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The physiological function of the epidermal growth factor receptor

(EGFR) is to regulate epithelial tissue development and homeostasis. In

pathological settings, mostly in lung and breast cancer and in glioblastoma,

the EGFR is a driver of tumorigenesis. Inappropriate activation of the

EGFR in cancer mainly results from amplification and point mutations at

the genomic locus, but transcriptional upregulation or ligand overproduc-

tion due to autocrine/paracrine mechanisms has also been described. More-

over, the EGFR is increasingly recognized as a biomarker of resistance in

tumors, as its amplification or secondary mutations have been found to

arise under drug pressure. This evidence, in addition to the prominent

function that this receptor plays in normal epithelia, has prompted intense

investigations into the role of the EGFR both at physiological and at

pathological level. Despite the large body of knowledge obtained over the

last two decades, previously unrecognized (herein defined as ‘noncanoni-

cal’) functions of the EGFR are currently emerging. Here, we will initially

review the canonical ligand-induced EGFR signaling pathway, with partic-

ular emphasis to its regulation by endocytosis and subversion in human

tumors. We will then focus on the most recent advances in uncovering non-

canonical EGFR functions in stress-induced trafficking, autophagy, and

energy metabolism, with a perspective on future therapeutic applications.
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1. Introduction

The epidermal growth factor receptor (EGFR) belongs

to the ErbB family of receptor tyrosine kinases

(RTKs) and exerts critical functions in epithelial cell

physiology (Schlessinger, 2014). It is frequently

mutated and/or overexpressed in different types of

human cancers and is the target of multiple cancer

therapies currently adopted in the clinical practice

(Yarden and Pines, 2012).

Early studies of the EGFR pathway started with the

discovery of EGF in 1963 by Stanley Cohen and, later

in the 1980s, of the EGFR gene. Since then, biochemi-

cal, structural, and genetic studies have depicted the

molecular mechanisms underlying receptor transphos-

phorylation, which usually occurs in response to ligand

stimulation, and the consequent activation of the intra-

cellular signaling cascade. This cascade consists in the

activation of multiple pathways that deliver the infor-

mation from the cell surface, and the intracellular

vesicular compartments, to the nucleus leading to the

activation of genes responsible for cell proliferation,

survival, and differentiation (Lemmon and Sch-

lessinger, 2010; Schlessinger, 2014).

The best characterized functions of the EGFR are

in the context of ligand- and kinase-dependent activa-

tion, that is, the ‘canonical’ EGFR signaling pathway

(Lemmon and Schlessinger, 2010). However, novel

functions, both kinase dependent and independent,

have been recently identified. They reveal unexpected

roles of the EGFR, such as in the regulation of autop-

hagy and metabolism (Tan et al., 2016a). These non-

canonical functions are generally induced by cellular

and environmental stresses. Several of these ‘stress

pathways’ are activated in cancer cells to provide them

with a survival advantage and resistance to therapy

(Jutten et al., 2013; Tan et al., 2016a). This has led to

an emerging concept that concomitant targeting of

EGFR and stress pathways might offer a window of

opportunity in cancer treatment.

2. Canonical ligand-dependent EGFR
signaling pathway

Under unstimulated conditions, the EGFR is mainly

found in an auto-inhibited, dimerization-incompetent,

state at the plasma membrane (PM). Ligand binding

promotes receptor dimerization, which determines a

series of structural rearrangements that are conveyed

to the cytoplasmic domain allowing the formation of

asymmetric dimers between the two juxtaposed cat-

alytic domains (Zhang et al., 2006; Fig. 1A). These

events lead to the allosteric activation of the EGFR

kinase and to the trans-autophosphorylation of critical

tyrosine residues in the cytoplasmic receptor tail,

thereby triggering the signaling cascade (Lemmon

et al., 2014). For in-depth molecular details of EGFR

activation, we refer the reader to recent reviews

(Kovacs et al., 2015; Lemmon et al., 2014).

Ligand-induced EGFR phosphorylation and confor-

mational changes occurring in the intracellular tail

lead also to the recruitment of the endocytic machin-

ery that mediates receptor endocytosis, with internal-

ization rates that are ~ 10-fold higher for ligand-

bound than for unliganded EGFR (Conte and Sigis-

mund, 2016).

The EGFR can heterodimerize with other ErbB

family members, ErbB2, ErbB3, and ErbB4 (Lemmon

et al., 2014), with critical effects on receptor trafficking

and signaling (Lenferink et al., 1998). Indeed, hetero-

dimers have a reduced ligand-binding strength, leading

to ligand dissociation in endosomes, and they are

unable to recruit Cbl and the endocytic machinery as

efficiently as EGFR homodimers (Baulida et al., 1996;

Lenferink et al., 1998; Levkowitz et al., 1998; Water-

man et al., 1999). Signaling from heterodimers is

therefore enhanced and predicted to be more onco-

genic than signaling from homodimers.

Seven EGFR ligands have been described to date,

which have been shown to induce specific cellular

responses and intracellular trafficking events both

in vitro and in vivo (Roepstorff et al., 2009; Wilson

et al., 2012; Yang et al., 2017). In some cases, these dif-

ferences are determined by the different strength of the

ligand–receptor interaction, which dictates whether the

ligand dissociates (as in the case of TGFa transforming

growth factor a) or not (as in the case of EGF) from the

receptor in the mild acidic pH of the endosomes, favor-

ing EGFR recycling or degradation, respectively. In

other instances, the different signaling properties of the

various ligands have been attributed to their ability to

differentially stabilize the EGFR dimers, therefore deter-

mining specific signaling outputs (Freed et al., 2017).

