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1. ABSTRACT 

 

The hemizygous deletion and duplication of 28 genes in the 7q11.23 region is responsible 

for two neurodevelopmental disorders: Williams-Beuren syndrome (WBS) and 7q11.23 

duplication syndrome (7dup), respectively. These two syndromes exhibit both shared and 

symmetrically opposite clinical traits, thus pointing to a dosage-sensitive impact of a small 

subset of genes, mostly affecting cognition, sociality and Neural Crest (NC)-mediated 

craniofacial and cardiovascular development. 

Despite some studies on mouse models and patients with smaller deletions have 

established possible associations between specific genes in the 7q11.23 region and 

specific features of the disease, the vast majority of the genes remains without a clear 

connection.  

BAZ1B, a transcriptional regulator and chromatin remodeler included in the region, is a 

prime candidate to study disease-associated NC alterations, because of its critical role in 

the migration of Neural Crest Stem Cells (NCSCs) in Xenopus and in the acquisition of 

craniofacial defects in mice lacking this protein. Intriguingly, WBS patients bearing a 

partial deletion of the region that spares few genes, including BAZ1B, display milder 

craniofacial dysmorphisms, further pointing to its involvement in this specific phenotype.  

In order to define the BAZ1B-dependent alterations responsible for NC-related defects in 

the two genetic conditions, we integrated transcriptomic analysis with enhancer profiling, 

given the critical role of their regulatory architecture in NCSC development and function. 

First, we derived bona fide NCSCs from a large and uniquely informative cohort of patient-

specific induced pluripotent stem cells (iPSCs), including some derived from atypical 

BAZ1B-sparing deletions. Our results suggest that gene dosage alterations at the 7q11.23 

region do not affect the cell-specific differentiation potential and the differentiation process 

itself. In addition, RNA profiling of NCSCs indicates dysregulation of genes specifically 

involved in NC-related biological processes and functions. 
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Next, I selectively downregulated BAZ1B levels by RNA interference in both control- and 

patient- NCSC lines and I performed RNA-sequencing analysis to dissect its contribution 

to transcriptional dysregulation. I uncovered a subset of genes whose levels followed 

BAZ1B levels either in a direct or inverse fashion, indicating clear BAZ1B dosage-

dependent transcriptional alterations. These genes were mostly involved in pathways 

related to bone and cardiovascular system development and cell migration and motility. 

Moreover, the observed impact of BAZ1B knock-down on human NCSC migration 

confirmed the evidence in animal models and shed new lights into BAZ1B-dependent 

mechanisms responsible for the acquisition of NC-related phenotypes. 

Finally, preliminary analyses indicate a limited, but potentially crucial, BAZ1B-dependent 

remodeling on NCSC putative active enhancer regions. 

Taken together, these results provide new inroads into a functional partitioning of BAZ1B 

transcriptional and epigenetic roles in NCSCs and they increase our understanding of 

these two debilitating neurodevelopmental disorders which will eventually pave the way 

for the development of novel effective therapies. 
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2. INTRODUCTION 

 

The specification of neural tissues and the establishment of their architecture constitute a 

critical and extremely complex stage of embryo development. In particular, in humans, it 

begins at day 18 of development with the formation of the notochord starting from 

condensed mesodermal cells. This process is followed by the generation of the neural 

plate and the neural tube, the ancestors of the central nervous system, in a process called 

neurulation. Specifically, the neural tube gives rise to three main populations: i) neural 

stem cells that proliferate and produce neural precursors, ii) neuroblasts, non-dividing 

cells that differentiate into neurons and iii) neural crest cells that migrate in the developing 

embryo and generate peripheral sensory neurons, melanocytes and bone and cartilage 

craniofacial structures (Purves et al., 2008). 

During neurodevelopment, a relevant number of signalling pathways has to intervene in a 

cooperative and coordinate fashion in order to allow the correct cell specification and 

organization in structures. Hence, genetic alterations, such as single mutations, deletions 

or duplications, affecting any step of these pathways can be responsible for the onset of 

several neurodevelopmental disorders.  

Neurodevelopmental disorders are a class of diseases that typically manifest in the early 

phases of development, usually before school age, characterized by an impairment of 

social and personal skills because of developmental deficiencies of variable entity 

(Mitchell, 2014). 

Neurodevelopmental disorders include: 

1. intellectual disability, characterized by deficits in reasoning, learning and other 

mental abilities; 

2. communication disorders that involve language and speech capacities; 

3. attention-deficit/hyperactivity disorder (ADHD), marked by disorganization and 

inattention; 
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4. Autism Spectrum Disorder (ASD), that affects social interaction and 

communication; 

5. motor disorders (movement and coordination); 

6. specific learning disorders. 

Comorbidity frequently occurs between different neurodevelopmental disorders; for 

example, children with autism often have intellectual disabilities, while learning disorders 

are commonly diagnosed in ADHD patients. 

 

In this study, I focused on two peculiar Copy Number Variation (CNV)-dependent 

neurodevelopmental disorders: Williams-Beuren syndrome (or Williams syndrome, OMIM 

194050) and 7q11.23 duplication syndrome (OMIM 609757), respectively caused by the 

deletion or duplication of 26-28 genes in the 11.23 region on chromosome 7q (Pober, 

2010; Somerville et al., 2005). 

 

2.1. Williams-Beuren syndrome and 7q11.23 duplication 

syndrome 

 

2.1.1.    Williams-Beuren syndrome 

In 1956 Schlesinger and colleagues observed the first cases of Williams-Beuren 

syndrome (WBS) with the description of patients with hypercalcemia in association with 

cognitive alterations and a particular facial appearance (Schlesinger et al., 1956). Few 

years later Williams (Williams et al., 1961) and Beuren (Beuren et al., 1962) reported on 

Circulation the clinical description of a child having a shrinkage of the aorta (supravalvular 

aortic stenosis, SVAS) and peculiar facial features, that also helped in the diagnosis of 

three other patients. WBS was then recognized as a new syndrome only in 1964 when 

idiopathic hypercalcemia and SVAS were described as common alterations of the same 

disease (Garcia et al., 1964). 
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Epidemiological studies by Stromme and co-workers reported a prevalence of 1 case in 

7500 (Strømme et al., 2002). 

 

2.1.1.1. WBS clinical features 

The significant number of genes involved in WBS deletion results in the complex clinical 

picture of WBS patients, in which numerous systems and organs are affected. 

Cardiovascular alterations. Cardiovascular abnormalities and complications are 

considered the major cause of death in WBS patients, with a higher cardiovascular-

associated mortality when compared to controls (Wessel et al., 2004). 70% of WBS 

patients present SVAS, a narrowing of medium and large arteries that follows the 

thickening of the vascular tunica media due to Smooth Muscle Cells (SMCs) overgrowth 

(Pober et al., 2008). Hypertension develops in 50% of WBS patients, probably as a 

physiological answer to the altered vessel structure (Faury et al., 2003). 

Cognitive and social alterations. WBS developmental and cognitive profile is often 

described as a pattern of peaks (strengths) and valleys (weaknesses). WBS patients 

present strengths in facial processing and recognition as well as higher musical abilities 

when compared to controls (Deruelle et al., 2005; Gagliardi et al., 2003). On the contrary 

visuospatial construction is compromised in all WBS patients and the impairment in 

saccadic eye movements might contribute to these deficits (van der Geest et al., 2004). 

Intellectual disability ranges from mild to moderate with an average Intelligence Quotient 

(IQ) of 50-60, but appears to be more variable when the entire spectrum of young and 

adult WBS patients are considered (Martens et al., 2008). Moreover, some WBS patients 

were shown to have a higher verbal IQ than performance IQ. Language skills are 

preserved but with a delay in the main language achievements in young children 

(Karmiloff-Smith et al., 1997; Martens et al., 2008).  

Because of their high empathy, friendliness and social abilities WBS patients often exhibit 

a “cocktail party” type personality (Pober, 2010). At the same time, more than 80% of 



 17 

WBS adult display anxiety, frequent obsessions and fears and irritability, as well as 

hyperactivity (e.g., ADHD) (Davies et al., 1998; Leyfer et al., 2006). 

Metabolism alterations. Calcium abnormalities, in particular hypercalcemia and 

hypercalciuria, are often associated with WBS, especially in young children (Cagle et al., 

2004). 1,25-dihydroxyvitamin D increased levels and alterations in calcitonin production 

and release were suggested as possible explanations for hypercalcemia (Culler et al., 

1985). 

In addition, impaired glucose tolerance and diabetes mellitus were diagnosed in several 

adult WBS patients (Morris et al., 1988). 

Craniofacial alterations. According to many reports WBS patient facial characteristics 

(initially described as ‘elfin facies’) can be a useful tool for diagnosis, because of their 

peculiarity and reproducibility over patients (Beuren et al., 1962; Williams et al., 1961). 

These abnormalities include few hard tissue defects such as a broad forehead, a small 

mandible and a deficient chin button (Mass and Belostoky, 1993) and many soft tissue 

alterations, that comprise low-set ears, periorbital fullness, strabismus, epicanthal folds, a 

stellate iris pattern, full cheeks and lips, a wide mouth and a long smooth philtrum (Burn, 

1986; Mass and Belostoky, 1993). Dental anomalies including late eruption, malocclusion, 

hypodontia and microdontia are also frequent in WBS individuals (Friedman and Mills, 

1969). 

 

2.1.2.    7q11.23 duplication syndrome 

WBS was already well defined and characterized when the first patient bearing a 

duplication of the 7q11.23 region was described by Somerville and colleagues in 2005 

(Somerville et al., 2005).  

Since then, 7q11.23 duplication syndrome (also known as Somerville–van der Aa 

syndrome or Williams-Beuren region duplication syndrome, hereafter called 7dup) was 

diagnosed in around sixty patients, including both children and adults (Sanders et al., 
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2011; Torniero et al., 2008). The prevalence was estimated to be between 1:7.500 and 

1:20.000 (Van der Aa et al., 2009). 

 

2.1.2.1. 7dup clinical features 

The later description of 7dup patients was probably due to the fact that clinicians were 

more prone to expect duplication of the region resulting in a clinical phenotype 

overlapping with WBS. Despite some features are indeed shared between WBS and 7dup 

(e.g., growth delay, ADHD and some facies dysmorphisms), many characters are 

completely opposite (Somerville et al., 2005).  

Cognitive and social alterations. Recent studies reported a wide range of intellectual 

abilities across 7dup patients during development with an overall IQ level considerably 

higher than the one described for WBS patients (e.g., 92 for adult 7dup vs 64 for adult 

WBS patients) (Mervis et al., 2015). This observation is in line with previous findings 

supporting a more consistent impact of the 7q11.23 deletion on ability levels that the 

respective duplication (Van der Aa et al., 2009). The severe delay in expressive and 

receptive language already described by Somerville is another key feature of 7dup 

patients, with more than 75% of children having Speech Sound Disorder (Mervis et al., 

2015). The weakness in verbal abilities and the relative strength in visuospatial skills of 

7dup children are clearly opposite to what is observed in WBS patients. Anxiety disorders 

are present in both patients but while WBS children have specific phobia, the high majority 

of 7dup children display social phobia and selective mutism, that is in contrast with WBS 

patient hypersociality (Mervis et al., 2015). Moreover, Sanders and collaborators reported 

a strong association of the 7q11.23 region duplication with ASD in around 30% of patients 

(Sanders et al., 2011). 

Cardiovascular alterations. Recent findings reported aortic dilation, which is symmetrically 

opposite to WBS aortic stenosis, to be present in all the nine 7dup patients of the study 

and to mostly affect the ascending aorta (Parrott et al., 2015).   
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Craniofacial alterations. These patients display brachycephaly, straight eyebrows, long 

eyelashes, posteriorly rotated ears and a high palate (Morris et al., 2015; Somerville et al., 

2005).  

Antagonistic alterations are also present at the craniofacial level. Contrary to WBS, 7dup 

children have a high, broad nose, a short philtrum, thin lips and generous-sized teeth. The 

broad forehead and the dental malocclusion due to a smaller jaw are instead found in both 

syndromes. 

 

A comparison of WBS and 7q11.23 duplication syndrome clinical features can be found in 

Table 1. 

 Williams Beuren syndrome 7q11.23 duplication syndrome 

Cognitive and 

social alterations 

Developmental delay/ 

intellectual disability 

Developmental delay/ 

intellectual disability 

Weakness in spatial skills Relative strength in spatial skills 

Preserved language skills Severe language impairment 

Hypersociability Antisocial behaviour 

ADHD ADHD 

Hyperacusis Normal hearing 

Anxiety (specific phobia) Anxiety (social phobia) 

Cardiovascular 
alterations 

SVAS Aortic dilation 

Craniofacial 

alterations 

Broad forehead Broad forehead 

Low nasal root High and broad nose 

Long philtrum Short philtrum 

Normal palate High palate 

Full lips Thin lips 

Small jaw Small jaw 

Dental malocclusion Dental malocclusion 

Other anomalies 
Growth retardation Growth retardation 

Low birth weight Low birth weight 
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Table 1. Summary of common (green) and opposite (orange) features of WBS and 7dup 

patients 

 

2.1.3.    The 7q11.23 region 

2.1.3.1. WBS and 7dup are contiguous gene disorders 

At the beginning, the exposure to high doses of vitamin D during pregnancy was 

considered as the main cause of WBS (Friedman and Mills, 1969). Craniofacial alterations 

and lesions similar to SVAS were indeed observed in rabbit offspring whose mothers 

received excessive amounts of vitamin D (Friedman and Roberts, 1966).  

In the early 90’s, genetic was shown to play a major role in WBS development with the 

discovery of the autosomal dominant inheritance of the disease in few cases (Sadler et 

al., 1993) and the description of a mutation in the ELN gene as responsible for familial 

SVAS (Curran et al., 1993). WBS patients were screened for ELN mutations and one ELN 

allele was found to be entirely absent, while no ELN point-mutations were detected, 

introducing the hypothesis of WBS being a contiguous gene disorder (Ewart et al., 1993). 

Contiguous gene disorders are indeed caused by the deletion/duplication of multiple 

adjacent genes on a specific chromosome. 

Thanks to further analyses based on microsatellite DNA markers, the entire WBSCR and 

of the genes affected by the deletion (e.g., LIM-Kinase1, LIMK1 (Tassabehji et al., 1996); 

Replication Factor C subunit 2, RFC2 (Peoples et al., 1996); Syntaxin 1A, STX1A 

(Osborne et al., 1997) and Bromodomain Adjacent to Zinc Finger Domain 1B, BAZ1B (Lu 

et al., 1998)) were identified. Moreover, the high homology of a DNA marker close to the 

ELN gene with other proximal loci helped to pinpoint repetitive sequences flanking the 

region, that started to be considered potentially responsible for the mutational event in 

WBS patients (Robinson et al., 1996). The 28 genes composing the Williams-Beuren 

syndrome critical region (WBSCR) were later confirmed to be flanked by low-copy-repeat 

(LCR) blocks (also known as duplicons) named A, B and C, containing genes and 

pseudogenes with high sequence homology (Figure 1). These blocks are organised in 
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three different complexes, centromeric, medial and telomeric, according to their position in 

the region (Hockenhull et al., 1999). 

 

 

 

 

Figure 1. Williams-Beuren syndrome critical region on chromosome 7q11.23 

The 28 genes forming the WBSCR are represented inside the red frame. A, B and C boxes 

represent centromeric (blue), medial (green) and telomeric (violet) duplicons. Redrawn from 

(Pober, 2010). 

 

The high similarity of duplicon sequences facilitates an unequal crossing over event 

named Non-Allelic Homologous Recombination (NAHR) that then predisposes to an 

interchromosomal or, less frequently, interchromatid misalignment during meiosis, thus 

leading to the deletion and to the reciprocal duplication of the region (Schubert, 2009). 

Intrachromatid recombination generating a deletion and a reciprocal circular acentric 

chromosome, but not a duplication, is also possible and occurs with a higher rate than 

interchromatid recombination. This might explain the higher frequency of deletion over 

duplication events, with a deletion-duplication rate of 2:1 observed on sperm samples 

(Turner et al., 2008). 

In most cases, breakpoints occur in the B blocks contained in the medial and centromeric 

duplicons and drive to the deletion of ~ 1.5 million base pairs (Mb) in 95% of WBS patients 

and of ~ 1.8 Mb in the remaining 5% of cases (Bayés et al., 2003). 
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2.1.3.2. Genotype-phenotype correlation 

The WBSCR contains a total number of 28 genes coding for transcription (i.e., General 

Transcription Factor 2I, GTF2I) and translation (i.e., Eukaryotic Initiation Factor 4H, 

EIF4H) factors, chromatin regulators (i.e., BAZ1B) and proteins involved in other relevant 

cellular functions such as cytoskeletal organization (i.e., LIMK1) and intracellular transport 

(i.e., STX1A).  

Table 2 recapitulates the main functions of proteins coded by WBSCR genes (Tassabehji, 

2003). 

Mouse models for single WBS genes as well as patients bearing a smaller or larger 

deletion/duplication of WBSCR represent valuable tools to investigate molecular 

mechanisms at the root of 7q11.23 CNVs and the specific contribution of a WBS gene to 

the diseases.  

Mouse models. Mice bearing a hemizygous deletion/duplication better mirror the 

diseases, but in many cases a more definite phenotype was visible in a homozygous 

background (Crackower et al., 2003; Fujiwara et al., 2016).  

The vast majority of mouse models were obtained following the selective targeting of 

single WBS genes. However in 2008, Li and colleagues, thanks to the high similarity of 

the WBSCR with a region on the mouse chromosome 5G, were able to obtain mice 

carrying two deletions spanning both the proximal PD (from Gtf2i to Limk1) and the distal 

DD (from Limk1 to Fkbp6) part of the human region through Cre-LoxP recombination (Li et 

al., 2009). PD mice recapitulate increased sociability, while DD mice display cognitive 

defects. Mice bearing the two deletions (D/P) have craniofacial and motor skill alterations, 

together with growth delay. 

The main phenotypic features of single gene mouse model are reported in Table 3. 

Atypical individuals. Patients with shorter deletions or duplications are extremely valuable 

for genotype–phenotype correlation, but they are rare.  

To date, among all patient clinical traits, only SVAS has been univocally associated with a 

specific WBSCR gene, namely ELN (Curran et al., 1993). 
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In the recent years, other studies on atypical patients tried to link disease phenotypes to a 

specific gene or to a limited subset of genes, but not always there was consistency among 

results. The current hypothesis is that the interval that goes from GTF2I to ELN is most 

probably responsible for the neurocognitive profile, with GTF2I and GTF2IRD1 being the 

top candidate genes (Antonell et al.; Morris et al., 2003). GTF2IRD1 was also suggested 

as a key regulator of craniofacial development according to the phenotype of a knockout 

mouse generated by Tassabehji and collaborators (Tassabehji et al., 2005). However, a 

second Gtf2ird1 knockout mouse on a different strain did not displayed craniofacial 

alterations, thus questioning the strength of previous findings (Palmer et al., 2007). 

