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Abstract High-resolution gridded daily data sets are essential for natural resource management and the
analyses of climate changes and their effects. This study aims to evaluate the performance of 15 simple or
complex interpolation techniques in reproducing daily precipitation at a resolution of 1 km2 over
topographically complex areas. Methods are tested considering two different sets of observation densities
and different rainfall amounts. We used rainfall data that were recorded at 74 and 145 observational stations,
respectively, spread over the 5760 km2 of the Republic of Cyprus, in the Eastern Mediterranean. Regression
analyses utilizing geographical copredictors and neighboring interpolation techniques were evaluated both
in isolation and combined. Linear multiple regression (LMR) and geographically weighted regression
methods (GWR) were tested. These included a step-wise selection of covariables, as well as inverse distance
weighting (IDW), kriging, and 3D-thin plate splines (TPS). The relative rank of the different techniques
changes with different station density and rainfall amounts. Our results indicate that TPS performs well for
low station density and large-scale events and also when coupled with regression models. It performs poorly
for high station density. The opposite is observed when using IDW. Simple IDW performs best for local events,
while a combination of step-wise GWR and IDW proves to be the best method for large-scale events and high
station density. This study indicates that the use of step-wise regression with a variable set of geographic
parameters can improve the interpolation of large-scale events because it facilitates the representation of
local climate dynamics.

1. Introduction

Precipitation does not take place continuously, neither spatially nor temporarily. While monthly data or
long-term averages can be interpolated quite easily over a given area due to their smooth characteristics,
this is more complex when considering daily precipitation values. As pointed out by Hofstra et al. [2008],
there are many studies that compare different interpolation techniques for long-term means, or monthly
and annual values, but there are few that address the interpolation of daily data. One of the main risks,
when considering daily data, lies in the possibility of partly reducing the variability of the original data
and to lose local relative peaks of precipitation [Shen et al., 2001].

Daily gridded data sets of meteorological variables, precipitation in particular, are very useful for many ap-
plications. The increasing number of global and regional climate modeling experiments calls for reliable
observational data sets to evaluate and verify model outputs [e.g., Fundel et al., 2010; Maraun et al., 2012].
Such data sets are also instrumental to assess the influence and relevance of climate change over a certain
area [e.g., Barnett et al., 2005]. Climate change impact studies need climate information and climate projec-
tions at high spatial resolution (~ 1 km). This is significantly higher than what current state-of-the-art models
can offer (10–25 km). Gridded data at ~ 1 km resolution are also most useful for hydrological studies, e.g., to
validate spatial rainfall or weather generator outputs [e.g., Kilsby et al., 2007], and to serve as input to dis-
tributed hydrological models [e.g., Gosling and Arnell, 2011; Parkes et al., 2013]. Moreover, they can be used for
water resources analyses [e.g., Kizza et al., 2012] and water management applications, which are often related
to agricultural activities [e.g., Fader et al., 2010; Supit et al., 2012]. Other fields that will benefit from gridded
data sets include investigations on biodiversity loss and terrestrial ecosystem studies [e.g., Gritti et al., 2006;
Avellan et al., 2012].
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Frequently used techniques applied to interpolate monthly and annual precipitation data are regression
models [e.g., Ninyerola et al., 2000; Vicente-Serrano et al., 2003], inverse distance weighting (IDW) [e.g.,
Perry and Hollis, 2005], angular distance weighting (ADW) [e.g., Kiktev et al., 2003], and kriging (KR) [e.g.,
Goovaerts, 2000]. Thin plate splines (TPS) have been tested on precipitation data [e.g., Vicente-Serrano
et al., 2003] but their tendency to oversmooth the calculated surfaces leads them to return better results
when interpolating temperature [e.g., Jarvis and Stuart, 2001]. In general, these techniques are singularly
applied, but there are also studies that use a combination of various methods [Agnew and Palutikof, 2000;
Vicente-Serrano et al., 2003]. In most cases, the combination of techniques is motivated by an attempt to
remove the effects of certain geographical characteristics (e.g., elevation, distance from the coast, spatial
location, etc.). Perry and Hollis [2005] explained that this can be either done through a normalization of
the values of interest with respect to a long-term average or through the definition of a regression model
based on geographical variables.

The paucity of studies on the interpolation of dailymeteorological data results also in a lack of a systematic work
that compares and evaluates, at this temporal resolution, the skill of different interpolation techniques.
Exceptions are the two combined studies by Hofstra et al. [2008] and Haylock et al. [2008]. The latter study is
utilized for very large scales (all Europe) and therefore targets a very different spatial resolution. Another study
targeting large scales (all Asia) is that by Yatagay et al. [2012]. They are producing a database (APHRODITE) that
includes daily precipitation andmonthly climatology gridded data. However, themain focus of their study is the
development of an algorithm for interpolation, including also an extended quality control of input data. They
used an angular distance weighting scheme as inWillmott et al. [1985] and did not evaluate different interpo-
lation techniques. Other studies in which a daily gridded data set is constructed are those of Frei and Schär
[1998] and Perry et al. [2009]. In both studies, the interpolation technique (angular and inverse distance
weighting, respectively) is selected because of its simplicity. Comparisons of different spatial interpolation
techniques have been made by Bussières and Hogg [1989] for daily precipitation in the Great Lakes Region in
North America, by Brown and Comrie [2002] for mean winter temperature and precipitation in Arizona and New
Mexico (USA), and byWeber and Englund [1992] for contaminant concentrations. Perry et al. [2009] used, based
on the interpolation of monthly data [Perry and Hollis, 2005], also the coupling of regression with inverse
distance weighting, recognizing a certain number of geographical covariables (easting and northing, elevation,
proximity to water bodies, and proximity to urban areas) as possible predictors for different climatic variables
(e.g., precipitation, temperature, wind speed, sunshine, and vapor pressure). However, an in-depth discussion of
the reasons leading to the selection of covariables was not presented. Other studies that evaluate daily pre-
cipitation are those of Carrera-Hernandez and Gaskin [2007] and Symeonakis et al. [2009], but these authors
focussed on geostatistical techniques, only. Herrera et al. [2012] also applied kriging to develop a 50 year
gridded data set over Spain, but the spatial resolution of their study was quite coarse (~ 20 km).

Geographically weighted regression (GWR) is increasingly used to model climatic variables [e.g., Brunsdon
et al., 1996; Fotheringham et al., 2002]. Szymanowski and Kryza [2012] found that GWR performed better than
linear multiple regression (LMR) for the modeling of temperature at different time scales, including daily. To
create their final data set, they coupled GWR with kriging. Another example is that of Bostan et al. [2012], who
applied GWR to estimate the spatial distribution of average annual rainfall over Turkey, and compared it to
other techniques such as LMR and different types of kriging. For their case study, GWR performed better than
LMR, but universal kriging was recognized as the best overall method.

The aim of this study is to provide a complete overview of the performance of 15 interpolation techniques for
the gridding of daily precipitation over a topographical complex area. The techniques are evaluated through
a system of scores, using an approach very similar to Vicente-Serrano et al. [2003] and Hofstra et al. [2008]. An
analysis of the performance of the various techniques due to different rainfall amounts, different topo-
graphical attributes, and different observation density is included. The spatial resolution selected for the
output maps is 1 × 1 km2.

