genes	 that	 are	 putative	 Human	 TF	 in	 our	 list	 of	 DEGs.	 This	 was	

sourced	 in	 to	 extract	 TF	 DEGs	 from	 our	 various	 DE	 analyses,	 which	 gave	 us	

significantly	enriched	DEGs	between	transcriptomes.	Association	of	the	genes	TF	

genes	to	an	Oncogene	was	done	with	Cancer	Gene	Census	database	which	was	a	

part	of	the	Oasis-Cancer	genomics	web	portal	(Fernandez-Banet	et	al.,	2015)	and	

the	various	features	of	point	mutation,	indels,	amplification,	deletion,	copy-gain,	

copy-loss,	 and	 over/under	 expression	 associated	 to	 these	 genes	 and	 their	

frequency	in	clinical	TCGA	GBM	samples	could	also	be	obtained	from	this	oasis-

cancer	 genomics	 web	 portal.	 This	 web	 portal	 currently	 hosts	 sample-level	

annotations	 and	 gene-level	 mutation	 data,	 copy	 number	 variation	 (CNV)	 and	

expression	data	from	12,108	primary	tumor,	13,007	normal	samples	and	1,054	

cell	lines	across	55	cancers	and	43	tissues	from	The	Cancer	Genome	Atlas	(TCGA;	

http://cancergenome.nih.gov/),	 the	 Cancer	 Cell	 Line	 Encyclopedia	 (CCLE),	 the	

Genotype-Tissue	 Expression	 (GTEx)	 project	 and	 4	 published	 projects	 on	
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genomics	 studies	 of	 liver,	 gastric	 and	 breast	 cancers.	 This	 is	 developed	 by	 the	

Pfizer	 Computational	 Biology	 group	 which	 is	 one	 of	 the	 first	 private	

pharmaceutical	 company	 that	 aggregated	 large	 scale	 public	 high	 throughput	

genomics	data	and	also	their	own	in	house	and	made	it	available	for	public	use	as	

a	web	platform	to	perform	multi-omic	multi-seq	data	mining	and	inch	closer	to	

find	 drug	 targets	 from	 these	 analysis	 which	 is	 otherwise	 very	 cumbersome	

owing	 to	 the	multitude	of	 data	produced	by	 several	 consortiums	and	 trying	 to	

source	them	at	one	platform.		Below	is	the	legend	of	the	PAN-Cancer	report	that	

has	been	used	to	obtain	the	Oncogenes	in	GBM	TCGA	samples	with	this	platform.	

	

Figure	10:	Legend	of	OASIS-cancer	genomics	listing	the	annotation	of	
different	features	that	are	output	of	its	PAN-Cancer	analysis	report	tool	

The	legend	showing	the	annotation	of	the	different	feature	that	one	can	retrieve	

from	the	gene	list	once	input	in	OASIS-cancer	genomics	and	the	nomenclature	of	

the	 terms	that	are	 in	 the	output	 table	and	the	source	 from	which	 this	status	of	

Oncogene	and	Tumor	Suppressor	Gene	is	mirrored.	

2.4.5.4	Pathway	and	GO	analysis	
Pathway	 analysis	 was	 performed	 with	 IPA	 tool	

(http://www.ingenuity.com/products/ipa)	with	 the	 IPA	 Core	 Analysis	module,	

which	 can	 take	 gene	 lists	 from	DE	 analysis	 between	 conditions	 along	with	 the	

direction	 of	 regulation	 and	 try	 to	 fetch	 the	 canonical	 pathways	 that	 are	

significantly	enriched	as	a	result	of	changes	in	gene	expression.	The	association	

of	pathway	enrichment	 is	done	by	 finding	enrichment	of	 the	 target	genes	with	
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the	genes	that	constitute	a	pathway	in	their	Ingenuity	Knowledge	Base	providing	

the	 significance	 of	 enrichment	 to	 be	 significantly	 observed.	 This	 p-value	

calculation	is	based	on	right	tailed	Fischer	exact	Test	which	can	also	be	changed	

to	multiple	testing	correction	with	B-H	multiple	testing	correction	to	extract	the	

canonical	 pathway	 significance	 at	 highest	 stringency	 lowering	 the	 probability	

that	 it	 is	not	randomly	by	chance.	 	The	action	of	activation	or	 inactivation	of	 	a	

pathway	in	IPA	takes	into	account	the	effect	of	directionality	of	one	molecule	on	

another	molecule	or	on	a	process,	and	the	direction	of	change	of	molecules	in	the	

dataset.	 In	 this	 way	 the	 z-score	 provided	 with	 a	 sign	 indicates	 activation	 or	

inactivation	of	a	pathway	in	a	system.	IPA	takes	into	account	-2	<	z-score	<	2	to	

infer	significant	activation	and	inactivation	and	that	 is	what	considered	here	 in	

the	results	part	for	the	pathways	that	seems	to	be	activated	and	inactivated.	The	

ratio	metric	in	the	pathway	conveys	the	proportion	of	target	molecules	in	overall	

molecules	 that	 constitute	 that	 pathway.	 Similarly	 for	 a	 pathway	 exhibiting	 up	

and	 down	 regulated	 genes	 in	 forms	 of	 red	 and	 green	 color	 indicates	 the	

molecules	in	the	target	datasets	and	the	numerical	numbers	on	the	right	far	end	

for	 each	 pathway	 represents	 that	 total	molecules	 in	 that	while	 the	 ratio	 is	 the	

proportion	of	the	enrichment.	

GO	analysis	is	done	by	topGO	package	(Alexa	&	Rahnenfuhrer,	2010)	where	the	

GO	 enrichment	 is	 a	 wrapper	 function	 over	 the	 topGO	 that	 finds	 enriched	

categories	in	the	respective	ontology,	and	related	information	provided.	

The	 go.enrichment()	 function	 has	 a	 number	 of	 options.	 Note	 the	 following	

default	parameters:	

cutoff=0.1:	 only	 enrichments	with	 FDR<0.1	 are	 returned.	However	 if	 there	 are	
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too	 many	 terms	 the	 gotreeMapper()	 will	 only	 take	 the	 top	 ones	 for	 pictorial	

representation.	

minCatSize=10:	all	GO	 terms	with	 less	 than	10	annotated	genes	are	not	 tested.	

This	 is	because	 these	 categories	are	very	unlikely	 to	be	 statistically	 significant,	

and	discarding	them	reduces	the	effect	of	multiple	testing.	

maxCatSize=1000:	 all	 GO	 terms	with	more	 than	1000	 annotated	 genes	 are	not	

tested.	This	is	because	these	categories	are	typically	too	broad	to	be	meaningful,	

and	discarding	them	reduces	the	effect	of	multiple	testing.	

maxResults=200:	only	the	top	200	categories	will	be	returned.	

goTreemap()	function	to	plot	an	enrichment	treemap	

Pierre-Luc	Germain	has	developed	this	 tool	 in	our	 lab	keeping	 in	mind	that	we	

use	 proper	 background	 of	 genes	 for	 the	 enrichment	 for	 specific	 categories	 in	

experimental	 condition	 rather	 than	 relying	 on	 all	 the	 genes	 in	 a	 species.	 	 The	

background	of	genes	here	relies	to	the	overall	genes	that	are	expressed	between	

conditions	post	quantification	and	have	expression	values	in	at	least	one	sample	

for	the	desired	comparison	of	DE	analysis	thus	providing	with	unique	resource	

of	 background	 expressed	 genes	 that	 is	 representative	 of	 that	 comparison	 on	

which	the	DE	analysis	is	performed.	

2.4.5.5	Motif	enrichment	analysis	
Motif	 enrichment	 analysis	was	 performed	with	 Pscan	 tool	 (Zambelli,	 Pesole,	&	

Pavesi,	2009)	by	 taking	 the	promoter	sequences	of	 the	up	and	down-regulated	

genes	 separately	 and	 aligning	 them	 against	 hg19	 while	 mirroring	 the	 JASPAR	

2016	 (Mathelier	 et	 al.,	 2016)	 database	 with	 default	 settings	 to	 extract	 the	
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consensus	 transcription	 factor	 binding	 sites	 in	 these	 DEGs	 which	 results	 in	

finding	upstream	TFs	that	might	target	these	DEGs	and	regulate	them.	Selection	

of	the	upstream	TFs	post	assessment	was	based	on	the	p-value	cut-off	it	provides	

and	assign	 to	 each	of	 the	upstream	TFs	and	 I	 selected	only	 those	 that	have	an	

error	rate	of	less	than	5%.	These	upstream	TFs	which	are	under	p-value	<	0.05	

(obtained	by	running	on	promoter	sequences	of	DEGs	of	a	desired	comparison)	

are	then	overlapped	with	DEGs	in	the	that	comparison	to	find	direct	TF	targets	in	

the	 DEGs.	 Post	 finding,	 these	 targets	 are	 tried	 to	 be	 seen	 in	 OASIS-cancer	

genomics	 portal	 to	 find	 their	 incidence	 of	 dysregulation	 in	OC	 and	GBM	TCGA	

clinical	samples	and	also	to	retrieve	the	information	of	them	through	the	Cancer	

Gene	 Census	 mirror	 to	 assign	 them	 with	 status	 of	 “Oncogene”	 or	 “Tumor	

Suppressor	Gene”	

Chapter	3:	Results	

3.1	Molecular	characterization	of	transcriptional	dysregulation	
in	high	grade	serous	OC	vis	a	vis	the	two	candidate	tissues	of	
origin	
	

	
Figure	11:	Schematic	representation	of	the	datasets	used	in	the	ovarian	
cancer	project	
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The	 left	 panel	 shows	 the	 transcriptomic	 datasets	 of	 both	 normal	 and	 tumor	

tissue	samples	 from	patients.	The	right	panel	depicts	genetic	data	of	 the	tumor	

cells	 that	were	reprogrammed	to	 IPS.	Post	reprogramming,	 I	 intended	to	study	

the	 genetic	 background	 of	 the	 tumor	 and	 the	 corresponding	 tumor-IPSC	

derivatives.	For	this	reason	we	performed	exome	sequenceing	on	these	samples	

to	 uncover	 the	 mutational	 background	 between	 parental	 tumor	 and	 their	

reprogrammed	derivatives.	

Following	 the	 elucidation	 of	 the	 transcriptional	 mechanisms	 underlying	 GBM	

recurrence,	 I	 have	 harnessed	 the	 same	 analytical	 pipeline	 to	 study	 high-grade	

serous	 ovarian	 cancer	 (HGSOC).	 As	 part	 of	 our	 lab’s	 efforts	 to	 understand	 the	

developmental	 origin	 of	HGSOC	 and	 reconstruct	 the	 transcriptional	 alterations	

vis	 a	 vis	 the	 corresponding	 tissue	 of	 origin,	 one	 part	 of	 my	 thesis	 has	 been	

dedicated	 to	 study	 the	 transcriptional	 programs	 associated	 with	 tumor	

development	and	progression.	To	this	end	I	 focused	on	the	analysis	of	samples	

from	 the	 two	 possible	 OC	 tissue	 of	 origin,	 namely	 Fimbria	 (FI)	 and	 Ovarian	

Surface	 Epithelium	 (OSE)	 along	 with	 aggressive	 high-grade	 epithelial	 ovarian	

cancer	 (EOC)	 and	 fluidic	 tumor	 Ascites	 (AS)	 representing	 two	most	 advanced	

stages	of	high-grade	serous	ovarian	cancer	(HGSOC).	

Early	years	believed	that	the	origin	was	ovarian	in	nature.	Current	theories	of	OC	

states	 that	 the	 Fimbria	 is	 mostly	 considered	 as	 the	 origin	 of	 HGSOC	 if	 not	

exclusively.	 This	 is	 due	 to	 the	 growing	 evidences	 in	 the	 recent	 years	 based	 on	

histopathology	and	genetic	mutations	where	serous	tumors	primarily	resembled	

cells	that	are	derived	from	Müllerian	epithelium	of	the	female	reproductive	tract.	

Growing	evidences	 from	the	gene	expression	studies	outlined	 fallopian	 tube	as	

the	 potential	 origin	 (Tone	 et	 al.,	 2008)	 and	 that	 primary	 OC	 tumors	 are	
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originating	 from	 fallopian	 tube	 and	 the	 tumors	 are	 often	 localized	 near	 the	

ovaries	 	 (Kurman,	 2013).	 These	 varied	 theories	 pose	 both	 tissues	 as	 potent	

origin	 for	 sub	 populations	 of	 HGSOC.	 Thus	 it	 is	 crucial	 to	 identify	 the	

developmental	 origins	 to	 identify	 key	 molecular	 events	 associated	 with	 OC	

progression	 from	 its	 potential	 developmental	 origin	 (FI	 or	 OSE)	 for	 better	

prognosis.	

We	 analyzed	 the	 transcriptomes	 of	 4	 kinds	 of	 tissues	 (two	 candidate	 normal	

epithelia	originating	HGSOC;	namely	OSE	and	FI)	(Ng	&	Barker,	2015)	,	(Robert	J	

Kurman	&	Shih,	 2010))	 and	advanced	HGSOC	 (namely	EOC	and	metastatic	AS)	

from	OC	patients,	amounting	to	a	cohort	of	35	samples.	This	is	a	relatively	large	

cohort	of	samples	having	normal	and	tumor	panels	in	OC	patients.	I	studied	the	

overall	 transcriptional	 landscapes	 between	 tumor	 and	 the	 normal	 samples.	

Farther,	 I	 also	 studied	 the	 classical	 transcriptomic	 changes	 involved	 between	

normal	FI	and	the	tumors.	I	also	studied	the	transcriptional	 landscape	between	

normal	 OSE	 and	 the	 tumors	 to	 elucidate	 the	molecular	 events	 involved	 in	 OC	

progression	 hypothesizing	 OSE	 as	 one	 of	 the	 origin	 for	 HGSOC.	 	 Finally	 I	 also	

intended	to	study	the	transcriptomic	differences	between	the	EOC	and	advanced	

AS.	The	origin	of	ovarian	cancer	is	still	debatable	(refer	to	section	1.1.1)	and	this	

is	one	of	the	reason	that	I	have	selected	the	normal	tissues	from	both	candidate	

tissues	of	possible	origin	namely	FI	and	OSE.	This	helped	me	in	capturing	the	key	

molecular	 events	 that	 are	 involved	 in	 OC	 tumor	 progression	 and	 elicit	 key	

transcriptional	 events	 that	 drive	 tissue-specific	 oncogenesis.	 To	 this	 end,	 I	

performed	the	following	four	transcriptomic	analyses:	

i) Overall	 transcriptomic	 changes	 between	 both	 types	 of	 candidate	

tissues	of	origin	and	both	states	of	OC	(i.e.	all	samples	from	FI,	OSE	vs	
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all	 samples	 from	 EOC,	 AS),	 in	 order	 to	 understand	 the	 general	

molecular	pathways	 involved	 in	OC	 formation	and	elucidate	key	TFs	

that	are	involved.		

ii) The	 second	 assessment	 is	 aimed	 at	 highlighting	 the	 transcriptomic	

between	FI	 (n=8)	vs	 all	 tumors	 comprising	both	EOC	 (n=10)	and	AS	

(n=8).	 It	 thus	 probes	 the	 molecular	 events	 associated	 with	 tumor	

progression	 between	 FI	 and	 tumors,	 aiming	 at	 defining	 the	 TFs	

associated	 with	 tumor	 progression,	 under	 the	 currently	 prevailing	

assumption	 that	 FI	 is	 the	 largely	 prevalent	 if	 not	 exclusive	 origin	 of	

HGSOC	originates	form	FI.	

iii) The	 third	 assessment	 elucidated	 the	 transcriptomic	 behavior	 that	

characterizes	the	major	differences	between	OSE	(n=9)	tissues	against	

all	 its	 tumor	 counterparts	 (n=18)	 and	 identified	 key	 transcriptional	

programs	 associated	with	 them	 in	 forms	 of	 pathways.	 This	 analysis	

was	thus	meant	to	test	the	new	hypothesis	that	OSE	may	serve	instead	

as	epithelium	of	origin	for	HGSOC	

iv) The	 fourth	and	 the	 final	assessment	 involved	 the	key	 transcriptional	

differences	 underlying	 progression	 of	 HGSOC	 to	 ascites	 (EOC,	 n=10	

and	 AS,	 n=8)	 to	 trace	 the	 key	 transcription	 upstream	 of	 this	 key	

transition.		

All	 the	above	assessments	entailed	 the	 identification	of	differentially	

expressed	 genes	 (DEGs),	 followed	 by	 IPA	 pathway	 analysis	 and	 TF	

motif	enrichment	analysis	(MEA)	.	The	results	of	the	MEA	provides	list	

of	 candidate	 master	 regulators	 (MRs)	 that	 are	 predicted	 to	 be	

upstream	of	 significant	portion	of	differentially	 expressed	genes	and	
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are	 themselves	 differentially	 expressed	 between	 the	 experimental	

systems	 under	 comparison.	 This	 helped	 me	 in	 understanding	 the	

underlying	 transcriptional	 networks	 associated	 in	 OC	 patients.	 This		

analysis	allowed	systematically	assessing	the	TF-mediated	differential	

expression	 and	 defining	 transcriptional	 programs	 involved	 in	 OC	

progression.	 Finally	 targeting	 these	 regulators	 might	 lead	 to	 the	

rescue	of	 the	 tumor	events	and	reduce	 the	 tumorigenicity	 leading	 to	

new	 therapeutic	 measures.	 	 Figure	 12	 represents	 the	 analytical	

workflow	of	the	different	comparisons	that	have	been	pursued	in	this	

part	of	the	thesis	and	strategies	employed	to	capture	TF-mediated	OC	

progression.		

	

	

	

Figure	12:	Analytical	workflow	employed	in	capturing	the	TF-mediated	OC	
progression	
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EOC	and	advanced	AS	represented	in	shades	of	red)	to	their	candidate	tissues	of	

origin	(namely	FI	and	OSE	represented	in	shades	of	green	in	the	above	scheme).	

The	 first	 block	 representing	 the	 datasets	 describes	 the	 different	 tumors	 and	

normal	 tissues	 that	were	 subjected	 to	 RNA-Seq	 and	 studied	 in	 the	 thesis.	 The	

second	 block	 indicates	 the	 different	 transcriptomic	 comparisons	 that	 were	

performed	 with	 differential	 expression	 analysis	 (DEA).	 The	 differentially	

expressed	 genes	 (DEGs)	 obtained	 from	 DEA	 were	 then	 subjected	 to	 both	

pathway	analyses	with	IPA	tool	and	motif	enrichment	analysis	(MEA)	by	pScan	

(Zambelli	et	al.,	2009).	Finally	the	over-represented	TFs	were	assessed	for	their	

differential	 expression	 in	 the	 comparative	 systems	 that	 were	 studied.	 This	

differentially	 expressed	TFs	 helped	 in	 farther	 narrowing	 over-represented	TFs	

obtained	from	MEA	to	a	list	of	candidate	master	regulators	(MRs)	that	captured	

TF-mediated	OC	progression		

3.1.1	Transcriptomic	assessment	of	normal	tissues	(all	samples	from	
FI,	OSE)	against	the	tumor	tissues	(all	samples	from	EOC,	AS)	
	

Differential	expression	analysis	between	all	the	normal	tissues	versus	the	tumor	

tissues	 revealed	 622	 differentially	 expressed	 obtained	 with	 a	 FDR	 0.01	 and	

log2FoldChange	of	1.5.		~58%	of	these	genes	were	down-regulated	in	tumors.		
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Figure	13:	Heatmap	of	DEGs	between	tumor	and	normal	tissues	in	OC	
patients	

The	above	heatmap	represents	the	differentially	expressed	genes	found	between	

normal	 and	 tumor	 tissues	 to	 understand	 the	 general	 molecular	 pathways	

involved	in	OC	formation.	Up-regulated	genes	are	represented	by	red	color	while	

the	blue	represents	the	genes	that	are	down-regulated.	The	general	classification	

of	the	samples	are	normal	and	tumor	(represented	as	cell	type	in	figure)	which	

are	 farther	divided	 into	FI	and	OSE	representing	 the	normal	 samples	while	 for	

tumors	they	are	EOC	and	AS	(represented	under	tissue	Type	in	the	figure).		