Longer deletions of the region that include Huntingtin-interacting protein 1 (HIP1) and 

tyrosine 3-monooxygenase/tryptophan 5-monooxigenase activation protein gamma 

(YWHAG) genes resulted in more severe neurocognitive deficits (Fusco et al., 2013). 

On the contrary, the few patients showing atypical duplications (either smaller or longer) 

did not seem to differ from patients with typical duplication, but comparisons with larger 

group of individuals are needed (Zarate et al., 2014). 

 

  



 24 

              

Table 2. List of the 28 genes included in the WBSCR region 
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Table 3. Mouse models for the genes included in the WBSCR 

Single gene mouse models recapitulate patient cognitive defects (green), craniofacial defects 

(blue), cardiovascular defects (orange) or other disease-related defects (white). 
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2.1.4. WBS and 7dup diagnosis and treatment 

WBS and 7dup are nowadays diagnosed through the detection of the 1.5-1.8 Mb 

heterozygous deletion or duplication at chromosome 7q11.23. Currently, the most used 

molecular techniques for the identification of copy number variations of sequences are: 

1. Chromosomal MicroArray (CMA) based on oligonucleotide arrays that 

recognize duplicated or deleted chromosomal segments (Beaudet, 2013); 

2. targeted analyses, such as Fluorescence In Situ Hybridization (FISH) that uses 

sequence specific-fluorescent probes (Elçioglu et al., 1998), Multiplex Ligation-

dependent Probe Amplification (MLPA) based on a multiplex Polymerase 

Chain Reaction (PCR) (van Hagen et al., 2007) and quantitative PCR (qPCR) 

(Schubert and Laccone, 2006). 

 

Unfortunately, none of the currently available treatments for WBS and 7dup patient 

defects are curative. Most of endocrine alterations of WBS patients such as subclinical 

hypothyroidism, glucose intolerance and hypercalcemia are constantly monitored with 

routine screening. SVAS and aortic dilation represent the most critical manifestations of 

the two diseases and, often, monitoring is not enough but surgery or less invasive 

procedures are required. Cognitive and social disabilities are addressed through early 

intervention and education programs, including counselling, speech and behavioural 

therapies (Pober, 2010). 
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2.2. The neural crest 

 

To date, the vast majority of reports on neurodevelopmental disorders are specifically 

focused on brain and on neurological alterations, while much less studies considered 

Neural Crest Stem Cells (NCSCs) and their derivatives as a worthy tool to target, even 

though their functions are clearly compromised in these diseases.  

The Neural Crest (NC), also known as the ‘fourth germ layer’ (Hall, 2000) is a transient 

and multipotent cell population unique to vertebrates. It originates during gastrulation and 

gives rise to a large variety of cell types, including adipocytes, osteocytes and 

chondrocytes, which composed craniofacial structures, SMCs in the vessels, 

melanocytes, and Schwann cells and sensory neurons of the peripheral nervous system 

(Figure 2)  (Muñoz and Trainor, 2015). 

 

 

 

Figure 2. Schematic representation of NC derivatives 
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NCSCs originate from the neural plate border region and then migrate giving rise to cells with both 

mesodermic (i.e., smooth muscle cells, adipocytes, chondrocytes and osteocytes) and ectodermic 

(i.e., melanocytes, Schwann cells and peripheral neurons) origins. Redrawn from 

‘http://web.biologie.uni-bielefeld.de/cellbiology/index.php/research/neural-crest-derived-stem-cells’. 

 

2.2.1.    Neural crest induction and migration 

NC was originally named Zwischenstrang (intermediate cord) by Wihelm His, that 

discovered it in 1868 (His, 1868). The origin of the NC was highly debated in the past and 

most of the current knowledge derives from studies on Xenopus laevis and avian embryos 

(Sadaghiani and Thiébaud, 1987; Selleck and Bronner-Fraser, 1995). Tissue grafting 

experiments performed in the above mentioned animal models indicated that interactions 

occurring between the neural plate and the non-neural ectoderm were fundamental for NC 

formation (Mancilla and Mayor, 1996; Selleck and Bronner-Fraser, 1995). In 2000, the 

identification of NCSCs in mice provided valuable data on facial structures (Chai et al., 

2000) and heart development (Jiang et al., 2000).  

 

NC induction starts at early stages of gastrulation (i.e., around day 20 in humans) at the 

neural plate border region and continues until neural tube closure, in a process guided by 

a series of environmental signals acting at specific time points. First, extracellular 

molecules such as Wnt, fibroblast growth factor (FGF) and bone morphogenetic proteins 

(BMPs), are released within the neural plate border and promote the activation in neural 

plate border cells of specific transcription factors (TFs) named ‘neural plate border 

specifiers’, that include Msx1, Pax3, Pax7, Zic1 and Tfap2 (Basch et al., 2006; Garnett et 

al., 2012; Knight et al., 2003; Monsoro-Burq et al., 2005).   

Next, extracellular signals and neural plate border specifiers cooperate and activate ‘NC 

specifiers genes’ encoding Snail, Slug, Foxd3, Sox9 and Sox10 that form a regulatory 

loop fundamental for the maintenance of multipotency in NCSCs (Cheung et al., 2005). In 

addition, NC specifiers promote NCSC epithelial to mesenchymal transition (EMT) and 
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motility through the regulation of adhesion molecules (specifically cadherins) and Rho 

GTPase signalling pathways (Cheung et al., 2005).  

Cell lineage tracing studies indicate that NCSCs migrate along specific routes throughout 

the embryo and the subsequent NCSC fates are specifically mediated both by their axial 

origin within the neural tube and by environmental signals (Liu and Cheung, 2016). In 

most vertebrates, NCSCs initiate migration shortly after neural tube closure; however, in 

mammals and amphibians a specific subtype of NCSCs, named cranial NCSCs, starts 

migrating prior to closure (Bronner and LeDouarin, 2012). 

 

2.2.2.    Neural crest subtypes 

NCSC multipotency was first suggested by Stemple and Anderson in 1992 and then 

supported by further isolation and transplantation experiments in both rat and chick 

embryo in the following years (Stemple and Anderson, 1992). 

NCSCs can be divided in 5 main subtypes, according to both their axial origin and the cell 

types they generate (Figure 3). 

CRANIAL NCSC. In mammals, cranial NCSCs originate in the regions encompassing the 

forebrain, the midbrain and the anterior hindbrain and give rise to the main facial 

structures. In particular, cells derived from the forebrain and the midbrain form the palate, 

the frontonasal process and the mesenchyme of the first pharyngeal arch that will 

eventually give rise to jawbones and ear bones malleus and incus. Cells from the anterior 

hindbrain generate the mesenchyme of the second pharyngeal arch from which facial 

cartilage and the stapes bone of the ear are derived. Finally, cranial NCSCs also generate 

the mesenchyme of the third, fourth and sixth pharyngeal arches that produce muscles 

and bones of the neck; while the fifth pharyngeal arch degenerates in humans (Bhatt et 

al., 2013).  

The subdivision of Hox-gene-negative- and Hox-gene-positive cranial NCSCs is 

conserved across vertebrates and required for their specification (Bhatt et al., 2013). 



 30 

CARDIAC NCSCs. They derive from somite 1 to 3 and partially overlap with the anterior 

portion of the vagal region. They form the endothelium and the muscle cells in the aortic 

arch arteries and the septum between the aorta and the pulmonary artery (Waldo et al., 

1998). 

VAGAL NCSCs. They arise from posterior hindbrain in a region that includes somite 1 to 7 

and give rise to the Enteric Nervous System (ENS) along the gastrointestinal tract (M Hao, 

2016). 

TRUNK NCSCs. They derive from somite 8 to 28 and follow two different pathways while 

migrating: i) the trunk NC cells that migrate dorsolaterally enter the dermis, reach the 

skin and hair follicles and differentiate into melanocytes; ii) the cells following a ventral 

route migrate through the anterior portion of sclerotome and generate sensory neurons of 

the dorsal root ganglia. Some of these cells further migrate to form sympathetic neurons, 

Schwann cells along the spinal nerves and secretory cells of the endocrine system (Vega-

Lopez et al., 2017). 

SACRAL NCSCs. They lie posterior to somite 28 and are responsible for ENS generation 

together with vagal NCSCs (M Hao, 2016). 
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Figure 3. Schematic representation of NCSC subtype site of origin in the developing chick 

embryo 

Cranial NCSCs originate from the forebrain, the midbrain and the hindbrain and give rise to the 

ectomesenchyme; cardiac NCSCs originate from somite 1-3 and produce SMCs in the aorta; trunk 

NCSCs migrate from somite 8-28 and form both melanocytes and sensory neurons; vagal NCSCs 

derive from somite 1-7 and together with sacral NCSCs generate the ENS. Redrawn from (Begbie, 

2013).  

 

2.2.3.    Neural crest-associated disorders 

Organ and tissue dysplasias due to NCSC defects in migration, differentiation, division or 

survival are referred as ‘neurocristopathies’ (Benish, 1975). 

Neurocristopathies include two main components, tumors and malformations, that often 

coexist. 

Neurocristopathic tumors include neuroblastomas affecting the sympathetic components, 

cutaneous cancers such as melanoma and Merkel cell carcinoma and few multi-system 

disorders that predispose to cancer, in particular neurofibromatosis type I (Etchevers et 

al., 2006). 

The most common neurocristopathic malformations comprise congenital disorders that 

affect NC and NC-derived cells exclusively or, in most cases, in combination with other 

NC-unrelated tissues.  

Hirschprung’s disease, also known as aganlionic megacolon, is an intestinal mobility 

disorder that affects 1 in 5000 newborns. It is caused by the migration failure of enteric 

neural crest cells (ENCCs) in the distal intestine that leads to intestinal obstruction and 

dilation of the bowel (Parisi, 1993).  

Familial dysautonomia is a neurodegenerative disorder of the autonomic nervous 

system that leads to a progressive loss of sensory, sympathetic and some 

parasympathetic neurons. It is characterized by insensitivity to pain and to temperature 
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and unbalanced blood pressure and it is mainly caused by a point mutation in IKBKAP, a 

subunit of the Elongator complex involved in transcription (Slaugenhaupt et al., 2001). 

Bicuspid aortic valve (BAV) is a congenital disease caused by the fusion of two of the 

aortic valvular leaflets and to the formation of a bicuspid instead of a tricuspid valve 

(Wang et al., 2016). It is often associated with aneurysms in the ascending aorta, that is 

composed by SMCs derived from cardiac NCSCs (Majesky, 2007). 

 

 

2.3. Induced pluripotent stem cells and disease modeling  

 

Despite the undeniable advantages provided by animal models and atypical patients in 

reconstructing the molecular dysregulation of the diseases (see chapter 2.1.3.2.), more 

reliable models are necessary.  

First, mice cannot fully recapitulate human neurodevelopment, especially in terms of 

cerebral cortex complexity.  

On the other side, there are three main issues to consider regarding atypical patients: 

1. usually, they are not diagnosed by the same subset of clinicians and thus 

subjected to the same types of cognitive and social test; 

2. detailed mapping of atypical deletion or duplication are often missing; 

3. they are single case report, thus making difficult to distinguish disease-related 

phenotypes from phenotypes due to genome variability between individuals. 

 

The possibility to directly investigate the patient genome in vitro through the derivation of 

patient-specific cell types is a step forward into a trustworthy molecular characterization of 

many diseases (Antonell et al., 2010). However, in most cases, the actual diseased cells 

reside in poorly accessible tissues, such as the nervous, the cardiovascular and the 

musculoskeletal systems.  
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For example, multipotent NCSCs can be isolated not only from rodent and chick embryos 

but also from rodent and human adult tissues, including skin (Toma et al., 2001), heart 

(Tomita et al., 2005), bone marrow (Shi et al., 2016), gut (Kruger et al., 2002), cornea 

(Brandl et al., 2009) and dental pulp (Janebodin et al., 2011). Thus, adult NCSCs might 

represent an attractive tool for replacement therapies. However, unfortunately, they are 

very rare, they often have a reduced accessibility and they show limited self-renewal 

capacity and multipotency when compared to their embryonic counterparts (Achilleos and 

Trainor, 2012).  

Cellular reprogramming techniques based on the conversion of accessible differentiated 

cell types, such as fibroblasts and blood cells, into induced Pluripotent Stem Cells (iPSCs) 

represent a breakthrough in disease modelling (Takahashi and Yamanaka, 2006). Indeed, 

iPSCs are pluripotent and can be potentially differentiated into all disease-relevant cell 

types, thus solving the aforementioned limit of tissue accessibility. 

 

2.3.1.    The route to iPSCs 

The first attempts of cellular reprogramming involved the generation of embryos following 

the transplantation of somatic cell nuclei into enucleated oocytes with a technique known 

as somatic cell nuclear transfer (SCNT). In 1962, Gurdon was able to transfer nuclei of 

intestinal cells from adult frogs into unfertilized eggs and to obtain vital tadpoles (Gurdon, 

1962). More than 30 years later, these initial findings were confirmed with the generation 

of mammals upon somatic cloning of mammary epithelial cells (Wilmut et al., 1997).  

Another step forward has been the isolation and the establishment in culture of pluripotent 

Embryonic Stem Cells (ESCs) from mouse (Evans and Kaufman, 1981) and human 

blastocysts (Thomson et al., 1998) that were able to form derivatives of all the 

three embryonic germ layers when transplanted into immunodeficient mice. However, the 

employment, for research purposes, of ESCs derived from human embryos has opened 

many debates regarding the ethical implications of their usage. This has reduced both 

their availability and the feasibility of exploiting this cell type for disease studies. 
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Thanks to Takahashi and Yamanaka achievements in 2007, we can now bypass the main 

ethical questions raised in the past years by generating pluripotent cells directly from 

patient somatic cells (Takahashi et al., 2007). The two Nobel prizes showed that the 

forced expression of four TFs involved in pluripotency (i.e., OCT3/4, SOX2, c-MYC and 

KLF4, also known as Yamanaka factors) was enough to induce iPSCs from both mouse 

(Takahashi and Yamanaka, 2006) and human fibroblasts (Takahashi et al., 2007). 

iPSCs are very similar to ESCs in terms of morphology, differentiation potential and ability 

to form embryoid bodies, in vitro, and teratomas containing cells from the three embryonic 

germ layers, in vivo (Takahashi and Yamanaka, 2006; Takahashi et al., 2007). 

 

2.3.2.    Reprogramming protocols 

Since 2006, the reprogramming protocol proposed by Takahashi and Yamanaka was 

widely modified, especially through the usage of both integrating and non-integrating 

approaches for the expression of the four Yamanaka factors.  

Today, we can distinguish five different techniques for the delivery of pluripotency genes. 

Retroviral/lentiviral vector. The original and still most used protocol is based on retroviral 

vectors (Takahashi and Yamanaka, 2006; Takahashi et al., 2007). In 2009, Sommer and 

colleagues produced a single polycistronic lentiviral vector named “STEM Cell CAssette” 

(STEMCCA) to improve the delivery efficiency (Sommer et al., 2009). 

However, the stable integration of these viral vectors is responsible for a significative risk 

of insertional mutagenesis that, together with the residual transgene expression, might 

affect the reprogramming efficiency as well as the iPSC differentiation capability (Warren 

et al., 2010). These problems were partially solved with the introduction of a Cre-excisable 

polycistronic vector in 2010 (Sommer et al., 2010).  

Sendai viral vectors. A good alternative to retroviral and lentiviral vector is Sendai vector, 

derived from a single-stranded RNA virus that does not integrate in the cell genome, thus 

avoiding the aforementioned problems (Fusaki et al., 2009). Since this viral vectors 
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replicates in iPSCs, many passages might be required to completely get rid of it in host 

cells (González et al., 2011). 

Synthetic modified messenger RNAs (mRNAs). This method is based on the daily 

transfection, for a total of 17 days, of five individual mRNAs coding for the classic four 

pluripotency factors plus LIN28A (Warren et al., 2010). It is a vector- and -integration free, 

and thus safer, approach and it was shown to increase the reprogramming efficiency 

(Adamo et al., 2015). 

The combination of mRNAs and specific microRNAs (miRNAs) reduced the transfection 

period to less than two weeks and further increased the number of iPSC clones derived 

from patient fibroblasts (Adamo et al., 2015).  

Self-replicating RNA. More recently, Yoshioka and collaborators developed a 

reprogramming approach that uses a single, synthetic self-replicating Venezuelan Equine 

Encephalitis (VEE) virus RNA replicon expressing the four Yamanaka factors 

(OCT4, KLF4, SOX2 and c-MYC or GLIS1) (Yoshioka et al., 2013). This system is 

integration-free and highly simplifies the reprogramming procedure because it does not 

require the daily mRNA transfection. 

 

2.3.3.    iPSC and iPSC-derived cell applications 

iPSCs have three main advantages: 

1. They can be used to derive all disease-relevant cell types; 

2. They carry the patients’ unique genetic information and they can recapitulate the 

specific pathological defects; 

3. They are renewable and, as such, an unlimited cell resource. 

Based on all these strengths, we can distinguish two main fields of application for human 

iPSCs (Bellin et al., 2012; Wen, 2017):  

1. Disease modelling. The direct investigation of the diseased cell can help in 

understanding the molecular mechanisms responsible for the patients’ phenotypes 

and thus developing appropriate treatments.  
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2. Drug discovery. iPSCs can be used in drug screening to identify the effects of new 

candidate compounds and to assess whether cellular toxic responses are associated 

to them. This application represents a new type of human preclinical trial that could 

eventually limit animal use.  

 

To address the first purpose, it is necessary to develop appropriate assays able to detect 

and discriminate specific phenotypes associated to patient derived cells, while 

determining how to intervene to rescue them would help to pinpoint the second iPSC 

usage aim. 

To date, various diseases have been studied using patient-specific iPSCs and iPSC-

derived cell types and several disease phenotypes have been reported. iPSCs are widely 

used to model neurodevelopmental disorders, while some challenges have to be 

considered in their applications in the study of age-related neurodegenerative disorders. 

Indeed, the resetting of the cell epigenetic state during reprogramming, together with the 

competitive clonal growth and the frequent cell divisions, are responsible for cell 

rejuvenation, that represents a limit for the modeling of all those diseases where ageing is 

a crucial risk factor (Rando and Chang, 2012). 

In the vast majority of cases, iPSCs are differentiated towards somatic cells that are 

relevant for the specific disease defects, such as neuronal cells in neurodevelopmental 

disorders or cardiomyocytes in cardiovascular diseases.  

However, iPSCs cannot be considered only as a transitional population needed for the 

generation of disease-relevant cell types. Indeed, we recently showed that the pluripotent 

state is already informative about the disease alterations (Adamo et al., 2015; Urban and 

Purmann, 2015). RNA sequencing (RNA-seq) analysis performed on a large cohort of 

WBS and 7dup patient- as well as healthy controls-derived iPSCs revealed a clear 

transcriptomic dysregulation of specific neurodevelopmental features of the two 

syndromes. According to Gene Ontology (GO) enrichment analysis, the top-ranking 

dysregulated biological processes included: i) neural crest cell development and 
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migration, which is relevant for the craniofacial alterations; ii) synapse assembly and axon 

guidance, consistent with the neurological defects; iii) cardiovascular system 

development, in line with SVAS and aortic dilation described in WBS and 7dup patients, 

respectively (Adamo et al., 2015). 