Once activated at the PM, the EGFR also under-

goes ubiquitination by the E3 ligase Cbl in complex

with the adaptor molecule Grb2 (Levkowitz et al.,

1998; Sigismund et al., 2013; Waterman et al., 2002).

EGFR ubiquitination is threshold controlled by EGF

concentration (Sigismund et al., 2013) and occurs on

several lysine residues within the kinase domain

(Huang et al., 2006). In specific cell contexts, EGFR

ubiquitination works as a signal for receptor internal-

ization into the nonclathrin endocytic (NCE) pathway.

At later stages of trafficking, ubiquitination becomes a

common requirement to target receptors to lysosomal

degradation (see Section 2.1).
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Fig. 1. Scheme of EGFR and its mutations in glioblastoma and in lung and colorectal cancer. (A) Schematic representation of the EGFR and

EGF-induced receptor activation. The EGFR extracellular region encompasses domains I, II, III, and IV; following are the transmembrane

region (TM), the intracellular juxtamembrane domain (iJM), the tyrosine kinase domain (TK), and the carboxyl-terminal tail (carboxy tail). EGF

binding to the receptor unmasks a dimerization motif and determines structural rearrangements that are conveyed to the cytoplasmic

domain allowing the formation of asymmetric dimers between the two juxtaposed catalytic domains. (B) Most frequent EGFR mutations in

glioblastoma, in NSCLC (non-small-cell lung cancer), and in CRC (colorectal cancer). Mutations found in tumors resistant to EGFR blockade

are shown in red. In CRC, the indicated EGFR mutations have been identified in patients that progressed upon cetuximab treatment (Arena

et al., 2015, 2016; Montagut et al., 2012; Van Emburgh et al., 2016).
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Ligand-dependent EGFR activation transduces mul-

tiple signaling pathways, including the Ras/MAPK

pathway, the PI3K/AKT pathway, and the phospholi-

pase C (PLC)/protein kinase C (PKC) signaling cas-

cade (Lemmon and Schlessinger, 2010). Canonical

EGFR signaling is critical for several cellular functions

including survival, proliferation, differentiation, and

motility.

The quality, the amplitude, and the duration of

these signaling events are tightly regulated by compart-

mentalization and trafficking of the EGFR along the

endocytic pathway, as discussed in the following para-

graphs.

2.1. Temporal regulation of EGFR signaling by

endocytosis

The first step in the regulation of EGFR signaling

takes place at the PM, where the EGFR is internalized

through multiple endocytic pathways with different

morphological, molecular, and kinetic features that

influence receptor activity and fate (Barbieri et al.,

2016; Bergeron et al., 2016). Both clathrin-mediated

endocytosis (CME) and several NCE pathways are

involved in EGFR internalization (Barbieri et al.,

2016). EGFR-CME is active at all ligand concentra-

tions in all type of cells (Carpentier et al., 1982; Goh

et al., 2010; Hanover et al., 1984; Jiang et al., 2003;

Sigismund et al., 2008; Sorkin and Carpenter, 1993).

Conversely, the EGFR-NCE pathways – despite their

molecular and morphological differences – are gener-

ally activated at higher, but still physiologically rele-

vant, EGF doses (≥ 10 ng�mL�1) and their significance

is cell context dependent (Boucrot et al., 2015; Caldieri

et al., 2017; Orth et al., 2006; also reviewed in Barbieri

et al., 2016).

The molecular mechanisms underlying CME are

well defined, with clathrin, adaptor protein 2 (AP2)

and the large GTPase dynamin being the major play-

ers (see Kirchhausen et al., 2014; McMahon and Bou-

crot, 2011 for recent reviews). CME controls EGFR

signaling through various mechanisms. At the PM,

clustering of EGFR in clathrin-coated pits (CCPs) is

required to optimize receptor phosphorylation, and to

amplify and spatially constrain EGFR signaling

(Garay et al., 2015; Ibach et al., 2015). AP2 exerts a

critical function during the assembly of CCPs and it is

essential to maintain the right vesicle size, with pre-

dictable consequences for receptor clustering and sig-

naling (Aguet et al., 2013; Kadlecova et al., 2017;

Miller et al., 2015). In addition to AP2, dynamin and

the cargo itself tightly regulate the timing of CCP

assembly allowing for receptor clustering and

productive signaling (Loerke et al., 2009). Some non-

small-cell lung cancer (NSCLC) cells show an

aberrantly accelerated CME, with deregulated CCP

initiation and maturation (Chen et al., 2017). This

phenotype has been linked to the activation of the

neuronal dynamin isoform, dynamin1 (dyn1), in non-

neuronal cells, and/or to the overexpression of the cla-

thrin light chain b (CLCb; Chen et al., 2017). The

increased uncontrolled CME rate causes increased

EGFR recycling and signaling through AKT, promot-

ing cancer cell survival (Chen et al., 2017). Interest-

ingly, both dyn1 and CLCb are upregulated in

NSCLC and breast cancer (reviewed in Schmid, 2017).

In instances in which NCE is activated in parallel to

CME, the integration of the two pathways is critical in

determining the final signaling response. For instance,

in HeLa and in other epithelial cells, CME and NCE

determine opposing receptor fates (Sigismund et al.,

2008): CME mainly induces receptor recycling (with

limited EGFR degradation), while NCE – which

requires EGFR ubiquitination as an internalization

signal (Sigismund et al., 2005, 2013) – targets the

majority of internalized EGFRs to degradation in the

lysosome. In this way, CME, which is active at low

EGF concentrations, directs the EGFR/EGF complex

away from degradation and toward recycling to main-

tain signaling when ligand is limited. In addition,

through recycling, CME also serves to prolong EGFR

signaling, a requirement critical to achieve a produc-

tive proliferative response, and to polarize EGFR sig-

naling to specific regions of the PM (Bisi et al., 2013;

Sigismund et al., 2012). Polarized trafficking of cargo

proteins to regions of the PM represents one of the

most frequently altered functions of endo/exocytosis in

cancer as it is primarily involved in migration and

invasion of metastatic cells and in maintenance of

epithelial cell polarity (reviewed in Lanzetti and Di

Fiore, 2017).