3.1.1.1	IPA	pathway	analysis	of	DEGs	between	normal	and	tumor	tissues	of	
OC	patients	

	

IPA	analysis	for	canonical	pathway	on	the	DEGs	identified	between	normal	(both	

candidate	 tissues	 of	 origin)	 and	 tumors	 (solid	 tumors	 and	 ascites)	

transcriptomes	 of	 OC	 patients	 revealed	 a	 significant	 enrichment	 for	 PPAR	
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signaling	 inactivation.	Figure	14	shows	the	 list	of	pathways	that	were	enriched	

among	differentially	expressed	genes.		

	

	

	

Figure	14:	Representations	of	enriched	pathways	identified	with	IPA	as	a	
result	of	DE	genes	between	both	candidate	tissues	of	origin	and	HGSOC	
tumor	samples	(both	solid	tumors	and	ascites)	

The	 figure	14	represents	a	set	of	grey	and	blue	bars	 for	each	pathway	that	are	

significantly	 enriched	 due	 to	DEGs.	 Blue	 stands	 for	 inactivation	 of	 a	 particular	

pathway	as	identified	by	IPA	with	its	internal	scoring	system	while	grey	stands	

for	pathways	enrich	but	no	assignment	of	 its	active/inactive	status	by	 the	 tool.	

The	blue	block	highlights	 the	pathway	that	was	predicted	 to	be	 inactive	 that	 is	

PPAR	signaling	in	this	figure.		

PPAR	 signaling	 pathway	 is	 inactivated	 (mild),	 according	 to	 IPA	 as	 a	 result	 of	

changes	 in	 the	gene	expression	between	 the	normal	 and	 tumor	patients.	PPAR	

signaling	 is	 instrumental	 in	 processes	 like	 lipid	 metabolism,	 cell	 growth,	

differentiation,	 and	 apoptosis	 that	 cater	 to	 the	 physiological	 development	 of	

normal	cells.	Aberrations	of	 this	pathway	might	 thus	 lead	to	 impairment	 in	the	
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normal	 cell	 development.	 PPARs	 and	 their	 ligands	 have	 been	 earlier	 linked	 to	

cleansing	 cancer	 cells	 via	 apoptotis	 whose	 dysfunction	 is	 a	 clear	 hallmark	 of	

cancer	(Elrod	&	Sun,	2008).Other	pathways	that	have	been	shown	to	be	enriched	

due	 to	 these	 DE	 genes	 are	 Hepatic	 Fibrosis,	 agranulocyte	 adhesion,	 FXR/RXR	

activation	among	others	however	 IPA	was	unable	 to	predict	 their	activation	or	

inactivation	status.		

3.1.1.2	Motif	enrichment	analysis	predicted	oncogenes	encoding	for	TFs	
controlling	the	transcriptional	programs	in	OC	patients	
	

Motif	analysis	was	performed	on	the	promoters	of	DEGs	to	identify	the	upstream	

transcription	 factors	 that	had	consensus-binding	sites	and	were	thus	candidate	

regulators	of	these	DEGs	with	pScan.	I	found	49	upstream	TFs	on	the	promoter	

sequences	 of	 these	 DEGs	 that	 co-regulate	 these	 differentially	 expressed	 genes.	

These	TFs	were	significant	with	a	p-value	<	0.05.		8%	(4/49)	of	these	TFs	were	

also	DEGs	between	normal	and	tumors	tissues	in	OC	patients.	These	4	DEGs	can	

be	thus	candidate	MRs	that	can	regulate	target	genes	promoting	the	tumorigenic	

drive.	Among	these,	4	genes:	ASCL2,	EGR2,	NR2F1	were	up-regulated	in	tumors;	

while	 ERG	was	 down	 regulated	 in	 tumor.	 The	 interrogation	 for	 these	 genes	 in	

clinical	 TCGA	 samples	 with	 OASIS-cancer	 genomics	 portal	 confirmed	 their	

dysregulation	in	a	 large	set	of	TCGA	OC	samples.	 In	particular	ASCL2,	ERG,	and	

NR2F1	 were	 associated	 with	 copy-loss	 in	 TCGA	 samples	 with	 a	 proportion	 of	

~29%,	14%,	34.7%	respectively.	These	percentages	were	calculated	on	a	total	of	

591	TCGA	OC	 samples.	 EGR2	 instead	was	 associated	with	 copy	 gain	 in	 around	

~10%	 of	 all	 the	 TCGA	 OC	 samples.	 Interestingly,	 the	 Cancer	 Gene	 Census	

database	 reports	 ERG	 as	 an	 oncogene.	 Figure	 15	 (below)	 shows	 the	 level	 of	
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dysregulation	of	 these	genes	 in	TCGA	(on	 the	 left)	and	 in	our	sample	cohort	 in	

tumors.	

	

Figure	15:	MEA	enrichment	reveals	over-represented	TFs	that	are	
differentially	expressed	between	candidate	normal	and	tumor	tissues	in	OC	
dataset	

The	 heatmap	 on	 the	 left	 represents	 the	 over-represented	 TFs	 that	 are	 DEGs	

having	high	 incidence	of	dysregulation	 in	clinical	OC	TCGA	samples	while	right	

bar	plot	represents	the	same	TF-DEGs	fold-change	in	our	in-house	OC	data	sets.	

Red	 bar	 plot	 represents	 genes	 that	 were	 up-regulated	 in	 tumors	 while	 blue	

represents	the	gene	that	was	down-regulated	in	the	tumors	

The	figure	legend	of	the	left	heatmap	is	detailed	in	the	methods	section.	

ASCL2	is	a	transcriptional	regulator,	which	upon	loss	of	function	has	been	found	

to	be	promoting	MET	pathways	in	colon	cancers	via	switching	on	miRNA	targets	

miR-200s.	Its	higher	expression	correlates	with	liver	metastasis	in	colon	cancer	

patients	(Tian	et	al.,	2014).	Even	knockdown	studies	of	this	gene	have	shown	to	

be	 arresting	 tumor	 growth	 by	 regulating	 miR-302	 in	 colon	 cancer	 progenitor	

cells	(Zhu	et	al.,	2012).	This	gene	is	essentially	important	in	the	maintaining	the	

adult	intestinal	cells.	In	studies	of	Gastric	cancers	(GC)	this	gene	has	been	shown	

to	be	overexpressed	and	hypomethylated	in	GC	tissues	when	compared	to	their	

normal	 tissue.	 The	 study	 of	 the	 GC	 revealed	 that	 ASCL2	 has	 a	 crucial	 role	 in	

promoting	gastric	tumor	growth	and	resistance	to	chemotherapy.	This	provides	

an	insight	of	this	gene	being	an	epigenetic	target	of	DNA	methylation	regulating	
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the	gene	expression	in	GC	and	promoting	tumor	growth	(Kwon	et	al.,	2013).	 In	

OC	 this	 gene	has	not	been	explored	much	but	 as	our	 results	 suggests	 that	 this	

gene	 is	 usually	 associated	with	 copy	 loss	 in	OC	TCGA	patients	while	 being	up-

regulated	 in	our	 tumor	cohorts.	This	observation	of	ASCL2	 in	my	study	clearly	

indicates	 the	 involvement	 of	 a	 possible	 epigenetic	mechanism	 orchestrated	 by	

DNA	methylation.	

I	also	found	that	the	ERG	oncogene,	frequently	mutated	in	ovarian,	skin	and	lung	

cancers,	 was	 down-regulated	 in	 our	 tumors.	 This	 gene	 belongs	 to	 the	 ETS	

transcription	factor	family,	which	has	been	seen	to	be	over	expressed	in	tumors	

like	 sarcomas,	AML	and	prostate	cancers	 involved	 in	malignant	 transformation	

(Sashida,	 Bazzoli,	 Menendez,	 Liu,	 &	 Nimer,	 2010).	 It	 was	 also	 identified	 as	 a	

fusion	 gene	with	 TMPRSS2	with	 high	 levels	 of	 ERG	 in	 ovarian	 cancers.	 Recent	

studies	have	shown	that	ERG	itself	is	not	a	diagnostic	target	in	ovarian	cancer	as	

seen	in	prostrate	cancers	unless	identified	as	a	fusion	gene	(Huang	et	al.,	2011).		

NR2F1	 is	 a	 transcriptional	 regulator,	 for	which	 there	 is	 no	 prior	 evidence	 of	 a	

role	 in	 ovarian	 cancer.	 It	 has	 only	 been	 seen	 to	 be	 possibly	 regulating	

metabolism	and	dedifferentiation	process	in	ovarian	cancer	cell	lines	in	a	report	

published	 by	 Kieback	 et.	 al,	 1993.	 It	 is	 termed	 as	 a	 master	 regulator	 that	 is	

associated	with	cellular	dormancy.	This	gene	upon	shutting	down	leads	to	tumor	

growth	and	proliferation	of	 the	tumor	cells	 in	abnormal	way	allowing	dormant	

cells	to	grow	throughout	the	tumors	(Sosa	et	al.,	2015).		NR2F1	is	associated	with	

a	frequency	of	~34.7%	copy	loss	in	OC	TCGA	patients	while	in	our	cohort	of	OC	

patients	 transcriptome	 it	 is	 up-regulated	 in	 tumor.	 This	 gene	 identified	 as	 a	

candidate	MR	post	MEA	in	our	OC	samples.	This	gene	is	having	28	downstream	

targets	with	 sequence	 specificity	of	 binding	over	90%.	Over	60%	of	 its	 targets	
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are	down-regulated	in	our	tumor	cohort	at	the	level	of	gene	expression.	NR2F1	is	

usually	down-regulated	 in	proliferative	 tumors	since	 it	 induces	quiescence	and	

promotes	tumor	growth.	In	our	OC	tumors	it	can	be	hypothesized	that	NR2F1	is	

promoting	 tumor	 growth	 by	 triggering	 pathways	 that	 are	 dependent	 on	 its	

downstream	 target	 genes	 that	 are	 mostly	 down-regulated	 however	 itself	 not	

being	repressed.	This	up-regulation	of	NR2F1	gene	is	probably	due	to	epigenetic	

targeting	 either	 in	 forms	 of	 DNA	 hyopmethylation	 at	 its	 promoter	 region	 in	

tumors	 leading	 to	 is	 over-expression	 or	 recruitment	 of	 histone	modifiers	 that	

activates	 it.	 So	 it	 would	 be	 important	 to	 check	 the	 status	 of	 differential	

methylation	between	normal	and	tumor	samples	in	our	OC	cohort	for	this	gene	

or	perform	ChIP-Seq	 for	 specific	histone	marks	 to	 identify	 the	behavior	of	 this	

gene	 under	 a	 histone	 modifier.	 Another	 important	 issue	 to	 address	 in	 this	

comparison	 is	 that	 this	 comparison	 entails	 a	 more	 generic	 study	 of	

transcriptomes	 between	 normal	 and	 tumor	 samples	 in	 our	 OC	 cohort.	 So	 the	

comparative	system	will	have	a	bias	where	the	tissue	heterogeneity	(comprising	

of	 FI,	 OSE,	 EOC	 and	 AS)	 is	 not	 fully	 utilized	 in	 the	 model	 while	 estimating	

differential	 expression	 since	we	 are	 not	 trying	 to	 see	 the	 differences	 based	 on	

specific	 tissues	 that	 are	 sub-categories	 of	 normal	 and	 the	 tumors	 in	 our	 OC	

dataset.	This	issue	is	more	apparently	taken	care	of	in	subsequent	studies	made	

in	the	thesis	when	we	compare	tumors	to	candidate	tissues	of	origin	separately.		

3.1.2	Transcriptomic	analysis	between	Fimbria	normal	against	tumor	
tissues	in	the	OC	patients	to	capture	the	events	underlying	a	tumor	
progression	
	

Differential	expression	analysis	between	one	of	the	possible	cell	origin	of	OC	(FI)	

and	all	 the	 tumor	samples	 (EOC,	AS)	generated	 in	our	 lab	 revealed	1288	DEGs	
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with	FDR	<	0.01	and	log2FoldChange	1.5.	Among	these	DEGs	more	than	61%	of	

them	were	up-regulated	in	the	tumor	tissues.	Figure	16	below	shows	the	overall	

DEGs	on	 the	 left	panel	while	 focusing	on	a	deeper	resolution	reveals	some	TFs	

that	are	also	differentially	expressed.	

	

	

Figure	16:	Heatmap	representation	of	DEGs	between	FI	normal	and	all	
Tumors	(EOC,AS)	tissues	of	OC	patients	

The	color	scale	of	the	heatmap	represents	up-regulated	genes	in	red	and	down-

regulated	genes	in	blue.	The	cell	type	classifies	the	samples	as	normal	and	tumor	

while	 the	 tissue	 type	 farther	 sub-classifies	 the	 samples	 into	 normal	 FI,	 high-

grade	EOC	and	advanced	AS.	
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3.1.2.1	Canonical	pathway	analysis	of	DEGs	between	FI	normal	and	tumor	
tissues	of	OC	patients	revealed	activation	of	metabolic	and	inflammatory	
pathways.	

	

IPA	 canonical	 pathway	 analysis	 revealed	 significant	 pathways	 that	 were	

changing	 between	 FI	 normal	 versus	 tumor	 tissues.	 Figure	 16	 shows	 the	 list	 of	

pathways	 that	 were	 involved	 as	 a	 result	 of	 differential	 gene	 expression.	 The	

canonical	 pathway	 analysis	 predicted	 the	 activation	 of:	 Acute	 Phase	 Response	

Signaling,	 VDR/RXR	 activation,	 LXR/RXR	 activation,	 Complement	 System,	

Eicosanoid	Signaling	among	the	top	pathways.	The	pathways	that	got	inactivated	

were:	PPAR	signaling,	Nitric	Oxide	signaling	in	cardio-vascular	system.	Pathways	

like	 VDR/RXR	 and	 LXR/RXR	 activation	 have	 been	 earlier	 linked	 to	 tumor	

malignancies	 and	 inflammatory	 responses	 (C.	 Y.	 Lin	&	 Gustafsson,	 2015).	 This	

suggested	 that	 the	 tumorigenesis	 was	 due	 to	 activation	 of	 metabolic	 signals,	

immune	 responses	 and	 inflammation,	 which	 could	 have	 provided	 the	 tumoral	

cells	with	growth	advantages	and	proliferation.		
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Figure	17:	Representations	of	enriched	pathways	identified	with	IPA	as	a	
result	of	DE	genes	between	FI	normal	and	all	tumor	samples	in	the	OC	
dataset	

Pathways	that	are	predicted	to	be	activated	by	IPA	are	represented	with	orange	

bars	 and	 also	 summarized	 under	 orange	 blocks.	 The	 blue	 bars	 represent	 the	

inactivated	pathways	and	are	summarized	under	blue	blocks.	

3.1.2.2	Motif	enrichment	analysis	predicted	a	core	set	of	oncogenes	
encoding	for	TFs	controlling	the	transcriptional	programs	in	FI	normals	
and	tumor	samples	in	OC	patients	
I	 interrogated	 the	 DE	 genes	 between	 normal	 fimbria	 (FI)	 and	 tumors	 by	

performing	 the	 TF	 motif	 enrichment	 analysis	 (MEA)	 as	 done	 with	 the	 earlier	

comparisons.	 This	 analysis	 primarily	 aimed	 at	 providing	 a	 mechanistic	
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interpretation	 of	 the	 transcriptomic	 changes	 in	 tumors	 by	 identifying	 putative	

TFs	 master	 regulators	 (MRs)	 through	 interrogation	 of	 binding	 sties	 at	 the	

promoter	of	the	DEGs.	Motif	analysis	was	performed	on	promoter	sequences	of	

these	overall	1288	DEGs	obtained	as	a	result	of	DE	analysis	between	FI	normals	

and	tumors	with	Pscan	with	default	settings.	This	revealed	57	(p-value	threshold	

<	 0.05)	 upstream	 TFs	 that	 have	 consensus	 binding	 sites	 in	 our	 DEGs.	 Among	

these	 upstream	 over-represented	 TFs,	 5	 were	 also	 differentially	 expressed	

between	FI	normals	and	tumor	samples	of	OC	patients	whose	transcriptomes	we	

assessed.	 Upon	 investigation	 of	 these	 5	 genes	 in	 clinical	 OC	 TCGA	 samples	 I	

identified	 their	 level	 of	 dysregulation.	 I	 found	 genes	 like	 TFAP2A,	 EBF1,	 EGR2	

and	EGR3	 as	 up-regulated	 in	 tumor	while	 ERG	was	down-regulated.	 Figure	18	

below	shows	the	incidence	of	5	of	these	targets	in	OC	TCGA	clinical	samples	and	

confers	the	status	of	Oncogene/TSG	to	them.	

	

Figure	18:	MEA	enrichment	reveals	over-represented	TFs	differentially	
expressed	between	FI	normal	and		tumor	tissues	in	OC	dataset	

The	left	heatmap	represents	the	level	of	dysregulation	of	the	genes	in	OC	TCGA	

patients.	 The	 legend	 can	 be	 found	 in	 methods	 section.	 The	 right	 bar	 plot	

represents	the	status	of	up	and	down-regulation	of	the	same	genes	in	our	tumor	

transcriptomes.	 Red	 stands	 for	 up-regulated	 in	 tumor	 while	 blue	 represents	

down-regulated	gene.	

Upon	interrogation	of	these	5	DEGs	in	OASIS-cancer	genomics	portal	I	was	able	

to	 identify	two	oncogenes	 in	this	 list	of	MRs	that	were	DEGs.	These	were	EBF1	
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and	ERG.	EBF1	was	up	regulated	in	tumors	while	ERG	was	down-regulated.	The	

other	 3	 genes	 were	 EGR2	 (associated	 with	 ~10%	 copy	 gain	 in	 Ovarian	 TCGA	

samples),	 EGR3	 (associated	 with	 34.5%	 copy	 loss	 in	 TCGA	 OC	 samples)	 and	

TFAP2A	(primarily	associated	with	32.3%	copy	gain	in	TCGA	OC	samples).	

Mutations	or	INDELS	along	with	in-frame	deletions	in	EBF1	have	been	observed	

in	 cancers	 such	 as	 intestinal	 cancer,	 skin	 cancer,	 and	 stomach	 cancer.	 These	

observations	 were	 pretty	 insightful	 in	 revealing	 the	 contribution	 of	 TFs	 in	

promoting	oncogenesis	between	tumor	and	normal	FI	tissues	seating	oncogenes	

among	them.	