 

2.3.3.1. iPSC-derived NCSC protocols 

The vast majority of NCSC-related disorders primarily affect pediatric patients because of 

an abnormal migration, proliferation or differentiation of embryonic NCSCs. While NCSCs 

can be derived from adult tissues (see chapter 2.3), the isolation of human fetal NCSCs 

encounters both ethical and scientific challenges. For this reason, disease-specific 

NCSCs have been obtained following differentiation of iPSCs, mainly reprogrammed from 

patient skin fibroblasts, and constitute an extremely valuable tool for disease modelling of 

neurocristopaties and other NC-related disorders. Moreover, the use of patient-specific 

NCSCs would allow autologous transplantations without the risk of immune-rejection.  

In the last 15 years several approaches for the derivation of NCSCs from ESCs and 

iPSCs have been developed.  

Stromal feeder-layers. In 2003, Mizuseki and colleagues have been the first ones to 

obtain NCSCs from mouse and primate ESCs through a co-culture with the mouse 

stromal line PA6 in the presence of BMP4 (Mizuseki et al., 2003). Moreover, different 

concentrations of BMP4 were able to further differentiate ESC-derived NCSCs towards 

sensory or autonomic neurons. Improvements of the protocol through the formation of 

ESC-derived non adhesive neurospheres increased the multipotent differentiation 

potential with the generation of sensory neurons and myofibroblasts both in vitro and in 

vivo (Jiang et al., 2009). 

Neural rosettes. Co-culture of human ESCs with another stromal cell line (MS5) gives rise 

to neural rosettes able to self-renewal and to differentiate into bona fide NGFR+ and 

HNK1+ NCSCs (Perrier et al., 2004). As in the previous protocol, NCSCs are multipotent 

both in vitro and in vivo when transplanted either into chick embryos or adult mice. 
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The main issues of these two approaches are the use of stromal feeders, whose secreted 

factors are undefined, and the time required for differentiation (20 to 40 days). 

Dual-SMAD inhibition. Feeder cells can be avoided by using  Small Mother Against 

Decapentaplegic (SMAD) signaling inhibitors, such as SB431542 and Noggin that block 

Activin/Nodal and BMP signaling pathways, respectively and prompt ESCs to differentiate 

toward neuroectoderm (Chambers et al., 2009). However, this protocol generates a 

culture that mostly consists of Pax6+ neural precursor cells (NPCs) and only few Pax6- 

neural crest–like cells.  

Given the relevant role played by Wnt signaling in NC induction at the neural plate border, 

Menendez and colleagues decided to combine SMAD inhibition to Wnt pathway activation 

using SB431542 and GSK3b inhibitor, respectively (Menendez et al., 2011, 2013). On 

average, this approach gives rise to 90-95% NGFR+ and HNK1+ NCSCs in 15 days, thus 

avoiding FACS sorting for population enrichment. iPSC/ESC-derived NCSCs can be 

propagated for more than 30 passages and can differentiate into SMCs, adipocytes, 

chondrocytes, osteocytes and peripheral neurons. However, it has not been demonstrated 

yet whether early stages of NC development are faithfully recapitulated through this 

experimental approach. 

 

2.3.3.2. iPSC-derived NCSC applications 

Applications of iPSC-derived NCSCs in disease modelling are still in its infancy and few 

reports are available now, some of which involve Familial Dysautonomia (FD). In 

particular, NCSCs derived from FD patient-iPSCs showed a migration defect that, in turn, 

impaired the survival rate of sensory, sympathetic and parasympathetic neurons (Lee et 

al., 2009; Zeltner et al., 2016). Kinetin, a plant hormone, was able to rescue the NCSC 

defect and defect and gave encouraging results when tested in patients (Axelrod et al., 

2011).   

iPSC-derived NCSCs were also obtained from patients with Hirschsprung’s disease, for 

which standard treatment based on the surgical removal of the defective tract of the bowel 
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are often inefficient. Genetic analyses identified key mutations responsible for an impaired 

migration and differentiation of patient-specific ENCCs, that were restored through a 

CRISPR/Cas9-based approach (Lai et al., 2017).  

Further potential applications involve corneal blindness, tooth regeneration and heart 

repair given the development of protocols for the differentiation of ESC- or iPSC-derived 

NCSCs respectively towards corneal endothelial cells (Chen et al., 2014), odontoblast 

cells (Seki et al., 2015) and SMCs or cardiac progenitors (Cheung et al., 2014; Tamura et 

al., 2016). NCSC-derived odontoblast and SMCs are particularly relevant in the context of 

WBS and 7dup syndrome given the dental and the aorta vasculature problems described 

in the patients (Pober, 2010). Jiao and collaborators recently obtained cardiac NC cells 

from BAV patient-iPSCs that showed defects in SMC formation and contraction and 

increased mTOR signalling pathway (Jiao et al., 2016). SMC defective differentiation was 

restored using rapamycin, a known mTOR signalling pathway inhibitor.  

 

 

2.4. BAZ1B  

 

A relevant number of observations in the past years suggest one of the genes contained 

in the WBSCR, known as BAZ1B or Williams syndrome transcription factor (WSTF), as a 

critical player in NCSC biology and, more specifically, in craniofacial development. 

 

2.4.1.    BAZ1B expression and role in development 

BAZ1B was first identified and characterized in human tissues thanks to Xiaojun Lu and 

colleagues’ studies in 1998 (Lu et al., 1998). Northern blot analysis revealed a 7.5 kb-

transcript that was expressed in all the human (i.e., skeletal muscle, brain, heart, ovary 

and placenta) and fetal tissues (i.e., lung, brain, kidney and liver) tested (Lu et al., 1998). 
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Most of the knowledge on BAZ1B expression and role during development comes from 

studies performed in Xenopus laevis and mouse embryos.  

 

2.4.1.1. BAZ1B role in Xenopus laevis 

Baz1b can be already detected in Xenopus laevis unfertilized oocytes and is then 

expressed ubiquitously until 24 hours post-fertilization (stage 16) (Cus et al., 2006). 

During neurulation, it starts localizing to the closing neural tube and, in particular, at the 

level of the anterior brain, the optic cup and the migrating head NC cells (stage 20/21). 

The strong baz1b expression detected within the branchial arches is most probably a 

consequence of NC cells migration in these specific areas during development (see 

chapter 2.2.1). 

Baz1b knock-down in Xenopus laevis embryos was shown to affect neural crest function, 

especially at the later stages of NC cell migration and maintenance (Barnett et al., 2012). 

Indeed, the expression of two important NC specifier genes, Snail and Slug, is not 

affected by Baz1b knock-down during the first stages of NC formation, but is clearly 

reduced within the branchial arches where NC cells migrate prior to the development of 

NC-related tissues. Baz1b knock-down was also responsible for an increase in Bmp4 

expression and a subsequent reduction of Sonic Hedgehog (Shh), both crucial in NC 

development and specification (Barnett et al., 2012; Liu and Cheung, 2016). A similar 

effect was observed when Imitation switch (Iswi), BAZ1B partner in the WICH complex 

(see chapter 2.4.3.1.), was knocked-down, thus supporting a potential repressive activity 

on BMP4 transcriptome by this complex (Dirscherl et al., 2005). 

  

2.4.1.2. BAZ1B role in mouse 

In mouse embryos, Baz1b expression is localized in the presumptive hindbrain, in the 

headfolds and in the caudal tail bud starting from 8.25 days postcoitum (dpc) and, later 

on, in the somites and in the forelimb bud (9.5 dpc) (Ashe et al., 2008). It is also detected 
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in the frontonasal process and in the mesenchyme of branchial arches 1 and 2, that give 

rise to the mandibular and maxillary components of the face. 

Ashe and colleagues produced a mutant mouse bearing a point mutation in a highly 

conserved region in exon 7 that results in intermediate or reduced Baz1b protein levels in 

heterozygous or homozygous mice, respectively (Ashe et al., 2008). Homozygotes are 

smaller than wild type littermates and display craniofacial alterations resembling those of 

WBS patients such as bulbous and protruding foreheads, flattened nasal bone and shorter 

snouts. Heterozygotes also present skull defects including a decreased cranium 

width/height and length/height ratio and mandibular hypoplasia. 

 

2.4.2.    BAZ1B protein organization 

BAZ1B gene consists of 20 exons spanning 80 kb and encodes a protein of 1425 amino-

acids. BAZ1B protein is part of the BAZ/WAL family, that includes proteins with a specific 

subset of highly conserved motifs (Figure 4a).  

Moving from N-terminus to C-terminus we can distinguish: 

- a WSTF/Acf1/cbp146 (WAC) domain, that is not present in all BAZ proteins 

and has an intrinsic tyrosine kinase activity described in detail in chapter 

2.4.3.2.; 

- a DDT domain, possibly involved in DNA interaction since it has been found in 

different proteins known to bind DNA but lacking a known DNA-binding 

domain, such as Bromodomain and PHD domain Transcription Factor (BPTF) 

(Doerks et al., 2001). Moreover, a truncated version of BPTF that lacks the N-

terminal region, including the DDT domain, displays a strong reduction in DNA-

binding activity (Jordan-Sciutto et al., 1999); 

- a Loop-Helix (LH) motif, shown to be relevant for transcriptional activation 

(Quong et al., 1993); 
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- BAZ 1 and BAZ 2 motifs, involved in the interaction with ISWI in B-WICH and 

WICH chromatin remodelling complexes (see chapter 2.4.3.1.); 

- a WSTF/Acf1/KIAA0314/ZK783.4 (WAKZ) motif; 

- a Plant HomeoDomain (PHD) finger. Proteins with PHD fingers domains were 

shown to play a role in transcription: for example, in BPTF, this domain 

specifically binds trimethylated lysine 4 on histone 3 (H3K4me3) at 

Transcription Start Sites (TSS) of active genes (Li et al., 2006). WSTF PHD 

finger domain specific targets have not been identified yet, but the presence of 

this domain in different subunits of other known chromatin remodelling 

complexes suggests a role in transcription; 

- a bromodomain, composed by 110 amino acids with a central motif sequence 

(Jones et al., 2000). Bromodomains are implicated in protein-protein 

interactions and proteins containing this domain are often transcription 

cofactors and key components of chromatin remodelling complexes. For 

example, the ACF chromatin remodelling complex in Drosophila is composed 

by ISWI (also associated with BAZ1B in the WICH complex) and BAZ1B 

orthologous gene ATP-utilizing Chromatin assembly and remodeling Factor 1 

(Acf1) that contains a bromodomain. ISWI itself is able to remodel chromatin 

but this activity is significantly increased by the presence of Acf1 in the 

complex (Ito et al., 1999). In addition, bromodomains are able to recognize 

acetylated lysine residues and, therefore, they serve to anchor bromodomain-

containing proteins to acetylated chromatin (Jones et al., 2000). 

 

2.4.3.  BAZ1B functions 

The conserved domains mentioned in the previous chapter support an important role for 

BAZ1B in chromatin remodeling, transcriptional regulation and in DNA damage response. 
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2.4.3.1. BAZ1B role in transcription and chromatin remodeling 

BAZ1B is a common subunit of two well characterized ATP-dependent chromatin 

remodelers: WICH and B-WICH (Figure 4b). 

ATP-dependent chromatin remodelers use the energy derived from ATP hydrolysis to 

assemble, reposition or displace nucleosomes in order to expose specific DNA 

sequences, therefore regulating fundamental processes including replication, transcription 

and repair (Vignali et al., 2000).  

In particular, BAZ1B-containing complexes are part of the ISWI complexes that are able to 

expose longer regions of linker DNA by mobilizing nucleosome along the genome without 

displacing them (Vignali et al., 2000). 

WICH complex. It was first isolated from Xenopus laevis egg extract and then shown to be 

conserved across vertebrates. In mammals, it is composed by BAZ1B and the ISWI 

isoform SNF2H, also known as SWI/SNF related, Matrix associated, Actin dependent 

Regulator of Chromatin, subfamily A, Member 5 (SMARCA5) (Bozhenok et al., 2002). 

This complex plays a crucial role in chromatin replication by mediating heterochromatin 

assembly through the establishment of a regular nucleosomal array from an irregular 

chromatin structure. In mouse cells, BAZ1B accumulates in heterochromatin around the 

centromere during replication and prevents aberrant heterochromatin spreading 

(Bozhenok et al., 2002; Poot et al., 2004). Indeed, BAZ1B depletion in different human 

cells is responsible for an increase in heterochromatin marks that leads to a global 

chromatin condensation, reduced accessibility and thus transcriptional impairment 

(Culver-Cochran and Chadwick, 2013; Poot et al., 2004, 2005). The same group observed 

that Proliferating Cell Nuclear Antigen (PCNA), a key player in DNA and chromatin 

replication, act as a binding platform that facilitates the targeting of WICH complex at 

replication foci (Poot et al., 2004). 

B-WICH. BAZ1B and SNF2H/ISWI also interact with other nuclear proteins to form the B-

WICH complex, that includes: nuclear myosin 1 (NM1); the proto-oncogene Dek; the 

Cockayne Syndrome protein B (CSB), also part of the SWI/SNF complex; the RNA 



 44 

helicase Gu alpha; the nucleolar protein Myb-binding protein 1a (Myb-bp1a) and SAP155, 

involved in splicing (Cavellán et al., 2006).  

Most of these proteins are implicated in transcription per se and chromatin remodeling-

dependent transcriptional regulation. In particular, ChIP analysis in HeLa cells show that 

the core proteins (i.e., BAZ1B, SNF2H and NM1) interact with 7SL RNA, 5S rRNA and 

45S rRNA genes, transcribed by RNA polymerase I and III, and that their levels are 

reduced upon BAZ1B silencing (Cavellán et al., 2006). Further studies from the same 

authors support the role of B-WICH complex in facilitating active transcription by RNA 

polymerase I and III (Sadeghifar et al., 2015; Vintermist et al., 2011). In particular, B-

WICH allows the binding of specific regulatory factors to DNA through the maintenance of 

an open chromatin structure. 

 

 

 

Figure 4. BAZ1B protein structure and BAZ1B-containing complexes 

a) Schematic representation of conserved motifs in WSTF; b) BAZ1B can form a complex with 

SNF2H alone or in combination with other proteins involved in transcription. Redrawn from (Barnett 

and Krebs, 2011) 
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2.4.3.2. BAZ1B role in DNA damage response 

In 2009, Xiao and colleagues identified in the N-terminal portion of BAZ1B an active 

kinase domain encompassing the WAC domain and a previously unknown C-motif, 

required for the phosphorylation of tyrosine 142 (Tyr142) on the C terminus of H2AX (Xiao 

et al., 2009). Tyr142 is constitutively phosphorylated in normal conditions and 

progressively dephosphorylated during DNA damage response, when instead 

phosphorylation on serine 139 (g-H2AX) increases. BAZ1B knock-down is responsible for 

an impairment in g-H2AX foci formation as a consequence of defects in the recruitment of 

Mdc1 and ATM, indicating a crucial role for BAZ1B in this process (Xiao et al., 2009). In 

particular, it has been hypothesised that BAZ1B acts during DNA damage by enhancing 

the recruitment of g-H2AX kinase ATM. Thus, through its kinase activity on Tyr142, it 

should maintain the g-H2AX phosphorylation response.  

BAZ1B and other two members of the B-WICH complex, SNF2H and CSB, were later 

shown to be involved in another DNA repair process, namely transcription-coupled 

nucleotide excision repair that resolves DNA lesions affecting transcription (Aydin et al., 

2014). 

Few studies reported an impairment of ATR-dependent DNA damage response in WBS 

patient-derived cells (fibroblasts and lymphocytes), but a direct link with a specific 

WBSCR gene is still missing (Guenat et al., 2017; Savina et al., 2011). 

 

2.4.4.    BAZ1B in diseases 

Little is known about the implication of BAZ1B in diseases such as cancer and 

neurodevelopmental disorders.  

Recently, Meng and colleagues observed that BAZ1B overexpression promotes both 

proliferation and invasion of human lung cancer cells in a mouse xenograft model, thus 

accelerating tumor aggressiveness (Meng et al., 2016). One year later, Lundqvist and 

collaborators reported that BAZ1B expression is higher in human breast cancer cells than 
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in normal tissues and this was associated with a BAZ1B-dependent activation of estrogen 

receptor signaling (Lundqvist et al., 2017). 

In 2016, it was shown that BAZ1B haploinsufficiency is responsible for transcriptional 

alterations and differentiation defects in neurons derived from WBS patient-iPSCs, letting 

the authors conclude that BAZ1B might contribute to the neurological phenotype (Lalli et 

al., 2016).  

Other indications on BAZ1B contribution to WBS derive from a peculiar patient carrying a 

smaller deletion of the 7q11.23 region (around 1.2 Mb instead of 1.5 Mb) that does not 

involve BAZ1B and few other genes (Fusco et al., 2013). Language and communication 

skills are well preserved in the patient, in line with what is observed in WBS patients with 

the typical deletion. However, this patient does not present most of the typical WBS facial 

alterations, including the stellate iris, the short, upturned nose, the long philtrum, the wide 

mouth, the full lips, the dental problems and the malocclusion, suggesting that BAZ1B 

and/or the few other spared genes might be involved in the craniofacial phenotype. 

Notably, this patient was included in my study, as shown in the results chapter. 

 

2.4.5.    Chromatin remodeling in neural crest development 

Many evidences support the relevant and direct involvement of BAZ1B in NCSCs 

formation and migration and in the consequent development of craniofacial structures (as 

demonstrated in Xenopus laevis, in a mouse model and in a peculiar case of WBS 

patient). However, the molecular mechanisms at the bases of BAZ1B action in NCSCs 

have not yet been elucidated. Several publications support its function as chromatin 

remodeler and transcriptional regulator in different cell types, including human cells. Thus, 

BAZ1B-dependent regulation of neural crest development might occur at the chromatin 

level.  

Chromatin remodeling aimed at generating transcriptionally permissive chromatin state for 

the binding of specific TFs was shown to be extremely relevant for the development of 

many cell types including NC cells.  
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For example, the homozygous loss of the SWI/SNF chromatin remodeling complex BAF-

A, induces severe heart defects and consequent embryonic lethality in mice (Chandler 

and Magnuson, 2016). In addition, the absence of ARID1A, a subunit of BAF-A complex, 

affects mouse early cardiac NC cell migration and is associated with craniofacial defects 

(Chandler and Magnuson, 2016). 

Notably, the ATP-chromatin remodeler Chromodomain helicase DNA binding protein 7 

(Chd7) was shown to play a crucial role in NC migration both in Xenopus laevis embryos 

and human NC-like cells (Bajpai et al., 2010). Indeed, in humans, CHD7 mutations are 

responsible for CHARGE syndrome, a neurodevelopmental disorder characterized by 

craniofacial defects and other NC-related alterations (Pagon et al., 1981). Moreover, the 

authors observed that CHD7 interacts with BRG1 (the catalytic subunit of SWI/SNF 

chromatin remodeling complex) and that they both regulate the transcriptional activity of 

NC migration specifiers (Sox9 and Twist) by preferentially co-occupying their enhancer 

elements (Bajpai et al., 2010).  

