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Abstract

An explosive growth in knowledge, in the last two decades, has conferred a new dimension to the 

process of endocytosis. Endocytic circuitries have come into focus as a pervasive system that controls 

virtual all aspects of cell biology. A few years ago, we proposed the term “endocytic matrix” to define 

a cellular network of signalling wiring that is at the core of the cellular blueprint. A primary role of 

the endocytic matrix is the delivery of space- and time-resolved signals to the cell in an interpretable 

format, and, as such, it has profound consequences on polarized cellular and supra-cellular functions, 

first and foremost, cell motility. Here, we describe a set of recent results that expand this notion and 

illuminate how endocytic matrix dynamically controls the plasticity of migratory strategies. We 

further highlight the impact of inter-organelle contact sites on motility and the role of organelle 

positioning in this process. Finally, we illustrate how global perturbation of the endocytic circuitry 

influences cellular and supra-cellular mechanics, ultimately controlling a solid-to-liquid-like 

transition in the mode of motility with potential consequences on cancer dissemination.



2

Introduction

The last two decades of research on membrane trafficking have dramatically expanded our view of the 

relevance and functional consequences of this process, and of its broad interconnections within the 

cellular masterplan. Virtually all cellular and, more recently, supra-cellular, biological processes have 

been shown not only to be influenced, but also intimately controlled, by the pervasive nature of 

membrane trafficking networks. To reflect this, we previously coined the term “endocytic matrix” to 

define a hidden system of integration within the cellular blueprint. Stated differently, we proposed that 

“the trafficking network and signalling are actually two sides of the same coin and should be 

conceptualized as a single cellular process that is central to the eukaryotic cellular master plan” [1]. 

Several lines of evidence accumulated since then invariably reinforce this notion [2,3] and corroborate 

the idea that endo/exocytic circuitries are master organizers of signalling pathways, with one of their 

main roles being the resolution of signals in space and time. They also highlight how the flexible and 

dynamically adjustable nature of trafficking routes and fluxes critically contribute to the adaptability 

and plasticity of cells and cellular processes. Cellular plasticity has emerged as a general property 

essential for endowing cells with a degree of flexibility that is required by tissues and organs to adapt 

to diverse and dynamically changing micro-environmental conditions in a number of physiological and 

pathological processes. 

A cellular process that has intrinsically plastic properties is cell motility. Different migratory 

strategies can be adopted by individual, or groups of collectively moving, cells [4]. These strategies 

are flexible, interconvertible, morphologically diverse, driven by biochemically distinct pathways, 

and governed by specific mechanical and physical cues. The plasticity and versatility of normal and 

tumour cell migration is, thus, the result of cells being able to switch between these different 

migratory modes.

 Given the impact of the endocytic matrix, in the temporal and spatial control of signaling output, 

more and more evidence is accumulating of its widespread consequences on all polarized cellular 

function, and specifically on cell motility. Here, we will describe a set of recent examples that expand 

this notion and illuminate on the type of control exerted by various routes of internalization and 

endosomal signalling on individual and multicellular migration. We will further focus on novel 

emerging levels of physical integration in trafficking epitomized by inter-organelle contact sites, and 

discuss examples of the relevance of organelle positioning in the control of locomotion. Finally, we 

will illustrate how perturbation of endocytic molecules and circuitry may impact on cellular and 

supra-cellular mechanics, ultimately controlling a solid-to-liquid-like transition in the mode of 

motion with potential profound consequences on cancer dissemination.
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The conventional endocytic routes and cell migration

Internalization of plasma membrane (PM) and PM-cargos, the first step of endocytosis, is executed 

through different entry routes that use clathrin-dependent or -independent mechanisms to initiate 

membrane invagination and vesicle scission, or through actin-based protrusions to engulf solutes and 

macromolecules. 

