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Universal features of amorphous plasticity
Zoe Budrikis1,*, David Fernandez Castellanos2,*, Stefan Sandfeld2,3, Michael Zaiser2,4 & Stefano Zapperi1,5,6,7

Plastic yielding of amorphous solids occurs by power-law distributed deformation avalanches

whose universality is still debated. Experiments and molecular dynamics simulations are

hampered by limited statistical samples, and although existing stochastic models give precise

exponents, they require strong assumptions about fixed deformation directions, at odds with

the statistical isotropy of amorphous materials. Here, we introduce a fully tensorial, stochastic

mesoscale model for amorphous plasticity that links the statistical physics of plastic yielding

to engineering mechanics. It captures the complex shear patterning observed for a wide

variety of deformation modes, as well as the avalanche dynamics of plastic flow. Avalanches

are described by universal size exponents and scaling functions, avalanche shapes, and

local stability distributions, independent of system dimensionality, boundary and loading

conditions, and stress state. Our predictions consistently differ from those of mean-field

depinning models, providing evidence that plastic yielding is a distinct type of critical

phenomenon.
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W
hile there is consensus that the fundamental building
blocks of plasticity in amorphous materials are local
reorganizations1–4, their collective behaviour is a topic

that continues to receive considerable experimental and
theoretical attention5–26. This behaviour includes spontaneous
strain localization, intermittent dynamics and power-law
distributed avalanches. The phenomenology overlaps with that
seen in systems as diverse as ferromagnets exhibiting Barkhausen
noise27 and crack propagation28–30, making a unified conceptual
model for these problems desirable.

A key point of debate concerns the universality class of the
plastic yielding transition. As the external drive reaches a critical
value the system undergoes a non-equilibrium phase transition into
a flowing phase. The physics of this transition has been mainly
studied in terms of depinning-like models which map the plastic
deformation of a D-dimensional body onto the motion of a
D-dimensional interface through a Dþ 1-dimensional disordered
medium. The additional dimension is associated with the local
strain in a point of the D-dimensional body16,19,23,26,31,32 and the
local yield thresholds, which may fluctuate in space and undergo
stochastic evolution with strain, are envisaged as a quenched
disorder in Dþ 1-dimensional space. This mapping allows one to
use the theory of the depinning transition as a conceptual reference
for the analysis of plastic yielding.

The mean-field theory of depinning provides predictions for
critical exponents that have been tested in atomistic20,26 and
mesoscale simulations5–7,16,19,23,26,31,32 and in experiments11,13,24,25,
but results remain inconclusive. For example, reported values of the
avalanche size exponent t range from 1.25 to 1.5, often with large
error bars. Faced with such data, different groups have interpreted
the results as either consistent with the mean-field exponent t¼ 3/2
(refs 24,25) or not16,19,23,31,32, and controversy continues.

Resolving this controversy is hampered by the limitations of the
methods used. Molecular dynamics (MD) and experimental studies
are often limited to a narrow range of avalanche sizes with scaling
regimes as small as a single decade, making accurate determination
of exponents difficult if not impossible. Furthermore, as has been
demonstrated recently26, it is essential that applied strain rates are
slow enough to be truly adiabatic in order to avoid exponent drift.
Particular difficulties are encountered if one wants to determine
stress-resolved avalanche size distributions, for which statistically
reliable conclusions require ensembles of hundreds or even
thousands of tests, which are impractical to achieve.

These problems can be overcome by computationally-efficient
lattice based mesoscale models. However, such models often
treat the plastic shear strain as a scalar variable times a
projection tensor that is fixed in the material coordinate
system5–7,16,19,21,23,31–33. This assumption is inherent to all
scalar models, but is at odds with the nature of general
deformation processes in isotropic materials where stress is
heterogeneous and multi-axial. Even if the applied stress acts
along a single stress axis, the models predict spontaneous strain
localization and spatially fluctuating plastic strain fields, which
implies that to ensure compatibility of deformation the stress
field must locally be always multi-axial (for example, ref. 34). So
one may legitimately ask what is the relevance of predictions
derived from scalar models to real-world amorphous plasticity.
Those scalar models appear instead to be more suited to single-
slip crystal plasticity35.

While tensorial plasticity models have been regularly used in the
context of amorphous materials (for example, refs 36–40), these
models—even where they are parameterized based on microscale
simulations40,41 and consider statistical flow rules36,40—tend to
assume spatially homogeneous constitutive equations, which do not
fully reflect the stochastic heterogeneity of plastic deformation
properties on the smallest scales. As a consequence, while they are

able to predict complex deformation states on the macroscale,
they cannot adequately capture the avalanche dynamics of plastic
deformation.

We thus face a conundrum: on the one hand, because
simplified statistical physics models of avalanche dynamics are
scalar, they cannot capture real-world deformation processes, on
the other hand, continuum mechanics models are homogeneous
and/or deterministic and so cannot capture avalanche dynamics
of plastic flow. Avalanche phenomena play a key role in the
early stage of shear band formation, which in turn controls
the macroscopic deformation behaviour of many amorphous
materials, so this deficiency may prevent a comprehensive
theoretical understanding of amorphous plasticity.