Enhancers are short DNA sequences of around 200-500 base pairs (bp) that functionally 

interact with promoters to regulate gene expression (Buecker and Wysocka, 2012). 

Lineage-specific TFs recognize peculiar motifs on enhancer regions and bind them upon 

recruitment of coactivators, such as chromatin remodelers and histone modifiers, which, in 

turn, establish permissive chromatin states.  

Recently, it was shown that chromatin states associated with an active enhancer 

signature (i.e., H3K27ac and H3K4me1) are more dynamic, across different cell types, 

than promoter regions (Rada-Iglesias et al., 2012). In particular, around 80% of active 

enhancer regions identified in hESC-derived NC cells were unique to these cells, while 

only few were shared with hESCs or human neuroectodermal cells (hNECs). On the 

contrary, hESC-associated chromatin patterns such as bivalent promoters (in which both 

active H3K4me3 and inactive H3K27me3 marks coexist) and poised enhancers 

(H3K4me1 but not H3K27ac) are much less represented in human NC cells.  
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The investigation of the most represented DNA motifs at human NC cells enhancer 

regions revealed a clear association of distal region with TFs specifically involved in NC 

induction and differentiation and in craniofacial development including Transcription 

Factor AP-2-Alpha (TFAP2A) and Nuclear Receptor subfamily 2 group F members 1/2 

(NR2F1/2) (Rada-Iglesias et al., 2012). In addition, these two TFs co-occupy a relevant 

number of sites characterized by an active enhancer signature, suggesting a role in the 

establishment of permissive chromatin states in NC cell enhancers. 

It was also observed that single nucleotide polymorphisms (SNPs) on NR2F1/2 

recognition motifs, affecting their binding to enhancer regions, are responsible for 

alterations in enhancer states that in most cases are subtle, but can have anyway 

negative effects on craniofacial development (Rada-Iglesias et al., 2013). Two years later, 

Prescott and collaborators identified clusters of enhancer regions bound by TFs involved 

in NC development and associated with facial variation (Prescott et al., 2015). Briefly, they 

were able to distinguish higher primate- and human-biased enhancers according to their 

association with genes whose higher or lower expression was reflected in primate or 

human typical facial traits, thus showing how critical gene dosage is for a proper species-

specific craniofacial development. 
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2.5. Aim of the thesis 

Taking advantage of WBS and 7dup patient specific-iPSC lines derived in our laboratory, 

in my PhD project I aimed at better understand the molecular alterations due to gene 

dosage imbalances at the 7q11.23 region and responsible for developmental defects in 

NC and NC derivatives in patients. 

In order to achieve this aim: 

1. I differentiated iPSCs derived from WBS and 7dup patients towards bona fide 

multipotent NCSCs; 

2. I dissected BAZ1B specific contribution to NCSC dysregulation at both 

transcriptomic and chromatin levels in patient-derived NCSCs, given its 

involvement in NC development in animal models and, possibly, in a peculiar 

atypical WBS case study; 

3. I evaluated possible BAZ1B-dependent cellular alterations (i.e., migration defects) 

in patient-derived NCSCs in the perspective of the observed molecular 

dysregulation. 

The main advantage of this experimental setup is the possibility to directly investigate 

NCSCs carrying the genetic information of WBS and 7dup patients, thus revealing a 

reliable scenario of patient-specific deficiencies. 
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3. MATERIAL AND METHODS 

 

3.1. Human samples 

 

Participation in this study by patients and their relatives along with skin biopsy donations 

and informed consent procedures were approved by the ethics committees of the 

Genomic and Genetic Disorder Biobank (Casa Sollievo della Sofferenza, San Giovanni 

Rotondo, Italy) and the University of Perugia (Azienda Ospedaliera–Universitaria ‘Santa 

Maria della Misericordia’, Perugia, Italy). 

 

3.2. Fibroblast reprogramming and iPSC culture 

 

WBS1, WBS2, WBS3, WBS4, 7dupASD1, AtWBS1 and CTL2 fibroblasts were 

reprogrammed using the mRNA Reprogramming kit (Stemgent, 00-0071), while the 

7dupASD2 and CTL1R lines were reprogrammed with the microRNA Booster kit 

(Stemgent, 00-0073). The CTL3 line was reprogrammed by transfection with the 

STEMCCA polycistronic lentiviral vector followed by Cre-mediated excision of the 

integrated polycistron. 7dupASD3 and CTL4R were reprogrammed using the SimpliconTM 

RNA Reprogramming kit (Millipore, SCR550). 

Prior to differentiation, iPSC lines were cultured on plates coated with hESC-qualified 

Matrigel (BD Biosciences, 354277) diluted 1:40 in DMEM (Lonza, BE12-614F) + F-12 

(Life Technologies, 11765054) and grown in mTeSR-1 medium (StemCell Technologies, 

85850). They are passaged upon treatment with Accutase (Sigma, A6964) and then 

plated in mTeSR-1 medium supplemented with 5�µM Y-27632 (Sigma, Y0503). 
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3.3. Differentiation 

 

Differentiation into NCSCs, mesenchymal stem cells (MSCs), osteocytes and smooth 

muscle cells (SMCs) was performed as previously described (Cheung et al., 2014; 

Menendez et al., 2013).  

 

1. NCSCs (15-20 days). 90% confluent iPSCs were detached with accutase and 

plated onto hESC-qualified Matrigel coated tissue culture plates in mTESR 

supplemented with 5 µM Y-27632 at a density of ~9.2 × 104 cells per cm2. The day 

after neural crest medium (see below) was added and changed every day for 15-

20 days. Cells were passaged every 4-5 days and plated at a high concentration 

(1:1 the first time and 1:2 the following ones) onto hESC-qualified Matrigel coated 

tissue culture plates for the entire duration of the differentiation. 

Upon differentiation, NCSCs were cultured in the same medium and passaged 

every 3-4 days. 

NCSC medium: DMEM + F-12,   10% probumin Life Science Grade (20% (vol/vol) stock 

solution; Millipore, 821001), 1% Penicillin/Streptomycin (Life Technologies, 15140-122), 

1% L-Glutamine (Life Technologies, 25030-024), 1% Non-essential amino acids (Lonza, 

BE13-114E), 0.1% 1000X trace elements complex (CA055-010, Gentaur Italy Srl), 0.2% 

50 mM b-mercaptoethanol (Life Technologies, 31350-010), 10 ug/ml Transferrin, bovine 

(Holo form) (Life Technologies, 11107-018),   50 ug/ml (+)-Sodium L-ascorbate (Sigma, 

A4034), 10 ng/ml Heregulin-1 (Peprotech, 100-03), 200 ng/ml LONGÒR3 IGF-I (Sigma, 

85580C), 8 ng/ml recombinant human FGF2-b (Thermo Fisher Scientific, PHG0021), 3 

µM GSK3 inhibitor IX (BIO) (MedChem express, HY-10580) and 20 µm SB431542 

(MedChem express, HY-10431).  

 

2. MSCs (10 days). NCSCs were detached with accutase and plated at a density of 

6.5 × 104 cells per cm2 in MSC medium (see below) onto noncoated tissue culture 
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plates. Medium was changed every other day and cells were passaged with 

trypsin every 4-5 days. 

MSC medium. DMEM + F-12,   1% Penicillin/Streptomycin, 1% L-Glutamine, 0.2% 50 mM 

b-mercaptoethanol and 10% Fetal Bovine Serum (FBS) (HyClone, SH30088.03). 

 

3. Osteocytes (20 days). MSCs were detached with trypsin and plated at a density of 

5 × 103 cells per cm2 in STEMPROÒ osteogenesis differentiation medium (Thermo 

Fisher Scientific, A10072-01) onto noncoated tissue culture plates and medium 

was changed every 3-4 days. 

 

4. SMCs (12 days). NCSCs were detached with accutase and plated at a density of 2 

× 104 cells per cm2 in SMC differentiation medium (see below) onto noncoated 

tissue culture plates and half of the medium was changed every 2 days. 

SMC medium: IMDM (Sigma, 13390) + F-12, 1% of Penicillin/Streptomycin, 15 ug/ml of 

Transferrin, bovine (Holo form),   0.05% human Insulin (Sigma, I9278), 0.004% 

monothioglycerol (Sigma, M6145)  , 10ng/ml recombinant human Platelet-Derived Growth 

Factor BB (PDGF-BB, PeproTech, 100-14B) and 2 ng/ml recombinant human 

Transforming Growth Factor b1 (TGF-b1, PeproTech, 100-21C).   

 

All the cell types used in this study were maintained at low oxygen (3%) conditions. 

 

3.4. Flow cytometry 

 

NCSCs or MSCs were detached using accutase or trypsin, counted and 1 × 106 

cells/experimental condition were fixed in 4% paraformaldehyde and then blocked in 10% 

Bovine Serum Albumin (BSA). Cells were incubated for 1 hour with primary antibodies 

conjugated to fluorophores (see Table 4). Analyses were performed on a FACSCalibur 
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instrument (BD Biosciences) and data were analyzed with FCS express software (Tree 

Star). 

 

3.5. SMC and osteocytes staining 

 

SMCs and osteocytes were fixed in 4% paraformaldehyde for 20 minutes and 

subsequently blocked in 10% FBS and 0.1% Triton X-100 for 30 minutes at room 

temperature. SMCs were incubated with the primary antibody overnight at 4°C and then 

with secondary antibodies for 1 hour at room temperature. Both primary and secondary 

antibodies were resuspended in PBS + 10% FBS. Cell nuclei were stained with Dapi 

(Sigma, D9542). Slides were mounted using Vectamount AQ Mounting Medium (Vector 

Laboratories, H-5501). 

Osteocytes were incubated with alkaline phosphatase (AP) for 15-20 minutes in the dark 

at room temperature.  

All images were acquired on an Olympus AX70 microscope. 

The list of the antibodies used is reported in Table 4. 

 

3.6. Lentiviral vector production and NCSC transfection 

 

BAZ1B knock-down was performed using validated pLKO.1 TRC vector 

TRCN0000013338 (referred to as sh38) and TRCN0000013341 (referred to as sh41). A 

pLKO.1 TRC vector containing a scrambled short hairpin sequence was used as a 

negative control.  

A pBOS H2B-GFP vector was used for the generation of NCSC reporter lines.  

The envelope plasmid PMD2-VSV-G, the packaging plasmid psPAX2 and the plKO.1 

plasmids were extracted using the Nucleobond Xtra Maxi kit (Macherey-Nagel, 700414-

10). Second generation lentiviral vector were produced through calcium phosphate 
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transfection of human embryonic kidney (HEK293T) cells and ultracentrifugation. Briefly, 

9x106 HEK293T cells were plated in DMEM, 10% FBS, 1% penicillin/streptomycin and 1% 

L-Glutamine and incubated at 37°C, 5% O2, 5% CO2. The day after, medium was changed 

and the following mix was prepared. 

Transfection mix for 2 x15 cm dishes 

PMD2-VSV-G: 16 µg 

psPAX2: 29,2 µg 

plKO.1 sh / pBOS H2B-GFP: 45 µg 

CaCl2: 244 µl 

H2O: to 2 ml 

The tube was put on a rotating wheel for 10 minutes and then the mix was splitted in two 

tubes (1 ml/tube). 

DNA precipitate was obtained by drop wise addition of 1 ml 2X HBS solution (281 mM 

NaCl, 100 mM HEPES, 1.5 mM NA2HPO4 pH 7.12) to the previously prepared tube mix 

placed on a full speed vortex. The final mix was immediately added on HEK293T cell 

medium surface, the cells were incubated for 14 hours and then medium was replaced 

with 16 ml of fresh medium. 30 hours later the supernatant was 0.22 µm filtered and 

ultracentrifuged for 2 hours at 20°C and 20000 rpm in SW32Ti rotor (Optima L-60 

preparative Ultracentrifuge; Beckman). Pellets were then resuspended in PBS and the 

vector was stored at -80°C. 

3-4x105 NCSCs were infected upon splitting with 1-3 µl of lentiviral vector and plated in 12 

multiwell plates. The cells that integrated the viral vector were selected by adding 1µg/ml 

puromycin to the medium for at least 7 days. 
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3.7. RNA extraction 

 

RNA was extracted using the RNeasy Micro Plus kit (Qiagen, 74004) to optimize the 

extraction of messenger RNA (mRNA). Briefly, cells were resuspended in a denaturing 

buffer (RLT) plus b-mercaptoethanol to inactivate RNases and then lysed using a blunt 

20-gauge needle. Then RNA specific binding to the spin column was obtained by adding 

70% ethanol, while DNA was eliminated using DNase I. RNA was eluted in 20-30 µl of 

RNase free water and stored at -80°C. 

Prior to RNA library preparation, the concentration and the quality of RNA samples were 

assessed using a NanoDrop spectrophotometer (NanoDrop Technologies) and an Agilent 

2100 Bioanalyzer (with the RNA 6000 Nano kit, 5067-1511), respectively. 

 

3.8. RNA retrotranscription and Real Time quantitative 

PCR (RT-qPCR) 

 

Retrotranscribed cDNA was obtained from 0.5-1 µg of total RNA using the SuperScript 

VILO Retrotranscription kit (Thermo Fisher Scientific, 11754-050).  

RT-qPCR was performed on a 7500 Fast Real-Time PCR system (Applied Biosystems) 

using SYBR Green Master Mix (Applied Biosystems, 4334973) as detecting reagent and 

10 µM for each primer pair. A total cDNA amount corresponding to 15 ng of starting RNA 

was used for each reaction. Each sample was analyzed in triplicate and normalized to 

GAPDH. Relative mRNA quantity was calculated by the comparative cycle threshold (Ct) 

method using the formula 2-DCt. 

qPCR steps  

1.  20 seconds at 95°C 

2.  40 cycles of: 3 seconds at 95°C, 30 seconds at 60°C and 15 seconds at 

95°C 



 56 

3.  Dissociation stage: 1 minute at 60°C, 15 seconds at 95°C and 15 seconds 

at 60°C 

Oligo pairs used for BAZ1B: CCTCGCAGTAAGAAAGCAAAC (forward); 

ACTCATCCAGCTCCTTTTGAC (reverse). 

Oligo pairs used for GAPDH: GCACCGTCAAGGCTGAGAAC (forward); 

AGGGATCTCGCTCCTGGAA (reverse). 

 

3.9. RNA-seq libraries preparation 

 

Library preparation for RNA sequencing was performed according to TruSeq Total RNA 

sample preparation protocol (Illumina, RS-122-2202), starting from 250 ng - 1 µg of total 

RNA.  

First ribosomal RNA was depleted using Ribo-Zero rRNA magnetic beads and rRNA 

specific biotinylated primers. Next, mRNA was fragmented using divalent cations at 94°C 

and retrotranscribed with random primers, while the second cDNA strand was synthetized 

using DNA polymerase I and RNase H. Double strand cDNA was purified using AMPure 

XP beads (Beckman Coulter, A63881). Overhangs resulting from fragmentation were 

converted into blunt ends using an End Repair mix and then a single adenine was added 

to the cDNA 3’ ends and specific adapters were ligated using their 3’ overhang thymine. In 

the end, ligated cDNA was enriched and amplified using adapter specific primers.  

cDNA library quality was assessed at an Agilent 2100 Bioanalyzer, using the High 

sensitivity DNA kit (5067-4626). 

Libraries were sequenced with the Illumina HiSeq machine at a read length of 50 bp 

paired-end and a coverage of 35 million of reads per sample. 
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3.10. Protein extraction and Western blot 

 

NCSCs were lysed in RIPA buffer (10 mM Tris, pH 8.0, 1% Triton X-100, 0.1% sodium 

deoxycholate, 0.1% SDS, 140 mM NaCl, 1 mM EDTA) supplemented with protease 

inhibitor cocktail (Sigma, P8340) and 0.5 Mm Phenylmethylsulfonyl fluoride (PMSF) 

(Sigma, P7626) for 1 hour at 4°C. Protein quantification was performed using the Bradford 

protein assay (Bio-Rad) as follows: 200 µl of dye reagent, 800 µl of ddH2O and 1 µl of 

protein extract. The standard curve was derived using BSA (NEB). 

Protein extracts (30-50 µg per sample) were supplemented with NuPAGE LDS sample 

buffer (Thermo Fisher Scientific, NP0008) and 50 mM Dithiothreitol (DTT) (Thermo Fisher 

Scientific, NP0007) and denaturated at 95°C for 3 minutes. Then extracts were run on a 

precast NuPAGE 4–12% Bis-Tris Gel (Thermo Fisher Scientific, NP0322BOX) in NuPAGE 

MOPS SDS Running Buffer (Thermo Fisher Scientific, NP0001) and transferred to a 0.45 

µm nitrocellulose membrane (GE Healthcare, GE10600002) for one hour at 100 V in a 

buffer containing 20% absolute ethanol and 10% 0.25 M Tris base, 1.9 M glycine. The 

membranes were blocked in TBST (50 mM Tris, pH 7.5, 150 mM NaCl and 0.1% Tween-

20) and 5% milk for one hour, incubated with primary antibodies overnight (O/N) at 4°C 

and with secondary antibodies for one hour at room temperature (RT). Primary and 

secondary antibodies (see Table 4) were also diluted in TBST and 5% milk. Blots were 

detected with the ECL Prime Western Blotting detection reagents (Sigma, GERPN2236) 

and scanned using ChemiDoc system (Biorad).  

 

3.11. Chromatin immunoprecipitation coupled with 

sequencing (ChIP-seq) 

 

I used ~2 x 105 cells for each immunoprecipitation. NCSCs were fixed with PBS 

containing 1% formaldehyde (Sigma, F8775) for 10 minutes to cross-link proteins and 
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DNA and the reaction was then stopped by adding 125 mM glycine for 5 mintues. Cells 

were lysed with SDS buffer containing 100 mM NaCl, 50 mM Tris-HCl pH 8.0, 5 mM 

EDTA pH 8.0, 10% SDS and sonicated using the S220 Focused-ultrasonicator (Covaris) 

to generate <300 bp DNA fragments. Sonication conditions were: 105 peak power, 5.0 

duty factor, 200 cycles/burst for 5 minutes. ~1/20 of sonicated chromatin was 

decrosslinked in 9 volumes of decrosslinking buffer (1% SDS and 100 mM NaHCO3) at 65 

°C for one hour to check for the correct fragment size. Sonicated chromatin was diluted 

fivefold with IP buffer containing 1 volume of SDS buffer and 0.5 volume of Triton dilution 

buffer (100 mM Tris-HCl pH 8.5, 5 mM EDTA pH 8.0, 5% Triton X-100), incubated O/N at 

4°C with primary antibodies (see Table 4) and then 3 hours with Dynabeads Protein G 

(Thermo Fisher Scientific, 10004D). Beads were washed three times with low-salt wash 

buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.0 and 150 mM 

NaCl) and once with high-salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 

mM Tris-HCl pH 8.0 and 500 mM NaCl). Immunocomplexes were eluted in decrosslinking 

buffer at 65 °C for 2 hours and DNA was purified using QIAquick PCR columns (Qiagen, 

28104) and quantified with Qubit dsDNA HS assay kit (Thermo Fisher Scientific, Q32851). 