The pathway that has been traditionally linked to cell motility is macropinocytosis [5]. This 

endocytic route is associated with actin-dependent ruffling of the PM [5], and is upregulated by 

oncogene activation, such as KRAS and v-SRC [6,7]. Not surprisingly, macropinocytosis has been 

implicated in cancer cell migration, extracellular matrix degradation and metastasis [5]. However, it 

is debated whether macropinocytosis exerts a positive or negative regulation on cell motility, and 

these effects might depend on cell types. For example, macropinocytosis is very active in 

macrophages and dendritic cells (DCs), and important in the chemotactic response of highly motile 

cells, such as neutrophils [8]. Notably, DCs, as they mature and become activated, switch from their 

macropinocytic, antigen-sampling, but sessile state to a highly migratory, chemotactic phase that 

promotes their travelling toward lymph vessels and nodes to mount an efficient adaptive immune 

response [9]. This switch in states depends on the differential usage of actin machineries, whereby a 

CDC42–Arp2/3 axis generates a branched actin network that limits migration speed, while enhancing 

membrane protrusions for macropinocytic engulfment [10], and a formin (mDia1)-dependent linear 

array of F-actin drives persistent and directed chemotaxis [10]. Thus, at least in some specialized 

contexts, macropinocytosis is a trade-off for efficient directed migration. In non-professional, 

migratory cells, however, macropinocytosis, or at least some form of this process has invariably been 

associated with enhanced crawling locomotion. For example, integrins have been shown to traffic 

rapidly via circular dorsal ruffles (a specialized set of ARP2/3-dependent protrusions that are sites of 

macropinocytic internalization) and macropinocytosis during migration of stimulated fibroblasts 

[11]. Additionally, we recently showed that circular dorsal ruffles display dynamic features (rapid 

and oscillatory wave-like behaviour) typical of an excitable system that can be biased by chemical 

cues, and are therefore acting as steering devices driving efficient chemotactic migration [12].

In addition to macropinocytosis, both clathrin-mediated endocytosis (CME, [13]) and non-clathrin 

endocytosis (NCE, [14]) have been implicated in membrane flow and spatial restriction of molecules 

needed for cell migration. Clustering of receptors in clathrin-coated pits (CCPs) is required to 

optimize receptor activation, and amplify and spatially constrain signalling [15,16]. Recently, a form 

of deregulated ‘adaptive CME’ has been proposed to be activated in non-small cell lung cancer 

(NSCLC) cells and to be responsible for enhanced migration and metastasis [17]. Adaptive CME is 

characterized by an increased rate of CCP initiation and internalization [17], due to the aberrant 
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activation of the neuronal dynamin, dynamin1 (Dyn1), and/or the overexpression of the clathrin-light 

chain b (CLCb)[17]. Deregulated adaptive CME affects EGFR trafficking, by increasing receptor 

recycling, and signalling, by augmenting AKT activity, ultimately promoting cancer cell survival, 

migration and invasion [17]. Consistently, elevated Dyn1 and CLCb expression in NSCLC and breast 

cancer correlates with poor prognosis and metastasis [18]. Thus, the ability of cells to migrate and 

invade is fine-tuned by the rate of endocytosis and trafficking via CME. 

Differently from CME, NCE includes several endocytic mechanisms that have only recently begun 

to be dissected and that vary in terms of molecular players, lipid composition, internalizing cargo and 

cell type [19-23]. If and how these different NCE mechanisms are related is still a matter of intense 

investigation. This notwithstanding, some NCE mechanisms are spatially confined at the PM and 

have been linked to cell migration. For example, the fast endophilin-mediated endocytosis (FEME), 

involved in the internalization of G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases 

(RTKs), was shown to be restricted at the leading edge of migrating cells [22]. Similarly, NCE of 

interleukin-2 receptors (IL-2R) is initiated at the base of PM migratory protrusions and depends on 

actin polymerization [23]. However, a direct link between these NCE mechanisms and cell migration 

remains uncertain. More solid evidence in this direction was provided for endocytosis via clathrin-

independent carriers (CLICs, [19]) or GPI-enriched early endosomal compartments (GEEC, [24]). 

