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Abstract: Gold nanoparticles were prepared by sol immobilization (AuSI) or deposition precipitation
(AuDP), then deposited on NiO and commercial TiO2 (P25). The Au/NiO catalysts showed higher
activity and yield to the secondary amine, compared to Au/TiO2 catalysts, when tested for the
reductive amination of benzyl alcohol with isopropylamine. We attribute this result to a synergistic
effect between Au and NiO. Moreover, as a result of the protective effect of the polyvinyl alcohol
used in the sol immobilization synthesis, the gold nanoparticles on NiO demonstrate an increased
resistance to structural changes during the reaction. This effect results in enhanced catalytic efficiency
in terms of activity, and better stability against deactivation.
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1. Introduction

Secondary amines are important intermediates in the formation of fine valuable chemicals
produced by organic synthesis. These amines are important pharmacophores, dyes, agrochemicals,
surfactants, fine chemicals, and functionalized chemicals [1,2]. The most common and straightforward
method to form secondary amines is the N-alkylation of primary amines with alkyl halides in the
presence of a stoichiometric amount of base. Over-alkylation occurs at the same time, and leads to the
significant production of by-products. A mixture of primary, secondary, and tertiary amines, as well as
quaternary ammonium salts, results from this method. Moreover, the toxicity of many alkyl halides
and related alkylating agents has been established [3]. Secondary amines can also be obtained in the
presence of a reducing agent or hydrogen gas through the reductive amination of carbonyl compounds
(such as aldehyde or ketones) with primary amines via the formation of an imine [3]. However,
reductive amination of alcohols is preferred to carbonyl groups, as the latter are derived from the
oxidation of alcohols. An alternative approach, involves the reductive amination of primary alcohols
to produce secondary amines [4], which is an environmentally friendly method with only water as
a by-product. This one-pot process can be described in three distinct steps: (a) the dehydrogenation
of the alcohol to the corresponding aldehyde; (b) the dehydrated condensation of the aldehyde with
the primary amine to the imine through a hemiaminal intermediate; and finally (c) hydrogenation of
the imine to form the secondary amine (Scheme 1, case of isopropylamine with benzyl alcohol). Ir [5]
or Ru [6] based homogeneous systems have been reported, with the main challenge of recovery and

Materials 2017, 10, 1435; doi:10.3390/ma10121435 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-7330-9629
https://orcid.org/0000-0002-8227-9505
https://orcid.org/0000-0001-8656-6256
http://dx.doi.org/10.3390/ma10121435
http://www.mdpi.com/journal/materials


Materials 2017, 10, 1435 2 of 11

reuse of the catalyst. Heterogeneous metal catalysts, contrary to the homogeneous ones, have a better
tolerance to high temperature and pressure, while some have a lower cost, and are easily removed
from the reaction mixture for reuse.
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dehydrogenation of alcohols under mild conditions [16]. As a result, heterogeneous gold catalysts 
have attracted interest for the direct alkylation of amines by alcohols [17–21]. Materials based on Au 
NPs were demonstrated to perform the N-alkylation of amines with alcohols by hydrogen transfer 
under inert atmosphere in one pot [17,18,21,22]. There is no need to provide external hydrogen, as 
the hydrogen produced by the dehydrogenation of alcohol to aldehyde can be used later for the 
reduction of the imine to the secondary amine (Steps a and c in Scheme 1). Haruta et al. demonstrated 
that gold clusters deposited by a solid grinding method on porous coordinated polymers showed a 
high catalytic performance in the one-pot synthesis of secondary amines [17]. He et al. [21] reported 
the best activity and selectivity to the target molecule, namely the secondary amine, with Au clusters 
supported on TiO2. Later, Haruta and coworkers demonstrated that Au/ZrO2 is a promising catalyst 
in the N-alkylation of aniline with benzyl alcohol to secondary amine [18]. In both cases, they were 
using equimolar amounts of substrates without additives under N2 at atmospheric pressure. 

We have recently demonstrated that gold nanoparticles deposited on NiO showed better activity 
compared to Au/TiO2 in the benzyl alcohol oxidative dehydrogenation, due to a cooperative effect 
between Au nanoparticles and nanosized NiO [23,24]. As the dehydrogenation of benzyl alcohol is 
the first step of the one-pot N-alkylation of primary amines with benzyl alcohol, in this work, the 
same supports have been investigated, and their activity compared. 