Here, we address this fundamental issue by formulating a fully
tensorial model of plasticity of disordered solids, which accounts
for the discrete and stochastic nature of the elementary
deformation processes on the smallest scales and thus bridges
the gap between statistical physics and engineering plasticity
approaches. We apply the model to both two- and three-
dimensional problems, including finite samples, intrinsically
heterogeneous deformation processes such as bending and
indentation, and genuinely multi-axial loading conditions. For
all these systems, we analyse the avalanche statistics in terms of
the stress dependent distribution of avalanche sizes and
determine the exponent t which controls the power-law regime
of the avalanche size distributions, the exponent s which controls
the divergence of the maximum avalanche size near a critical
stress (the macroscopic yield stress), and the exponent g which
connects avalanche sizes and durations.

Surprisingly, we find under all these circumstances the
exponents t and g neither depend on the nature of the stress
and strain variables (scalar/uniaxial versus tensorial/multi-axial),
nor on the dimensionality of the system (two-dimensional (2D)
versus three-dimensional (3D)), or on the presence or absence of
macroscopic strain gradients. Where s can be meaningfully
measured, it is also the same for all loading conditions. We also
show that the choice of plastic flow rule does not affect avalanche
dynamics, which are furthermore invariant under rescaling of the
simulation mesh. While such universality could point towards
some kind of mean-field behaviour, we stress that neither the
avalanche exponents, nor the scaling functions which quantita-
tively fit our avalanche distributions, nor the average shapes of
avalanche signals are consistent with predictions of mean-field
depinning theory. That plastic yielding is not simple mean-field
depinning but constitutes a distinct type of non-equilibrium
phase transition is further corroborated by studying the
distribution of local stability thresholds which—again contrary
to the expectation for mean-field depinning—exhibits in the
vicinity of the critical stress a crossover to a non-trivial stability
exponent y, as originally proposed in ref. 23.

Results
Strain localization in tensorial model depends on loading. We
formulate a plasticity model in the spirit of rate-independent
continuum plasticity with a J2/Von Mises type yield criterion,
which we generalize to account for structural randomness and
deformation occurring in localized, discrete shear transformation
(ST) events. The stress on an element is the sum of internal stress
due to plastic deformation of all other elements, and an external
load which is increased adiabatically slowly. A ST is activated once
the stress on an element exceeds a randomly assigned threshold St.
Once this happens we increase the local plastic strain Ep by the
tensorial increment Ep¼ÊDE, and we assign a new threshold to this
site. The strain direction Ê is chosen to maximize the locally dis-
sipated energy, which implements an associative flow. Subsequent
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to a ST event, the redistribution of stress to all other elements
occurs instantaneously. The fundamental non-dimensional para-
meter of our models is the coupling constant C¼EDE= �th i; where
the mean value hSti characterizes the typical stress needed to
trigger a ST event, and the product of the strain increment DE and
the Young modulus E characterize the magnitude of the subsequent
elastic stress redistribution. In other words, C is the elastic coupling
strength, expressed in units of the characteristic local threshold.
Unless otherwise noted, we use the value C¼ 0.05.

We consider macro-homogeneous deformation modes
(uniaxial tension with free surfaces and applied tensile tractions,
pure shear, biaxial deformation with applied tensile and shear
tractions), and in 2D, also macro-heterogeneous deformation modes
such as simple shear, bending, and indentation. Systems in 3D had
up to 323 elements, and 2D systems had up to 2562 elements. Full
details of our models are given in the Methods section.

We first verify that our model gives rise to strain localization
consistent with previous experimental and MD studies42–46. As
illustrated in Fig. 1, the plastic strain field organizes into
localization patterns which approximately follow the directions
of maximum shear stress. For uniaxial tension, this is at B45� to
the tensile axis. In simple shear, the vertically fixed surfaces cause
strong stress concentrations and concomitant strain localization
in the specimen corners. Under simulated 2D indentation with a
circular indenter, strain localizes into a pattern of intersecting
circles. This pattern is typical of shear bands observed in
indentation of bulk metallic glasses38, and the simulations
correctly reproduce even details of the incipient shear band
pattern such as the slightly acute intersection angle of the shear
bands (Fig. 1g,h). We emphasize that this type of strain
patterning cannot be captured at all by scalar plasticity models.

Exponents describing avalanche distributions are universal.
Activation of a ST results in finite stress changes everywhere in the
system which may trigger further STs: deformation proceeds in
avalanches. An avalanche initiates once an external load increment
triggers a first event, and then proceeds at constant stress until the
stresses on all elements are below the respective yield thresholds,
such that another external load increase is required for further
deformation. The number of ST activations between initiation and
termination of an avalanche defines the avalanche size S.