The CLIC/GEEC pathway was shown to be the major constitutive endocytic route involved in PM 

turnover at the leading edge of migrating fibroblasts [19]. Additionally, a decrease in surface tension 

due to acute reduction in cell volume was recently shown to be buffered by activation of CLIC/GEEC 

internalization [25]. Thus, CLIC/GEEC endocytosis might act as a tension-driven, mechano-sensory 

process that regulates PM dynamics during cell adhesion, spreading and migration [25,26]. The latter 

function might also be relevant to the plasticity of cancer migration and invasion. Indeed, the removal 

of the CLIC regulator and RHOGAP, GRAF1, proposed to act as a tumor suppressor in various 

cancers [27,28], causes extensive cellular blebbing and increases invasiveness [25]. In summary, 

asymmetric distribution of distinct endocytic mechanisms is an emerging cellular property with 

potential direct consequences on polarized cellular functions, including cell adhesion and migration.

Dynamic endocytic and exocytic cycles (EEC) spatially restrict signals for directed migration: 

Integrin turnover and beyond.  

The impact of EEC on the establishment of a structural and dynamic polarity in migratory cells has 

long been hypothesized [29], and several striking reports have supported the validity of this contention. 

For example, a critical determinant of cells moving on 2D substrates or under confinement is their 

ability to couple propulsive forces, generated by actin tread-milling and actomyosin contraction, with 
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substrate adhesion forces. The latter forces can be weak and dynamic, such as those generated by non-

specific substrate friction of cells moving in a non-adherent, blebbing-like motion [30]. Alternatively, 

mesenchymal moving cells exert strong propelling and contractile forces that elicit, and are coupled 

to, large focal adhesions (FA). In FA, heterodimeric integrin receptors connect the extracellular matrix 

with the F-actin cytoskeleton and transduce actin-based mechanical forces to the matrix through 

mechanosensitive FA proteins, thus acting as “molecular clutch” [31]. In the last 20 years, integrin 

endocytosis and recycling have emerged as major players in controlling integrin action [32,33]. Here, 

we illustrate recent discoveries that expand this notion. Integrins can be internalized via multiple 

endocytic routes [33]. Invariably, this event leads to the removal of the receptor from the cell surface, 

but it is also coupled with the polarized delivery of integrins back to the PM via recycling routes. 

Within this context, EECs impact directly on integrin turnover and FA dynamics, and are, thus, 

essential for regulating directional migration. 

Upon ligand engagement, integrin receptors undergo structural changes and become activated, and 

as such are thought to be internalized, although internalization of unligated integrin has also been 

shown to be important in regulating their function [34]. Recently, however, endocytosed integrin was 

reported to remain in an active, but un-ligated state in endosomes [35]. The focal adhesion kinase, 

FAK, and the non-receptor tyrosine kinase, SRC, co-localize with α5β1 integrin on RAB11+ 

endosomes and critically contribute to maintaining the activation status of this integrin. This endosomal 

signalling complex also appears to be essential for ensuring the polarized delivery of pre-activated 

α5β1 integrin for rapid FA assembly, ultimately facilitating directional migration. These findings are 

remarkable as they reveal a novel function of endosomal-restricted signals in maintaining a 

conformationally active “memory state” of integrin that facilitates FA assembly and directional 

motility. 

Another, previously unexplored intracellular itinerary, which impacts on polarized recycling of un-

ligated β1, but not β3 integrin, is the retrograde transport route. Two main intracellular integrin 

trafficking pathways have been extensively characterized: the RAB4-dependent short-loop, used by 

the Vβ3 heterodimer [36] and the inactive conformation of β1 integrin [37]; and the RAB11-

dependent long-loop, which also involves RAB21 and RAB25/RAB-coupling protein pathways and is 

mainly used by the activated 5β1 heterodimer [32,33,38]. Recently, however, un-ligated β1 was 

shown to be internalized from the PM and directed to the trans-Golgi for secretion in a polarized fashion 

through a retrograde route. This retrograde trafficking pathway, as opposed to the canonical recycling 

endosomal flux, appears to be the prevalent mode through which inactive adhesion receptors are 

polarized, particularly in cells moving in a persistent directional mode on fibronectin (FN)-coated 

stripes or on fibres [39]. These findings can be rationalized within a common framework, whereby 