EGFR-NCE is activated only at high EGF concen-

trations and is critical for long-term attenuation of

EGFR signaling by directing EGFRs to lysosomal

degradation. Recently, the mechanism governing

EGFR-NCE has been elucidated. This endocytic route

depends on the function of an endoplasmic reticulum

(ER)-resident protein, reticulon 3 (RTN3), which is

involved in the formation of contact sites between the

ER and regions of the PM where EGFR-NCE occurs

(Caldieri et al., 2017, also discussed in Section 3.1).

This modality of EGFR-NCE appears to act as a safe-

guard against excessive EGFR signaling, and might

represent a mechanism for modulating EGFR signal-

ing at specific PM regions where polarized functions

take place, an issue that deserves further investigation.
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Other types of EGFR-NCE occur at specific PM loca-

tions and are connected with cell migration. They

include (a) the macropinocytic-like pathway that origi-

nates, in mouse and human fibroblasts, from actin-

based membrane ruffles, defined as circular or dorsal

ruffles (Orth et al., 2006), implicated in three-dimensional

cell motility and extracellular matrix degradation (Suet-

sugu et al., 2003), and (b) the fast endophilin-mediated

endocytosis (FEME). This latter pathway is involved in

the internalization of several G-protein-coupled recep-

tors and RTKs, including the EGFR, and is active at

the leading edge of migrating cells, suggesting its

involvement in polarized signaling during cell migration

(Boucrot et al., 2015).

Once internalized, EGFRs reach the early endo-

somes (EEs), a further ‘level’ in the regulation of

EGFR signaling. At this station, EGFRs are sorted

toward different fates, recycling or degradation (re-

viewed in Wandinger-Ness and Zerial, 2014). Receptor

recycling is usually the default pathway. Escape from

recycling is determined by EGFR ubiquitination,

which is an active signal recognized by the ESCRT

(endosomal sorting complexes required for transport)

complexes that, through a stepwise process, sort recep-

tors into multivesicular bodies (MVBs) and into lyso-

somes for degradation (reviewed in Raiborg and

Stenmark, 2009; Wollert et al., 2009).

Besides sorting, endosomes work as platforms for

EGFR signaling. Here, signals originating at the PM can

be prolonged – in order to achieve a productive signaling

response – and/or diversified – by assembling specific sig-

naling complexes (reviewed in Villasenor et al., 2016).

Furthermore, the endosome fusion and fission machin-

ery tightly controls EGFR signaling by keeping the num-

ber of EGFR clusters per endosome constant over a

wide range of EGF concentrations (Villasenor et al.,

2015), thus conferring robustness to the system. Varying

the number of EGFR clusters per endosome through

alteration of the endosome fission/fusion rate critically

impacts the EGFR signaling output, for example, prolif-

eration vs. differentiation (Villasenor et al., 2015).

A novel regulatory mechanism occurring at the EEs

has been recently described, which is able to sense the

amount of EGFRs trafficking toward the endosomes

and to induce de novo receptor biosynthesis and exocy-

tosis, in order to preserve EGFR levels at the PM

(Scharaw et al., 2016). When cells are continuously

stimulated with high EGF doses, the transcription fac-

tor RNF11 translocates from the EEs to the nucleus

where it induces transcription of genes required for

EGFR transport to the PM (Scharaw et al., 2016).

How RNF11 senses the amount of internalized EGFR

at the EEs remains an open question.

2.2. EGFR cancer mutants divert from the normal

trafficking itinerary

EGFR signaling is frequently altered in several human

cancers due to EGFR gene amplification and/or pro-

tein overexpression, mutations or in-frame deletions

(Roskoski, 2014). The most frequent mutations in

glioblastoma and lung cancer are illustrated in

Fig. 1B; this figure also includes mutations found

in colorectal cancers that are resistant to antibody-

mediated EGFR blockade]. These genetic lesions often

occur concomitantly with increased EGFR ligand pro-

duction due to autocrine or paracrine loops (Wilson

et al., 2009, 2012). In many cases, EGFR genetic alter-

ations determine abnormal EGFR trafficking, which

contributes to increased signaling and tumor develop-

ment. For instance, the increase in EGFR density at

the PM due to EGFR amplification/overexpression

was shown to stimulate receptor homo- and

heterodimerization leading to kinase activation (Chung

et al., 2010; Sawano et al., 2002; Wiley, 1988; Wilson

et al., 2009). In particular, heterodimers with the

ligand-orphan receptor ErbB2 are constitutively active,

evade receptor ubiquitination and degradation, and

are mostly recycled back to the PM, thereby producing

sustained signaling and cell proliferation (Mellman

and Yarden, 2013; Schneider and Yarden, 2016). In

agreement, saturation of the endocytic and/or the

ubiquitination machinery has been proposed as a

mechanism underlying sustained signaling in EGFR-

overexpressing cancer cells (Capuani et al., 2015;

French et al., 1994; Wiley, 1988).