Avalanches exhibit size distributions P(S) of power-law type;
these distributions are characterized by a set of exponents
which we now determine. In mean-field depinning, the avalanche
size distribution has the form P(S)BS� t exp (� S/S0) (ref. 10),
however, we find that a simple exponential tail does not fit our
data. We therefore use a first-order correction to the mean-field
size distribution, given by47:

PðSÞ¼ A
2
ffiffiffi
p
p S� texp C

ffiffiffi
u
p
� B

4
ud

� �
: ð1Þ

Here, u¼ S/Smax, where the size Smax of the largest avalanches
diverges like Smaxp(Sc�S)� 1/s as the external loading S
approaches a non-universal critical value Sc which defines the
macroscopic yield stress. The parameters A, B, C and d are, in
terms of the exponent t, given by47

A¼1þ 2� 3gEð Þ t� 3=2ð Þ=3; ð2aÞ

B¼5þ gE� 2t 4� gEð Þ=3; ð2bÞ

C¼2
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p
p
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ffiffiffi
p
p

t=3; ð2cÞ

d¼2ð1� t=3Þ; ð2dÞ
where gEE0.577216 is Euler’s constant.

We use the form (1) to simultaneously fit avalanche size
distributions for six different loading/boundary conditions:
(i) Uniaxial tension in 3D with periodic boundary conditions;
(ii) uniaxial tension in 2D with free side surfaces; (iii) biaxial
deformation in 2D with superimposed tensile and shear tractions;
(iv) pure shear in 3D with periodic boundary conditions; (v) pure
shear in 2D with uniform shear tractions applied to the
unconstrained side surfaces; (vi) simple shear in 2D with
horizontal traction forces applied to the vertically constrained
top surface and with fixed bottom surface. We emphasize that the
only fitting parameters are Sc for each loading condition, and the
exponents t and 1/s, which are the same for all loading
conditions, with no additional free parameters. We find
t¼ 1.28±0.003 and 1/s¼ 1.95±0.01. Figure 2 shows the
measured avalanche size distributions and their collapse using
these two parameters, along with the fit of (1) to the collapsed
data. Supplementary Table 1 gives the fitted Sc values for each
loading condition.

To test whether a joint fit of avalanche distributions for
different loading conditions is appropriate, we have also fitted
each loading condition separately with the functional form (1).
Data collapses from these fits are shown in Supplementary Fig. 1.
The fitted exponent t is nearly identical across the loading
conditions, with separate fits giving hti¼ 1.26±0.01 and values
ranging from 1.25 to 1.28.

On the other hand, when fitted separately for each loading
condition, 1/s varies considerably, from 1.53 for biaxial loading
to 2.05 for pure tension in 2D, with mean fitted value
h1/si¼ 1.8±0.2. This certainly indicates that the nominal error
bar of 0.01 in the joint fit is an underestimate. However, because of
the strong universality of the other exponents as well as the
avalanche shapes (see below), a joint fit of all loading conditions is
an appropriate procedure. Indeed, since 1/s and Sc both determine

a b c
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g h

84°
84°

Figure 1 | Strain localization patterns. Shown here are typical

configurations from 2D systems of size 256� 256 with free surfaces.

Simulations results depend on deformation mode and are consistent with

experimental studies. The loading conditions are (a) pure tension; (b) pure

shear; (c) biaxial loading; (d) simple shear; (e) bending; (f) indentation;

(g) shows a magnification of figure (f) indicating the shear band

intersection angle, (h) experimental image of a shear band pattern in

plane strain indentation. Reproduced with permission from (ref. 38)

(Copyright 2006 Elsevier).
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Smax for each distribution and both are fitted, a range of 1/s and Sc

values will give fits of approximately equal quality, and constraining
1/s to be the same for all loadings avoids spurious over-fitting of
individual distributions. This interpretation is supported by the
high quality of the data collapse in Fig. 2b.

Using our finite-element based code, we have also studied more
complex loading conditions such as bending and indentation.
Bending corresponds to a heterogeneous but uniaxial stress state
whereas in indentation, the stress state is both heterogeneous
and multi-axial. In both cases, the fraction of the simulated
specimen that actually undergoes plastic deformation increases
with increasing driving force (bending moment or indenter
force), and therefore we cannot uniquely define a critical stress
Sc. Despite this problem, the avalanche distribution is described
by an exponent t consistent with other cases, as shown in Fig. 3.
To obtain t, we used in the case of bending equation (1) to fit the
avalanche size distributions , with t shared between all curves but
Smax fitted independently for each S. We find t¼ 1.221±0.004.
For indentation, the distributions display distinct ‘bumps’ in the
tails and we use the function.

PðSÞ¼aS� texp � bS2þ cS
� �

; ð3Þ

with a and t shared between all curves, and b and c fitted
independently for each S. Here, we find t¼ 1.29±0.01.