ERG	is	often	associated	with	fusions	or	mutations	such	as	silent	or	missense.	This	

is	 observed	 in	 lung	 cancer,	 ovarian	 cancer,	 and	 skin	 cancer	 and	 its	 role	 as	

oncogene	 in	prostate	 cancer	 as	 a	 fusion	 gene	 is	widely	 acknowledged	while	 in	

ovarian	cancer	it	is	not	a	prognostic	marker	(Huang	et	al.,	2011).		

3.1.3	Transcriptomic	changes	between	OSE	and	tumors	identify	cAMP	
pathway	signaling	inactivation		
	

Differential	gene	expression	analysis	of	OSE	(normal	tissues)	against	the	tumor	

revealed	very	 few	248	DEGs	 that	were	changing	expression.	Among	 them	over	

~70%	genes	were	down-regulated	 in	 tumor	which	shows	 the	oncogenesis	was	

mediated	as	a	result	of	greater	proportion	of	down-regulated	genes	in	the	tumor	

tissues.	
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Figure	19:	Heatmap	representation	of	DEGs	between	OSE	normal	and	all	
Tumors	(EOC,	AS)	tissues	of	OC	patients	

The	 up-regulated	 genes	 are	 represented	 by	 color	 red	 in	 the	 heatmap	 while	

down-regulated	genes	are	represented	by	color	blue.	The	cell	type	refers	to	the	

normal	 (OSE)	 and	 tumors	 (EOC	 and	 AS)	 while	 tissue	 type	 farther	 details	 the	

normal	 and	 tumors	 interrogated.	 Here	we	 have	 only	 OSE	 so	 there	 is	 only	 one	

tissue	 type	 represented	 while	 for	 tumors	 we	 have	 both	 high-grade	 EOC	 and	

advanced	AS.		

3.1.3.1	Canonical	pathway	analysis	with	IPA	revealed	cAMP	signaling	
inactivated	between	OSE	normal	and	tumor	tissues	on	OC	patients	
	

IPA	 pathway	 analysis	 revealed	 a	 significant	 enrichment	 for	 cAMP	 signaling,	

based	on	 the	directionality	 (fold	 change)	 of	 the	DEGS	and	was	predicted	 to	be	

inactive.	This	pathway	is	crucial	in	maintaining	processes	like	immune	function,	

growth,	differentiation,	gene	expression	and	metabolism	in	normal	physiological	
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environment.	 The	 role	 of	 cAMP	 processes	 and	 their	 downstream	 targets	

activation	 is	 indeed	a	 complex	problem	 in	 cell	 biology	and	 its	 role	 in	 cancer	 is	

still	 a	 matter	 of	 debate.	 In	 particular,	 its	 unclear	 if	 it	 is	 having	 stimulating	 or	

inhibiting	effects	in	cancer	cells.	However,	it	has	been	reported	to	be	having	both	

positive	 and	 negative	 effects	 on	 cell	 growth	 or	 survival	 at	 specific	 cellular	 or	

tissue	 context.	 Thus,	 their	 aberrations	may	play	 important	 role	 in	 oncogenesis	

(Fajardo,	Piazza,	&	Tinsley,	2014).	

	

	

Figure	20:	Representation	of	enriched	pathways	identified	with	IPA	as	a	
result	of	DE	genes	between	OSE	normal	and	tumor	patients	

IPA	canonical	pathway	analysis	only	revealed	cAMP-mediated	signaling	pathway	

to	 be	 significantly	 enriched.	 Blue	 bar	 refers	 to	 the	 status	 of	 inactivation	 of	 the	

pathway	and	the	blue	block	highlights	the	same	pathway	that	is	inactivated.	

The	results	from	MEA	revealed	a	set	of		8	TFs	which	are	predicted	to	regulate	the	

DEGs,	 however	 none	 of	 them	were	 differentially	 expressed	 in	 the	 comparison	

between	OSE	and	tumor	tissues.			

3.1.4	Genome-wide	DNA	methylation		analysis	predicts	HGSOC	cell	of	
origin		
As	a	complementary	approach	to	the	analysis	I	have	outlined	above,	we	have	also	

harnessed	the	power	of	genome-wide	DNA	methylation	profiling	of	normal	and	

tumor	 cells	 to	 classify	 a	 well	 characterized	 cohort	 of	 HGSOC	 cases	 in	 our	 OC	
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cohort	 on	 the	 basis	 of	 their	 tissues	 of	 origin.	 This	 enabled	 us	 to	 build	 on	

convergent	 evidence	 how	 tumors	 preserve	DNA	methylation	 signatures	 (DMS)	

from	their	cells	of	origin	(Sproul	et	al.,	2012),	(Moran	et	al.,	2016).	This	strategy	

allowed	 us	 to	 associate	 tumors	 to	 their	 normal	 counterpart,	 thus	 increasing	

precision	 and	 stringency	 in	 the	 identification	 of	 relevant	 altered	 pathways	 in	

HGSOC	for	patients	which	had	been	profiled	for	both	DNA	methylation	and	RNA-

Seq.	DNA	methylation	analysis	identified	a		set	of		92	CpG	sites	with	a	delta-beta	

variation	 of	 at	 least	 40%,	whose	 power	 in	 distinguishing	 FI-like	 from	OSE-like	

tumor	 samples	 was	 validated	 on	 the	 two	 largest	 Fimbria	 and	 Ovarian	 cancer	

biopsies	datasets	(Klinkebiel,	Zhang,	Akers,	Odunsi,	&	Karpf,	2016),(Patch	et	al.,	

2015).	 	This	analysis	 confirmed	 the	predictive	power	of	 this	 core	signature	we	

had	 defined	 on	 cultured	 cells	 in	 distinguishing	 FI	 and	 OSE	 samples	 directly	

sourced	from	biopsies.	 	Therefore,	this	analysis	also	confirmed	that	our	in	vitro	

culture	 conditions	 for	 FI	 and	 OSE-derived	 epithelial	 cells	 recapitulate	 their	

salient	 in	 vivo	 features.	 Next,	 we	 used	 these	 92	 CpG’s	 	 to	 classify	 147	 HGSOC	

samples	(both	cultured	cells	and	biopsies),	coming	from	our	IEO	cohort	(n	=	24)	

as	 well	 as	 from	 two	 independent	 cohorts	 (Karpf	 n	 =	 10,	 Bowtell	 n	 =	 113)	

(Klinkebiel	 et	 al.,	 2016)(Patch	 et	 al.,	 2015),	 into	 FI-like	 and	 OSE-like	 HGSOC.	

Next,	having	used	DNA	methylation	as	a	tool	to	identify	the	cell	of	orgin	for	the	

tumors,	 	we	harnessed	 this	 classification	 to	perform	RNAseq-based	differential	

expression	analysis,		comparing	FI	(n=8)	vs.	FI-like	tumors	(n=5)	and	OSE	(n=9)	

vs.	OSE-like	tumors	(n=10)	to	identify	differentially	expressed	genes	specifically	

associated	 to	 the	 oncogenic	 transformation	 of	 the	 original	 normal	 tissue	

followed	 by	 MEA	 analysis	 to	 find	 out	 over-represented	 TFs	 that	 are	 also	

differentially	expressed	in	the	same	transcriptomic	comparisons	of	FI	vs	FI-like	
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and	OSE	vs	OSE-like.	Figure	21	shows	the	analytical	workflow	that	we	followed,	

starting	from	the	use	of	DNA	methylation	signatures(DMS)	for	assigning	tumors	

to	 their	 tissue	 of	 origin,	 followed	by	DEA	 and	MEA	 analysis	 of	 tumors	 to	 their	

respective	normal	source	of	origin	to	identify	candidate	master	regulators.		

	

Figure	21:	Analytical	workflow	describing	the	classification	of	tumor	to	its	
origin	by	DMS	followed	by	transcriptional	and	MEA	analysis	of	tumors	to	its	
corresponding	tissue	of	origin	

The	above	 figure	 schematizes	 the	 stratification	of	OC	samples	 (high	grade	EOC	

and	 advanced	 AS)	 to	 their	 respective	 tissue	 of	 origin	 (FI	 and	 OSE).	 The	

differentially	methylated	 signature	 that	brings	out	 the	differences	between	 the	

two	normal	tissues	(FI	and	OSE)	was	used	to	stratify	our	tumors	(EOC	and	AS)	to	

their	corresponding	cell	of	origin	using	unsupervised	clustering	approach.	Once	

we	obtained	the	stratification	of	the	tumor	they	were	termed	as	FI-like	and	OSE-

like.	This	was	followed	by	an	analysis	of	the	transcriptomic	changes	between	FI	

normal	versus	FI-like	tumors	and	OSE	normal	versus	OSE-like	tumors.	Post	DEA	

I	followed	the	pathway	analysis	and	MEA	to	obtain	candidate	master	regulators	
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to	capture	TF-mediated	OC	progression	for	tumors	coming	from	its	specific	cell	

of	origin.	

	

DEA	analysis	of	FI	 vs	FI-like	detected	753	DEGs	with	FDR	0.01	and	 log2FC	1.5	

while	for	OSE	vs	OSE-like	tumors	it	revealed	348	DEGs	using	the	same	threshold	

for	significant	DEGs	selection.	

Glutamate	 receptors	 earlier	 have	 been	 shown	 as	 potential	 growth	 factor	 that	

fuels	 the	 migratory	 and	 propagating	 behavior	 of	 tumor	 cells	 (Stepulak,	 Rola,	

Polberg,	&	Ikonomidou,	2014).	This	is	now	seen	also	in	our	datasets	that	DEGs	in	

FI	vs	FI-like	 tumors	enrich	 this	pathway	and	activates	 it.	Even	 these	migratory	

movements	 are	 farther	 supported	 by	 calcium	 transport	 and	 ILK	 signaling	

pathways.	 There	 are	 evidences	 of	 such	 activation	 in	 advanced	 ovarian	 cancers	

(Bruney,	 Liu,	 Grisoli,	 Ravosa,	 &	 Stack,	 2016).	 ILK-activation	 dependent	 tumor	

formation	 and	 propagation	 promotes	 oncogenesis	 via	 invasive	 and	 migratory	

properties	in	cells.	This	mechanism	have	already	been	established	in	transgenic	

mice	 (Bruney	 et	 al.,	 2016).	 These	 key	 findings	 provide	 new	 insight	 on	 the	

pathogenic	 pathways	 underlying	 FI-like	 tumors.	 MEA	 identifies	 3	 over-

represented	TFs	 that	are	predicted	 to	control	 the	DEGs	 in	FI	vs	FI-like	 tumors,	

and	that	are	also	differentially	expressed	in	the	same	comparisons.	These	genes	

are:	 EHF,	 TFAP2A	 and	 ZIC1,	 which	 are	 all	 up-regulated	 in	 our	 FI-like	 tumors.	

Among	these	3	genes	TFAP2A	and	ZIC1	are	associated	with	copy	gain	of	~32.3%	

~45.9%	respectively	in	OC	clinical	TCGA	samples	as	reported	by	OASIS	genomics	

web	portal.		

In	 case	 of	 OSE	 vs	 OSE-like	 tumors,	 the	 DEGs	 enriched	 for	 pathways	 mainly	

concerning	 diapedesis	 and	 adhesion.	 Interestingly	 earlier	when	 I	 analyzed	 the	
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OSE	 normal	 against	 all	 tumors	without	 stratifying	 the	 tumors	 to	 their	 origin	 I	

found	 cAMP	 signaling	 to	 be	 inactivated.	 This	 however	 is	 no	more	 significantly	

enriched	in	the	DEGs	between	OSE	and	OSE-like	tumors.		I	also	could	not	find	any	

overlap	 between	 differentially	 expressed	 genes	 and	 the	 over	 represented	 TFs	

from	MEA	 analysis	while	 comparing	 transcriptomes	 of	 OSE	 normal	 against	 all	

tumors.	 However,	 comparing	 transcriptomes	 of	 OSE	 normal	 versus	 OSE-like	

tumors,	I	found	EGR1	as	an	over-represented	TF	post	MEA	that	is	also	a	DEG	in	

OSE	vs	OSE-like	tumors.	This	vindicates	the	value	of	using	an	epigenetic	tracer,	in	

this	case	DNA	methylation,	to	precisely	assign	the	cell	of	origin	for	the	tumors	in	

our	 study.	 Thus	 studying	 the	 transcriptional	 commitment	 of	 these	 newly	

classified	 tumors	 (FI-like	and	OSE-like	 tumors)	 to	 their	normal	 tissues	gave	us	

better	 understanding	 of	 the	 underlying	 transcriptional	 programs	 associated	 in	

OC.	EGR1	gene	is	usually	found	to	be	associated	with	~9.3	%	copy	gain	in	clinical	

OC	TCGA	samples	and	was	up-regulated	in	our	OSE-like	tumors.		EGR1	have	been	

linked	to	several	cancers	earlier.	In	gastric	and	colorectal	cancers	its	activity	has	

been	 linked	as	a	 tumor	suppressor	gene	which	when	mutated	promotes	 tumor	

development	(Choi,	Yoo,	Kim,	An,	&	Lee,	2016).	In	non-small	cell	lung	cancer	also	

it	has	been	associated	with	tumor	suppressor	properties	(H.	Zhang	et	al.,	2014).	

In	 others	 like	 prostrate	 caner	 its	 been	 shown	 to	 be	 over-expressed	 in	 tumors	

(Parra	 Villegas,	 Ferreira,	 &	Ortega,	 2011),	 (Gregg	&	 Fraizer,	 2011).	 	 It	 is	 often	

associated	 with	 multi-functional	 transcriptional	 activity	 that	 can	 promote	 or	

decrease	 tumor	 activity.	 This	 gene	 has	 not	 yet	 been	 explored	much	 in	 the	 OC	

field,	while	our	analysis	of	OSE-like	tumors	against	OSE	normal	tissues	pointing	

to	 it	 as	 candidate	 MR	 provides	 now	 a	 sound	 basis	 for	 its	 more	 systematic	

investigation	in	this	tumor.		
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3.1.5	Transcriptomic	analysis	involving	two	biological	tumors	spread	
(solid	EOC	and	fluidic	AS)	in	the	OC	patients	identified	inflammatory	
and	immune	response	signaling	switch	between	them	
	

It	 is	 familiar	 that	patients	harboring	 solid	HGSOC	are	often	diagnosed	with	AS.	

This	is	seen	in	one-third	of	the	OC	patients	(Ayantunde	&	Parsons,	2007;	Kipps,	

Tan,	 &	 Kaye,	 2013).	 As	 a	matter	 of	 fact	 these	 ascites	 confer	 to	 phenomena	 of	

chemo-resistance	 and	 relapse.	 These	 AS	 often	 provide	 rich	 source	 of	 tumor	

micro-environment	 stimulating	 the	 tumor	 cell	 growth	 along	 with	 chemo-

resistance	 (N.	 Ahmed	 &	 Stenvers,	 2013)	 .	 This	 was	 particularly	 interesting	 to	

capture	the	inherent	differences	between	the	solid	EOC	and	fluidic	AS	at	the	level	

of	 transcriptome	 in	our	patients	as	well	as	a	surrogate	to	 identify	 features	 that	

could	 lead	 to	 predict	 relapse.	 There	 have	 been	 lines	 of	 evidences	 that	 states	

HGSOC	being	heterogeneous	also	have	specific	mechanisms	of	how	these	ascites	

spread	and	settle	 (Auer	et	al.,	2015).	 	 So	my	goal	was	 to	 identify	 the	DE	genes	

between	these	two	tumoral	sources	and	find	molecular	events	specific	to	either.	

This	 could	 help	 in	 assessing	 the	 tumor	 spread	 and	 also	 give	 important	

information	regarding	the	pathways	associated	with	inflammation,	tumor-micro	

environment	that	are	characteristics	of	AS.	

DEA	 identified	 135	 genes	 that	 were	 significantly	 changing	 between	 EOC	 and	

highly	 aggressive	 AS	 that	 are	 OC	 infiltrating	 cells	 circulating	 near	 the	

peritoneum.	Both	tumor	sources	typically	share	certain	features	that	differ	their	

expression	 profiles.	 The	 classification	 power	 of	 these	 135	 DEGs	 is	 shown	 in	

Figure	 22	 by	 the	 unsupervised	 clustering	 analysis,	 where	 the	 tumor	 cluster	

according	 to	 their	 transition	 states.	 More	 than	 ~70%	 of	 the	 genes	 were	 up-

regulated	in	the	AS.	
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Figure	22:	Heatmap	representation	of	DEGs	between	2	tumoral	sources,	
EOC	and	AS	present	in	our	OC	datasets	

The	 above	 heatmap	 shows	 the	 DEGs	 between	 EOC	 and	 AS	 in	 our	 OC	 tumor	

cohort.	The	up-regulated	genes	are	represented	in	red	while	the	down-regulated	

are	represented	in	blue.	The	cell	type	represents	the	class	of	the	samples	which	

is	tumor	while	tissue	type	refers	to	both	the	transition	stages	that	sub	categorize	

the	tumors	in	EOC	and	AS	

3.1.5.1	Canonical	pathway	analysis	of	DEGs	between	EOC	and	AS	reveal	
inflammatory	and	immune	response	signals	
	

IPA	 canonical	 pathway	 analysis	 of	 these	 135	 DEGs	 revealed	 a	 number	 of	

signaling	pathways	significantly	enriched.	The	pathways	found	enriched	by	IPA	

analysis	revealed	that	most	of	them	were	inactivated.	Among	the	top	significant	

pathways	predicted	 to	be	 inactivated	by	 IPA	were:	CD28	Signaling	 in	T	Helper	

Cells,	Role	 of	NFAT	 in	Regulation	of	 the	 Immune	Response,	 Calcium-induced	T	
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Lymphocyte	 Apoptosis,	 iCOS-iCOSL	 Signaling	 in	 T	 Helper	 Cells,	 LXR/RXR	

Activation,	Dendritic	Cell	Maturation,	IL-8	Signaling	from	among	others.	Most	of	

them	were	related	to	inflammation	and	immune	responses	but	their	inactivation	

status	 was	 due	 to	 the	 fact	 that	 they	 were	 down-regulated	 in	 the	 EOC	 or	

conversely	these	pathways	were	enriched	in	AS	where	they	were	up-regulated.	

So	we	can	say	the	pathways	are	silenced	from	AS	to	EOC.		

	

Figure	23:	Pathway	identified	with	IPA	as	a	result	of	DE	genes	between	EOC	
and	AS	transcriptomes	in	OC	datasets	

IPA	 pathway	 analyses	 reveal	 mostly	 inflammatory	 and	 immune	 response	

signaling	 pathways	 to	 be	 inactivated	 between	 EOC	 and	 AS.	 The	 blue	 bars	
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represent	the	pathways	that	are	inactivated	and	the	blue	blocks	highlight	those	

inactive	pathways.	

MEA	revealed	89	over-represented	TFs	(p-value	<0.05),	however	none	of	 them	

were	differentially	expressed.	So	candidate	MR	that	were	also	DEGs	could	not	be	

could	not	be	obtained.	This	 is	possibly	due	to	the	fact	that	the	number	of	DEGs	

obtained	were	also	very	less	with	the	thresholds	that	have	been	considered	for	

analysis,	 or	 for	 the	 different	 turnover	 of	 the	 TF	 proteins	 that	 could	 be	

uncorrelated	 with	 their	 gene	 expression.	 Since	 our	 analysis	 is	 based	 on	 gene	

expression	 I	 focused	only	on	 those	TFs	whose	differential	gene	expression	and	

differential	protein	activity	were	positively	correlated.		