The Republic of Cyprus (Figure 1) serves as the study area for this analysis. The area is not large but it has a
very complex topography, which has a strong effect on the rainfall distribution. Annual average rainfall
ranges from about 1100 mm in the higher mountainous area to around 300 mm in the plains of the central
eastern part of the island [Michaelides et al., 2009]. Rainfall is not only highly variable in space but also in time,
with a well defined annual cycle with wet months between November and March and almost completely dry
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summers [Hadjinicolaou et al., 2011]. Cyprus, therefore, provides an opportunity to analyze very different
rainfall regimes, covering a large number of event types that may also occur in different areas around the
world. Thus, our results are not restricted to the island of Cyprus, but provide insights on much larger,
regional scales.

The following sections present a brief introduction to the main geographical and meteorological character-
istics of Cyprus, followed by a complete overview of the methods applied. The two data sets used are
presented and attention is given to the description of both the interpolation methods and the setup of the
ranking system to evaluate and compare their performance. In section 4, the results are presented and
discussed, followed by a concise summary and conclusions.

2. Study Area

Cyprus is an Eastern-Mediterranean island, located between 34–36°N and 32–35°E. It has two mountain
chains, the Troodos, located in the central-west part of the island with its highest peak, Mount Olympus,
reaching 1951 m a.s.l., and the Kyrenia Range, which runs for 160 km parallel to the northern coast of the
island reaching a maximum elevation of 1024 m a.s.l. at Mount Kyparissovouno. The Mesaoria Plain, which is
the main agricultural area of the country, is nestled between the two mountain ranges. The island has been
politically divided since the Turkish invasion of 1974. This study analyzes the precipitation over the area
currently controlled by the Republic of Cyprus, which covers the southern part of the island (Figure 1).

Precipitation in Cyprus is concentrated in the period between October andMay, across two different solar years.
December, January, and February are the wettest months, while October–November and March–April–May are
transitional months. Specifically, October and March can experience very different rainfall conditions, ranging
from 0 to more than 100 mm of cumulated rainfall. Between June and September, rainfall events are very rare
and in some years completely absent.

During all four seasons precipitation is highest on the Troodos Mountains (Figure 2). However, during the
Autumn-Winter period precipitation is more abundant on the western flank of the mountains, while during
the Spring-Summer period it is more abundant in the Mesaoria plain, on the eastern side of the mountains.

Figure 1. The island of Cyprus with its main political and geographical characteristics and the locations of the 74 and 145 precipitation sta-
tions used in this study. The study area covers the area under the effective control of the government of the Republic of Cyprus (south of the
buffer zone), including the British Bases.
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This seasonal difference is related to different meteorological processes that lead to the onset of a precipi-
tation event. During Autumn-Winter most of the precipitation is due to humid fronts arriving from the west.
These humid fronts enter the island along the south-western coast and experience two different effects. The
first is a land-sea effect, due to a different temperature between the sea and the earth, which can trigger
vertical movements of air masses and facilitate the onset of a precipitation event. The second effect is a to-
pographical effect. Moving east, the humid front meets the foothills of the Troodos Mountains, so that the air
masses are pushed upward and create additional rainfall events. On the other hand, the Troodos Mountains
also act as a barrier for these currents, therefore concentrating rainfall on their western side. The result is a
maximum of precipitation aligned along the main ridge of the mountains and a relatively higher abundance
of rain on the western flanks, compared to the eastern flanks at the lee side (“rain-shadow”). During Spring-
Summer, convective events originate directly on the Troodos Mountains and, in this case, the predominantly
west-east winds push the rainfalls toward the Mesaoria Plain and Nicosia, sparing the south-western andwest
coast [Michaelides et al., 2008].

3. Methods

In the present study, different regressionmodels and interpolation techniques are tested and evaluated, both
singularly and combined, on daily rainfall data. The combinationmethods apply a regression model, followed
by the interpolation of the residuals and the subsequent summation of the two contributions. This meth-
odology allows the selection of geographical variables for regression, focusing the attention on the physical
processes and on the climatology that dominates the precipitation events over the area of interest.
Normalization of the data with respect to a long-term average was not used because the long-term average
values are not representative of the highly variable daily processes.

3.1. Data Acquisition and Quality Control

The first part of the work involved the creation and the quality control of the data set to be used in the fol-
lowing interpolation phase. The base of the work was represented by daily rainfall time series made available
by the Cyprus Meteorological Service (CMS). The initial database was made up of time series recorded at

Figure 2. Daily average rainfall for seasons for the period 1980–2010. AM is April and May; JJAS is June, July, August, and September; ON is
October and November; DJFM is December, January, February, and March. The maps were obtained with a simple inverse distance
weighting (IDW) interpolation of the data registered at the 145 stations.
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74 stations used in a study by Bruggeman et al. [2011]. A second set included 145 stations (Figure 1), increasing
the density of stations above all in the southern foothills of the Troodos Mountains and in the plain area in the
south-east of the country.

The time series were tested for homogeneity considering both daily and monthly time lag. For the homo-
geneity test, the RHtestV3 software [Wang et al., 2010; Wang and Feng, 2010] was used. At first, the monthly
data were tested and statistically significant break points recognized. The RHtestV3 software allows the user
to subsequently check if the monthly breaks have a corresponding break in the daily series.

3.2. Introduction to Interpolation Techniques

The several simple and combined interpolation techniques tested are summarized in Table 1. All regressions
and interpolations as well as their evaluation were conducted in the R environment [http://www.r-project.
org], where specific libraries such as gstat [Pebesma, 2004], fields [Nychka et al., 2006], and spgwr [Bivand and
Yu, 2013] enable interpolation with the selected techniques. For the regressionmodels, a different equation is
developed for each day.

3.3. Definition of the Geographical Variables for Regression

Six geographical variables were selected to represent the various climatological patterns and processes de-
scribed in section 2 (Figure 3):

1. Elevation, to consider the orographic effect;
2. Distance to coast, to consider the land-sea effect;
3. East coordinate, to consider a general spatial pattern;
4. North coordinate, to consider a general spatial pattern too;
5. Distance from the main mountain ridge to the east, to consider the mountain shadow effect;
6. Distance from the main mountain ridge to the west, to consider the mountain shadow effect, too.

The last two variables are included to take into account the mountain shadow effect and the different be-
havior of precipitation in the wet and dry seasons. These two variables could appear correlated, but they
allow the representation of the decrease of rainfall from the core of the mountain chain to the plains, which is
expected to be different on the two sides of the mountains.

3.4. Regression and Interpolation Methods

A brief overview on the main characteristics of the simple methods is given in this section.

LMR: the approach is identical to simple least squares regression with a dependent and an independent
variable. For simple regressions, the dependent variable is plotted against the independent one in a simple
Cartesian plane and the straight line that minimizes the squared error is searched. Working with more than
one independent variable, the process is exactly the same, only the workspace is more complicated than a
simple two axes Cartesian plane.