Remarkably, although the strain patterns depend strongly on the
loading conditions, the avalanche exponent t is not only
independent of dimensionality (2D versus 3D), but also independent
of whether the stress field is homogeneous and uniaxial (pure shear,
pure tension), homogeneous and biaxial, or inhomogeneous and
uni- or bi-axial (bending, simple shear, indentation). Pure tension
and pure shear produce identical results, which indicates that the
avalanche exponent is not influenced by hydrostatic stresses
(pure tension adds a hydrostatic stress contribution), by boundary
conditions, or by the orientation of the simulation grid (deviatoric
stresses are in both cases equivalent but the directions of shear differ
by 45�). We note that the insensitivity to hydrostatic stresses persists
even when we modify our model to include such stresses into the
flow criterion, as discussed below.

A third universal exponent g defines the relationship between
avalanche size S and duration T, SpTg. To determine this
exponent, we define the avalanche duration as the number of
simultaneous updates required from the start of the avalanche to
the moment when all elements are stable again. Also here we find

strong universality with an exponent g¼ 1.8±0.01 for all loading
conditions, including bending and indentation (Fig. 4).

Avalanche signals are inconsistent with mean-field theory.
Beyond avalanche size distributions, the average temporal signal
of avalanches, _Eh i, is also expected to take a form that depends on
the universality class of the yielding transition30,48. We first
measure the average avalanche shape for avalanches of fixed
duration T. To first order, for time t0 ¼ t/T and with
normalization such that the area under the curve is 1, the
expected form is (ref. 30)

_E t0ð Þh i¼ t0 1� t0ð Þð Þ1� g 1� a t0 � 1=2ð Þð Þ Gð2gÞ
ðGðgÞÞ2

; ð4Þ
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Figure 2 | Avalanche size distributions are universal under changes in dimensionality and loading. The measured exponents are t¼ 1.28±0.003 and

1/s¼ 1.95±0.01. Panel (a) shows avalanche size distributions for all loading conditions at different external stresses, panel (b) shows the same distributions

collapsed using the exponents t and 1/s, which have been measured by a joint fit of all data sets. The black line is the theoretical distribution of (ref. 47), given

in equation (1). The values in the legend refer to the ratio S/Sc for each loading condition; the fitted Sc values are given in Supplementary Table 1.
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Here f denotes the force acting on the indenter divided by the indenter

cross section. Lines are fits using the form given in equation (3), and we

measure t¼ 1.29±0.01.
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where g is the avalanche size versus duration exponent measured
above, G is the Gamma function, and a is a parameter describing
the asymmetry of the avalanche shape.

We have measured the average shape of avalanches of fixed
duration under several loading conditions: pure tension and pure
shear in systems with periodic boundary conditions in 3D, as well
as simple shear, bending and indentation in systems with free
surface boundary conditions in 2D. As shown in Fig. 5, we fit
each curve using (7) to obtain a mean g¼ 1.8±0.05, identical to
the measurement based on avalanche size versus duration
reported in Fig. 4, and inconsistent with the inverted parabola
of mean-field theory where g¼ 2 and a¼ 0. A full list of fit
parameters is given in Supplementary Table 2.

We have also measured avalanche shapes for avalanches of
fixed size S. In this case, the expected scaling form is (refs 48,49)

_Eh iS¼
S
tm

Sm

S

� �1=g
f

Sm

S

� �1=g t
tm

 !
; ð5Þ

where Sm and tm are size and time scales, and f is a universal
scaling function. Accordingly, for a given loading condition,
mean avalanche shapes at different sizes can be collapsed by
rescaling t by S� 1/g and _E by S1/g� 1, with the exponent g¼ 1.8 as
measured from hSi versus T data. We show in Fig. 6a this collapse
for pure shear loading in 3D. At early times, the universal shape
f(t)Btg� 1 is expected48. As shown in Fig. 6b, this scaling with
g¼ 1.8 is valid for all loadings whereas the mean-field prediction
of linear growth (g¼ 2) is in clear contradiction with the data.

Local stability exponent at yield is nontrivial. We define the
local stability index X¼ 1–Seq/St associated with a grid element
as the normalized difference between the local equivalent stress
Seq (as defined in the Methods section) and the local
ST activation threshold. For elastic manifold depinning, the
probability density P(X) is independent of X for X-0. However,
it has been pointed out in several recent works23,31 that a
non-positively definite interaction kernel, which is typical for
elastic interactions associated with local deformation events, may
give rise to non-trivial behaviour of the distribution of local
stability where P(X)pXy and y is the local stability exponent.

We first test whether P(X) depends on system dimensionality
and loading conditions. As shown in Fig. 7, P(X) at criticality is
described by the nontrivial exponent y¼ 0.354±0.004 for all

conditions tested. The distribution is well fitted by a Weibull
distribution of exponent k¼ yþ 1¼ 1.35. Remarkably, the
universal P(X) distribution can even be identified under loading
conditions where there is no simple way to define a critical stress,
such as indentation. In that case, we determine the P(X)
distribution by performing a reference simulation with a
deterministic ideal plasticity model. This allows us to define, for
a given indentation depth, a clearly delineated plastic zone
underneath the indenter. If we now perform a simulation of the
stochastic model and restrict our analysis to the plastic zone, we
find a local stability distribution which is virtually indistinguish-
able from those obtained from the other loading modes. These
observations corroborate the conjecture that a nontrivial yet
universal local stability distribution is a generic signature of the
plastically deforming state.

