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Marco Polo describes a bridge, stone by stone.

’But which is the stone that supports the bridge?’ Kublai Khan asks.

’The bridge is not supported by one stone or another,’ Marco answers, ’but

by the line of the arch that they form.’

Kublai Khan remains silent, reflecting. Then he adds: ’Why do you speak to

me of the stones? It is only the arch that matters to me.’

Polo answers: ’Without stones there is no arch.’

Italo Calvino, Invisible cities



Abstract

The cell-cycle culminates with the segregation of sister chromatids in the two newborn daughter

cells. Correct chromosome segregation is a fundamental step in ensuring the transmission of unaltered

genetic material. The molecular machinery that physically carries out chromosome segregation is

the mitotic spindle, whose components, microtubules, attach to kinetochores, multiprotein structures

situated at the centromeric region of each chromosome. During prometaphase, microtubules bind

kinetochores so that each pair of sister chromatids is pulled towards the two poles of the cell. Anaphase

starts, thanks to the cleavage of cohesin rings that hold sister chromatids together, when the correct

bipolar attachment is achieved. Chromosomes, freed from cohesin, migrate evenly to the two daughter

cells, both inheriting the same genetic material.

The presence of unattached kinetochore at anaphase onset is dangerous, since it may lead to

unbalanced ploidy of daughter cells, with severe consequences for their survival. For this reason,

attachment of kinetochores is overseen by a control mechanism, the Spindle Assembly Checkpoint,

or SAC. The SAC halts anaphase progression until all kinetochores are attached to microtubules.

Spindle poisons activate the SAC and halt cell progression for several hours. However, cells eventually

adapt to the SAC and enter anaphase, regardless of the presence of the drug. Adaptation is extremely

variable in time, and the origin of this large variability is unknown. Moreover, whether cells adapt to

an active SAC or if they enter anaphase as a consequence of SAC silencing, is an open question.

With this work, we demonstrate that budding yeast cells adapt to an active SAC. This statement

is supported by single-cell experiments on cells carrying both a marker for SAC activation and for

anaphase onset. Based on these data, we built a quantitative model of the SAC network, to investigate

the origin of variabiliy in adaptation times. The parameters of this model were directly measured,

if not available in literature. In particular, we found that the complex that promotes anaphase

onset, APC/C, is present in very low amounts, giving a prominent role in adaptation to the inherent

stochasticity of chemical interactions. In our model, random fluctuations in the number of molecules

of the active form of APC/C drive the onset of anaphase in mitotically-arrested cells. We then

verified that, as predicted by the model, increasing the synthesis of Cdc20, a protein required for the

SAC and coactivator of APC/C, increases adaptation propensity, but does not change its stochastic

nature. Our conclusions support the idea that adaptation is a stochastic process, and that adaptation

propensity is the same for all cells.

1



Chapter 1

Introduction

Cell reproduction occurs by an elaborate series of events called the cell cycle, whereby

chromosomes and other components are duplicated and then distributed into two daughter

cells. A complex network of regulatory proteins governs progression through the steps of

the cell cycle. Morgan [2007]

As suggested by this quote by David Morgan, the goal of what is known as cell cycle is cell reproduction,

which is essential for all living beings. For unicellular organisms, this event generates an entire new

organism. The faithful transmission of genetic information lies at the heart of cell reproduction.

For this reason, the two main events in the cell cycle are, as presented in the quote, chromosome

duplication and their segregation. Each of the two events occurs in a different phase of the cell cycle:

chromosome duplication occurs in interphase, while chromosome segregation in M phase. The result

of a complete cell cycle is the birth of two cells, which carry the same genetic material of the mother

cell.

Interphase is further subdivided into G1, S and G2 phases. During G1 phase (or Gap 1), the cell

grows in size, and monitors the environment before starting a new round of cell division. If conditions

are not appropriate, the cell enters a resting state, called G0. If conditions are favorable, the cell

triggers the irreversible cascade of events that will lead to cell division. The first key step of this

cascade happens during S phase (or Synthesis), when the chromosomes are duplicated. At the end of

this phase, the pairs of identical chromosomes, called sister chromatids, are tightly linked together.

After S phase, there is an additional gap phase, G2, which monitors the safe progression in the next

cell-cycle stage. Next, the cell segregates its chromosomes during mitosis, and physically divides in

two during cytokinesis. These are the two phases comprising M phase. In the next section, we will

address mitosis, the phase of the cell cycle most relevant for this study.

2
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Figure 1.1: Eukaryotic cell cycle.
Depicted in red are the chromosomes, in green the mitotic spindle and the microtubule organizing
centers (centrosomes in vertebrates, spindle pole bodies in yeasts). Yellow dots on chromosomes are
the kinetochores.
Image taken from Morgan [2007].

1.1 Mitosis

During mitosis, sister chromatids are segregated into two daughter cells. Chromosome segregation

is operated by the mitotic spindle, which is the molecular machinery that physically attaches to

chromosomes and pulls them to the opposite poles of the cell at the end of mitosis. The mitotic

spindle is formed by microtubules, tubuline polymers, and is nucleated from microtubule-organizing

centers (or MTOCs, called spindle pole bodies in yeasts, and centrosomes in animal cells).

At the beginning of mitosis, sister chromatids are held together by cohesin Michaelis et al. [1997],

a ring-shaped protein complex Gruber et al. [2003]. During prophase, the first stage of mitosis, sister

chromatids undergo condensation, which facilitates their movement. At the same time, the MTOCs

migrate towards the opposite poles of the cell and start nucleating the mitotic spindle. Prometaphase

starts with the breakdown of the nuclear envelope, in animal cells but not in yeast, and continues

until all sister chromatids are attached to microtubules, when metaphase starts. The opposite forces

pulling sister chromatids align them on the metaphase plate, which is localized at the center of the

spindle.

The onset of anaphase is marked by the cleavage of cohesin rings, that allows the separation

of sister chromatids Michaelis et al. [1997]. The mitotic spindle elongates and pulls the separated

chromatids towards the opposite MTOCs, that move outward. Telophase and cytokinesis are the

final steps of cell division, when chromatids migration stops, chromosomes decondense, and the cell

is pinched in two. In animal cells, two nuclear envelopes reform around the separated genetic material.

The regulation of the whole mitotic process is controlled by the Cyclin-dependent kinase 1 (Cdk1,
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or Cdc28 in budding yeast), that by phosphorylating its substrates drives the major mitotic events:

chromosome condensation, spindle formation and elongation, separation of sister chromatids Morgan

[2007]. The regulatory subunits of Cdk1 are the cyclins. In budding yeast there are four mitotic

cyclins, Clb1-4, with partially overlapping functions Bloom and Cross [2007]. Clb2 is considered the

main mitotic cyclin, since it accounts for roughly 70% of the mitotic activity of Cdk1 Surana et al.

[1991]. Its levels rise at the beginning of mitosis, and they start diminishing at anaphase onset.

Clb2 degradation is completed by the end of mitosis Sullivan and Morgan [2007]. Since the activity

of Cdk1 depends on obligatory association with a cyclin, Cdk1 activity is related to Clb2 levels.

However, binding to cyclins is a necessary condition, but it is not sufficient for Cdk1 activation: other

post-translational modifications, often organized in feedback loops, are needed Morgan [2007]. Cdk1

enzymatic activity peaks at metaphase and declines to minimal values before mitotic exit Sullivan and

Morgan [2007]. The decline in kinase activity is not sufficient for mitotic exit: the dephosphorylation

of Cdk1 substrates is also required. In budding yeast, the main responsible for the dephosphorylation

of Cdk1 substrates is Cdc14 Visintin et al. [1998], which is released from the nucleolus, and thus

activated, in early anaphase Visintin et al. [1999].

We now focus on metaphase-to-anaphase transition in budding yeast, the cell-cylce stage and the

organism investigated in this study.

1.1.1 Metaphase-to-anaphase transition

During the final stages of S phase and prometaphase, microtubules emanating from the two MTOCs

start capturing chromosomes Tanaka et al. [2005]. The binding of microtubules to chromosomes is

mediated by multiproteins structures called kinetochores, located at the centromeric region of each

chromosome Santaguida and Musacchio [2009]. These structures provide not only the docking site

for microtubule attachment (one per kinetochore in budding yeast), but also the tension-sensing ma-

chinery that can halt the progression into anaphase until complete biorientation is provided (see Sec-

tion 1.1.2). Due to the stochastic nature of the attachment process, improper microtubule-kinetochore

attachments can occur before the correct biorientation is achieved. The whole process is highly dy-

namic, and involves elongation/shrinkage of the microtubule fibers Huang and Huffaker [2006] as

well as attachment/detachment from kinetochores of incorrectly attached microtubules Tanaka et al.

[2002]. As soon as all the sister chromatids pairs are correctly bioriented, the forces pulling them

towards the opposite MTOCs align them on the metaphase plate, and anaphase onset follows.

For anaphase to take place, two proteins need to be degraded: securin (Pds1 in yeast) and Clb2.

Pds1, when degraded, releases its binding partner separase, whose protease activity induces cohesin

cleavage Cohen-Fix and Koshland [1999]. Pds1 is thus the main inhibitor of anaphase, since its

degradation triggers the cascade of event that allows sister chromatids separation. At anaphase onset,

also Clb2 starts being degraded. Both Pds1 and Clb2 are substrates of a complex known as the
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Figure 1.2: Mitotic spindle
Formation of mitotic spindle in budding yeast, nucleated from the two opposite spindle pole bodies.
Image adapted from Morgan [2007].

Anaphase Promoting Complex, or Cyclosome (APC/C), which induces proteasomal degradation of

specific substrates by polyubiquitination Lim et al. [1998].

APC/C structure and activation

APC/C is a highly conserved E3 ubiquitin ligase composed, in different organisms, by at least 13

subunits (see Table 1.1). It can be subdivided into three subdomains with different functions: a

catalytic core, a structural platform, and a structure called ”arc lamp”, composed by a sandwich of

subunits containing multiple 34-residues tetratricopeptide (TPR) repeats Primorac and Musacchio

[2013]. The catalytic core is composed by APC2 and APC11. The structural platform is composed

by three large subunits, APC1, APC4 and APC5. The ”arc lamp” is composed by several subunits,

among which Cdc27, Cdc16 and Cdc23. These three subunits, highly conserved, form symmetric

homodimers and are thus present in two copies in APC/C Zhang et al. [2010]. Sandwiched between

the C-terminal region of Cdc23 and APC1, APC4 and APC5, lies Mnd2. This is a non-essential

APC/C subunit, responsible for the mitotic turnover of the APC/C coactivator Cdc20 Foster and

Morgan [2012], Mansfeld et al. [2011], Uzunova et al. [2012], Alfieri et al. [2016]. The two mitotic

coactivators of APC/C, Cdc20 and Cdh1, dock to APC/C at the same binding site Primorac and

Musacchio [2013], and are thus mutually exclusive. The two proteins are structurally related, and share

three important motifs involved in the interaction with APC/C: the IR motif at the C-terminus, and

the C-box and KILR motifs at the N-terminus.

APC/C activation at the metaphase-to-anaphase transition depends on its binding with Cdc20.

Indeed, cells carrying temperature-sensitive cdc20-1 mutation die at the restrictive temperature

during a metaphase arrest Lim et al. [1998]. APC/CCdc20 targets both Pds1 and Clb2, albeit

APC/CCdc20 does not completely degrade Clb2 Yeong et al. [2000]. The completion of Clb2 degrada-
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Vertebrates S. Cerevisiae
APC1 APC1
APC2 APC2
APC3 CDC27
APC4 APC4
APC5 APC5
APC6 CDC16
APC7 not present
APC8 CDC23
APC9 APC9
APC10 DOC1
APC11 APC11
CDC26 CDC26
APC13 SWM1
APC15 MND2
APC16 Unknown

Table 1.1: Composition of APC/C in vertebrates and budding yeast
Table adapted from Primorac and Musacchio [2013].

tion is operated in late anaphase by APC/C bound to its coactivator Cdh1, that substitutes Cdc20.

Cdh1 is one of the common substrates of Cdk1 and Cdc14, and is activated by Cdc14 via dephospho-

rylation. Cdk1 and Cdh1 are mutual antagonists, since Cdk1 inactivates Cdh1 by phosphorylating

it Zachariae et al. [1998], and Cdh1 inactivates Cdk1 by degrading its binding partner Clb2 Visintin

et al. [1998]. Cdh1, as opposed to Cdc20, is not essential for cell viability, since Clb2 is degraded by

APC/CCdc20 to levels compatible with mitotic exit Wäsch and Cross [2002].

Regulation of APC/CCdc20 activity and Cdc20 protein levels

APC/CCdc20 is regulated by different mechanisms, including the regulation of Cdc20 levels. In par-

ticular, while APC/C is present throughout the whole cell cycle, Cdc20 is not. Cdc20 is virtually

absent from mitotic exit until late S-phase, when its synthesis is triggered and sustained until anaphase

onset Pan and Chen [2004], Robbins and Cross [2010], Prinz et al. [1998]. Cdc20 synthesis partially

depends on the transcriptional inhibitor Yox1, which is inhibited by Cdk1 during mitosis Liang et al.

[2012]. By silencing Yox1, Cdk1 favours Cdc20 synthesis, and in turns APC/C activation. Cdk1

activity is necessary to sustain Cdc20 production, since Cdk1 inhibition causes a drop in Cdc20

mRNA and protein levels that arrests cells in metaphase Liang et al. [2012], Vernieri et al. [2013].

s Cdk1 facilitates APC/C activation also by increasing the binding affinity of APC/C with Cdc20

by phosphorylating three APC/C subunits, Cdc16, Cdc23 and Cdc27. As opposed to transcriptional

regulation, this mechanism is not essential: cells carrying non-phosphorylatable forms of the TPR

subunits Cdc16, Cdc23 and Cdc27 are viable, albeit mildly delayed in the cell cycle Rudner and Mur-

ray [2000]. Viability of non-phosphorylatable APC/C-mutant is likely due to residual binding affinity,

lower than wild-type but sufficient to drive an unperturbed metaphase-to-anaphase transition.

Cdc20 synthesis is balanced by fast degradation. Both asynchronous and prometaphase-arrested

cells show a Cdc20 half-life of ∼ 10 minutes Pan and Chen [2004], Foe et al. [2011], Foster and
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Morgan [2012]. Cdc20 degradation solely depends on APC/C Foe et al. [2011], Nilsson et al. [2008],

and thus occurs via ubiquitination. During prometaphase arrest, Cdc20 ubiquitination occurs mainly

through an in cis mechanism Foe et al. [2011]. This means that APC/C ubiquitinates and targets

to degradation a Cdc20 molecule bound to it. Cdc20 degradation relies on the same IR and C-box

domains used to bind and degrade Pds1 and Clb2 Foe et al. [2011]. The fast synthesis and degradation

of Cdc20 imply fast dynamics for reaching the steady-state levels of the protein (see Section 1.2.1).

The in cis mechanism of degradation persists as long as APC/CCdc20 is present. In late anaphase,

when Cdh1 substitutes Cdc20 in activating APC/C, Cdc20 degradation is driven by an in trans mech-

anism: Cdc20 is recognized by APC/CCdh1 as a substrate, ubiquitinated and targeted for degradation.

As for other APC/CCdh1 substrates, Cdc20 binding to APC/CCdh1 is mediated by D-boxes. During

G1 phase, when Cdc20 synthesis is absent, APC/CCdh1 completes Cdc20 degradation Huang et al.

[2001], Foe et al. [2011].

As can be noticed from this brief description, Cdk1, APC/C and Cdh1 regulations are interde-

pendent: Cdk1 induces APC/C activation by sustaning Cdc20 synthesis and APC/C-Cdc20 binding,

while APC/CCdc20 reduces Cdk1 activity by inducing the degradation of the Cdk1 regulatory partner

Clb2. This is a negative-feedback loop. In contrast, Cdk1 and Cdh1 are in a positive-feedback loop,

since they inhibit each other: Cdk1-dependent phosphorylation inhibits Cdh1, while unphosphorylated

Cdh1, bound to APC/C, inhibits Cdk1 by inducing Clb2 degradation. The transition of Cdk1 from

a ’high activity’ state to a ’low activity’ state marks the difference between metaphase and anaphase.

Completion of Cdk1 inactivation is necessary for regular cell-cycle progression Gérard et al. [2015].

1.1.2 The Spindle-Assembly Checkpoint

The metaphase-to-anaphase transition is a delicate step in the cell cycle. If securin cleavage occurs

before chromosome biorientation is completed, DNA segregation can lead to uneven partitioning of

genetic material, giving rise to daughter cells carrying more or less chromosomes than euploid cells.

This condition, typical of cancer cells, is called aneuploidy, and it is largely detrimental, inducing

severe unbalancing in the transcriptome and proteome of the cell Pavelka and Rancati [2013], Tang

and Amon [2013].

To avoid this fate, eukaryotic cells developed a highly conserved mechanism, called the spindle-

assembly checkpoint (SAC). In the presence of uncorrect attachment, the SAC is activated by a

signaling cascade that starts from unattached kinetochores and leads to the formation of a complex

that inhibits APC/C. In this way, the SAC halts anaphase progression until correct kinetochore-to-

microtubule attachment. Drugs that impair microtubules formation, such as nocodazole, benomyl,

or vinka alkaloids, inhibit kinetochore-to-microtubule attachment and thus activate the SAC. In the

experiments presented in Sections 3.1 and 3.3, cells are arrested using nocodazole.
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While in mammalian cells the SAC is activated at every cell cycle, in budding yeast it is not. How-

ever, budding yeast SAC-defective cells, such as mad1∆, mad2∆ or mad3∆, in unperturbed condition

exibit higher chromosome missegregation rates than wild-type cells, albeit still very low (∼ 1% versus

∼ 0.01%) Warren et al. [2002]. Moreover, disabling the SAC by MAD1 or MAD2 deletion anticipates

the APC/CCdc20-dependent degradation of the S-phase cyclin Clb5 in unperturbed budding yeast

cells Lu et al. [2014]. These finding suggest a role for the SAC also in unperturbed budding yeast

cell-cycle.

SAC-signaling cascade

Figure 1.3: SAC signalling at unattached kinetochore
The SAC signalling pathway from unattached kinetochore in higher eukaryotes. The budding yeast
homolog of BubR1, Mad3, creates a stable complex with Bub3 but this complex does not localize at
kinetochore.
Image taken from London and Biggins [2014a].

One of the most upstream event in the SAC-signaling cascade is the phosphorylation of Ndc80,

a member of the outer kinetochore, operated by the protein kinase Aurora B, which induces the

localization of Mps1 Nijenhuis et al. [2013], Santaguida et al. [2011], Kemmler et al. [2009], Heinrich

et al. [2012]. Mps1 plays a crucial role in SAC activation and, accordingly, its overexpression arrests

cells by ectopically activating the SAC-signalling cascade Hardwick et al. [1996]. Mps1 phosphorylates

Knl1/Spc105, another member of the outer kinetochore, on different repeats of the MELT (Met-Glu-

Leu-Thr) motif London et al. [2012]. Phosphorylated MELTs are recognized by Bub3, that localizes

at kinetochores in complex with Bub1 and, in higher eukaryotes, in complex with BubR1 Primorac

et al. [2013], Shepperd et al. [2012], Kiyomitsu et al. [2011]. In contrast, the budding-yeast homolog of

BubR1, Mad3, does not localize at unattached kinetochore Gillett et al. [2004], even though it forms

a stable complex with Bub3 Hardwick et al. [2000]. The formation of the complexes Bub3:Bub1 and

Bub3:Mad3 does not depend on SAC signaling Hardwick et al. [2000], Brady and Hardwick [2000].

Next, Mps1 phosphorylates Bub1, inducing the recruitment of Mad1 London and Biggins [2014b],

Faesen et al. [2017]. Mad1, bound to Mad2, forms a heterotetrameric complex whose presence at

kinetochores is sufficient to induce a SAC arrest Maldonado and Kapoor [2011]. For this reason,

in the present work we use Mad2 localization at kinetochores as a readout of active SAC signaling

(Sections 3.1 and 3.3). As a consequence of its localization, Mad1:Mad2 complex induces the conver-

sion of cytosolic Mad2 from an open (O-Mad2) to a closed conformation (C-Mad2) in what has been

named the ”template model” De Antoni et al. [2005], Luo and Yu [2008], Mapelli et al. [2007]. The



CHAPTER 1. INTRODUCTION 9

Mad2 conformational change facilitates its binding to Cdc20 De Antoni et al. [2005], Mapelli et al.

[2007], giving rise to Mad2:Cdc20 which is the seed for the formation of the mitotic checkpoint complex

(MCC), the diffusible complex that inhibits APC/C (see next section).

In this view, kinetochores act as a catalytic platform to allow Mad2 conformational change and

thus facilitate Mad2-Cdc20 binding. Interestingly, it is possible to form Mad2:Cdc20 independently

of the kinetochores by compensating the low-affinity of O-Mad2 for Cdc20 with high levels of Mad2

itself. Indeed, Mad2 overexpression induces a SAC-arrest, independently of kinetochores Mariani et al.

[2012]. In the experiments presented in Section 3.5, cells are arrested in mitosis using this method.

The SAC-signaling pathway can be diverted by several changes. The lack of any Mad or Bub

protein results in SAC defectiveness. This mutated phenotype, in benomyl-treated cells, allowed

the identification of Mads and Bubs sets of genes in the original works by the labs of Murray and

Roberts Hoyt et al. [1991], Li and Murray [1991]. The same phenotype results from impairment in

the localization of Mad1 or Bub3 at kinetochore, and from mutations that lock Mad2 in the open

conformation De Antoni et al. [2005], Maldonado and Kapoor [2011], Primorac et al. [2013]. Not only

Mad3 deletion, but also its overexpression leads to SAC-defects, albeit mild, likely by competing for

Bub3 with Bub1, resulting in reduced amount of Bub1:Bub3 complex signaling at kinetochores King

et al. [2007]. Also Cdc20 mutations that impair the binding with Mad2 (such as cdc20-127 ) bypass

the checkpoint arrest Hwang et al. [1998].

Importantly, although the strenght of the SAC, measured as effective inhibition of APC/C or as

number of signaling molecules, depends on the number of unattached kinetochores Collin et al. [2013],

Aravamudhan et al. [2016], Dick and Gerlich [2013], one single unattached kinetochore can inhibit

anaphase progression Rieder et al. [1995].

The mitotic checkpoint complex

The main APC/C inhibitor is the mitotic checkpoint complex, or MCC. It consists of Cdc20, Mad2,

Bub3 and BubR1/Mad3 Fraschini et al. [2001], Sudakin et al. [2001], Chao et al. [2012]. The levels

of Mad2, Mad3 and Bub3 do not change during a cell cycle Pan and Chen [2004], Hardwick et al.

[2000], Fraschini et al. [2001], while, as we mentioned above, Cdc20 synthesis and degradation are

highly cell-cycle regulated. MCC is formed by the binding of two subcomplexes: Cdc20:Mad2 and

Bub3:BubR1/Mad3 Kaisari et al. [2016]. As we mentioned, Cdc20:Mad2 binding is SAC-dependent,

while Bub3:BubR1/Mad3 is not. To inhibit APC/C, MCC binds the active APC/CCdc20, resulting

in an APC/Cinhib complex comprising two molecules of Cdc20 Izawa and Pines [2015], Alfieri et al.

[2016]. APC/Cinhib cannot target its substrates for degradation, which impedes anaphase onset.

APC/Cinhib disassembly induces the disassembly of MCC Alfieri et al. [2016].
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1.1.3 Prolonged mitotic arrest and adaptation

In physiological mitosis, chromosome biorentation is achieved in minutes, resulting in APC/C activa-

tion, which is followed by the degradation of securin/Pds1 and Clb2, and anaphase onset. Prolonged

impairment of proper microtubule-kinetochore attachment is a rare event, usually induced by drugs

that interfere with the process (e.g: nocodazole). In particular, several compounds used in cancer

therapy aim at killing cancer cells by arresting their proliferation via SAC activation. However, even

if the stimulus is not removed, cells eventually escape the arrest in a process named adaptation or

slippage.

This phenomenon is present in both lower and higher eukaryotes, and has been investigated only

in recent years. In the presence of prolonged spindle-damage, cells face two dangerous options: either

they divide with improperely attached kinetochores, or they are delayed indefinitely before anaphase

onset, and die during the arrest. Adaptation would thus be a sort of ”last survival chance”, albeit risky.

On the other hand, since this condition is very unlikely to happen in nature, it is possible that cells

had not faced any evolutionary pressure to face this kind of stress, and that adaptation is a side-effect

of the SAC pathway that evolved to deal with milder conditions.

One common feature of adaptation is the extreme variability in the duration of the mitotic arrest.

Not only different organisms or cell-lines exibit different responses to different treatments, but also

genetically identical cells display a profound variability in the respons to the same stimuls Gascoigne

and Taylor [2008, 2009], Rossio et al. [2010], Vernieri et al. [2013], Heinrich et al. [2013]. The source

of this variability is unclear. With the present work, we aim to shed light on this theme.

Two opposed models for adaptation

The mechanism of adaptation is unclear. One hypothesis is that cells bypass an active SAC. This

model, known as ”slippage model”, was first proposed by Brito and Rieder in 2006 Brito and Rieder

[2006]. The authors explained the slow and constant degradation of Cyclin B with an incomplete

inhibition of APC/CCdc20 by an active SAC. When Cyclin B levels decrease, cyclins cannot sustain

Cdk1 mitotic activity and cells progress into anaphase.

Another model claims that during adaptation SAC is silenced, although not satisfied. In other

words, adapting cells progress into anaphase because the ’halt signal’ from SAC is switched off, even

if the conditions are not suitable for anaphase onset. In particular, Bub1 degradation Goto et al.

[2011] or lack of Bub3-Mad1 interaction at kinetochores Rossio et al. [2010] have been proposed as

upstream events triggering adaptation. However, these observation are in contrast with the presence

at kinetochores of Mad2 and BubR1 observed by Brito and Rieder. Moreover, several adaptation

studies in budding yeast were performed by inducing SAC-arrest independently of kinetochores, by

overexpressing Mad2 Rossio et al. [2010], Vernieri et al. [2013], and here SAC-silencing cannot be an

explanation for adaptation.
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Feedback loops in metaphase-to-anaphase transition

Several feedback loops are involved in the anaphase transition. As shown before, in an unper-

turbed metaphase-to-anaphase transition, Cdk1 and APC/C are involved in a negative-feedback

loop: Cdk1 induces APC/C activation by sustaining Cdc20 synthesis and its binding to APC/C,

while APC/CCdc20 targets for destruction Cdk1 regulatory subunit, Clb2. When instead cells are

arrested by the SAC, at least three positive-feedback loops are involved. First, Mps1 triggers the

SAC-response that inhibits APC/C, while APC/C induces the degradation of Mps1 Palframan et al.