6

persistent directed motion requires rapid turnover of a pool of active or ready-to-be activated integrins 

[39]. This can be achieved through RAB11 recycling routes that ensure ligated or structurally pre-

activated 51 is restricted to the leading edge, whereas retrograde routes provide the needed efflux 

of un-ligated adhesion receptors to initiate cell-matrix interactions at the migrating front (Fig. 1). 

EEC roles extend beyond that of controlling integrin dynamics, function and activity in migration. 

Indeed, similar cycles of internalization/recycling also ensure spatial restriction of signals of key actin 

remodelling GTPases, including RAC1 [40-42] and CDC42 [43]. Both these molecular switches 

exploit EEC to acquire a polarized distribution and to promote a mesenchymal locomotory migratory 

mode in various cells, and invasion in carcinoma cell lines. 

Similarly, EEC impacts on the activity and distribution of yet another class of adhesion molecules, 

the cadherins, that mediate homotypic cell-cell interactions, and thereby influence the collective 

migratory mode of epithelial, endothelial and neuronal N-cadherin-expressing cells. One important 

concept emerging from recent studies is that cell-cell adherens junctions (AJ) in cell collectives, sense 

mechanical cues by acquiring polarized cadherin-based adhesions [44]. The obvious implication of this 

notion is that AJ must adopt an asymmetric configuration between cells that is characterized by the 

different turnover and asymmetric recruitment of junctional components at either side of the cell-cell 

contact. This is clearly observed when comparing the distribution of AJ components in leader cells that 

extend polarized actin-based protrusions at their front, while engaging with their followers at the back 

by means of tight cell-cell contacts. Importantly, establishing and maintaining AJ polarity during cell 

migration is achieved by trafficking membrane cadherins through mechanisms that depend on 

interactions with the actin cytoskeleton. The most striking example of the impact of trafficking is on 

N-cadherin-based astrocyte migration. Astrocytes are glial cells that migrate collectively maintaining 

cohesive interactions through N-cadherin. Following wounding, leader cells extend actin-based 

protrusions, concomitantly triggering a rearward retrograde flow of actin. N-cadherins were shown to 

travel along this flow, from front to back, where N-cadherin is endocytosed to allow its anterograde 

trafficking to the front so that it can form new junctions [45]. This finding uncovers an unexpected 

coupling between spatially restricted EEC and actin retrograde flow that initiates junctional tread-

milling, which is, in turn, essential for maintaining an asymmetric distribution of AJ during cohesive 

migration. Asymmetry in cell-cell junction topology has also been elegantly documented in migrating 

endothelial cells. These cells utilize VE-cadherin as a cohesive glue. Collectively migrating human 

umbilical vein endothelial cells (HUVEC), display serrated cell-cell junctions that arise from 

mechanical tension generated by actomyosin contractility [46]. These serrate junctions are polarized 

relative to the direction of movement, such that they point away from the rear of leader cells and are 

engulfed into the front of follower cells, like interdigitating fingers. Functionally, the formation of 
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engulfed VE-cadherin fingers precedes cell turning and has been proposed to serve as guidance cues 

for collective migration [46]. Topologically, these structures generate also asymmetric and opposite 

membrane curvatures in leaders vs. followers, suggesting that they might be sites for differential 

recruitment of curvature-selective molecules that could bias signalling and also endocytic trafficking. 