In addition, we have also tested the effect of the statistics of
local ST activation thresholds. In general, we assume that the
distribution P(St) is uniform on the interval [0,1), an assumption
which is surely invalid for any real material. To check the effect of
this assumption, we have also tested activation threshold
distributions of Weibull form with constant mean but variable
exponent k, thus implementing different degrees of local disorder.
As seen in Fig. 8a,b, the ensuing local stability distributions at
criticality differ only in width, whereas their functional shape is
universal and again well described by a Weibull distribution of
exponent k¼ yþ 1¼ 1.35.

If we investigate how this universal distribution is approached in
the course of loading, however, we find unexpected behaviour, as
illustrated in Fig. 8c,d. As the load and strain increase, the local
stability distribution does not evolve directly towards the universal
distribution at criticality, but first follows the predictions of
standard depinning theory and evolves towards a distribution with
local stability exponent y¼ 0. Only in close vicinity of the critical
point is this trend reversed and the exponent increases again to the
asymptotic value y¼ 0.35. The same behaviour was found for all
P(St) distributions investigated. This surprising finding corrobo-
rates our choice of P(St) as a distribution with exponent y¼ 0: even
if one assumes a different initial y, the local stability exponent
first flows towards y¼ 0 before changing to y¼ 0.35 close to the
critical stress. Note that this transient approach towards the
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behaviour characteristic of classical depinning systems is found
even if we set y initially to its asymptotic value y¼ 0.35.

The effect of the coupling constant C on the evolution of the
local stability distribution is shown in Fig. 9, which shows the
evolution of y as a function of the reduced stress S/Sc for different
values of C. The behaviour in 2D and 3D simulations is similar:
Away from the critical stress, the y exponent takes the trivial value
y¼ 0 while very close to the critical stress, it crosses over to the
non-trivial value yE0.35 which is characteristic of the plastically
yielding state. Importantly, this crossover occurs later for small
values of the coupling constant C and we may conjecture that, in
the limit of infinitesimally weak coupling C-0, the system is
flowing towards depinning-like behaviour (yE0) everywhere
outside an infinitesimal vicinity of the macroscopic yield stress.
This may serve as a partial explanation why peculiarities of the
yielding transition, which are intimately connected to a nontrivial
y exponent, may have been overlooked in the earlier literature.

Scaling is universal also for non-associative plastic flow. Our
choice of flow rule, which aligns the local shear deformation in a

mesoscopic volume element with the local shear stress, implements
an associative flow. However, such associativity cannot be taken for
granted, and we therefore explore non-associative generalizations
of the model and demonstrate that they do not alter the avalanche
dynamics and statistics. Using the terminology of ref. 50,
we distinguish between isoscale and heterogeneity-induced
non-associativity, as discussed in the Methods section. Simula-
tions of the model modified to take into account isoscale
non-associativity by introducing a pressure sensitivity parameter
a display little influence of a on the avalanche statistics. Even if one
assumes rather large values of a, the avalanche size distribution
does not change (Fig. 10a), demonstrating the robustness of our
stochastic plasticity model. Furthermore, introducing heteroscale
non-associativity through a parameter d which characterizes
deviations from associativity caused by the coarse graining from the
single ST to the mesoscopic element scale (for details see Methods
section), shows that also in this case non-associativity has no
discernable impact on the avalanche size distribution (Fig. 10b).

Avalanche size distributions invariant under mesh rescaling.
Finally, we note that the physical reality represented by our model
should not depend on discretization scale and ask whether our
predictions are invariant under change of mesh resolution, a
requirement known in engineering plasticity as mesh independence
of the solution. This question is especially pertinent because, as
discussed in the Methods section, the strain produced by a ST in
a grid element and therefore the coupling constant C of the
model depend on the element volume Vel. As we are dealing
with self-organized behaviour which involves collective phenomena
on multiple scales, we define mesh independence, somewhat
differently from standard engineering thinking, in terms of statis-
tical (self) similarity.

We consider a system of linear size L in D dimensions,
discretized into ND elements of size l¼ L/N. A change in
discretization length scale is tantamount to considering a system
of (N0)D elements of size l0 ¼ Zl where N0 ¼N/Z. If our
discretization volume is larger than the physical volume Vst

involved in a ST, this change requires rescaling the coupling
constant: a ST which in the volume Vst produces the elementary
strain Est, produces a reduced strain DE¼ EstVst/Vel in the larger
element volume Vel. Assuming that an event does not trigger its
immediate sequel in the same rescaled volume, we find that after
rescaling C0 ¼ C/ZD. The strain EstVst/LD produced by a single ST
on the system scale is invariant upon rescaling. The strain
produced by an avalanche of size S in the system is SEstVst/LD, and
to demonstrate statistical scaling invariance we need to show that
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the distribution P(S) remains invariant if we simultaneously
rescale C-C/ZD and N-N/Z. Supplementary Fig. 2 demon-
strates this for D¼ 2 and different stress levels (simulations
performed in pure shear). The results exhibit statistical mesh
invariance as they should.