[2006]. Second, Cdk1 activates the SAC, which inhibits APC/CCdc20, while APC/CCdc20 induces

the inactivation of Cdk1 Rattani et al. [2014], D’Angiolella et al. [2003]. This feedback, if present in

budding yeast, is not essential to sustain an active SAC Vernieri et al. [2013]. Third, the protein phos-

phatase PP2ACdc55 inhibits the formation of APC/CCdc20 by dephosphorylating APC/C on some

of the residues phosphorylated by Cdk1. APC/CCdc20, in turns, inhibits PP2ACdc55 by blocking

the degradation of its inhibitor, separase Vernieri et al. [2013], Queralt et al. [2006]. These positive-

feedback loops can be responsible for the switch-like transition to anaphase, and its irreversibility.

It is important to underline that Cdc20 is required for adaptation to occur, while Cdh1 is dis-

pensable Vernieri et al. [2013]. For this reason, in the present work we focus on APC/C activation

operated only by Cdc20.

1.1.4 Adaptation as experimental approach

In this study, adaptation is not only a research subject, as explained in the previous paragraphs, but

also a tool to investigate the behavior of the SAC network in physiological conditions. Challenging

cells with a non-physiological prolonged mitotic arrest, helped us in getting insights into SAC network

dynamics. By studying adaptation we also aimed at better understanding the SAC.

1.2 Mathematical approaches

In the present work, we investigate the SAC protein network during a prolonged mitotic arrest,

considering events downstream SAC signaling. The most upstream event we include in our analysis

is the binding between Mad2 and Cdc20, triggered by the presence of unattached kinetochores. The

protein network that we consider is thus a subset of the reactions described in the previous sections.

Its detailed description can be found in Section 3.2.1, while a visual representation is depicted in

Figure 1.4.

Graphical representations of protein networks, as the one in Figure 1.4, are useful for a intuitive

summary of all the relationships included in the system, but can hardly give deeper insights into the

protein dynamics. To investigate this aspect, it is convenient to translate the protein network into

mathematical terms. In the following sections we present the two mathematical tools used in this
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Figure 1.4: Scheme of the SAC protein network investigated in this work

work: ordinary differential equations and stochastic simulations.

1.2.1 Ordinary differential equations as a tool to describe protein network

dynamics

Ordinary differential equations, or ODEs, describe the deterministic evolution of a system. In the

present work, ODEs describe protein networks, having protein concentrations as temporal variables.

ODEs system can be analysed in two ways: either analytically or numerically. The analytical approach

is based on mathematical operations on symbolic equations, while the numerical approach is based on

computer simulations, and it is often used when analytical solutions cannot be obtained.

The translation from protein networks to ODEs is made possible using what is called law of mass

action, proposed first in 1864 by two Norwegian scientists, Cato M. Guldberg and Peter Waage Guld-

berg and Waage [1864]. This law describes the reaction of chemical compounds, both dynamically

and at equilibrium. We are now mainly interested in its dynamical version, whose statement is often

cited as ”the rate of a reaction is directly proportional to the product of the masses of the reagents

involved”.

We now apply the law of mass action to two examples. Since the protein network we are interested

in (Figure 1.4) is based on association/dissociation and synthesis/degradation reactions, the two ex-

amples are two simple ’modules’, one composed by an association/dissociation reaction and one by

synthesis/degradation. We translate the two modules into an ODEs system and investigate its dynam-

ics with mathematical tools. The same approach used on these examples produces the mathematical

model investigated in this study (ODEs system (3.1)), starting from the protein network (Figure 1.4).

First module: association/dissociation

The first module that we investigate is an association/dissociation reaction. A and B are substrates,

neither produced nor degraded, of the complex AB. The reaction that forms the complex is reversible,

and reactants and product are in solution. We can depict the reaction as:
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or as:

A+B 
 AB.

where the double arrows and the bullet points represent, in the two visualizations, the reversibility of

the reaction.

The law of mass action claims that the association reaction occurs at a rate a[A][B], where square

brackets indicate the concentrations of the substances, and a is the association constant. The dissoci-

ation reaction occurs at a rate d[AB], where d is a constant. To have both the rates with dimensions

of concentration · time−1, a has dimensions of time−1 concentration−1, while d has dimensions of

time−1. Since a rate is by definition a change over time, we can use these values in temporal deriva-

tives of the concentrations. Association reduces the amount of free A and B, and increases AB. The

viceversa is true for the dissociation reaction. We will thus have the following ODEs system:





d[A]

dt
= d[AB]− a[A][B]

d[B]

dt
= d[AB]− a[A][B]

d[AB]

dt
= −d[AB] + a[A][B]

(1.1)

The complete description of the system needs an additional information, that is the value of the

variables at time 0: [A0], [B0] and [AB0].

There is a way to simplify the system in (1.1). Since the the two substrates are not produced nor

degraded, their total amount is constant over time. If we identify them as Atot and Btot, we can write:

[Atot] = [A] + [AB] = [A0] + [AB0]

[Btot] = [B] + [AB] = [B0] + [AB0].

Equations like these are called conservation laws, and are a very useful to reduce the number of

variables in an ODEs system. Specifically, if we write

[A] = [Atot]− [AB]

[B] = [Btot]− [AB],

we can have a full description of the system keeping track only of the dinamic of [AB] and the total
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amount of the substrates. The full system is:





[A] = [Atot]− [AB]

[B] = [Btot]− [AB]

d[AB]

dt
= −d[AB] + a

(
[Atot]− [AB]

)(
[Btot]− [AB]

)
(1.2)

The first thing we can study is the equilibrium, or the steady state, of the system, that is when

the temporal derivative is 0. We thus have:

d[AB]

dt
= 0 = −d[AB] + a

(
[Atot]− [AB]

)(
[Btot]− [AB]

)

0 = −d
a

[AB] + [Atot][Btot]− [AB]
(

[Atot] + [Btot]
)

+ [AB]2

0 = [AB]2 − [AB]
(

[Atot] + [Btot] +
d

a

)
+ [Atot][Btot]

which is a second degree equation. Its solutions are therefore

[AB]1,2 =

(
[Atot] + [Btot] + d

a

)
±
√(

[Atot] + [Btot] + d
a

)2

− 4[Atot][Btot]

2
(1.3)

Only the ’−’ solution can give [AB] < [Atot], [Btot], and thus it is the only biologically relevant

solution. From this equation we can see that the steady state of the system only depends on the total

amount of the reactants, and on the ratio between d and a, not on their absolute values. We will use

this important general property of steady states in Section 3.2.3.

Another way to write the ODEs system at equilibrium leads us to an important parameter, the

dissociation constant KD. We can write:

d[AB]

dt
= 0 = −d[AB] + a[A][B]

d[AB] = a[A][B]

KD =
d

a
=

[A][B]

[AB]

(1.4)

The ratio d
a is the KD. The lower the KD, the stronger the affinity between A and B. KD can be

interpreted in a very physical way. If [B] = KD, then [A] = [AB]. In other words, if [B] equals

the dissociation constant, which has dimensions of a concentration, the free A and the complex AB

are present in the same concentration, and thus half of the total A is in the complex. We can see it

graphically in Figure 1.5

To investigate the dynamics of the ODEs system in (1.2), it is possible to find the explicit formula
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Figure 1.5: Interpretation of KD

KD is the value that free B assumes to have, at steady state, half of total A in the complex AB.
Smaller KD means less B needed to produce the complex, that means higher affinity between A and
B.

of its solution. This means finding the explicit formula of a function of the time F (t) that satisfies

dF (t)

dt
= −dF (t) + a

(
[Atot]− F (t)

)(
[Btot]− F (t)

)
.

However, the explicit formula is not more understandable than the ODEs system (1.2) itself, and thus

we do not write it here. To circumvent this problem, it is possible to simulate the system numerically

and plot the result (see Figure 1.6). It is important to notice that, in contrast with Figure 1.5, on the

x-axis we have time. This plot represents the deterministic dynamic of the system. In Section 1.2.2

we will see how the stochastic dynamic of the same system behaves.
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Figure 1.6: Deterministic simulation of the association/dissociation module
Dashed line is the steady-state value for AB. The initial number of molecules for the three species, and
the association and dissociation constant, are in the same range as those of the association between
MCC and APC/CCdc20 in the protein network analysed in the main text.
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Bifurcation diagrams

Before moving to the synthesis/degradation module, we investigate the association/dissociation mod-

ule with another tool, called bifurcation diagram. This plot describes the steady-state value of a

network as function of one of the parameters, named bifurcation parameter. Studying the steady-state

value of a network is an approximation: the dynamics of the system is neglected, and only the value

at equilibrium is studied. This method underlies the idea that the system quickly reaches the steady

state.

To plot a bifurcation diagram, steady states are usually identified by simulating numerically the

dynamics of the system over a long time, until equilibrium is reached, since we do not know the explicit

mathematical relationship between the bifurcation parameter and the steady-state value.
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Figure 1.7: Bifurcation diagram for association/dissociation module
a) Bifurcation diagram having the association constant a as bifurcation parameter. By modulating
its value, we modulate the steady-state values for the three species. Higher a values facilitate the
formation of the complex AB. d is set to 0.5 (dashed line in panel b).
b) Bifurcation diagram having the dissociation constant d as bifurcation parameter. Higher d values
reduce the formation of the complex AB, and freed A and B. a is set to 0.05 (dashed line in panel a).
The initial number of molecules and the baseline association and dissociation constants, are in the same
range as those of the association between MCC and APC/CCdc20 in the protein network analysed in
the main text.

We can plot two bifurcation diagrams for the association/dissociation module, one having the

association constant a as bifurcation parameter (Figure 1.7(a)), one having the dissociation constant

d as bifurcation parameter (Figure 1.7(b)). It is worth noticing that also other parameters can be used,

for example [Atot] or [Btot], or combinations of parameters such as the d
a (i.e: KD). By comparing

the two panels in Figure 1.7, we notice that the effect of changing a is stronger than changing d. In

particular, once a is greater than 0.02, the system almost does not respond to changes in its value. On

the other hand, d influences the steady-state values of the three species on a broader range of values,

from 0 to 10. In both panels there is a saturation effect. This means that the effect of changing the

bifurcation parameter levels off. In this module the saturation is due to the limiting amount of the

three molecular species. A similar effect plays a key role in the biological problem presented in this

work. Bifurcation diagrams are thoroughly used in Section 3.2.
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Second module: synthesis/degradation

We have seen in the previous sections the behavior of a basic module of association/dissociation. Now

we investigate how a basic module of synthesis/degradation behaves. Graphically we can depict the

new module as:

or as:

→ X →

where the left arrows represent synthesis, while the right arrows represent degradation.

The degradation reaction, depends on the concentration of X present, and will thus occur at a rate

D[X], where D is the degradation constant with dimensions of time−1. Synthesis, unlike degradation,

does not depend on X, and its rate is s, a constant with dimensions of concentration · time−1. Only

one variable is present, and so a single ODE, with its initial state, describes the system:





d[X]

dt
= s−D[X]

[X(0)] = X0.

Using the technique of the separation of the variables, we can find an analytic solution that describes

this system:

[X(t)] =
s

D
+K0e

−Dt

where K0 is a constant, defined by imposing that [X(0)] = [X0]. If, for example, [X0] = 0, we have

that K0 = − s
D and thus

[X(t)] =
s

D

(
1− e−Dt

)

There is only one steady state, s
D , for all the starting values. Similarly to the association/dissociation

module, the steady state only depends on the ratio of the parameters, not on their absolute values.

The impact of s and D on the dynamics can be noticed comparing the dark-green and violet curves

in Figure 1.8: the two curves have the same steady-state value, but s and D are twice as big for the

violet curve than for the dark-green. As a consequence, the steady state is reached much faster in the

violet curve.

Also synthesis/degradation reactions can be analysed using bifurcation diagrams. In Figure 1.9

we analyse the system using s and D as bifurcation parameters. Since the steady-state value is

s
D , it depends linearly on s and inversely on D. It is important to notice that, as opposed to the

association/dissociation module, no saturation effect is present in this module. The saturation effect

comes back when combining synthesis and association, as we will see in Section 3.2.5, analysing the

protein network investigated in this work.
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Figure 1.8: Plot of the exact analytical solution of the synthesis/degradation module
Dashed line is the steady state value, which is common for all the curves. The orange line represents
the evolution of a system starting above the steady state value, while the dark-green and violet lines
start below the steady state. Violet line has s and D twice bigger than the other curves, and thus
reaches faster the steady state.

1.2.2 Stochastic simulations using Gillespie algorithm

Ordinary differential equations (ODEs) provide deterministic descriptions of the behavior of protein

networks. As we just saw, they are an extremely powerful and accessible tool to investigate network

properties. However, this deterministic description neglects the intrinsic stochastic behavior of chem-

ical reactions. The description of the chemical process, given by ODEs, can be interpreted as the

average over several runs of the process. As long as the different runs are similar to their average,

ODEs provide all the necessary details. On the other hand, when the differences between the runs

cannot be neglected, other tools must be used Vilar et al. [2003].

The variability in different runs has several causes. For example, the system can be highly sensible

to random events, as in the case of stochastic activation of genes Vilar et al. [2003]. Or proteins can

be present at very low concentration, resulting in large fluctuations over the mean value of molecule

number. What is important to notice is that stochasticity is always present in biochemical networks,

but it becomes non-negligible when protein numbers are very small.

To describe the stochastic behavior of biochemical reactions, one of the most commonly used

method is the Gillespie algorithm, developed in the 70s by Daniel Gillespie Gillespie [1976, 1977].

This algorithm simulates the dynamics of a protein network down to the single molecule, in contrast

with ODEs that simulate average concentrations. The implementation of the algorithm is not a goal

of this Introduction, since Gillespie algorithm can be simulated with standard packages using different

programming languages (as an example: Maarleveld et al. [2013]). However, we aim at presenting

some key feature of this method.

To explain the features of Gillespie algorithm, or stochastic-simulation algorithm (SSA), we use as

a simple example the same association/dissociation module used in Section 1.2.1, where two proteins
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Figure 1.9: Bifurcation diagram for synthesis/degradation module
a) Bifurcation diagram having the synthesis rate s as bifurcation parameter. The steady state changes
linearly, without any saturation effect. D is set to 0.5min−1 (dashed line in panel b).
b) Bifurcation diagram having the degradation constant D as bifurcation parameter. Higher d increase
the degradation and thus reduce the amount of protein at steady state. s is set to 50nM min−1 (dashed
line in panel a).

A and B bind, producing the complex AB via a reversible association. For the sake of clarity, we

propose again the visual representation:

The algorithm is composed by few steps, repeated in cycles.

First, for each of the reactions comprising the network, the probability per unit of time and per

unit of molecule is determined. If Pa and Pd are the probability of association and dissociation,

respectively, and N is the number of molecules of each species, we have:





Pa = a
NA
V

NB
V

Pd = d
NAB
V

where V is the volume where the reactions take place. The equations are the same as those used in

the ODEs system.

Then, the algorithm extracts a random number X, 0 < X ≤ (Pa+Pd). If 0 < X ≤ Pa, it executes

the association reaction, while if Pa < X ≤ (Pa + Pd), it executes the dissociation reaction. In the

case of association it decreases A and B by one unit, and increases AB by one unit. In the case of

dissociation, it decreases AB by one unit, and increases A and B by one unit.

Then it extracts a random number Y , between 0 and 1, and advances time by

∆t = − log Y

Pa + Pb
.



CHAPTER 1. INTRODUCTION 20

Then the algorithm runs another step: computes reaction rates, chooses the occurring reaction,

updates the system variables, advances time and so on.
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Figure 1.10: Comparison between deterministic and stochastic simulation of the associ-
ation/dissociation module, in the presence of low or high number of molecules
Deterministic (black lines) and stochastic (colored lines) simulations of the association/dissociation
module. Right panel has 100 times higher molecule number than left panel.
In the right panel, black lines almost overlap thin colored lines. Dashed line is the steady-state value
for AB.

This algorithm has several interesting features. First, given two subsequent values of time t1 < t2,

the status of the system at time t2 only depends on the status of the system at time t1, not on the

history of the system before t1 Gillespie [1976]. This property is called Markov property, and, in

brief, describes the fact that the process is memoryless. Another interesting feature is that the time

of each reaction is exponentially distributed, and so is the time between two reactions. Finally, as

demonstrated in Gillespie’s papers, the average behavior of the stochastic trajectories overlaps the

solution of the ODE system that describes the same protein network. An example of this similarity

can be appreciated in Figure 1.10, where we simulated the association/dissociation module discussed

in this section. While simulations of ODEs procede smoothly, the stochastic simulations have discrete

steps. This is because ODEs variables assume continuous concentrations values, while stochastic

simulation variables assume only integer values, since the variables are number of molecules. From

the figure it is possible to appreciate that ODEs simulation is the average of the stochastic simulations.

What is fundamental to notice by comparing Figure 1.10(a) and Figure 1.10(b), is that the differ-

ence between stochastic simulations and ODEs is more significative when the number of molecules is

smaller. In the model discussed in the main text, molecule number is in the same order of magnitude

as in the simulations in Figure 1.10(a), and the role of stochasticity is fundamentamental to drive cells

into anaphase.
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1.2.3 The Ornstein-Uhlenbeck process

The result of simulating the Gillespie algorithm is a stochastic process. With this term is defined

a set of indexed random variables, where the index usually represent time. An introduction on this

mathematical object and its application (also to biology), can be found, for example, in Aletti et al.

[2006]. In the Gillespie algorithm, the random variables are the molecular species, indexed on the steps

of the algorithm. Each step represents a progress in time, but steps are not equally spaced in time,

since, as we saw in the previous section, also time-increments are defined with a random variable.

We now want to focus on a specific stochastic process, used in the Results chapter as possible de-

scription of the dynamics of APC/CCdc20, the key molecular species of the biological problem tackled

in these pages. This process is the Ornstein-Uhlenbeck process, named after two Dutch physicists,

Leonar Ornstein and George Eugene Uhlenbeck, who first derived its formulation in 1930 Ornstein

and Uhlenbeck [1930]. The Ornstein-Uhlenbeck process is a stochastic process with three properties:

it is stationary, it is Gaussian and it is Markov.

Stationary means that its mean value does not change over time: its displacement, defined as the

distance between the system at two subsequent times t1 < t2, have mean 0. Gaussian means that

the displacements are distributed as a Gaussian distribution, that has mean 0 for the stationarity

property. Markov means that the process satisfies is memoryless, as we just mentioned.

Another property of Ornstein-Uhlenbeck process that we will use in Results chapter, regards

its autocorrelation function. The autocorrelation function is a measure of the auto-similarity of a

stochastic process. We will thoroughly use this object in the next section, applied to fluorescence

intensity traces. In the present case, it is defined as follows: let X be a stochastic process with mean

µ and variance σ2, and Xt its realization at time t. The autocorrelation function G(τ) of X is

G(τ) =
E
[
(Xt − µ)(Xt+τ − µ)

]

σ2
, (1.5)

where E is the expected value over t, and (Xt − µ) represent the distance from the mean at time t.

This distance can be thought as fluctuation of the stochastic process around the mean value. In other

words, at the numerator we find the expected value of the product between the fluctuation at time t

and the fluctuation at time t+τ . Fluctuations are both positive and negative, and thus the numerator

goes to 0 for great values of τ . For an Ornstein-Uhlenbeck process, the autocorrelation has a peculiar

shape, that is the exponential shape. Specifically, for Ornstein-Uhlenbeck process

G(τ) = e−τ . (1.6)

A derivation of this equation ca be found, for example, in [Kampen, 2007, eq (3.12), page 84].

Our interest in Ornstein-Uhlenbeck process lies in the specific behavior of its first-passage time.
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First-passage time is defined as the time needed for a stochastic process to first reach a specific value

(e.g: the time it takes for a stock to duplicate its value) Redner [2001]. The first-passage time we

are interested in, is the time needed for APC/CCdc20 to first hit the ’anaphase threshold’, that is an

arbitrary value that triggers anaphase onset.

An Ornstein-Uhlenbeck process has exponentially distributed first-passage time, provided that the

threshold is far enough from the mean value Nobile et al. [1985]. Finding similarities, as done in

Section 3.2.4, between APC/CCdc20 and an Ornstein-Uhlenbeck process, thus, gives us a theoretical

explanation of why we found exponentially distributed first-passage time forAPC/CCdc20 (Figure 3.4).

1.3 Fluorescence (Cross-)Correlation Spectroscopy

Two of the key reasonings in the work presented in these pages rely on quantification of proteins and

protein complexes. First, to know the amount of Cdc20 interactors, all the members of MCC and

several APC/C subunits have been measured (Figure 3.6(b)). The presence of these proteins in very

low amount is the main driver of the stochastic behavior of adaptation. Second, to test the predictions

of the model linking the amount of MCC and of the inhibited form of APC/C (APC/Cinhib) to

CDC20 gene copy number (Figure 3.10(a)), the concentration of both MCC and APC/Cinhib have

been measured (Figure 3.20(a)).

In both cases, we needed the measurements to be quantitative. Not only: since both MCC and

APC/Cinhib are present in very low amount in the cell, the technique used to measure their con-

centration had to be highly sensitive. For these reasons, we decided to perform these measurements

using Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Cross-Correlation Spectroscopy

(FCCS), which are quantititative technique to measure protein and protein complexes concentration,

respectively. We give here a general overview of the two techniques. For general remarks, see Rigler

and Elson [2001], Bacia et al. [2006], Ries et al. [2010], Schwille and Hausten [2002]. Slaughter and Li

[2010] is an inspirational paper on the topic. Bacia and Schwille [2007] collects practical guidelines.

FCS and FCCS are single-molecule methods aimed at measuring several properties of fluorescently

labeled particles. They are based on the fluctuations in fluorescence intensity, measured in a confocal

volume at single-photon resolution. Each acquisition lasts longer than in normal confocal microscopy

and, unlike this technique, the confocal volume does not change its position inside the cell. Since the

confocal volume does not move, intensity fluctuations are caused by changes in the fluorescent particles

inside the volume. Specifically, fluctuations are caused by particles entering or exiting the confocal

volume, or by particles changing their emission for other reasons, such as folding-unfolding dynamics,

chemical reactions or photophysical changes. A visual representation of intensity fluctuations caused

by particle dffusion is given in Figure 1.11(a).

For these fluctuation to be noticeable, we need both high sensitivity in the photon-counting process
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(a)

(b)

Figure 1.11: Visual representation of FCS and FCCS intensity traces
a) Visual representation of fluorescence intensity over time, one labeled protein. The oval rep-
resents the confocal volume, while the green dots are the fluorescent particles. Solid red line is
the measured intensity over time, I(t), the dashed line is its average. As long as two molecules
are in the confocal volume, I(t) has the same value of its mean. Once a molecule leaves the
confocal volume, the intensity is reduced. The intensity increases with three molecules in the
confocal volume. The larger fluctuations derive from changes in molecule number in the confo-
cal volume, but noise is unavoidable, and cause smaller fluctuations. Image adapted from http:
//www.leica-microsystems.com/science-lab/fluorescence-correlation-spectroscopy/. b) Vi-
sual representation of fluorescence intensity over time, two labeled proteins, either freely diffusing or
codiffusing. If the two particles are not interacting (upper panels), their diffusion is mutually indepen-
dent. If, on the other hand, the two particles form a complex (lower panels), they diffuse together. Since
they enter and exit the confocal volume together, their fluorescent traces fluctuate together. We can
measure the complex by measuring the similarity between the two traces. Image adapted from http:
//www.leica-microsystems.com/it/prodotti/microscopi-confocali/metodi-confocali/fccs/

and low average number of photons detected per unit of time. The first goal have been achieved in the

last decades with the great improvements in technical equipments (for an overview of the microscope

settings, see Schwille and Hausten [2002], Bacia and Schwille [2007]). The second goal can be achieved

by reducing the number of labeled proteins measured per unit of time. To do so, it is possible to limit

the detection volume, and measure the proteins of interest at low concentration. For this reason, the

optimal settings for FCS limit the confocal volume to less than one femtoliter, and investigate proteins

in the nanomolar concentration range.

Even if FCS and FCCS are microscopy techniques, they do not return any image. Instead, the

output is the fluorescence intensity, which can be analysed with mathematical tools to investigate

properties of fluorescent particles. In particular, it is possible to measure absolute concentrations.

Several other quantities can be investigated (e.g: diffusion time, rotational behavior...) but since

http://www.leica-microsystems.com/science-lab/fluorescence-correlation-spectroscopy/
http://www.leica-microsystems.com/science-lab/fluorescence-correlation-spectroscopy/
http://www.leica-microsystems.com/it/prodotti/microscopi-confocali/metodi-confocali/fccs/
http://www.leica-microsystems.com/it/prodotti/microscopi-confocali/metodi-confocali/fccs/
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in this study we used these techniques to measure concentrations, we will cover only this aspect of

FCS/FCCS.

Before entering into the mathematical part, it is necessary to distinguish between FCS and FCCS.

FCS deals with only one fluorescent trace at a time. This means, excluding more advanced techniques

(e.g: Fluorescence Lifetime Correlation Spectroscopy (FLCS) Kapusta et al. [2012]), studying one

protein. FCCS, instead, deals with two fluorescent traces, resulting from the emission of two proteins

tagged with spectrally distinct fluorophores, using two distinct laser lines to excite them. With this

technique, we can measure the complex formed by the two tagged proteins using their codiffusion, as

depicted in Figure 1.11(b).

1.3.1 Correlation functions and the model used to fit them

In FCS, the fluctuations in fluorescence intensity are processed by autocorrelation analysis. This

operation, already mentioned in Section 1.2.3 about the Ornstein-Uhlenbeck process, consists in mea-

suring the similarity of the intensity trace I at a given time t with the same function at time t + τ ,

averaged over all the t. In other words, each trace is compared with itself, shifted in time, and the

autosimiliarity is measured. In mathematical terms:

G(τ) =
E
[
(It − µ)(It+τ − µ)

]

E(It)2
(1.7)

where, as in equation (1.5), (It − µ) is the fluctuation in the intensity I at the time t, and E indicate

averaging over t. The different denominator in this equation compared to equation (1.5), is used to

link G(0) with the average number of particles in the volume, as we will see soon. In Figure 1.12,

we show a visual representation of what autocorrelation means. G(τ) is high for small values of τ ,

meaning that the curve has the maximal similarity with itself at small time shifts, and the similarity

fades to 0 for bigger values of τ .

Figure 1.12: Visual representation of autocorrelation
The intensity I(t) (black line) is shifted in time (τ1 red curve, τ2 green curve and τ3 blue curve).
The similarity betwenn the black and the coloured curves is the autocorrelation G(τ) for the dif-
ferent values of τ (right panel). Each dot on G(τ) correspond to a curve. Notice that time
shift in x-axis is in log scale. Adapted from http://www.leica-microsystems.com/science-lab/
fluorescence-correlation-spectroscopy/.

http://www.leica-microsystems.com/science-lab/fluorescence-correlation-spectroscopy/
http://www.leica-microsystems.com/science-lab/fluorescence-correlation-spectroscopy/
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The autocorrelation obtained from the measured fluctuations is then fitted with a model. The

choice of the model depends on the properties of the system. For example, if the diffusion occurs in

three dimensions (e.g: freely diffusing protein) or in two dimensions (e.g: membrane protein), if the

protein is actively transported (e.g: protein involved in secretory pathway), if different populations of

the protein diffuse with different speed (e.g: free protein VS protein bound to DNA). For our system,

the best choice is the two-component model, assuming triplet-like blinking state. Two-component

means that the protein of interest can be found in two populations, ideally the free molecule or the

molecule bound to a slower diffusing complex (for us: APC/C or MCC). More subpopulations can

be present, but we decided not to add more components to the model to avoid overfitting. Triplet-

like blinking state means that the model takes into account the blinking of the fluorophore, that is a

quantum process operating on a very short time-scale (< 100µs), that shall not be mistaken for very

fast diffusing molecule.