DNA libraries were prepared by the sequencing facility at IFOM/IEO campus according to 

the protocol described by Blecher-Gonen and colleagues (Blecher-Gonen et al., 2013) 

and DNA was sequenced on the Illumina HiSeq 2000 platform. 

 

3.12. Migration assays 

 

Scratch assay. 5-7x104 cells were plated in each of the two matrigel-coated wells of 

silicone culture-inserts (Ibidi, 80209) attached to 6 well-culture plates. After 24 hours the 

insert was removed, medium was changed to remove dead cells and time lapse was 

performed for 20 hours at the rate of one image every 10 minutes at a 10x magnification. 

For each condition, I considered 5 independent fields.  

Random migration assay. 7.5x104 cells were sparsely plated in 6 well-culture plates and 
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24 hours later the time lapse experiment started. Images were acquired every 5 minutes 

at a 10x magnification using the same microscope. For each condition, 10 independent 

fields were considered. The analysis was performed by manually tracking five cells per 

each field for 6 hours (for a total number of 50 cells/condition) using the ‘Chemotaxis tool’ 

plugin from Fiji and statistical significance was evaluated using Student's t-test. 

For both migration assays, images were acquired with the BX61 upright microscope 

equipped with a motorized stage from Olympus. 

 

3.13. BAZ1B complex isolation 

 

Proteins were extracted as described above. 2-3 mg of total lysate were 

immunoprecipitated per each condition. Protein lysates were incubated O/N at 4°C with 

BAZ1B antibodies (see Table 4) and then 3 hours with Dynabeads Protein G. Beads were 

washed twice with low-salt RIPA buffer (140 mM NaCl) and twice with high-salt RIPA 

buffer (250 mM NaCl). Elution was performed at 95°C for 3 minutes in one volume of 4x 

Novex LDS sample buffer + 50 mM DTT and 9/10 of the eluate were run on a precast 

NuPAGE 4–12% Bis-Tris Gel and was stained with InstantBlue protein stain (Expedeon, 

ISB1L). 1/10 of the IP was subjected to Western Blot analysis as a control. 

 

3.14. Liquid chromatography–tandem MS (LC–

MS/MS) analysis and protein identification 

 

IP sample processing through LC-MS/MS was performed by the Mass Spectrometry Unit 

at IFOM/IEO campus. 

Briefly, bands of interest were cut from gels and trypsinized as described by Shevchenko 

and colleagues (Shevchenko et al., 1996). Peptides were desalted, dried in a Speed- Vac 

and resuspended in 10 µL of solvent A (2 % ACN, 0.1% formic acid). 3 μL were injected 
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on a quadrupole Orbitrap Q-Exactive mass spectrometer (Thermo Scientific) coupled with 

an UHPLC Easy-nLC 1000 (Thermo Scientific) with a 25 cm fused-silica emitter of 75 μm 

inner diameter. Columns were packed in-house with ReproSil-Pur C18-AQ beads (Dr. 

Maisch Gmbh, Ammerbuch, Germany), 1.9 μm of diameter, using a high-pressure bomb 

loader (Proxeon, Odense, Denmark).  

Peptides separation was achieved with a linear gradient from 95% solvent A (2 % ACN, 

0.1% formic acid) to 40% solvent B (80% acetonitrile, 0.1% formic acid) over 30 minutes 

and from 40% to 100% solvent B in 2 minutes at a constant flow rate of 0.25 μL/min, with 

a single run time of 33 minutes in case of single bands. 

MS data were acquired using a data-dependent top 12 method, the survey full scan MS 

spectra (300–1750 Th) were acquired in the Orbitrap with 70000 resolution, AGC target 

1e6, IT 120 ms. For HCD spectra resolution was set to 35000, AGC target 1e5, IT 

120 ms; normalized collision energy 25% and isolation width of 3.0 m/z.  

For protein identification, the raw data were processed using Proteome Discoverer 

(version 1.4.0.288, Thermo Fischer Scientific). MS2 spectra were searched with Mascot 

engine against uniprot_human_201503 database (89909 sequences; 35686673 

residues), with the following parameters: enzyme Trypsin, maximum missed cleavage 2, 

fixed modification carbamidomethylation (C), variable modification oxidation (M) and 

protein N-terminal acetylation, peptide tolerance 10 ppm, MS/MS tolerance 20 mmu. 

Peptide Spectral Matches (PSM) were filtered using percolator based on q-values at a 

0.01 FDR (high confidence). Scaffold (version Scaffold_4.3.4, Proteome Software Inc., 

Portland, OR) was used to validate MS/MS based peptide and protein identifications.  

 

3.15. NCSC Microarray  

 

NCSC microarrays were prepared by the internal facility at IFOM/IEO campus. 

Briefly, biotin-labeled cDNA targets were synthesized starting from 150 ng of total RNA. 

Synthesis of double-stranded cDNA and related cRNA was performed with the Ambion 
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WT Expression kit. The same kit was used to synthesize the sense-strand cDNA to be 

fragmented and labeled with the Affymetrix GeneChip WT Terminal Labeling kit. 

Hybridization was performed using the GeneAtlas Hybridization, Wash and Stain kit, 

according to the manufacturer’s instructions. The array strips were imaged using the 

GeneAtlas Imaging Station. Affymetrix GeneAtlas Command Console software was used 

to acquire the array strip images and generate DAT and CEL files. Microarray analysis 

was performed with the Bioconductor Affy package using the brainarray RefSeq 

annotation v18.0.0, robust multi-array average (RMA) for background normalization and 

quantile normalization between samples. Quantification was obtained using perfectly 

matching probes only with median polish summarization, averaging probe sets to obtain 

gene-level expression. Probe sets not assigned to known genes or having log2 fold 

changes of <0.5 were discarded, and differential expression was assessed by two-tailed t 

test. For the purpose of enrichment analyses, DEGs with FDR < 0.2 were considered. 

 

3.16. RNA-seq analysis 

 

RNA-seq data were quantified using our standard pipeline based on Salmon 0.80 to 

quantify reads and calculate read-counts and transcripts per million (TPMs) in a transcript- 

and gene-wise fashion, using the quasi-mapping off-line algorithm (Germain et al., 2016). 

EdgeR was used to test for differential gene expression, using generalized linear 

regression methods (GLMRT), to identify pattern of differential expression following four 

different schemes:  

1. a factorial analysis based on the definition of one group of scrambled and 

one group of knock-down samples to identify genes dysregulated similarly 

across short-hairpins characterized by different efficiencies (chapter 

4.3.3.1.); 

2. a multifactorial analysis based on the definition of three groups separating 

the two short-hairpins and the scrambled samples (chapter 4.3.3.2.); 
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3. an analysis based on the definition of an independent variable 

recapitulating the degree of average efficiency of the two short-hairpins, 

following qRT-PCR measurements of BAZ1B levels in all samples ending 

with a coefficient of 1 identifying scrambled, 0.6 identifying sh38 and 0.3 

identifying sh41 samples (chapter 4.3.3.3.); 

4. a further numerical analysis in which BAZ1B levels as quantified by RNA-

seq were used as the independent variable (chapter 4.3.3.4.).  

All these analyses were performed correcting by individual, in order to take into account 

the genetic background of each individual. Genes were identified and characterized by an 

absolute fold-change (FC) of 1.1 and an FDR lower than 0.05.  

Gene Onthology (GO) enrichments were performed using topGO R package version 

2.28.0, on the list of genes derived from the fourth Differential Expression Analysis (DEA) 

based on the linear regression following BAZ1B levels, and characterized by a FC > 1.1 

and FDR < 0.1 in order to expand the list of genes, allowing the risk of including some 

false positives, but then selecting only enrichments with an FDR < 0.05. 

 

3.17. ChIP-seq analysis 

 

ChIP-seq experiments were analyzed both qualitatively and quantitatively. Reads were 

trimmed with FastX toolkit (-Q33 -t 20 -l 22), aligned with Bowtie 1.0 (-v 2 -m 1) on the 

Human hg38 genome and peaks were called by means of MACS 2.1.1. H3K4me1 and 

H3K27ac peaks were called with -m 4 50 and a q-value threshold equal to 0.05 (-q 0.05). 

H3K27me3 peaks were called as "broad" using default parameters.  

Whole genome regions 

Qualitative analysis was performed in all the 21 samples using BedTools version 2.16.1, 

while quantitative analysis was obtained measuring differential deposition of the H3K27ac 

mark with edgeR, using GLMRT, testing for BAZ1B levels while blocking for individuals as 

previously done on the RNA-seq data. 
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Association of differentially H3K27 acetylated regions with proximal or distal regulatory 

regions was obtained using the ChIPseeker package. 

Active enhancer regions 

Qualitative analysis was performed as above but selecting two different set of regions in 

the two control non-infected lines: 

1. putative active enhancer regions, characterized by H3K4me1 and H3K27ac 

peaks; 

2. putative silenced regions, exclusively characterized by H3K27me3. 

Quantitative analysis was performed as above but focusing on the putative active 

enhancers regions, and measuring differential deposition of each of the three marks. 

Association of chromosomic regions to genes was done using GREAT with the “basal plus 

extension” scheme (McLean et al., 2010).  

 

 

Target Application Company Source Catalog # 

HNK1-FITC FACS BD Biosciences Mouse 555619 

NGFR-ALEXA647 FACS BD Biosciences Mouse 560877 

CD44-APC FACS EBIOS Mouse 17-0441-82 

CD73-PE FACS BD Biosciences Mouse 550257 

SMA ICC Sigma Mouse A2547 

CY3 anti mouse ICC  Jackson IR Goat 115-165-146 

BAZ1B WB Abcam Rabbit ab50632 

BAZ1B  IP SantaCruz Mouse sc-81426 

BAZ1B  IP Abcam Rabbit ab50850 

GAPDH WB Abcam Mouse ab8245 

H3K27ac ChIP Abcam Rabbit ab4729 

H3K27me3 ChIP Cell Signalling Rabbit 9733BF 

H3K4me1 ChIP Abcam Rabbit ab8895 

 
Table 4. List of antibodies used in this study 
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Table 5. List of experiments performed in each NCSC line 
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4. RESULTS 

 

4.1. Generation of NCSC lines from patient specific-

iPSCs 

 

In order to model in vitro patient specific craniofacial alterations, we took advantage of the 

large cohort of WBS and 7dup iPSC lines generated in our laboratory and we 

differentiated them to NCSCs (Adamo et al., 2015). As mentioned before, NC is a 

temporary lineage that generates a relevant number of tissues whose development is 

clearly affected in the two syndromes. 

The protocol chosen for the iPSC to NCSC differentiation (Menendez et al., 2013) allows 

the generation of NCSCs both from human ESCs and iPSCs in about two weeks. NCSCs 

are obtained through the combination of SMAD pathway inhibition (using a TGF-b inhibitor 

known as SB431542) to obtain a neuroectodermal population (Chambers et al., 2009) and 

Wnt pathway activation (using a glycogen synthase kinase 3 inhibitor, GSK3i) required for 

NC induction at the neural plate border (Patthey et al., 2008). 

The main advantages of this protocol are: i) the generation of a highly homogenous NCSC 

population (more than 90% of cells in culture are bona fide NCSCs) and ii) the absence of 

feeder cell layers that might interfere with the transcriptomic and epigenomic analyses.  

This protocol was adapted to our iPSC lines with minor changes in the very first steps. In 

particular, I observed that leaving the cells growing till confluence and splitting them 

starting from day 4-5 of differentiation at a very high density (a 1:1 dilution the first time 

and a 1:2 dilution the following ones), significantly increases differentiation efficiency and 

NC induction.  
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A total number of 11 iPSC lines was selected for differentiation, including at least three 

lines from different individuals per each genetic condition (Figure 5). In particular, the 

NCSC cohort consisted of: 

- Four control lines (CTL2-C2, CTL3-C1, CTL1R-C3 and CTL4R-C1), represented in 

grey. 

- Three lines carrying 7q11.23 typical deletion (WBS1-C1, WBS2-C2, WBS4-C1), in 

red. 

- One line carrying a 7q11.23 atypical deletion (AtWBS1-C2), in yellow, that spares 

BAZ1B and eight other genes at the centromeric region (Fusco et al., 2013). This 

patient is particularly relevant because it presents milder craniofacial alterations 

when compared to typical WBS patients, supporting a role for BAZ1B (and/or the 

few other spared genes) in NC and facial development.  

- Three lines carrying 7q11.23 duplication (7dupASD1-C2, 7dupASD2-C1, 

7dupASD3-C1), in blue. 

CTL2-C2 and CTL3-C1 were derived from unrelated unaffected individuals, while CTL1R-

C3 and CTL4R-C1 were derived from the mothers of WBS1-C1 and 7dupASD3-C1, 

respectively and, thus, they can be considered half matched controls. 
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Figure 5. Strategy for the derivation of NCSC lines from patient-iPSC clones 

Skin fibroblasts were collected from patient and reprogrammed to iPSCs. From each patient, at 

least three iPSC clones were generated and one clone per patient was chosen for the 

differentiation towards NCSCs. 

 

 

After 15 days of differentiation the cells displayed a clear morphology that was virtually 

identical in all four genetic conditions (controls, WBS, atypical WBS and 7dup) as shown 

in Figure 6a. 

To confirm NC identity cells were stained for two markers widely used for the identification 

of NCSCs: HNK1 and NGFR (also known as p75). Flow cytometry analysis indicated a 

high percentage of double positive cells in all the four genotypes (Figure 6b) (Adamo et 

al., 2015).  
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Figure 6. Characterization of iPSC-derived NCSCs 

a) Phase-contrast images representing NCSCs of the four genotypes. The scale bar represents 

400 μm. b) Flow cytometry analysis of HNK+/NGFR+ NCSCs. HNK1 and NGFR single stain and 

unstained cells are used as negative controls. Adapted from (Adamo et al., 2015). 

 

Together with the validation of the expression of specific NCSC markers I have also 

investigated whether patient-specific NCSCs were multipotent, another key trait of this cell 

population. To test this NCSC feature, I further differentiated iPSC-derived NCSCs 

towards known NC derivatives, including Mesenchymal Stem Cells (MSCs), osteocytes 

and Smooth Muscle Cells (SMCs) (Figure 7).  

 

 

Figure 7.  Schematic representation of the experimental system 

First, patient-iPSCs are differentiated into NCSCs using SB 431542 and GSKi. Then NCSCs can 

be either differentiated towards MSCs and osteocytes or towards SMCs through TGF-b and PDGF 

administration. 

 

MSCs were obtained by culturing NCSC in the presence of FBS for 12 days (Figure 8a) 

and then characterized for the expression of two mesenchymal markers, CD44 and CD73. 
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This protocol led to the generation of �90-95% of CD44+/CD73+ cells on average (Figure 

8b) (Adamo et al., 2015). 

 

 

Figure 8. Characterization of NCSC-derived MSCs at day 10 of differentiation 

a) Phase-contrast images representing MSCs of the four genotypes. The scale bar represents 400 

μm. b) Flow cytometry analysis of CD73+/CD44+ MSCs. CD44 and CD73 single stain and 

unstained cells are used as negative controls. Adapted from (Adamo et al., 2015). 

 

Osteocytes were then derived from MSCs (Figure 9a) using a ready-to-use kit from 

Thermo Fisher (StemPro Osteogenesis Differentiation kit) and stained homogeneously 

positive for alkaline phosphatase (ALP) after 20 days of differentiation (Figure 9b). ALP is 
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commonly used to stain osteocytes and other bone-related cell types together with 

Alizarin Red S. 

        

 

Figure 9. Characterization of MSC-derived osteocytes at day 20 of differentiation 

a) Phase-contrast images representing osteocytes of the four genotypes. b) Alkaline phosphatase 

(ALP) staining of MSC-derived osteocytes. The scale bar represents 200 μm. 

 

Finally, NCSCs were differentiated towards SMCs taking advantage of a protocol 

published by C. Cheung and colleagues (Cheung et al., 2014) and based on the presence 

in culture of PDGF and TGF-b, important for the development of SMC in vessels (Jain, 

2003). The obtained SMCs were stellate shaped and expressed a-smooth muscle actin 

(aSMA) already 10 days after the beginning of the differentiation (Figure 10a, b). aSMA 

expression is relatively limited to vascular SMCs. 
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Figure 10. Characterization of NCSC-derived SMCs at day 10 of differentiation 

a) Phase-contrast images representing SMCs of the four genotypes. b) NCSC-derived SMCs 

stained for aSMA. The scale bar represents 200 μm. 

 

Given the outcome of the differentiation experiments, NCSCs derived from patients and 

control iPSCs can be reliably considered multipotent. 

 

4.2. Investigation of iPSC derived-NCSC transcriptional 

profile  

 

Our transcriptome analysis of 27 iPSC lines derived from healthy controls, WBS and 7dup 

patients, identified 757 Differentially Expressed Genes (DEGs) that, already at this very 

initial stage of development, were specifically enriched for GO categories encompassing a 

plethora of developmental pathways relevant to the specific traits defining WBS and 7dup 

syndromes (see chapter 2.3.3.) (Adamo et al., 2015). 
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Then, in order to evaluate the consequences, at later stages of development, of the 

transcriptional dysregulation observed at the pluripotent state, we performed microarray 

analysis of NCSC transcriptomes collected three days after the induction of NCSC 

differentiation. As observed in iPSCs, also in NCSCs RNA levels of WBSCR genes 

mirrored gene dosage (Figure 11a). Interestingly, BAZ1B levels in the atypical WBS 

sample (in which BAZ1B is not deleted) are comparable to the ones measured in the 

control samples (Figure 11b). 

Differential expression analysis detected transcriptional alterations in genes and biological 

processes that were more lineage-specific that the ones identified in iPSC transcriptional 

profiling and potentially related to NC-dependent disease phenotypes. In particular, the 

364 DEGs (with a False Discovery Rate, FDR<0.2) identified in NCSCs included genes 

involved in: i) craniofacial development (ATP2C1, HHAT, LMNB1, MAPK8, PTCH1 and 

SATB2); ii) cell adhesion and membrane assembly (APLP1, BMP7, PTPRD and NLGN3), 

relevant for the migratory properties of NCSCs; iii) axon extension (LIMK1, SLIT3 and 

NLGN3) critical for the development of NC-derived peripheral neurons and iv) RhoA 

signaling pathway (WASF1, GFAP, ACTR2, STMN1, MAPK8, ARHGEF11 and PLXNA1), 

that was shown to play an important role in the development of SVAS (Adamo et al., 

2015; Ge et al., 2012) (GO enrichment in Figure 11c). 
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Figure 11. Transcriptional profile of iPSC-derived NCSCS 

a) Expression levels of WBSCR genes in the microarray analysis. Values reported represent 

percentages of the ratio between the expression level of each sample and the mean expression 

level of controls. Samples from the same genotype are grouped and error bars represent the 

standard deviation for each genetic condition. b) BAZ1B expression levels in all the genetic 

conditions. c) Top enrichments for GO biological processes among NCSC DEG s (FDR < 0.2). 