Table 1. Summary of Interpolation and Regression Methods Used

Abbreviation Full Name R Library Key References

LMR linear multiple regression stats
GWR geographically weighted regression spgwr Brunsdon et al. [1996]; Fotheringham et al. [2002]
SWLMR stepwise linear multiple regression stats Akaike [1970]
SWGWR stepwise geographically weighted regression stats, spgwr
IDW inverse distance weighting gstat Shepard [1968, 1984]
KR Ordinary kriging gstat Krige [1951, 1966]; Matheron [1963]
TPS 3D thin plate sp-lines fields Wahba and Wendelberger [1980]; Hutchinson [1991]
LMR-IDW linear multiple regression + IDW on residuals stats, gstat
LMR-TPS linear multiple regression + TPS on residuals stats, fields
GWR-IDW geographically weighted regression + IDW on residuals spgwr, gstats
GWR-TPS geographically weighted regression + TPS on residuals spgwr, fields
SWLMR-IDW stepwise linear multiple regression + IDW on residuals stats, gstat
SWLMR-TPS stepwise linear multiple regression + TPS on residuals stats, fields
SWGWR-IDW stepwise geographically weighted regression + IDW on residuals stats, spgwr, gstat
SWGWR-TPS stepwise geographically weighted regression + TPS on residuals stats, spgwr, fields
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GWR: the method was presented by Brunsdon et al. [1996] and later improved by Fotheringham et al. [2002].
Its main difference with respect to linear multiple regression is that it does not fit a single regression model
over the entire area of interest, but it searches for geographical differences. It means that the selected in-
dependent variables are the same, but their absolute and relative importance in the definition of the de-
pendent variable can change over the study area, from location to location. In other words, if the linear
multiple regression method implies a spatial stationarity, the geographically weighted regression does not.
This nonstationarity is reached by fitting, in each point, the regression line on a limited number of observa-
tions and weighting each observation with respect to its distance to the point of interest. The number of
observations to be included is selected on the base of a defined search radius, which can be set by the user or
defined in each point by an automatic procedure [Charlton and Fotheringham, 2009], based on the minimi-
zation of the corrected Akaike Information Criterion (AICC) [Hurvich et al., 1998]. The search radius takes the
name of bandwidth, while the distance weighting function is named kernel. In this study, the automatic
definition of the bandwidth is adopted while the kernel is exponential [Harris et al., 2010].

SW: with a stepwise regression the aim is to evaluate which model is the best, in terms of accuracy and
complexity. Starting with a regressionmodel of N independent variables, variables are subtracted one by one,
to achieve the best compromise between the accuracy of the prediction and the complexity of the model.
The task can be carried out, similar to GWR, with the Akaike Information Criterion [AIC — Akaike, 1970].
Among different models, the lowest AIC value indicates the most parsimonious model in which the least
information is lost. The AIC works only as a comparison between models and it is a relative measure; it is not
an absolute indicator of how well a model reproduces the dependent variable. Stepwise regression was
applied to both linear multiple regression and to geographically weighted regression.

IDW: this technique is based on the SYMAP algorithm of Shepard [1968, 1984]. It relates the unknown value of a
certain variable in a defined point to the values of the same variablemeasured in other locations, on the base of
the distance between the locations. The closer an observation is to the point of estimate, the higher its influ-
ence. This influence is expressed through a weight (w), which has the following formulation [Shepard, 1968]:

wi xð Þ ¼ 1
d x; xið Þp (1)

where x is the point where the estimate is wanted, xi is one of the points where observations are available, d is
the distance between the two locations, and p is an exponent that permits to give different forms to the

Figure 3. The six different geographical variables used for regression. All maps have the same resolution as the resulting daily precipitation
maps (1×1 km

2
). The North and East coordinates used for regression are those of the UTM (zone 36N) projection system (expressed in meters).
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weighting function. The higher p is, the less importance is given to more remote observations. With the in-
verse distance weighting function used in this work (Table 1), it is also possible to include all observation
points in the study area, or to limit the observation points either by means of a specified search radius or
by selecting a precise number of known values. An exponent p equal to 2 was set, as default in the R function
used, so not penalizing too much the contribution to the estimate of far away points. The number of obser-
vations used for each estimation was set to 12.

The only difference between IDW and angular distance weighting (ADW), which was not tested in this work,
lies in how the weights are calculated. With ADW, the weights are computed based on the algorithm of
Shepard [1968, 1984] and include the horizontal angles between the observations.

KR: as for regression and the distance weighting techniques, kriging creates an interpolated surface of the
variable of interest, estimating its values where they are unknown on the base of observed neighboring data.
The method was developed by Krige [1951, 1966] and Matheron [1963], and, as pointed out by Hofstra et al.
[2008], it can be classified as a BLUE (best linear unbiased estimation) methodology. It means that in every
point the estimation of the variable of interest is given by a linear combination of the neighboring obser-
vations, each weighted, and with the sum of weights equal to one. The weights are determined on the basis
of a spatial covariance function describing the variability of the observations. This function is called variogram
model and it is stationary; it is the same across the whole area of interest. The variogrammodel is defined and
fitted based on an empirical variogram, which is calculated from the data. The empirical variogram can be not
continuous and can result in a nonpositive definite matrix (it is an empirical covariance estimate); therefore,
the fitting of a variogram model is necessary.

TPS: splines [Wahba and Wendelberger, 1980; Hutchinson, 1991], as kriging, are based on spatial covariance
functions, and in fact often the two methods are compared and perform similarly [Hutchinson, 1993; Laslett,
1994]. The main difference lies in how the spatial covariance function is defined. Splines are in fact more
flexible; the covariance function does not need to be estimated a priori, but what is estimated is “a smoothing
parameter that determines an optimal balance between fidelity to the data and smoothness of the fitted
spline function” [Hutchinson, 1995]. This author used a method that minimizes the generalized cross valida-
tion (GCV) to optimize the smoothing parameter.

3.5. Regression and Interpolation Models Evaluation

To compare the 15 different combinations of interpolation and regression techniques, an evaluation frame-
work based on skill scores was set up. In this evaluation phase, a set of representative days was selected.
Thiessen polygons were used to assign an area to every station and then the area-weighted average pre-
cipitation was calculated for every day. Rainy days, considered as days with an average precipitation over the
study area greater than zero, were separated from nonrainy days, and the percentiles of the daily average
precipitation were calculated for this data set. The final data set for the evaluation was restricted to 36 days,
including a day with no rainfall, the day characterized by the minimum value of area average rainfall, the day
with the maximum area average rainfall, and the 33 days in correspondence of the area average precipitation
values representing the 3rd, 6th, 9th, […], 99th percentile. This set was constructed based on the 74 stations
database and then used also for the 145 stations.

A cross-validation method was used to evaluate the different techniques. Considering N the number of sta-
tions (observations), each interpolation method was run N times for each day with N� 1 training points and 1
test point. When using the step-wise regression, a single regression formula was calculated for each day and
applied in the N runs. For each of the N runs, a different observation was used as test point, a gridded data set
was created and the modeled value of the test location was extracted. Finally, the N modeled and observed
values were compared with the help of the evaluation scores, presented below.