The explicit equation describing the model is:

G(τ) =
(
1−ΘT + ΘT e

− τ
τT

) 1

N

(
2∑

j=1

fj
1

1 + τ
τD,j

√
1

1 + 1
κ2

τ
τD,j

)
. (1.8)

The first parenthesis takes into account the triplet state of the fluorophore, and is significant only on

the characteristic triplet state time-scale τT (usually much smaller than τD,j). ΘT accounts for the

amount of autocorrelation depending on the triplet state. N is the average number of particles in the

confocal volume. fj is the fraction of the j-th component, meaning f1 + f2 = 1. τD,j is the diffusion

time of the j-th component, and finally κ is the optical parameter related to the shape of the Gaussian

confocal volume. If z is the vertical radius of the Gaussian confocal volume, and ω the lateral radius,

κ is defined as κ = z
ω . What is important to notice from equation (1.8) is that

G(0) =
1

N
, (1.9)

and thus we can measure the average number of particles knowing G(τ).

The core of the model is the term of the summation, that describes the behavior of an homogeneous

population of fluorescent particles:

G(τ) =
1

N

1

1 + τ
τD

√
1

1 + 1
κ2

τ
τD

. (1.10)

In Figure 1.13 we can see the dependency of G(τ) on two of the three parameters present: the average

number of particles in the volume, N , and the diffusion time, τD. By increasing N , the fluctuation

caused by a particle entering or exiting the confocal volume becomes neglectable. We can think of

trying to find out whether a person had entered or left our living room or an overcrowded concert hall.

The higher N , the less the impact of fluctuations, the smaller G(0). By increasing τD we speed up
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the particle. The faster it moves, the shorter it takes for the autosimilarity of the intensity to decay

to 0 (see Figure 1.12).
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Figure 1.13: How FCS curves respond to changes in the parameters
Changes in N and τD on the core component of the model, presented in equation (1.10).

1.3.2 Computing the acquisition volume knowing the diffusion coefficient

We have seen how to measure the number of particles in the confocal volume (equation (1.9)). To

measure the concentration, we need to measure the effective confocal volume V . In order to do it we

take advantage of dyes with known diffusion coefficient D, which is related to the diffusion time τD

by the equation that defines it:

τD =
ω2

4D

From spatial integration [Rigler and Elson, 2001, page 364, section 17.2.2] we can express the effective

volume V as

V = π3/2 ω2 z.

We can then compute 



D =
ω2

4 τD

V = π3/2 ω3 κ

That gives us

D3

V 2
=

ω6

(4 τD)3

1

π3 ω6 κ2

=
1

(4κ2 π τD)3

and finally

V = κ
[
4π τDD

]3/2
. (1.11)

This last equation gives us a way to compute the effective volume from the knowledge of D and from

the parameters obtained by fitting the autocorrelation curve to the model.
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1.3.3 A note of caution on the overlapping volume

With the equation (1.11) we can compute the effective confocal volume for each of the two channels.

When we perform FCCS we also need to know the ’effective overlapping volume’, that is the volume

where we can effectively measure cross-correlation. This is not a trivial problem, since the volumes

for the two channels do not often have the same size, since the latter depends on the laser wavelength,

and volumes are not always concentric.

Moreover, the effective volumes are not rigid sphere, but rather regions of the space where the

probability of detecting a photon is higher, given that this probability is non-zero in the whole space.

For this reason we have the counterintuitive result that the ’effective overlapping volume’ is bigger

than the smallest of the two. It is actually a sort of a geometrical average of the two [Rigler and

Elson, 2001, page 366, eq (17.10)].

We will not measure the ’effective overlapping volume’ with analytical formulas, but by measuring

double-labeled dyes and setting the ’effective overlapping volume’ such that the concentrations Cg,

Cr and Crg have the same value.

1.3.4 Measuring concentrations

We have seen how to measure the number of particles, N , and the effective volume, V , from the fitted

parameters. Now we discuss how to get from these numbers to the concentration of the proteins and

of their complexes. We call Grr and Ggg the fitted G(0) of the autocorrelation functions of red and

green channels, respectively. From these values we can thus compute the absolute concentration (in

moles) of the two fluorescent proteins, by using the following equation:

Ci =
1

GiiViNa
for i = r, g (1.12)

where Na is the Avogadro constant and Vi is the acquisition volume for the green or the red channel.

To compute the concentration of the complex we used the following equation (see [Rigler and Elson,

2001, page 367, eq (17.15)]):

Crg = GrgVrgNaCrCg (1.13)

where the subscript rg refers to the cross-correlation (i.e: the complex). Vrg is the overlapping volume,

computed as explained previously. Note that, unlike the concentration of the interacting proteins (see

equation (1.12)) where G(0) and the concentration are inversely proportional, the concentration of

the complex is drectly proportional to the G(0) of the cross-correlation function, Grg.

In this Introduction, we gave an overview of the biological problem examined in this work, and

of the tools we used to address it. Adaptation to the SAC was investigated with the help of a

mathematical model, analysed using both its deterministic and stochastic versions. Some of the key
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predictions of the model were tested and confirmed using single-cell microscopy and FCCS.



Aim of the thesis

This thesis analyses the phenomenon of adaptation to the Spindle Assembly Checkpoint (SAC). It is

organized in two main parts. First, we address whether cells adapt to an active SAC, or if cells rather

escape the mitotic arrest after SAC silencing. Then, we build and analyse a quantitative model of

the SAC network. Model predictions are experimentally tested, aiming at unraveling the origin of the

well-known large variability in adaptation times.

The main results and reasoning presented in these pages are in press in the manuscript ’Cells

escape an operational mitotic checkpoint through a stochastic process’, Bonaiuti P, Chiroli E, Groß F,

Corno A, Vernieri C, Štefl M, Cosentino Lagomarsino M, Knop M and Ciliberto A, Current Biology.
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Chapter 2

Materials and Methods

In this chapter, protocols are presented in the same order as the results in Chapter 3. The first section

(Section 2.1) includes information that are common in every use of a technique, such as the charac-

teristics of the microscope for single-cell experiment, or the G1 arrest protocol for synchonizations.

All the other details, experiment-specific, are presented in the subsequent sections. In this way, we

try and give the reader a complete overview of the protocol used to produce each figure, from strain

creation to cell growth and data analysis.

2.1 General information

Strains, genetic manipulation, media and plasmids

All yeast strains (Table 4.4) were derivatives of or were backcrossed at least three times to W303

(ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, ura3 ). Where not otherwise specified, chromoso-

mal deletions or tagging in both haploid and diploid strains were generated by one-step gene replace-

ment Longtine et al. [1998], then checked by polymerase chain reaction (PCR). In every case, strains

obtained from transformation were then successfully tested for viability at different temperatures

(23 ◦C, 30 ◦C and 37 ◦C) and with Ethanol/Glycerol as carbon source to check mitochondrial func-

tionality. Homozygous diploid strains were obtained by crossing two haploids with the same genotype,

by isolating zygotes and by checking the ploidy by FACS analysis of DNA content of cycling cultures.

Where not otherwise specified, synchronizations were carried out at 30 ◦C. To arrest cells in

G1, α-factor was added at 3µg/ml to log-phase culture. After 60-90 minutes, a second α-factor

administraton was given, at half the previous concentration (1.5µg/ml). After 120-150 minutes from

the first administration, cells were released from G1 arrest. Nocodazole (Sigma-Aldrich) was used at

15µg/ml.

A complete list of the plasmids used in this study can be found in Table 4.5.

30
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Protein extract and western blot analysis

TCA protein extracts for western blot analysis were prepared according to Fraschini et al. [1999],

and proteins were transferred on a nitrocellulose membrane (Amersham). Commercial primary an-

tibodies were used as follows: Clb2 (sc-9071; Santa Cruz Biotechnology, Inc.) at 1:1.000, Cdc28

(sc-6709; Santa Cruz Biotechnology, Inc.) at 1:100, Cdc20 (sc-6731; Santa Cruz Biotechnology, Inc.)

at 1:500, Pgk1 (D660; Invitrogen) at 1:5000. Secondary antibodies were from Bio-Rad Laboratories

and proteins were detected by an enhanced chemiluminescence system (Invitrogen) according to the

manufacturer’s instructions. Blots were acquired as digitalized images by a Chemidoc XRS+System

(Bio-Rad Laboratories). Signal was quantified using ImageJ or Image Lab software.

Image acquisition - single-cell experiments

Single-cell experiments were performed growing cells at 30 ◦C in microfluidic chambers (CELLASIC).

Time-lapse movies were recorded using a DeltaVision Elite imaging system (Applied Precision) based

on an inverted microscope (IX71; Olympus) with a camera (CoolSNAP HQ2; Photometrics) and a

UPlanFL N 60x (1.25 NA) oil immersion objective lens (Olympus). GFP, Venus and mCherry were

acquired using single bandpass filters (EX475/28 EM523/36 for GFP and Venus, EX575/25 EM632/60

for mCherry). The phototoxicity of the acquisition setting of each experiment was measured by

comparing the cell cycle duration in excited and non-excited cells, for which we detected no significant

difference. The coexistence of excited and non-excited fields of view was made possible by ad-hoc

scripting of DeltaVision acquisistion software.

Image analysis - single-cell experiments

Images were projected, when needed, and mounted using an automated pipeline written in Fiji Schin-

delin et al. [2012].

We have aimed at analyzing as many cells as possible, with the limitations that come with the

microfluidic technology. We have found that experiments with around 100 cells per condition give

reproducible results. All the cells imaged have been analyzed, without any selection step except those

explicitly mentioned when presenting the results or the method.

All the cells were segmented using the software Phylocell (developed by Gilles Charvin and col-

leagues Charvin et al. [2008] and available on GitHub Charvin [2017]). Pixels in the segmented areas

of mother and daughter cells were analyzed together until cells divide. The mean value of the back-

ground, identified as the nonsegmented area, was subtracted for each frame. Fluorescence traces were

analyzed using custom softwares in MATLAB.

2.2 Single-cell experiment for Mad2-Bub3 colocalization

This section refers to Figure 3.1(b).
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Bub3-mCherry was created by one-step tagging, based on S-primers strategy Janke et al. [2004],

placing the tag immediately before the STOP codon. We used three tandem copies, with different

codon usage, of a monomeric mCherry. The different codon usage is to prevent genetic rearrangement.

This fluorophore was engineered by Susanne Trautmann (plasmids pST70 in Boeke et al. [2014]).

Bub3-mCherry was successfully tested for SAC proficiency. Mad2-3GFP fusion was a gift by Tomo

Tanaka (Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee,

Scotland, UK).

To control for green-to-red bleedthrough we used a strain carrying only Mad2-GFP (yAC1513), to-

gether with the target strain carrying also Bub3-mCherry (yAC3266). Cells were grown in YP medium

(1% yeast extract, 2% Bacto Peptone, 80mg/l adenine) supplemented with 2% glucose (YPD). Cells

were arrested in G1 and released into nocodazole. Two hours after, a sample of the arrested colture

was taken, briefly sonicated and centrifuged. Surnatant was partially removed to concentrate the cells.

A drop of the culture was placed on an 2% agar layer to immobilize cells, and imaged.

GFP was acquired using 10% of the lamp power for 0.07 seconds each Z-stack, mCherry using

10% lamp power for 0.15 seconds. To scan the whole height of the cell, 20 Z-stacks 0.3µm spaced

were acquired. To enhance the hypothetical green-to-red bleedthrought we acquired the two channels

before moving to a different Z-stack. Images were deconvolved using SoftWorx software, and their

maximum intensity projection was used to have a 2D image. As can be noticed in Figure 2.1, no

bleedthrough is recorded.

Figure 2.1: Negative control for bleedthrough in Mad2-Bub3 colocalization experiment.
The brightenss in GFP channel is higher than in the positive result shown in Figure 3.1(b), to enhance
the absence of signal. One cell representative of all the cell recorded (∼ 30). Details of the experiment
in Section 2.2.

2.3 Single-cell adaptation experiments in nocodazole - haploids

This section refers to single-cell experiments performed on haploid wild-type and CDC20 NX strains.

Results are presented in Section 3.1 and 3.3. The protocol used on mad3∆ cells is presented in

Section 2.5. The protocol used on diploid strains is presented in Section 2.6.

Strains, media and reagents

Cells were grown in YP medium (1% yeast extract, 2% Bacto Peptone, 80mg/l adenine) supplemented

with 2% glucose (YPD). Cells were arrested in G1 and released into nocodazole. One hour after the
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release, α-factor was administered at 12.5µg/ml, together with nocodazole, to avoid S-phase after

adaptation.

Clb2-mCherry was created as Bub3-mCherry (see Section 2.2). Its complete functionality has

been tested by checking viability of CLB2 -mCherry clb1∆. Mad2-3GFP fusion is the same used for

Mad2-Bub3 colocalization experiment.

Image acquisition

Images were acquired every 10 minutes for 700 minutes. Mad2-GFP was acquired using 11 Z-stacks

spaced 0.3µm, each acquired for 0.07 seconds at 10% lamp power. Images were deconvolved us-

ing SoftWoRx software, and projected using the maximum intensity projection. Clb2-mCherry was

acquired at 10% lamp power for 0.5 seconds, with a single Z-stack to reduce photodamage of the

cells. The coexistence of different Z-stacks was made possible by ad-hoc scripting of the DeltaVision

acquisition procedure.

Image analysis - Clb2 dynamics

Clb2-mCherry mean signal was smoothed using a Savitsky-Golay filtering. Its accumulation was used

as readout of mitotic entry, and identified as the maximum of the second derivative after budding

(as in Charvin et al. [2010b]). Exit from the mitotic arrest was detected as the starting time of Clb2

degradation. To measure this event, we first verified the presence of Clb2 degradation, recognized as

a drop in fluorescence level of at least 25% of the peak value. Once the degradation was identified,

the time of its start was determined as the frame where the second derivative had its minimum value.

Image analysis - Mad2 localization

Mad2-GFP localization was determined using a localization index defined using the Laplacian of

Gaussian operator. This operator smooths out the noise and enhances edges between dark and bright

areas of the image Marr and Hildreth [1980]. Since, with our settings, the kinetochore occupies roughly

a 3x3 pixels square, we used the Laplacian of Gaussian of size 3. For the smoothing parameter σ we

choose 2. The resulting matrix of the filter is:




−0.0085 0.0038 −0.0085

0.0038 0.0187 0.0038

−0.0085 0.0038 −0.0085




(2.1)

The effect of this filtering are shown in Figure 2.2. We used the maximum of the filtered image as

localization index.

To define a threshold above which Mad2 was defined as localized, we observed that the Mad2 local-

ization index drops rapidly from high to low values when cells adapt. This result can be appreciated
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Mad2−GFP Mad2−GFP filtered

Figure 2.2: Effect of the Laplacian of Gaussian filtering on Mad2-GFP signal.
Mad2-GFP raw image (left) was filtered using the Laplacian of Gaussian filter presented in equa-
tion (2.1). The resulting image is in the right panel. The scales of the two images are very different:
raw fluorescent values range from 0 to ∼1500, the filtered values from 0 to ∼40. Scale bars are 5µm.

by plotting the number of cells with Mad2 localization index above a chosen value in function of time

(see Figure 2.3). The curves representing values from 7 to 10 are close to each other, especially in their

descending dynamics around 200 minutes. This means that in the majority of cells Mad2 localization

index changes from indicating complete localization (> 10) to complete delocalization (< 7). This

result gave us the freedom to choose any value within the interval. We chose the highest value, 10.

It is worth noticing that in G1, when Mad2 is not localized at kinetochores (see Section 1.1.2), the

localization index is much lower (99th percentile = 6.5).
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Figure 2.3: Mad2 localization index threshold.
Cells carrying MAD2-GFP CLB2-mCherry and 1, 2, 3, or 5 copies of CDC20 (yAC3538, yAC3565,
yAC3555, yAC3552) were arrested in G1 and released into nocodazole, and their Mad2 localization
index was measured in time. In this graph, the number of cells with Mad2 localization index above
threshold are plotted versus the time from G1 release into nocodazole. Every curve represents a
different value of the threshold, listed in the legend. N : 3; n: 1310. For a complete overview of the
database of observations see Table 4.1. Image taken from Bonaiuti et al. [2017].

Image analysis pipeline

We excluded from subsequent analysis cells where Mad2 is not localized when Clb2 degradation starts

(i.e.: Mad2 localization index is below 10) and cells where Mad2 delocalizes while Clb2 is stable. On

the remaining cells, we computed the empirical cumulative distribution function of the adaptation

times. This curve was fitted with an exponential function after a delay. The rate of the exponential
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curve gives the adaptation propensity. Rates normalized on wild-type are used as hazard ratios in the

final comparison presented in Section 3.3.3.

To summarize the analysis pipeline we list here all its steps:

1. segment each cell;

2. extract the information in the segmented area of mother and daughter cells together, remove

the background, compute the mean value of Clb2 and the localization index of Mad2 in time;

3. compute Clb2 accumulation and degradation times, and evaluate the Mad2 localization status

at the time of Clb2 degradation;

4. from Figure 2.3, define a threshold for Mad2 localization index based on steepness of the curves

around 200 minutes, and on Mad2 localization index value during G1;

5. according to the threshold, identify cells where Mad2 is localized or not at the time of Clb2

degradation. Figure 3.2(d) and 3.14 are produced at this step;

6. exclude cells where Mad2 is not localized at the time of Clb2 degradation, and cells where no

Clb2 degradation is recorded. Figure 3.3 is produced after the exclusion;

7. compute the empirical cumulative distribution function of adaptation times, and fit it with an

exponential after a delay (Figures 3.4 and 3.15(a));

8. compute hazard ratio of each strain normalizing the rate with the one of wild-type.

An analysis of the robustness of the results presented in Figures 3.2(d), 3.3, 3.4, 3.14 and 3.15(a)

is presented in Appendix A.

2.4 Mathematical model

This section refers to results presented in Section 3.2.

We converted the wiring diagram shown in Figure 3.5 into a System Biology Markup Language

(SBML) model of biochemical reactions that could be used for simulations in Python. Deterministic

simulations were carried out using the Python package ‘SloppyCell’ Myers et al. [2007], Gutenkunst

et al. [20107]. Stochastic simulations were performed with the Python package ‘StochPy’ using Gille-

spie’s direct method Maarleveld et al. [2013].

Parameters for the model are discussed in Section 3.2.2. To measure Cdc20 degradation we used

cells carrying his3-11,15::HIS3tetR-GFP, ura3::3XURA3tetO112 (yAC1070, gift by Simonetta Piatti,

Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS, Montpellier, France). Samples for

western blot analysis were fixed in cold NaN3 1mg/ml. More details of the protocol can be found

in the caption of Figure 3.6(a) To compare Cdc20 levels with those of APC/C subunits, we used

CDC23 -Myc9, Myc9 -CDC20, CDC27 -Myc9, APC5 -Myc9 and APC4 -Myc9 strains (gift by Wolfgang
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Zachariae, Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Martinsried,

Germany). Details of the protocol can be found in the caption of Figure 3.6(c). To measure protein

concentration we used FCCS, the details of the protocol used to produce Figure 3.6(b) can be found

in Section 2.7.

2.5 Creation and characterization of strains with additional

copies of CDC20

This section refers to results presented in Section 3.3.1.

Plasmid construction and genetic manipulation

CDC20 sequence from -411bp to +391bp was amplified by overlap extension PCR on the plasmid used

for Cdc20 tagging in Shirayama et al. [1998] and on pAC130 and cloned in YipLac204 to obtain plasmid

pAC138 for TRP1 tagging. This plasmid was digested with KpnI and CDC20 sequence was cloned in

YipLac211 to obtain plasmid pAC142, for URA3 tagging. pAC138 and pAC142 integrations at TRP1

and URA3 loci were obtained by digestion with EcoRV and copy number was evaluated by Southern

blot (for integration at TRP1 ) or qPCR (for integration at URA3 or TRP1 ), see Figure 3.12(a) and

3.12(b). To test for CDC20 functionality, in the strains carrying additional copies of CDC20 both

the endogenous CDC20 and CDH1 were removed and viability was verified.

Quantification of extra CDC20

To estimate additional CDC20 copy number, we performed quantitative PCR (qPCR) on genomic

material using MND2 as reference gene. To quantify the number of insertions at TRP1 locus (Fig-

ure 3.12(a)) we also included in the analysis strains carrying extra copies of CDC20 but deleted for

the endogenous gene. qPCR output for yAC2398 (trp1::CDC20::TRP1, CDC20 ) was approximately

twice as for the wild-type strain. For yAC2400 (trp1::CDC20::TRP1 (2X), CDC20 ) it was three times

compared to wild-type. Accordingly, when we deleted endogenous CDC20 in yAC2398 we had the

same signal as in the wild-type, while we had approximately twice as much with the same deletion in

yAC2400. yAC2398 was then used as parental for CDC20 2X strains and yAC2400 for CDC20 3X.

To measure gene copy number in the selected URA3 transformant yAC2675, we created a cali-

bration set composed by the haploid wild-type and two diploid strains with different CDC20/MND2

ratios. We run a qPCR analysis using MND2 as normalizer (Figure 3.12(b)). The results suggest

that haploid transformant yAC2675 (unknown number of CDC20 integrations at URA3 ) carry two

additional copies of CDC20. The CDC20 5X strains carry the additional CDC20 from this URA3

transformant and the two copies at TRP1 locus from yAC2400.

cdc20∆ was a gift from Fred Cross (Center for Studies in Physics and Biology, The Rockefeller
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University, New York, USA). pds1::18MYC-PDS1::LEU2 strain used for diploid construction was a

gift by Simonetta Piatti (Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS,

Montpellier, France)

Benomyl plates

This paragraph refers to Figure 3.13(a).

To prepare benomyl plates we melted YPD solid agar, then cooled it to 65 ◦C. 100X Benomyl

solution in DMSO was added to the cooled melted agar, then plates are poured and left drying for

one hour under a chemical hood. Benomyl concentration in plates was 12.5µg/ml. DMSO was used

as negative control at 1% concentration. Drop test with coltures at stationary phase was performed

right after drying of the plates, to avoid degradation of the compounds.

Single-cell adaptation experiments in nocodazole - mad3∆

These paragraphs refers to Figure 3.13(b).

Cells carrying MAD2-GFP CLB2-mCherry and 5 copies of CDC20 or mad3∆ were arrested in

G1 and released into nocodazole, without any further medium change, to allow cell rebudding after

mitotic exit. Images were acquired as presented in Section 2.3.

SAC-deficient cells (mad3∆) have a shorter mitosis than SAC-proficient strains, and thus Clb2

is degraded before mCherry can mature. For this reason, in the experiments of Figure 3.13(b) we

cannot measure mitotic arrest as the time between Clb2 accumulation and degradation. Instead, we

kept track of the time between the first and the second budding (i.e., between entry into S-phase after

G1 release and after adaptation).

mad3::TRP1 was a gift by Peter de Wulf (University of Trento, Centre for Integrative Biology,

strain PDW747).

2.6 Single-cell adaptation experiments in nocodazole - diploids

This paragraph refers to results presented in Figure 3.15(b).

Cells were grown in YP medium (1% yeast extract, 2% Bacto Peptone, 80mg/l adenine) supple-

mented with 2% glucose (YPD), and released into nocodazole without any synchronization. Images

were acquired and mounted as in haploid experiments (Section 2.3), the only difference being the

spacing of the Z-stacks (0.3µm for haploids, 0.38µm for diploids). Clb2 signal was used to identify

mitotic entry and exit, as discussed in Section 2.3, while Mad2 levels were not used in image analysis,

for reasons explained in Section 3.3.2.
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2.7 FCCS experiments

This section refers to results presented in Section 3.4. For an overview of the technique, see Section 1.3.

Strains, media and reagents

Cells were grown at 23 ◦C in synthetic complete medium, prepared using yeast nitrogen bases lacking

folic acid and riboflavin (CYN6501; ForMedium, Hunstanton, UK) to reduce medium fluorescence,

and supplemented with 2% glucose, and 1% Bacto Peptone (BD, USA) to maximize nocodazole effect

in synthetic medium Taylor-Mayer et al. [1988].

Plasmid construction and genetic manipulations

To reduce cell autofluorescence, the mutated ade2-1 gene normally present in W303 genetic back-

ground was replaced by one-step gene replacement with wild-type ADE2 gene, amplified by PCR

from plasmid pRS402 Brachmann et al. [1998].

Gene deletion was performed with one-step tagging based on S-primers strategy Janke et al.

[2004]. Gene tagging was performed as explained for Bub3-mCherry in Section 2.2, using monomeric

mCherry and a monomeric yeast-enhanced version of GFP (myeGFP), in three tandem copies and

with different codon usage, engineered by Susanne Trautmann (plasmids pST70 and pST72 in Boeke

et al. [2014]). Strains in which Mad2, Mad3 or Bub3 have been tagged were successfully tested for

SAC proficiency.

cdc16-6A and cdc27-5A were gift from Andrew Murray (Department of Molecular and Cellular

Biology and Center for Systems Biology, Harvard University, Cambridge, MA, ADR2032). bub3∆

strain was a gift by Simonetta Piatti (Centre de Recherche en Biologie Cellulaire de Montpellier

(CRBM), CNRS, Montpellier, France). For details on additional copies of CDC20 see Section 2.5.

Data acquisition

To immobilize cells, glass bottomed well chambers (Imaging Plate 5241-20; Zell-Kontakt, Germany)

were pre-treated for at least 30 minutes with Bioconect (UCT, USA) followed by one ethanol and one

water wash steps and incubated overnight at 4 ◦C with 1% ConcanavalinA (C2010; Sigma), followed

again by two wash steps with water. At the time of the sampling, cells were briefly sonicated, then

loaded in the chamber. Approximately 15 minutes after loading, medium and floating cells were

carefully removed from wells and 150µl of new medium was added. G1-phase cells were measured

after growing 120 to 180 minutes in α-factor containing medium. Metaphase cells were measured 150

to 210 minutes after release in nocodazole from G1.

The experiments were performed in a room with controlled temperature (∼ 23 ◦C), using a Mi-

croTime 200 (PicoQuant, Berlin, Germany) time-resolved confocal microscope, controlled using both

SymphoTime64 software (PicoQuant) and a custom written Java program (using libraries from Im-
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ageJ Schneider et al. [2012] and µManager Edelstein et al. [2010]). Cells were excited using a 485nm

pulsed laser diode head (LDH-D-C-485, PicoQuant), pulsing at 20MHz and a 561nm continuous-

wave laser (Cobolt Jive, Cobolt). Power for both lasers was set such that count rates for both

fluorophores were below 1% of pulse rate (20MHz) to avoid detector dead-time artifacts Nishimura

and Kinjo [2005] and reduce photobleaching. Emitted light passed through band-pass emission fil-

ters [ET525/50 and ET632/60; Chroma Technology, VT, USA]. For more details on the microscope

settings, see Šteflova et al. [2016].