Contact sites and organelle positioning in the control of polarized signalling and cell migration: 

the lysosomal case 

The endocytic pathways are highly compartmentalized within the cell, with the different stages/types 

of endosomes and lysosomes localizing at specific cellular sites [47]. Their asymmetric positioning, 

which results from movements of organelles along microtubules and actin filaments, is critical for 

their function. More recently, contact sites with the endoplasmic reticulum (ER) have also been 

shown to contribute to the movement and positioning of organelles [47]. The ER controls the fusion 

and fission of endo-lysosomal organelles [48], and regulates the progressive concentration of late 

endosomes and lysosomes towards the perinuclear area via a ubiquitin-dependent tethering 

mechanism. Given their role in determining organelle asymmetry, the latter mechanisms are predicted 

to impinge on cell polarity and polarized cell functions, including cell motility. A case in point is 

provided by the link between lysosome positioning and migratory behaviour. In non-polarized cells, 

lysosomes are prevalently concentrated around the microtubule-organizing centre (MTOC), with 

scattered peripheral lysosomes localizing in proximity to the PM and cell protrusions [49]. In 

polarized cells, instead, lysosomes display a more diffuse peripheral distribution. More importantly, 

lysosomes that cluster at cell protrusions appear to regulate cell motility through the delivery of 

adhesion and signalling molecules to the PM and/or hydrolases to the extracellular space, possibly to 

degrade the extracellular matrix [47]. Direct evidence for a role of cortical lysosomes in cell 

migration, however, came with the discovery of the molecular machinery involved in their 

positioning. A multi-subunit complex, called BORC (BLOC-1–related complex), was shown to 

assemble on the lysosomal membrane, where it recruits the GTPase, ARL8, leading, in turn, to 

kinesin-and microtubule-dependent centrifugal movements of lysosomes [50,51]. Silencing BORC 

causes a collapse in lysosomal distribution to the peri-centriolar area and impairs cell spreading and 

migration [50,51]. These findings are important as they point to a positive signalling role for cortical 

lysosomes, as opposed to the canonical degradative function traditionally attributed to perinuclear 

lysosomes. 

Migrating DCs further exemplify the critical role of lysosome positioning in cell motility. Upon 

bacterial sensing, DC undergo a switch in their motility behaviour from a sessile to a highly migratory 

state (for more details see previous Section). This switch has been recently shown to involve lysosome 
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positioning at the rear of DCs. At this site, local calcium release through the lysosomal Ca2+ channel, 

mucolipin-1, activates the actin-based motor protein, myosin-II, only at the rear of the cell, thereby 

locally increasing actomyosin contractility [52]. Lysosomal Ca2+ release also induces the nuclear 

translocation of the transcription factor, TFEB, and the TFEB-dependent transcriptional activation of 

mucolipin-1, triggering a positive feedback loop that allows persistent DC chemotaxis [52] (Fig. 2).

In conclusion, emerging evidence points to non-degradative signalling functions of lysosomes that 

not only control mTOR signalling and cell metabolism [53], but also cell migration, particularly when 

these organelles are asymmetrically positioned within the cell. 

Endocytic control of collective motion: unjamming what is jammed.

Collective cell migration, a widely recognized mode of migration during embryogenesis, wound repair 

and cancer [54], refers to the process of cells migrating as a cohesive group, with each individual cell 

coordinating its own movement to that of its neighbours. A complex network of biochemical pathways 

governs cellular and multicellular dynamics and motility. In addition, most aspects of multicellular 

migration are ruled by the physical interactions that cells establish with each other and with their 

environment [55]. For example, physical forces, exerted locally by individual cells on their substrate 

or propagated long-range in multicellular cohorts through cell-cell adhesion, are principal determinants 

of multicellular dynamics [56]. Another obvious corollary to this notion is that processes and factors 

that impinge on the turnover, dynamics and amount of cell-cell adhesion molecules, are predicted to 

impact on supra-cellular force transmission and on the ability of multicellular entities to move in a 

coordinated fashion. One striking example of this tenet is observed during the collective motion of the 

neural crest (NC) in Xenopus laevis. Initiation of NC migration during embryonic development requires 

activation of a partial epithelial-to-mesenchymal (EMT) program, which involves a qualitative and 

quantitative change in cell adhesion [57]. In this system, cells become fully migratory before they 

complete cell-cell dissociation, enabling the role of adhesion strength in migratory behaviour to be 

assessed. A signalling axis impacting on junctional adhesion strength is triggered by lysophosphatidic 

acid (LPA), which controls a myriad of cellular activities by binding to six different cognate LPA 

receptors [58]. In the NC, the interaction of LPA with LPA receptor 2 specifically affects NC collective 

motion by modulating the extent of cell-cell cohesion through internalization of N-cadherin [59]. 