2. Results 

Nickel oxide was prepared following a procedure reported elsewhere [23]. X-ray diffraction 
confirmed the presence of NiO with average crystallite size of 5.5 nm, calculated from measured 
values for the spacing of the (111) planes using Scherrer equation (Figure 1). Following methods 
previously reported, 1% Au on NiO and TiO2 catalysts were prepared by deposition precipitation 
with urea (DP), and by sol immobilization using polyvinyl alcohol (PVA) as stabilizer (SI) [14,25]. We 
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In the last few years, heterogeneous metal catalysts, such as Ru [7], Pd [8–10] and Cu [11], were
reported as being active in the N-alkylation of amines with alcohol. However, high catalytic activity
and selectivity require an excess of amines or alcohols in the presence of acidic or basic additives.
Heterogeneous Ni catalysts were also reported as active for the direct synthesis of primary amines
from alcohols and ammonia [12], as well as for the N-alkylation of amines with alcohols [13].

Gold based catalysts are known to be highly active for the selective oxidation of alcohols [14],
for the hydrogenation of aldehydes, ketones, and imines [15], and to perform the oxidant-free
dehydrogenation of alcohols under mild conditions [16]. As a result, heterogeneous gold catalysts
have attracted interest for the direct alkylation of amines by alcohols [17–21]. Materials based on Au
NPs were demonstrated to perform the N-alkylation of amines with alcohols by hydrogen transfer
under inert atmosphere in one pot [17,18,21,22]. There is no need to provide external hydrogen, as the
hydrogen produced by the dehydrogenation of alcohol to aldehyde can be used later for the reduction
of the imine to the secondary amine (Steps a and c in Scheme 1). Haruta et al. demonstrated that
gold clusters deposited by a solid grinding method on porous coordinated polymers showed a high
catalytic performance in the one-pot synthesis of secondary amines [17]. He et al. [21] reported the
best activity and selectivity to the target molecule, namely the secondary amine, with Au clusters
supported on TiO2. Later, Haruta and coworkers demonstrated that Au/ZrO2 is a promising catalyst
in the N-alkylation of aniline with benzyl alcohol to secondary amine [18]. In both cases, they were
using equimolar amounts of substrates without additives under N2 at atmospheric pressure.

We have recently demonstrated that gold nanoparticles deposited on NiO showed better activity
compared to Au/TiO2 in the benzyl alcohol oxidative dehydrogenation, due to a cooperative effect
between Au nanoparticles and nanosized NiO [23,24]. As the dehydrogenation of benzyl alcohol is the
first step of the one-pot N-alkylation of primary amines with benzyl alcohol, in this work, the same
supports have been investigated, and their activity compared.

2. Results

Nickel oxide was prepared following a procedure reported elsewhere [23]. X-ray diffraction
confirmed the presence of NiO with average crystallite size of 5.5 nm, calculated from measured values
for the spacing of the (111) planes using Scherrer equation (Figure 1). Following methods previously
reported, 1% Au on NiO and TiO2 catalysts were prepared by deposition precipitation with urea (DP),
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and by sol immobilization using polyvinyl alcohol (PVA) as stabilizer (SI) [14,25]. We have chosen
these preparation methods to investigate the performance of Au nanoparticles in presence (PVA) and
in absence (DP) of a protective agent. Indeed, we have shown that the presence of a protective agent
can modify the activity and the selectivity in alcohol oxidation [25]. The metal content analyzed by
atomic absorption spectroscopy (AAS) was approximately the nominal value of 1 wt %, except for
AuDP/NiO, where the measured loading was 0.7%. Detailed characterization of the Au nanoparticles
on TiO2 was reported elsewhere [25], and showed an average particle size of 3.8 and 3.5 nm for 1%
AuDP/TiO2 and 1% AuSI/TiO2, respectively (Table 1).
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Figure 1. XRD of the fresh and used AuSI/NiO catalyst after six cycles.

Table 1. Statistical median and standard deviation of Au particles size.

Catalyst Statistical Median (nm) Standard Deviation σ

1% AuDP/TiO2 3.8 (a) 1.1
1% AuSI/TiO2 3.5 (a) 0.7

0.7% AuDP/NiO 3.4 2.0
0.7% AuDP/NiO after reaction 7.3 4.5

1% AuSI/NiO 4.8 2.2
1% AuSI/NiO after reaction 5.3 2.3

(a) taken from reference [25].