Objective ring-collar was optimized at the beginning of each day to maximize the signal. The

laser beam was positioned in the nucleus, identified by the signal from Mad2-GFP for MCC and

APC/Cinhib measurements, or from Cdc23-mCherryfor APC/C measurements (Figure 3.7). Bright-

field images were used to check the correct phase of the cell cycle of the acquired cells. Only one

measurement per cell was performed, lasting 45 seconds. .

Data analysis

Auto- and cross-correlation functions were computed using FluctoAnalyzer Wachsmuth et al. [2015],

correcting for background autofluorescence and green-to-red bleedthrough. The correction values were

computed using control strains as in Maeder et al. [2007]. The background control strain has the same

genetic background as target strains, and carries no fluorescent proteins. Bleethrough control strain

carries Don1 tagged with the same GFPs used in the target strains.

The resulting functions were fitted, using FluctoAnalyzer, to a two-components model, assuming

triplet-like blinking state. An explanation of the model can be found in Section 1.3. We first fitted the

optical parameter κ using the calibration dyes. There is a κ for the green and one for the red channel,

since the lasers have different wavelengths. This value is constant throughout the whole measurement

session, since it only depends on the optical settings.

To compute acquisition volumes we fitted the autocorrelation curves of the calibration dyes Atto-

488 and Atto-565. Acquisition volumes result from plugging into equation (1.11) κ and τD from the

fitting, and imposing 420µm2/s as the diffusion coefficient D. To measured the effective overlapping

volume we used double-labeled probes (In vitro FCCS standards 488-543 nm, IBA, Göttingen, Ger-

many): the overlapping volume was computed such that the concentration of the probe was the same

when measured with the signal from either channel or with the cross-correlation.

The automated fitting pipeline returns a database of the fitted parameters, where each observa-

tion is a measured cell. This database was analyzed using an automatized pipeline written using

RStudio RStudio Team [2015]. Concentrations are then computed as explained in Section 1.3. We

identified as unreliable (e.g: trembling cells, laser beam too close to the outer membrane) and removed

all measurements with R2 < 0.99 for one of the two proteins (∼ 5% of the measurements). Similarly,

measurements with R2 < 0.3 for the cross-correlation fitting were removed (< 0.1%). The reason why

we used a lower quality threshold for the complex is to avoid removing cells where the two proteins
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are not interacting (see a discussion on this topic in Section 2.7.1).

In Figures 3.20(a) and 3.20(b), the concentration of the complex was expressed in each cell as fold

increase with respect to value of the CDC20 1X strain the same day. This is to take into account day-

by-day variability. The normalization factor was choosen taking into account that the concentrations

are distributed mainly lognormally. For this reason we did not use the mean of the signal, but rather

e〈logX〉

where log is the natural logarithm, X the observed data and square brackets indicate the average over

all the observations. In our results, statistical significancies are not altered by normalizing using the

mean value.

Kolmogorov-Smirnov test was the choice for pairwise comparisons, either one-tail (for control) or

two-tails. The following symbols are used: ns p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, ****

p < 0.0001. p-values are explicitly written in the caption of each figure.

2.7.1 Quality of the fitting as additional measure of the complex formation

As explained in the Introduction (equation (1.13)), the concentration of the complex (Crg) is zero only

if Grg is zero, since the other factors are positive unless the instrument is not correctly set (Vrg = 0)

or one of the two channels gives no signal (Cr = 0 or Cg = 0). When fitting real measurements we do

not have Grg = 0, even if the two proteins are not interacting. Indeed, the observed cross-correlation

in these cases is often positive (see Figure 2.5(a)). This background signal is negligible if the complex

of interest is present at high concentration. In contrast, if the complex itself gives a dim signal, the

background must be removed, or at least reduced. Since the complexes we are interested in are present

at very low concentrations, we need to tackle this problem.

The background is due to the presence of cross-talk between the two channels (bleedthrough), ex-

pecially from the green to the red channel. As shown in Figure 2.4, the right tail of the eGFP spectrum

overlaps the ’red filter’. This means that an eGFP can emit photons detected by the ’red counter’.

This of course results in synchronous detection in the ’green’ and ’red’ detectors, which is by definition

cross-correlation. The software we used for the analysis, FluctoAnalyzer Wachsmuth et al. [2015], par-

tially corrects for this effect by using an average procedure. However, it does not completely remove

it.

Other techniques can be used to improve the bleedthrough removal before computing the cross-

correlation. In particular, the lifetime filtering Macháň et al. [2014] uses the information on the

fluorophores’ lifetimes (that is: the fluorophore-specific time from excitation to emission) to identify

photons coming from one or the other emitter. A statistical filter gives, for each time-bin after

excitation, a probability that photons falling in that bin belong to one or the other emitter. Removing

’false red photons’ identified by the lifetime of the green-emitting fluorohore, removes the bleedthrough,
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Figure 2.4: Bleedthrough in cross-correlation measurements.
Emission spectrum of eGFP (light-blue filled area) reaches the values of wavelength detected by a ’red
filter’ (red shaded rectangle). The parameters of the ’red filter’ are the same of the filter used in our
experiments. In the red circle, the overlap between the spectrum and the filter.
Image produced using http://www.thermofisher.com/it/en/home/life-science/cell-analysis/
labeling-chemistry/fluorescence-spectraviewer.html.

photon by photon.

We dealt with the background signal using a different approach, which can be explained by com-

paring the cross-correlation curves presented in Figure 2.5. Circles are the measured cross-correlation,

while the solid line represents the fit. The strain presented in Figure 2.5(a) is a negative control, since

it carries eGFP-Don1 and Ste11-mCherry, two proteins that do not interact Maeder et al. [2007].

The other strain, presented in Figure 2.5(b), is a positive control, since it carries Mad2-GFP and

Cdc23-mCherry in a condition where the two proteins interact. Curves are processed with the average

bleedthrough removal of FluctoAnalyzer Wachsmuth et al. [2015], as we did in the Results chapter.

Yet, the G(0) of the negative control is not 0, and thus the measurement does not give zero concen-

tration for the complex. In particular, G(0) for negative and positive controls are roughly the same

(0.004 and 0.005).

However, the fitting of the negative control is much worse than the one of the positive. To quantify

the quality of each fitting, we used the R2 returned by FluctoAnalyzer, defined as:

R2 =

∑n
i=1(ŷi − ȳ)2

∑n
i=1(yi − ȳ)2

,

where n is the number of the observed values yi, ŷi are the fitted value, and ȳ is the average of the

observed values. As in linear regressions, the maximum value for R2 is 1. Other properties of R2 are

not retained in non-linear models (such as non-negativity). Albeit suboptimal, we found that R2 is a

good proxy of the quality of fitting.

We used the quality of the fitting, together with the amplitude of the signal, as measures of the

quality of the signal detected by the protein pairs we selected to measure MCC and APC/Cinhib.

Both measures give significant difference between positive and negative controls (see Figure 3.18).

http://www.thermofisher.com/it/en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html
http://www.thermofisher.com/it/en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html
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(a) Negative control for cross-correlation

(b) Positive control for cross-correlation

Figure 2.5: Positive and negative control for cross-correlation signal in FCCS.
Croo-correlation data and fitted curves for negative and positive controls.
Negative control carries eGFP-Don1 and Ste11-mCherry, two proteins that do not interact Maeder
et al. [2007].
Positive control carries Mad2-GFP and Cdc23-mCherry in a SAC-proficient strain. The cell is arrested
in nocodazole, so APC/Cinhib is formed and the two proteins interact.

2.8 Pulse experiments and controls

This section refers to results presented in Section 3.5.

Strains, media and reagents

To control for methionine presence or absence, we used synthetic low-fuorescent medium, prepared us-

ing nitrogen bases lacking ammonium sulphate, supplemented with ammonium sulphate. The medium

is either complete or lacking methionine, supplemented with 2% raffinose (SCR, SCR-met) or 2% raf-

finose and 2% galactose (SCRG, SCRG-met). Methionine was added at 2mM or 2.6mM .

Cells were arrested in G1, and supplemented with galactose during the last hour of the arrest

to induce GAL1 promoter. Cells were released into synthetic complete medium, with galactose and

raffinose (SCRG). To induce a ’pulse’ of exogenous Cdc20, the medium was temporarily switched

to SCRG-met. First pulse in Figure 3.23(a) was given at 110 minutes after G1 relase, and lasted

35 minutes. Second pulse in the same figure was given 170 minutes after G1 release, and lasted 35

minutes.
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Plasmid construction and genetic manipulation

Plasmid pAC130 carrying MET3pr -CDC20 construct was synthetized by Epoch Life Science and

contains -600bp of MET3 promoter and CDC20 ORF from ATG to +392bp. MET3pr -CDC20 from

pl130 was cloned in YipLac211 (KpnI/PstI) and integrated at URA3 locus by digestion with NcoI.

Single integration was checked by Southern blot analysis. MET3 promoter from plasmid pAC130 was

cloned in in PacI/NotI sites of plasmid pGC25 (a gift from Fred Cross, Center for Studies in Physics

and Biology, The Rockefeller University, New York, NY 10065, USA; from Charvin et al. [2008]) to

obtain MET3pr -yEVenus (plasmid pAC136). pAC136 integration was directed at TRP1 locus by

XbaI digestion. Single integration was checked by Southern blot analysis

For the coupling experiment (Figure 3.22(a)), MET3pr -mCherry was synthetized by Genscript and

cloned in BamHI/EcoRI of Yiplac211 to give plasmid pAC156. It contains 600bp of MET3 promoter

and 392bp of CDC20 terminator (as in pl130). mCherry sequence has a silent mutation to remove

internal NcoI site. pAC156 was inserted at URA3 site by NcoI digestion. Single integration was

checked by Southern Blot.

To obtain plasmid pAC97, CLN2 promoter from CLN2pr -Venusdegron (a gift from Fred Cross,

Centre for Studies in Physics and Biology, The Rockefeller University, New York, USA, see Charvin

et al. [2010b,a]) was swapped with CDC20pr (412bp) obtained from the plasmid used for Cdc20

tagging in Shirayama et al. [1998]. CDC20pr -Venusdegron from pAC97 was cloned by PCR duplication

at CDC20 locus Huber et al. [2014].

HTB2 -mCherry was a gift from Fred Cross (Center for Studies in Physics and Biology, The Rock-

efeller University, New York, USA)

Image acquisition

MET3pr -Venus,MET3pr -Venusdegron and CDC20pr -Venusdegron were acquired using a single Z-stack,

10% lamp power, 0.05 seconds. Ht2b-mCherry was acquired with a single Z-stack, 10% lamp power,

0.15 seconds exposition.

Image analysis

To estimate Venus synthesis rate (i.e., activity) from the MET3pr or CDC20pr (Figures 3.12(d),

3.22(a), 3.22(b), 3.23(d)), the time of promoter activation was identified by the maximum of the

second derivative. The raw signal was smoothed using a moving window of size 4. From the moment

of promoter activation for a minimum of 40 minutes the signal was fitted with a straight line. Promoter

activity was identified as the slope of the fitted line, similarly to what proposed in Charvin et al. [2010b]

(see Figure 2.6 for details).
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Figure 2.6: Measures obtained from the Venus fluorescence.
Nuclear division (purple dot) was detected by eye using Htb2-mCherry fluorescence. The time of
promoter activation was identified by the second derivative of the smoothed fluorescence signal (black
arrow). The linear fit was done on experimental data (red dots) for at least 40 minutes after the
promoter activation (black line). The slope of the fitted line (green line and angle) was used to
compute promoter activity. Image taken from Bonaiuti et al. [2017].

2.9 Single-cell experiments using Cdc20-sfGFP

This section refers to results presented in Section 3.5.1.

Strains, media and reagents

Cells were grown in YP medium (1% yeast extract, 2% Bacto Peptone, 80mg/l adenine) supplemented

with 2% glucose (YPD), arrested in G1 and released into nocodazole.

Plasmid construction and genetic manipulation

N-terminal tagging of CDC20 with sfGFP was obtained by ’seamless gene tagging’ strategy Khmelin-

skii et al. [2011]. The sequence including sfGFP∆C-I-SceIsite-CYC1term-URA3 -NOP1pr -I-SceIsite-

sfGFP was amplified by PCR from plasmid pMaM189, and targeted to CDC20 by designing appropri-

ate oligos. Transformation produced strain yAC3415, in which the correct integration was checked by

PCR and fluorescence microscopy. GAL1pr -I-SCEI was targeted to LEU2 locus by digesting plasmid

pND32 with SspI. The strain resulting from transformation, yAC3429, was crossed with yAC3415.

The URA3 marker was excised from the resulting strain by growing it onto galactose-containing

plates. Correct excision was checked on plates lacking uracile and on plates containing 5-fluoroorotic

acid (5-FOA). Finally, GAL1pr -I-SCEI was removed by crossing.
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Cdc20−sfGFP Clb2−Cherry Nuclear mask
on Clb2

Figure 2.7: Identification of nuclear pixels using Clb2 signal.
The nucleus is identified using a k-means cluster analysis on Clb2-mCherry signal. Cdc20-sfGFP signal
was average only on nuclear pixels. Scale bars are 5µm.

Image acquisition

Images are acquired using a DeltaVision Elite imaging system with the same components as to the

one presented in Section 2.1. The only difference is the camera. Here we used a Scientific CMOS

camera (Photonics).

Images were acquired every 10 minutes for 700 minutes using 5 Z-stacks spaced 0.2µm. Cdc20-

sfGFP was acquired at 10% lamp power for 0.1 seconds each stack, Clb2-mCherry at 10% lamp for

0.2 seconds each stack. Both channels were projected using the average intensity projection.

Image analysis

Clb2-mCherry signal was analysed as explained in Section 2.3. To analyse Cdc20-sfGFP, we measured

its nuclear signal. The nucleus was identified by k-means clustering on Clb2-mCherry signal (see

Figure 2.7), since this protein accumulates in the nucleus during the mitotic arrest (see Section 1.1.2).

For this reason, we can identify the nucleus only between Clb2 accumulation and degradation. This

procedure mirrors the one presented and discussed in Vernieri et al. [2013].



Chapter 3

Results

3.1 Clb2 degradation takes place during an active arrest

Two are the possible ways for cells to escape a prolonged mitotic arrest: either after silencing the

checkpoint, or in the presence of an active checkpoint. In the first case, the signalling is switched

off, and cells restore proliferation in the absence of any ’stop signal’. In the second case, the SAC

machinery is active but cells, somehow, overcome it. No clear evidence have been provided so far for

either of the two scenarios. To address this point, we followed in real-time, using single-cell fluorescence

microscopy, the metaphase-to-anaphase transition and checkpoint activity. We selected as a marker

of entry into anaphase the degradation of Clb2 (see Section 1.1.1), and as a marker of checkpoint

activity the localization of Mad2 at kinetochores (see Section 1.1.2). To record this information, we

used strains carrying the two proteins tagged with fluorophores. Tagging Clb2 with mCherry did not

alter its protein dynamics (Figure 3.1(a)). For what concerns Mad2-GFP, in nocodazole it colocalized

with Bub3-mCherry (Figure 3.1(b)), which resides at kinetochores during mitosis Kerscher et al.

[2003], Gillett et al. [2004] (see Section 1.1.2). This results implies that Mad2-GFP also localizes at

kinetochores in nocodazole, as expected in the presence of spindle damage Gillett et al. [2004].

To measure the SAC activity and the length of the mitotic arrest, cells were arrested in G1, released

into nocodazole and grown in microfluidic chambers. Cells were prevented from entering into S-phase

after adaptation by administration of α-factor, together with nocodazole, one hour after G1-release.

A fully automated analysis pipeline identified the duration of metaphase (defined as the time between

Clb2 accumulation and degradation) and Mad2 localization. The latter was measured by a ’Mad2

localization index’, whose value is high when the protein is localized (see Sections 2.3 for details on

the analysis pipeline).

The discrimination between localized and delocalized Mad2 was obtained by applying a theshold:

above this value we considered Mad2 as localized, below as not localized. We set this value higher than

what we measured in G1-arrested cells, where Mad2 is not localized at kinetochores (see Section 1.1.2).

46
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(a)

(b)

Figure 3.1: Quality control of tagged protein for adaptation experiments
a) Left panel: Western blot analysis of Clb2 in CLB2 and CLB2 -mCherry cells (strains yAC3202 and
yAC3509). Cells were arrested in G1, released in fresh medium and sampled at the indicated timepoints.
Right panel: Quantification of Clb2 signal, normalized to Cdc28. b) Cells carrying Mad2-GFP (in
green) and Bub3-mCherry (in red) (yAC3266) were arrested in G1 and released into nocodazole-
containing medium, then imaged after two hours. 20 Z-stacks were deconvolved and projected. See
Section 2.2 for details on the protocol. Image taken from Bonaiuti et al. [2017].

The identification of cells adapting with localized Mad2 was robust to our choice of the threshold

(see Figure 2.3 and Section 2.3 for details). The complete dataset of observations consisted of 326

CDC20 1X cells, analyzed in 3 biologically independent replicates (see Table 4.1 for details).

The result of this analysis showed that in the large majority of cells (83%) Mad2 was still localized

when Clb2 degradation started. In a much smaller fraction (13%), Mad2 delocalized before Clb2

degradation (Figure 3.2(d)). Examples of fluorescence traces from cells belonging to each of the two

groups can be found in Figure 3.2(a) and Figure 3.2(b). In the remaining 4% of cells we could not

identify Clb2 degradation even if Mad2 delocalized from kinetochores (Figure 3.2(c)).

Cells where Mad2 was not localized at the time of Clb2 degradation have a median of arrest

of 375 minutes as opposed to 120 minutes for cells adapting with localized Mad2. Since the effect

of nocodazole may have faded with time, in these cells Clb2 degradation may be a consequence

of microtubule repolymerization, although we cannot exclude that they adapt with an alternative

mechanism. Our further analyses were performed on cells degrading Clb2 with localized Mad2, as

they represented the large majority of our observations.

So far, our analysis focused on SAC activity at the time of Clb2 degradation. To investigate what

happens before and after this event, we plotted the distribution of Clb2 levels and Mad2 localization

for different time-points around Clb2 degradation (Figure 3.3). Neither of the two proteins changed

its readout during 30 minutes preceding Clb2 degradation. However, the levels of Clb2 were largely

diminished already 20 minutes after the start of its degradation, which was complete within 40 minutes.
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(a) Mad2 localized (83%)
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(b) Mad2 not localized (13%)
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(c) No Clb2 degradation (4%)
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(d)

Figure 3.2: Clb2 degradation occurrs in the presence of Mad2 localized at kinetochores
Cells carrying Mad2-GFP Clb2-mCherry (yAC3538) were arrested in G1 and released into nocodazole.
a-c) Examples of single-cell traces of Clb2-mCherry mean signal and Mad2-GFP localization index.
Clb2 accumulation and degradation were automatically identified as explained in Section 2.3. a) A cell
degrading Clb2 in the presence of localized Mad2. b) A cell degrading Clb2 when Mad2 is no longer
at kinetochore. c) A cell where no Clb2 degradation is recorded. d) Scatterplot of Mad2 localization
index at Clb2 degradation, for cells where this event takes places (panels a-b). Cells with values above
threshold are depicted as filled dots, empty otherwise, as in panels a-b. The histogram pointing upward
refers to cells above threshold, downward to cells below threshold. Number of independent biological
replicates (N ): 3, number of observations (n): 314 (see Table 4.1 for details on the observation dataset).
Image adapted from Bonaiuti et al. [2017].

Mad2 delocalization followed a similar dynamics, but delayed compared to Clb2 degradation and less

homogenous, with some cells still having Mad2 localized well after Clb2 degradation.

Thus, our data show that in the large majority of cells anaphase is initiated in the presence of

active SAC-signalling by Mad2 at kinetochores. The degradation of Clb2 is followed by a slower and

incomplete delocalization of Mad2. These observations are consistent with a ’slippage’ model in which

cells leave mitosis despite an active checkpoint.

3.2 A model of the mitotic checkpoint reproduces adaptation

dynamics

Having demonstrated that cells adapt to an active SAC, we asked how that happens. To this aim, we

analysed the phenomenon of adaptation using cumulative distribution functions. When we plotted
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Figure 3.3: After Clb2 degradation, Mad2 delocalization is slow and uncomplete
Boxplots of Mad2 localization index (green) and Clb2 (purple) at the indicated time points before
and after Clb2 degradation (t=0). In G1 we show only Mad2 localization. For each cell, Clb2 is
normalized on its value when degradation starts. Only cells with Mad2 localized at kinetochores at
Clb2 degradation are included (black histogram in Figure 3.2(d)). N : 3; n: 272 (see Table 4.1 for
details on the observation dataset).
Image taken from Bonaiuti et al. [2017].

the empirical cumulative distribution function of adaptation times, measured from Clb2 accumulation

to Clb2 degradation (’mitotic arrest’ shown in Figure 3.2(a)), we observed an exponential-like shape,

with no cells adapting in the first 40 minutes (Figure 3.4).

We asked whether this distribution could arise from a model in which the steady-state levels

of APC/CCdc20 were kept below a critical ’anaphase threshold’ by an operational SAC, but where

random fluctuations could overshoot the threshold and drive cells into anaphase.

3.2.1 Construction of the model

To test this idea, we constructed a simple mathematical model of the SAC network and tested whether

it can reproduce the observed cumulative distribution of adaptation times. Our model is based on

the following core data, explained in detail in Sections 1.1.1 and 1.1.2, and summarized in the protein

network depicted in Figure 3.5:

• the only molecular species being synthesized and degraded is Cdc20 Liang et al. [2012], Nilsson

et al. [2008], Pan and Chen [2004];

• degradation takes place primarily from the inhibited form of APC/C, in cis Foe et al. [2011],

Foster and Morgan [2012];

• when the SAC is not active, Cdc20 binds and activates APC/C Primorac and Musacchio [2013];

• when the checkpoint is engaged, it drives the formation of MCC, which can bind and inhibit

the active APC/CCdc20 giving rise to the inhibited species APC/Cinhib Izawa and Pines [2015],

Alfieri et al. [2016].

The protein network depicted in Figure 3.5 can be translated into a system of ordinary differen-

tial equations (ODEs), using the law of mass action as explained in Section 1.2.1. Since the binding
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Figure 3.4: The cumulative distribution of metaphase arrest is fitted by an exponential
curve
Cells carrying Mad2-GFP Clb2-mCherry (yAC3538) were arrested in G1 and released in nocodazole.
We measured for each cell the time spent in metaphase, as defined in Figure 3.2(a). We included
cells where Mad2 is localized at kinetochores at the time of Clb2 degradation (black histogram in
Figure 3.2(d), example of single-cell trace in Figure 3.2(a)). The observed cumulative distribution of
these times is plotted as solid line and fitted with an exponential curve (dashed line). The fitting starts
after the delay, and has the rate of adaptation as the only free parameter. N : 3, n: 272 (see Table 4.1
for details on the observation dataset).
Image taken from Bonaiuti et al. [2017].

reactions are reversibile, both an association and dissociation reactions are included. The variables

involved in the ODEs are the concentrations of the different molecular species: the concentrations

of Mad2, Mad3 and Bub3 are lumped together in a single variable [M ], Cdc20 concentration is de-

scribed by [C], APC/C concentration by [A], MCC by [MC], APC/CCdc20 by [AC], APC/Cinhib by

[ACMC]. The resulting ODE system is the following:





d[C]

dt
= s− aMC [M ][C] + dMC [MC]− aAC [A][C] + dAC [AC] +D[ACMC]−Dbkg[C]

d[MC]

dt
= aMC [M ][C]− dMC [MC]− aACMC [AC][MC] + dACMC [ACMC]−Dbkd[MC]

d[AC]

dt
= aAC [A][C]− dAC [AC]− aACMC [AC][MC] + dACMC [ACMC]−Dbkg[AC]

d[ACMC]

dt
= aACMC [AC][MC]− dACMC [ACMC]−D[ACMC]−Dbkg[ACMC]

(3.1)

Association and dissociation constants are represented by the parameters a and d, respectively. Sub-

scripts indicate which is the product of the reaction the parameters refer to. In numerical simulations,

association and dissociation constants are assumed to be the same for all the reactions (see next para-

graph for a robustness analysis related to this assumption). s and D are the parameters for synthesis

and degradation, respectively, of Cdc20, the only protein synthesised and degraded. A small back-

ground degradation Dbkg, introduced for numerical stability, acts on all the molecular species that

include Cdc20.
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Figure 3.5: Scheme of the SAC protein network
Scheme of the reactions comprising the SAC protein network, as described in Sections 1.1.1 and 1.1.2.
The arrow pointing at Cdc20 represents its synthesis. Bullet points in every association/dissociation
reaction represent reversibility. The absence of bullet points in APC/Cinhib disassembly represents its
irreversibility, since it implies the degradation of one molecule of Cdc20.
This same scheme is presented in the Introduction (Figure 1.4).
Image taken from Bonaiuti et al. [2017].

Since the total amounts of APC/C and Mad2, Mad3 and Bub3 are constant, the variables not

explicitly included in the ODE system (3.1) can be determined by using the conservation laws:





[Atot] = [A] + [AC] + [ACMC]

[Mtot] = [M ] + [MC] + [ACMC]

It is easy to prove that the dynamics of Cdc20 total is:

[Ctot] = [C] + [AC] + [MC] + 2[ACMC]

d[Ctot]

dt
=

d[C]

dt
+

d[AC]

dt
+

d[MC]

dt
+ 2

d[ACMC]

dt

= s−D[ACMC]−Dbkg[Ctot]

(3.2)

3.2.2 Parameters of the model

Parameters of the model are largely based on experimental results. To estimate synthesis and degra-

dation rates of Cdc20, we first quantified indirectly its concentration during a mitotic arrest, noticing

that Cdc20 is expressed roughly as Cdc23 (lower panel, Figure 3.6(c)). Myc-tagging did not alter the

levels of either proteins (upper panels, Figure 3.6(c)). To quantify Cdc23 concentration, as well as

other APC/C subunits andMCC members, we used Fluorescence Correlation Spectroscopy (FCS), a

technique that uses the diffusion of fluorescently-labeled proteins to measure their concentration (see

Section 1.3). For Cdc23 concentration, we measured ∼ 70nM (Figure 3.6(b)). We thus assumed that

Cdc20 concentration during mitotic arrest of wild-type strain has the same value. Cdc20 half-life was
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Figure 3.6: Parameter estimation
a) Wild type cells (yAC1070) were arrested in G1 and released into nocodazole. After 120 minutes we
added cycloheximde (CHX) and sampled cells for western blotting. Right panel: quantification of the
the signal of Cdc20 normalized to Pgk1. The data shown are from single representative experiment out
of four repeats. b) Cells carrying Mad2-GFP, Bub3-GFP, Mad3-mCherry or Cdc23-mCherry (strains
yAC3268, yAC2886 and yAC2940) were arrested in G1 and released into nocodazole at 23 ◦C. After
150 minutes, for 60 minutes, FCS measurements were performed to estimate the concentration of the
protein, as explained in Section 2.7. n and N written at the bottom of each boxplot. c) Upper
panels: wild-type cells or cells carrying myc9-Cdc20 or Cdc23-myc9 (yAC3202, yAC3307, yAC3371)
were arrested in G1 and released into nocodazole. At the indicated time points samples were taken
for western blotting. N : 1. Lower panel: cells of the indicated genotypes (strains yAC3430, yAC3307,
yAC3367, yAC3365, yAC3436, yAC3353, yAC3261, yAC3427, yAC3262, yAC3371) were arrested in
G1 and released into nocodazole. After 110 minutes, samples were taken for protein extract preparation
and immunoblotted with anti-myc antibodies. N : 2.
Experiments in panels a and c perfomed by Elena Chiroli. Image adapted from Bonaiuti et al. [2017].
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set to ∼ 7 minutes (similar to what measured in Pan and Chen [2004], Foster and Morgan [2012]), by

fitting the kinetics of protein degradation in the presence of cycloheximide (Figure 3.6(a)). Synthesis

was chosen accordingly, to keep Cdc20 ∼ 70nM during an arrest. To ensure the presence of a stable

steady state, we introduced the small background degradation rate acting on all molecular species

that include Cdc20. This background degradation, APC/C-independent, is chosen arbitrarily to be

5 times smaller than the APC/C-dependent degradation, but a different value would have equally

led to a steady-state, as long as the degradation acts on all molecular species that include Cdc20

(see Section 1.2.1). The presence of a steady-state is suggested by the observation that the effects of

a transient overexpression of Cdc20 are time-independent (see later, Figure 3.23(a)).