Oncogenic EGFR mutations and large genetic rear-

rangements (as observed in glioblastoma, brain, lung,

breast, and ovarian cancers) often cause altered recep-

tor endocytosis, which contributes to increased signal-

ing properties (Yarden and Pines, 2012). In some

cases, mutations directly disrupt the recruitment site of

the E3 ligase, Cbl, in the intracellular domain of the

receptor (i.e., EGFRvIV and EGFRvV mutants),

thereby affecting receptor ubiquitination and lysoso-

mal degradation (Roskoski, 2014). In other instances,

mutations are located in the extracellular domain (i.e.,

EGFRvIII), leading to ligand-independent receptor

activation (Grandal et al., 2007; Han et al., 2006; Sch-

midt et al., 2003). Unexpectedly, these mutations also

caused hypophosphorylation of the intracellular tyro-

sine residue 1045, the direct Cbl-binding site, via an

unknown mechanism. In this way, receptor ubiquitina-

tion and turnover are affected, resulting in sustained

signaling (Grandal et al., 2007; Han et al., 2006; Sch-

midt et al., 2003). Somatic EGFR activating mutations

have been detected in ~ 15–20% of NSCLC patients
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(Yun et al., 2007). One of the most frequent muta-

tions, L858R, despite having a more highly phosphory-

lated Cbl-binding site than the wild-type receptor, is

impaired in Cbl recruitment and receptor ubiquitina-

tion, again affecting trafficking toward the lysosome

and receptor degradation, with consequent signal

upregulation (Kon et al., 2014; Shtiegman et al.,

2007). Increased heterodimerization of this mutant

with ErbB2 has been proposed to cause this behavior

(Kon et al., 2014).

Finally, it is important to stress that besides onco-

genic alterations, inappropriate activation of the

EGFR in cancer can originate from derailed receptor

endocytosis and trafficking (Mellman and Yarden,

2013). This is achieved by two mechanisms: either

mutated RTKs hijack the endocytic apparatus, which,

in turn, fosters their signaling properties, or altered

endocytic/trafficking genes potentiate the duration and

the amplitude of the signal (Sigismund et al., 2012).

Indeed, alterations in the balance between receptor

recycling and degradation have been found in several

aggressive cancers (Belle et al., 2015; Boulay et al.,

2016). This latter mechanism largely relies on the over-

expression and amplification of genes that are involved

in RTKs endocytosis and recycling, including several

GTPases belonging to the Rab family which control

vesicular trafficking (Caswell et al., 2007; Cheng et al.,

2004; Frittoli et al., 2014; Kajiho et al., 2016; Wheeler

et al., 2015). Increased expression of endocytic/recy-

cling molecules prolongs propagation of the signal

and/or re-locates RTKs and adhesive receptors at

specific membrane sites, mainly involved in cancer cell

invasion (Caswell et al., 2008; Eppinga et al., 2012;

also reviewed in Lanzetti and Di Fiore, 2017; Mellman

and Yarden, 2013; Mills et al., 2009; Mosesson et al.,

2008; Sigismund et al., 2012). Among these molecules,

copy number gain and overexpression of the 50-inositol
lipid phosphatase synaptojanin 2 (SYNJ2) in breast

cancer provides a paradigmatic example of sustained

EGFR activation by altered trafficking pathways. Ele-

vation of SYNJ2 promotes EGFR recycling at lamel-

lipodia, stimulating cell motility and the formation of

invadopodia (Ben-Chetrit et al., 2015).

3. Noncanonical kinase-dependent and
kinase-independent EGFR functions

In this section, we will discuss both kinase-dependent

and kinase-independent functions of the EGFR that

have recently emerged and that diverge from the

canonical EGFR signaling pathway. For what con-

cerns kinase-independent roles, their existence has been

known for many years. Indeed, while EGFR-knockout

mice are mid-gestation or perinatal lethal (depending

on the genetic background), due to gross developmen-

tal defects (Miettinen et al., 1995; Sibilia and Wagner,

1995; Threadgill et al., 1995), kinase-dead EGFR-

knock-in mice are viable, displaying only mild defects

in the eye and skin (Luetteke et al., 1994). In addition,

the EGFR is able to promote cell survival pathways

through both kinase-dependent and kinase-indepen-

dent mechanisms (Ewald et al., 2003; Tan et al.,

2016a). These EGFR kinase-independent functions

could result from the heterodimerization of the EGFR

with other ErbB family members or could be mediated

by kinases that crosstalk with the EGFR pathway

(e.g., Src or p38-MAPK, see Section 3.2). Moreover,

inactivation of phosphatases (e.g., PTP1B, see Sections

3.1 and 3.2) might contribute to activation of EGFR

signaling. More work is needed to address whether

these mechanisms are at play in living cells and

whether they are mutually exclusive or coexisting in

the regulation of EGFR function.

3.1. ER contact sites regulate EGFR signaling at

different steps of the endocytic pathway

Communication between organelles is critical for sev-

eral fundamental cellular processes, including organelle

positioning and function, organelle fission, lipid trans-

port, and Ca2+ signaling (van Bergeijk et al., 2016;

Phillips and Voeltz, 2016; Saheki and De Camilli,

2017). Communication occurs through so-called con-

tact sites: regions of juxtaposition (≤ 20 nm) between

two heterologous membranes, tethered by in trans pro-

tein–protein interactions (Eisenberg-Bord et al., 2016;

Phillips and Voeltz, 2016). In particular, the ER, due

to its tubular organization that extends all over the

cell, has been shown to make contact and to exchange

materials with all of the other cellular organelles (Phil-

lips and Voeltz, 2016).

ER contact sites have a critical role in controlling

EGFR signaling and trafficking at multiple steps. Dur-

ing the initial phase of endocytosis, high doses of EGF

are able to induce tubulation of cortical ER and the

formation of ER contact sites with the PM, at regions

where the EGFR is internalizing via NCE (Caldieri

et al., 2017; Fig. 2). The formation of these contact

sites is critical to induce local Ca2+ signaling at ER–
PM interface, which is in turn required for the fission

of NCE tubular intermediates and, thus, for comple-

tion of the internalization process (Caldieri et al.,

2017). This mechanism ultimately leads to EGFR

endocytosis via NCE, receptor degradation, and signal

termination (Caldieri et al., 2017; Sigismund et al.,

2008). Polarized Ca2+ waves might also be critical in
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specifying the final EGFR-NCE signaling output,

given the role of Ca2+ in growth factor-induced cell

migration (Tsai et al., 2014), an issue that requires fur-

ther investigation.