This	 analysis	 could	 trace	 the	 pathways	 that	 in	 particular	 list	 out	 the	 signaling	

pathways	that	are	triggered	due	to	differences	in	EOC	and	AS	which	are	mostly	

inflammatory	 or	 immune	 signaling	 pathways.	 These	 gives	 us	 an	 idea	 of	 the	

typical	pathways	associated	with	AS.		

3.2	Genetic	assessment	of	induced	pluripotent	stem	cell	clones	
in	context	of	Ovarian	Cancer		
	

Cancer	 is	 now	 widely	 held	 to	 result	 from	 a	 tight	 interplay	 of	 genetic	 and	

epigenetic	 aberrations,	 pointing	 to	 the	 need	 to	 dissect	 the	 genetic	 vs	 the	

epigenetic	 contribution	 in	 cancer	 pathogenesis.	 In	 addition,	 there	 is	 limited	

availability	of	suitable	models	that	can	recapitulate	its	phenotype,	a	dearth	that	

is	 particularly	 relevant	 in	 OC.	 Even	 though	 cell	 lines,	 tumor	 xenograft	 models	

may	provide	a	better	fit	but	their	scope	is	limited	when	it	concerns	the	capturing	

of	 intra-patient	 heterogeneity	 in	 the	 primary	 tumor	 samples.	 Most	 of	 these	

issues	are	proposed	to	be	overcome	with	the	multi-step	reprogramming	process.	



	 73	

This	multi-step	reprograming	process	resets	the	epigenetic	landscape	and	allows	

the	 setting	 of	 compatible	 transcriptional	 landscape.	 This	 indefinite	 expansion	

and	 differentiation	 of	 tumor-iPSCs	 would	 thus	 be	 able	 to	 capture	 the	 genetic	

variations	 and	 associate	 them	 to	 early	 developmental	 tumor.	 This	 makes	 it	 a	

perfect	fit	for	not	only	capturing	the	genetic	landscape	that	builds	up	the	mutant	

genome	of	 the	parental	 tumor	but	 also	 assess	 the	 epigenetic	 informations	 that	

were	encoded	in	it	which	gets	cleansed	in	its	reprogrammed	derivatives.	In	light	

of	this	my	primary	task	was	to	capture	the	genetic	lesions	in	the	parental	tumor	

and	to	map	their	match	in	their	tumor	iPSCs.	In	simple	terms	it	tracks	the	extent	

of	 parental	 genetic	 lesions	 of	 primary	 tumor	 that	 are	 preserved	 in	

reprogrammed	tumor-iPSCs	are	compatible	to	reprogramming.	WES	can	be	one	

of	 the	ways	 to	 address	 the	 extent	 of	maintenance	 of	 parental	 lesions	 between	

tumor	 and	 their	 reprogrammed	 derivatives	 and	 confirm	 if	 iPSC	 was	 indeed	

tumor	derived.	To	this	end,	I	performed	3-tier	approach	where	the	first	approach	

was	to	extract	the	somatic	mutations	that	could	be	potentially	representing	the	

key	genetic	lesions	in	tumor	(1	high	grade	serous	ovarian	carcinoma:	HG	and	1	

low	grade	OC	tumor:	LG)	and	preserved	in	their	derivative	tumor-iPSCs	(2	clones	

from	each	of	 the	HG	and	LG	tumor	hereby	named	as	HIPS1	and	HISP2	for	high	

grade	and	LIPS1	and	LIPS2	for	LG	tumor	derivatives	respectively).	 	The	second	

approach	was	to	identify	from	the	above-defined	somatic	mutations,	key	drivers	

that	are	mostly	found	to	be	recurrent	in	our	tumors	and	other	cancer	types.	Also	

to	track	the	extent	of	tumor	drivers	that	were	preserved	in	tumors	 iPSC	clones	

indicating	 that	 these	 reprogramed	 derivatives	 are	 driven	 by	 parental	 driver	

mutagenic	variations.	 	The	 final	 approach	was	 to	 find	 the	 somatic	CNAs	 in	our	
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data	and	 to	understand	 to	what	extent	 these	somatic	SNAs	were	 found	both	 in	

tumor	and	retained	in	the	tumor-iPSCs.		

3.2.1	Somatic	SNV	analysis	revealing	iPSCs	were	tumor	derived	
I	used	two	complementary	strategies	 to	capture	the	somatic	 tumor	and	tumor-

iPSCs	SNVs	with	both	VarScan2	(Koboldt	et	al.,	2012)	and	Mutect2	(Cibulskis	et	

al.	2013)	 to	derive	 the	high	confidence	mutations	 identified	by	both	platforms.	

There	were	high	inconsistencies	between	the	number	of	mutations	found	by	the	

two	algorithms	which	primarily	score	the	importance	of	both	algorithms	and	the	

mutations	 that	were	 commonly	obtained	by	both	were	designated	as	 the	most	

confident	 ones	 that	 could	 verify	 the	 extent	 of	 genetic	 background	 lesions	

preserved	between	both	tumor	and	their	derivative	iPSCs.	This	suggested	clearly	

that	 at	 least	 a	 fraction	 of	mutations	 found	 in	 tumor	were	 retained	 in	 the	 iPSC	

suggesting	 the	 reprogramming	 of	 a	 tumoral	 subclone	 rather	 than	 of	 a	 normal	

tumor-associated	cell.	VarScan2	is	an	open	source	software	for	variant	detection	

having	 compatibility	 with	 several	 short	 read	 aligners	 with	 immense	 ability	 to	

identify	SNPs	and	indels	of	high-sensitivity	and	specificity,	in	both	individual	and	

pooled	 samples.	 Mutect	 is	 a	 method	 developed	 for	 accurate	 identification	 of	

somatic	point	mutations	in	next	generation	sequencing	data	of	cancer	genomes.	

It	 uses	 Bayesian	 classifiers	 to	 find	mutations	with	 very	 low	 allelic	 frequencies	

and	 few	supporting	 reads,	using	 fine	 tuned	 filters	 to	 remove	artifacts	 ensuring	

high	specificity.	Using	this	pipeline	I	analyzed	the	detection	of	somatic	mutations	

for	 both	 control	 (here	 matched	 peripheral	 blood	 sample	 of	 the	 patients)	 vs.	

tumor	and	control	vs.	tumor-iPSC	comparisons	and	obtained	rare	somatic	events	

(not	 present	 in	 dbSNP	 database	which	 is	 a	 free	 public	 archive	 that	 catalogues	

genetic	 variation	within	 and	 across	 different	 species	 developed	 and	 hosted	 by	
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the	NCBI	 in	 collaboration	with	 the	NGHRI).	Upon	 comparing	 the	 somatic	 SNVs	

between	 tumor	 and	 tumor-IPSCs,	 I	 found	 of	 25%	 somatic	 mutations	 (with	

VarScan2)	shared	between	 the	 iPSC	and	 the	parental	 tumor	while	 fraction	was	

9%	shared	somatic	mutations	 	 (with	Mutect)	between	 iPSCs	and	their	parental	

tumor.	

a)	

	

	

b)	

	

Figure	24:	SNV	data	of	exome	analysis	

a)	Represents	the	number	of	somatic	SNVs	called	by	both	the	tool	on	each	of	

the	 tumor	 samples	 and	 their	 corresponding	 tumor-iPSCS.	 Red	 represents	
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Mutect	 while	 blue	 represents	 VarScan2	 b)	 Represents	 the	 overlap	 of	 the	

somatic	SNVs	in	same	samples	identified	both	by	Mutect	and	VarScan2.	

3.2.2	Somatic	CNV	and	driver	analysis	show	that	iPSCs	were	tumor	
derived	
	

Subsequently,	 I	 used	 Control-FREEC,	 a	 bioinformatics	 tool	 that	 can	 efficiently	

detect	 somatic	 chromosomal	 rearrangements	 at	 copy	 level	 from	 matched	

tumor/control	 samples	 applying	 the	 normalization	 and	 segmentation	 on	 the	

tumor/control	copy	profiles	generated	from	exome	data.	From	the	somatic	copy	

number	variations	(sCNV)	analysis	of	each	samples	 [Figure	25	a]	has	emerged,	

on	the	one	hand,	a	correlation	of	50%	[Figure	25b]	between	the	high-grade	iPSC	

and	the	high-grade	tumor.	One	the	other	hand	a	correlation	of	60%	[Figure	25b]	

between	 sCNVs	 of	 low-grade	 tumor	 and	 its	 derivative	 iPSCs,	 confirms	 that	 the	

iPSC	 were	 indeed	 tumor-derived,	 and	 were	 not	 the	 result	 of	 inadvertent	

reprogramming	of	potentially	contaminating	stromal	cells.		Figure	26	shows	the	

representative	 chromosomes	 in	 tumors	 and	 its	 iPSCs	 showing	 similar	 copy	

alteration	profiles.	

	

	

a		 	 	 	 	 	 	b	

											 								 	

Figure	25:	CNV	data	of	exome	analysis	
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a:	Represents	 the	number	of	CNV	regions	detected	across	 tumor	and	 its	

associated	iPSCs.	b:	Degree	of	overlap	of	CNV	regions	between	tumor	and	

its	 corresponding	 iPSC	 derivatives.	 At	 100%	 identity	 of	 CNVs	 regions	

shared	upon	reprogramming	 the	overlap	 is	50-60%	between	 tumor	and	

iPSCs,	upon	relaxing	the	identity	stringency	to	75%	or	50%	the	degree	of	

overlap	 of	 CNV	 regions	 between	 tumor	 and	 its	 iPSC	 counterparts	

increases	over	70%.	HIPS1	and	HIPS2	stands	for	iPSC	clone	1	and	clone	2	

of	high	grade	and	LIPS1	and	LIPS2	for	 iPSC	clone	1	and	clone	2	for	 low-

grade	tumors.	

	

Figure	26:	Representative	chromosomes	that	have	similar	copy	profiles	
between	its	tumor	and	corresponding	iPSC	clones	

Chr	19,20	and	21	capture	similar	copy	variations	across	HG	OC	and	HG-OC-iPSCs	

while	 similar	 trend	 is	also	obtained	 in	LG	OC	and	LG-OC-iPSCs	across	Chr	7,12	

and	17.	

The	 driver	 mutation	 analysis	 on	 the	 tumors	 and	 their	 iPSC	 derivatives	 was	

performed	using	IntOGen	(Gonzalez-Perez	et	al.,	2013),	a	bioinformatic	tool	that	

relies	 on	 the	 application	 of	 statistical	 methodologies	 aimed	 at	 filtering	 out	
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alterations	 that	 are	 expected	 by	 chance,	 and	 selecting	 only	 those	 that	 are	

statistically	significant	(driver	mutations).	From	these	analysis	mutations	in	the	

genes	F8,	ROBO2	and	TCF4	genes	were	assigned	driver	status	 in	LG	tumor	and	

its	 reprogrammed	 counterpart.	 F8	 has	 already	 been	 found	 to	 harbor	 driver	

mutation	in	other	OC	TCGA	samples	by	this	tool.	ROBO2	and	TCF4	have	not	only	

been	 assigned	 with	 driver	 status	 in	 other	 cancers	 like	 Cutaneous	 Melanoma,	

endometriod	carcinoma,	Medulloblastoma	by	IntOGen	but	also	as	key	drivers	in	

Pan-Cancer	project	across	20	different	tumor	types	(Weinstein	et	al.,	2013a).	In	

addition	I	 found	two	oncogenes	NSD1,	GFI1B	from	the	copy	variations	analysis	

that	are	shared	between	HG	OC	and	HG	OC-iPSCs	and	ETV3	and	ETS2	oncogenes	

from	copy	regions	shared	between	LG	OC	and	LG	OC-iPSC.	The	combined	set	of	

exon	mutations	and	CNA	that	have	been	generated	from	the	usage	of	the	above	

mentioned	 tools	 provides	 information	 about	 the	 order	 of	 magnitude	 of	 the	

lesions	associated	with	ovarian	malignancy	and	provide	a	 first	 identification	of	

the	candidate	genes	implicated	in	OC	development	as	well.		

These	 results	 from	 exome	 sequencing	 analysis,	 show	 that	 the	 mutations	 and	

copy	number	variations	harbored	in	iPSCs	are	coming	from	the	primary	tumor,	

and	 suggest	 that	 genetic	 background	 between	 iPSCs	 and	 the	 primary	 tumor	 is	

fractionally	preserved	during	reprogramming.	

3.2.3	Meta	analysis	of	the	candidate	genes	revealed	key	genetic	
players	associated	with	aberrations	in	publicly	available	TCGA	
datasets		
	

In	 order	 to	 compare	 the	 results	 obtained	 from	our	mutation	 and	CNA	analysis	

with	 the	 published	 datasets	 I	 used	 Cbioportal	 database	

[http://www.cbioportal.org/].	 This	 database	 provides	 a	 great	 resource	 for	
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researchers	 to	 search,	 analyze	 and	 visualize	 data	 sets	 of	 different	 cancer	

consortiums	across	 the	world	where	wealth	of	 information’s	of	 tumor	data	are	

preserved	 in	 forms	 of	 clinical	 information,	 genomic	 characterization	 data,	 and	

high	level	sequence	analysis.	Currently	the	database	hosts	21441	tumor	samples	

from	 91	 cancer	 studies.	 I	 interrogated	 the	 genes	 that	 were	mutated	 and	 copy	

number	 altered	 between	 HG	 OC	 and	 HG	 OC-IPSCs	 (an	 indication	 of	 somatic	

variations	 preserved	 upon	 reprogramming)	 and	 found	 some	 of	 them	 to	 be	

dysregulated	in	a	cohort	of	316	HG	OC	patients	with	a	frequency	of	above	15%	

[Figure	27].	 I	 found	 that	 the	 genes	PTP4A3,	C8ORF33	and	MBD1	associated	 to	

copy	variations	in	our	dataset	are	also	associated	with	copy	number	aberrations,	

up	 regulation	 and	mutation	 in	 316	 patients	 of	 HG	 OC	 TCGA	 (Weinstein	 et	 al.,	

2013b)	 with	 a	 frequency	 of	 alteration	 ranging	 between	 33-34%[Figure	 27].	

Interestingly	 these	 results	 suggest	 key	 genetic	 players	 associated	 with	

aberrations	 both	 in	 HG	 OC	 and	 OC-iPSCs	 of	 high	 grade	 and	 that	 are	 shared	

between	the	two	corroborating	the	fact	that	genetic	lesions	are	preserved	upon	

reprogramming.	

	

	

Figure	27:	Incidence	of	SNVs	and	CNVs	shared	between	HG	tumor	and	its	
iPSCs	across	TCGA	
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The	above	heatmap	represents	the	percentage	of	genes	dysregulated	in	OC	TCGA	

cohort	 in	 the	 cbioportal	 for	 the	 genes	 that	 were	 common	 SNVs	 and	 CNVs	

between	HG	 tumors	and	 its	 tumor-iPSC	derivative.	Amplification	 (copy-gain)	 is	

highlighted	in	bright	red	while	deletion	(copy-loss)	is	highlighted	in	bright	blue.	

The	 pale	 red	 represents	mRNA	 up-regulation	while	mRNA	 down-regulation	 is	

represented	 by	 pale.	 The	 green	 bar	 represents	missense	mutation	while	 black	

highlights	truncating	mutations.	

3.3	Molecular	characterization	of	primary	and	recurrent	
glioblastoma	through	transcriptomic	analysis			
	

We	dissected	 the	 transcriptomes	of	a	 rare	cohort	of	37	human	samples	 from	7	

patients	 derived	 from	 the	 infrequent	 surgery	 at	 disease	 recurrence.	 For	 each	

patient,	 glioma-initiating	 cells	 (GIC’s)	 were	 extracted	 along	 with	 the	 biopsies	

around	 the	 GICs	 that	 represented	 the	 peripheries.	 This	 was	 done	 for	 both	

primary	and	recurrent	samples.	 	The	peripheral	biopsies	of	 the	primary	 tumor	

were	 marked	 with	 MRI–detectable	 clips.	 This	 enabled	 our	 collaborators	 to	

establish,	 upon	 recurrence,	 the	 biopsied	 sites	 that	 sustained	 relapse.	 This	

provided	 us	 with	 a	 unique	 opportunity	 to	 trace	 the	 human	 GBM	 evolution	

avoiding	 confounding	 effect	 of	 the	 inter-individual	 genetic	 heterogeneity.	 The	

details	of	samples	extraction	are	provided	in	the	Materials	and	Methods	section	

2.1.1.	We	performed	RNA-Seq	on	these	topological	compartments	to	characterize	

the	genome-wide	expression	profile	representing:	i)	the	center	of	primary	tumor	

(PC);	 ii)	 the	 peripheries	 of	 the	 primary	 tumor	 that	 give	 rise	 to	 the	 recurrence	

(PGRT);	 iii)	 the	 peripheries	 of	 the	 primary	 tumor	 that	 do	 not	 give	 rise	 to	 the	

recurrence	(PDGRT);	iv)	the	center	of	the	recurrent	tumor	(RC);	v)	the	periphery	
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of	the	recurrent	tumor	giving	rise	to	a	tertiary	tumor	(RPGRT);	vi)	the	periphery	

of	 the	 recurrent	 tumor	 that	 do	 not	 giving	 rise	 to	 a	 tertiary	 tumor	 (RPDGRT).	

Figure	 28	 and	 Figure	 29	 show	 the	 topological	 compartments	 and	 the	 datasets	

considered	for	our	experimental	design	and	downstream	analyses.	

	

	
Figure	28:	Representation	of	the	patient’s	brain	with	tumor	depicting	the	
primary	tumor	and	the	recurrent	tumor	

	
a)	Representation	of	the	patient’s	brain	with	tumor	depicting	the	primary	tumor	

and	the	recurrent	tumor.	

b)	 Representation	 of	 topological	 compartments	 of	 the	 brain	 tumor	 at	 a	 sub-

cellular	level.	

	
	
	

Primary		tumor				
(PT)					

Tumor		 	resec1on			 Recurrent		tumor				
(REC)					

Adapted	and	modified	from	Lewis	et.	al,	2006		

Adapted	from	Glas	et	al.,	Ann	Neurol,	2010		
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Figure	29:	Representation	of	various	topological	compartments	of	the	
primary	and	recurrent	tumor	in	a	GBM	patient	along	with	nomenclature	

	
Upon	 profiling	 the	 transcriptomes	 of	 primary	 and	 recurrent	 GBM	 samples	 we	

performed	the	following	3	key	comparisons	by	following	the	analytical	workflow	

shown	in	figure	30:	

i) The	 transcriptomic	 difference	 between	 the	 primary	 vs	 recurrent	

tumor		

ii) 	The	 difference	 between	 tumorigenic	 vs	 non-tumorigenic	

peripheries	 in	 the	 primary	 tumor	 through	 evaluation	 of	 the	

contribution	with	that	of	the	primary	center	and	finally	the	

iii) 	The	 transcriptomic	 differences	 between	 primary	 peripheries	

giving	 rise	 to	 recurrent	 tumor	 vs	 the	 centers	 of	 the	 recurrent	

tumors.	