The values ofMCC dissociation constant (KD,MC = dMC
aMC

) and APC/Cinhib dissociation constant

(KD,ACMC = dACMC
aACMC

) are also based on experimental data. MCC dissociation constant is in the

order of nM according to Faesen et al. [2017]. We estimated KD,ACMC indirectly, as follows. IC50 for

MCC on APC/CCdc20 was measured to be 4nM Foster and Morgan [2012]. In first approximation,

this result implies that active APC/CCdc20 reaches half-maximal levels at 4nM of inhibitor, and

suggests a value of KD,ACMC around this order of magnitude. Albeit indirectly, these data indicate

that KD,MC and KD,ACMC are in the same order of magnitude. We used for both of them 10nM .

We found no evidences for KD,AC , however, it is reasonable to suppose it is not lower than KD,ACMC .

We used 10nM for this dissociation constant too. A robustness analysis on KDs is presented in Sec-

tion 3.2.3. For association constants, which have not been measured, as far as we are aware, we used

reasonable numbers. Association of APC/C toMCC or Cdc20 is in the same order of the association

constants of the E2 Ubch10 with APC/C Chang et al. [2014]. For MCC formation, we took values

comparable with the rate-limiting step, that is Mad2-dimerization Simonetta et al. [2009].

For what concerns the total amount of proteins that interact with Cdc20 in forming MCC, Mtot,

we used the concentrations measured with FCS (Figure 3.6(b)). Since we found that Mad3 is less

abundant than Mad2 and Bub3, and thus limiting in MCC formation, we gave to Mtot a value close

to its concentration, 80nM .

For what concerns the total amount of APC/C, Atot, we measured the concentration of some of

its components, as well as the concentration of the complex. Among the APC/C components that we

investigated using both western blot (lower panel in Figure 3.6(c)) and FCS (Figure 3.6(b)), Cdc23

resulted the less abundant, and thus its concentration is an upper limit for Atot. Since Cdc23 is

present in two copies in APC/C Primorac and Musacchio [2013], the actual upper limit is half of this

value, ∼ 30nM . To directly measure APC/C concentration, we used Fluorescence Cross Correlation

Spectroscopy (FCCS). This technique, related to FCS, measures protein-protein interaction using

as proxy the codiffusion, in femtoliter volumes, of the proteins of interest detected by fluorescent

labeling (see Section 1.3). To measure APC/C formation, we measured the codiffusion of Cdc23

with Cdc16, and of Cdc23 with APC5. All the three subunits are essential in APC/C Giaever
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et al. [2002]. Both the protein pairs (Cdc23/Cdc16 and Cdc23/APC5), measure APC/C in very low

concentration (∼ 20nM), as shown in Figure 3.7. This result is close to the upper limit defined by

Cdc23 concentration, and further confirms the low abundance of APC/C. To set the value for Atot,

we applied, as conservative choice, a factor 2 to the direct measurement of APC/C. We thus assumed

Atot = 40nM . We will see that the low abundance of complexes, expecially APC/C, plays a key role

in the dynamics of adaptation to the SAC. Table 4.3 gives an overview of the parameters and their

references.
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Figure 3.7: Direct measure of APC/C concentration
Cells carrying APC5-GFP and Cdc23-mCherry (’APC5-Cdc23’ in the figure, strain yAC2932) or
Cdc16-GFP and Cdc23-mCherry (’Cdc16-Cdc23’ in the figure, strain yAC2954) were arrested in G1
and released into nocodazole. FCCS measurements were performed after 150-210 minutes, and abso-
lute concentration of APC/C was measured. Kolmogorov-Smirnov two tails test reject the hypothesis
of the two distributions being different (p = 0.314). The concentrations written in the legend are the
central value of the distributions (see Section 2.7), that is the exponential of the mean of the logarithm
of the data (e〈logX〉), that takes into account the lognormality of the distributions. See Section 2.7 for
details on the protocol.

3.2.3 Robustness of the model to changes in parameter or wiring

The model mainly relies on experimental data, but the values of KDs, their homogeneity, and the

product of APC/Cinhib disassembly, are not well established. Moreover, in our model we made an

important assumption, lumping together Mad2, Mad3 and Bub3 in a single variable M . To measure

the robustness of the model to these assumptions and less well defined parameters, we used bifurcation

diagrams. These plots relate the steady-state value of a variable of a system with the changes of

a specific parameter of the system, called bifurcation parameter (see Section 1.2.1). We chose as

bifurcation parameter s, the synthesis of Cdc20.

First, we analysed the choice of using a common value for all the KDs. As explained previously,

in the model we assume that the as and ds, the association and dissociation constants, are equal

for the three binding reactions. This means that the KDs of the three reactions, defined as KD =
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d
a , share the same value. In the model we set it to 10nM , in the same order of magnitude as

what found for MCC Faesen et al. [2017]. To investigate the robustness of the model, we doubled

or halved it to 20nM or 5nM , and performed a bifurcation analysis on the steady-state levels of

APC/CCdc20 and APC/Cinhib. The resulting plots are very similar to what obtained when KD = 10

(left plot, Figure 3.8(a)). It is worth noticing that the steady-state levels do not depend on a and

d separately, but only on KD, while a and d determine the dynamics of the system to reach the

steady-state (see Section 1.2.1).

The second analysis we performed aimed at investigating how the model behaves if we assume

different KDs for different reactions. We thus modulated one KD at a time, while the other two are set

to 10nM . We performed this analysis on the estimated KD,AC and KD,ACMC , but not on KD,MCC ,

since this value was directly measured Faesen et al. [2017]. The resulting bifurcation diagrams are

very similar to the one with KD = 10nM (center and right plot, Figure 3.8(a)). These results show

that the system is not sensitive to changes in affinities of the association reactions, suggesting that its

response to changes in Cdc20 synthesis only depends on the topology of the network.

(a) Bifurcation diagrams varying KDs

(b) Alternative networks for APC/Cinhib disassembly (c) Bifurcation diagrams

Figure 3.8: Analysis of robustness of the model to changes in parameters or wiring
a) Bifurcation analysis of APC/CCdc20 and APC/Cinhib, with Cdc20 synthesis as bifurcation param-
eter. APC/CCdc20 steady-state value is in red, APC/Cinhib in black. Solid line describes the system
when KD has the value used throughout the rest of this study. Dotted and dashed lines represent
different modulations of KD, as described in each legend. Left panel: we changed the KD of all the
three binding reactions (KD,AC , KD,MC , KD,ACMC). Center panel: we change the KD for APC/C-
Cdc20 only. Right panel: we change the KD for APC/CCdc20-MCC only. b) Alternative wirings.
In ’To APC/CCdc20’, we assume that APC/Cinhib is not broken down into its basic components,
but directly into APC/CCdc20 and Mad2+Mad3+Bub3, degrading one molecule of Cdc20. In ’With
Mad3’, we include Mad2 and Mad3 as separate variables. c) Bifurcation analysis ofAPC/CCdc20 and
APC/Cinhib for the alternative wirings. Solid lines refer to the model described in the main text.
Details of the analysis can be found in Section 3.2.3.
Simulations performed by Fridolin Groß. Image taken from Bonaiuti et al. [2017].
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In the third analysis, we investigated the robustness of the model in response to changes in the

mechanism of APC/Cinhib disassembly, the least understood part of the network. In the model, we

assume that in this process one molecule of Cdc20 is degradated, while free APC/C, Mad2, Mad3,

Bub3 and a second molecule of Cdc20 are released. To investigate how changes in this assumption

influence the overall behavior of the model, we ran a simulation assuming that Cdc20 degradation from

APC/Cinhib gives rise to APC/CCdc20 and free Mad2, Mad3 and Bub3 (left diagram in Figure 3.8(b)).

In other words, instead of releasing free APC/C and Cdc20, the process releases the two bound

together in an APC/CCdc20 molecule. The bifurcation plot obtained with this modification resembles

the one obtained by the ’general model’ (Figure 3.8(c)), expecially in its saturating behavior.

The last analysis concerns the variable M , that we used to represent Mad2, Mad3 and Bub3. To

relax this assumption, we split the reaction producing MCC in two: first Mad2 binds Cdc20, then

their complex forms MCC by binding Mad3 (right panel of Figure 3.8(b)). Bub3, which is a member

of MCC, is not included in the network since it is bound to Mad3 throughout the whole cell cycle

Hardwick et al. [2000] (see Section 1.1.2 for a detailed discussion onMCC formation). The simulations

of this model behave substantially as the ’general model’ (dashed lines in Figure 3.8(c)). The results

obtained in these two last analyses, where we modified the wiring of the network, show that the fine

details on APC/Cinhib disassembly orMCC assembly are not relevant for the work discussed in these

pages.

3.2.4 Stochastic simulations of the model reproduce adaptation dynamics

As we saw in previous sections, APC/C and Mad3 are present in very low concentration. The presence

of low amount of molecules gives a prominent role to the inherent stochasticity of biochemical processes,

independently of other sources of noise (e.g: gene expression) Raser and O’Shea [2005]. To include

this stochasticity in the analysis of the model, we simulated it using the Gillespie algorithm Gillespie

[1977]. This method, explained in detail in Section 1.2.2, describes the evolution of a chemical reaction

network, taking into account the stochastic occurrence of molecular reactions.

Stochastic simulations do not deal with concentrations, but with number of molecules. To convert

the concentrations measured in Section 3.2.2 for Atot and Mtot into number of molecules, we assumed

a conversion factor of 2.5molecules/nM , calculated using a nuclear volume of ∼ 4.2µl, corresponding

to a nuclear radius of ∼ 1µm Therizols et al. [2010]. This conversion results in 200 molecules of Mtot

and 100 molecules of Atot in the stochastic simulations. The same conversion factor was used on every

other parameter expressed in nM . Table 4.3 gives an overview of the parameters for the deterministic

and stochastic simulations.
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Simulations reproduce the experimental behavior of adaptation times

As mentioned at the beginning of Section 3.2, in the model cells transit into anaphase when the amount

of active APC/C (APC/CCdc20) is above an ’anaphase threshold’. This assumption is justified

by the presence of feedback loops that control entry into anaphase (see Section 1.1.3). In essence,

APC/CCdc20 hitting the threshold in the model represents APC/CCdc20 triggering the feedback loops

in a real cell.

We started each simulation from an initial state with no Cdc20 ([C] = 0), corresponding to entry

into mitosis. As a result of Cdc20 synthesis, APC/CCdc20 levels initially increase, and after a short

transient they fluctuate around a steady-state value (see Figure 3.9(a)). Due to the noise, different

trajectories (i.e., different cells) cross the ’anaphase threshold’ at different times (Figure 3.9(a)). To

test whether the simulation produces results that are comparable with the experimental cumulative

distribution shown in Figure 3.4, we plotted the cumulative distribution of simulated adaptation times.

Indeed, the simulated cumulative distribution (Figure 3.9(d)) shows the same exponential behavior

as the experimental one.

The observed and simulated exponential shape of the cumulative distributions, suggests the pres-

ence of a homogeneous population, with a unique propensity to adapt shared among all cells. In

Appendix B we further support this suggestion with additional evidences.

Theoretical explanation of the exponential behavior of adaptation times

We asked whether we could give a theoretical explanation of the exponential behavior of adaptation

times. We defined adaptation time as the time it takes for APC/CCdc20 to first hit the ’anaphase

threshold’. This is the definition of first-passage time of a stochastic process (see Section 1.2.3).

Thus, we investigated the APC/CCdc20 trajectory as a stochastic process. We know, as explained

in detail in Section 1.2.3, that there exists a stochastic process, the Ornstein-Uhlenbeck process,

that has exponentially-distributed first-passage time, given that the threshold is far enough from

the mean Nobile et al. [1985]. If we demostrate that APC/CCdc20 trajectories are an Ornstein-

Uhlenbeck process, or share important similarities with it, and that the threshold is far enough from

the mean, we have a theoretical explanation of why APC/CCdc20 first-passage time are exponentially-

distributed.

Ornstein-Uhlenbeck process is defined as a stationary Gauss-Markov process. Stationary means

that its mean value does not change over time, Gauss process means that the values it assumes

are distributed as a Gaussian distribution, while Markov process means that it is possible to make

predictions for the future of the process simply by knowing its present state, not its history.

We test if APC/CCdc20 trajectories, after the first transient, have these three properties. First,

this process is stationary, since the system is at steady state. Second, this process is Gaussian, as

can be noticed both graphically and statistically. Graphically, we can appreciate the great similarities



CHAPTER 3. RESULTS 58

(a) (b)

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

Molecules of APC/C:Cdc20

F
re

q
u

e
n

c
y

(c)

Mitotic arrest (min)

Fr
ac

tio
n 

of
 a

da
pt

ed
 c

el
ls

1.0

0.8

0.6

0.4

0.2

0.0

0        100      200       300      400      500       600 

(d)

Figure 3.9: A model of the mitotic checkpoint reproduces adaptation dynamics
a) Simulated trajectories for APC/CCdc20. Each curve represents a single cell. Dashed line is
the ’anaphase threshold’ to be crossed for entry into anaphase. b) Autocorrelation of a single
APC/CCdc20 trajectory (blue) and of the average autocorrelation of 100 trajectories (red dashed)
during the stationary phase using the wild type parameter settings. Dashed black line is 0. c) In
orange, histogram of the simulated frequecies of APC/CCdc20 values during the stationary phase. In
black, a Gaussian distribution with the same mean and standard deviation. Dashed vertical line is
the value of the ’anaphase threshold’. d) Simulated cumulative adaptation produced by the model in
Figure 3.5 and equation (3.1). The circles display the adaptation time of the trajectories plotted in
panel a. The cumulative adaptation curve (solid line), is fitted with an exponential (dotted line) after
a delay.
Simulations performed by Fridolin Groß. Image adapted from Bonaiuti et al. [2017].

between the values assumed by the APC/CCdc20 trajectories after the short transient and a Gaussian

distribution with the same mean and variance (Figure 3.9(c)). Statistically, the Shapiro-Wilk test

for normality cannot refuse the hypotesis of the APC/CCdc20 trajectories being normally distributed

(p = 0.24). Third, for what concerns the Markov property, Gillespie algorithm returns a Markov

process (see Section 1.2.2 and Gillespie [1976]). However, the Markov process returned by the Gillespie

algorithm is the dynamics of all the proteins, while it is not obvious that each of them is described by a

Markov process. However, APC/CCdc20 shares another property with Ornstein-Uhlenbeck process: in

both the processes, the autocorrelation function decreases exponentially (Figure 3.9(b). This property

also depends on the fact that Ornstein-Uhlenbeck process is a Markov process.

Altogether, these results show the similarity betweenAPC/CCdc20 and the Ornstein-Uhlenbeck pro-



CHAPTER 3. RESULTS 59

cess. Since the ’anaphase threshold’ is far from the mean value of APC/CCdc20(Figure 3.9(c)), we

have a rationale for the presence of exponentially-distributed adaptation times. An important conse-

quence of describing APC/CCdc20 as an Ornstein-Uhlenbeck process is that in the latter the rate of

the exponential curve of firs-passage times only depends on the distance between the mean and the

threshold Nobile et al. [1985]. Both values, in our model, are the same in every cell. This finding sup-

ports the idea that the probability of adaptation, measured as the rate of the exponential cumulative

distribution of adaptation times, is the same in the whole cell population.

3.2.5 Predictions of the model

The probability of adaptation depends on the distance between the steady state of APC/CCdc20 and

the ’anaphase threshold’: the closer the steady state to the threshold, the higher the adaptation rate.

According to our model (Figure 3.10(a)), the steady-state levels of APC/CCdc20 increase with the

production rate of Cdc20. This dependency is true as long as Mad3 and APC/C, binding partners of

Cdc20, are in excess. In contrast, when the binding partners are limiting the dependency ceases, and

APC/CCdc20 levels become insensitive to further changes in Cdc20 production rate. Taken together,

these results predict that adaptation rate increases with Cdc20 synthesis, until saturation is reached.

Saturation depends on the low amount of total APC/C.

To explore the consequences of this prediction, based on the population average, on individual

cells, we ran stochastic simulations of the model modulating the value of s, Cdc20 synthesis rate. As

expected, stochastical numerical simulations show an increase in adaptation rates when increasing

Cdc20 expression, an effect which becomes dimmer for high Cdc20 synthesis (Figure 3.10(b)). It is

important to notice that, when APC/CCdc20 steady state is close to the threshold, very small increases

in its value have a noticeable impact on the mean adaptation time (see table in Figure 3.10).

The model also predicts that, as a consequence of the limited amount of Cdc20 interactors, during

a SAC arrest APC/CCdc20 steady-state levels cannot increase above the ’anaphase threshold’. This is

true as long as all the SAC components are present. No matter how high we increase Cdc20 synthesis

APC/CCdc20 levels are on average below threshold (Figure 3.10(a)). In contrast, in the case of cells

lacking SAC members, APC/CCdc20 steady-state levels are not limited by the presence of an active

SAC, and APC/CCdc20 average value crosses the ’anaphase threshold’ (see left panel in Figure 3.11).

As a consequence, SAC-defective cells synchronously and quickly activate APC/C (see right panel

in Figure 3.11). Summarizing, the model predicts that cells lacking SAC components and cells with

increased synthesis of Cdc20 exibit different behavior in exit from mitosis in the presence of spindle

damage.

How the checkpoint responds to increased Cdc20 synthesis depends on the topology of the SAC

regulatory network, a subject further investigated in a manuscript in preparation to which I con-

tributed Groß et al. [In preparation], presented in Appendix C. There, we analyze more rigorously
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color Cdc20 synthesis rate APC/CCdc20 steady-state mean adaptation time
(molecules/minute) (molecules) (minutes)

red 40 24.0 222.0
orange 50 25.6 86.0
green 60 26.7 46.8

pale blue 70 27.4 35.1
blue 80 27.7 31.1
purple 90 27.9 20.6

Figure 3.10: Model prediction changing Cdc20 synthesis rate
a) Steady states for APC/Cinhib and APC/CCdc20 as a function of Cdc20 synthesis rate, simulated
by the model describing the protein network in Figure 3.5. The dotted line is the ’anaphase threshold’
which needs to be crossed for cells to enter anaphase. With different filled dots, we mark different
values of Cdc20 synthesis rate, see panel b. b) Stochastic simulations of the model in Figure 3.5, for
the six different values of Cdc20 synthesis rate. c) The table summarizes the result obtained in the
two other panels. Mean adaptation time is the reciprocal of the adaptation rate, estimated by fitting
the simulated cumulative distributions in panel b. For high values of APC/CCdc20, small differences
give significant reduction in mean adaptation time. Simulations performed by Fridolin Groß. Image
adapted from Bonaiuti et al. [2017].

how the presence of two molecules of Cdc20 in MCC makes cells resistant to Cdc20 overexpression.

3.3 The SAC network is resistant to high Cdc20 levels

We have shown that stochastic simulations of the model give rise to adaptation dynamics that mirror

the experimentally measured data for the wild-type condition. Moreover, the model predicts that, if

wild-type has not saturated Mad3 and APC/C, increasing synthesis of Cdc20 causes an increase in

adaptation rate, until no more free binding partners are available, and the system becomes insensitive

to further increase of Cdc20 synthesis.

To experimentally investigate this effect, we modulated Cdc20 synthesis. It would have been

possible to modulate synthesis using an artificial or an inducible promoter. However, endogenous

synthesis of Cdc20 is tightly cell-cycle regulated (see Section 1.1.1), and we aimed at preserving this

feature. So, we modulated Cdc20 synthesis by creating strains carrying 2, 3 or 5 copies of the gene,

or diploid strains heterozygous for CDC20. In this way we could investigate values of Cdc20 synthesis

both higher and smaller than the wild type, preserving all Cdc20 regulations.
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Figure 3.11: SAC proficient and deficient cells behavior according to the model
Left panel: stochastic simulations of APC/CCdc20 levels in SAC-proficient (blue lines) or SAC-deficient
(red lines) cells. Cells exit from mitosis once APC/CCdc20 hits the ’anaphase threshold’ (dashed line).
Time of mitotic exit is indicated as black dot for each cell. APC/CCdc20 levels are expressed as
percentage of APC/C included in the complex, to underline the independency on the value of the
’anaphase threshold’. Right panel: histogram of times of exit from mitosis in 100 simulations of cells
as in the left panel.
Simulations performed by Fridolin Groß. Image taken from Bonaiuti et al. [2017].

3.3.1 Results on strains carrying extra CDC20

We inserted 2, 3 and 5 copies of CDC20 under the endogenous promoter, with the endogenous ter-

minator (see Section 2.5 for details on quantification, and Figure 3.12(a) and Figure 3.12(b)), in cells

expressing Clb2-mCherry and Mad2-GFP. We use CDC20 NX to denote the genotype of cells carrying

more than 1 copy of CDC20. The amount of protein accumulated during a metaphase arrest scales

with the number of genes (Figure 3.12(c)), and, accordingly, the activity of one individual CDC20pr,

as defined in Figure 2.6 and in Section 2.8, is not lowered by the presence of additional copies of

CDC20pr (Figure 3.12(d)).

The model predicts that cells overexpressing Cdc20 and SAC-defective cells respond in different

way to a SAC-inducing stimulus. To test this prediction, we compared the experimental response to

spindle poisons of CDC20 NX and SAC-defective mad2∆ and mad3∆ cells. CDC20 NX cells are

much less sensitive than mad2∆ cells to benomyl, a microtubule-depolymerizing drugs, even if slightly

more sensitive than wild type cells (Figure 3.13(a)). At single-cell level, mad3∆ cells show a much

faster rebudding kinetics in nocodazole compared to CDC20 5X (Figure 3.13(b)). Collectively, these

data indicate that the checkpoint as such is still functional in CDC20 NX strains.

To test the effect of increasing Cdc20 from wild-type value, we analysed the adaptation dynamics

of CDC20 NX strains. We used the same experimental protocol and the same analysis pipeline that

we used on wild-type strains to produce Figure 3.2(d) and Figure 3.4 (see details in Section 2.3). We

arrested cells in G1, released them into nocodazole and imaged them with fluorescence microscope

while growing in microfluidic devices. We observed that, as in the wild-type, most cells started to

degrade Clb2 in the presence of localized Mad2 (Figure 3.14). We then measured adaptation time, and

we noticed that cells adapted faster as the copy number increased. Noticeably, the major reduction in

adaptation times took place going from one to two copies of CDC20, whereas further increasing copy

number had less effect (Figure 3.15(a), summarized in Figure 3.17). This result is in agreement with
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(a) (b)

(c) (d)

Figure 3.12: Characterization of strains carrying multiple CDC20
a) To estimate the number of CDC20 copies integrated at the TRP1 locus after transformation,
we performed qPCR on genomic DNA for the indicated genotypes (yAC3202, yAC2398, yAC2435,
yAC2400, yAC2450), and thus identified strains with two or three copies of CDC20. b) To estimate
the number of CDC20 copies integrated at URA3 locus in yAC2675, we used as calibration set a
group of three diploid strains with known CDC20 -to-MND2 ratio (yAC3202, yAC2621, yAC2622). N :
3. Transformation performed with Elena Chiroli. c) Cells expressing the indicated copy number of
CDC20 (yAC3202, yAC2398, yAC2400, yAC2991) were arrested in G1 and released into nocodazole at
23 ◦C. After 135 minutes protein extracts were prepared and analyzed by immunoblotting with anti-
Cdc20 and anti-Cdc28 antibodies. Right panel: quantification of the signal normalized to CDC20 1X
value. N : 2. Experiments performed by Elena Chiroli. d) Activity of the CDC20pr, as defined in
Figure 2.6, in strains carrying one CDC20pr -Venus integrated in tandem with endogenous CDC20,
and multiple copies of CDC20 with their promoter and terminator (see Section 2.5 for details on
strain construction, strains yAC3106, yAC3623, yAC3630, yAC3627). Cells were synchronized in G1
and released into nocodazole. Promoter activity was measured after CDC20pr was switched on and
Venus signal started to increase. N : 3. Experiments performed with Elena Chiroli. Analysis performed
with Andrea Ciliberto. Image taken from Bonaiuti et al. [2017].
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Figure 3.13: CDC20 NX strains are SAC-proficient
a) Serial dilutions of the indicated strains (yAC1011, yAC2437, yAC2453, yAC2831, yAC1156) were
spotted on YPD plates containing 1%DMSO or 12, 5µg/ml benomyl. The picture was assembled from
serial dilutions made on the same plate by splicing out the irrelevant strains. N : 2. Experiments
performed by Elena Chiroli. b) Cumulative distributions of rebudding time of CDC20 5X and mad3∆
cells (yAC3552 and yAC3738). Cells were arrested in G1 and released into nocodazole in microfluidic
devices, then bud-to-rebud time was measured (see Section 2.5 for details on the analysis). N : 2.
Image taken from Bonaiuti et al. [2017].

the prediction of the model depicted in Figure 3.10(b).

3.3.2 Results on diploid strains

To test the effect of reducing the expression of Cdc20, we measured the length of mitotic arrest in

diploid cells heterozygous for CDC20 (see Section 2.6) and homozygous for Mad2-GFP and Clb2-

mCherry. We kept track of the metaphase length by measuring the time between Clb2-mCherry rise

and fall, as in haploid strains (see Section 2.3 for details).

Diploid cells could not be synchronized in G1, since they do not respond either to α- or a-factor.