As the intensity of HAADF-STEM images is roughly proportional to the atomic number of
the elements present in the sample, this technique is suitable to distinguish between the particles
containing the heavier element, gold, and the lighter regions containing the nickel-based support.
The HAADF-STEM image of the 1% AuSI/NiO catalyst shown in Figure 2a clearly illustrates
well-distributed gold nanoparticles supported on NiO. A corresponding statistical analysis of 350
particle diameters in several images reveals that gold particles ranging from 1 to 8 nm were effectively
deposited onto the NiO support using the sol-immobilization technique, with an average particle
size of 4.8 (Table 1). Preparing the gold catalysts by the deposition precipitation technique results
in a similar gold particle distribution, but smaller particle size (3.4 nm) (Table 1). Table 1 gathers
the averaged diameters of the particle size distribution (PSD) and the resulting standard deviation
determined by TEM of all catalyst prepared for this investigation. Figure 2 clearly shows also the
presence of few large Au aggregates in both AuSI/NiO and AuDP/NiO. For the particle calculation,
the single particles, and not the entire aggregates, have been considered.



Materials 2017, 10, 1435 4 of 11
Materials 2017, 10, 1435 4 of 11 

 

 
Figure 2. Low magnification HAADF-STEM images of fresh (a) AuSI/NiO and (b) AuDP/NiO versus 
(c) AuSI/NiO and (d) AuDP/NiO, after reaction. Comparison of the Gaussian fit to the respective 
particle sizes determined from TEM images of the fresh catalyst (red), and after reaction (blue); 
AuSI/NiO in (e) and AuDP/NiO in (f). 

The catalysts were then tested for use in the amination of benzyl alcohol with isopropylamine, 
to form N-isopropylbenzylamine, an intermediate in the pharmaceutical industry [1,3] (Scheme 1). 
To the best of our knowledge, this is the first example of production of N-isopropylbenzylamine via 
reductive amination using gold catalysts. To evaluate any possible contribution of the support, bare 
TiO2 and NiO were also tested (Table 2). TiO2 was inactive, however, NiO showed a conversion of 
29% with a 95% selectivity to the imine (Table 2). NiO is known to be active for the dehydrogenation 
of benzyl alcohol, [23] however, under these reaction conditions, NiO is not able to perform the step 
of hydrogenation of the intermediate imine to amine. In the case of Au supported on TiO2, the benzyl 
alcohol conversion after 24 h of reaction time showed similar levels of conversion for both preparation 
methods (38% and 32% for 1% AuDP/TiO2 and 1% AuSI/TiO2, respectively; Table 2). AuSI/TiO2 (1%) 

Figure 2. Low magnification HAADF-STEM images of fresh (a) AuSI/NiO and (b) AuDP/NiO versus (c)
AuSI/NiO and (d) AuDP/NiO, after reaction. Comparison of the Gaussian fit to the respective particle
sizes determined from TEM images of the fresh catalyst (red), and after reaction (blue); AuSI/NiO in
(e) and AuDP/NiO in (f).

The catalysts were then tested for use in the amination of benzyl alcohol with isopropylamine,
to form N-isopropylbenzylamine, an intermediate in the pharmaceutical industry [1,3] (Scheme 1).
To the best of our knowledge, this is the first example of production of N-isopropylbenzylamine
via reductive amination using gold catalysts. To evaluate any possible contribution of the support,
bare TiO2 and NiO were also tested (Table 2). TiO2 was inactive, however, NiO showed a conversion
of 29% with a 95% selectivity to the imine (Table 2). NiO is known to be active for the dehydrogenation
of benzyl alcohol, [23] however, under these reaction conditions, NiO is not able to perform the
step of hydrogenation of the intermediate imine to amine. In the case of Au supported on TiO2,
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the benzyl alcohol conversion after 24 h of reaction time showed similar levels of conversion for both
preparation methods (38% and 32% for 1% AuDP/TiO2 and 1% AuSI/TiO2, respectively; Table 2).
AuSI/TiO2 (1%) showed a relatively lower activity in the hydrogenation step and lower selectivity to
N-isopropylbenzylamine at 33%, compared to 1% AuDP/TiO2.