Remarkably, however, rather than promoting the generation of single, fully mesenchymal cells, this 

reduction of membrane N-cadherin only triggered a partial mesenchymal phenotype. Under this 

condition, NC collectives undergo a transition from a solid-like state, where cell exchange with 

neighbours is not permitted, to a fluid-like state, where reduced N-cadherin adhesion allows local cell 

rearrangement [59]. This change in state endows the NC with a degree of plasticity and fluidity that 
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facilitates its migration in narrow confined spaces, while ensuring cell cooperation during collective 

motion. 

A variety of multicellular entities have been shown to acquire structural and dynamic physical 

properties that are surprisingly similar to those of amorphous viscoelastic materials [60,61]. During 

collective motility, epithelial cells can flow like a fluid, but as density rises due to proliferation, the 

motion of each cell is constrained by crowding by its neighbours, forcing them to move in groups 

[62,63]. At a critical density, motility ceases and collectives jam or rigidify undergoing a liquid 

(Unjammed)-to-solid (Jammed) Transition, herein referred to as UJT [60,61]. This transition has been 

proposed to ensure proper development of elasticity and of barrier properties in epithelial tissues, but 

also to act as a formidable suppressive mechanism for the aberrant growth of oncogenic clones. 

Recently, global perturbation of endocytic processes and EEC by interfering with the master 

regulator of early endosome biogenesis, RAB5, was shown to impact on various biomechanical 

properties of cell collectives. More specifically, elevation of RAB5A was sufficient to re-awaken the 

motility of otherwise kinetically silent and fully jammed epithelial monolayers. RAB5A expression 

promoted millimetre-scale, coherent and ballistic locomotion of multicellular streams that flow like 

flocking fluids. Molecularly impairing endocytosis and micropinocytosis, or increasing fluid efflux, 

abrogated RAB5A-induced collective motility. At the same time, increased EEC, resulting from 

RAB5A elevation, directly influenced E-cadherin turnover rate at junctions [64]. The increased 

junctional dynamics enables cell neighbour exchange, while ensuring coordinated locomotion. RAB5A 

expression also caused the extension of oriented and persistent protrusions, in keeping with its ability 

to activate and spatially restrict RAC1 and RAC1-dependent actin-based protrusions [42]. The latter 

findings are consistent with earlier results relating to Drosophila border cell migration that showed 

how RAB5 is critical for polarizing RAC1 activity, while RAB11, via Moesin, ensures proper 

restriction of RAC1 activity to the leading cell through regulation of cell-cell communication [65].

In essence, endocytic-re-awakening of locomotion can be understood in terms of a combination of 

large-scale directed migration and local unjamming [66], leading to the acquisition of a flocking (or 

flowing) fluid mode of collective migration (Fig. 3). Numerical simulation of the process provided a 

quantitative framework supporting the notion that small variations in fundamental cellular properties, 

such as cell self-propulsion, junctional tension and packing densities, are sufficient to tip the status of 

collective entities from solid to liquid or to a flowing liquid, dynamic state. Importantly, tumour cells 

can exploit this “mechanical flexibility” to execute key steps in the metastatic process and unjam 

without the need to change genetic makeup and cell identity; thus, requiring significantly less drastic 

events than EMT (or the inverse MET) to disseminate. Within this context, the Jamming-to-

Unjamming Transition (herein referred to as JUT) might represent a complementary gateway to EMT-
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driven cell migration and dissemination that enables tissues to escape the caging imposed by the 

crowded cellular landscape of mature epithelia. 

Figure Legends

Figure 1. Integrin turnover in polarized cell migration.  