For this reason, we released cells into nocodazole with no prior synchronization. Given the absence of

synchronization, the short duration of G1, and the fact that we acquired one image every 10 minutes,

we could not have a clear negative control for Mad2 localization index. This prevented us from

selecting cells based on Mad2 localization signal, as we did for haploids in Figure 3.4 and 3.15(a).

Yet, we needed to exclude from the analysis those cells that were in mitosis at the time of nocodazole

treatment, or entered mitosis before they could experience the effect of the drug. To this aim, we

used results from synchronized haploids, where Clb2 levels started increasing from 50 minutes after

nocodazole treatment (Figure 3.16). Thus, we included in the analysis of diploids only cells where

Clb2 signal rises later than 50 minutes from nocodazole addition. We measured the time spent in

mitosis as we did for the haploids: from Clb2 accumulation to its degradation.

Unlike haploids, a sizeable fraction of diploid cells died in metaphase, for reasons that are currently

unknown: 13% of the observations included in the analysis over all the strains, 25% of the observations

included in the heterozygous strain (for a complete overview of the database of observations included

in the analysis see Table 4.2). For these cells we could measure the beginning of the mitotic arrest
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Figure 3.14: Clb2 degradation occurrs in the presence of Mad2 localized at kinetochores
in CDC20 NX cells
Values of Mad2 localization index when Clb2 degradation starts, for the indicated strains (yAC3565,
yAC3555, yAC3552). Each dot is a cell where Clb2 degradation is recorded, percentages refer to the
whole set of cells (as in Figure 3.2(d)). N : 3; n: written for each genotype. (see Table 4.1 for details
on the observation dataset). Image taken from Bonaiuti et al. [2017].

(Clb2 rise), but not its end, since they died before Clb2 degradation. In statistical analysis this kind of

observations are called censored. Although we could not measure the duration of their mitotic arrest,

we knew that these cells kept the arrest until they died. To include this information in the analysis,

we changed the model used to estimate the propensity of cells to adapt. We did not fit the cumulative

distributions with an exponential as we did with haploid cells, since this procedure would have ignored

the censored observations. Instead, we used the Cox proportional hazard model, which keeps track

also of cells dead during the metaphase arrest. We summarized the results using the hazard ratio,

normalized to the CDC20/CDC20 diploid.

In agreement with the predictions, heterozygous CDC20/cdc20∆ diploids showed a propensity to

adapt that is 60% of the propensity of the homozygous CDC20/CDC20 cells (hazard ratio = 0.60,

Figure 3.15(b)).

3.3.3 Comparison of simulated and experimental data

In the previous sections (Section 3.3.1 and 3.3.2), we presented two different methods that we used to

measure adaptation propensity in haploid and diploid strains. On haploids, we used the exponential

fitting, while on diploids we used the Cox proportional model. To compare the two methods, we

compared the results obtained on strains carrying similar genetic modifications in haploids and diploids

(Figures 3.15(a) and 3.15(b)). The measure we used for comparison is the hazard ratio. For diploid

strains, this value is returned from Cox model. For haploid strains, the hazard is the adaptation rate,

interpreted as ’risk of adaptation per unit of time’, and thus the hazard ratio is the adaptation rate of

one particular strain divided by the adaptation rate of the wild-type. This value is presented also in

the legend of Figure 3.15(a). We compared CDC20 3X with CDC20 3X /CDC20 3X, and CDC20 5X

with CDC20 5X /CDC20 5X.
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Figure 3.15: Effects of modulating CDC20 copy number on adaptation rate
a) Haploid cells carrying MAD2-GFP CLB2-mCherry and 1, 2, 3, or 5 copies of CDC20 (yAC3538,
yAC3565, yAC3555, yAC3552) were arrested in G1 and released into nocodazole, as described for
Figure 3.2. The cumulative distributions of times in metaphase (solid lines) are fitted with exponential
curves (dotted lines) after a delay. Fitted adaptation rates, both raw and normalized on wild-type,
are written in the legend, together with n. N : 3 (see Table 4.1 for details on the observation dataset).
b) Diploid cells carrying in homozygosity MAD2-GFP CLB2-mCherry and homozygous for CDC20
(yAC3801), CDC20 3X (yAC3802), CDC20 5X (yAC3803) or heterozygous for CDC20 (yAC3804)
were grown in microfluidic devices in the presence of nocodazole, without being synchronized in G1
(see also Section 2.6). In the plot, Kaplan-Meier estimate of their cumulative distribution function of
adaptation times. A black cross marks the time interval where a censoring occurred (i.e., dead cell).
Hazard ratio HR (with wild type as normalizer) and n are written in the legend. N : 2 (see Table 4.2
for details on the observation dataset). Image adapted from Bonaiuti et al. [2017].

analysis on haploids analysis on diploids

strain hazard ratio hazard ratio strain

- - 0.60 CDC20/cdc20∆
CDC20 1X 1 1 CDC20/CDC20
CDC20 2X 1.77 - -
CDC20 3X 2.19 2.23 CDC20 3X /CDC20 3X
CDC20 5X 3.36 2.96 CDC20 5X /CDC20 5X

.

Table 3.1: Comparison of haploid/diploid analysis
For haploid strains, we used the exponential fitting of mitotic time. ’Hazard ratio’ is the rate of the
exponential function normalized on the wild-type. Data from Figure 3.15(a).
For diploid strains, we used the hazard ratio from Cox proportional hazard model of mitotic time.
Hazard ratio are computed with respect to the homozygous CDC20/CDC20. Data from Figure 3.15(b)
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Figure 3.16: Histogram of Clb2 rise time
Haploid cells carrying MAD2-GFP CLB2-mCherry and endogenous CDC20 were arrested in G1 and
released into nocodazole. From the analysis of Clb2 signal explained in Section 2.3, we measured the
time of Clb2 accumulation. N : 3; n: 326. For a complete overview of the database of observations see
Table 4.1.

The results of this comparison are shown in Table 3.1. The strains carrying more than 2 copies

of CDC20, either haploid or homozygous diploids, show similar hazard ratios. From this observation

we conclude that the two methods give comparable results. Thus, we merged all the results, and

presented them together, comparing them to the simulations (Figure 3.17). The global qualitative

behavior of our model well recapitulates the dependency of adaptation kinetics with altered Cdc20

expression rate (Figure 3.17).

Cdc20 synthesis rate (molecules/minutes) Number of CDC20 copies 
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Figure 3.17: Simulated and experimental results are comparable when modulating Cdc20
synthesis
Mean adaptation time as a function of synthesis rate in the model (left, data from Figure 3.10(b))
and as a function of CDC20 copy number in the experiment (right, data from Figure 3.15(a)). For
copy number 0.5 we used the results obtained with diploids, which showed that the heterozygous
CDC20/cdc20∆, has 60% of propensity to adapt of wild type cells (Figure 3.15(b)). We marked this
point using a different symbol (square) and a dashed line to emphasize the fact that this result was
obtained in a different experimental system. Image taken from Bonaiuti et al. [2017].

In conclusion our data support the hypothesis that adaptation rate scales with Cdc20 synthesis

up to CDC20 X2 values. Above this value the dependency is reduced.
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3.4 APC/Cinhib and MCC saturate with two copies of CDC20

Increasing Cdc20 expression did increase the chance of cells to adapt, but eventually the effect lev-

eled off. According to the model, this saturation is due to the limited amount of Cdc20 interactors

(Mads and APC/C), which are present in levels comparable to wild type Cdc20 (Figure 3.6(b) and

Figure 3.6(c)). At the molecular level, the saturation of the interactors would lead to the satura-

tion of the complexes, meaning that, after saturation, the levels of APC/Cinhib, APC/CCdc20 and

of MCC do not depend on Cdc20 synthesis (see Figure 3.10(a)). Since having more than 2 CDC20

only mildly increases the adaptation rate, we expect that CDC20 2X strains have reached the sat-

uration of the complexes. To experimentally test this hypothesis, we measured APC/Cinhib and

MCC concentrations in strains carrying additional CDC20 genes. We expect to measure higher lev-

els of APC/Cinhib and MCC in CDC20 2X than in wild-type strains, and to measure similar levels

in strains with 2 or more copies of CDC20.

To quantify APC/Cinhib and MCC in vivo, we used FCCS (see Section 1.3 for an introduction

on the technique). For each of the two complexes, APC/Cinhib and MCC, we selected a protein pair

(FCCS pair): Cdc23-mCherry/Mad2-GFP and Mad3-mCherry/Mad2-GFP, respectively.

3.4.1 Validation of FCCS as a tool to measure MCC and APC/Cinhib

Positive control has higher signal and shows better fit than negative controls

To test the choice of the protein pairs, we compared the cross-correlation signal in positive and negative

controls. For the first, we induced the formation of the complexes of interest by releasing G1-arrested

cells in nocodazole. For the negative controls, we chose three different conditions where the complexes

do not form, and thus no cross-correlation signal is expected. The three conditions were: G1-arrested

cells, large budded cycling cells, and cells treated with nocodazole but lacking one component of the

MCC (mad3∆ cells for the Mad2/Cdc23 pair, bub3∆ for Mad2/Mad3). For both complexes, the

protein pair in the positive control not only gave significantly higher concentrations than the negative

ones (y-axis in Figure 3.18(a) and 3.18(b)), but also a better quality of the fitting (x-axis in the same

Figures), implying a more reliable measurement of the concentrations (see Section 2.7.1 for a discussion

on the quality of the fitting). It is worth noticing that the protein pair Mad3-mCherry/Mad2-GFP does

not discriminate between free MCC and MCC in APC/Cinhib, and thus measures the total amount

of MCC, which is also expected to saturate, according to the model.

FCCS measures known interactions between members of the MCC

As additional control of the accurate detection of protein complexes by FCCS, we measured the cross-

correlation of pairs of other proteins taking part in MCC. At first, we investigated Mad2 and Bub3,

tagged with GFP and mCherry, respectively. These two proteins interact not only as members of the

MCC, but also at kinetochores, where they colocalize in the presence of spindle damage Kerscher
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Figure 3.18: Controls for FCCS as a tool to measure APC/Cinhib and MCC concentration
a-b) Four different conditions were used to test Mad2-GFP and Cdc23-mCherry (for APC/Cinhib,
panel a) as well as Mad2-GFP and Mad3-mCherry (forMCC, panel b) as a protein pair for FCCS mea-
surements. In the positive controls (red) we treated cells with nocodazole (yAC2886 for Mad2/Cdc23,
yAC3268 for Mad2/Mad3). We compared this signal with three negative controls: G1-arrested cells
(yellow), large-budded cycling cells (brown) and cells treated with nocodazole but lacking MAD3
(yAC3103, for Mad2/Cdc23) or BUB3 (yAC3127, for Mad2/Mad3) (orange). The signal is computed
fitting the cross-correlation function and expressed as fold increase with respect to the signal measured
in the positive control. See Section 2.7 for details on the protocol. In absolute concentrations, 1
corresponds to 13.7nM (panel a) and 11.5nM (panel b). Image taken from Bonaiuti et al. [2017].

et al. [2003], Gillett et al. [2004] (see Figure 3.1(b) and Section 1.1.2). We thus expect two sources

of cross-correlation: unattached kinetochores and MCC. As positive control we thus used wild-

type cells released into nocodazole, where both sources are present. As negative control we used

the same cells, released in fresh medium, where neither Mad2 localization nor MCC formation are

expected to take place. Another negative control are mad1∆ cells, since in this genetic background

Mad2 localization at kinetochores is impaired Gillett et al. [2004] and thus MCC formation is not

sustained. To uncouple the two sources of cross-correlation, we used MAD3 deletion, that prevents

MCC formation Hardwick et al. [2000], but retains Mad2 localization at kinetochore Gillett et al.

[2004]. We thus expect to have no signal in both the negative controls, high signal in the positive,

and only the signal from kinetochores in mad3∆ cells. Indeed, in nocodazole-arrested wild-type cells,

the cross-correlation signal rises from G1 values, while it does not change in wild-type cells released

in fresh medium and in mad1∆ cells. mad3∆ cells in nocodazole show the cross-correlation signal of

Mad2 and Bub3 resulting from kinetochore colocalization only (Figure 3.19(a)). By comparing the

signals from the positive control and mad3∆ cell, we notice that they are very similar. It might be

due to the fact that, in the positive control, the signal emitted from the colocalization of Mad2 and

Bub3 at kinetochores dominates the signal resulting from their codiffusion as MCC members. As

previously mentioned, we did not use this pair of protein to measure MCC, but rather Mad2/Mad3,

that codiffuse only asMCC members, since Mad3 does not localize at kinetochores (see Section 1.1.2).
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Figure 3.19: FCCS correctly identifies known interactions of MCC members
a) Cells carrying Mad2-GFP and Bub3-mCherry were arrested in G1 and released either into noco-
dazole (’noco’ in the legend) on into fresh medium (’cyc’ in the legend). Strains are wild-type (wt,
yAC2919) or mad3∆ (mad3D, yAC2994) or mad3∆ mad1∆ (mad3D-mad1D, yAC3042). The plot rep-
resent the cross-correlation signal, expressed as a fraction of Mad2 measured in the cell. N : 1. b) Cells
carrying Bub3-GFP and Mad3-mCherry were arrested in G1 and released either into nocodazole (’noco’
in the legend) on into fresh medium (’cyc’ in the legend). The plot represent the cross-correlation sig-
nal, expressed as a fraction of Bub3 measured in the cell. N : 1.
See Section 2.7 for details on the protocol of both plots.

The second pair of proteins we used as control is composed by Mad3 and Bub3. Their interaction

is not cell-cycle regulated Hardwick et al. [2000], thus we expect to see the same signal throughout an

uncostrained cell cycle, and in the M-phase arrest due to the presence of spindle poison. Indeed, when

we measured cross-correlation in cells carrying Mad3-mCherry and Bub3-GFP, we recorded the same

signal at different time-points after G1 release, with a dynamic that did not depend on the presence

of nocodazole (Figure 3.19(b)).

3.4.2 APC/Cinhib and MCC saturate with two copies of CDC20

We aimed at measuring APC/Cinhib and MCC since the model predicts that both the complexes

saturate when increasing CDC20 copy number (Figure 3.10(a), Section 3.2.5). When we measured

the concentration of APC/Cinhib in CDC20 NX strains, we observed that the signal increased with

one additional copy of CDC20, but reached saturation adding more copies (Figure 3.20(a)). The

same happened when measuring MCC: it also saturates with two copies of CDC20 (Figure 3.20(b)).

These results demonstrate that increased expression of Cdc20 leads to saturation of MCC and of its

interaction with APC/C, as expected from the model.

3.4.3 MCC reaches its maximal levels in CDC20 NX cells

According to the model, saturation of MCC and APC/Cinhib is a consequence of the limited amount

of interactors, not a specific trait of strains overexpressing Cdc20. As a consequence, regardless of

MCC and APC/Cinhib modulation, we cannot produce more of these complexes than CDC20 NX
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Figure 3.20: APC/Cinhib and MCC saturate with two copies of CDC20
a-b) Cells carrying Mad2-GFP Cdc23-mCherry (panel a, strains yAC2886, yAC3179, yAC3176,
yAC3384, yAC3312, yAC3400) or Mad2-GFP Mad3-mCherry (panel b, strains yAC3268,yAC3181,
yAC3153, yAC3380, yAC3346, yAC3227), with 1, 2, 3, or 5 copies of CDC20 or non-phosphorylatable
forms of APC/C (nP-APC) or deletion of MND2 (mnd2D) were released from G1 phase into synthetic
low-fluorescent medium containing nocodazole and 1% peptone. Each measurement is expressed as fold
increase with respect to the wild type strain measured on the same day. More precisely, we normalized
the cross-correlation signal to the exponential of the mean value of the logarithmic transform of the
wild type. See Section 2.7 for details on the protocol. Kolmogorov-Smirnov two-tails test was used for
comparison. Circles are boxplots’ outliers, included in the analyses. In panel a p-values are: for side-
by-side comparisons from left to right: 6.35 10−8, 8.01 10−2, 6.6 10−1 and 7.7 10−2, for wt VS nP-APC
p = 6.1 10−1, for wt VS mnd2D p = 2.3 10−1. In panel b, p-values are, for side-by-side comparison
from left to right: 7.2 10−9, 5.9 10−1, 3.3 10−1, 2.4 10−1 and 9.2 10−1.
Image adapted from Bonaiuti et al. [2017].
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strains. To test this consequence of the model, we aimed at increasing MCC and APC/Cinhib in

CDC20 X1 strains, via two mechanisms that do not involve Cdc20 synthesis, but rather APC/C bind-

ing to Cdc20 and APC/Cinhib disassembly.

First, we used strains carrying non-phosphorylatable forms of two APC/C subunits, CDC16-

6A and CDC27-5A. These mutations result in reduced affinity of APC/C to Cdc20 (Rudner and

Murray [2000], and Section 1.1.1), which clogs the pathway for APC/Cinhib formation, reducing

its levels. Since MCC disassembly depends on APC/Cinhib, MCC levels are expected to increase.

The increase in MCC is limited, according to the model, by the limiting species interacting with

Cdc20 in MCC formation. For this reason, this strain is expected to have the same amount of

MCC as CDC20 NX strains, which should be the maximal possible level. The overall effect on

APC/Cinhib formation is expected to be very mild, since the reduction in APC/C-MCC binding due

to the lower affinity should be counterbalanced by an increase in MCC levels.

Indeed, when we measured MCC with FCCS, we found that the distribution of its values was

statistically indistuinguishable from the one of CDC20 5X strain (Figure 3.20(b)). For what concerns

APC/Cinhib, as expected, it was non-significantly different from wild-type (Figure 3.20(a)). These

results verified a key prediction of the model, using a different perspective than the one used to build

it, thus reinforcing the strength of its conclusions. Moreover, from a technical point of view, these

results showed that it is possible to uncouple signals from MCC and APC/Cinhib, further confirming

that FCCS is a valid tool for the analysis we are bringing off.

The second mutation we used to modulate MCC and APC/Cinhib was the deletion of MND2.

MND2 is a non-essential subunit of APC/C that promotes Cdc20 ubiquitination Foster and Morgan

[2012], Mansfeld et al. [2011], Uzunova et al. [2012], Alfieri et al. [2016]. Thus, Mnd2 is the main respon-

sible for the APC/C-dependent degradation of Cdc20. The reduced degradation of Cdc20 in mnd2∆

cells was explained with a reduced ability of APC/C to ubiquitinate Cdc20 [Foster and Morgan, 2012,

Fig 4C]. Since Cdc20 ubiquitination induces the disassembly of APC/Cinhib, APC/Cinhib disassembly

in this genetic background is expected to be reduced, and thus the overall levels of the complex to

increase. On the other hand, the levels of free MCC are expected not to change, since Mnd2 does not

contribute to its formation. In brief, we used this mutation to increase APC/Cinhib levels and test if,

also in this genetic background, APC/Cinhib is limited as predicted by the model.

Surprisingly, when we measured APC/Cinhib andMCC in this genetic background, we found that

APC/Cinhib levels are the same as in wild-type cells (Figure 3.20(a)), while MCC levels are as high

as in CDC20 5X strains (Figure 3.20(b)). We discuss this surprising result hereafter. Here, we notice

that in mnd2∆ cells the value of MCC is increased, but not more than in CDC20 5X strain, in line

with the presence of limiting interactors.

As mentioned, in their work, Foster and Morgan do not explain the reduced degradation of
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Cdc20 with reduced affinity between MCC and APC/C, but rather with the reduced ability of

APC/C to ubiquitinate Cdc20 [Foster and Morgan, 2012, Fig 4C]. This implies that in mnd2∆ cells

APC/Cinhib assembly is unchanged, while APC/Cinhib disassembly is reduced, resulting in higer

APC/Cinhib levels. However, we directly measured APC/Cinhib levels in MND2 and mnd2∆ cells,

and they are not statistically different. This can be explained by a reduced assembly of the complex on

APC/C, counterbalancing its reduced disassembly. The reduced formation rate of APC/Cinhib could

also explain the high levels of MCC that we measured in mnd2∆ cells. This interpretation is in

line with results found in fission yeast Sewart and Hauf [2017], where deletion of the MND2 or-

tholog APC15 causes defects in MCC-APC/C binding. On the other hand, Foster and Morgan

interpretation is in line with results found in human cells: deletion of APC15 increases the amount

of MCC coimmunoprecipitated with Cdc27 Uzunova et al. [2012], an essential APC/C subunit. Fur-

ther analysis are needed to understand whether, in budding yeast, deletion of MND2 impacts on

APC/Cinhib assembly or not.

3.4.4 Estimate of number of APC/Cinhib and MCC molecules in wild-type

strains

So far we used FCCS to measure protein concentration. Of course, this information, together with

an estimate of the volume where the reactions take place, can give us also an estimate of the actual

number of reacting molecules, with a simple multiplication. Since Cdc23 is nuclear Melloy and Hol-

loway [2004], we consider the ractions taking place in the nucleus. For the nuclear volume, we used

Vnuc = 4.2µm3 Therizols et al. [2010], as we did in the model simulations. The average concentration

〈[ACMC]〉 of APC/Cinhib in the wild-type strain is 11.7nM (Figure 3.20(a)), while MCC average

concentration 〈[MC]〉 is 14.1nM (Figure 3.20(b))

We can get the average number N by multiplication:

N = 〈[·]〉 Na Vnuc

where Na is the Avogadro number, 6.022 1023Mol−1 and 〈[·]〉 is the average concentration of the

complex of interest. For APC/Cinhib in a wild type arrested cell we find:

NACMC = 11.7nM · 6.022 · 1023Mol−1 · 4.2µm3

= 11.7 · 10−9 Mol

L

6.022 · 1023

Mol
4.2 · 10−15 L

= 11.7 · 6.022 · 4.2 · 10−1

= 29.5

A similar computation for MCC leads to NMCC = 35.6. Although we used several approximations,

the order of magnitude is extremely low, as predicted by the model (see Figure 3.10).
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3.5 Transient overexpression of Cdc20 induces adaptation in

most cells, but not all

One key conclusion suggested by our model is that the adaptation rate only depends on the distance

between the average APC/CCdc20 steady-state levels and the ’anaphase threshold’, and thus it is the

same for all cells. Hence, transiently moving the APC/CCdc20 steady-state closer to the threshold

temporarily increases the adaptation rate in the population. The increase is reversible: once the

transient is finished, adaptation rate returns to the endogenous value. Due to the limited amount

of Cdc20 interactors, during a SAC arrest we cannot increase the average APC/CCdc20 steady-state

above the threshold, that would imply collective and synchronous adaptation as in SAC-defective

cells (see Figure 3.11). Therefore, transient increase in adaptation rate is expected only to facilitate

transition to anaphase, but not to drive all cells out of metaphase. Those cells that do not have chance

to adapt during the brief overexpression are expected to return to the endogenous adaptation rate

once the transient is over, since the half-life of Cdc20 is very short (∼ 7 minutes, Figure 3.6(a) and

Pan and Chen [2004], Foster and Morgan [2012]). In Figure 3.21 we can see a simulation of this effect.

Green and blue lines represent two individual cells, simulated using the stochastic model. Adaptation

is caused by APC/CCdc20 hitting the ’anaphase threshold’. APC/CCdc20 average steady-state levels

(solid black line) increase as Cdc20 is overexpressed, remaining below the ’anaphase threshold’. The

green cell adapts as a consequence of the overexpression, while the blue cell does not, even if the

average APC/CCdc20 value is the same in the two cells. The blue cell adapts during a subsequent

overexpression of Cdc20.
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Figure 3.21: Simulation of two transients overexpressions of Cdc20
Simulations of the effect of two transient Cdc20 overexpressions on APC/CCdc20 (upper panel) and
Cdc20 total values (central panel). Green and blue lines are produced by the stochastic simulation, and
represent the values of two individual cells until their adaptation. Cells adapt once APC/CCdc20 hits
the ’anaphase threshold’. Black solid lines are produced with the deterministic model, and thus rep-
resent the average levels in the the population. Dashed line is the ’anaphase threshold’. Promoter
activation status is shown in the bottom panel. Simulations performed by Fridolin Groß.
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To perform this experiment, we challenged arrested cells with exogenous pulses of Cdc20, and

measured the response of cells to the overexpression. If the hypothesis is correct, overexpressing

Cdc20 at different times should have the same effect. Moreover, if the adaptation propensity only

depends on APC/CCdc20 levels and not on the history of the cell, cells that mantain the arrest during

a pulse respond to a second overexpression with the same dynamics as a population of cells that is

exposed to extra Cdc20 levels for the first time (as the blue cell in Figure 3.21).

To control the exogenous expression of Cdc20, we placed CDC20 under the control of the MET3

promoter, which is triggered by the lack of methionine in the growth medium Charvin et al. [2010b].

To modulate the presence of methionine we grew cells in synthetic medium. Since in this medium

nocodazole is not active Taylor-Mayer et al. [1988], we induced metaphase arrest by overexpressing

Mad2 from the GAL1 promoter Rossio et al. [2010]. It has been shown that Mad2 overexpression

induces MCC amount comparable to what measured in nocodazole-arrested cells, indicating a bona

fide SAC arrest Mariani et al. [2012].

(a) (b)

Figure 3.22: Controls for MET3pr activity: coupling and strength
a) Cells carrying MET3pr -Venus, MET3pr -mCherry (yAC3112) were grown and synchronized in com-
plete low-fluorescent synthetic medium with raffinose (SCR) and released from a G1 arrest in the
same medium supplied with 2% galactose, to replicate the settings of the main experiment shown in
Figure 3.23(a). During the experiment, cells were grown in microfluidic devices. The MET3 pro-
moters were activated by removal of methionine for 35 minutes. Synthesis rate is estimated as in
Figure 2.6. N : 2. b) Indirect comparison of the MET3pr activated for 35 minutes and the endoge-
nous CDC20pr. Cells carrying GAL1pr -MAD2 HTB2 -mCherry and either CDC20pr -Venusdegron,
MET3pr -Venusdegron (left boxplot, strains yAC3108, yAC3359) or MET3pr -Venus (right boxplot,
strain yAC2341), were grown in galactose to induce Mad2 overexpression. (Left) After metaphase
arrest, cells were kept under constant lack of methionine. (Right) After metaphase arrest, cells were
kept under constant or transient (35 minutes) lack of methionine. For comparing the activity resulting
from the transient induction of MET3pr and the activity of CDC20pr, both values were normalized
to the activity of MET3pr under constant deprivation of methionine. The 35 min pulse produced
a promoter expression on average 3 times weaker than under constant removal of methionine. The
endogenous CDC20 promoter was 11 times weaker than the MET3 promoter under constant removal
of methionine. N : 2.
Experiments performed by Elena Chiroli. Analysis performed by Andrea Ciliberto. Image taken
from Bonaiuti et al. [2017].

Unfortunately, we could not directly tag the protein, since its high turnover prevents fluorophore

maturation. Even fast-folding fluorescent proteins have barely the time to mature, resulting in dim

and noisy signal (see Section 3.5.1). For this reason we indirectly monitored Cdc20 expression using

the Venusdegron reporter under a MET3 promoter, coupled with MET3pr -CDC20 (see Section 2.8),

similarly to what was done in Charvin et al. [2010b]. We confirmed that the activities of the two
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MET3 promoters are well coupled (Figure 3.22(a), Pearson correlation coefficient = 0.7, p = 8 10−7,

and Charvin et al. [2010b]). To measure adaptation time, we monitored nuclear division, which occurrs

regularly in cells that adapt to Mad2 overexpression, and synchronously to Clb2 degradation Vernieri

et al. [2013]. To this aim we tagged histone 2B with mCherry.