All along the endocytic route, the ER makes con-

tact with the endosomes and these contact sites

increase as endosomes traffic and mature (Friedman

et al., 2013). ER–endosomal contact sites are critical

in defining the timing and position of endosome fis-

sion during cargo sorting (Rowland et al., 2014), but

they also have a direct role in the regulation of

EGFR signaling. Indeed, a major RTK phosphatase,

Fig. 2. Active and inactive EGFR-related functions. This picture schematizes some noncanonical EGFR functions. From left to right: EGFR

stimulated with high EGF doses (active EGFR) is phosphorylated (P) and ubiquitinated (Ub) and undergoes both clathrin-mediated

endocytosis (not depicted) and nonclathrin-dependent endocytosis (NCE), the latter dependent on the formation of RTN3-mediated ER–PM

contact sites. This is accompanied by calcium release in the proximity of contact sites, which likely controls fission of the tubular

invagination. It is still unclear whether RTN3 is the tethering factor between the ER and the PM (as depicted), or it is just involved the

tubulation of cortical ER, but not directly engaged at contact sites. EGFR ligand stimulation elicits the classical signaling cascade based on

the recruitment of PI3K (made of its p85 regulatory subunit and p110 catalytic subunit) that catalyzes the formation of PIP3s. PIP3s bind to

the PH domain of AKT and of phosphoinositide-dependent kinase-1, PDK1. PDK1 phosphorylates AKT on Thr308, while mammalian target

of rapamycin complex 2, mTORC2 (not depicted here), is responsible for phosphorylation on Ser 473, leading to full AKT activation. Active

AKT inhibits autophagy and blocks GLUT1 endocytosis. This latter function leads to higher levels of GLUT1 at the plasma membrane,

increasing the uptake of glucose. In addition, ligand-independent direct interaction of EGFR (inactive EGFR) and SGLT1 stabilizes the glucose

transporter at the cell surface promoting high glucose uptake. Ligand-unbound EGFR constitutively internalizes into early and late

endosomes where it is sequestered by LAPTM4B. Here, the inactive EGFR interacts with Rubicon causing its dissociation from Beclin-1.

Beclin-1 complex can now initiates autophagy on the ER membrane.
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PTP1B, localizes to the cytosolic face of the ER and

dephosphorylates the EGFR in trans during its traf-

ficking to the endosomes/MVBs (Eden et al., 2010;

Haj et al., 2002). Of note, PTP1B regulates constitu-

tively internalized EGFR, thereby restricting spurious

EGFR kinase activation, as well as ligand-activated

receptor that is dephosphorylated by PTP1B on the

way to the lysosome (Baumdick et al., 2015). The

formation of ER–MVB contact sites is mediated by

annexin-1 and is Ca2+ dependent (Eden et al., 2016;

Kilpatrick et al., 2017). The release of Ca2+ occurs

through the two-pore channel that is localized on the

endolysosomal membrane at ER contact sites (Kil-

patrick et al., 2017). Disrupting these contact sites

has been shown to delay PTP1B-mediated EGFR

dephosphorylation, causing delayed receptor degrada-

tion and enhanced signaling (Eden et al., 2016; Kil-

patrick et al., 2017).

3.2. Stress-induced EGFR trafficking pathways

Different stresses applied to cells have been shown to

stimulate EGFR endocytosis and trafficking in a

ligand-independent fashion. For instance, UV radia-

tion, cisplatin, inflammatory cytokines (tumor necrosis

factor a), and the antibiotic anisomycin all trigger

p38-MAPK activation, required for ligand-independent

EGFR internalization (reviewed in Tan et al., 2016a;

Tomas et al., 2014).

While the mechanism is similar for all these treat-

ments, it has been most extensively characterized in the

case of UV treatment. UV-stimulated EGFR endocyto-

sis occurs via CME and depends on the phosphorylation

of serine/threonine residues in the C-terminal receptor

tail mediated by p38-MAPK activity (Oksvold et al.,

2004; Tomas et al., 2017; Tong et al., 2014; Vergarajau-

regui et al., 2006; Zwang and Yarden, 2006). Interest-

ingly, other receptors, such as the insulin receptor,

c-MET, and the transferrin receptor, are not internalized

upon UV treatment, suggesting the existence of some

level of specificity (Zwang and Yarden, 2006). Once

internalized, EGFRs accumulate in a subpopulation of

MVBs, distinct from the EGF-induced MVB pool,

where they are entrapped into intraluminal vesicles

(ILVs) without being degraded (Oksvold et al., 2002;

Tomas et al., 2015). The process is reversible as, upon

p38-MAPK inhibition, ILV-localized EGFRs can be

recovered to the limiting MVB membrane from which

they are recycled back to the PM (Tomas et al., 2015).