	

Dataset:	
7	pa*ents	
37	samples			

PC	 RC	RP
GR

T	

RPDGRT	
PC= Centers of Primary Tumor 
PGRT = Peripheries that give rise to the recurrent tumor 
PDGRT= Peripheries that do not give rise to the recurrent tumor 
RC = Centers of the recurrence 
RPGRT  = Recurrent peripheries giving rise to a tertiary tumor 
RPDGRT = Recurrent peripheries that do not gives rise to a tertiary tumors 
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Figure	30:	Analytical	workflow	employed	in	capturing	the	TF	mediated	
GBM	progression	

	

3.3.1	Transcriptomic	analysis	of	patients	with	primary	and	recurrent	
GBM		
	
Differential	expression	analysis	patients	with	primary	tumor	(PT)	and	recurrent	

tumor	(REC	GBM)	revealed	1702	differentially	expressed	genes	(1163	up	in	PT	

while	 539	 genes	 down	 regulated)	 with	 log2FC	 1.5	 and	 FDR	 <	 0.01.	 An	

unsupervised	clustering	analysis	based	on	 the	1702	DEGS	showed	 that	PT	and	

REC	GBMs	segregate	in		 	2	different	clusters,	highlighting	a	major	change	in	the	

transcriptional	programs	underlying	REC	GBM.		
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Figure	31:	Heatmap	of	DEGs	between	primary	and	recurrent	GBM	samples	

3.3.1.1	Canonical	pathways	enriched	as	a	result	of	differential	expression	
of	genes	between	primary	and	recurrent	GBM	patients	
	

A	 canonical	 pathway	 analysis	 of	 these	 DEGs	 revealed	 pathways	 like	 cAMP-

mediated	 signaling,	 endothelin-1	 signaling,	 intrinsic	 Prothrombin	 activation	

pathway,	Gai	Signaling,	etc	were	seen	to	be	inactivated	while	CDK5	signaling	and	

complement	system	pathway	of	innate	immunity	are	activated.		The	figure	below	

shows	the	most	significant	pathways	that	were	altered.		
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Figure	32:	Representation	of	enriched	pathways	found	by	IPA	as	a	result	of	
changes	in	gene	expression	between	PT	and	REC	GBM	

The	color	orange	represents	pathways	predictively	activated	as	found	by	IPA	and	

blue	represents	pathways	predictively	inactivated	as	found	by	IPA	

Suppression	 of	 the	 cAMP	pathway	 has	 been	 commonly	 seen	 in	many	 different	

types	 of	 cancers,	 including	 in	GBM	 in	which	 this	 pathway	has	 been	 seen	 to	 be	

suppressed	 and	 thereby	 counteract	 apoptosis	 (Daniel,	 Filiz,	 &	 Mantamadiotis,	

2016).	This	pathway	was	seen	to	be	inactivated	in	recurrent	GBM	samples	in	our	

datasets	thus	indicating	apoptosis	evasion	as	a	possible	mechanism	at	work	also	
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in	recurrent	stage	of	the	disease.	Several	 lines	of	evidence	have	been	cited	that	

indicate	 the	 importance	of	 endothelin-1	 receptor	 signaling	 or	ET-1R	 in	 cancer.	

Endothlein-1	 (ET-1)	 signaling	 is	 often	 considered	 crucial	 for	 cancer	 cell	

proliferation	either	as	stand-alone	factor	or	in	a	cooperative	manner	with	other	

tumor	 growth	 factors.	 Cell	 proliferation,	 metastasis,	 angiogenesis	 and	 drug	

resistances	 have	 been	 often	 evidenced	 to	 be	 regulated	 by	 ET-1R	 (Rosanò	 &	

Bagnato,	 2016).	 More	 specifically,	 its	 dysregulation	 has	 been	 linked	 to	

development	and	progression	in	many	cancers.	

In	addition	to	the	canonical	pathways	analysis,	we	interrogated	the	set	of	1702	

DEGs	between	PT	and	REC	GBMs	with	 the	gene	 set	 signatures	 that	distinguish	

the	4	GBM	subtypes:	classical,	mesenchymal,	proneural	and	neural	 (Verhaak	et	

al.,	2010).		These	gene	set	signatures	were	defined	by	the	TCGA	consortium	in	a	

large	cohort	of	GBM	patients	and	showed	a	high	prognostic	value.	

The	comparison	of	these	gene	set	signatures	with	our	DEGs	showed	an	overlap	

of	16	genes	with	the	gene	set	signature	enriched	in	the	classical	subtype,	49	with	

mesenchymal,	 14	 pro-neural	 and	 9	 with	 Neural.	 	 The	 overlap	 analysis	 using	

hypergeometric	test	revealed	a	significant	overlap	with	the	genes	characterizing	

the	 mesenchymal	 subtype	 (p<	 2.400e-12)	 of	 which	 92%	 	 (45/49)	 were	 up-

regulated	in	PT		(figure	33).		
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a)	

	
	
b)	

	
	
Figure	33:	DEGs	between	PT	and	REC	GBM	are	enriched	for	mesenchymal	
signature	genes	(Verhaak	et	al.,	Cancer	Cell,	2010)	
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a) Heatmap	 of	 DEGs	 overlapping	 for	 specific	 Verhaak	 GBM	 signature	

between	PT	and	REC	GBM	samples	

b) Two	way	plot	of	the	DEGs	enriched	for	each	signature.	x-axes	represents	

the	4	molecular	subtypes	while	left	y	axes	represents	the	number	of	genes	

enriched	 for	 each	 subtype	 and	 right	 y	 axis	 shows	 the	 –log10(p-value)	

enrichment	 score	 for	 those	 signatures.	 Only	 the	 genes	 under	

mesenchymal	 subtype	 are	 significantly	 enriched	 also	 marked	 in	 green	

box.	

	
Figure	34	a)	 represents	 the	overlap	between	our	DEGs	 (defined	 in	PT	Vs	REC)	

and	the	4	gene	set	signatures	enriched	in	the	4	GBM	molecular	subtypes	defined	

by	 Verhakk	 et	 al.	 when	 assessed	 separately	 based	 upon	 their	 direction	 of	

regulation.		

	
a)	

	

p < 2.013e-04 

p < 0.010 

p < 0.034 

p < 3.723e-10 

p < 0.007 
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b)	

	
	
Figure	34:	Enrichment	of	up	and	down-regulated	genes	separately	to	that	
of	the	Verhaak’s	GBM	signatures	

a) Down-regulated	genes	in	REC	GBM	(i.e.	up-regulated	in	PT)	are	the	most	
significantly	enriched	for	Verhaaks’	mesenchymal	signature	genes.	

b) Only	genes	down-regulated	 in	REC	GBM	showing	significant	enrichment	
for	 mesenchymal’s	 signature	 shows	 significant	 enrichment	 for	 GO	
categories	specifically	for	Biological	Processes.	

	
The	Venn	diagram	in		figure	34a		(left	)		represents	the	overlap	between	the	gene	

set	 signatures	 of	 the	 4	molecular	 subtypes	 and	 the	 DEGs	 up-regulated	 in	 REC	

GBM	while	 the	 right	 represents	 the	DEGs	down-regulated	 in	REC	GBM.	Among	

the	DEGs	 that	were	 down-regulated	 in	 REC	GBM	 even	 showed	 enrichment	 for	

gene-ontology	 categories	 for	 biological	 process	 that	 were	 associated	 with	

mesenchymal	 signatures.	 Above	 figure	 34b	 shows	 the	 various	 Biological	

processes	 that	 are	 involved	 with	 mesenchymal	 signatures.	 Processes	 like	
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growth	factor,	negative	regulation	to	immune	system	and	various	migratory	and	

adhesion	 process	 were	 seen	 to	 be	 enriched	 for	 these	 45	 DEGs	 that	 were	 up-

regulated	in	PT	and	significantly	enriched	for	mesenchymal	signatures.	

	

3.3.1.2	DEGs	involved	TFs	between	PT	versus	REC	GBM	
	
Among	these	DEGs	I	found	103	human	TFs	(the	list	of	human	TFs	were	extracted	

from	 AnimalTFdb	 database	 http://bioinfo.life.hust.edu.cn/AnimalTFDB1.0/)	

that	were	differentially	expressed	as	shown	in	the	barplot	in	figure	35.		

	
	
Figure	35:	Barplot	representing	TFs	involved	as	DEGs	between	PT	and	REC	
GBM	

IPA	 pathway	 analysis	 of	 these	 103	 core	 TFs	 that	 could	 characterize	 the	

contribution	 of	 TF	 mediated	 trancriptomic	 differences	 underlying	 primary	 vs	

recurrent	 tumor	 revealed	 Adipogenesis	 pathway,	 Sonic-hedgehog	 (SHH)	

signaling	pathway	and	TGF-B	signaling	pathway.	These	pathways	were	however	

not	 predicted	 to	 be	 activated	 or	 inactivated	 in	 the	 REC	 GBM	 by	 IPA	 but	were	

found	altered	due	to	the	differential	expression	of	these	genes.	Interestingly,	the	

alteration	 of	 these	 pathways	was	 due	 to	 the	 enrichment	 for	 genes	 specifically	
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down	regulated	 in	REC	GBM	samples.	 Figure	36	 (below)	 shows	 two	panels	 for	

the	pathways	enriched	for	TF	DEGs	between	PT	and	REC	GBM.	The	former	panel	

shows	 only	 the	 pathways	 while	 the	 second	 panel	 indicates	 the	 TF	 DEGs	 that	

enriched	these	pathways	are	mostly	down-regulated	in	REC	GBM.		

	

Figure	36:	Pathways	involved	between	TF	DEGs	between	PT	and	REC	GBM	
shows	they	are	dominated	by	down	regulated	genes	in	REC	GBM	

	
The	first	panel	shows	pathways	that	were	enriched	by	IPA	(however	none	was	

predictively	 assigned	 to	 be	 activated/inactivated	 by	 IPA).	 The	 second	 panel	

shows	 the	same	pathways	but	with	an	alternative	representation	revealing	 the	

contribution	 of	 down	 and	 up-regulated	 genes	 in	 them.	 Green	 color	 represents	

genes	 down	 regulated	 in	 REC	 GBM	 while	 red	 signifies	 those	 that	 were	 up	

regulated.	

	
The	 enrichment	 of	 the	 SHH	 pathway	 is	 mostly	 due	 to	 genes	 that	 are	 down-

regulated	 genes	 in	 REC	 GBM,	while	 the	 enrichment	 for	 the	 TGF-Beta	 pathway	

comprises	both	up	and	down-regulated	genes.	This	was	not	so	informative	about	

the	 status	 of	 pathways	 that	 characterize	 the	 recurrent	 tumor	 but	 gave	 an	
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indication	 of	 the	 direction	 of	 dysregulation	 in	 these	 pathways.	 I	 also	 found	

oncogenes	among	these	103	TFs	that	were	differentially	expressed	between	PT	

vs	 REC	 GBM.	 Upon	 interrogation	 of	 these	 103	 TF	 DEGs	 with	 oasis-cancer	

genomics	 portal	 developed	 by	 the	 Pfizer	 Computational	 Biology	 Group	

(Fernandez-Banet	et	al.,	2015)	I	found	17	oncogenes.	This	analysis	revealed	that	

some	 of	 these	 TF-Oncogenes,	 which	were	 DEGs	 between	 PT	 vs	 REC	 GBM	 had	

high	level	of	dysregulation	in	577	TCGA	GBM	samples.	Genes	like	CREB3L2	have	

frequency	of	over	~67%	times	having	a	low-level	gain	of	copy	in	577	TCGA	GBM	

samples	 while	 MAFK	 represented	 over	 ~60%	 of	 the	 similar	 copy	 gain	

dysregulation	 in	 total	number	of	577	GBM	TCGA	samples.	The	 figure	37	below	

represents	 the	 TF-Oncogenes	 that	 were	 DEGs	 between	 PT	 vs	 REC	 GBM	 along	

with	their	level	of	dysregulation	in	clinical	TCGA	samples.		This	figure	scores	the	

importance	 of	 these	 DE	 TF-oncogenes	 and	 their	 relevance	 not	 only	 in	 our	

datasets	but	also	in	clinical	TCGA	GBM	patients.		

	

	
	
Figure	37:	TF	DEGs	involves	a	set	of	oncogenes	that	shows	high	level	of	
dysregulation	in	clinical	GBM	TCGA	samples	
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3.3.1.3	Motif	enrichment	analysis	predicted	a	core	set	of	oncogenes	and	
tumor	suppressor	genes	encoding	for	TFs	controlling	the	transcriptional	
programs	in	REC	GBM	
	
After	the	definition	of	the	transcriptomic	changes	underlying	GBM	recurrence,	I	

interrogated	 the	 differentially	 expressed	 between	 PT	 and	 REC	 GBMs	 by	

performing	 the	 TF	 motif	 enrichment	 analysis	 (MEA).	 This	 analysis	 aims	 at	

providing	 a	 mechanistic	 interpretation	 of	 the	 transcriptomic	 changes	 in	

recurrent	 GBM	 by	 identifying	 putative	 TFs	 master	 regulators	 through	 the	

analysis	 of	 the	 binding	 sites	 at	 the	 promoter	 regions	 of	 the	 DEGs.	 Master	

regulators	 TFs	 are	 key	 molecules	 of	 a	 cellular	 network	 that	 are	 supposed	 to	

control	 the	 cell-type	 specific	 transcriptional	 programs.	 Indeed,	 as	was	 recently	

argued,	the	aberrant	activity	of	master	regulators	is	"both	necessary	and	sufficient	

for	 tumor	 cell	 state	 implementation	 and	 maintenance"	 (Andrea	 Califano	 &	

Mariano	 J.	 Alvarez,	 Nature	 Reviews	 Cancer	 2016).	 Motif	 enrichment	 analysis	

(MEA)	was	done	on	the	promoter	sequences	of	entire	1702	DEGs	obtained	as	a	

result	 of	DE	analysis	between	PT	vs	REC	GBM	with	Pscan	 tool	 (Zambelli	 et	 al.,	

2009)	 with	 default	 settings.	 MEA	 revealed	 61	 over-represented	 TFs	 with	 a	 p-

value	less	than	0.05	where	5	of	them	happened	to	be	differentially	expressed	in	

our	comparison:	TFAP2C,	ZIC4,	ZIC1,	EBF1	and	KLF4.	These	5	TFs	were	found	to	

be	down-regulated	in	the	REC	GBM	samples.		Figure	38	shows	the	incidence	of	5	

of	these	targets	in	GBM	TCGA	and	confers	the	status	of	Oncogene	to	them.		
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Figure	38:	Representation	of	dysregulation	of	over-represented	TFs	that	
are	DEGs	in	clinical	GBM	TCGA	samples	

The	 left	 panel	 shows	 the	 list	 of	 over-represented	 TF	 targets	 found	 from	MEA	

analysis	 that	are	differentially	expressed	 in	our	GBM	datasets.	The	table	shows	

their	dysregulation	in	clinical	GBM	TCGA	samples,	while	the	barplot	on	the	right	

shows	their	down-regulation	in	REC	GBM.	

Among	these	gene	sets	I	found	the	oncogene	EBF1	and	a	tumor-suppressor	gene	

(TSG)	KLF4,	 both	 down-regulated	 in	REC	GBM	when	 compared	 to	 PT.	 KLF4	 is	

regarded	as	a	key	transcriptional	target	in	breast-cancers	and	colon-cancers.	Its	

over-expression	has	been	 shown	 to	be	 associated	with	 reduced	 tumorigenicity	

(Dang	et	al.,	2003),	 (Wang	et	al.,	2015).	This	can	be	an	 important	 transcription	

factor	when	assessed	in	vitro	to	see	if	 its	over-expression	in	REC	GBM	could	be	

associated	 with	 reduced	 tumorigenicity	 in	 our	 GBM	 model.	 The	 tumor	

suppressor	 role	 of	 EBF	 family	 genes	 as	 transcription	 factors	 has	 already	 been	

associated	in	GBMs	(Liao,	2009),	(Guilhamon	et	al.,	2013).Particularly,	EBF1	has	

been	reported	to	associate	with	TET2,	a	member	of	the	TET	enzyme	family	that	

cause	 oxydation	 of	 5-methyl-cytosine	 (5mC)	 that	 will	 eventually	 lead	 to	 DNA-

demethylation	 at	 specific	 loci.	 Inhibition	 of	 EBF1	 might	 be	 an	 alternative	

mechanism	 to	 achieve	 aberrant	 DNA	 hypermethylation	 during	 gliomagenesis	

(Guilhamon	et	al.,	2013).	Since	the	orchestrated	regulation	of	DNA	methylation	is	

crucial	 for	 neuronal	 differentiation	 (Mohn	 et	 al.,	 2008),inactivation	 of	 dna	

demethylation	could	alter	physiological	differentiation	and	thereby	contribute	to	

the	oncogenic	phenotype.		

Note:	 KLF4	 is	 not	 described,	 as	 a	 tumor	 suppressor	 here	 since	 the	 version	 of	

Cancer	 Gene	 Census	 used	 by	 OASIS-cancer	 genomics	 is	 v70	 while	 the	 current	
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upgraded	 version	 of	 Cancer	 Gene	 Census	 in	 COSMIC	 database	 is	 v78,	 which	

confers	it	as	a	tumor	suppressor.	

	

3.3.2	Capturing	the	transcriptomic	differences	between	tumorigenic	
versus	non-tumorigenic	peripheries	in	the	primary	tumor	of	GBM	
patients	through	evaluation	of	the	contribution	with	that	of	the	
primary	center		
	
I	 studied	 differences	 between	 the	 tumorigenic	 (peripheries	 giving	 rise	 to	

recurrent	 tumor:	 PGRT)	 and	 the	 non-tumorigenic	 peripheries	 (peripheries	

accorded	as	not	giving	rise	to	recurrent	tumor	based	on	their	topology:	PDGRT)	

in	 the	 GBM	 samples	 of	 the	 PT.	 This	 was	 done	 by	 assessing	 their	 differential	

regulation	upon	a	base	reference	of	the	primary	center	(PC)	thus	extracting	only	

the	 DEGs	 that	were	 exclusively	 altered	 in	 the	 PGRT	 and	 the	 PDGRT	 of	 the	 PT	

from	 the	 PC.	 The	 genes	 that	 were	 altering	 in	 PGRT	 might	 seat	 for	 molecular	

events	 that	 prepared	 the	 tumor	 microenvironment	 that	 could	 lead	 to	 a	

recurrence.	On	the	other	hand	the	genes	altered	in	the	PDGRT	could	be	regarded	

as	turnover	genes	whose	over-expression	could	lead	to	reduced	tumorigenicity.		

The	PCA	projection	of	the	samples	belonging	to	PGRT	and	PDGRT	revealed	that	

both	the	tumorigenic	and	non-tumorigenic	cellular	compartments	had	strikingly	

no	 difference	 at	 the	 level	 of	 gene	 expression.	 	 Upon	 projecting	 the	 first	 two	

principal	 components	 (PC1	 and	 PC2)	 that	 accounted	 for	 the	 majority	 of	 the	

variability	as	seen	in	the	below	figure	39	a,	it	was	evident	that	the	samples	were	

not	 clustering	 based	 on	 their	 cell	 type.	 Upon	 performing	 the	 differential	

expression	analysis	as	well	there	was	no	DEGs	as	seen	in	(Figure	39	b).		