Table 2. Activity and selectivity of AuDP and AuSI based catalysts for the reductive amination of benzyl
alcohol with isopropylamine.

Catalysts (a) Conversion % (b)
Selectivity (%)

N-isopropylbenzylimine N-isopropylbenzylamine Diisopropylamine 1 2

NiO 29 95 - - - 5
TiO2 <1 - - - - -

1% AuDP/TiO2 38 18 71 9 1 1
1% AuSI/TiO2 32 55 33 5 - -

0.7% AuDP/NiO 58 17 83 - - -
1% AuSI/NiO >99 1 85 - 1 11
(a) Reaction conditions: isopropylamine (7 mmol), benzyl alcohol (7 mmol), total volume in xylene (30 mL), BA/Au:
250 mol %, 150 ◦C, 5 atm. N2, 1200 rpm; (b) conversion based on benzyl alcohol consumption, reaction time 24 h.

In comparison, Au/NiO catalysts were more active than the corresponding Au/TiO2 ones.
This result can be due to a synergistic effect of Au and NiO, both active sites for the dehydrogenation
step. The catalyst prepared by sol immobilization showed a better activity than the one prepared by
deposition precipitation, with a conversion of 58% and >99% after 24 h for 0.7% AuDP/NiO and 1%
AuSI/NiO, respectively.

Plotting the conversion versus reaction time profile showed the 1% AuSI/NiO reached 92%
conversion after 8 h (Figure 3). Moreover, a significant deactivation was observed in the case of 0.7%
AuDP/NiO after 16 h of reaction (Figure 3).
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STEM image of AuDP/NiO after reaction in Figure 2d shows that the loss of catalytic activity may be 
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Figure 3. Reaction profile of AuSI/NiO and AuDP/NiO. Reaction conditions: isopropylamine (7 mmol),
benzyl alcohol (7 mmol), total volume in xylene (30 mL), BA/Au: 250 mol %, 150 ◦C, 5 atm, N2,
1200 rpm.

In order to correlate the decreased catalytic performance with structural changes of the
nanoparticles, the catalyst after reaction was characterized by (S)TEM. A representative HAADF-STEM
image of AuDP/NiO after reaction in Figure 2d shows that the loss of catalytic activity may be due
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leaching of Au into the solution during the reaction. AAS experiments confirmed a leaching of 60%
of Au nanoparticles during the reaction. Particles may be lost due to particle detachment and/or
gold leaching. In addition, gold agglomeration occurred, therefore, the average particle size increased
by 115%, as is shown in Table 1. Consequently, the decreased number of particles and particle
agglomeration leads to a lower number of exposed active sites, resulting in a lower activity and in a
significant deactivation of the system.

For the Au/NiO catalyst, after 24 h, N-isopropylbenzylamine was the main product in both cases.
In particular, AuSI/NiO showed with a selectivity of 85% at 99% conversion (Table 2). The product
distribution for AuSI/NiO revealed an initial production of the same amount of imine and amine
after 4 and 8 h of reaction, whereupon all the imine is reduced to the corresponding amine (Figure 4).
The presence of a protective agent seems to be essential to stabilize Au nanoparticles during the
reaction, and to prevent leaching, and therefore, deactivation of the catalytic system.
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alcohol (7 mmol), total volume in xylene (30 mL), BA/Au: 250 mol %, 150 ◦C, 5 atm, N2, 1200 rpm.

In the case of NiO and AuSI/NiO, benzenemethanamine N-(phenylmethylene) and dibenzylamine
were formed as the main side products (1) and (2), respectively (Table 1, Scheme 2) as confirmed by
GC-MS. The proposed reaction pathway to form these side products is depicted in Scheme 2. During
the first step, a self-condensation of the isopropylamine occurred to form the secondary symmetric
di-isopropylamine and NH3. The latter species reacts directly with benzyl alcohol to form benzylamine.
Benzylamine, together with benzaldehyde, which is obtained by the dehydrogenation of benzyl alcohol
(Scheme 1a), are converted to 1 (Scheme 2). According to the hydrogen transfer described in Scheme 1,
the imine (1) is hydrogenated to the secondary amine (2), namely dibenzylamine.