Second, four subsets were created from this set of representative days. These four subsets represented very
low rainfall events (0th–30th percentiles — 12 days), low rainfall events (31st–60th percentiles — 10 days),
medium-high rainfall events (61st–84th percentiles— 8 days), and high rainfall events (85th–100th percentiles
— 6 days). The subdivision was made based on the cumulative distribution of all the area average daily
rainfall values (Figure 4). The subsets, being calculated on area average values, do not only represent an in-
creasing amount of rainfall, but also represent local (very low to medium high rainfall) and large-scale (high
rainfall) events.
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Following the approach of Hofstra et al. [2008], a group of skill scores was selected to evaluate the interpo-
lation techniques. Of the seven scores used in the cited study to evaluate precipitation interpolation, three
are also used here: the compound relative error (CRE), the Pearson correlation coefficient (R), and the mean
absolute error (MAE). A fourth score calculating the mean areal error (MArE) between the modeled and the
observed area average rainfall was added. The scores were selected to take into consideration errors both at
stations and over the entire area, as well as the goodness of fit between observed and modeled values. A
simple and easy readable evaluation system was desired; therefore, the use of different scores targeting
approximately the same ability of an interpolation technique (e.g., mean absolute error and root mean square
error) was avoided. More indexes could have been considered [e.g., Hofstra et al., 2008] but this would have
led only to a redundancy in information. In general, the set of scores was constructed following the indica-
tions of Legates and McCabe [1999], who suggest evaluating models using at least one score for the goodness
of fit, one for the absolute error and extra indices furnishing further information on the differences between
observations and modeled values (especially in terms of mean and standard deviation). Scores aiming to
evaluate methods in terms of capacity to reproduce a wet/dry state or extreme events were not used, be-
cause this ability can be considered implicit in the analysis of the four different subsets.

Scores were calculated for each day and then an average daily value was calculated for each score (CRE, R,
MAE, MArE) for methods ranking purposes. An average rank is finally computed for each technique as the
arithmetic mean of the four ranks. Calculating scores for single days avoids problems related to nonstationarity
of rainfall events in time. In the presented equations, O are the observed values (Ô the mean), M the modeled
values, A the area, n the total number of stations (74 or 145), and i the index for the station. A brief description of
the scores is given below.

Compound relative error (CRE): it is a measure of similarity consisting of the ratio between the mean squared
error and the variance of the observed data. It is an efficiency measure where the best case is represented by the
value of zero, while there is no maximum. Being a measure of fit, it indicates the capacity of a certain technique
to reproduce the spatial distribution of the rainfall events, which is particularly important for extreme events —
because it determines the areas thatmight be affected themost— and for local watermanagement. Over a single
day, data variability between stations is usually low. This low variability often results in quite high CRE values.

CRE ¼
∑
n

i¼1
Oi �Mið Þ2

∑
n

i¼1
Oi � ÔÞ� �2 (2)

Figure 4. Cumulative distribution of the area average rainfall for 1980–2010 as calculated with the Thiessen Polygons from the 74 and 145 stations.
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Pearson correlation coefficient (R): it measures the correlation between modeled and observed values. It
could be considered a measure of potential skill [Wilks, 2006] and linear dependence between the two vari-
ables, with the best value equal to 1 and the worst value equal to 0. Similar to the CRE, this score evaluates the
spatial fit of the model.

R ¼
∑
n

i¼1
OiMi � 1

n
∑
n

i¼1
Oi

� �
∑
n

i¼1
Mi

� �

∑
n

i¼1
Oi

2 � 1
n

∑
n

i¼1
Oi

� �2
" #0:5

∑
n

i¼1
Mi

2 � 1
n

∑
n

i¼1
Mi

� �2
" #0:5 (3)

Mean Absolute Error (MAE): it is a measure of average error betweenmodeled and observed values with the
best value equal to 0 and without a maximum. It is expressed in the same unit as the analyzed variable. The
average daily MAE indicates systematic errors, which can affect the use of the data set for climate applica-
tions, while the MAEs of single days can show outliers usually associated with extreme events. This score is
therefore useful to differentiate the type of error.

MAE ¼ 1
n
∑
n

i¼1
Oi �Mij j (4)

Mean Areal Error (MArE): with this score the intention is to measure the effect of each interpolation tech-
nique on the water balance, at least from the point of view of inputs, over the entire area of interest. The
average area rainfall for each day is calculated with Thiessen’s Polygons. This error maintains the same unit of
the input precipitation and it is not even an absolute value, allowing also understanding if the methods tend
to overestimate (positive values) or underestimate (negative values) the quantity of rainfall affecting the
study area. This score is therefore important when evaluating the capacity of the final gridded data set with
respect to water resources applications.

MArE ¼ 1
n
�
∑
n

i¼1
Mi � Oið Þ � Ai

∑
n

i¼1
Ai

(5)

To evaluate how the different techniques perform not only in reproducing days with different amounts of
rainfall but also how they can be affected by the stations geographical location, two scores were calculated
for the set of representative days at each station, individually. The combination of this evaluation with that
over days reduces the effect of errors related to spatially inhomogeneous precipitation fields. Specifically, the
Critical Compound Error (CRE) and the Normalized Root Mean Squared Error (NRMSE) were selected. In this
case, the CRE score indicates how well the different events are reproduced in a certain location. The CRE is
computed with equation (2), with the index i representing the days and n the total number of days (36). For
the set of representative days at a single station, the variability of data is quite high, ranging from zero to
extreme values. This wide range results in lower CRE scores than those calculated for single days.

Normalized Root Mean Squared Error (NRMSE): it is the well-known Root Mean Squared Error normalized
on the range of the observed input values. It is a measure of average error with the best value equal to 0, and
the worst equal to 1. It permits an easier comparison of models with different observed input, thus allowing a
clear and quick comparison of the different time series registered in different locations. For this reason, it was
preferred to MAE, but the information given is almost the same.

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n ∑

n

i¼1
Oi �Mið Þ2

r
OMAX i � OMINi

(6)

4. Results and Discussion
4.1. Homogeneity Analysis

The homogeneity analysis did not identify significant breaks in the monthly data that had also a corresponding
break in the daily series. However, seven stations had a significant break in their monthly time series and
20 stations a significant break in their daily time series. The metadata of these stations were checked to see if
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these breaks could be related to a recorded event (e.g., moving of the station, substitution of a manual rain
gauge with an automatic one). No correspondence was found between breaks and metadata and so all the
stations were maintained. Apparently, the software used for the homogeneity test is quite sensitive to extreme
values, as often breaks were recognized in days or months that experienced intense rainfalls.