Adapted from (Adamo et al., 2015). 
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CRB2 (Supplementary Fig. 5d), which is implicated in cleft palate 
and lip development46 and whose dosage sensitivity could provide a 
molecular link to the symmetrical defects in the phyltrum (expanded 
or reduced, respectively) observed in WBS and 7dupASD.

Transcriptional dysregulation is amplified upon development
The finding that 7q11.23 CNVs trigger disease-relevant transcrip-
tional dysregulation already in the pluripotent state suggests that 
these initial conditions might prime the accumulation of even greater 
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Figure 5 Transcriptional dysregulation in iPSC-derived disease-relevant lineages.  
(a) Scheme of iPSCs differentiation toward polarized cortical NPCs (top) or  
NCSCs and MSCs (bottom). (b) iPSC-derived NPCs recapitulate the  
emergence of neural stem cell populations in human corticogenesis.  
NPCs were stained for proliferation (Ki67), mitotic (phosphorylated histone H3;  
PHH3) and neural stem cell (NESTIN, ZO1 and PAX6) markers (top). Forebrain  
specification is evidenced by the expression of the OTX2, FOXG1, SOX2 and TBR2  
markers (bottom). Nuclei were stained with DAPI (4`,6-diamidino-2-phenylindole,  
dihydrochloride). Scale bars, 50 Mm. (c) Top enrichments for GO biological processes  
among NPC DEGs. (d) Characterization of iPSC-derived NCSCs by flow cytometry analysis  
for HNK1 and NGFR. (e) Top enrichments for GO biological processes among NCSC DEGs.  
(f) Characterization of NCSC-derived MSCs by flow cytometry analysis for CD73 and CD44 at  
day 10 of differentiation. (g) Top most-specific enrichments for biological processes among  
the MSC DEGs. (h) Unsupervised hierarchical clustering of correlations between whole-MSC transcriptomes, showing that samples cluster according to 
genotype. (i) IPA on MSC DEGs identifies a molecular network enriched for cardiovascular system development. (j) Expression in MSCs of key members 
of the network depicted in i. Error bars represent the s.d., and the horizontal bars represent statistical significance according to Cuffdiff2 (FDR < 0.05). 
All MSC lines profiled by RNA-seq were used (Supplementary Table 9).
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4.3. Dissection of BAZ1B role in patient-specific NCSCs 

 

4.3.1.    Generation of BAZ1B-interfered NCSC lines 

The deletion or duplication of almost 30 genes makes it challenging to attribute a 

pathological trait to a specific gene or subset of genes in the 7q11.23 region. Atypical 

deletions as well as mouse models have however helped to pinpoint some gene-clinical 

trait associations. 

Among these, one gene in particular, BAZ1B, is likely to underline key aspects of NC-

dependent craniofacial alterations typical of WBS and 7dup patients, given the evidences 

both in animal models and in a WBS atypical patient (see chapters 2.4.1.1, 2.4.1.2 and 

2.4.4.). 

Thus, in order to have better insights into BAZ1B function in WBS and 7dup patient-

derived NCSCs I selectively knocked-down (KD) its expression via RNA interference in all 

the pathological conditions. In particular, I infected NCSCs using lentiviral vectors 

expressing two short hairpin (sh) sequences with a different KD efficiency against BAZ1B 

(named sh38 and sh41) plus a vector containing a scrambled sh sequence (named scr) 

as negative control and I generated a total of 32 interfered NCSC lines, including the one 

derived from the atypical WBS patient (AtWBS1-C2) where BAZ1B is present in two 

copies as in the controls (Figure 12). 
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Figure 12. Scheme of the KD strategy in iPSC-derived NCSCs 

Each NCSC line was interfered with two different short hairpins against BAZ1B (sh38 and sh41) 

and one sh scrambled (scr) as a negative control. 

KD efficiency was first evaluated at the RNA level by quantitative PCR (qPCR) (Figure 

13a, b), with an overall reduction of about 40% for sh38 and 70% for sh41. Then, I also 

confirmed these observation at the protein level by western blot analysis (Figure 14). 
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BAZ1B expression levels in the atypical WBS sample (AtWBS) were more similar to the 

ones of control samples than to the ones of other WBS samples, as already observed in 

the microarray analysis (Figure 11b). 

 

 

 

 

 

Figure 13. Validation of BAZ1B KD in NCSC lines through qPCR 

BAZ1B mRNA levels in all the interfered lines (scr, sh38 and sh41). Data represent a) individual 

samples or b) aggregates of samples with the same number of BAZ1B copies (7dup, CTL + atWBS 

and WBS). GAPDH is used as normalizer. Student’s t- test (ns: not significant; *: p-value < 0.05; **: 

p-value < 0.01; ***: p-value < 0.001 and ****: p-value < 0.0001). 
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Figure 14.  Validation of BAZ1B KD in NCSC lines through western blot 

Protein blots showing BAZ1B levels upon KD in a subset of NCSC lines. The arrow indicates 

BAZ1B specific band. GAPDH is used as normalizer.  

 

 

4.3.2.    BAZ1B-specific impact on NCSC migration 

 

NCSCs need to migrate in order to reach specific target regions in the developing embryo 

and to give rise to distinct cell types and tissues, including craniofacial structures.  

Notably, the molecular pathways that were shown to be possibly dysregulated in the 

microarray analysis also involved categories relevant for NCSC migration. In addition, 

BAZ1B KD was shown to affect NC migration in Xenopus laevis and to promote cancer 

cell invasion in different lung cancer cell lines (Barnett et al., 2012; Meng et al., 2016). 

Thus, I hypothesized that a defective regulation of NCSC migration, as a consequence of 

BAZ1B CNVs, might explain NC-related defects typical of WBS and 7dup patients. 
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To test this hypothesis, I compared the migration properties of BAZ1B KD NCSC lines to 

their respective control NCSC line (scr) by performing two types of migration assays: 

1. a wound healing/scratch assay, to evaluate the time that cells require to fill a 

500 µm cell-free gap; 

2. a random migration assay, that focuses on single cell motility and, thus, better 

quantifies cell velocity and, subsequently, accumulated distance. 

 

4.3.2.1. Scratch assay 

For the scratch assay, NCSCs were plated at confluency in two wells of specific inserts 

chosen to have a more precise gap with respect to the one obtained by manually 

scratching the cell culture with a tip. This approach will, in turn, reduce variability between 

the different experimental conditions.  

24 hours after plating, the insert was removed and cell migration was tracked for 20 hours. 

In the first attempt, we compared NCSC lines from a 7dup, a control and a WBS patient 

with their BAZ1B KD counterparts infected with the most efficient sh vector (sh41). 

Both the 7dup and the control NCSC KD lines required more time to fill the wound when 

compared to the respective control lines (scr), as indicated by images taken at 8 and 16 

hours after the insert was removed (Figure 15). 

No clear differences were instead observed in WBS NCSCs, where the scr line resulted 

as slower as the KD line in closing the gap. In particular, NCSCs from the WBS patient 

appeared slower than 7dup and control cells already in the ‘scr’ sample, further supporting 

BAZ1B role as a positive regulator of NC migration (Figure 15). 
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Figure 15. BAZ1B KD affects NCSC migration 

8 hours and 16 hours-time points from the scratch assay analysis performed on a 7dup, a control 

and a WBS NCSC line upon BAZ1B KD. Cells from the same line infected with the scrambled sh 

(scr) were used as references for the migration. 

 

Notably, the delay in closing the gap was confirmed when the same analysis was 

performed in two other control NCSC lines (Figure 16).  
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Figure 16. BAZ1B KD affects NCSC migration in two other CTL NCSC lines 

8 hours and 16 hours-time points from the scratch assay analysis performed on two different 

control lines upon BAZ1B KD. Cells from the same line infected with the scrambled sh (scr) were 

used as references for the migration. 

 

When looking at the entire time lapse movies, the rate of cell migration appeared similar 

between the two conditions (scr and shBAZ1B), while the movement of the KD NCSC 

lines resulted more confuse and chaotic (movies in the attached power point 

presentation). Thus, the apparent less organized migration upon KD could explain the 

delayed closure of the gap. 

 

4.3.2.2. Random migration assay 

In general, the pattern of migration of our iPSC-derived NCSCs is peculiar and different 

from what commonly happens in classic wound healing assays, in which cells are more 

packed and create a well-defined leading edge that is maintained throughout the entire 

migration process and until the scratch is closed. Therefore, it is difficult to have a 

quantitative measurement of our cell motility based on a simple scratch assay.  

To overcome this problem, I performed a different assay, known as random migration 

assay, in which cells are plated at low confluency and, thus, can be easily manually 

tracked.  

As noted above, I analyzed NCSCs from a 7dup, a control and a WBS patient and, per 

each condition, I manually tracked the migration pathways of a total number of 50 cells in 

10 distinct fields (5 cells/ each field) for 6 hours.  

Cell velocity and accumulated distance, strictly dependent on the former, were 

significantly reduced both in the 7dup and in the control line upon BAZ1B KD, with p 

values < 0.05 and < 0.01, respectively (Figure 17a, b). 
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NCSCs from the WBS patient presented a similar trend, but the reduction was not 

statistically significant, in line with previous results. 

 

 

 

Figure 17. Quantification of NCSC migration parameters upon BAZ1B KD 

Average cell velocity (a) and cell accumulated distance (b) before and upon BAZ1B KD in NCSCs 

from the three genetic conditions (7dup, CTL and WBS). Student’s t- test (ns: not significant; *: p-

value < 0.05; **: p-value < 0.01).  
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Next, in order to reduce the variability that might occur during the manual tracking of 

single cells, I decided to introduce a reporter gene both in scr- and shBAZ1B- interfered 

NCSCs and to set up the conditions for an automated cell tracking. In particular, I 

produced stable NCSC lines expressing a H2B-GFP fusion protein upon lentiviral 

infection. In addition, I FACS-sorted cells expressing high levels of GFP to further 

increase the homogeneity of the culture and to facilitate the automated tracking itself 

(Figure 18). Time-lapse experiments using H2B-GFP expressing NCSCs are ongoing. 

 

Figure 18. FACS analysis of H2BGFP-infected NCSCs 

Percentage of GFP+ cells in a representative NCSC line. Only cells expressing high GFP levels 

were sorted. NCSCs not expressing GFP were used as negative control. 

 

4.3.3.    BAZ1B-specific impact on NCSC transcriptome 

 

While the impact of BAZ1B dosage alterations in WBS and 7dup patients is still to be 

defined, we hypothesized that it might contribute to the above described dysregulation of 

NCSC transcriptome (microarray analysis on NCSCs), considering its critical role as 

transcriptional regulator in different cell and animal models. In particular, BAZ1B-

containing complexes are able to maintain accessibility of newly synthesized DNA to 

transcription factors and chromatin regulators (Poot et al., 2004, 2005). 
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We also hypothesized that the defective migration observed upon KD might be a 

consequence of a dysregulation at the transcriptomic level. 

To test our hypotheses, we subjected 31 interfered NCSC lines to high coverage RNA 

sequencing (RNA-seq) analysis. This cohort included 11 scr-, 10 sh38- and 10 sh41-

interfered samples. In particular, each sample was sequenced with a coverage of 35 

million of reads at a read length of 50 base pairs (bp), paired end.  

Expression levels of WBSCR genes reflected the expected dosage, moving from a lower 

expression (in purple) in WBS samples to a gradually higher expression (in green) in 

control and then in the 7dup NCSC, as shown in Figure 19a. In particular, BAZ1B levels 

further confirmed the qPCR results on the interfered lines (Figure 19b). 
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Figure 19. Expression levels of WBSCR genes in the 31 NCSC lines subjected to RNA-seq 

a) Heatmap representing 21 genes included in the WBSCR and correlating with gene dosage (FDR 

< 0.05). Samples are ordered based on CNVs (1 for WBS, 2 for controls and 3 for 7dup) and on the 

type of sh (scr, sh38 and sh41). b) Normalized BAZ1B levels in the RNA-seq analysis represented 

as Transcripts Per Million (TPM). 

 

Next, we performed a principal component analysis (PCA) to evaluate the distribution of 

transcriptomes in all the interfered samples based on an unsupervised clustering. As 

shown in Figure 20, BAZ1B KD did not alter the NCSC transcriptome significantly, as 

shown by the observation that half of the ‘KD lines’ tend to cluster with their respective ‘scr 

line’, supporting a strong effect of the individual genetic backgrounds. The 

deletion/duplication of the region appeared anyway responsible for transcriptional 

alterations, since the majority of both WBS and 7dup NCSC lines occupy quite distinct 

areas in the upper half of the graph, while control lines are more distributed in the lower 

half, with few exceptions.  

Interestingly, the atypical WBS line shows a transcriptional profile that is closer to the 

control lines than to the typical WBS ones, suggesting that a significant part of the 

transcriptional dysregulation might be caused by genes that are not deleted in this 

peculiar WBS patient (including BAZ1B).  
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Given this last observation and our interest in specifically deciphering BAZ1B function in 

human NCSCs, we took advantage of the atypical WBS patient and we decided to 

consider this sample as a control, and not as a WBS sample, in the following analysis.  

 

Figure 20. Principal component analysis showing the distribution of the 31 NCSC lines 

according to their transcriptional profiles 

 

In particular, we resorted to four different approach in performing differential expression 

analysis of RNA-seq data, aiming at identifying the one that could better describe BAZ1B 

impact and involvement in our NCSC cohort. To reduce possible unwanted batch effects, 

we decided to correct all the analysis for the individual backgrounds and for the different 

rounds of sample processing and sequencing. 
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4.3.3.1. Pairwise comparative analysis: scr versus shBAZ1B (sh38+sh41) 

Initially, we carried out a comparative analysis to evaluate the effects of BAZ1B KD. 

Briefly, NCSC lines generated using sh38 and sh41 were analyzed as part of a single 

group and compared to NCSC lines infected with the scr vector, as schematically shown 

in Figure 21. 

 

  

 

Figure 21. Schematic representation of the first strategy adopted for RNA-seq analysis 

 

At a first sight, the identification of only 26 DEGs with FDR < 0.05 might suggest that 

BAZ1B impact on transcription is extremely small. However, this is in contrast with the 

current literature attributing to BAZ1B a crucial role as transcriptional regulator. Thus, we 

hypothesized that the different KD efficiency of the two sh could result in a different 

efficiency of dysregulation, with most of the genes being only affected with a stronger 

BAZ1B reduction (sh41) and instead not altered and/or identified as differentially 

expressed with a milder KD (sh38).  

 

4.3.3.2. Multifactorial comparative analysis: scr versus sh38 versus sh41 

To prove whether the two BAZ1B shRNA were having a different impact on NCSC 

transcriptome we decided to consider the lines infected with sh38 or sh41 separately and 

to perform a comparison between three different groups (Figure 22). 

 

        

 

Figure 22. Schematic representation of the second strategy adopted for RNA-seq analysis 
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This second analysis identified a higher number of DEGs (151 with FDR<0.05), but only 

50 of them showed a concordant dysregulation in the two groups of sh-interfered samples, 

with 25 being upregulated and 25 being downregulated upon BAZ1B KD. 

In addition, most of the genes found in the previous analysis (21 out of 26) were also 

included in the 50 concordant genes mentioned above. 

The poor overlap between the genes affected by the two different KD could also indicate 

an unwanted dysregulation due to possible off-targets of the shRNA. However, we 

excluded the involvement of genes reported as possible alternative shRNA targets in the 

GPP web portal (Broad Institute), since their expression levels were not affected upon 

infection. 

Again, we concluded that this second approach was not yet sufficient to fully describe 

BAZ1B effects at the transcriptional level and that we needed a more sophisticated 

strategy able to integrate the notion of having two differentially effective shRNA with 

apparently distinguishable impacts. 

 

4.3.3.3. Regression analysis on shRNA efficiencies 

Following qPCR evidences showing residual BAZ1B RNA levels upon KD (around 60% 

for sh38-interfered lines and 30% for sh41-interfered ones when compared to their 

respective scr line, Figure 13), we decided to assign a numerical value to each of the 

three groups (scr, sh38 and sh41). We expected this approach to i) keep the separation 

between the two shRNA groups while ii) adding the notion of different efficacy, without 

explicitly defining what gene was supposed to follow the trend of the independent variable. 

Thus, we assigned values of 1 for the scr, 0.6 for the less efficient sh38 and 0.3 for the 

most efficient sh41 (Figure 23) and we identified 131 genes (FDR < 0.05) that were 

concordantly dysregulated in both shRNA-interfered lines.  
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Figure 23. Schematic representation of the third strategy adopted for RNA-seq analysis 

 

Among these genes, we identified 40 genes that were also attributed to sh38 in the 

multifactorial analysis and 114 genes that were similarly ascribed to sh41. Interestingly, all 

the 40 sh38-associated genes were included in the 114 genes associated to sh41, 

supporting our hypothesis of a subset of commonly dysregulated genes (40) and of 

another subset being affected only upon a stronger BAZ1B reduction (i.e., sh41-

mediated).  

Notably, the gene with the lowest FDR was BAZ1B and, again, none of the known off-

targets were found among the DEGs. 

 

4.3.3.4. Regression analysis of BAZ1B-level sensitive genes 

To verify the quality of the last analysis we devised a new, strongly data-driven approach 

in which we used BAZ1B expression levels from each individual sample as the 

independent variable (Figure 24). By specifically evaluating BAZ1B levels in each sample, 

we virtually increased our cohort and, thus, the statistical significance of the analysis. 

 

 

   

Figure 24. Schematic representation of the fourth strategy adopted for RNA-seq analysis 

 

Also in this analysis, the gene with the lowest FDR was BAZ1B and its FC was very 

similar to the one measured both in the multifactorial and in the coefficient-based analysis. 

Using this approach, we were able to identify a total number of 279 genes (FDR < 0.05) 
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whose levels followed BAZ1B levels, either in a direct (115) or inverse (164) way, in both 

sh38- and sh41-interfered samples. By ordering the samples according to the shRNA 

used for the infection, we could clearly distinguish a stronger transcriptional impact in the 

sh41 group, that, as expected, also included almost all the samples with the lowest 

BAZ1B levels (Figure 25). Sh38 presented instead a milder, but nevertheless 

distinguishable effect and resulted more transcriptionally similar to the scr-interfered lines. 

In addition, the 279 identified genes included the high majority of DEGs (104/131) found in 

the previous analysis based on coefficients. 

This last approach can be considered the most exhaustive one since it can i) efficiently 

combine the contributions of two shRNA with different efficiency and ii) correlate them with 

variations in BAZ1B levels.  
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Figure 25.  Expression profile of the 279 genes that follows BAZ1B levels in both shBAZ1B 

interfered lines 

The samples are ordered according to shRNAs, having sh41-interferd lines on the left, sh38 in the 

middle and control lines on the right. In each shRNA group samples are further ordered based on 

BAZ1B copies (CNVs). FDR < 0.05. 