To corroborate the proposed mechanism, we performed a reaction using benzyl alcohol solution
mixed with gaseous NH3, obtaining benzenemethanamine N-(phenylmethylene) and dibenzylamine
as the main products.

As the 1% AuSI/NiO catalyst showed the highest catalytic performance among the tested catalysts,
stability tests were performed in order to investigate its potential reusability. The recycling consisted
of filtering and reusing the catalyst for the next run without any further purification. After the first
run, 1% AuSI/NiO showed a minor decrease in both the benzyl alcohol conversion and the yield to
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benzenemethanamine N-(1-methylethyl). Nevertheless, the activity remained stable for the successive
three repetitions of the stability tests, but the catalyst significantly lost the capacity to hydrogenate the
imine (Figure 5).Materials 2017, 10, 1435 7 of 11 
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AuSI/NiO.

To understand the catalyst’s deactivation, the AuSI/NiO after reaction was characterized by XRD
and TEM. XRD patterns did not show obvious modifications in the structure of the NiO support
(Figure 1). A representative HAADF-STEM image of the catalyst after reaction shows a marginal
change in the gold particle size (Figure 2c). Comparing the Gaussian fit, calculated from PSD, between
the fresh catalyst (red) and after reaction (blue), the latter presents a slightly wider distribution with an
increased average particle size of 5.3 nm (Table 1, Figure 2e). However, 1% AuSI/NiO is more effective
in maintaining a narrow PSD compared to 0.7% AuDP/NiO (Figure 2f). Therefore, we believe preparing
gold catalysts on NiO by SI synthesis leads to highly dispersed systems with stronger metal support
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interaction, which results in enhanced protection against particle agglomeration and/or detachment
during reactions. The slight increase of the average Au particle dimension can be attributed to the
partial removal of the protective agent during the reaction.

Nevertheless, it is not possible to validate this argument, due to the inability to distinguish
between polyvinyl alcohol and other adsorbed products. As a result, the residual protective agent on
the catalyst after reaction cannot be identified. However, the comparison of fresh and used catalyst
after reaction did not allow us to completely understand the loss of the capacity of the catalyst to
hydrogenate the intermediate imine. We extended the study to the amination of benzyl alcohol
with different primary amines using AuSI/NiO to show the general applicability of our catalytic
system, (Table 3). The catalyst fully converted benzyl alcohol and aniline with a good selectivity to the
secondary amine (96%) at full conversion. The catalyst showed good activity in presence of linear and
cyclic aliphatic amines, which are less reactive. For linear primary amines, a direct relation between
length of the chain and reactivity was obtained. The order of activity and selectivity was the following:
butylamine (52%) > hexylamine (36%) > octylamine (27%) in terms of activity, and butylamine (77%)
> hexylamine (74%) > octylamine (22%) in terms of selectivity (Table 3). In Table 4, we present a
comparison of AuSi/NiO with other Au systems reported in the literature for the reductive amination
of benzyl alcohol with aniline, confirming the good performance of our catalyst.

Table 3. Activity and selectivity of 1% AuSI/NiO for the reductive amination of benzyl alcohol with
different amines.

Amine (a) pK (b) Conversion % (b)
Selectivity

Imine Secondary Amine Others
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Selectivity to

Secondary Amine Reference

AuSI/NiO 24 >99 150 1/250 96 This work
Au/ZrO2 22 82 110 1/65 60 [18]
Au/WO3 22 34 110 1/65 56 [18]
Au/ZrO2 22 99 110 1/25 94 [18]
Au/Al2O3 14 49 120 1/200 36 [22]
Au/MgO 14 36 120 1/200 16 [22]

Au/TiO2-VS 19 99 120 1/200 91 [22]
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3. Materials and Methods

3.1. Preparation of NiO

NiO was prepared according to the method of Villa et al. [23], with some parameter modifications.
Ni(NO3)2·6H2O (26.8 mmol) (Sigma-Aldrich, purity >99.9%) and urea (Sigma-Aldrich, Milan, Italy,
purity >99.5%) (urea/Ni 12:1 mol/mol) were added to 200 mL of water with magnetic stirring for
4 h at 80 ◦C. The Ni(OH)2 was separated from the solution by filtration and washed several times.
The powder was dried at 100 ◦C in air for 2 h, and then calcined at 300 ◦C in air for 1 h.