4.2. Kriging

Ordinary kriging was tested but no satisfactory results were obtained with it. Basically, it was impossible to fit a
general spatial-temporal variogram applicable to all days. As it is shown in Figure 5a, data seem to have a very
low temporal correlation, which appears even more evident when compared with that calculated for distance.
This evidence suggests a fitting of a variogram model for every day. The automap library of R [Hiemstra, 2013],
which allows an automatic fitting of the variogram, was tested on the 36 representative days. Generally, it
worked fine but there were some days with complicated correlation patterns in which a suitable variogram
model could not be found (Figure 5b). Therefore, kriging does not seem an appropriate technique to interpolate
daily rainfall data in Cyprus. Considering that a number of studies suggest a superiority of some type of kriging
(usually ordinary or regression) over other techniques for the interpolation of daily precipitation data [Rubel
et al., 2004; Carrera-Hernandez and Gaskin, 2007; Haylock et al., 2008; Symeonakis et al., 2009; Herrera et al., 2012],
this result is somewhat unexpected. On the other hand, other authors [e.g., Daly et al., 1994; Shen et al., 2001]
have also pointed out that smooth interpolation methods are problematic for gridding daily climatic data, due
to their high variability in space and time. The range of the variogram in Figure 5b— shorter than 5 km— is an
evidence of a strong local component in daily precipitation, which is poorly captured by these techniques. To
overcome this problem, Shen et al. [2001] proposed a two-step hybridmethod, consisting of the interpolation of
monthly data by kriging, followed by the temporal downscaling to a daily data set with the use of a proportional
regression based on the nearest station assignment method. A possible explanation of the failure of kriging is
the nature of rainfall events in Cyprus, which are often limited in space and in time. Events withmore than three
consecutive rain days are scarce and events are often spatially scattered.

4.3. Evaluation by Days

A comparison between the results obtained performing the interpolation on the complete set of 36 repre-
sentative days with both the 74 and 145 stations is presented in Table 2 and Figure 6. In the table, for each
interpolation method, the values of the calculated scores, with their corresponding rank (#), are presented, as
well as their average rank (Ave #). The average area rainfall of the 74 stations for the 36 representative days is
5.13 mm, while the observed average area values for the four subsets are 0.11, 0.71, 3.56, and 24.61 mm. For
the 145 stations the area average rainfall of the 36 days is 5.00 mm, while for the four subsets the values are
0.10, 0.67, 3.53, and 23.93 mm.

First, it is clear that the CRE, R, and MAE values calculated with 145 stations are considerably better than those
obtained with 74 stations. However, this result does not surprise because with more observations a more

Figure 5. (a) Empirical spatial-temporal variogram calculated for the daily rainfall data of the period 1980–2010; (b) empirical variogram
(dots) and automatic fitted variogram model (line) for one of the selected 36 representative days. Model indicates the function used to
fit this variogram, while range, sill, and kappa are the parameters requested by the function.
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precise estimate is expected. Figure 6 also shows, for each technique, a reduction in the variability of the scores
(it is particularly evident for R) with a higher number of stations. This is due to a more regular and dense cov-
erage of the study area, which allows a more homogeneous interpolation of events characterized by different
amounts of rainfall and spatial distribution. The lower variance shown by the scores using 145 stations helps to
identify goodmethods such as IDW, SWGWR-IDW, and SWLMR-IDW. Similarly, for theMArE score, the additional
information available with a higher number of stations results in smaller outliers (Figure 6).

For the 36 representative days together, the best method is the SWGWR-IDW, for both station densities (Table 2).
Other similarities between the two station densities are the poor performance of the linear multiple regression
method, with or without the application of the stepwise procedure, both alone and when coupled with TPS.
Geographically weighted regression usually performs better. This is coherent with findings of other authors
treating the interpolation of precipitation and other climate variables, even if with a different temporal resolution
[Bostan et al., 2012; Szymanowski and Kryza, 2012]. Conversely, themain differences are that TPS performs verywell
with 74 stations (second bestmethodwith the same average rank as SWLMR-IDW), while it is ranked sixthwith the
145 stations. The opposite behavior is shown by IDW, performing well with 145 stations but not as well with 74.

Regarding IDW, an increase in stations density reduces the search radius, at least when performing an estimate
with a fixed number of observations (12). In fact, by almost doubling the stations number, the observations used
for estimation are much closer in space to the point needing the estimate. In this sense, the result obtained is
describing a very strong local component in Cyprus precipitation. On the other hand, TPS gives the impression
to result in a general smooth precipitation surface, therefore performing relatively better with more separated
stations and more spatially continuous precipitation fields (high rainfall events). The smoothing effect of TPS is
above all revealed by the good rank positions obtained for the MArE score, where positive and negative errors
balance each other (Tables 2 and 3). The general tendency of TPS to oversmooth the created surface with re-
spect to the observations was already pointed out by other authors [e.g., Perry and Hollis, 2005].

Table 3 shows the results obtained using the four subsets for 145 stations. The ranking of the different tech-
niques appears quite stable moving through the subsets. The best method for the very low, low, and medium-
high rainfall events is always simple IDW. Moreover, in the best five methods (with only two exceptions), the
same techniques (IDW, SWGWR-IDW, SWLMR-IDW, GWR-IDW, and SWGWR) are always present. Major differ-
ences can be noticed only when reproducing high rainfall events (area average rainfall ranging from ~5 to
~70mm). For this case, the IDW technique does not perform as well and the SWGWR-IDWmethod becomes the
best method, similar as for the full set of 36 days (Table 2). This result demonstrates the relatively high impor-
tance of the few events characterized by high rainfall amounts when evaluating all days together.

The MArE score in Table 3 indicates that the interpolation techniques tend to overestimate low and medium
rainfall events and underestimate high rainfall events. However, the behavior of the fit scores (CRE and R) in

Table 2. Summary of the Performance Evaluation of the 14 Methods (See Table 1) for the Modeling of the 36 Representative Days, for 74 and 145 Stations, in Order of Their Average
Rank (Ave #)a

36 days, 74 stations 36 days, 145 stations

Method Ave # CRE # R # MAE # MArE # Method Ave # CRE # R # MAE # MArE #

[�] [�] [mm] [mm] [�] [�] [mm] [mm]
SWGWR-IDW 4.3 0.73 4 0.49 2 1.73 3 0.03 8 SWGWR-IDW 3.5 0.58 4 0.61 3 1.29 2 0.03 5
SWLMR-IDW 5.3 0.70 1 0.49 1 1.80 9 0.05 10 GWR-IDW 4.0 0.62 6 0.60 5 1.32 4 0.01 1
TPS 5.3 0.76 7 0.45 6 1.69 1 0.02 7 IDW 4.5 0.57 1 0.62 1 1.31 3 0.15 14
SWGWR 5.5 0.75 6 0.41 12 1.73 2 �0.01 2 SWLMR-IDW 4.5 0.57 2 0.62 2 1.34 5 0.06 10
GWR-IDW 6.3 0.75 5 0.49 4 1.78 7 0.03 9 SWGWR-TPS 5.5 0.63 7 0.58 6 0.87 1 0.06 9
GWR-TPS 7.3 0.81 12 0.44 8 1.79 8 0.00 1 LMR-IDW 6.0 0.58 3 0.61 4 1.35 6 0.06 11
LMR-IDW 7.5 0.72 3 0.48 5 1.82 11 0.05 11 TPS 6.0 0.64 8 0.57 7 1.36 7 �0.01 2
IDW 7.8 0.71 2 0.49 3 1.85 12 0.38 14 SWGWR 7.3 0.61 5 0.53 12 1.36 8 0.02 4
SWGWR-TPS 7.8 0.81 13 0.43 9 1.76 5 �0.01 4 SWLMR-TPS 8.5 0.65 9 0.56 8 1.41 11 0.03 6
SWLMR-TPS 7.8 0.77 8 0.44 7 1.74 4 0.07 12 GWR 8.8 0.65 11 0.54 11 1.40 10 0.02 3
GWR 8.3 0.78 9 0.43 11 1.81 10 0.01 3 GWR-TPS 9.5 0.67 12 0.56 10 1.39 9 0.03 7
LMR-TPS 10.0 0.79 11 0.43 10 1.77 6 0.08 13 LMR-TPS 9.8 0.65 10 0.56 9 1.41 12 0.04 8
SWLMR 10.8 0.78 10 0.36 14 2.02 13 �0.02 6 SWLMR 13.0 0.74 13 0.41 14 1.84 13 0.08 12
LMR 11.5 0.81 14 0.36 13 2.07 14 �0.02 5 LMR 13.5 0.75 14 0.42 13 1.86 14 0.08 13