	
	
	
	



	 96	

a)	

	
	
b)		
	

	
	
Figure	39:	The	PCA	plot	on	the	shows	that	upon	performing	batch	
correction	this	difference	between	tumorigenic	and	non-tumorigenic	
peripheries	at	transcriptional	level	are	majorly	compromised	

a)	Represents	the	samples	clustering	for	PGRT	and	PDGRT	in	orthogonal	space.	

b)	Represents	the	number	of	DEGs	obtained	while	comparing	the	various	cellular	

compartments.	
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So	 I	devised	a	strategy	to	account	 for	 the	differences	between	tumorigenic	and	

non-tumorigenic	 peripheries	 by	 assessing	 their	 differential	 regulation	 upon	 a	

base	reference	of	the	primary	center	(PC).	This	was	done	as	shown	in	the	figure	

13	where	 the	DEA	was	performed	between	PC	and	 the	peripheries	 (PGRT	and	

PDGRT	here)	separately	that	extracted	only	exclusive	DEGs	between	tumorigenic	

and	non-tumorigenic	peripheries.	This	gave	me	48	DEGs	that	exclusively	altered	

between	 PC	 and	 PGRT	 while	 515	 DEGs	 altering	 exclusively	 between	 PC	 and	

PDGRT.	Upon	farther	assessing	their	directionality	through	their	contribution	to	

PC,	 genes	 specifically	 altering	 in	 tumorigenic	 and	 non-tumorigenic	 peripheries	

were	obtained.		

	

	
	
	
Figure	40:	Representative	figure	of	extracting	exclusive	DEGs	changing	
between	tumorigenic	and	non-tumorigenic	peripheries	through	their	
contribution	with	that	of	primary	centers	of	the	PT	

	
The	figure	41	(left	heatmap)	shows			the	515	genes	exclusively	altered	between	

PC	and	PDGRT;	and	(right	heatmap)	the	48	exclusive	DEGs	altering	between	PC	

and	PGRT.		
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Figure	41:	Left	heatmap	represents	the	exclusive	DEGs	between	PC	and	
non-tumorigenic	peripheries.	While	the	right	heatmap	represents	the	
exclusive	DEGs	between	PC	and	tumorigenic	peripheries	from	their	
baseline	primary	center	of	PT	

	
Among	 the	 515	 exclusive	 DEGs	 between	 PC	 and	 PDGRT	 there	 were	 few	

oncogenes	 that	 were	 differentially	 expressed.	 Oncogenes	 like	 ACKR3,	 FGFR3,	

FOXO1	whose	 expressions	 level	were	 progressively	 going	 down	 in	 PDGRT	 not	

only	from	the	PC	but	also	from	the	PGRT.		However	the	expression	of	these	genes	

went	 up	 in	 the	 center	 of	 the	 relapse	 tumors.	 These	 genes	 could	 be	 fairly	

important	as	well	contributing	to	the	relapse.	

The	 genes	 that	were	DEGs	 (n=48)	 exclusive	 to	 the	 comparison	 between	 PGRT	
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molecular	 events	 specific	 to	 transition	 from	 primary	 tumor	 to	 relapse.	 These	

exclusive	48	DEGs	that	differ	between	the	cellular	compartments	of	PC	and	PGRT	
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attributed	due	 to	 the	 specific	molecular	 events	 these	48	DEGs	 trigger	 and	also	

since	they	show	high	dysregulation	in	clinical	TCGA	GBM	samples.	Out	of	 these	

48	 exclusive	 DEGs,	 some	 of	 them	 were	 found	 to	 have	 high	 frequency	 of	

dysregulation	 in	 clinical	 GBM	TCGA	 samples.	 	 In	 particular,	 BICC1	 and	 TDRD1	

have	been	reported	with	copy	loss	in	GBM	samples	over	~25%	of	samples.	Both	

of	these	genes	were	down-regulated	in	our	PC	while	their	expression	went	up	in	

the	PGRT	which	topologically	neighbors	the	REC	GBM.	The	expression	of	TDRD1	

was	 farther	 down	 in	 RC	 of	 REC	 GBM	 centers	 while	 that	 of	 BICC1	 was	 still	

partially	maintained	 in	 our	 RC	 of	 REC	 GBM	 samples.	 BNC2	 (a	 human	 TF)	was	

found	as	up-regulated	in	PGRT	whose	expression	was	also	maintained	in	the	RC	

of	 REC	 GBM	 samples.	 	 BNC2	 is	 often	 been	 reported	 to	 be	 associated	 with	 a	

chromosomal	 loss	 in	 tumors	 like	 HCC	 (Wu,	 Zhang,	 Liu,	 Lu,	 &	 Chen,	 2016).	 Its	

relapse	has	not	been	associated	with	GBM	as	of	now	however	on	retrospective	

inspection	 of	 this	 gene	 in	 clinical	 TCGA	 samples	 of	 GBM	 it	 was	 found	 to	 be	

associated	with	 copy	 loss	 in	~27%	of	 them.	This	 analysis	 also	 revealed	a	 gene	

SPOCK2	whose	 expression	went	 down	 from	PC	 to	 PGRT	while	 it	 is	 expression	

was	up	in	the	RC	of	REC	GBM	samples.	This	gene	has	been	associated	with	a	copy	

loss	 in	 over	 ~45%	 of	 TCGA	 GBM	 samples.	 	 Some	 other	 genes	 have	 also	 been	

identified	 from	 this	 analysis	 like	 CLDN4	 (associated	 with	 ~67%	 copy	 gain	 in	

TCGA	GBM),	SNORD17,	ICAM1	and	ICAM5	(associated	with	~27	%	copy	gain	in	

TCGA	GBM).		CLBN4,	ICAM1	and	ICAM5	expression	was	going	down	from	PC	to	

PGRT	while	they	went	up	in	the	RC	of	REC	GBM.		Finally	I	also	found	an	oncogene	

PDGFRA	 that	 is	 up-regulated	 in	 PGRT	with	 comparison	 to	 PC	 and	was	 farther	

maintained	in	RC	of	REC	GBM.	The	analysis	of	the	gene	association	with	clinical	

TCGA	GBM	samples	is	done	with	OASIS-Cancer	genomics	platform.	This	analysis	
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thus	 revealed	 some	 key	 important	 genes	 that	 attributed	 to	 contributing	

properties	 of	 invasiveness	 and	migration	 that	 could	 be	 potentially	 responsible	

for	the	relapse.	

	

	

	
	
Figure	42:		DEGs	between	PGRT	and	PDGRT	of	GBM	primary	tumors	

a)	The	Venn	diagram	represents	the	DEGs	specifically	up	and	down	regulated	in	

tumorigenic	 and	 non-tumorigenic	 peripheries.	 b)	 Heatmap	 representation	 of	

these	DEGs	specifically	between	tumorigenic	and	non-tumorigenic	peripheries.	
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changing	 between	 tumorigenic	 and	 non-tumorigenic	 peripheries	 which	

otherwise	was	not	visible	when	DEA	was	directly	applied	on	these	two	cellular	

compartments.	 	Thus	 the	difference	between	 tumorigenic	and	non-tumorigenic	

peripheries	at	the	level	of	gene	expression	was	obtained	from	this	analysis.		

Pathway	analysis	was	done	on	these	genes	that	were	specifically	up	and	down	in	

PGRT	and	PDGRT.	IPA	canonical	pathway	analysis	only	revealed	axonal	guidance	

signaling	pathway	to	be	significantly	enriched	as	a	result	of	the	changes	in	gene	

expression	between	tumorigenic	and	non-tumorigenic	cellular	compartments.	

MEA	analysis	on	these	DEGs	revealed	around	93	over-represented	TFs	that	were	

having	binding	sites	with	 the	DEGs.	Upon	 integration	of	 these	upstream	TFs	 to	

the	 DEGs	 of	 this	 comparison,	 I	 found	 EGR2	 as	 an	 upstream	 TF	 that	 was	 also	

differentially	 expressed	 between	 PGRT	 and	 PDGRT.	 This	 gene	 was	 reportedly	

found	 to	 be	 associated	 with	 ~45.06%	 of	 copy	 loss	 while	 the	 deletion	 level	

associated	 is	 around	 20%	 in	 clinical	 TCGA	 GBM	 samples	 by	 OASIS-Cancer	

genomics	 platform.	 Role	 of	 EGR2	 in	 cancers	 have	 been	 published	 already.	 In	

metastatic	Leiomyosarcoma	this	gene	was	overexpressed	(Davidson	et	al.,	2014).	

It	was	also	been	found	to	be	associated	with	functioning	of	the	immune	system.	It	

was	 rather	 appearing	 to	 be	 acting	 as	 a	 molecular	 switch	 for	 the	

immunomodulators	 that	gets	affected	 in	harsh	hypoxic	environments	 (Barbeau	

et	al.,	2014).	 	This	analysis	was	able	 to	 find	an	 important	TF	 that	 is	associated	

with	immunomodulatory	functions.	

3.3.3	Transcriptomic	analysis	between	primary	tumorigenic	
peripheries	and	recurrent	tumor	centers	of	the	GBM	patients	to	
capture	the	transitory	events	underlying	a	relapse.	
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Finally,	I	performed	a	DE	analysis	in	order	to	identify	the	transcriptional	changes	

that	characterize	the	transition	between	tumorigenic	peripheries	of	PT	and	the	

recurrent	 centers.	 This	 analysis	 allows	 understanding	 the	 molecular	 events	

associated	with	 relapse	 at	 a	 deeper	partitioning	of	 cellular	 compartments.	 The	

analysis	 revealed	 near	 about	 3446	 DEGs	 that	 were	 up	 and	 down	 regulated	

between	 PGRT	 vs	 RC	with	 FDR	 <	 0.01	 and	 log2FoldChange	 1.5.	 	 Among	 these	

DEGs	~56%	of	them	were	up-regulated	 in	RC	of	 the	REC	GBM.	The	heatmap	in	

Figure	43	shows	the	DEGs	between	PGRT	of	PT	and	RC	of	REC	GBM.	

	

	
Figure	43:	Heatmap	representation	of	DEGs	between	PGRT	of	PT	and	RC	of	
REC	GBM	
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3.3.3.1	Canonical	pathway	analysis	of	DEGs	between	tumorigenic	
peripheries	of	PT	and	recurrent	centers	of	RECG	GBM	reveals	metabolic	
and	growth	pathways		
IPA	 canonical	 pathway	 analysis	 of	 the	 overall	 DEGs	 is	 able	 to	 provide	 us	 the	

pathways	 that	were	 activated	or	 inactivated	 as	 a	 result	 of	 the	 changes	 in	 gene	

expression.	 Some	 of	 the	 most	 significant	 pathways	 that	 were	 altered	 are	

highlighted	in	figure	44.	

	

	

Figure	44:	Representation	of	enriched	pathways	found	by	IPA	as	a	result	of	
changes	in	gene	expression	between	PGRT	of	PT	and	RC	of	REC	GBM	
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Orange	blocks	represent	activation	while	blue	block	represents	inactivation.	The	

orange	 line	 represent	 the	 log	 (B-H)	 p-value	 with	 the	 orange	 dots	 reports	 the	

fraction	 of	 target	 molecules	 enriched	 for	 a	 particular	 pathway	 against	 all	 the	

molecules	that	builds	it	up.	

The	 canonical	 pathway	analysis	predicted	 the	 activation	of	 the	 following:	GBM	

signaling,	 Neuropathic	 Pain	 Signaling	 in	 Dorsal	 Horn	 Neurons,	 Glutamate	

Receptor	Signaling,	TGF-Beta	Signaling,	Basal	Cell	Carcinoma.	The	pathways	that	

got	inactivated	were:	cAMP-mediated	signaling,	Wnt/Beta-catenin	signaling	and	

Protein-Kinase	A	signaling.	This	suggested	that	the	relapse	was	due	to	activation	

of	 metabolic	 and	 growth-signaling	 pathways,	 which	 could	 have	 provided	

immunosuppression,	proliferation	and	stemness	to	tumor	cells.	

In	 addition,	 I	 also	 performed	 an	 enrichment	 analysis	 for	 the	 gene	 expression	

signatures	associated	to	the	4	molecular	subtypes	of	GBM	(Verhaak	et	al.,	2010)	

in	our	DEGs	between	PGRT	of	PT	and	RC	of	REC	GBM.	I	found	60	DEGs	associated	

to	 classical,	 71	 associated	with	mesenchymal,	 72	 proneural	 and	 29	Neural.	 All	

these	enrichments	with	the	signatures	were	statistically	significant.	The	heatmap	

in	the	figure	45	shows	the	DEGs	enriched	for	each	of	the	4	molecular	subtypes.	
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Figure	45:	DEGs	between	PGRT	of	primary	tumor	(PT)	and	RC	of	REC	GBM	
are	enriched	for	Verhaaks’	GBM	signature	genes	

a)	 Heatmap	 of	 DEGs	 overlapping	 for	 specific	 Verhaak	 GBM	 signature	 between	

PGRT	of	PT	and	RC	of	REC	GBM	samples.	b)	Two	way	plot	of	the	DEGs	enriched	

for	each	signature.	x-axes	represents	the	4	molecular	subtypes	while	left	y	axes	

represents	the	number	of	genes	enriched	for	each	subtype	and	right	y	axis	shows	
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the	 –log10(p-value)	 enrichment	 score	 for	 those	 signatures.	 Enrichment	 was	

significant	for	all	the	4	signatures.	

	
Among	these,	only	55	genes	up-regulated	only	 in	PGRT	showed	enrichment	for	

mesenchymal	 signature	with	 a	p	<	2.02e-04	 (Figure	46	a	 right	Venn	diagram).	

This	 showed	 even	 at	 a	 deeper	 cellular	 compartment	we	 find	 an	 enrichment	 of	

mesenchymal	 genes	 only	 up-regulated	 in	 PGRT	 of	 PT	 (conversely	 down-

regulated	in	RC	of	REC	GBM).	There	were	some	other	interesting	observation	as	

well	 which	 revealed	 among	 these	 DEGs,	 specially	 those	 that	 were	 only	 up-

regulated	 in	 the	RC	 of	 the	REC	GBM	had	 enrichment	 for	mostly	 Proneural	 (65	

genes	with	p	<	p	<	7.132e-12)	followed	by	Classical	(48	genes	p	<	8.275e-06)	as	

seen	 in	 Figure	46	 a	 left	 Venn	diagram.	 	 These	 genes	 there	were	 then	 assessed	

separately	upon	their	direction	to	find	the	significant	enrichment	of	up	and	down	

genes	in	each	of	the	signatures.	

	a)	

	
b)	

p < 1.385e-04  

p < 7.132e-12 
p < 8.275e-06 

p < 9.504e-04 

p < 2.022e-04 

p < 5.857e-07 

p < 0.002 
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Figure	46:	Enrichment	of	up	and	down-regulated	genes	in	RC	of	REC	GBM	
are	enriched	for	Verhaaks’	GBM	molecular	subtype	signature	genes	

	
	a)	 Venn-diagram	 of	 DEGs	 overlapping	 for	 specific	 Verhaak	 GBM	 signature	

between	PGRT	of	PT	and	RC	of	REC	GBM	samples	based	on	directionality.	b)	Only	

genes	 down-regulated	 in	 RC	 of	 REC	 GBM	 (i.e.	 up-regulated	 in	 PGRT)	 showing	

significant	 enrichment	 for	 mesenchymal’s	 signature	 also	 showed	 significant	

enrichment	for	GO	categories	specifically	for	Biological	Processes.	

	
Venn	diagram	46	a)	represents	the	significance	of	the	DEGs	enriched	for	each	of	

the	 4	molecular	 subtypes	 defined	 by	 Verhakk	 et	 al.	 when	 assessed	 separately	

based	 upon	 their	 direction	 of	 regulation.	 In	 Figure	 46a)	 the	 left	 Venn	 diagram	

represents	 the	 overlap	 of	 Verhaak	 signatures	 with	 DEGs	 up-regulated	 in	 REC	

GBM	while	 the	 right	 represents	 the	DEGs	down-regulated	 in	REC	GBM.	Among	

the	 DEGs	 that	 were	 down-regulated	 in	 REC	 GBM	 (conversely	 up-regulated	 in	

PGRT)	 even	 showed	 enrichment	 for	 gene-ontology	 categories	 for	 biological	
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process	that	were	associated	with	mesenchymal	signatures.	The	GO	figure	46	b)	

represents	 the	 various	 biological	 processes	 that	 were	 involved	 with	

mesenchymal	signatures	(up-regulated	 in	PGRT	of	PT).	Processes	 like	response	

to	transforming	growth	factor,	cellular	response	to	transforming	growth	factor,	

response	 to	 cytokine,	 negative	 regulation	 to	 immune	 system	 and	 various	

migratory	and	adhesion	process	were	seen	to	be	enriched	for	these	45	DEGs	that	

were	 up-regulated	 in	 PGRT	 of	 PT	 and	 significantly	 enriched	 for	 mesenchymal	

signatures.	

3.3.3.2	DEGs	between	PGRT	versus	RC	of	REC	GBM	involved	a	set	of	human	
TFs	that	classified	their	transcriptomes	
	I	was	interested	to	understand	what	are	the	TFs	involved	in	these	DEGs	and	to	

see	their	contribution	in	the	GBM	relapse.	Upon	inspection	I	found	among	3446	

DEGs,	 there	were	261	human	TFs	 that	were	able	 to	 classify	 the	 transcriptomic	

differences	 between	 the	 PGRT	 and	 the	 RC.	 Thus	 I	 was	 able	 to	 highlight	 the	

differences	between	primary	and	relapsed	tumor	at	a	more	microscopic	level	of	

cellular	 partitioning	 that	 provided	 a	 deeper	 resolution	 to	 TFs	 mediated	

tumorigenic	progression.	This	was	obtained	by	interrogating	the	DEGs	with	the	

human	TFs	annotated	in	the	AnimalTFDB	database.	Barplot	figure	47	shows	the	

overall	TF-DEGs	between	PGRT	vs	RC.	
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Figure	47:	Barplot	representing	TFs	as	a	subset	of	DEGs	between	PGRT	of	
PT	and	RC	of	REC	GBM	

From	 this	 analysis	 a	 lot	 of	 TFs	 as	DEGs	 in	 this	 comparison	 I	was	 interested	 in	

understanding	the	pathways	that	were	involved	as	a	result	of	these	261	DEG	TFs	

with	 IPA	between	PGRT	of	 primary	 tumor	 and	RC	of	REC	GBM.	 Some	of	 these	

pathways,	that	are	associated	primarily	to	cancer	progression	and	maintenance	

are	 seen	 up-regulated	 in	 RC	 GBM	 samples	 which	 identified	 molecular	 events	

triggered	 during	 the	 relapse	 that	 could	 characterize	 the	 core	 of	 a	 recurrence	

tumor	 GBM.	 	 The	 below	 figure	 shows	 the	 pathways	 that	 were	 triggered	 as	 a	

result	of	 the	TF-DEGs,	some	which	were	activated	and	 inactivated	as	predicted	

by	IPA.	
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Figure	48:	A	two-way	representation	of	the	pathways	found	by	IPA	
canonical	pathway	analysis	with	TF	DEGs	between	PGRT	of	PT	and	RC	of	
REC	GBM	

The	 left	 panel	 shows	 the	 pathways	 that	 were	 predictively	 activated	 and	

inactivated	by	IPA	while	the	right	panel	highlights	the	contribution	of	direction	

of	genes	in	those	pathways.	