A second question concerns the strain localization patterns. It
is evident that, upon rescaling to a larger element size, any details
of the localization patterns below the element scale are bound to
get lost. However, this loss of information is controllable because
of the self-similar behaviour of the dynamics upon rescaling:

We can exploit the fact that the lost details are statistically
equivalent to the details captured on the larger scale. Things
change, of course, once the element size is comparable to the
physical size of a ST in which case modifications, for example, by
introducing an internal length scale into the constitutive
equation, are required (for examples in the context of stochastic
plasticity models, for example, refs 51,52).

Discussion
We have formulated a tensorial model of amorphous plasticity
which captures avalanche dynamics and at the same time
reproduces the complex, spatially heterogeneous shear localiza-
tion patterns which emerge in real amorphous materials. Our
model is both truly quasistatic—a feature which has been shown
to be of great importance for measurement of critical exponents26

and which is difficult to ensure in experiments and MD
simulations -and also tensorial. Unlike scalar models it can be
directly applied to real plasticity experiments. Using this model,
we have demonstrated that avalanches in both 2D and 3D are
characterized by universal, dimension independent critical
exponents which are consistently observed across a wide range
of loading conditions including heterogeneous and multi-axial
loading. We have also shown that our results do not depend on
choice of local flow rule or mesh scale.

Our results provide compelling evidence that the universality
class of plastic yielding in amorphous materials is not mean-field
depinning as has been previously claimed, even though the
phenomenon may still be envisaged within the ‘depinning
paradigm’ of the evolution of an elastic manifold in a higher-
dimensional space with quenched disorder. An explanation for
the failure of mean-field theory is provided by the fact that the
long-range elastic interactions associated with elasto-plasticity are
not associated with a positively definite elastic kernel. This
invalidates a crucial assumption of the renormalization group
theory on which our current understanding of depinning
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phenomena is based53. Nevertheless, the exponents we
measure are close to the values known for depinning of 1D
lines with long-range interactions (t¼ 1.25±0.05 refs 28,29,
1/s¼ 2.1±0.08 ref. 29, g¼ 1.7 ref. 28), and the scaling form of
(1) is derived as a renormalization group prediction for that
problem47. This suggests that dimensional reduction by strain
localization may be relevant19,26 in plastic yielding. Such strain
localization on linear/planar manifolds, which follow directions
that are dictated by the macroscopic stress state, is an essential
factor in the emergence of shear bands which are thus intimately
related to the avalanche dynamics. Lack of positive definiteness of
the elastic kernel may also be the cause the emergence of a non-
trivial distribution of local stability and a non-zero value of the y
exponent, which has been discussed as a signature feature that
distinguishes plastic yielding from standard depinning in any
dimension23,31.

One may ask whether our findings relating to the complex
and universal nature of the spatio-temporal dynamics character-
izing the onset of plastic deformation are of relevance to
mechanical or materials engineers who are concerned with
designing the microstructure and tailoring the properties of
materials to meet the demands of engineering systems. At first
glance the answer might be negative: if fluctuation phenomena at
yield are universal to a wide class of materials and conditions,
they cannot be easily engineered. But this does not mean that
one needs not to understand them, nor that they are irrelevant
in the quest for improved tools for materials design. In the case of
amorphous materials such as metallic glasses, which are prone to
failure by shear banding shortly after yield, the spatio-temporal
localization patterns at yield may be essential for understanding
the incipient stages of catastrophic shear localization. Models
which adequately capture the interplay between disorder, stress
redistribution and strain localization may thus be important for
the computational design of microstructures of improved
ductility. Such improvements can be achieved through tuning
the behaviour in the run-up to yielding which depends on
the material-specific statistics of activation thresholds54 as shown
in a proof-of-concept study55 that was based upon a simplified,
scalar version of the present model.

For incorporation into bottom-up approaches towards
microstructure engineering, the present model can be further
developed along several lines. The ‘seed distribution’ of activation
thresholds and the distribution of ST intensities EstVst can, for a
given material system, be derived from large scale MD simulations
as demonstrated in (ref. 4) for amorphous silicon. In addition, for
application to shear band formation, the model can be extended to
introduce irreversible softening/damage accumulation55 and cast

into a large-strain framework in order to correctly capture strain
localization in catastrophic shear bands.