a# represents the rank, CRE the critical compound error, R the Pearson’s correlation coefficient, MAE the mean absolute error, and MArE the mean areal error. Ranks are in bold to
increase the readability of the table.
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the different subsets is giving different indications. It is evident that the quality of fit increases with increasing
area average rainfall. This testifies that all techniques have more problems in capturing the spatial distribu-
tion of rainfall events that are not widespread over the area of interest, but localized in specific areas. When
considering these spotted rainfalls, the results obtained testify that with a sufficient density of stations these
events can be reproduced well by simple IDW.

The scores shown for IDW and SWGWR-IDW in Table 3 indicate that splitting the interpolation performing
IDW for very low to medium rainfall events and SWGWR-IDW for high events results in the best possible re-
production of the spatial distribution of rainfall (top rank for both CRE and R in any subset). A well-covered

Figure 6. Modified boxplots showing the distribution of the scores calculated, over the 36 representative days, with the different interpo-
lation techniques, for (left panel) 74 and (right panel) 145 stations. The boxes represent the interquartile range (IQR), whiskers extend
1.5 · IQRs, while the circles are the outliers. For the meaning of the acronyms of the techniques, refer to Table 1. The circled techniques on the
x axis are the best three in terms of average rank (see Table 2).

Journal of Geophysical Research: Atmospheres 10.1002/2013JD020611

CAMERA ET AL. ©2013. American Geophysical Union. All Rights Reserved. 704



areal distribution is particularly important for extreme events and also affects water management applica-
tions. Using the two techniques for different events, also the MAE is minimized. A small average MAE cal-
culated over all the days (Table 3), coupled with a narrow interquartile range (IDW— Figure 6) means a small
systematic error, which is particularly good for climate applications. On the other hand, Figure 6 shows that
the MAE outliers for the SWGWR-IDW are usually lower than those of the other techniques. This means that
the method is capable of reproducing peak precipitation well, making the suggested combination of tech-
niques particularly suitable also for the study of processes related to extreme events (flood forecasting,
triggering of landslides, etc.). The only score with a nonoptimum ranking is the MArE, which can affect water
resources applications. However, except for one subset, the ranking of the selected techniques for this score
is in the best half. The proposed combination of methods seems therefore the best possible compromise for
all possible applications of the gridded data set.

The good performance of IDW, both alone and combined with a regression technique, is a confirmation of
the quality of this simple method for complex topographical areas with sufficient station density. The im-
portance of station density when applying this method was already revealed by Daly [2006]. Inverse distance
weighting was also selected by Perry et al. [2009] to model precipitation on a daily basis over the UK, and its
spherical version was used by Frei and Schär [1998] to model daily precipitation over the Alps. In both these
studies, station density was high.

4.4. Evaluation by Stations

The map of the station CREs (Figure 7) shows that the top four methods perform quite uniformly and
homogenously all over the study area, with the exception of few observation points located in the

Table 3. Summary of the Performances Evaluation of the 14 Methods (See Table 1) for the Four Subsets of Representative Daysa

Very Low Rainfall Events — 0–30% Low Rainfall Events — 31–60%

Method Ave # CRE # R # MAE # MArE # Method Ave # CRE # R # MAE # MArE #

[�] [�] [mm] [mm] [�] [�] [mm] [mm]
IDW 1.5 0.81 1 0.41 1 0.08 1 0.02 3 IDW 2.0 0.62 1 0.59 1 0.48 1 0.02 5
SWGWR-IDW 2.3 0.81 2 0.41 3 0.08 2 0.01 2 SWGWR-IDW 4.0 0.64 5 0.58 5 0.50 3 0.02 3
SWLMR-IDW 4.8 0.81 3 0.41 2 0.09 5 0.02 9 GWR-IDW 4.0 0.64 4 0.58 4 0.49 2 0.03 6
SWGWR 5.5 0.85 5 0.20 12 0.09 4 0.01 1 SWLMR-IDW 4.3 0.62 2 0.59 2 0.52 4 0.05 9
SWGWR-TPS 6.0 0.90 6 0.34 6 0.09 7 0.02 5 GWR 5.5 0.65 6 0.55 7 0.52 7 0.02 2
GWR-IDW 6.3 0.91 10 0.36 5 0.09 3 0.02 7 LMR-IDW 5.5 0.63 3 0.58 3 0.52 6 0.05 10
TPS 6.3 0.91 8 0.33 7 0.09 6 0.02 4 TPS 6.5 0.71 10 0.52 10 0.52 5 0.00 1
LMR-IDW 7.0 0.82 4 0.40 4 0.09 8 0.03 12 GWR-TPS 7.3 0.68 8 0.55 6 0.53 8 0.03 7
GWR 9.8 0.98 13 0.23 11 0.10 9 0.02 6 SWGWR 7.5 0.67 7 0.53 9 0.55 10 0.02 4
SWLMR 10.5 0.91 7 0.11 14 0.11 13 0.02 8 SWGWR-TPS 8.5 0.69 9 0.54 8 0.54 9 0.03 8
SWLMR-TPS 10.8 0.92 11 0.33 8 0.10 11 0.03 13 LMR-TPS 11.5 0.73 12 0.52 12 0.56 11 0.05 11
LMR-TPS 11.0 0.91 9 0.33 9 0.10 12 0.03 14 SWLMR-TPS 12.0 0.72 11 0.52 11 0.56 14 0.05 12
GWR-TPS 11.3 1.02 14 0.28 10 0.10 10 0.03 11 SWLMR 12.8 0.80 13 0.41 13 0.67 12 0.06 13
LMR 12.3 0.93 12 0.18 13 0.11 14 0.03 10 LMR 13.8 0.81 14 0.39 14 0.68 13 0.06 14