Integrins can be found in an inactive/close conformation or in an active/open one upon engagement 

with the extracellular matrix at focal adhesion (FA) sites. Both forms of integrins can be endocytosed 

and this event has been shown to regulate their function. Active integrins are internalized and recycled 

via a Rab11-positive recycling routes (red line), which also involves RAB21 and RAB25/RAB-

coupling protein pathways (not shown) [32,33,38]. They have been shown to be maintained in an 

active, although un-ligated, state in endosome, so that they are primed for rapid assembly at FA sites 

[35]. Src and FAK colocalize with integrins in Rab11-postive endosomes and contribute to maintain 

them in an active state [35]. Inactive integrins are also internalized and can be recycled to the PM 

through a Rab4-positive recycling route [36,37] (not shown) or can transported from the early 

endosome (EE) to the trans-Golgi network (TGN) via a retromer-dependent mechanism, to be secreted 

through a retrograde route in a polarized fashion to the lamellipodium during directed cell migration 

(light blue line) [39]. Inactive integrins can also be localized to circular dorsal ruffles and they can be 

endocytosed from these sites. Thus, the integration between canonical recycling pathways of active 

integrins and the retrograde transport route of inactive integrins allows for the rapid turnover of a pool 

of active or ready-to-be activated integrins to initiate cell-matrix interaction at the migrating front, 

required for persistent cell migration.

Figure 2. Lysosome positioning in cell migration: the exemplar case of activated dendritic cells. 

Activated DC display a polarized localization of lysosomes, which are concentrated at the rear of the 

cell. At this site, the release of Ca2+ from the mucolipin-1 channel (MCOLN1) generates a polarized 

Ca2+ signalling that exerts a dual function: i) on the one hand, it activates myosin II and stimulates 

acto-myosin contractility in a spatially –confined manner at the cell rear [52]; ii) on the other hand, it 

activates on the lysosomal membrane the calmodulin (CaM)/calcineurin (Calc) complex that 

dephosphorylates the transcription factor TFEB. Dephosphorylated TFEB can then translocate to the 

nucleus to promote the transcription of lysosomal genes, including MCOLN1, thereby generating a 

positive feedback loop that sustains polarized Ca2+ signalling [52].

Figure 3. Endocytic-dependent induction of a solid (jammed)-to-liquid (unjammed) transition 

(JUT) in the collective motion of epithelial entities. 
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Global perturbation of endosomal function through elevation of RAB5A, a master regulator of early 

endosome biogenesis, alters endosomal number and macropinocytic internalization detected by the 

uptake of large molecular weight fluorescently-labelled Dextran in various epithelial cells [66]. These 

alterations, in turn, affect E-cadherin turnover, junctional tension and topology, and further increase 

volume and density fluctuations that typically mark a liquid-to-solid-like transition. Finally, RAB5A 

elevation promotes the formation of RAC1-dependent, polarized, protrusions extending beneath 

neighbouring cells (also called cryptic lamellipodia) that promote cell self-propulsion. The impact of 

monolayer kinematics on the combination of the above cellular and mechanical alterations can be 

understood through mathematical modelling. The simulation is based on self-propelled Voronoi model 

with two main ingredients. The first is a target shape of each individual cell (p0, the ratio between 

perimeter and the square root of the area) that is the result of the competition between intracellular 

adhesion and cortical tension [66]. The second is the inverse of the reorientation time that each 

individual cell takes to align to the local direction of motion, . These ingredients give raise to a rich 

phase diagram, qualitatively depicted on the bottom right, that explain endocytic-re-awakening of 

locomotion in otherwise jammed and solid epithelia, in terms of a combination of large-scale directed 

migration in the presence of local cell-re-arrangement, leading to a flocking (or flowing) liquid mode 

of migration. This transition in the mode of locomotion enables RAB5A-expressing epithelial 

monolayers to flow efficiently through micro fabricated narrows slits that mimic the confined channels 

encountered during interstitial migration. 
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