Modelling approaches such as the present one, which focus on
generic statistical relationships characterizing the fluctuations of
material response below the specimen scale and relate them to the
sample-scale deformation behaviour, might also be of interest in
view of ‘top–down’ approaches to materials engineering and
design (for example, refs 56,57). Our findings provide evidence
for generic functional forms of the statistics of fluctuations (e.g.,
the distribution of local residual strength that emerges in the run-
up to yielding, or the size distribution of strain avalanches) that
can help, by assisting statistical inference, in tasks such as
establishing the statistics of extremes which control important
aspects of materials strength and reliability.

Methods
Stochastic tensorial model and loading protocol. We implement our
simulations on a D-dimensional cubic lattice and assign to each lattice element a local
stress tensor S. The element behaves elastically as long as the stress remains in the
elastic domain defined by �eq¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þ�0 : �0

p
� �t , where �0¼��ð1=DÞTrð�ÞI

is the deviatoric part of the stress tensor and I is the rank-2-unit tensor in D
dimensions. ST activation occurs in a lattice element as soon as the local equivalent
stress Seq exceeds the randomly assigned local threshold St which we draw from a
distribution P(St). Atomic rearrangements occurring during a ST are represented in
terms of random changes of the local threshold which is newly assigned after each ST.
In this respect, our model differs significantly from the zero-temperature limit of
stochastic plasticity models which consider thermal activation of shear events with a
stress dependent threshold, such as the Kinetic Monte Carlo approaches proposed by
Bulatov and Argon36 and Homer and Schuh40. Such models assume a fixed and
uniform local yield threshold, an assumption which may not fully capture the
influence of atomic-scale randomness on plastic flow and makes such models
unsuitable for investigating avalanche phenomena.

The stress acting on an element is the sum of internal stress arising from the
plastic strain field Ep and an applied load. In simulations with periodic boundary
conditions (PBCs), the loading is a spatially homogeneous ‘external’ stress field �ext

which is understood to arise from remote boundary tractions applied to the infinite
contour. The ‘internal’ stress arising from the plastic strain field is calculated using
either a Green’s function method (for PBCs) or FEM (for finite systems). In the
former case we consider stress and strain only at the element center-points which
form a cubic grid with periodic boundary conditions. In Fourier space, the internal
stress field �int is given by �int

ij ðqÞ¼Gijkl qð ÞEp
klðqÞ. The interaction kernel G is

obtained by treating the plastic strain of an element as the strain of an Eshelby
inclusion of vanishing volume located at the element centre-point, for which the
stress field is known analytically58. Continuing this solution periodically with
period L allows us to use a Fourier transform to obtain the overall internal stress
field that arises from superposition of all element stresses. For finite samples, our
FEM implementation uses four-node linear elements of square shape. Each element
is associated with an element stress that is evaluated as the average stress over the
element. An active element experiences a plastic strain increment that is
homogeneous over the element and zero elsewhere. The models are matched by
ensuring that the plastic strain field of the point-like Eshelby inclusion, integrated
over the element, has the same value as the homogeneous element strain in the
finite-element model.
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When a ST is activated in an element, we increase the local plastic strain Ep by
the tensorial increment DEp¼ÊDE where the strain direction Ê¼�0=�eq is chosen to
maximize the locally dissipated energy. This choice implements an associative flow.
Since, we are formulating a coarse-grained model, it is understood that the element
volume Vel is at least equal to the characteristic ST volume Vst. As a consequence,
the local strain increment DE¼ EstVst/Vel produced by a ST in an element depends
on the element volume as well as on the characteristic ST strain Est and volume Vst.

We can make our models non-dimensional by scaling all stresses by the
characteristic activation threshold hSti, and all strains by the incremental strain DE.
Apart from terms of the order of unity containing Poisson’s ratio, we are then left
with a single non-dimensional parameter, namely the coupling constant

C¼ EDE
�th i
¼ EEst

�th i
Vst

Vel
: ð6Þ

In this expression, hSti characterizes the typical stress needed to trigger a ST event,
and the product of DE and the Young modulus E characterizes the magnitude of
elastic stress redistribution subsequent to such an event: C is the elastic coupling
strength, expressed in units of the characteristic local threshold. It is important to
note that, in a coarse-grained theory such as ours, C depends not only on the
physical parameters Est, Vst and hSti characterizing the ST, but also on the element
volume (coarse-graining volume) Vel which defines the spatial resolution of our
model: if we use a coarser mesh, the strain produced by a single ST event in our
elementary volume becomes smaller, and so does C.

We use, unless otherwise noted, the value C¼ 0.05. For a given material and
mesh resolution the numerical value of the coupling constant can be evaluated
from MD simulations: As demonstrated for amorphous Stillinger-Weber silicon4,
the stress-strain curves obtained from MD simulations can be reconstructed from
the ‘plastic intensities’ VstEst and threshold stresses of localized ST events using a
model of elastically coupled ST. That work4 shows an exponential distribution of
ST intensities with average VstEstE45 Å3. With an elastic modulus EE100 GPa and
hStiE4 GPa, we then find that C¼ 0.05 corresponds to a coarse-graining volume
of (30 nm)3. Increasing the coarse-graining volume reduces the coupling constant
but also the number of elements representing a given physical volume, and we have
demonstrated in our Results section that the avalanche statistics remains invariant.