Medium-High Rainfall Events — 61–84% High Rainfall Events — 85–100

Method Ave # CRE # R # MAE # MArE # Method Ave # CRE # R # MAE # MArE #

[�] [�] [mm] [mm] [�] [�] [mm] [mm]
IDW 4.3 0.39 1 0.78 1 1.68 2 0.20 13 SWGWR-IDW 2.5 0.27 1 0.85 1 4.50 1 �0.10 7
SWLMR-IDW 4.8 0.39 2 0.78 2 1.71 3 0.20 12 LMR-IDW 3.0 0.28 2 0.85 4 4.73 5 �0.03 1
SWGWR-IDW 5.0 0.41 4 0.77 4 1.67 1 0.17 11 SWLMR-IDW 3.5 0.29 3 0.85 3 4.74 6 �0.04 2
SWGWR 5.3 0.42 5 0.75 6 1.73 6 0.13 4 IDW 5.8 0.29 4 0.85 2 4.67 3 0.58 14
GWR-IDW 5.3 0.42 7 0.76 5 1.72 4 0.14 5 GWR-IDW 6.0 0.29 5 0.84 5 4.66 2 �0.19 12
LMR-IDW 6.3 0.40 3 0.78 3 1.73 5 0.21 14 SWGWR 6.8 0.30 7 0.84 7 4.77 7 �0.09 6
TPS 6.8 0.44 8 0.74 9 1.81 9 0.05 1 TPS 7.3 0.30 6 0.84 6 4.68 4 �0.19 13
GWR 7.3 0.44 10 0.74 10 1.80 7 0.08 2 SWLMR-TPS 8.5 0.30 8 0.84 8 4.78 8 �0.14 10
SWGWR-TPS 7.3 0.42 6 0.75 7 1.81 8 0.14 8 GWR-TPS 9.0 0.32 11 0.83 11 4.84 10 �0.05 4
GWR-TPS 7.5 0.44 9 0.75 8 1.89 10 0.11 3 SWGWR-TPS 9.0 0.30 10 0.83 10 4.84 11 0.06 5
SWLMR-TPS 10.0 0.45 11 0.73 11 1.89 11 0.14 7 LMR-TPS 9.5 0.30 9 0.83 9 4.80 9 �0.15 11
SWLMR 11.0 0.65 13 0.57 13 2.45 12 0.14 6 GWR 9.8 0.33 12 0.82 12 4.93 12 �0.05 3
LMR-TPS 11.5 0.45 12 0.73 12 2.46 13 0.16 9 SWLMR 11.8 0.43 13 0.75 13 6.45 13 0.12 8
LMR 13.0 0.66 14 0.56 14 2.48 14 0.16 10 LMR 12.8 0.43 14 0.75 14 6.49 14 0.12 9

aThe results obtained with 145 stations are shown here; # represents the rank, CRE the critical compound error, R the Pearson’s correlation coefficient, MAE the
mean absolute error, and MArE the mean areal error. Ranks are in bold to increase the readability of the table.
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mountainous north-west. This area is characterized by many valleys, quite close to each other and rather
deep. Average elevation is also increasing rapidly and the density of stations is low. For these reasons the
estimation of a single station can depend on observations that can differ from each other, mainly due to
geographical characteristics. In this area, in fact, it is not only CRE that shows quite high values but also
NRMSE (Figure 8), underlining that the problem is not only related to possible outliers but is more general.
Simple IDW shows also poor CRE and NRMSE values in the central-north part of the country, in the Mesaoria
Plain. In this case, the high errors are again mainly due to a low density of the stations but the simpler
topography allows the techniques with a regression step to limit the discrepancies between observed and
modeled values. Other more local errors, limited to a single or a couple of neighboring stations, are due to
high rainfall events not perfectly reproduced by the interpolation techniques. The CRE scores are particularly
useful for locating these kinds of errors; CRE is in fact quite sensitive to outliers [Murphy and Epstein, 1989;
Schmidli et al., 2001; Hofstra et al., 2008]. Looking at Figures 7 and 8, it is therefore clear that errors are more
dependent on the local stations density than on any other characteristics.

4.5. Final Data Set

The evaluation on the 36 representative days and the four subsets indicates that for 145 stations SWGWR-IDW
is the best method to interpolate high rainfall events, and simple IDW is the best method for low andmedium
rainfalls. Our final gridded data set was constructed according to these findings.

These results, obtained from the score evaluation method, deserve a further analysis. In Figure 9, the inter-
polated six extreme events, obtained using the SWGWR-IDW technique and all 145 stations, are shown. The
event of 1 December 1992 is the highest rainfall event recorded for the studied period. Probability density
functions of the gauges in the highest rainfall areas indicate return periods around 40 years for the observed
amounts [Pashiardis, 2009]. The selected parameters of the regression equations are presented as well. Four

Figure 7. Map showing the calculated compound relative error values at the 145 stations for the best four interpolation methods consid-
ering all the 36 representative days. (a) SWGWR-IDW, (b) GWR-IDW, (c) IDW, (d) SWLMR-IDW.
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out of six high events show exactly the same parameter set with 74 and 145 stations, while the other two
differ only for an extra variable present when using 145 stations (the underlined variable in Figure 9).
Elevation is the main influencing variable, being always present and indicating a permanent orographic ef-
fect in this type of events. Also, a variable indicating the presence of a general spatial pattern, probably re-
vealing the direction of movement of the humid fronts, is always present. In fact, both the north and the east
coordinate variables are present in five out of six analyzed days (in four cases together). Other processes, such
as the land-sea effect or the mountain-shadow effect, are less regular and their influence seems to vary from
event to event.

Although simple IDW was used to interpolate very low, low, and medium-high rainfalls, it is interesting to
quickly analyze the step-wise equations calculated for these days to further strengthen this choice. The
equations can be very different using the two sets of observations (74 and 145 stations). In six extreme cases
(three for very low events, two for low events, and one for a medium-high event), the two equations for the
same day have absolutely no variables in common. There is therefore a clear distinction between large-scale
events, which undoubtedly depend on synoptic processes that can be captured by a certain set of geo-
graphical variables, and local events that are poorly related to geographical factors.

As a further evaluation of the final data set, the relative error of precipitation frequency [Rupp et al., 2010] was
calculated. This error is defined as the ratio of the difference between the numbers of observed and modeled
rainfall days and the number of observed days with rainfall. Negative values denote an excess of modeled
rainy days. This evaluation was based on the 36 representative days, 145 stations, and cross validation. The
threshold to consider a day as a wet day was put at 0.2 mm, consistent with the readability of the used rain
gauges. For the combination of proposed methods (SWGWR-IDW for high events, IDW for all others), the
obtained mean relative error is �0.14, indicating a slight overestimation of the wet days at certain locations.

Figure 8. Map showing the calculated NRMSE values at the 145 stations for the best four interpolation methods considering all the 36 rep-
resentative days. (a) SWGWR-IDW, (b) GWR-IDW, (c) IDW, and (d) SWLMR-IDW.
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The error is decreasing, in absolute terms, with increasing rainfall; excluding the high events it becomes
�0.22. The results show that most of the false alarms (recognizing a wet day on a dry day) occur during low
rainfall events. The erroneous rain averaged 0.77 mm per day over all stations, (with a minimum and maxi-
mum at a single site of 0.11 and 4.75 mm, respectively). This is much lower than the daily evapotranspiration
rate and will have little effect on the quality of the created gridded data set for agricultural and water
resources applications.