 

Next, we focused our attention on some of the genes that displayed higher changes in 

expression levels (fold change (FC) > 2.5) and that are reported in Figure 26.  
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Figure 26. Genes identified in the regression analysis on BAZ1B-level sensitive genes 

In the volcano plot, we reported the name of some of the genes with FDR < 0.05 and FC > 2.5 that 

followed BAZ1B levels in a direct (log2FC > 0) or inverse (log2FC < 0) fashion.  

 

Within the genes that were inversely correlated with BAZ1B levels we identified: 

- POSTN. It encodes for periostin (also known as osteoblast specific factor), a 

protein secreted by osteoblasts that is involved in the adhesion and migration of 

epithelial cells through its interaction with integrins and type 1 collagen (Gillan et 

al., 2002). It also plays a crucial role in cranial NC-mediated soft palate 

development (Oka et al., 2012). Interestingly, mice lacking POSTN present 

BAZ1B

log2FC

-lo
g1

0 
FD

R



 94 

alterations resembling the ones observed in WBS and 7dup patients such as 

growth retardation, heart valve defects and periodontal disease-like phenotypes 

(Rios et al., 2005). 

- GPR126. It regulates differentiation and myelination in NC-derived Schwann cells 

(Mogha et al., 2013) and it is also involved in the development of the inner ear 

(Geng et al., 2013), suggesting a role in WBS patient’s ear defects such as 

hyperacusis. 

- THSD7A and EDIL3 (also known as DEL-1). They mostly act during angiogenesis 

when they promote endothelial cell migration and adhesion through interactions 

with focal adhesion-associated proteins, including integrins (Ho et al., 2004; Wang 

et al., 2010). 

- ERBB4. It functions as receptor for neuregulins, a family of proteins with crucial 

functions during embryogenesis, and it is important for skeletal muscle 

development and NC migration (Burden and Yarden, 1997). Mice lacking this 

protein display heart defects and aberrant cranial NC migration that results in 

misprojections and fusions of cranial sensory ganglia (Gassmann et al., 1995; 

Golding et al., 2000). 

 

Genes that, instead, directly followed BAZ1B levels included: 

- RAB3C. It is a member of the RAS oncogene family and it is involved in vescicular 

transport. RAB3A, another member of the family, was shown to interact with 

Rabconnectin-3a (Rbc3a) (Nagano et al., 2002), whose loss in Zebrafish NC cells 

led to reduced migration velocity and directionality persistence (Tuttle et al., 2014). 

- OLFM1. It encodes for Noelin-1, a protein engaged in neural crest generation from 

the neural tube. In particular, overexpression of OLFM1 promotes an increased 

and continued production of neural crest cells even after the time that the last cells 

left the neural tube (Barembaum et al., 2000). 
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- TNFRSF11B. It encodes for RANK, that negatively regulates bone resorption and 

mediates osteoclast activation through the interaction with his ligand (RANK-L) 

(Hsu et al., 1999). Interestingly, TNFRSF11B deficient mice display defects in 

bone resorption and in osteoclast development (Li et al., 2000). 

 

Finally, using a FDR threshold < 0.1, we performed a GO analysis that suggested specific 

enrichments for biological processes, particularly relevant for NC and NC-derivative 

development and function, some of which are reported in Figure 27.  

 

 

Figure 27. Top most-specific enrichments for GO biological processes among the DEGs in 

the regression analysis on BAZ1B-level sensitive genes 

For this analysis, we selected DEGs with FDR<0.1 and only enrichments with FDR <0.05 were 

considered. Values in brackets represent the significance (FDR) of each enrichment. 
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Briefly, the dysregulated genes are known to be mostly involved in: 

- cell motility, chemotaxis and migration (e.g., ANGPT1, CDH2, ERBB4, FN1, 

NR2F2, PDGFRA and POSTN), in line with the migration defects observed upon 

BAZ1B KD (chapter 4.3.2.); 

- heart and vasculature development (e.g., ANGPT1, CDH2, FLT4, MMP2, NR2F2, 

TFGB3 and THSD7A);  

- skeletal system, bone and head development and morphogenesis (e.g., COL11A1, 

CDH2, ERBB4, MMP2, PDGFRA, POSTN and TNFRSF11B) 

- neuron and axon guidance (e.g., CDH4, SEMA5A, SEMA3C and TGFB2). 

 

 

4.3.4.    BAZ1B-specific impact on NCSC putative enhancer regions 

 

Many convergent lines of evidence indicate that BAZ1B regulates replication and 

transcription by directly acting on chromatin. In particular, BAZ1B is a subunit of ISWI 

chromatin remodelling complexes that increase DNA accessibility to TFs through an ATP-

dependent mobilization of nucleosomes (chapter 2.4.3.1.).  

A deeper knowledge of NC cells chromatin state, in particular through an accurate 

annotation of enhancer regions, was recently shown to be fundamental in understanding 

their development and transcriptional regulation (Rada-Iglesias et al., 2012). Indeed, the 

vast majority of NC cell enhancer regions are only found in this peculiar cell type and not 

in hESCs or hNECs. 

Direct evidences of BAZ1B involvement in the specific remodeling of NCSC enhancer 

regions are still missing. Notably, it was already reported that another chromatin 

remodeler (i.e., CHD7) is able to transcriptionally regulate NC migration specifiers through 

the binding of their enhancer regions (Bajpai et al., 2010). 

Moreover, it is known that bromodomains contained in several chromatin remodelers, 

including BAZ1B, are required for the recognition of acetylated lysines on histones (Jones 
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et al., 2000). However, to date, acetylation targets of WSTF bromodomain have yet to be 

identified. 

Thus, to evaluate whether BAZ1B dosage-dependent transcriptional alterations were 

involving specific regulatory regions, we investigated the chromatin profiles of control and 

patient-derived NCSCs upon BAZ1B KD through ChIP sequencing (ChIP-seq). In 

particular, we investigated the acetylation and the trimethylation of lysine 27 (H3K27ac 

and H3K27me3) and the monomethylation of lysine 4 (H3K4me1). H3K27ac can be found 

both at proximal (e.g., promoter) and distal (e.g., enhancer) regulatory regions. In 

particular, regions displaying both H3K4me1 and H3K27ac mark are typical of active 

enhancers, while H3K27me3 marks inactive regions (Rada-Iglesias et al., 2011).  

The cohort of NCSCs subjected to ChIP-seq initially included 2 controls, 2 typical WBS, 1 

atypical WBS and 2 7dup lines and was later supplemented with sh38- and sh41- 

interfered lines corresponding to each of the previous samples, for a total of 21 NCSC 

lines.  

A regression analysis on BAZ1B levels performed on the entire cohort indicated that 

around 2000 regions were differentially acetylated on H3K27 (p value < 0.005) and 266 of 

them showed an FDR < 0.1 (data not shown). Within the top 250 H3K27 differentially 

acetylated regions, H3K27 acetylation sites were mainly found at promoter regions 

(~36%) and at both downstream and upstream distal regulatory sites (~47%), that include 

the second and the following introns (~21%) and the intergenic regions (~26%), 

respectively. Interestingly, 115/250 regions were associated with mesenchymal stem cell 

(MSC)-specific enhancer regions according to the 4DGenome. Data on NCSC-specific 

enhancer regions are not yet included in the above-mentioned database and MSCs 

represent the closest cell type for which data are currently available. 

Taken together, these preliminary results suggest that BAZ1B might act at proximal but 

mostly at distal regulatory regions.  
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Given these observations, we initially focused on putative active enhancer regions 

(displaying the H3K4me1 and H3K27ac marks) in the 2 control samples (around 9600 

regions) and we considered them a reference of the physiological distribution of marks.  

Next, we looked at the distribution of each mark (H3K27ac, H3K4me1 and H3K27me3) in 

all the 21 NCSC lines along the putative active regions identified in the controls. Finally, 

we resorted to the same approach applied to RNA-seq analysis and we only selected the 

regions where the distribution of the histone mark directly or inversely followed BAZ1B 

levels. 

In particular, when BAZ1B levels were average to low (the left half of the heatmap), we 

observed a higher presence of the H3K27me3 (Figure 28) in the high majority of the 

regions (96/114) and a lower presence of the same mark with high BAZ1B levels. These 

results indicate that, in these regions, the H3K27me3 mark is globally inversely correlated 

with BAZ1B levels. 
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Figure 28. H3K27me3 ChIP-seq signal profile of the chromosomal regions in which 

H3K27me3 directly or inversely follows BAZ1B levels 

The 114 represented regions were all identified as putative active enhancers in the control samples 

and are ordered based on BAZ1B levels. p value < 0.005. 

 

To better appreciate the impact of BAZ1B KD on the distribution of the H3K27ac, 

H3K4me1 and H3K27me3 marks, we ordered the samples by sh (non-infected, sh38- and 

sh41-interfered lines). The sh41-mediated KD, in the right part of the heatmap, was 

responsible for a stronger redistribution of all the three marks, when compared to the non-

infected samples on the left (Figure 29, 30 and 31), in the same way as in the RNA-seq 

analysis (Figure 25). 
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Both the H3K4me1 (Figure 29) and the H3K27ac mark (Figure 30) followed BAZ1B 

levels in a direct way in about half of the identified regions (upper part of the heatmap) 

and in an inverse way in the remaining half (lower part). On the contrary, the H3K27me3 

mark mostly followed BAZ1B levels in an inverse way (Figure 31), as already observed in 

the previous heatmap on the same mark. 

 

Figure 29. H3K4me1 ChIP-seq signal profile of the chromosomal regions in which H3K4me1 

directly or inversely follows BAZ1B levels 

The 76 represented regions were all identified as putative active enhancers in the control samples 

and are ordered based on the type of NCSC sample (non-infected, sh38- or sh41-interfered). p 

value < 0.005.  
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Figure 30. H3K27ac ChIP-seq signal profile of the chromosomal regions in which H3K27ac 

directly or inversely follows BAZ1B levels 

The 75 represented regions were all identified as putative active enhancers in the control samples 

and are ordered based on the type of NCSC sample (non-infected, sh38- or sh41-interfered). p 

value < 0.005.  
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Figure 31. H3K27me3 ChIP-seq signal profile of the chromosomal regions in which 

H3K27me3 directly or inversely follows BAZI1B levels (alternative sample distribution) 

The 114 represented regions were all identified as putative active enhancers in the control samples 

and are ordered based on the type of NCSC sample (non-infected, sh38- or sh41-interfered). p 

value < 0.005.  

 

The dysregulated regions identified for each mark did not show any overlap, suggesting 

that BAZ1B might affect the deposition of all the three marks in regions that are distinct. 

Thus, to have some insights into their biological function, we annotate the regions 

identified in the differential analysis for each histone mark, using the Genomic Regions 

Enrichment of Annotations Tool (GREAT) (McLean et al., 2010). This online tool 
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(http://bejerano.stanford.edu/great/public/html/) is able to predict the association of cis-

regulatory regions with one or more genes and, thus, with specific biological functions.  

We distinguished between regions in which the mark followed BAZ1B levels in a direct or 

indirect fashion, we isolated genes associated with each specific subgroup of regions and 

we performed GO enrichment analysis with FDR < 0.05. The genes predicted to be 

associated with regions in which the H3K4me1 mark directly or inversely followed BAZ1B 

levels, were enriched for relevant GO categories, including cell motility and migration, 

muscle cell differentiation and several morphogenesis-related processes, in line with NC-

dependent formation of craniofacial structures (Figure 32). 

Genes associated with H3K27 differentially acetylated regions were only enriched for 

odontogenesis in line with patient-dental defects, while no enrichments were identified for 

the H3K27me3 mark.  

 

Figure 32. Top most-specific enrichments for GO biological processes among the genes 

that were predicted to be associated with differential H3K4me1 regions 

Only enrichments with FDR < 0.05 are shown. Values in brackets represent the significance (FDR) 

of each enrichment. 
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4.3.4.1. Integration of results from RNA-seq and ChIP-seq analysis 

In order to integrate results obtained in the last two chapters, we looked at the overlap 

between all the genes associated with BAZ1B-level sensitive putative active enhancer 

regions and the BAZ1B-level sensitive genes identified in the RNA-seq analysis with FDR 

< 0.1 (see Figure 27). Surprisingly, only 15 of them (i.e., ALPK2, ARFGAP1, CNTNAP1, 

DISP1, GPR124, HMGB1, LARP4B, NKAIN4, NXN, POU3F1, RASL11B, RBMS3, RHOU, 

SULF2 and TBX2) were included in both datasets, first suggesting a poor coherence 

between the results obtained with the two analyses.  

Notably, the majority of these genes are directly on inversely correlated with BAZ1B levels 

in a coherent way in both RNA-seq and ChIP-seq analyses. For example, both DISP1, 

POU3F and RHOU mRNA levels and H3K27ac levels displayed a direct correlation with 

BAZ1B expression.   

Gene 
Correlation with BAZ1B 

levels in RNA-seq 

Correlation with BAZ1B 

levels in ChIP-seq 

ALPK2 Inverse Inverse (H3K27me3) 

ARFGAP1 Direct Inverse (H3K27me3) 

CNTNAP1 Inverse Inverse (H3K27me3) 

DISP1 Direct Direct (H3K27ac) 

GPR124 Inverse Inverse (H3K27me3) 

HMGB1 Direct Inverse (H3K27me3) 

LARP4B Direct Inverse (H3K27ac) 

NKAIN4 Direct Inverse (H3K27me3) 

NXN Inverse Inverse (H3K4me1) 

POU3F1 Direct Direct (H3K27ac) 

RASL11B Inverse Inverse (H3K27me3) 

RBMS3 Inverse Inverse (H3K4me1) 

RHOU Direct Direct (H3K27ac) 

SULF2 Inverse Inverse (H3K4me1) 

TBX2 Inverse Inverse (H3K4me1) 



 105 

 

Table 6. List of genes identified as commonly dysregulated in RNA-seq and ChIP-seq 

analyses 

I indicated whether each gene expression level and the type of histone mark found differentially 

enriched in the associated putative enhancer regions, were directly on inversely correlating with 

BAZ1B gene expression levels. 

 

These genes have different biological functions, including cell migration (RHO and 

GPR124) and cell signaling (ARFGAP1, RHOU, SULF2 and DISP1). Interestingly, RHOU 

was shown to play a crucial role in the generation of craniofacial cartilages through the 

positive regulation of cranial NC migration (Fort et al., 2011). 

 

Moreover, preliminary analysis aimed at detecting possible interactions between proteins 

encoded by all the genes included in the RNA-seq and ChIP-seq datasets (https://string-

db.org), identified a significant number of interactions (Figure 33). The interactions were 

based on experimental data either performed on the very same proteins or on putative 

homologs known to interact in other species. Interestingly, many of the described 

interactions involved a protein included in the RNA-seq dataset and another one identified 

in the ChIP-seq analysis (indicated by the red lines). This initial result suggests a first link 

between the BAZ1B dosage-mediated redistribution of histone marks along putative active 

enhancer regions and the transcriptional dysregulation observed with the RNA-seq 

analysis. 
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Figure 33. STRING analysis on BAZ1B-level sensitive genes identified in RNA-seq and ChIP-

seq  

The green line represents an interaction between two proteins encoded by genes from the RNA-

seq dataset, the yellow line represents an interaction between two proteins encoded by genes from 

the ChIP-seq dataset and the red line indicates an interaction between a protein from one dataset 

and a protein from the other dataset. The minimum required interaction score used was 0.700 (high 

confidence) and only interactions supported by experiments were considered.  
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4.3.5.    Investigation of BAZ1B direct interactors 

RNA-seq analysis alone is not able to distinguish between direct and indirect effects of 

BAZ1B in the dysregulation of NCSC transcriptional programs described in the previous 

chapters. Preliminary results suggest some interactions between proteins whose 

expression resulted dependent on BAZ1B levels (see Figure 32), but is still not sufficient 

for the identification of BAZ1B direct partners. 

Thus, in order to investigate BAZ1B direct interactors and to evaluate possible BAZ1B 

dosage-dependent differences in the formation of specific complexes, I performed BAZ1B 

immunoprecipitation (IP) followed by Mass Spectrometry (MS) analysis.  

In total, I tested two different antibodies known to work in IP, but with none of them I could 

obtain good enrichments for the bait (i.e., BAZ1B).  

In the first attempt, I immunoprecipitated BAZ1B in all the three genetic conditions using 

an antibody produced by Santa Cruz (Figure 34a) and I identified around 700 proteins as 

potential interactors. The most enriched ones were involved in splicing and RNA binding, 

suggesting novel functions for BAZ1B (Figure 34b). SMARCA5, known to be associated 

with BAZ1B in the WICH complex (chapter 2.4.3.1.), was also identified in all the 

conditions. However, I could only detect few peptides attributable to BAZ1B, possibly 

suggesting a low antibody efficiency. 
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Figure 34. First attempt of BAZ1B immunoprecipitation using an antibody produced by 

Santa Cruz 

a) 9/10 of the IP were stained with Comassie blue and subjected to MS analysis, while 1/10 of the 

IP was analyzed by Western Blot as internal control.  b) Most enriched interactors according to 

Mass Spectrometry analysis of the immunoprecipitates showed in panel a.  

Given the small BAZ1B enrichment, I tested the efficiency of a different antibody 

(produced by Abcam) by performing BAZ1B IP in a NCSC line from a 7dup patient 
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(Figure 35a). In this second attempt, I obtained a significantly higher enrichment for the 

bait: 25 peptides versus the 6 identified on the very same line in the previous 

immunoprecipitation (Figure 35b). In addition, I observed a good enrichment for proteins 

involved in the maintenance of chromosome structures and SMARCA5 was still detected, 

together with another member of the SWI/SNF family, SMARCA4. Splicing proteins were 

still present, but with a lower enrichment.  
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Figure 35. Second attempt of BAZ1B immunoprecipitation using an antibody produced by 

Abcam 

a) Coomassie blue staining and Western Blot analysis of BAZ1B IP in a 7dup NCSC line. b) 

Relevant interactors according to Mass Spectrometry analysis of the immunoprecipitates showed in 

panel a. c) Western Blot analysis of BAZ1B IP in NSCSs from the three genetic conditions. 

 

Next, using the very same experimental conditions, I performed BAZ1B IP in all the three 

genetic conditions (including the 7dup sample tested as a pilot). As before, 1/10 of the IP 

from each condition was assayed in western blot as internal controls (Figure 35c). 

Unexpectedly, BAZ1B was not detected in any of the samples according to MS analysis. 

Immunoprecipitation and analysis were repeated a second time on fresh protein extracts 

but, again, I could not obtain any enrichment for the bait.  

The difficulties in BAZ1B enrichment can be attributed to: 

1. the antibody efficiency. Any of the antibodies tested allowed good enrichments 

of the bait, even though both have already been tested either in other cell 

types or in previous published works from other groups (Almuzzaini et al., 

2016). 

2. the inefficient optimization of all the steps required for the identification of the 

bait and its interactors. I tested different protocols and IP/wash buffers during 

the different steps of immunoprecipitation; while sample processing was 

always performed in the same way by the internal Mass Spectrometry Unit. 
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3. very low BAZ1B expression levels in patient derived-NCSCs. 