EGFR also responds to hypoxia, which, on the one

hand, upregulates the transcription of the EGFR gene,

providing a mechanism for EGFR overexpression in

the absence of genetic alterations (Franovic et al.,

2007); on the other hand, it triggers EGFR Src-depen-

dent, caveolae-dependent endocytosis (Shen et al.,

2013). At endosomes, EGFRs bind and phosphorylate

the endosomal membrane-associated protein, arg-

onaute 2, a molecule involved in micro-RNA

(miRNA) maturation, causing inhibition of the matu-

ration of tumor suppressor miRNAs, thus promoting

cancer cell survival (Shen et al., 2013). A similar mech-

anism of EGFR internalization and endosomal accu-

mulation appears to be at work also in the case of

oxidative stress induced by H2O2 (Filosto et al., 2011;

Khan et al., 2006; Ravid et al., 2002). In this case, the

generation of reactive oxygen species inactivates redox-

sensitive, cysteine-based, tyrosine phosphatases, includ-

ing PTP1B, causing the activation of Src and, possibly,

of the EGFR itself (Denu and Tanner, 1998; Lee

et al., 1998). Src-dependent caveolae-mediated EGFR

endocytosis is also activated by ionizing radiation.

Importantly, mechanisms of resistance to ionizing radi-

ation depend on the EGFR (Dittmann et al., 2008).

Indeed, this treatment increases EGFR expression,

induces Src activation and caveolae-mediated EGFR

endocytosis. Phosphorylation of threonine 654 in the

EGFR juxtamembrane region by PKCe negatively reg-

ulates Cbl-dependent ubiquitination and promotes

EGFR nuclear translocation, leading to enhanced

DNA repair and cell survival (Dittmann et al., 2008;

Wanner et al., 2008). In agreement, EGFR nuclear

localization has been associated with radiation resis-

tance and poor clinical outcome (Tan et al., 2016a;

Tomas et al., 2014).

In conclusion, it is emerging that multiple mecha-

nisms of ligand-independent trafficking are activated

under stress conditions and that these mechanisms can

promote cancer cell survival. However, more work is

needed to molecularly dissect these pathways, in order

to clarify how they are regulated, how they interplay

with the canonical EGFR pathway, and whether they

can be hijacked to prevent resistance to anti-EGFR

therapies.

3.3. Role of EGFR in autophagy

Autophagy is critical in maintaining cellular homeosta-

sis and is finely regulated under physiological condi-

tions to allow cells to rapidly respond to

environmental changes. It is deregulated in different

pathologies, including neurodegenerative diseases,

aging, and cancer, and is one of the major mechanisms

promoting resistance to cancer therapies (for recent

reviews see, for instance Galluzzi et al., 2015, 2017;

Goldsmith et al., 2014; Menzies et al., 2015; Rubin-

sztein et al., 2012).
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The EGFR is a crucial regulator of autophagy. In

nutrient-rich growth conditions, ligand-activated

EGFR has a dual activity: on the one hand, it stimu-

lates cell proliferation; on the other, it inhibits autop-

hagy. Inhibition of autophagy is achieved: (a) directly,

through the phosphorylation and consequent inhibi-

tion of Beclin-1, a core subunit of the VPS34/au-

tophagy initiation complex (Wei et al., 2013), and (b)

indirectly, through the activation of AKT. In turn,

AKT activates the mechanistic target of the rapamycin

complex 1 (mTORC1) pathway, which ultimately inhi-

bits autophagy (Tan et al., 2016a).

In contrast, under serum-starved conditions, inactive

EGFR is emerging as a promoter of autophagy. In this

case, ligand-unbound receptors, which constitutively

traffic toward the endosomes, are sequestered by the

lysosomal-associated protein transmembrane 4 beta

(LAPTM4B), localized in a subpopulation of early and

late endosomes. The increased EGFR endosomal pool

interacts with the autophagy inhibitor, Rubicon, caus-

ing its dissociation from Beclin-1, leading to Beclin-1

activation and autophagy initiation (Tan et al., 2015a,b;

Fig. 2). This function is maintained by the kinase-dead

EGFR mutant, confirming that it is indeed independent

of kinase activation (Tan et al., 2015b). The loss of

EGFR generates cells defective in autophagy initiation,

at variance with the loss of other RTKs, including c-

MET, PDGFR, and FGFR2 (Tan et al., 2015b), sug-

gesting that this is an EGFR-specific function.

Autophagy initiation seems to occur at ER–endo-
some contact sites. In particular, to initiate autophagy,

autophagy-related gene 14 on the ER surface has to

interact with PIPKIci5 kinase (PIPKIci5K), an enzyme

localized on endosomal membranes in complex with

inactive EGFR and LAPTM4B. This binding stimu-

lates phosphatidylinositol 4,5-bisphosphate (PIP2) pro-

duction by PIPKIci5 and autophagy (Tan et al.,

2016b). Thus, ER contact sites seem to provide a plat-

form for autophagic complex assembly.

Interestingly, the ER-resident protein RTN3, which

is required for the establishment of ER–PM contact

sites needed for EGFR endocytosis via NCE (Caldieri

et al., 2017), has also been implicated in ER turnover

by selective autophagy (Grumati et al., 2017). A

specific RTN3 isoform, which possesses multiple LC3-

interacting regions, has been found to exert this

function (Grumati et al., 2017). Whether these two

functions of RTN3 are related, and how they are inte-

grated within the cell, is not yet known; however, they

might unveil connections between ligand-dependent

and ligand-independent EGFR trafficking pathways.

Activation of autophagy has been found to promote

resistance and survival of cancer cells treated with

EGFR kinase inhibitors (Tan et al., 2016b). The mech-

anism seems to resemble the one induced by

LAPTM4B in the physiological context. Indeed, these

compounds promote endosomal accumulation of the

EGFR, enhancing its association with Rubicon and

favoring the dissociation of Rubicon/Beclin-1 complex,

thereby initiating the autophagic flux (Tan et al.,

2015a). It is possible that other stresses causing EGFR

endosomal accumulation (discussed in Section 3.2)

might also activate autophagy as a part of their sur-

vival response, a scenario that deserves further investi-

gation.