Concluding, even if SWGWR-IDW is the overall best performing method (Table 2) and it does not score so
differently from IDW for low and medium rainfall events (Table 3), the stability of IDW when modeling days
with little rainfall, and the physical implications in adopting a combined regression-neighboring interpolation
method favored the choice of interpolating local and large-scale events with different techniques.

In Figure 10, two maps extracted from the complete database are presented. In Figure 10a, a low rainfall day
modeled with IDW, while in Figure 10b, an extreme event modeled with SWGWR-IDW. The two events are
very different. The low rainfall is a typical Spring-Summer event with a maximum on the mountains and a
relatively higher abundance of rainfall on the eastern side of the mountains than on the western flank. In the

Figure 9. The six high rainfall events present in the subset of representative days interpolated through SWGWR-IDW. The variables of the
step-wise regression equation used for each event are shown as well. The underlined variables are present only for the 145 stations anal-
ysis. Alti is the elevation; east and north are the east and north coordinates, respectively; distcoast is the distance from the coast; and distm.
east and distm.west are the distances from the main ridge of the mountain chain to the east and to the west, respectively.
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Mesaoria Plain, rainfall does not behave as a perfectly continuous field and some no-rainfall cells occur in the
middle of rainy areas. Inverse Distance Weighting is very dependent on the observation values and this
creates the already cited problems in reconstructing the spatial pattern of spotted rainfalls. Nevertheless, the
difference in the rainfall amount is so small that this behavior of rainfall if not probable can be considered at
least possible. The high event (Figure 10b) is a typical winter occurrence arriving as a humid front from the
south-west, with the maximum rainfall on the top of the mountains. Mountains play a barrier effect but
rainfall is widespread all over the country with lower values. In this case, sparse points with different rainfall
amounts are less evident. This is another proof that widespread rainfall events are better reproduced by
combined interpolation techniques.

5. Conclusions

A comparison of different interpolation techniques for the creation of a gridded data set of daily precipitation
with a resolution of 1 × 1 km2 over Cyprus was presented. The techniques tested and evaluated comprise
regression (linear multiple and geographically weighted), and neighboring interpolators (inverse distance
weighting, kriging, and 3D thin plate splines). Regressions and neighboring interpolators were used both
individually and combined. Techniques were evaluated using two different stations densities (0.0125 and
0.0246 station/km2) over 36 representative days, selected based on percentiles of area-average rainfall.

In general, the two main sources of error when interpolating daily data seem related to very local, difficult-to-
predict changes in rainfall amount, and to areas with low station densities. In this regard, the comprehensive
cross-validation approach (by days and by stations) applied in this study can also contribute to the optimi-
zation of the rain gauge network.

A change in the number of rainfall stations modified the relative ranking of the methods, allowing to state
that the best performing interpolation technique can be considered a function not only of the topographical
complexity of an area and the target spatial scale, as reported by Vicente-Serrano et al. [2003], but also of the
observations density available for the interpolation. Increasing the number of stations used for interpolation
led also to a greater stability in the rank of the various techniques, when considering events characterized by
different rainfall amounts. This stability in the ranking was lost only when analyzing high rainfall events. The
reason is mainly related to the different spatial patterns of high and low rainfall events, as high events are
usually characterized by a more uniform coverage of rainfall over the study area.

For both station densities, all interpolation methods performed better with increasing average rainfall over
the area of interest. The error between observed and modeled values in absolute terms increases, but the
quality of fit due to the capability of reproducing the observed spatial pattern of precipitation improves. This
is mainly due to the characteristics of the precipitation events that pass from being more localized to being
more widespread. Very local and scattered events are difficult to be reproduced by any method, whether the
analyzed event is small or large. This is also because these small events are difficult to relate to geographical
variables that could describe the processes leading to precipitation.

Figure 10. (a) A low rainfall event modeled with IDW (48
th
percentile) and (b) an extreme rainfall event modeled with SWGWR-IDW (95

th

percentile). The lowest class is considered the no-rainfall class; the limit of 0.2 mm was selected because of the rainfall gauges readability.
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This study clearly shows how results can be affected by considering different rainfall events, characterized by
different rainfall amounts, different spatial variability, and different densities in the original observation data.
This study allows to point out the importance of differentiating between high rainfall events, characterized by
high cumulated daily rainfall and covering a large areas, and more local events with lower cumulated (over
the whole area) rainfall. The high rainfall events are mainly frontal events, while the others can be generically
classified as convective events. The two types of events are best interpolated with different methods and it is
crucial to use, in each situation, the best performing technique. The high events are few but they bring a lot of
water with them, so small relative errors can cause quite high errors in terms of water input. On the other
hand, the low and medium events are much more frequent and even if they bring less water than the high
events, the sum of consecutive errors can heavily affect the total water input. The best method for interpo-
lating high, spatially distributed events was SWGWR-IDW, while for the other events a simple IDW interpo-
lation was adopted. Physical variables can describe spatially distributed events very well, but their influence is
not clearly recognizable when interpolating local events.

The scores used for the evaluation of the interpolation techniques target different possible applications of the
final gridded data set, including water resources management, agricultural planning, climate analyses, and
flood management. The proposed combination of methods is the optimum solution for all applications ex-
cept those related to water resources, for which, in any case, it remains a very good compromise, considering
that the calculated daily error is much lower than the daily evapotranspiration rate.

Cyprus is a very good site for deriving general guidelines to assist with the selection of interpolation methods
for daily precipitation in other locations. In this sense, this work presents a wide range of possible combinations
of rainfall regimes, topographical and geographical characteristics, and available observations that can be
transferred to applications in different areas around the world. According to the results obtained, general in-
dications for the selection of an interpolation technique for rainfall data can be summarized as follows:

1. Station density and rainfall amount are the two main factors for the selection of a spatial interpo-
lation method;

2. It is important to analyze possible differences in the performance of interpolation methods for low (local)
and high (large-scale) rainfall events;

3. Simple topography and low station density (~0.015 station/km2) are expected to favor smoothing techniques;
4. A careful evaluation of the fitting of variogram models is strongly suggested before using KR;
5. GWR is likely to perform better than LMR, especially in topographical complex areas due to its

nonstationarity in space;
6. A step-wise selection of regression variables usually provides robust parsimonious models and reduces

overfitting;
7. A certain interpolation technique can represent high rainfalls well and low events poorly, or vice versa;
8. Local (convective) events are difficult to link to geographical variables;
9. Given a relatively high station density (~0.025 station/km2), local (convective) events are usually well

reproduced by simple IDW.
10. The use of a step-wise regression model, based on physical variables, can help the interpolation of large-

scale events;
11. Large-scale events are usually influenced by elevation and a general spatial pattern, well described by geo-

graphical coordinates; factors such as land-sea and mountain shadow effects play a less frequent role.

The gridded (1 × 1 km2) data set provides a climatological reference for climate change impact and adapta-
tion studies. The selected interpolation methods will also be used to create data sets for future periods using
global climate model results dynamically downscaled through Regional Climate Models (RCMs).
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