To test the prediction of the model, cells were arrested in G1, released in galactose to induce

Mad2 overexpression and after 110 minutes, when they were arrested in metaphase with large buds,

methionine was removed for 35 minutes to activate MET3 promoter (see Section 2.8 for details on the

protocol). In response to the pulse, ∼ 70% of cells adapted rapidly (red histogram in ’Early pulse’ lane

in Figure 3.23(a)). The remaining ∼ 30% (blue histogram) adapted late after the pulse, with dynamics

similar to cells that never experienced Cdc20 overexpression (’No pulse’ lane in Figure 3.23(a), direct

comparison in Figure 3.23(c)).

It is interesting to notice that cells that respond to the pulse show similar activity of the MET3pr

compared to cells that do not respond (Figure 3.23(d)). This lack of correlation is in agreement

with the saturation of APC/CCdc20 predicted by the model for high levels of Cdc20 synthesis (Fig-

ure 3.10(a)). The synthesis rate from the MET3pr is indeed 3 times higher than that from the

endogenous CDC20pr (Figure 3.22(b)).

Adaptation rate depends on APC/CCdc20 steady-state levels and as such not change in time,

according to the model. To test this prediction, we activatedMET3pr at a different time and measured

the fraction of adapted cells. Giving the pulse after 170 minutes from G1 release (’Late pulse’ lane in

Figure 3.23(a)) resulted in a population split just as in the ’Early pulse’ condition: one group (∼ 70%)

reacted to the pulse, the other adapted as if no pulse was given (direct comparison in Figure 3.23(c)).

To statistically test this claim, we measured the adaptation time as the time between the promoter

activation and the nuclear divison in each cell (see definitions in Figure 2.6). In this way we took into

account variability in the response of cells to the different pulses. The Kolmogorov-Smirnov two-tails

test rejects the hypothesis that the distributions for ’Early pulse’ and ’Late pulse’ cells are different

(p = 0.46).

This result reinforces the idea that cells are at steady-state. For this reason, and due to the short

half-life of Cdc20, cells that do not adapt immediatly after the pulse are expected to return to the

condition of those that never experienced the Cdc20 overexpression. To further confirm this idea, we

tested whether cells that do not respond to a first pulse react to a subsequent pulse with the same

dynamics as if they faced it for the first time (as the blue cell in Figure 3.21). We then treated

cells with two consecutive pulses (’Double pulse’ lane in Figure 3.23(a)). Cells reacted to the first as

’Early pulse’ cells (Figure 3.23(b)), and those that resisted reacted to the second as ’Late pulse’ cells

(Figure 3.23(b)).

We cannot compare the effects of the second pulse on ’Late pulse’ cells and on ’Double pulse’

cells as we did on ’Early pulse’ versus ’Late pulse’. Specifically, we cannot measure adaptation time

starting from the promoter activation time, since we cannot measure this value in ’Double pulse’ cells
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(a)

(b) (c) (d)

Figure 3.23: Transient overexpression of Cdc20 induces adaptation in most cells, but not
all
MET3pr -CDC20 MET3pr -Venus GAL1pr -MAD2 HTB2 -mCherrycells (yAC2341) were grown and
synchronized in complete low-fluorescent synthetic medium with raffinose (SCR) and released from a
G1 arrest in the same medium supplied with 2% galactose to activate the GAL1 promoter. During
the experiment, cells were grown in microfluidic devices. The MET3 promoters were activated by
removal of methionine (we call it ’pulse’, shown as greyshaded rectangles in panel a), which occurred
either early or late, the time difference being 1 hour. a) Histograms of adaptation times in the four
conditions: ’Early pulse’ are cells that experienced the ’pulse’ 110 minutes after G1 release, ’Late
pulse’ at 170 minutes, ’Double pulse’ both at 110 and 170 minutes, while ’No pulse’ cells were grown
in the presence of methionine. b) Cumulative empirical distributions of the histograms in panel a. c)
Comparison between adaptation times, measured from G1 release, in cells that never switch on the
MET3 promoter (’No pulse’) and cells that do not adapt under the early or late pulse. We only keep
track of adaptation times occurring after the upper border of the second pulse, that is t = 220min .
d) Scatterplot of adaptation times (x-axis) versus MET3 promoter activity (y-axis) in the early pulse
condition of panel a. Color code is the same for the two panels.
Experiments and analyses performed with Andrea Ciliberto and Elena Chiroli. Image taken
from Bonaiuti et al. [2017].
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responding to the second pulse. This is due to the high levels of fluorescence still present in the cells,

as a consequece of the activation of MET3pr -Venus after the first pulse (Venus has a longer half-life

than Cdc20). We then measured adaptation time starting from the beginning of the second pulse.

The Kolmogorov-Smirnov two-tails test rejects the hypothesis that the two distributions are different

(p = 0.07).

In summary, these experiments confirm that cells arrested in mitosis share the same propensity to

adapt, which is largely independent on time. The adaptation rate does not depend on previous Cdc20

overexpression.

3.5.1 Tagging Cdc20 with fast-folding version of GFP does not enable

accurate measurements

We aimed at measuring Cdc20 levels during a metaphase arrest. For this reason we tagged Cdc20

with a fast-folding version of GFP to allow fluorophore maturation before its degradation, which is

very fast during a metaphase arrest (half-life is ∼ 7 minutes). See Section 2.9 for details on the strain

construction.

Since Cdc20 levels are tightly regulated, we tested the effect of the tag. We arrested cells in G1,

released them into fresh medium, and analyzed the protein levels via western blot analysis. The

tagged version has similar dynamics compared with wild-type, albeit with slightly increased values

(see Figure 3.24(a) and 3.24(b)).
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Figure 3.24: Quality control of Cdc20-sfGFP
a) Western blot analysis of Cdc20 and Cdc28 in cells carrying Cdc20-sfGFP (strain yAC3456) or
endogenous Cdc20 (strain yAC3202). Cells were arrested in G1, released into fresh medium and
sampled at indicated time-points. b) Quantification of Cdc20/Cdc28 signal the gel in panel a.
N : 1

To relate metaphase length and Cdc20 levels, we performed single-cell experiments on strains

carrying Clb2-mCherry and Cdc20-sfGFP. We arrested cells in G1 and released them into nocodazole

in microfluidic devices. Metaphase length was measured with the same analysis used in Section 3.1
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and 3.3, that relies on Clb2-mCherry mean signal. Its rise and fall mark the beginning and the end,

respectively, of metaphase. Since Cdc20-sfGFP signal was much less clear, we needed a finer analysis.

However, we will see, despite our efforts we could not extract reliable information from this tagged

protein.

Cdc20-sfGFP protein levels cycle as expected (Figure 3.24(b)), but the fluorescent levels does not

(Figure 3.25(a). To extract the dim nuclear signal visible by eye (Figure 3.25(c)), we took advantage

of Clb2 signal. Using a k-means clustering on this value, we built a mask that identified nuclear pixels,

and averaged Cdc20-sfGFP signal on those. In this way we could measure a signal higher than the

mean (Figure 3.25(b)). However, this signal fades with time, independently of the time of mitotic exit

(see an example in Figure 3.25(c), and the quantification in Figure 3.25(d)). This is in contrast with

the known accumulation of Cdc20 in nocodazole Pan and Chen [2004]. This artefact likely depends

on the fast degradation rate of Cdc20 (∼ 7 minutes half-life, see Figure 3.6(a) and Pan and Chen

[2004], Foster and Morgan [2012]) which is in the same order of magniture as the maturation time of

sfGFP (∼ 5 minutes Khmelinskii et al. [2012]). In other words, sfGFP does not fold fast enough to

allow detection of Cdc20. MND2 deletion slows down Cdc20 degradation by roughly a factor 2 Foster

and Morgan [2012], and accordingly Cdc20-sfGFP signal is higher, but the artifact is still present

(Figure 3.25(d)). We thus decided to avoid using this marker.
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Figure 3.25: Quantification of Cdc20-sfGFP signal
Cells carrying Clb2-mCherry and Cdc20-sfGFP and either MND2 (strain yAC3614) or mnd2∆ (strain
yAC3612) were arrested in G1 and released into nocodazole. Data from one experiment, representative
of two independent replicates. a) For each time-point, we computed the average of Cdc20-sfGFP value
over all the cells still arrested in metaphase (that is: cells are included until Clb2 degradation). b)
Example of mean and nuclear traces of Cdc20-sfGFP signals in wild-type cell. Clb2-cherry mean
signal is used to identify the times of mitotic entry (purple square) and mitotic exit (purple dot),
used to compute the plot in panel c. Thick green line represent Cdc20 nuclear signal between Clb2
accumulation and degradation, that is when the it is correctly identified. c) Example of wild-type
cell at different time-points. d) Nuclear Cdc20-sfGFP signal is synchronized on the mitotic entry and
considered only until mitotic exit (thick green line in panel b). Plot of the nuclear Cdc20-sfGFP value,
averaged over the arrested cells (as in panel a), synchronized on the time of mitotic entry.
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Discussion

The phenomenon of adaptation to the SAC is still poorly understood. In this work, we addressed two

of the questions regarding its nature: the presence or absence of SAC activity at adaptation; and the

origin of the large variability in adaptation times.

Adaptation occurs in the presence of an active checkpoint

At adaptation, cells escape a mitotic arrest in the presence of the stimulus that induced SAC activation.

However, it is not clear whether cells actually adapt to an active SAC or if the SAC is switched off,

despite the presence of the stimuls, before entering into anaphase. The first scenario, at least in

mammalian cells, was suggested in a seminal work by Brito and Rieder Brito and Rieder [2006]. On

the other hand, work on mouse oocytes and mammalian cells invoked the second scenario, where the

transit into anaphase is caused by SAC silencing, as a consequence of the Cdk1 inactivation driven by

the slow degradation of Clb2 Rattani et al. [2014], Vazquez-Novelle et al. [2014]. In budding yeast,

Vernieri and colleagues argued against this explanation, demonstrating that Cdk1 inactivation does

not silence the SAC Vernieri et al. [2013].

Our data demostrate that budding-yeast cells adapt to an active SAC. Adaptation, measured with

the degradation of the mitotic cyclin Clb2 during nocodazole-induced arrest, occurs in the presence of

Mad2 localized at kinetochores. Moreover, Clb2 degradation, and the consequent reduction of Cdk1

activity, does not induce the delocalization of Mad2 from kinetochores in every cell. This latter result

argues against the need of Cdk1 activity to mantain a SAC arrest, and is thus in agreement with the

findings of Vernieri and colleagues.

Adaptation can be described with a stochastic model

The presence of an active SAC at the time of adaptation implies that the checkpoint does not fully

inhibit APC/C. Since Cdh1 is dispensable for adaptation Vernieri et al. [2013], this process must be

driven by APC/CCdc20. This finding sets the stage for a model in which APC/CCdc20 is present,

albeit at low levels, when an active SAC induces the formation of MCC and APC/Cinhib. In this

80
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scenario, adaptation is driven by random fluctuations of APC/CCdc20, that bring this complex above

the value needed for anaphase onset, that we called the ’anaphase threshold’. Random fluctuations are

caused by the inherent stochasticity of chemical reactions, and cannot be neglected as a consequence

of the low amount of Mad3 and APC/C molecules present in the cell. Despite its simplicity, the

model can reproduce the experimentally measured adaptation dynamics (compare Figure 3.4 and

Figure 3.9(d)).

Assumptions and properties of the model

The cumulative distribution of experimentally measured adaptation times shows an exponential be-

havior. The ability of our model to reproduce this beahvior is based on three assumptions, which we

discuss hereafter: random fluctuations, steady state, and ’anaphase threshold’. These three proper-

ties are not obvious. First, random fluctuations are non-neglibible only in the presence of low number

of proteins. We directly measured protein concentration using FCS. This method relies on tagged

proteins whose concentration, in principle, could be affected by the tag. However, our measurements

are in agreement with a proteome-wide Mass-Spectrometry analysis that included the proteins we

investigated (Figure 3.6(b)). The measured concentrations were similar or smaller than ours, with the

exception of Mad2 Kulak et al. [2014].

Second, the existence of a steady state, albeit in line with the fast turnover of Cdc20 during a

SAC arrest, neglects other factors that could operate on slow time-scale and facilitate adaptation. For

example, partially-polymerized microtubules can bind kinetochores and reduce the strength of the

SAC signal, that depends on the number of signaling kinetochores Collin et al. [2013]; or cell-growth

can reduce the kinetochore-to-cytoplasm ratio, that has been linked to SAC strength in Caenorhabditis

elegans Galli and Morgan [2016]. Surely, a condition of SAC arrest is not a steady condition, in general

terms, since cell growth does not stop. However, our data support the idea that the steady-state

approximation is valid. First, the dynamics is well reproduced by an exponential distribution where

the adaptation propensity is constant over time (Figure 3.4). Second, overexpressing Cdc20 at different

time elicits the same response in terms of adaptation (’Early’ and ’Late pulse’ in Figure 3.23(a)), and

thus the effects of slow time-scale dynamics can be neglected, at least in first approximation.

Third, in our model APC/CCdc20 must overcome a fixed ’anaphase threshold’ to induce the transi-

tion. This assumption may sound odd, but it underlies the idea that APC/CCdc20 activation triggers

positive-feedback loops inducing anaphase onset in a switch-like fashion (see Section 1.1.3). In essence,

as mentioned when presenting the model, APC/CCdc20 hitting the threshold in the model represents

APC/CCdc20 triggering the feedback loops in a real cell. Once the feedback loops are fired, the tran-

sition into anaphase becomes irreversible.

The model describes adaptation as a random event, whose probability to occur is the same in every

cell. In this view, the large variability in adaptation times is caused by the stochasticity of the event,
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not by intrinsic diversity of cells. This same large variability could also have suggested the presence

of subpopulations of cells with different propensity to adapt. Instead, as a proof of homogeneity, we

showed that a transient overexpression of Cdc20 elicits the same effect, regardless of previous overex-

pressions (’Early’ and ’Late’ versus ’Double pulse’ in Figure 3.23(a)). In other words, the clustering

elicited by the first ’pulse’ of Cdc20 does not reflect a different ability to resist adaptation. Homogene-

ity in adaptation propensity does not exclude the presence of molecular mechanisms that facilitate

adaptation, such as APC/C phosphorylation that increases APC/CCdc20 formation. However, we

believe that these mechanisms are enabling condition for adaptation, but they are not sufficient for

driving adaptation.

Shortcomings of the model

The model cannot explain some observations. First, there is a small fraction of cells (13% over all

strains) where the SAC is silenced before Clb2 degradation. We explained this behavior claiming that

in these cells nocodazole effect has faded. However, we cannot exclude that these cells managed to

escape the arrest via a different mechanism. It is important to notice that, as investigated in Ap-

pendix A, including these cells in the analyses does not change the exponential behavior of adaptation

times, nor the saturation effect caused by increasing CDC20 copy number.

Second, the levels of APC/CCdc20, indirectly deduced from APC/Cinhib and MCC levels, are the

same in cells carrying 2 or more copies of CDC20 (Figure 3.20). As a consequence, adaptation rate is

expected to be the same in these strains. In contrast, measured adaptation rate increases adding more

than 2 copies of CDC20, albeit the largest increase is observed from 1 to 2 copies (Figure 3.15(a)). We

believe that the explanation for this fact lies in the extreme sensibility of the system to the distance

between APC/CCdc20 steady-state and the threshold. Differences in the distance of 1 or 2 molecules

can give rise to different adaptation rates, as shown in Figure 3.10. The experimental setting we used

may be not enough sensible to measure such small differences.

Third, the agreement between predicted and measured effect of increasing Cdc20 synthesis is only

qualitative. Doubling CDC20 in cells has a smaller effect than doubling Cdc20 synthesis rate in

the model (see Figure 3.17). This discrepancy could be due to the fact that the actual production

of Cdc20, although increased (Figure 3.12(c)), is not doubled in CDC20 2X cells with respect to

wild-type. The potential reduction in Cdc20 production does not seem to involve transcription, since

the presence of multiple CDC20 promoters does not influence their activity (see Figure 3.12(d)).

Other regulatory steps, downstream transcription, could be involved in regulating Cdc20 production.

One possibility is that, in the presence of Cdc20 overexpression, Cdc20 folding cannot cope with

synthesis and the protein is misfolded and degraded. This interpretation is in line with the fact that

Cdc20 is folded by a chaperonin Camasses et al. [2003], which could become limiting under Cdc20

overexpression. This hypothesis needs to be verified. The mechanisms that oversee Cdc20 production

and degradation during SAC-arrest are still poorly understood, and further investigation is needed to
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better understand the regulation of Cdc20 synthesis and degradation.

If APC/CCdc20 is substrate of APC/Cinhib, the system resists to Cdc20 overexpression

Increasing Cdc20 synthesis does not change the exponential behavior of adaptation times observed in

wild-type strains, but only facilitates the transition. We explain this result by arguing that increasing

CDC20 gene copy number moves the steady-state value of APC/CCdc20 closer to the threshold, but

not above it. APC/CCdc20 steady state below the ’anaphase threshold’ implies that, as in wild-type

cells, anaphase onset is triggered by random fluctuations, not by the average APC/CCdc20 value. The

distance to be covered by random fluctuation to hit the ’anaphase threshold’ is smaller in CDC20 NX

than in wild-type strains, since APC/CCdc20 steady-state value is higher, and thus the triggering is

more likely to occur. Thus, our results support the idea that the nature of adaptation in wild-type

and CDC20 NX strains is the same.

Indeed, CDC20 NX strains adapt in the presence of SAC signaling (Figure 3.14), and show a

fully functional checkpoint, as can be noticed by comparing serial dilutions of these strains with SAC-

defifient mad2∆ on benomyl plates (Figure 3.13(a)). In agreement with our explanation, the average

duration of metaphase arrest is reduced in CDC20 5X strain compared to wild-type, but not dra-

matically (from 149 minutes to 70 minutes), and CDC20 5X strain is still slower than SAC-defective

mad3∆ strain (Figure 3.13(b)).

APC/CCdc20 steady-state value saturates and remains below the threshold for high levels of Cdc20

synthesis. In other words, there is no increase in Cdc20 synthesis that can drive APC/CCdc20 steady-

state value above the threshold. This result may sound surprising, since Cdc20 is the target of

the checkpoint, but it is the direct consequence of the wiring of the SAC network (Figure 3.5). In

this wiring, newly synthesised Cdc20 goes either in MCC or in APC/CCdc20. The two bind and

form APC/Cinhib. So, APC/CCdc20 and APC/Cinhib, that are antagonist in driving or arresting

the metaphase-to-anaphase transition, are balanced in an association/dissociation reaction (as we

analysed in Section 1.2.1). In such reactions, adding one molecule of the substrate (APC/CCdc20)

facilitates also the formation of a new molecule of the product (APC/Cinhib). For this reason, no

one of the two species can exclude the other from APC/C, which is shared among them. Increasing

Cdc20 leads at most to a ’frozen state’ where there are no free Mads/Bubs partners to produce more

MCC, nor free APC/C to create more APC/CCdc20. At this stage the system is no longer sensitive

to further increase in Cdc20 Izawa and Pines [2015].

It is worth noticing that a reduced version of our model, including APC/CCdc20 only, could be

enough to reproduce the wild-type adaptation dynamics, as long as it retains the three characteristics

mentioned previously: random fluctuations, steady state, and ’anaphase threshold’. In contrast, to

predict the saturation of APC/CCdc20 the model must include the whole molecular network, and
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thus a realistic description of the SAC. This saturation, in particular, is the direct consequence of

the recent finding that APC/Cinhib results from the binding of APC/CCdc20 and MCC, and of the

limiting amount of APC/C present in a cell.

Checkpoint deficiency and anticipated adaptation are not the same phenomenon

With the work presented here, we offer a way to distinguish between anticipated adaptation and SAC

defectiveness. The first scenario is described thoroughly in these pages: the average APC/CCdc20 value

is kept below the ’anaphase threshold’, but random fluctuations can drive individual cells into anaphase.

The phenomenon shows large variability. On the other hand, in SAC defective cells, APC/CCdc20 for-

mation is not counteracted by APC/Cinhib assembly and Cdc20 degradation, and a large fraction of

the total APC/C is activated by Cdc20, since no inhibitors are present. As a result, in these cells

the average APC/CCdc20 value is above the ’anaphase threshold’, synchronously driving cells into

anaphase. Here, stochastic fluctuations have no role, and the transition to anaphase is a determin-

istic event. Accordingly, the phenomenon is more coherent in time then adaptation, and faster. A

simulation of the different scenarios can be found in Figure 3.11.

The distinction between adaptation and deficiency is very relevant for interpreting the response of

cells to SAC-inducing stimuli. Overexpression of Cdc20, in our view, results in anticipated adaptation,

while inhibition of MCC formation, by deletion of SAC-components or by mutations that impair

the binding between MCC members, results in SAC-defectiveness. Along this argumentat, we can

reconcile previous results on Cdc20 overexpression with ours. It has been shown that, in nocodazole,

the dynamics of Pds1 degradation in budding-yeast cells overexpressing myc-tagged Cdc20 is halfway

between wild-type and mad2∆ cells Pan and Chen [2004]. For this reason Cdc20-overexpressing

cells were identified as checkpoint defective. In our view, these cells can be cathegorized as having

anticipated adaptation. Similarly, budding-yeast cells overexpressing Cdc20 from the GAL1 promoter

have been identified as checkpoint defective. However, it takes roughly 30 minutes for these cells

to degrade 50% of Pds1 during a nocodazole arrest [Shirayama et al., 1998, Fig. 7c]. This results

is comparable with ours, since it takes 40 minutes for 50% of CDC20 5X cells to adapt. Thus, we

suggest that cells overexpressing Cdc20 from the GAL1 promoter have a proficient checkpoint, but

anticipate adaptation.

Possible interpretation of the present work

As mentioned in Section 1.1.3, prolonged mitotic arrest is not likely to happen in nature. For this rea-

son, the protein network driving the metaphase-to-anaphase transition has likely not been evolutionary

shaped to behave optimally in these conditions. In this light, the prominent role of biochemical noise

at adaptation could not sound surprising, since cells have not been selected to perform robustly in

such conditions. In contrast, other transitions regularly occurring at each cell cycle have been shaped

by evolutionary pressure, and so they robustly face biochemical noise, often by mean of feedback
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loops Kapuy et al. [2009], Gérard et al. [2015], Skotheim et al. [2008].

In this view, it is possible that noise sensitivity is a common trait of transitions in non-physiological

conditions, such as escape from prolonged arrests.

Future goals

The presence of an active SAC at adaptation time and the difference between anticipated adaptation

and SAC defectiveness are not unique properties of budding yeast. Fission yeast as well responds to

one extra copy of CDC20 homolog with shorter mitotic arrest than wild-type, but still longer than

mad3∆ cells Heinrich et al. [2013]. Interestingly, several colon-cancer cell-lines that overexpress Cdc20

(DLD-1, HT29, HCT-116 and LoVo), also show a robust checkpoint response Tighe et al. [2001]. Al-

though both yeast and human cells show active SAC during adaptation, there are several important

differences between the two organisms that prevent an automatic application to mammals of the

model presented here. In particular, during mammalian SAC-arrest, Cyclin B is slowly degraded, and

transcription is silenced. The presence of a fraction of active APC/CCdc20 during an arrest could

help explaining adaptation in mammals. Further work is thus needed, but expanding on mammalian

cells the model presented here is an important goal.

The model presented here has interesting applications not only on cells adapting to a prolonged

mitotic arrest, as investigated in these pages, but also on cells arrested with an active SAC and released

from the arrest. In our model, during a SAC-arrest, average APC/CCdc20 is close to the value needed

to transit into anaphase. The removal of the SAC-inducing drug allows the correct kinetochore-to-

microtubules attachment, increasing the levels of APC/CCdc20 above the threshold, and inducing

in this way anaphase. So, in a release from a SAC-arrest, APC/CCdc20 increases and crosses the

threshold starting from a value close to it. For a correct chromosome segregation, APC/CCdc20 must

cross the threshold in the presence of a complete kinetochore-to-microtubule attachment. However,

it is known that SAC strength changes with the number of unattached kinetochores, working like a

rheostate Collin et al. [2013]. Thus, cells could transit into anaphase before all sister chromatids are

aligned, which induces mis-segreagation defects. It would be interesting to investigate this scenario by

arresting cells with an active SAC and releasing them from the arrest. If the model is correct, cell-cycle

resumption could take place before kinetochore-to-microtubule attachment is completed, and thus it

could result in an increased mis-segregation rate.

Investigating the consequences of release from a SAC-arrest is an interesting topic, not only as

a speculative question, but also in a cancer-treatment perspective. Indeed, spindle-depolymerizing

chemotherapic agents are given with protocols that resemble the ’arrest and release’ scenario. For

example, vinorelbine is given to patients once a week for three weeks, and in the time between two

administrations the drug is virtually absent from the blood of patients Caffo et al. [2013]. Investigating

how SAC-release works, in the light of the present model, is an interesting plan.
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Appendix A

Mad2 localization: robustness analysis

The definition of the measure used to quantify Mad2 localization (the ’Mad2 localization index’

presented in Section 2.3) is reasonable but arbitrary. For this reason, we analysed how much the

results presented in Figures 3.2(d), 3.3, 3.4, 3.14 and 3.15(a), depend on the way we defined the

localization index. To do so, we defined other ’localization indexes’. We call LI0 the localization

index used in the Results chapter, while the others are:

• LI1 = (mean of brightest 1% of pixels in the raw image)−(mean of the raw image)
standard deviation of the raw image , as in Primorac et al.

[2013];

• LI2 = the same definition as LI1, but applied to an image filtered with the Laplacian of Gaussian

presented in equation (2.1);

• LI3 = the same definition as LI1, but applied to an image filtered with a 3x3 matrix of ones;

• LI4 = the value of the brightest pixel in the raw image.

We applied the analysis pipeline used in the Results (see Section 2.3), replacing LI0 with each of

the different ’localization indexes’. The resulting figures are very similar to those presented in the

Results section. Also the hazard ratio, final output of this pipeline, are quantitatively very similar

with every different variation. As an example, in Figures A.1(a)-A.1(d) are shown the figures obtained

using LI1 (since Figure 3.15(a) includes Figure 3.4, only the first is reproduced). The number n of cells

included in Figure 3.15(a) and in Figure A.1(d) are different, since cells where Mad2 is not localized

at the time of Clb2 degradation are excluded, and this definition depends on the localization index.

As an additional control, we ran the pipeline including in the analysis all the cells where Mad2 is

not localized at the time of Clb2 degradation (step 6 in the pipeline). Also in this case, the results

are quantitatively very similar (Figures A.1(e)-A.1(h)).