3.2. Synthesis of Au Catalyst

Sol immobilization (AuSI): solid NaAuCl4·2H2O (0.051 mmol) and 1 mL of a PVA solution
(1 wt %) were added to 200 mL of H2O (Au/PVA 1/0.5 wt/wt). After 3 min, a 0.1 M of NaBH4 solution
(Au/NaBH4 1/4 mol/mol) was added to the yellow solution under vigorous magnetic stirring. A ruby
red Au(0) sol was immediately formed. Within a few minutes of their generation, the colloids (acidified
at pH 2, by sulfuric acid) were immobilized by adding the support to the vigorously stirring solution.
The amount of the support was controlled, in order to obtain a final Au loading of 1 wt % (on the basis
of quantitative loading of the metal on the support). The catalysts were filtered and washed several
times, and dried at 100 ◦C for 2 h.

Deposition precipitation (AuDP): the support (1 g) was dispersed in distilled water (approximately
10 mL/g of support) to which ammonia was added, to raise the pH to a value around 9.
Solid NaAuCl4·2H2O (0.051 mmol, as having 1 wt %) was added to the support under vigorous
stirring. The catalyst was filtered, and washed several times with water. The material was then
suspended in distilled water, and a 0.1 M solution of NaBH4 was added (Au/NaBH4: 1/4 mol/mol) with
vigorous stirring at room temperature. The sample was filtered, washed, and dried at 80 ◦C for 4 h.

Benzyl alcohol amination: the reactions have been performed using a stainless steel Parr reactor
(50 mL capacity), equipped with heater, mechanical stirrer, gas supply system, and thermometer.
A mixture of benzyl alcohol (7.2 mmol) and amine (7.2 mmol) was brought to a volume of 30 mL in
xylene. The Au catalyst (BA/Au = 250 mol %) was added to the system, which was then stirred under
5 atm N2 at 150 ◦C. When the reaction was completed, the system was cooled to room temperature,
and the mixture was filtered. Samples were removed periodically (0.2 mL) and analyzed using a HP
7820A gas chromatograph equipped with a capillary column HP-5 30 m × 0.32 mm, 0.25 µm Film,
by Agilent Technologies, Italy. Identification of products was performed using a Thermo Scientific
Trace ISQ QD Single Quadrupole GC-MS equipped with a capillary column HP-5 30 m × 0.32 mm,
0.25 µm Film, by Agilent Technologies. Authentic samples were also analyzed to determine separation
times. Quantitative analyses with external standard method (n-octanol) was used. Recycling tests
were carried out under the same experimental conditions. The catalyst was recycled in the subsequent
run after filtration, without any further treatment.

Characterization: samples for transmission electron microscopy (TEM) studies were prepared by
depositing small amounts of dry catalyst powder onto holey carbon copper grids. Micrographs and
analytical studies by energy-dispersive X-ray spectroscopy (XEDS) analyses were performed in high
annular dark field mode using a FEI Titan3 80–300 microscope operated at 200 kV. Digital Micrograph,
TIA, and INCA software were used for the analysis of the TEM micrographs and XEDS spectra.
The PSD, Gaussian fit, average particle diameter, and metal dispersion were calculated assuming a
truncated cuboctahedron particle shape using Gauss software.

Metal content was verified by atomic absorption spectroscopy (AAS) using a Perkin Elmer 3100.
X-ray diffraction (XRD) experiments were performed on a Rigaku D III-MAX horizontal-scan

powder diffractometer with Cu–Kα radiation, equipped with a graphite monochromator on the
diffracted beam. The crystallite size was estimated from peak half width by using the Scherrer
equation, with corrections for instrumental line broadening (β = 0.9).
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4. Conclusions

We have demonstrated the enhanced activity of Au/NiO nanohybrids compared to Au/TiO2

systems in the reductive amination of benzyl alcohol. The resulting catalyst was more active in
both dehydrogenation and reduction steps when compared to supported Au nanoparticles on TiO2.
Au/NiO catalyst prepared by sol immobilization showed a better activity and stability compared to
the ones prepared by deposition precipitation. In particular, the presence of a protective agent seems
to be essential to stabilize Au nanoparticles during reaction when supported on nanostructured NiO.
However, further studies are needed to understand the role of the protective agent during the reaction
and to enhance the stability of the catalyst.
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