Interestingly	TGF-Beta	 signaling	was	 seen	 to	be	activated	 in	 the	RC	of	 the	REC	

GBM	 where	 it	 was	 largely	 dominated	 by	 genes	 up-regulated	 in	 RC	 of	 REC	

samples	 along	 with	 BMP	 signaling	 pathway	 and	 Mouse	 Embryonic	 Stem	 cell	

pluripotency	 pathway.	 This	 characterizes	 that	 REC	 GBM	 tumor	 centers	 were	

having	 predictively	 activated	 pathways	 associated	 with	 over	 expression	 of	

growth-factors,	 genes	 involved	 in	 pluripotency	 and	 signal	 transduction.	 This	

pluripotency	pathway	that	was	activated	due	to	up-regulated	genes	in	the	RC	of	

the	 relapsed	 GBM	 samples	 thus	 highlighted	 the	 importance	 of	 aberrant	

pluripotent	 factors	 that	were	 relevant	 in	 tumor	 drive	 constituting	 a	 transitory	
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phase	 from	 primary	 to	 relapse.	 	 There	 were	 some	major	 pathways	 that	 were	

inactivated	 in	 the	 RC	 of	 the	 REC	 GBM	 like	 Wnt/Beta-Catenin,	 Corticotrophin	

releasing	 hormone	 signaling,	 ERK5	 signaling	 and	 FLT3	 signaling	 in	

hematopoietic	progenitor	cells.	Majority	of	 these	pathways	 inactivated	 in	RC	of	

REC	GBM	were	predominantly	having	genes	down-regulated	in	the	RC	of	the	REC	

GBM	 apart	 from	 Wnt/Beta-Catenin	 that	 was	 inactivated	 due	 to	 up-regulated	

genes	in	the	RC	of	the	REC	GBM	

EMT	pathway	was	 also	 seen	 to	 be	 triggered	 due	 to	 change	 in	 gene	 expression	

between	PGRT	of	PT	and	RC	of	REC	GBM,	however	IPA	did	not	predict	its	effect.	

This	was	possibly	due	 to	 lack	of	 annotated	 information	of	 this	pathway	 in	 IPA	

knowledge	 base	 that	 associates	 pathways	 from	 genes	 and	 then	 find	 the	

association	 of	 these	 pathways	 to	 activation	 and	 inactivation	 based	 on	 z-score	

calculation	of	genes	direction	from	input	gene	list	versus	the	direction	annotated	

in	 their	 database.	 However	 it	 seemed	 to	 be	 enriched	 and	 dominated	 by	 genes	

down	regulated	in	the	RC	of	the	REC	GBM.		

3.3.3.3	Interrogation	of	TF	DEGs	in	OASIS-Cancer	genomics	reveals	
oncogenes	association	and	their	dysregulation	in	clinical	TCGA	samples		
	

These	 TFs	 upon	 farther	 interrogation	with	 the	 clinical	 TCGA	 samples	 (n=577)	

with	 oasis-cancer	 genomics	 portal	 revealed	 certain	 key	 oncogenes	 among	 the	

cohort.	 These	 genes	 scored	 their	 relevance	 in	 tumorigenic	 recruitment,	

progression	and	maintenance.	The	heatmap	 in	Figure	49	 shows	 the	oncogenes	

between	PGRT	of	PT	and	RC	of	REC	GBM.	The	right	panel	 lists	oncogenes	 from	

these	TF	DEGs	that	were	found	to	be	dysregulated	in	TCGA	clinical	GBM	samples.	

This	analysis	with	TCGA	samples	of	GBM	was	performed	with	the	help	of	oasis-
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cancer	 genomics	 web	 platform	 to	 identify	 the	 oncogenes	 from	 the	 TF	 DEGs.	

Farther	these	genes	were	assessed	for	level	of	dysregulation	at	different	feature	

of	 point	 mutation,	 indels,	 amplification,	 deletion,	 copy-gain,	 copy-loss,	 and	

over/under	expression.	

	

	
	
Figure	49:	DEGs	include	a	set	of	oncogenes	encoding	for	TFs	dysregulated	
in	clinical	GBM	TCGA	samples	

	
The	 right	 heatmap	 in	 Figure	 49	 revealed	 CREB3L2	 and	MAFK	 dysregulated	 in	

over	 ~60%	 of	 TCGA	 samples	 at	 low-level	 of	 copy	 gain	 highlighting	 their	

relevance	in	GBM	and	it	was	also	previously	found	as	key	oncogenic	TF	that	was	
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differentially	 expressed	 between	 PT	 vs	 REC	 GBM	 samples	 as	 well.	 This	

highlighted	 the	 importance	 of	 these	 2	 genes	 in	 GBM	 tumorigenesis	 and	 more	

specifically	in	relapse.	

3.3.3.4	Motif	enrichment	analysis	predicted	a	core	set	of	oncogenes	and	
tumor	suppressor	genes	encoding	for	TFs	controlling	the	transcriptional	
programs	in	recurrent	centers	of	REC	GBM	
	
Post	defining	the	transcriptomic	changes	underlying	the	GBM	recurrent	centers,	

I	interrogated	the	DE	genes	between	tumorigenic	peripheries	of	PT	(PGRT)	and	

recurrent	 centers	 (RC)	 of	 REC	 GBM	 by	 performing	 the	 TF	 motif	 enrichment	

analysis	 (MEA)	 as	 done	 with	 the	 earlier	 comparisons.	 This	 analysis	 primarily	

aimed	at	providing	a	mechanistic	interpretation	of	the	transcriptomic	changes	in	

recurrent	centers	(RC)	of	REC	GBM	by	identifying	putative	TFs	master	regulators	

(MRs)	through	interrogation	of	binding	sties	at	the	promoter	of	the	DEGs.	Motif	

analysis	 was	 performed	 on	 promoter	 sequences	 of	 these	 overall	 3446	 DEGs	

obtained	as	a	result	of	DE	analysis	between	PGRT	of	PT	and	RC	of	REC	GBM	with	

Pscan	 with	 default	 settings.	 This	 revealed	 79	 (p-value	 threshold	 <	 0.05)	

upstream	TFs	 that	 have	 consensus	 binding	 sites	 in	 our	DEGs	 among	which	 18	

over-represented	 TFs	 were	 also	 differentially	 expressed	 between	 PGRT	 of	 PT	

and	RC	of	REC	GBM.	I	checked	the	basis	of	these	18	genes	in	clinical	GBM	TCGA	

samples	to	understand	their	level	of	dysregulation	and	to	retrieve	information	of	

them	regarding	their	status	of	being	an	oncogene	or	a	tumor	suppressor.	Figure	

below	 represents	 the	 incidence	 of	 these	 direct	 TF	 targets	 (which	 are	 not	 only	

upstream	of	DEGs	but	themselves	differentially	expressed)	in	clinical	TCGA	GBM	

samples	 along	 with	 their	 direction	 of	 change	 in	 our	 sample	 cohort	 that	 I	
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analyzed.	 Figure	 50	 shows	 the	 incidence	 of	 18	 of	 these	 targets	 in	 GBM	 TCGA	

clinical	samples	and	confers	the	status	of	Oncogene/TSG	to	them.	

	

	
Figure	50:	The	heatmap	represents	the	dysregulation	of	over-represented	
TFs	that	are	DEGs	in	clinical	GBM	TCGA	

The	 left	 panel	 shows	 the	 list	 of	 over-represented	 TF	 targets	 found	 from	MEA	

analysis	that	are	differentially	expressed	in	lab	GBM	datasets	between	PGRT	and	

RC.	The	heatmap	represents	their	dysregulation	in	clinical	GBM	TCGA	while	right	

barplot	depicts	direction	of	these	over-represented	TFs	in	RC	of	REC	GBM.	

a)	Represent	18	direct	targets	of	upstream	TFs	in	our	DEGs	and	their	level	

of	dysregulation	in	clinical	GBM	TCGA	samples.		

b)	 Represents	 the	 log2foldchange	 of	 these	 18	 direct	 TFs	 in	 RC	 of	 REC	

GBM.		

Among	 these	 18	 direct-TF	 targets	 there	were	 5	 oncogenes	 retrieved	 from	 this	

analysis.	 KLF4	was	 not	 assigned	 as	 tumor-suppressor	 as	 the	 tool	 used	 v70	 of	

Cancer	 gene	 census	 to	 confer	 this	 status	 but	 according	 to	 the	 latest	 v78	 it	 is	

annotated	as	an	oncogene/TSG.	The	right	panel	shows	the	direction	of	regulation	

of	these	18	direct	targets	in	our	samples	where	red	represents	its	up-regulated	

in	RC	of	REC	GBM	while	blue	represents	it	is	down-regulated.	

This	analysis	could	identify	direct	target-TFs	(over-represented	by	MEA	analysis	

and	 differentially	 expressed).	 Some	 these	 were	 oncogenes	 that	 were	 up-
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regulated	 (MYCN,	MAFB,	HEY1)	 in	RC	of	 the	 relapsed	GBM	samples	while	2	of	

them	 are	 down	 (EBF1	 and	 MYC).	 Role	 of	 EGR2	 had	 been	 associated	 both	 as	

oncogenic	and	tumor	suppressing.	This	TF	was	seen	to	be	over-represented	and	

differentially	 expressed	 in	 this	 comparison,	 rather	 up-regulated	 in	 RC	 of	 REC	

GBM.	 Earlier	 as	 mentioned	 it	 was	 also	 seen	 in	 the	 comparison	 of	 PGRT	 and	

PDGRT	as	a	TF	that	was	differentially	expressed.	Since	EGR2	is	associated	with	

immune-modulators	 it	 could	 be	 highlighting	 the	 fact	 that	 the	 mechanisms	

relating	to	negative	immunoresponse	might	trigger	a	niche	population	of	cells	in	

PGRT	 to	be	 immunosuppressed.	These	 farther	might	acquire	 cancer	properties	

and	cooperatively	with	other	growth	factors	possibly	give	way	to	relapse.	These	

predictive	 targets	 could	 be	 putative	 master	 regulator	 candidates.	 These	

candidates	 could	 be	 self	 sufficient	 in	 controlling	 the	 regulation	 of	 other	 genes	

and	contribute	to	tumor	progression	and	invasiveness	giving	rise	to	relapse.	This	

analysis	also	revealed	down	regulation	of	KLF4	gene	(a	direct	target	of	upstream	

TF)	that	 is	usually	considered	as	a	TSG	in	renal	cell	carcinoma	(Li	et	al.,	2013).	

Hypermethylation	 of	 KLF4	 promoter	 is	 seen	 in	 renal	 cell	 carcinoma	 (Li	 et	 al.,	

2013)	which	 indicates	 that	 this	can	be	epigenetically	guided	 factor.	This	scores	

the	 importance	 of	 epigenetic	 drive	 that	 might	 be	 responsible	 for	 the	 down	

regulation	 of	 this	 target	 in	 the	 recurrent	 tumor.	 	 	 KLF4	was	 also	 seen	 to	 have	

context-dependent	 oncogene	 and	 tumor-suppressor	 functions	 in	 carcinomas	

(Rowland,	Bernards,	&	Peeper,	2005)	.		

Thus	it	would	be	really	important	to	center	on	these	direct	target-TFs	and	try	to	

find	the	proportion	of	DEGs	that	are	being	regulated	between	PGRT	of	PT	and	RC	

of	 the	REC	GBM	by	them.	 	Finally	 it	will	be	good	to	cross-validate	the	TFs	with	
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other	tools	or	even	with	TF	that	are	a	result	of	ChIP-ChIP.	Even	one	can	score	the	

precedence	of	the	most	important	TF	by		

a) Simply	taking	into	account	the	proportion	of	DEGs	each	TF	is	controlling,		

b) Direction	of	DEGs	controlled	by	each	of	these	TF,		

c) Distribution	of	the	fold	changes	and		

d) Finally	extracting	the	most	relevant	pathways	or	the	biological	processes	

that	 gets	 enriched	 as	 a	 result	 of	 these	 DEGs	 regulated	 by	 each	 of	 the	

upstream	TFs.		

Thus	 we	 will	 be	 able	 to	 assign	 a	 key	 regulators	 which	 might	 be	 relevant	 for	

validation	 with	 in	 vitro	 experiments	 to	 father	 assess	 their	 nature	 to	 drive	 or	

reduce	the	tumorigenicity	 in	GBM	relapse	or	even	the	primary	GBM.	These	can	

also	 act	 as	 candidate	 prognostic	 markers	 that	 characterize	 the	 aggressive	

behavior	 of	 the	 relapsed	 tumor	 to	 that	 of	 the	 primary	 whose	 targeted	

over/under-expression	 in	 relevant	 tumor	 types	 might	 lead	 to	 reduce	

tumorigenicity.	

The	analysis	between	primary	and	relapsed	tumor	samples	were	able	to	find	the	

key	processes	that	were	involved	as	a	result	of	transcriptional	change	between	a	

primary	 GBM	 and	 its	 relapse.	 This	 analysis	 was	more	 specifically	 centered	 on	

core	TF	mediated	network	that	was	mediating	this	transition.		

The	 analysis	 between	 the	 tumorigenic	 (PGRT)	 and	 non-tumorigenic	 (PDGRT)	

peripheries	highlighted	 the	TF	BNC2	up-regulated	 in	 tumorigenic	periphery	or	

PT	 along	 with	 a	 growth	 factor	 gene	 PDGFRA	 that	 indicate	 the	 how	 a	 tumor	

micro-environment	was	harbored	that	involved	tumor-migration	and	invasion	of	

these	cells	to	neighboring	cells	leading	to	a	relapse.		It	also	revealed	EGR2,	a	TF	
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that	was	over-represented	by	MEA	and	differentially	 expressed	between	PGRT	

and	PDGRT.		

Finally	a	topological	assessment	of	a	tumorigenic	periphery	of	PT	versus	the	RC	

of	REC	GBM	elucidated	the	key	transcriptional	programs	that	were	mediating	the	

tumor	progression.	This	analysis	also	revealed	key	oncogenes	and	TSGs.	 It	will	

be	interesting	now	to	assess	the	strength	of	these	TFs	networks	by	studying	the	

underlying	 biological	 processes	 they	 are	 involved	 in.	 Thus	we	 could	 score	 the	

most	relevant	candidate	master	regulator	from	them	that	could	be	crucial	for	the	

transition	of	primary	tumor	cells	to	GBM	relapse.		

Thus	 the	 studies	 in	 the	 GBM	 patients	 were	 able	 to	 highlight	 the	 core	

transcriptional	 programs	 involved	 in	 transition	 of	 the	 primary	 tumor	 to	 a	

relapsed	 stage.	 It	 farther	 revealed	 a	 set	 of	 oncogenes/TSG	 that	 were	 involved	

among	 these	 direct-TF	 targets.	 These	 could	 in	 turn	 indicate	 the	 tumorigenic	

drive	 that	allowed	specific	cellular	compartments	 to	acquire	a	more	aggressive	

or	invasive	tumor	properties	thus	paving	a	way	for	relapse.			

Discussion	
	
	
The	 work	 presented	 in	 this	 thesis	 improved	 our	 understanding	 on	 the	 TF-

mediated	 cancer	 progression	 through	 the	 dissection	 of	 the	 transcriptional	

networks	underlying	two	of	the	most	aggressive	disease	with	high	mortality	and	

poor	 prognosis:	 and	 i)	 High	 Grade	 Serous	 Ovarian	 Caner	 (HGSOC)	 and	 ii)	

Glioblastoma	Multiforme	 (GBM)).	 	Despite	 the	multimodal	 treatment,	GBM	and	

HGSOC	 patients	 have	 a	 very	 poor	 prognosis	 (Bowtell,	 2010)	 ,	 (Frattini	 et	 al.,	
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2013)	 .	 This	 is	 due	 to	 the	 fact	 the	 molecular	 mechanisms	 underlying	 the	

initiation	and	the	progression	of	these	tumors	are	still	poorly	understood.		

The	first	part	of	the	thesis	involves	study	of	HGSOC.	In	HGSOC,	a	major	problem	

resides	 on	 the	 uncertainty	 on	 the	 cellular	 origin	 of	 this	 tumor.	 	 The	molecular	

events	thus	associated	with	the	tumor	initiation	and	progressions	specific	to	its	

origin	have	not	yet	been	studied	thoroughly.	Since	the	transcriptional	programs	

(gene	 regulatory	 networks	 involving	 MRs	 or	 upstream	 TFs)	 associated	 with	

tumor	and	its	specific	origin	counterparts	are	not	much	explored.	This	limits	the	

identification	 of	 new	 molecular	 pathways,	 key	 TF	 hubs	 that	 drive	 the	 tumor	

evolution	and	serves	as	prognostic	signatures	or	rationale	therapeutic	targets	for	

tumors	associated	specific	origin.		

In	 studying	HGSOC,	 I	 have	used	 the	 integration	of	 transcriptomic	 and	 genomic	

analysis.	The	transcriptomic	part	of	 the	HGSOC	study	dealt	with	transcriptomic	

assessment	of	the	high-grade	OC	tumors	vis-à-vis	two-candidate	tissues	of	origin.		

This	was	 followed	 by	MEA	 analysis	 on	 the	 promoters	 of	 the	 DEGs	 for	 specific	

comparisons	to	find	upstream	TF’s	that	were	also	differentially	expressed	(DE).	

Post	 MEA	 analysis,	 I	 found	 which	 DE	 TFs	 were	 also	 Oncogene/TSG	 and	 their	

dysregulation	in	clinical	TCGA	samples.		This	is	indeed	an	important	finding	that	

helped	 us	 to	 outline	 the	 key	 oncogenic/tumor	 suppressing	 TF	 mediated	

networks	implicated	in	malignant	drive.	Future	assessment	of	these	TF	networks	

will	enable	us	to	outline	molecular	events	relevant	for	tumor	initiation	and	vis-à-

vis	two	candidate	tissues	of	origin.	Such	findings	can	be	pathologically	relevant	

as	 upon	perturbations	 of	 these	 key	 regulators	 in	vitro	will	 enable	 us	 to	 record	

their	 role	 in	 tumor	 development.	 	 Role	 of	 TFs	 in	 oncogenic	 drive	 has	 been	

already	 studied	 in	 few	 cancer	 types.	 Over/under-expression	 of	 these	 TFs	 a.k.a	
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candidate	 MRs	 is	 catalytic	 in	 induction	 of	 downstream	 pathways	 that	 either	

promotes	or	reduces	tumor	development.		In	light	of	this	in	our	OC	samples	I	was	

able	 to	 find	 such	 candidate	 MRs	 while	 assessing	 the	 overall	 transcriptomic	

differences	between	tumors	vis-à-vis	two	candidate	tissues	of	origin.		