3.4. Mitochondrial functions of EGFR

The EGFR is usually considered to act at the PM and

on vesicles mainly belonging to the endosomal com-

partment. However, it also localizes to the nucleus and

mitochondria. Translocation of full-length EGFR into

the nucleus has long been documented and the func-

tions it has at this location have been extensively

investigated; we therefore refer the readers to detailed

reviews (Brand et al., 2011; Han and Lo, 2012). Differ-

ently, the role of EGFR in mitochondria is more elu-

sive and has been connected with antiapoptotic and

metabolic functions.

In NSCLC cells, high levels of EGFR expression

have been detected in the mitochondria (Che et al.,

2015). In these cells, artificially mitochondria-targeted

EGFR redistributes these organelles to lamellipodia,

increasing cell motility, possibly through the localized

increase in energy (Che et al., 2015). In addition,

translocation of wild-type EGFR and of the EGFR-

vIII mutant into mitochondria has also been observed

in cells treated with kinase inhibitors, or following

proapoptotic stimuli (Cao et al., 2011). This transloca-

tion correlates with resistance to apoptosis and

decreased sensitivity to EGFR inhibition (Cao et al.,

2011). The latter function might be related to the abil-

ity of both wild-type EGFR and EGFRvIII to consti-

tutively bind to p53-upregulated modulator of

apoptosis (PUMA), a proapoptotic member of the

Bcl-2 family of proteins primarily located in the mito-

chondria (Zhu et al., 2010).

In breast cancer cells, translocation of EGFR to

mitochondria has been shown to occur upon EGF

stimulation resulting in phosphorylation of the cyto-

chrome c oxidase subunit II (Boerner et al., 2004;

Demory et al., 2009). The biological outcome of this

modification is not clear. However, this event requires

phosphorylation of the EGFR on tyrosine 845 by Src,

which also undergoes mitochondrial translocation with

similar kinetics to that of the EGFR (Demory et al.,
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2009). Of note, EGF stimulation also induces palmi-

toylation of mitochondrial EGFR, which, in turn,

favors fusion of mitochondria (Bollu et al., 2014).

EGFR, independently of its kinase activity, interacts

with the fatty acid synthase, stimulating de novo syn-

thesis of palmitate (Bollu et al., 2014). This finding

points to the involvement of the EGFR in the regula-

tion of cell metabolism and supports the existence of a

signaling-metabolic wiring that plays a critical role in

cancer.

3.5. Role of EGFR in cancer cell metabolism

Oncogenic signaling pathways induce metabolic repro-

gramming in cancer cells supporting tumor growth

(Cairns et al., 2011). In this context, EGFR signaling

has been involved in the regulation of several meta-

bolic processes that are critical for cancer cell prolifer-

ation: from the biosynthesis of fatty acids and

pyrimidines, to glucose catabolism (Guo et al., 2009;

Makinoshima et al., 2014). The EGFR promotes these

metabolic pathways both directly by phosphorylating

rate-limiting enzymes (Lim et al., 2016; Zhang et al.,

2017), or indirectly through activation of the MYC

transcription factor and of the AKT signaling cascade

(Babic et al., 2013; Guo et al., 2009; Makinoshima

et al., 2014, 2015, and reviewed in DeBerardinis and

Chandel, 2016; Masui et al., 2014).

In glioblastoma multiforme, oncogenic EGFR sig-

naling by EGFRvIII stimulates the PI3K/AKT-depen-

dent nuclear translocation of sterol regulatory element-

binding protein 1 (SREBP-1) and the expression of the

low-density lipoprotein receptor (LDLR). Increased

LDLR, in turn, allows for the uptake of cholesterol

bypassing negative feedback regulation (Guo et al.,

2009). This represents a point of metabolic vulnerabil-

ity as these cells depend on cholesterol uptake and are

highly sensitive to inhibitors of fatty acid and choles-

terol biosynthesis (Guo et al., 2011).

Furthermore, the EGFR has been recently found to

directly phosphorylate and, thereby, stabilize stearoyl-

CoA desaturase-1 (SCD1), resulting in the upregula-

tion of monounsaturated fatty acid production (Zhang

et al., 2017). Notably, phosphorylation of SDC1 corre-

lates with poor prognosis of glioblastoma multiforme

(Zhang et al., 2017), suggesting that it might have a

causative role in these tumors.

One of the best-studied metabolic drifts in cancer

cells is the elevation of glycolysis in the presence of

oxygen: the Warburg effect. Cancer cells are generally

characterized by the avid uptake of glucose, which

occurs through increased expression and membrane

localization of glucose transporters, mainly GLUT1

and GLUT3 (Barron et al., 2016). Intracellular glucose

is metabolized to pyruvate that, in cancer cells, is pref-

erentially converted into lactate (Cairns et al., 2011).

The EGFR has been shown to foster aerobic glycol-

ysis through several, both kinase-dependent and

kinase-independent, mechanisms (Fig. 2). Physical

association of EGFR with SGLT1 stabilizes the

sodium-glucose cotransporter at the cell surface

increasing the glucose influx (Weihua et al., 2008).

This kinase-independent function provides survival

advantages to cells, helping them escape autophagic

cell death when grown in the presence of low glucose

concentrations (Weihua et al., 2008).

In response to EGF stimulation, the EGFR controls

expression of hexokinase (HK1) and phosphorylation

of the pyruvate kinase M2 (PKM2), two glycolytic

enzymes that catalyze key steps in the pathway, thus

increasing aerobic glycolysis of breast cancer cells

(Lim et al., 2016). One relevant ‘side effect’ of

increased aerobic glycolysis is the production of high

levels of lactate that, in these tumors, inhibits the cyto-

toxic activity of T cells, supporting their immune

escape (Lim et al., 2016).