In addition to the coupling constant, our model depends on the probability
density P(St). In principle this distribution can for a given volume also be extracted
from MD simulations4. Here, we use a uniform distribution over [0, 1), but other
distributions such as Weibull distributions with different exponents k have also
been considered. The choice of P(St) only affects the numerical value of the yield
stress, which is a non-universal quantity.

Our quasistatic loading protocol is defined as follows: the external stress is
increased adiabatically slowly to the threshold of the weakest element, whence the
first ST occurs. After the event, we evaluate the internal stress change caused by the
local plastic strain increment(s) and trigger simultaneous ST events in those
elements that become activated (parallel update). This is repeated until all elements
are below their activation threshold, that is, the avalanche terminates. Throughout
the avalanche, the stress is held constant at the level required to trigger the initial
ST, as described previously19,32. The size S of the avalanche is defined as the total
number of local strain increments and its duration T is the number of parallel
update steps performed. Subsequent to an avalanche, we increase the external stress
by the minimal amount required to trigger another ST and we track the ensuing
avalanche. We repeat this procedure until the averaged strain exceeds a prescribed
maximum value.

Code used in the simulations is available from the corresponding authors upon
reasonable request.

Model with isoscale non-associativity. Isoscale non-associativity arises if a
thermodynamic force (for example, a hydrostatic stress) triggers or influences a
flux associated with another thermodynamic force (for example, a shear stress).
A well-known example is the pressure-assisted constriction of the dislocation
core which is a prerequisite for dislocation motion, hence shear deformation, in
low-temperature deformation of bcc metals (non-Schmid behaviour50). An
analogous phenomenon may be relevant in plastic flow of amorphous solids. The
basic idea is that ST activation, which leads to a transition between two statistically
equivalent local configurations of atoms, may be associated with a transient local
dilation. Thus, even though the ensuing deformation is a pure shear, ST activation
may be influenced by hydrostatic stresses: it is likely to be easier in the presence of
tensile and more difficult in presence of compressive hydrostatic stress. One might
ask how such an influence affects the avalanche dynamics.

To investigate this question, we use a variant of our model where we assume
that the ST activation thresholds are modified by the hydrostatic stress. Specifically,
we use the modified activation condition.

�eq¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þ�0 : �0

p
4�t � aTr �; ð7Þ

where the parameter a defines the pressure sensitivity of the model—if the trace of
the stress tensor (the hydrostatic stress) is locally positive (dilation), the local yield
stress is reduced, otherwise it is increased. At the same time, we keep the old
criterion for determining the plastic strain increment based on the deviatioric stress
only, in line with the observation that plastic flow of amorphous solids is not
associated with significant density changes even if the pressure sensitivity of the

yield stress is appreciable. Hence, our pressure dependent model may be classified
as a stochastic generalization of a Drucker-Prager type plasticity model with a non-
associated flow rule.

Like other parameters of our phenomenological plasticity model, the parameter
a may for a given material be determined from atomistic simulations.
Supplementary Fig. 3 shows, for illustration, yield surface data deduced from
molecular simulation of a model metallic glass59 together with a best fit of a
Drucker-Prager type yield surface.

Model with heterogeneity-induced non-associativity. Fluctuations of the local
stress state below the elementary volume of our coarse-grained description can by
construction not be correctly represented. As the physical volume involved in a ST is
smaller than the elementary volume of the coarse-grained model, the stress calculated
for the coarse-grained element cannot uniquely determine the local driving forces for
STs, which are bound to fluctuate around the coarse-grained driving force. As a
consequence, even if driving forces and mechanical response are aligned on the
microscopic level of the dynamics of atoms in the activated ST volume, the same may
not be true on the coarse-grained element level where the response at any given
moment may be governed by activation of a single ST. Such non-alignment of the
coarse-grained driving force with the local driving force on the activated volume may,
in the terminology of ref. 50, give rise to heterogeneity-induced non-associativity on
the level of the coarse-grained description. This can be incorporated into the model
by relaxing the assumption that the local response is strictly aligned with the coarse-
grained driving force and requiring instead that the response is aligned with the
driving force on average, allowing for fluctuations.

We have implemented such non-associative fluctuations of the plastic response
by evaluating the direction of the ST strain in our 2D model as
Ê¼O fdð Þð�0=�eqÞOT fdð Þ; where O fdð Þ is a 2D rotation matrix which rotates the
axes by an angle fd which we define as a Gaussian distributed random variable of
zero average and standard deviation d� p=2. The rotation angles pertaining to
different ST events are assumed statistically independent. Evidently, as a
consequence of the random rotation of the shear tensor, associativity is lost at the
level of the individual ST event. Since d¼ 0 represents the associative case, the
parameter d may be referred to as heteroscale non-associativity parameter.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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