The	 transcriptomic	 assessment	 between	 all	 the	 normal	 samples	 and	 tumor	

samples	 irrespective	 of	 the	 tissue	 origin	 consideration	 revealed	 key	 upstream	

TF’s	a.k.a	candidate	MRs	that	were	differentially	expressed.	We	found	ASCL2	and	

NR2F1	as	candidate	MRs,	which	were	up-regulated	in	tumors.	Among	these	MRs,	

ASCL2	is	a	key	transcriptional	regulator	reported	in	colon	cancer	studies	(Tian	et	

al.,	 2014).	 	We	 also	 obtained	 the	 gene	 NR2F1,	 an	MR	 associated	with	 cellular	

dormancy.	Shutting	down	of	this	gene	leads	to	tumor	development	via	aberrant	

growth	of	dormant	cells	throughout	the	tumors	(Sosa	et	al.,	2015).	

Transcriptomic	assessment	of	FI	normal	 samples	against	all	 tumors	 revealed	5	

candidate	MRs	that	were	also	DEGs.	Two	oncogenes	were	present	in	this	list	of	5	

candidates	MR’s	where	EBF1	was	up	regulated	 in	 tumor	while	ERG	was	down-

regulated.	Other	3	genes	were	EGR2	(associated	with	~10%	copy	gain	in	Ovarian	

TCGA	 samples),	 EGR3	 (associated	with	 34.5%	 copy	 loss	 in	 TCGA	 OC	 samples)	

and	TFAP2A	(primarily	associated	with	32.3%	copy	gain	in	TCGA	OC	samples).		

Variations	 in	 forms	 of	 mutation	 or	 INDELS	 in	 EBF1	 have	 been	 observed	 in	

cancers	 such	 as	 intestinal	 cancer,	 skin	 cancer,	 and	 stomach	 cancer.	 Comparing	

OSE	 normal	 against	 all	 tumors	 did	 not	 give	 any	 candidate	 MRs	 that	 was	

differentially	expressed.	We	also	stratified	tumors	based	on	DNA	methylation	to	

their	 cellular	 origin	 and	 then	 compared	 the	 tumor	 transcriptome	 to	 their	

corresponding	 origin	 (normal).	 DNA-methylation	 served	 as	 developmental	

tracer	for	tumors	and	provided	us	with	origin	of	tissue	for	the	tumors	and	thus	



	 120	

we	 classified	 FI-like	 tumors	 (coming	 from	 normal	 FI)	 and	 OSE-like	 tumors	

(coming	 from	OSE	normal).	This	was	 followed	by	 transcriptomic	 study	of	both	

newly	 classified	 FI	 vs	 FI-like	 tumors	 and	 OSE	 vs	 OSE-like	 tumors.	 This	 study	

outlined	 specific	 transcriptional	 programs	 associated	 to	 tumor	 development	

from	its	specific	tissues	of	origin	defined	via	DNA	methylation	signatures	(DMS).	

DEA	and	MEA	 in	FI	vs	FI-like	 tumors	 revealed	 these	3	up-regulated	MRs:	EHF,	

TFAP2A	 and	ZIC1.	 TFAP2A	 and	ZIC1	 are	 associated	with	 copy	 gain	 of	~32.3%	

~45.9%	respectively	in	OC	clinical	TCGA	samples.	

In	OSE	vs	OSE-like	tumors	we	were	able	to	find	a	candidate	MR	post	comparing	

specific	 tumors	 to	 its	 corresponding	 normal.	We	 could	 not	 do	 it	 in	 the	 earlier	

comparison	 when	 we	 had	 no	 stratification	 and	 compared	 all	 tumors	 to	 OSE	

normal	tissues.	 	We	found	EGR1	as	a	candidate	MR	that	is	up-regulated	in	OSE-

like	tumors.	This	gene	is	usually	found	to	be	associated	with	~9.3	%	copy	gain	in	

clinical	OC	TCGA	samples.	 It	has	been	 linked	as	a	TSG	 in	gastric	and	colorectal	

cancers	which	when	mutated	promotes	 tumor	development	(Choi	et	al.,	2016).	

Also	in	NSCLC	it	has	been	reported	with	tumor	suppressor	properties	(H.	Zhang	

et	al.,	2014).	However,	in	prostrate	caner	its	been	shown	to	be	over-expressed	in	

tumors	 (Parra	 Villegas	 et	 al.,	 2011),	 (Gregg	 &	 Fraizer,	 2011).	 	 It	 is	 often	

associated	 with	 multiple	 functions	 that	 can	 both	 promote	 or	 decrease	 tumor	

activity.	

Finally	studying	the	transcriptional	programs	between	two	tumoral	tissues	(EOC	

and	 AS)	 in	 our	 dataset	 helped	 in	 understanding	 the	 role	 of	 inflammatory	 and	

immune	signals	that	are	activated	from	EOC	to	AS.	

Thus	 key	 candidates	 MRs	 along	 with	 key	 molecular	 events	 orchestrating	

tumorigenic	events	were	obtained	as	a	result	of	this	study.	This	MRs	on	careful	
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assessment	 for	 network	 analysis	 and	 biological	 activity	 post	 perturbation	 can	

lead	to	new	therapeutic	targets.	

The	 final	 study	 was	 to	 understand	 the	 preservation	 of	 genetic	 background	

between	 tumor	 and	 its	 reprogrammed	 derivate.	 The	 results	 obtained	 in	 this	

work	shows	that	employing	WES	analysis	on	OC	data	and	their	derived	OC-iPSC	

with	 a	 3-tier	 computational	 approach	 enabled	 to	 establish	 that	 the	

reprogramming	 counterparts	 were	 indeed	 coming	 from	 tumors	 and	 not	 their	

normal.	 This	 was	 confirmed,	 as	 tumor	 aberrations	 that	 build	 up	 the	 genetic	

background	 of	 the	 parental	 tumor	 can	 be	 tracked	 as	well	 in	 tumor-iPSCs.	 	 OC	

specific	 lesions	 were	 fractionally	 tractable	 in	 OC-iPSCs.	 This	 computational	

workflow	showed	both	at	 the	SNV	and	CNV	 level,	OC-iPSC	 shared	a	 fraction	of	

the	 parental	 tumor	 genetic	 aberrations	 more	 specifically	 by	 layers	 of	 copy	

number	alterations.	Moreover	driver	mutations	were	shared	between	OC	tumor	

and	OC-iPSCs	of	 the	 low	grade	 establishing	 the	 fact	 that	 reprogrammed	 clones	

were	 indeed	 tumor	 derived.	 	 The	 somatic	 SNV	 shared	 only	 a	 fraction	 but	 this	

could	 be	 attributed	 to	 that	 fact	 that	 the	 sequencing	 coverage	 was	 not	 deep	

enough	to	find	larger	fractions	of	genetic	aberrations.	Another	hypothesis	can	be	

derived	that	reprogramming	itself	might	have	induced	some	mutational	burden	

in	 the	 iPSCs	 that	 over	 time	 created	 some	 selective	 pressure.	 This	 selective	

pressure	made	us	only	 to	 retrieve	partially	 the	somatic	SNVs	 that	were	shared	

between	the	parental	tumor	and	the	iPSCs	derived	from	them.		

IPSCs	 are	 single	 clones	 owing	 to	 their	 generation	 from	 a	 single	 cell	 in	 culture.	

They	 should	 in	 theory	 have	 higher	 resolution	 of	 the	 representative	 genetic	

composition	 of	 tumor	 subclones.	 A	 tumor	 is	 on	 the	 other	 hand	 is	 a	

heterogeneous	 bulk	 comprising	 of	 polyclonal	 mutations	 that	 confers	 it	 a	
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heterogeneous	 mass.	 In	 order	 to	 simplify	 the	 tumor	 genetic	 heterogeneity	 it	

would	 be	 ideal	 to	 perform	 in-depth	 analysis	 of	mutations	 and	 CNVs	 (gain	 and	

loss	 of	 copy	number	 is	 genes)	 on	 a	 larger	 cohort	 of	 tumor	 iPSCs	 per	 tumor	 to	

reconstruct	the	genetic	landscape	of	the	subclones	in	parental	tumor.	This	would	

in	addition	pave	way	to	track	the	tumor	evolution	in	either	of	the	two	ways.	First	

by	outlining	the	fact	that	mutations	are	less	represented	in	parent	tumor	if	their	

derivative	 iPSCs	being	 clonal	 have	 consistent	 increase	 in	 the	 genetic	 alteration	

frequencies	from	tumor	to	iPSCs.	Second,	if	these	frequencies	remain	unaltered	it	

would	be	indicative	of	the	fact	that	the	mutations	represent	the	vast	majority	of	

the	 tumoral	 cells.	 This	 in	 turn	 would	 capture	 the	 early	 events	 in	 tumor	

pathogenesis.	 Finally	 iPSC	 clonality	 in	 theory	would	also	help	 in	assignment	of	

defined	haplotypes	to	tumor	subclones,	thus	reconstructing	the	genetic	evolution	

of	the	tumor	in	study.	

In	the	case	of	the	GBM	I	inferred	a	TF-mediated	model	based	on	a	core	set	of	TFs	

controlling	 the	 transcriptional	 programs	 underlying	 GBM	 progression	 from	

primary	to	relapsed	tumor.	In	particular	I	found	interesting	hits	of	TFs	that	were	

also	differentially	expressed	in	comparisons	of	Primary	tumor	versus	REC	GBM	

and	in	the	tumorigenic	peripheries	of	PT	versus	the	recurrent	centers	of	the	REC	

GBM.	One	 interesting	observation	was	 the	enrichment	of	DEGs	(PT	versus	REC	

GBM	and	PGRT	of	PT	versus	RC	of	REC	GBM)	with	mesenchymal	signature	that	

was	only	up-regulated	in	PT.	Among	these	over-represented	TFs	found	by	MEA	

analysis,	which	also	happened	to	be	DEGs	between	PT	and	REC	GBM,	I	found	an	

oncogene	EBF1	and	tumor	suppressor	gene	KLF4	to	be	down	regulated	 in	REC	

GBM.	 Role	 of	 KLF4	 has	 already	 been	 observed	 as	 both	 oncogene	 and	 tumor	

suppressor	 genes	 in	 few	 cancer	 types	 scoring	 its	 importance	 (Rowland	 et	 al.,	
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2005)	 ,	 (Wang	 et	 al.,	 2015)	 .	 Particularly	 the	 suppression	of	KLF4	 in	 renal	 cell	

carcinoma	has	been	attributed	to	the	fact	that	it	is	epigenetically	silenced	by	the	

hypermethylation	 of	 the	 CpG	 promoters	 that	 leads	 to	 its	 suppression.	 In	 vitro	

assay	 reports	 have	 stated	 that	 overexpressing	 KLF4	 led	 to	 inhibition	 of	 renal	

cancer	cells	migration	and	also	suppressed	EMT	pathways.	Cells	associated	with	

EMT	are	often	regarded	as	having	aggressive	and	 invasive	properties.	While	 in	

vivo	assay	reports	have	shown	to	 inhibit	 the	oncogenic	progression	and	put	on	

hold	 metastasis	 in	 renal	 carcinoma	 by	 ectopic	 expression	 of	 KLF4	 (Li	 et	 al.,	

2013).	 This	 underlines	 the	 role	 of	 DNA	 hypermethylation	 in	 epigenetically	

inhibiting	 the	 expression	 of	 KLF4	 giving	 us	 an	 epigenetic	 target.	 So	 we	 can			

hypothesize	this	gene	KLF4	to	be	one	of	the	driving	factors	in	GBM	relapse.	It	will	

be	particularly	relevant	to	perform	DNA	methylation	analysis	on	these	samples	

to	understand	 if	 this	 suppression	 in	our	GBM	patients	were	 carried	out	due	 to	

methylated	 CpG	 sites	 at	 promoters	 or	 any	 other	 epigenetic	 factors.	 	 Also	

perturbing	the	expression	of	the	KLF4	in	cell	cultures	followed	by	RNA-Seq	can	

lead	 us	 to	 understand	 the	 tumor	 turnover	 if	 there	 is	 any.	 Role	 of	 EBF	 family	

genes	as	transcription	factors	have	already	been	associated	in	GBMs	as	a	tumor	

suppressor	 (Liao,	 2009)	 .	 Particularly	 EBF1	 has	 been	 to	 be	 undergoing	 loss	 of	

genomic	regions	or	associated	with	somatic	mutation	(Liao,	2009).	Since	EBF1	is	

crucial	 for	 neuronal	 differentiation	process	 therefore	 its	 inactivation	 could	put	

on	hold	the	developmental	processes	of	the	normal	cells	while	that	could	lead	to	

promote	oncogenic	environment.	So	the	down-regulation	of	this	gene	in	our	GBM	

recurrent	 tumor	might	be	due	 to	an	upstream	mutation	or	deletion.	This	could	

lead	to	an	impact	of	the	secondary	tumorigenic	drive	leading	to	a	relapse.	I	was	

also	 able	 to	 characterize	 the	 transcriptomic	 differences	 associated	 with	
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tumorigenic	 and	 non-tumorigenic	 peripheries	 in	 the	 PT	 and	 able	 to	 highlight	

exclusive	genes	differentially	expressed	in	primary	tumorigenic	peripheries	that	

were	able	to	classify	the	primary	tumorigenic	peripheries	from	the	centers	of	the	

primary	tumor.	In	doing	so	I	was	able	to	find	a	transcription	factor	BNC2	and	an	

oncogene	 PDGFRA	 up-regulated	 in	 only	 tumorigenic	 periphery.	 This	 gives	 an	

idea	of	key	genes	whose	up-regulation	could	be	crucial	in	maintaining	the	tumor	

environment	 in	 these	 topographical	 sections	 of	 the	 brain.	We	 can	 hypothesize	

that	the	tumorigenic	periphery	compartments	prepares	the	seating	of	oncogenes	

and	 other	 growth-factor	 genes	 that	 initiates	 a	 transitory	 processes	 leading	 to	

relapse.	These	processes	might	also	induce	a	site	for	the	initiation	of	recurrence	

by	 conferring	 the	 neighboring	 cells	 with	 tumor	 infiltrating	 cells	 leading	 to	

invasiveness	 and	 tumor	propagation.	 The	 final	 transcriptomic	 comparison	was	

carried	out	between	tumorigenic	peripheries	of	PT	(PGRT)	and	recurrent	centers	

(RC)	of	REC	GBM.	This	comparison	also	revealed	a	fraction	of	DEGs	belonged	to	

mesenchymal	signatures	that	were	associated	with	only	up-regulation	in	PGRT.	

This	 observation	 was	 pretty	 consistent	 with	 the	 DEGs	 of	 PT	 versus	 REC	 GBM	

where	mesenchymal	genes	were	enriched	 in	DEGs	that	were	only	up-regulated	

in	the	PT	samples.	Pathway	analysis	of	revealed	key	activation	of	pathways	like	

TGF-beta	 signaling	 and	 basal	 cell	 carcinoma	 signaling	 in	 the	 recurrent	 centers	

and	 inactivation	 of	 Wnt/beta	 catenin	 signaling,	 protein	 kinase	 signaling	 and	

cAMP	mediated	signaling.	This	is	of	relevant	importance	which	highlights	relapse	

was	 mediated	 via	 metabolic,	 growth	 signaling	 pathways	 and	

immunosuppression.	 It	 can	 also	 be	 hypothesized	 that	 these	 afore-mentioned	

pathways	 provided	 stemness	 and	 led	 to	 tumor	 cell	 proliferation	 along	 with	

immunosuppression.	 	These	observations	that	I	was	able	to	record	were	pretty	
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insightful	 in	 giving	 a	 first	 hand	print	 of	 the	molecular	mechanisms	 involved	 in	

relapse	of	GBM.	Finally	with	motif	analysis	I	found	few	targets	of	upstream	TFs	in	

our	 DEGs	 that	 were	 differentially	 expressed	 and	 termed	 as	 candidate	 MRs.		

These	 upstream	TFs	were	 also	 oncogenes	 that	were	 up-regulated	 in	RC	 of	 the	

REC	GBM	while	some	of	them	were	down	regulated.	EBF1	and	KLF4	was	again	

observed	 to	 be	 down	 regulated	 TF	 in	 the	 RC	 of	 REC	 GBM	 scoring	 their	

importance	 of	 their	 recruitment	 in	 tumorigenic	 transition	 from	 primary	 to	

recurrence	 GBM.	 Thus	 I	 constructed	 a	 TF	mediated	 network	 that	 was	 able	 to	

partition	 specific	 events	 associated	 with	 GBM	 evolution	 to	 its	 relapse.	 Finally	

upon	in	vitro	targeting	these	candidate	MRs	will	be	important	to	see	the	effect	of	

regulation	 of	 their	 gene	 targets	 and	 the	 molecular	 mechanisms	 that	 gets	

triggered	 as	 a	 result	 of	 this	 perturbation.	 This	 system	 of	 perturbation	 might	

provide	meaningful	 insights	 in	 finding	 new	 novel	 therapeutic	 insights.	 	 It	 will	

also	be	 relevant	 to	perform	ChIP-Seq	of	 specific	histone	marks	associated	with	

promoter	 repression	 or	 activation.	 This	 ChIP-Seq	 of	 specific	 histone	 marks	

would	find	the	chromatin	states	associated	with	recurrence.	Upon	integration	of	

ChIP-Seq	results	with	RNA-Seq	we	can	also	find	epigenetically	driven	candidate	

MRs.	Thus,	we	can	associate	the	contribution	of	epigenetic	drive	orchestrated	by	

histone	modifiers	targeting	the	candidate	MRs	promoting	relapse.	Thus	opening	

up	a	new	angle	of	 epigenetic	 recruitment	of	 repressor	or	activators	by	histone	

modifiers	mediating	regulatory	networks	in	GBM	leading	to	its	recurrence	

In	conclusion,	here	we	advance	significantly	our	understanding	of	TFs-mediated	

contribution	 to	 cancer	 progression.	 This	 TF-model	 approach	 was	 already	

successfully	 applied	 in	 my	 host	 lab	 to	 study	 the	 transcriptional	 networks	

controlled	by	Polycomb	during	gliomagenesis	in	a	mouse	model	(Signaroldi	et	al.,	
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2016).	 This	 was	 now	 extended	 here	 to	 interrogate	 the	molecular	 networks	 in	

human	 set	 of	 samples	 derived	 from	 two	 of	 the	 most	 aggressive	 cancers.	

Specifically,	 I	 combined	 the	 informative	 power	 of	 human	 cancer	 cells	 of	

differential	 tumorigenic	 potential	 derived	 from	 HGSOC	 and	 GBM	 with	 a	

computational	pipeline	 for	 the	analysis	and	 integration	of	multi-omic	NGS	data	

sets	to	generate	mechanistic	testable	hypotheses	on	cancer	progression.	

The	future	scope	of	this	work	seems	to	be	quite	abundant	and	important	as	the	

TF	networks	associated	with	both	the	OC	and	GBM	tumor	revealed	in	this	study	

can	be	farther	extended	to	find	association	of	epigenetic	repressors	or	activators	

on	 these	candidate	MRs.	 	This	will	pave	a	way	 for	defining	epigenetic	 circuitry	

involved	 in	 mediating	 oncogenesis.	 	 Farther	 in	 vitro	 assessment	 of	 these	 TFs	

(either	 epigenetically	 driven	 or	 as	 a	 result	 of	 genetic	 factors)	 might	 lead	 to	

altering	 or	 aggravating	 the	 tumor	 phenotype	 thus	 leading	 the	 discovery	 of	

clinically	relevant	therapeutic	targets.		
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