In lung adenocarcinoma cells bearing oncogenic

EGFR mutations, deregulated signaling has been

shown to stabilize GLUT1 at the cell surface through

the activation of the PI3K/AKT/mTOR pathway

(Makinoshima et al., 2015). Indeed, activation of AKT

in response to cytokine stimulation has long been

known to inhibit endocytosis of GLUT1 in lymphoid

cells (Wieman et al., 2007; Wofford et al., 2008).

Recent findings showing that AKT phosphorylates

and inhibits thioredoxin-interacting protein (TXNIP),

the endocytic adaptor responsible for CME of GLUT1

(Hong et al., 2016; Waldhart et al., 2017), suggest that

this might be the mechanism at work.

Of note, inhibition of the PI3K/AKT/mTOR path-

way in lung cancer cells harboring EGFR mutations

affects the glycolytic flux impairing their viability

(Makinoshima et al., 2015). In line with these findings,

combined inhibition of EGFR and glycolysis has been

shown to synergistically suppress proliferation of tri-

ple-negative breast cancer cells (Lim et al., 2016), fur-

ther supporting the relevance of EGFR signaling in

cancer cell metabolism.

3.6. Membrane trafficking influences the efficacy

of EGFR-targeted therapies

Given its critical role in cancer, several EGFR-targeted

therapies have been developed, including monoclonal

humanized antibodies (mAbs) directed against the

receptor extracellular domain, as well selective small-
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molecule inhibitors targeting the tyrosine kinase

domain. Small-molecule EGFR inhibitors (e.g., gefi-

tinib, erlotinib, and afatinib) have been approved for

lung cancer treatment as a first-line therapy in those

cases where EGFR mutations have been confirmed

(Cohen et al., 2005; Hirsch et al., 2013; Thatcher

et al., 2005). Interestingly, in addition to kinase inhibi-

tion, gefitinib was shown to increase the formation of

inactive EGFR dimers through some form of commu-

nication between the kinase domain and the extracellu-

lar dimerization domain, suggesting the possibility that

gefitinib-induced dimers could be more rapidly endocy-

tosed and degraded (Arteaga et al., 1997; Gan et al.,

2007), an issue that warrants further studies.

Cetuximab and panitumumab are the most widely

employed EGFR-neutralizing monoclonal antibodies,

used for the treatment of head and neck cancer and

metastatic colon cancer (Licitra et al., 2013; Peeters

et al., 2015; Pierotti et al., 2010). Mechanistically,

these compounds act by preventing ligand binding,

thereby inhibiting receptor activation and downstream

signaling (Bou-Assaly and Mukherji, 2010; Dubois

and Cohen, 2009; Vincenzi et al., 2008). They also

favor EGFR dimerization, which, in turn, causes inter-

nalization of antibody-bound dimers. These complexes

are internalized at a lower rate and are more efficiently

recycled to the PM compared with EGF-bound dimers

(Jaramillo et al., 2006). The combined use of anti-

EGFR antibodies directed against nonoverlapping

antigens appears to be a more efficient strategy than

the use of single antibodies, as it increases EGFR

endocytosis and degradation (Ferraro et al., 2013;

Friedman et al., 2005; Pedersen et al., 2010), raising

the possibility of improving antitumor efficacy through

the regulation of EGFR trafficking.

Currently, however, EGFR antibody-based thera-

pies, as well as small-molecule inhibitors, have been

shown to exert a limited response and to frequently

evoke resistance in patients due to (a) secondary muta-

tions within the EGFR itself (e.g., T790M in NSCLC,

and mutations found in the extracellular domain of

cetuximab-resistant colorectal cancers, Fig. 1B), (b)

alterations in other kinases (e.g., c-MET, PIK3CA,

BRAF, MAPK1), or (c) the emergence of feedback

regulatory loops and mechanisms that overcome

EGFR kinase inhibition (reviewed in Mancini and

Yarden, 2016). In the latter case, the effect of therapies

might be dampened by the activation of ligand-inde-

pendent EGFR trafficking pathways and functions,

such as increased autophagy and elevated aerobic gly-

colysis (discussed in Sections 3.3 and 3.5). In addition,

mechanisms that likely contribute to the emergence of

drug resistance include also (a) relocalization of the

EGFR to the nucleus following ionizing irradiation to

promote DNA repair (Liccardi et al., 2011; Szumiel,

2006) and (b) translocation to mitochondria upon

kinase inhibitor treatment to exert antiapoptotic effects

(Cao et al., 2011; detailed in Section 3.4).

Concluding remarks

The EGFR has long been considered the prototype of all

RTKs. Indeed, most of the knowledge accumulated on

signal transduction cascades in general and on the mech-

anisms underlying receptor endocytosis, recycling, and

degradation has derived from studies focused on the

EGFR. Nevertheless, novel unexpected functions of this

receptor continue to emerge, some of which are linked to

previously unrecognized subcellular localizations. Thus,

despite the large body of knowledge already accumu-

lated, this receptor still holds a number of surprises.

An emerging aspect that could be exploited for can-

cer treatment is the study of how membrane trafficking

can influence the outcome of EGFR-targeted thera-

pies. Findings in this area could increase efficacy and

overcome or delay the occurrence of resistance to

treatments, an adverse event that invariably occurs in

the patient population. Recently, in an attempt to

overcome tumor resistance, simultaneous targeting of

driver mutations and basic cellular processes has been

proposed as a promising therapeutic perspective

(Nagel et al., 2016). In this framework, endocytosis/re-

cycling, autophagy, and metabolism might represent

targets for the development of inhibitory tools to be

tested in combination with EGFR inhibitors (Mellman

and Yarden, 2013). A similar approach is currently

being undertaken in tumors where the oncogenic

EGFR signaling promotes metabolic reprogramming

with promising results.
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