Overexpression of BAZ1B in our cell lines can’t be considered a possible option since our 

main aim is to investigate BAZ1B dosage-dependent alterations. Thus, we resorted to a 

targeted genome editing strategy that takes advantage of the CRISPR/Cas9 system to 

add a specific tag to the endogenous BAZ1B gene sequence. I am currently investigating 

the best tag option to identify BAZ1B interactors, working with high efficiency both in IP 

and ChIP experiments. Preliminary maps of two possible donor plasmids are reported in 

Figure 36. 

 

 

 

 

 

Figure 36. Schematic representation of two alternative donor plasmids to be used in 

CRISPR/Cas9-mediated BAZ1B tagging 

a) The donor plasmid will contain either a) three flag tag or b) a Halotag followed by a self-cleaving 

peptide (P2A) and a Hygromycin resistance (HygroR). The Tag-P2A-HygroR cassette will be 

flanked by BAZ1B specific Homology Arms to promote homologous recombination and then 

subcloned into a bacterial backbone.   
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5. DISCUSSION 

 

In this thesis, I have investigated the molecular basis of NC-related alterations typical of 

both WBS and 7dup patients, taking advantage of NCSCs directly derived from patient-

specific iPSCs (Adamo et al., 2015).  

The association of NC/NC-derived cells defects with brain alterations is a constant of most 

neurodevelopmental disorders, given the fact that both tissues derive from ectoderm and 

the genetic causes are indeed rooted at very early stages of development.  

This explains why it is extremely crucial to focus on progenitor cells to have better insights 

into the molecular mechanisms responsible for this type of diseases. The recent 

possibilities of reproducing in vitro poorly accessible cell types/tissues and to specifically 

explore the patient genetic information, represent extremely advanced tools in the study of 

neurodevelopmental disorders. 

WBS and 7dup syndrome constitute a very relevant example of the coexistence of NC-

related craniofacial malformations and central nervous system (CNS)-related cognitive 

and social alterations, as extensively discussed in chapter 2.1. 

 

5.1. Bona fide multipotent NCSCs can be derived from 

patient specific-iPSC 

 

Taking advantage of WBS and 7dup patient-derived iPSCs and of a highly efficient 

differentiation protocol we generated at least three NCSC lines per each genetic condition, 

including healthy controls. To our knowledge, this is the largest cohort of patient-specific 

NCSCs described so far. 

We did not observe any differences in the efficiency of differentiation of both patient and 

control iPSCs and we were able to obtain a high percentage of bona fide NCSCs in all the 
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conditions, indicating that iPSC-to-NCSC differentiation ability is not impaired in WBS and 

7dup patients. Moreover, NCSCs from patient and control individuals are indistinguishable 

in their morphology and they all displayed self-renewal ability, even after a high number of 

passages in culture (>40). Multipotency is also maintained both in WBS/7dup and control 

NCSCs, as shown by the successful generation of three distinct NC-derivatives (i.e., 

MSCs, osteocytes and SMCs). In a sense, this is expected, since both types of patients 

are able to develop bone and facial structures, as well as smooth muscle in vessels or 

neurons in the peripheral nervous system.  

Given these evidences, I hypothesized that 7q11.23 gene dosage imbalances do not 

impair the cell-specific differentiation potential and the differentiation process itself, but 

most probably affect NC and NC-derived cell function and the regulation of their 

generation and distribution in the developing embryo. NCSCs are indeed known to 

migrate in specific areas of the embryo and to give rise to their derivatives upon an 

extremely tight regulation of numerous signaling pathways (chapter 2.2.1.). It is 

reasonable to think that WBSCR genes mediated-alterations of these pathways might 

lead either to i) an over/underproduction of NC or NC-derived cells and/or ii) to migration 

defects and, consequently, to an uncontrolled deposition in the target regions of the 

developing embryo. Indeed, SVAS in WBS patients is caused by an overgrowth of smooth 

muscle cells in arteries, thus supporting the overproduction hypothesis (Pober, 2010). 

Moreover, some symmetrically opposite features of WBS and 7dup patients, such as the 

philtrum length and the lip size, could be explained by a gene dosage-dependent 

defective cell deposition. 

   

 

 



 114 

5.2. iPSC derived-NCSC transcriptome is dysregulated in 

pathways involved in NC development 

 

The presence of several important transcriptional regulators within the 7q11.23 region, 

suggests transcription to be significantly impaired in WBS and 7dup patients. We were 

able to prove this and, more interestingly, we showed that dysregulation at the RNA level 

was already visible at very early stages of development, i.e., the pluripotent state, and 

pointed to a series of biological processes known to determine the patient clinical 

phenotype (Adamo et al., 2015).  

This impairment is then maintained upon differentiation into NSCSs, MSCs and neural 

progenitors (NPCs) ((Adamo et al., 2015) and chapter 4.2) but also amplified in a lineage-

specific manner, so that disease-relevant pathways ascribable to a particular differentiated 

lineage are progressively and preferentially more affected. For example, while at the iPSC 

stage, the dysregulated genes encompass a wide range of processes relevant for the 

diseases, in NPCs DEGs are specifically enriched for categories involving neuronal 

function and development (Adamo et al., 2015). In the same way, microarray profiling of 

NCSC transcriptomes shows altered expression of genes specifically implicated in NC 

development and NC-derived tissues including craniofacial structures, peripheral neurons 

and smooth muscle. Notably, it was shown that the enhancement of the small GTPase 

RhoA signaling, that resulted dysregulated in our NCSC dataset, could rescue the poorly 

organized networks of actin bundles in smooth muscle cells from patients with SVAS 

(Adamo et al., 2015; Ge et al., 2012). 

 

5.3. BAZ1B KD affects patient-specific NCSC migration  

 

A plethora of evidences from different models indicate BAZ1B involvement in the 

acquisition of NC-dependent alterations.  
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In particular, results from scratch assays indicate a clear impairment of migration upon 

BAZ1B KD in NCSCs from at least 4 different individuals (i.e., 1 7dup and 3 controls). 

NCSC migration in the WBS sample appears already affected in the ‘scr’ line, when 

compared to the ‘scr’ lines from other individuals, while the KD in the same line doesn’t 

have relevant consequences. Thus, I hypothesized that a lowering of BAZ1B levels in 

cells in which its expression is already low and where probably cell motility is already 

altered, might not further affect migration, but replicates are needed. 

NC cells represent a typical model of ‘contact inhibition of locomotion’, as shown by both 

in vitro and in vivo experiment (Carmona-Fontaine et al., 2008). This means that when two 

NC cells enter in contact, they tend to collapse their protrusions and to establish 

connections, leading both to a change in direction and to a reduction of their velocity. 

Thus, BAZ1B dosage alterations might impair this specific process, given our 

observations on NCSC migration. In line with this, the analysis of NCSC random migration 

suggests a reduction of cell velocity and, consequently, of accumulated distance upon KD; 

while results on cell directionality are still difficult to interpret because of a high variability 

within cells (data not shown). The automated tracking that I am currently setting up, will 

allow the measurement of a significantly higher number of cells thus, possibly, reducing 

variability. 

Notably, BAZ1B-mediated positive regulation of migration, has been previously described 

in NC cells from Xenopus laevis  (Barnett et al., 2012) and in human lung cancer cells 

(Meng et al., 2016). However, the first evidence was only based on the observed 

dysregulation of genes involved in NC cell migration upon BAZ1B KD and no migration-

specific assays were performed. In the second case, the accelerated migration and 

aggressiveness due to BAZ1B overexpression were also confirmed with pertinent 

experiments (i.e., scratch and invasion assays) but these observations were anyway 

limited to cancerous cells. 
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5.4. BAZ1B KD alters NCSC transcriptome in a specific 

subset of biological processes 

 

RNA interference-mediated reduction of BAZ1B levels in NCSCs, aimed at dissecting its 

specific contribution to the disease, had a limited but still relevant impact on NCSC 

transcriptomes, in line with previous reports describing BAZ1B as a key transcriptional 

regulator (Poot et al., 2004).  

Notably, the strength of our analysis resides in considering the two shRNA against BAZ1B 

not only as a single entity (pairwise comparative analysis, chapter 4.3.3.1) but also as two 

distinct ones (multifactorial comparative analysis, chapter 4.3.3.2), given the fact that their 

efficiencies in knocking down BAZ1B expression levels were proven to be different. When 

gene dosage is altered in regions that are extremely sensitive to dosage variations, such 

as the 7q11.23 region, we also expect to have specific consequences that are dependent 

on the entity of dysregulation. This is why we took in consideration the different KD 

efficiencies of the two shRNA and we assigned numerical variables to each to each 

shRNA group. Thanks to this approach, we could identify a subset of common genes, 

whose expression is affected upon both shRNA-mediated KD, and a group of genes only 

dysregulated upon a more substantial alteration of BAZ1B levels.  

In the last more sophisticated analysis, we specifically looked at genes whose expression 

was dependent on BAZ1B level variations and we could identify a higher number of genes 

dysregulated in both shBAZ1B groups. Moreover, this analysis confirmed the stronger 

transcriptional impact of sh41, and, at the same time, was able to detect all those genes 

whose expression was affected, even in a milder fashion, also upon the less efficient 

sh38-mediated KD. Given the stringency of this last approach, we considered the ‘279 

BAZ1B-level sensitive genes’ dataset as the most complete and reliable and we focused 

on this for the subsequent analysis.  
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Among these genes, we found OLFM1, a key regulator of embryonic nervous system 

development, to directly follow BAZ1B levels. Interestingly, its overexpression induces an 

excess of NC cells emigration from the neural tube (Barembaum et al., 2000), thus 

supporting my hypothesis of an uncontrolled NC cell production as a consequence of 

gene dosage imbalances.  

An interesting gene that, according to our analysis, inversely follows BAZ1B levels, is 

NR2F2, better known as Chicken Ovalbumin Upstream Promoter Transcription Factor II 

(COUP-TFII). It is involved in the development of heart, blood vessels and muscles and its 

inactivation in mesenchymal progenitors promotes differentiation towards osteoblast and 

myoblast, while impairing the formation of adipocytes and chondrocytes (Xie et al., 2011). 

Thus, an aberrant deposition of bone and cartilage in facial areas or of smooth muscle 

cells in vessels, as a consequence of BAZ1B-mediated NR2F2 dysregulation, could be 

possible explanations for craniofacial and vascular defects in WBS and 7dup patients. In 

line with this, NR2F2 and its partner NR2F1 were shown to modulate craniofacial 

development through the binding of NC-specific enhancer regions (Rada-Iglesias et al., 

2012, 2013). 

Moreover, NR2F2 promotes cancer cell migration and metastasis in several types of 

tumors (Qin et al., 2010), thus its involvement in the regulation of NC cell migration is 

plausible. 

 

The repetition, in most cases, of the same small subset of genes (such as POSTN, 

NR2F2, ERBB4) throughout the different most enriched GO categories, supports the 

dysregulation of a limited group of biological processes upon BAZ1B KD, mainly 

encompassing vascular and skeletal development and cell migration. For example, the 

presence of several dysregulated genes involved in cardiovascular development suggests 

that ELN might not be the only causative gene for SVAS and aortic dilation in WBS and 

7dup patients, respectively. A deep characterization of SMCs derived from BAZ1B KD 

NCSCs will possibly give some useful insights into cardiovascular defects, that, to date, 
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are the most common cause of death in WBS patients (Pober, 2010). Likewise, many 

genes within our dataset (e.g., POSTN, NR2F2, ERBB4, THSD7A and RAB3C) play a 

crucial role in cell migration and for some of them there are evidences of a direct 

involvement in NC cell motility. This result suggests that the migration phenotype 

observed in our NCSCs might be caused by a dysregulation of pathways that control NC 

cell motility and adhesion, as a consequence of BAZ1B dosage imbalances. 

 

5.5. BAZ1B-dosage imbalances impact on NCSC 

enhancer state  

 

Our hypothesis, claiming an impact of BAZ1B dosage imbalances on NCSC putative cis-

regulatory regions is partially supported by our preliminary results, specifically focused on 

putative active enhancer regions. A more accurate investigation of BAZ1B chromatin 

occupancy, through a BAZ1B-specific ChIP-seq, will shed more lights on its preferential 

binding sites. 

Differential analysis on the distribution of H3K27ac, H3K4me1 and H3K27me3 marks in 

the selected group of regions, show a limited role for BAZB1 in the dynamics of these 

marks, since only few regions were identified as differentially marked based on BAZ1B 

levels. In particular, the most affected mark is H3K27me3, given the higher number of 

BAZ1B-level sensitive regions identified when compared to the other two marks. 

Moreover, only in this context, BAZ1B acts in a univocal manner, since almost all the 

regions differentially marked inversely follow its levels. Indeed, higher BAZ1B levels 

correspond to a lower presence of the repressive mark, in line with a BAZ1B positive role 

in transcriptional regulation (Poot et al., 2005). 

On the contrary, the H3K4me1 and H3K27ac marks follow BAZ1B levels either directly or 

inversely in a similar number of regions, suggesting that i) other epigenetic remodelers 
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could contribute, together with BAZ1B, to the deposition/erasure of these marks and/or ii) 

a second, not yet described, negative role of BAZ1B in transcriptional regulation. 

Moreover, BAZ1B involvement in migration is further supported by ChIP-seq analysis, 

specifically on H3K4 differentially monomethylated regions. 

 

I hypothesized different explanations for the limited overlap between the genes associated 

with differential putative enhancer regions and those identified in the RNA-seq dataset. 

1. Results from the two analyses display two distinct levels of transcriptional 

dysregulation, respectively involving or not involving enhancer remodeling. 

However, the identification of several interactions between proteins encoded 

by genes from the RNA-seq and the ChIP-seq dataset, show a preliminary 

connection between the apparently distinct outcomes of the two approaches.  

2. BAZ1B-mediated remodeling of these regions is reflected in a milder alteration 

of enhancer-mediated gene expression, not detected in the RNA-seq analysis. 

However, mRNA expression levels of genes predicted to be associated with 

differential enhancers do not show a clear sensitivity to BAZ1B dosage (data 

not shown). 

3. BAZ1B-mediated remodeling of these regions does not result in an impairment 

of enhancer-dependent gene expression, because other factors or gene 

promoters themselves are able to compensate. 

4. GREAT prediction approach, exclusively based on the association of a peak 

with the closest gene body, is suboptimal and potentially inefficient. 
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5.6. Preliminary analysis suggests novel interactors for 

BAZ1B  

 

The suboptimal identification of the bait doesn’t allow us to draw final conclusions on 

BAZ1B interactors. However, the presence of a known BAZ1B partner (i.e., SMARCA5) 

using two different antibodies, suggests not to completely exclude the results that we 

obtained. For example, the recognition of novel potential interactors, mostly involved in 

splicing-related processes (e.g., different subunit of splicing factor 3B) or in the structural 

maintenance of chromosomes (e.g., SMC1A, SMC3 and SMC4), might indicate unknown 

levels of BAZ1B-dependent regulation. Within splicing-related factors, we identified 

Eukaryotic Initiation Factor 4A3 (EIF4A3), encoding for a protein involved in alternative 

splicing and translation initiation, whose partial loss of function causes a craniofacial 

disorder known as Richieri-Costa-Pereira syndrome (RCPS) (Favaro et al., 2014). 

Interestingly, it was recently shown that NC cells derived from RCPS patient-iPSCs have 

a reduced migration capacity when compared to control cells (Miller et al., 2017). 

In addition, mutations in some subunits of the cohesion complex (such as SMC1A and 

SMC3) are responsible for a variant of Cornelia de Lange syndrome (CdLS), 

characterized by a predominant mental disability and milder craniofacial alterations 

(Deardorff et al., 2007). More recently, it was shown that these mutations impair 

transcription initiation and elongation and this might explain the transcriptional 

dysregulation observed in CdLS patients (Mannini et al., 2015).  

Thus, we can hypothesize that the observed interactions between BAZ1B and EIF4A3 or 

cohesin subunits might be involved in the alterations in transcription or in the migration 

defects caused by BAZ1B KD, but further confirmation studies are needed. 
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5.7. Atypical patients are critical in the study of CNV-

related disorders 

 

In the future, we plan to further increase our patient cohort including, in particular, other 

atypical WBS patients with different types of smaller deletions, since they were already 

shown to represent extremely valuable tools, both in our and in previous works. 

For example, the atypical WBS patient already included in our analysis, in which BAZ1B 

and few other genes are not deleted and that presents milder craniofacial alterations, 

further supports our hypothesis on BAZ1B role in NC regulation. In line with this, we 

observed that the transcriptional profile of NCSCs from the atypical patient associates 

closely to the profile of at least two control NCSCs and to none of the typical WBS 

NCSCs. This indicates that a relevant portion of the observed transcriptional dysregulation 

might be attributed to the few WBSCR genes that are still present in the atypical deletion, 

including BAZ1B.  

In addition, a second WBS patient bearing a smaller deletion that spares both BAZ1B and 

GTF2I, also displayed a less severe craniofacial phenotype, but still presented some 

typical WBS facial features (Fusco et al., 2013). Moreover, a third peculiar atypical WBS 

patient in which only GTF2I and other few genes are deleted, did not showed typical 

behavioural problems but presented the typical WBS facies, including iris stellata, medial 

eyebrow flare, ptosis of the eyelids, fullness of the periorbital region, anteverted nares, 

prominent and long philtrum and full lips (Bert de Vries, unpublished).  

These last observations indicate that BAZ1B is not acting alone in the regulation of facial 

development, but GTF2I and other WBSCR genes might be involved. In line with this, 

mice lacking Gtf2i are characterized by craniofacial defects (Enkhmandakh et al., 2009). 

Thus, our hypothesis indicating a combined action of different WBSCR genes in the 

definition of NC-related defects, rather than a univocal attribution of a single gene to a 

specific clinical trait, is now supported by two main observations: 
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- BAZ1B possible involvement in patient cardiovascular defects together with ELN, 

as indicated by RNA-seq results; 

- BAZ1B- and GTF2I-mediated regulation of the development of distinct craniofacial 

structures. 

 

5.8. Final remarks 

 
In conclusion, our observations highlight a multilevel modus operandi for BAZ1B in the 

regulation of WBS and 7dup patient-specific NCSCs, involving enhancer remodeling, 

transcriptional regulation and cell-type specific functions.  

We showed that BAZ1B dosage imbalances are responsible for a transcriptional alteration 

involving migration-related genes and that this process is indeed impaired upon BAZ1B 

KD in our NCSC cohort. 

In addition, BAZ1B dosage imbalances affect the distribution of histone marks (in 

particular H3K27me3) in a limited subset of putative active enhancer regions, but the 

entity and the consequences of the remodeling still need to be better elucidated and, thus, 

require further and more reliable analyses. 

The identification of BAZ1B direct interactors and a better characterization of NCSCs 

derived from patients with atypical deletions (sparing or not BAZ1B), together with the 

results already presented in this thesis, will hopefully contribute to the reconstruction of 

the molecular dysregulation responsible for NC-related defects in WBS and 7dup patient-

derived NCSCS.  
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