This analysis reinforces the idea that our results are independent on the specific measure of Mad2

localization status
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Figure A.1: Results of Sections 3.1 and 3.3 do not depend on the definition of localization
index.
Data from haploid experiments are analysed using the same pipeline presented in Section 2.3, but vary-
ing the steps related to Mad2 localization. Figures 3.2(d), 3.3, 3.14 and 3.15(a) are reproduced. Since
the cumulative curve of wild-type haploid strain presented in Figure 3.4 is included in Figure 3.14, only
the reproduction of the latter is presented here. a-d) Data from haploid experiments analysed using
a different definition of Mad2 localization index (LI1). e-h) Data from haploid experiments analysed
without the exclusion of cells based on Mad2 localization status at the time of Clb2 degradation.



Appendix B

Evidence for the absence of

subpopulations with different

adaptation rates

The fact, observed in Section 3.2, that the empirical cumulative distribution of adaptation times is

exponential, suggests that all cells share the same propensity to adapt. However, it is not obvious that

based on this we can exclude the existence of subpopulations of cells with different propensities. To test

it, we compared the ’simple model’ of one exponential distribution (one adaptation rate θ describing

the whole population) with a ’mixture model’ of two exponential distributions (two adaptation rates

θ1 and θ2, plus one parameter fixing the relative sizes of the subpopulations). Notice that the ’simple

model’ is a subcase of the ’mixture model’ when either θ1 = θ2 or one of the two subpopulation is

absent. We measured the performance of each model by estimating maximum likelihood using the R

package Renext (https://CRAN.R-project.org/package=Renext).

First, we measured the performance of the ’simple model’ on two groups of data: the experimen-

tally measured adaptation time and an artificially generated set, drawn from a simple exponential

distribution. We found that the performance is very similar (log-likelihood = −1522 for the exper-

imental and −1515 ± 30 for the artificial data), thus confirming that our experimental data are in

excellent agreement with the simple model.

Then, we fitted the experimental data set with the ’mixture model’, resulting in θ1 = θ2. This

implies that the ’mixture model’ reduces to the ’simple’ one, and thus that the two models give

the same log-likelihood (horizontal dashed line in Figure B.1). We asked ourselves how sensible the

’mixture model’ is in identifying mixed populations, when present. For this reason we generated

artificial data sets where we imposed the presence of two subpopulations, drawn from exponential

distributions and with the same size. We tuned the ratio r between the rates of the two populations
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Figure B.1: Comparison of simple exponential model to a mixed model with two sub-
populations.
Each dot corresponds to an artificially generated data set. Positive values on the y-axis indicate that
the mixed model performs better. The thick blue line was obtained by smoothing the data with a mov-
ing average filter. Horizontal dashed line indicates the difference of log-likelihoods of the two models
obtained on our data, which is 0. Simulation performed by Fridolin Groß.

and we measured the difference between the log-likelihood returned by the two models (blue dots

in Figure B.1). If there are distinct subpopulations (that is: outside r = 1) the ’mixture model’

outperforms the ’simple model’. The fact that the two models perform the same on experimental data

provides evidence against the existence of two subpopulations.



Appendix C

An in-silico analysis of inhibitory

logics in the mitotic checkpoint

network

In the next pages we present the manuscript, in preparation, of a theoretical work aimed at investigat-

ing the effect of different topological networks of mitotic inhibition Groß et al. [In preparation].
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ABSTRACT 

The mitotic checkpoint (also called spindle assembly checkpoint) is a signaling pathway 

that ensures faithful chromosome segregation. Mitotic checkpoint proteins inhibit the 

anaphase-promoting complex (APC/C) and its activator Cdc20 to prevent precocious 

anaphase. Checkpoint signaling leads to a complex of APC/C, Cdc20, and checkpoint 

proteins, in which the APC/C is inactive. Recent results have revealed that this inactive 

complex (APC/CMCC2) contains two molecules of Cdc20 rather than one, as was long 

assumed. The regulatory implications of this discovery remain unexplored. APC/CMCC2 

assembly can theoretically proceed through different sub-complexes, not all of which 

have been studied experimentally. Here, we systematically investigate different 

assembly pathways using mathematical models. We identify two distinct topologies with 

distinct behavior: 'sequential inhibition', which allows checkpoint function at both normal 

and abnormally high levels of Cdc20, and 'competitive inhibition', where the checkpoint 

functions at normal but fails at high levels of Cdc20. We find that the existence of one 

specific biochemical reaction can make or break checkpoint function at high Cdc20 

levels. These findings could inform molecular strategies to treat cancers that exhibit 

Cdc20 overexpression.   
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INTRODUCTION 

Faithful chromosome segregation requires that each sister chromatid moves towards a 

different daughter cell. This is guaranteed by the mitotic checkpoint (also known as 

spindle assembly checkpoint or SAC). As long as chromosomes are improperly 

attached to the mitotic spindle, the mitotic checkpoint inhibits the anaphase-promoting 

complex (APC/C) and its essential coactivator Cdc20, thereby preventing anaphase. 

Only when all attachments are correct, the checkpoint is lifted: APC/CCdc20 becomes 

active, chromosome segregation can take place, and will now have a high chance of 

being executed correctly [1].  

The mitotic checkpoint network has been investigated for decades, and likely all of the 

relevant players have been identified. Their interactions have been analyzed in vivo and 

in vitro, through both genetics and biochemistry. The concentrations of several network 

components have been determined in different organisms ([2-9, 10) Bonaiuti et al., in 

press), and the kinetics of the most relevant reactions have been studied in vitro 

{Faesen, 2017 #9, 11-15]. The resulting picture of the mitotic checkpoint network is 

complex [1, 16]. The network is composed of a cascade of association/dissociation 

reactions, which culminates in the formation of the inhibited form of APC/C. The ultimate 

effector of the checkpoint pathway is the mitotic checkpoint complex (MCC). The 

binding of the checkpoint protein Mad2 to Cdc20 is the first step in MCC assembly, and 

is limiting in forming the final inhibitor [17]. Subsequently, the checkpoint proteins 

Mad3/BubR1 and Bub3 bind to Mad2-Cdc20 to form the MCC. The MCC can bind the 

APC/C, a ubiquitin ligase, and prevent it from targeting its anaphase substrates – mitotic 

cyclins and securin – for degradation.  
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All these results have been solidly confirmed by multiple studies in several organisms, 

suggesting that we have reached a consensus picture of the main molecular actors in 

the pathway, as well as their interactions. Yet, our understanding of the SAC network 

was recently expanded by a key discovery: MCC bound to APC/C does not carry one 

molecule of Cdc20, as supposed for decades, but two [18, 19]. We call it MCC2, as 

opposed to MCC1 with only one Cdc20 (Figure 1). The two Cdc20 molecules are bound 

to two different KEN box motifs in the checkpoint protein Mad3/BubR1 [19-23]. 

Crucially, binding of both Cdc20 molecules is needed for APC/C inhibition [22-29].  

The presence of two Cdc20 molecules in the inhibited APC/C challenges our 

understanding of the topology of the mitotic checkpoint network. In particular, it is not 

clear which reactions and intermediate species eventually lead to the formation of 

inhibited APC/C (Figure 1), and whether all possible assembly pathways support 

checkpoint activity. Here, we address this issue by systematically analyzing different 

topologies of the mitotic checkpoint network, using a formal quantitative framework. We 

show that the possible behaviors of this network can be traced back to two archetypal 

modes that represent two different inhibitory strategies.  

RESULTS� 

APC/CMCC2 could be formed through different intermediates 	

The final product of the SAC network is the inhibited form of the APC/C which was 

recently shown to carry two molecules of Cdc20 (APC/CMCC2) [19, 20, 23]. Its formation 

can follow two possible paths, which are not mutually exclusive: (i) as has been 

suggested [19], APC/CMCC2 is created by binding of MCC1 to APC/CCdc20; or (ii) the free 
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MCC2 complex binds to APC/C (Figure 1). Theoretically, there is the third possibility 

that binding of MCC1 to APC/C gives rise to APC/CMCC1, which then picks up a second 

molecule of Cdc20 to become APC/CMCC2. However, MCC1 binds the APC/C poorly 

when binding sites for the second Cdc20 molecule are mutated [22, 26, 30]. This 

suggests that APC/CMCC1 is unstable, and unlikely to be a precursor for APC/CMCC2. We 

therefore do not include this last possibility in our analysis. 

From the remaining two possibilities of forming APC/CMCC2, we can assemble three 

networks (Figure 2). The two reactions common to all of them are the formation of 

MCC1 (reaction 1) and of APC/CCdc20 (reaction 2). In network (i) APC/CMCC2 is directly 

formed from APC/CCdc20 and MCC1 (reaction 3), whereas in network (ii) MCC1 first 

binds another Cdc20 (reaction 4) and this MCC2 then binds to free APC/C (reaction 5). 

Network (iii) includes the reactions of both (i) and (ii). One can arrive at network (iii) 

either by adding reactions 4 and 5 to network (i), or by adding reaction 3 to network (ii). 

In order to make the comparison between networks easier, we depict both versions in 

Figure 2. 

Experimental evidence clearly supports possibility (i) [19], but the formation of free 

MCC2, not bound to the APC/C, has not been ruled out. Free MCC2 has been observed 

after deleting the APC/C subunit Apc15 in fission yeast [21, 22], but whether this 

species also exists in wild type cells remains unclear. This leaves (i) and (iii) as the 

most likely possibilities. To obtain a systematic understanding of the system, we also 

analyze (ii).  

In the first network [Figure 2, (i)], inhibitory binding follows the formation of the active 

APC/CCdc20 complex, we therefore call it ‘sequential inhibition’. In the second network 
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[Figure 2, (ii)], APC/C can either associate with MCC2 to form the inhibited form of the 

APC/C, or with Cdc20 to form the active form of the APC/C, but active APC/CCdc20 never 

gets converted into the inactive APC/CMCC2. Hence, MCC2 and Cdc20 compete for the 

APC/C. We call this ‘competitive inhibition’. Finally, when (i) and (ii) are combined 

[Figure 2, (iii)], there is still the element of sequential inhibition, but Cdc20 and MCC2 

now also compete for the APC/C. It is not obvious whether all these networks are 

expected to mount a SAC-mediated arrest, and how they will respond to perturbations.  

The behavior of the SAC networks at different levels of Cdc20  

We investigate the performance of the different networks by analyzing their behavior as 

a function of the total concentration of Cdc20 (which includes both free Cdc20 as well 

as Cdc20 within protein complexes). We chose Cdc20 because the concentration of this 

protein is dynamic, unlike the concentrations of the SAC proteins and the APC/C 

subunits, which have been found to be largely stable [10, 24, 27, 29, 31-37]. Moreover, 

Cdc20 is known to be overexpressed in several cancers [38-41], which calls for an 

investigation on the effect of high levels of Cdc20 in mitotically arrested cells.  

Although it is known that Cdc20 is actively produced and degraded during a checkpoint 

arrest, the kinetics of this synthesis and degradation are incompletely examined [16, 

42]. For example, it is not clear whether disassembly of APC/CMCC2, driven by Cdc20 

ubiquitination, gives rise to the complex APC/C/CCdc20 or to the individual species 

APC/C and Cdc20. However, we can neglect the molecular details of Cdc20 synthesis 

and degradation and still obtain general conclusions if we focus on the steady state 

behavior of the SAC network where synthesis and degradation are balanced. We can 

then treat the total amount of Cdc20 as a free parameter in order to understand the 
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consequences of different expression levels for the behavior of the model. The steady 

state analysis comes at a price: we have to neglect potentially interesting transient 

behavior before the system reaches the steady state. Despite this limitation, the steady 

state is relevant for studying checkpoint behavior since it corresponds to the situation of 

checkpoint arrest.  

We monitor the status of the SAC by keeping track of the active and inhibited forms of 

APC/C: APC/CCdc20 and APC/CMCC2, respectively. To interpret the concentrations of 

these complexes in terms of SAC proficiency or deficiency, we need to know the 

fraction of APC/C that must be in the active form for anaphase to occur. It is known that 

preventing anaphase requires a strong knock-down of Cdc20 [43, 44]. We thus 

distinguish between a state of SAC proficiency, where APC/CCdc20 is kept low, and of 

SAC deficiency, where APC/CCdc20 is high (Figure 3).  

To simplify our models, we lumped Mad2 and Mad3 into one species (Mad) that binds 

Cdc20 (Figure 2). This simplification is justified because Mad2 and Mad3 bind 

sequentially to form MCC1 and Mad2-binding is rate-limiting (Figure 1). Relaxing this 

assumption does not qualitatively alter our results (Supplementary Material, 

Supplementary Figure 4). 

Model parameters are set within a physiologically plausible range  

The behavior of our models depends on several parameter values. Fortunately, many 

parameters of the mitotic checkpoint network have been measured experimentally. 

Concentrations vary in different organisms and across studies, but the ranges are 

similar (Table 1). In mammals, budding yeast and fission yeast, the APC/C seems to be 

similarly or less abundant than ‘free Mad2’ (not bound to Mad1) and Mad3, the two 
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species relevant for MCC formation. Cdc20 concentrations are in the range of, or higher 

than APC/C concentrations. In our simulations, we assume a 1 : 0.5 : 1 ratio of Mad, 

APC/C, and Cdc20. For simplicity, we rescale all concentrations to that of Mad.  

For the simulations, we chose small dissociation constants (1/100th of protein 

concentration). Since SAC complexes are formed by proteins whose concentrations 

rarely exceed 100nM, this translates into KDs in the low nanomolar range. Such values 

are in agreement with published data for MCC formation and APC/C inhibition [17, 45]. 

In our simulations, we use identical KDs for all reactions, in order to focus on differences 

due to network topology only. Our analytical results allow us to understand how 

changing individual parameters would change the qualitative behavior (Supplementary 

Material). 

 

Sequential inhibition does not allow APC/CCdc20 to dominate  

In order to compare the behavior of the different networks, we simulate the 

concentrations at steady state for varying levels of Cdc20. To understand the resulting 

curves, it is useful to consider the extreme situations, starting from the regime where 

Cdc20 is limiting (Cdc20 < Mad, APC/C). In the sequential inhibition model (i), 

APC/CMCC2 increases roughly linearly with Cdc20, whereas both APC/CCdc20 and MCC1 

increase proportional to the square root of total Cdc20 (Figure 3, Supplementary Figure 

3). APC/CMCC2 dominates over APC/CCdc20 due to a ‘funneling effect’: In the inhibitory 

pathway three binding reactions are required to form the inhibited species APC/CMCC2 

(reactions 1,2, and 3), while only one reaction is used in the activating pathway to form 

APC/CCdc20 (reaction 2). As long as the substrates for the inhibitor (i.e. Mad) are 
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available in sufficient amounts, Cdc20 is trapped in (funneled into) the inhibitory 

pathway because the effective binding strength of the combined reactions adds up. For 

small levels of Cdc20 this effect can easily be explained mathematically when making 

the reasonable assumption that most Mad and APC/C remains in its free form in this 

situation (Supplementary Material 3.1).  

In the other extreme regime, where Mad and APC/C become limiting (Cdc20 > Mad2, 

APC/C), the binding reactions leading to MCC1 and APC/CCdc20 production are 

saturated, and there is no significant amount of free APC/C or free Mad proteins [Figure 

3, (i)]. Consequently, the concentrations of MCC1, APC/CMCC2 and APC/CCdc20 stay 

constant if Cdc20 is increased further. The network is effectively reduced to the single 

binding reaction between MCC1 and APC/CCdc20 [dashed box in Figure 3 (i)]. The 

validity of the approximation is confirmed by comparing the behavior of the full system 

to the simplified model (Supplementary Figure 3). Thus, at steady state we have an 

equilibrium between substrates (MCC1 and APC/CCdc20) and product (APC/CMCC2), 

where both active and inactive species coexist. Assuming a reasonable stability of 

APC/CMCC2 (i.e., KD smaller than total APC/C and total Mad), the inhibited APC/CMCC2 is 

in excess over APC/CCdc20, a condition that we associate with checkpoint proficiency. 

We conclude that a crucial property of the sequential inhibition network is that 

APC/CCdc20 never exceeds APC/CMCC2, provided reasonably strong binding of all 

complexes. Furthermore, active APC/CCdc20 and inactive APC/CMCC2 always co-exist, 

although at high Cdc20 concentrations the ratio is strongly biased towards APC/CMCC2. 

Once Mad proteins and APC/C are saturated, the steady state concentrations of 

APC/CCdc20 and APC/CMCC2 become insensitive to further increases of Cdc20.  



 10 

Competitive inhibition leads to checkpoint failure at high Cdc20 concentrations  

The competitive inhibition network (ii) behaves like the sequential inhibition network (i) 

for small values of Cdc20 (Cdc20 < APC/C, Mad), showing an efficient SAC arrest 

(Figure 3, (ii), and Supplementary Figure 3).  APC/CMCC2 is in excess over APC/CCdc20 

even if we consider the symmetrical scenario where all individual species are present at 

identical levels (not shown). This result may seem surprising since Cdc20 and MCC2 

have the same chance to bind APC/C. However, APC/CMCC2 is favored by the same 

funneling effect as in the sequential inhibition model, because there are three inhibitory 

reactions (1, 4, and 5), but only one activating reaction (2). The effect is indifferent to 

the order in which the complexes are formed, which is a straightforward consequence of 

mass action kinetics and a property of chemical reaction networks called “detailed 

balancing”. Accordingly, the behavior of the two networks for small values of Cdc20 is 

hardly distinguishable and can mathematically be understood in terms of the same 

approximation (Supplementary Material). 

If we increase the total level of Cdc20, the system eventually runs out of free Mad. At 

this point, APC/CCdc20 starts to increase at the expense of APC/CMCC2. This change of 

equilibrium is driven by the increase of free Cdc20, which eventually wins the 

competition by detracting APC/C from APC/CMCC2. Thus, in the competitive inhibition 

model, high concentrations of Cdc20 result in considerable formation of APC/CCdc20. In 

other words, cells become SAC deficient under Cdc20 overexpression. The network can 

be reduced to the smaller section shown in the dashed box of Figure 3 (ii), because 

reaction 1 and reaction 4 are saturated. A simplified model of this subnetwork well 
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approximates the behavior of the whole network for large concentrations of Cdc20 

(Supplementary Figure 3).  

Overall, the competitive inhibition model shows a steady state behavior that is 

consistent with an active SAC at low Cdc20 concentrations, but SAC failure at high 

Cdc20 concentrations.  

The combined model behaves like competitive inhibition 

Since it is not clear whether MCC1 – Cdc20 (reaction 4) and MCC2 – APC/C binding 

(reaction 5) co-exist in vivo with MCC1 – APC/CCdc20 binding (reaction 3), we examined 

the combined network (iii) (Figure 2), which embeds all reactions of (i) and (ii). The 

behavior of the combined model cannot be easily predicted from the network’s topology.  

Our simulations show that for low levels of total Cd20 we again observe the linear 

increase of APC/CMCC2 and the square root increase of APC/CCdc20 that was exhibited 

by both (i) and (ii). For high levels of Cdc20, the network exhibits the same behavior as 

the competitive inhibition model: APC/CCdc20 starts exceeding APC/CMCC2 [Figure 3, (iii)]. 

To rationalize this result, we observe that (iii) can be formed from the competitive 

inhibition model (ii) by adding reaction 3 (Figure 2, 3). However, this addition is 

inconsequential in the high Cdc20 regime (Cdc20 in excess of Mad proteins and 

APC/C) because MCC1 is depleted at the expense of MCC2. Since the newly added 

reaction 3 is essentially inactive, there is no sequential inhibition, and APC/CCdc20 

prevails, just like in the competitive inhibition model. In this regime, the model therefore 

reduces to the same simplified model as (ii) (Supplementary Figure 3).  

Interpreting (iii) as a modified sequential inhibition network (Figure 2, (iii) left side) is 

also interesting. Surprisingly, the APC/CCdc20 'wins it all' behavior for high Cdc20 levels 
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is present even if we introduce reaction 4 without reaction 5 (Figure 4), i.e. if MCC2 is 

formed but does not bind to APC/C. The reason is that for high Cdc20 concentrations, 

MCC2 becomes a dead-end for Mads, a condition that allows Cdc20 to freely bind 

APC/C. Thus, simply allowing the formation of free MCC2 is enough to turn a system 

capable of buffering extra Cdc20 levels into a system that is vulnerable to Cdc20 

overexpression (Figure 4). However, checkpoint failure only occurs when Cdc20 is in 

excess, otherwise inhibited APC/C is still able to overcome active APC/CCdc20 (Figure 4). 

DISCUSSION 

In this paper, we have theoretically analyzed the behavior of the mitotic checkpoint 

network given the new finding of an MCC complex with two Cdc20 molecules. This is 

the first time the consequences of this key feature are explored with a quantitative 

approach. In particular, we have analyzed three networks: one where APC/CCdc20 is the 

precursor for APC/CMCC2 [(i) sequential inhibition], a second where Cdc20 and MCC2 

compete for APC/C [(ii) competitive inhibition], and finally a third which is the 

combination of the first two [(iii) combined model]. While the competitive inhibition model 

can be formulated both with one or two molecules of Cdc20 in MCC, the sequential and 

combined models are a direct consequence of the discovery that two molecules of 

Cdc20 take part in APC/CMCC2 formation. 

Based on intuitive assumptions, it has been suggested that free MCC2 formation, 

unbound to APC/C, is unlikely, because it would not be compatible with a robust 

checkpoint response [26]. The reasoning was that MCC1 should have a higher affinity 

for APC/CCdc20 than for free Cdc20 in order to efficiently avoid APC/CCdc20 formation. 

Our quantitative analysis now shows that allowing free MCC2 formation indeed creates 
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sensitivity to Cdc20 overexpression (Figure 3, 4). Simply by increasing the stability of 

the MCC2 complex, the combined network shifts from resistance to sensitivity towards 

extra Cdc20 levels (Figure 4). 

Noticeably, however, and against the intuitive assumption, all three networks that we 

examined can mount a checkpoint response at non-saturating, physiological Cdc20 

levels. This is due to what we called the ‘funneling’ effect, which is relevant when Cdc20 

is limiting. In this regime, the three different networks employ different reactions, but all 

of them require three binding steps to produce APC/CMCC2. The formation of 

APC/CCdc20, by contrast, requires only one binding step. Even using perfectly 

symmetrical networks (same KDs for all reactions and same concentrations for all 

species), this topological difference between the activating and inactivating branches of 

the SAC pathway results in Cdc20 being ‘funneled’ towards the inhibitory pathway. As a 

consequence, APC/CMCC2 exceeds APC/CCdc20 for physiological levels of Cdc20. Our 

analytical results show that this is true as long as [Mtotal]/(KD [Atotl])<1, i.e. provided 

that the complexes are reasonably stable and/or the total APC/C is not exceeding the 

Mads. Both conditions are reasonable, and largely verified experimentally (Table 1 and 

Supplementary Material, Parameters). Thus, for physiological levels of Cdc20, the SAC 

is expected to be operational even if free MCC2 formation is allowed. 

Our analysis suggests that the different networks could be experimentally distinguished 

by studying the checkpoint response to Cdc20 overexpression. In several organisms, 

Cdc20 overexpression has been reported to induce precocious exit from a SAC-

mediated arrest (Bonaiuti et al., in press, [8, 34, 46, 47]). However, we want to caution 

that this does not necessarily constitute evidence for a network that includes free MCC2 
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formation. In these experiments, cells exit mitosis with kinetics that are intermediate 

between the long mitotic delay of cells with normal Cdc20 levels and the extremely short 

mitosis of complete checkpoint failure (Bonaiuti et al, in press, [8, 34]). It has recently 

been demonstrated for budding yeast that the precocious escape from the SAC under 

Cdc20 overexpression does not constitute SAC failure, but is due to stochastic 

fluctuations of APC/CCdc20 that reach levels high enough to drive cells into anaphase 

(Bonaiuti et al, in press). By contrast, the models that include stable, free MCC2 [(ii) and 

(iii)] predict that Cdc20 overexpression results in average levels of APC/CCdc20 that are 

sufficient to drive cells into anaphase. Hence, cells are expected to escape from a 

checkpoint arrest synchronously and rapidly, in a deterministic fashion, similarly to SAC-

deficient cells.  

Our theoretical results have interesting translational implications. Cdc20 is 

overexpressed in a large variety of cancer cells [38-41]. Whether Cdc20 overexpression 

is a driver or a passenger of carcinogenesis is not yet clear. Yet, it is known that cancer 

cells are largely SAC proficient [39, 48-50]. We propose that Cdc20 overexpression 

could be used to specifically target these cells, as opposed to healthy cells with 

endogenous levels of Cdc20. According to our analysis, cancer cells are expected to 

have an unstable MCC2, and stabilization of MCC2 may provide a mechanism to 

selectively kill these cells by impairing the SAC. 

It is important to remark that we have only analyzed the steady state behavior of the 

different networks. While this analysis did not find differences between the networks at 

physiological Cdc20 levels, we cannot exclude that the transient dynamics differ. To 

investigate this possibility, more detailed information about the mechanisms and 
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dynamics of Cdc20 production and degradation are required. This does not only include 

the kinetics of APC/C-mediated Cdc20 degradation while the checkpoint is active and 

Cdc20 is part of the MCC [51], but also potential regulation of Cdc20 synthesis, post-

translational regulation, and APC/C-independent degradation [52-55]. Our fragmentary 

knowledge on these processes is currently the biggest impediment in understanding the 

dynamical behavior of the SAC network. 
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FIGURE LEGENDS 

Figure 1. A wiring diagram of possible reactions in the SAC. Only the most downstream 

reactions are considered. Network (i) purely considers APC/CMCC2 formation by MCC1 

binding to APC/CCdc20. Network (ii) purely considers APC/CMCC2 formation by MCC2 

binding to APC/C. Network (iii), depicted in Figure 2, contains both these possibilities.   

Figure 2. Different networks for APC/CCdc20 inhibition. (i) The sequential inhibition 

network, which is characterized by MCC1 binding to APC/CCdc20. (ii) The competitive 

inhibition network, which is characterized by competition between MCC2 and Cdc20 for 

APC/C binding. (iii) Different representations of the mixed network, containing the 

reactions of both (i) and (ii). Network (iii) can be generated by either adding reaction 5 

and 4 (MCC2 formation and APC/C-MCC2 binding) to the sequential inhibition network, 

or by adding reaction 3 (MCC1 binding to APC/CCdc20) to the competitive inhibition 

network. Note that in networks (ii) and (iii), some species are listed more than once at 

different positions to be able to depict the overall structure of the network.     

Figure 3 Steady state concentration of each species, dependent on the total Cdc20 

concentration for each of the networks (i), (ii), and (iii). A Cdc20 value of 1 represents 

the wild type situation. APC/C and Mad concentrations are given relative to the wild-

type level of Cdc20. The molecular species are organized into three groups: those that 

include Cdc20, APC/C, or Mad. The plots show how these three species are distributed 

among different complexes. While total APC/C and total Mad remain constant, total 

Cdc20 increases along the x-axis. MCC2 and APC/CMCC2 include two molecules of 

Cdc20, thus their concentration is counted twice in the plots representing the Cdc20-

species. Models and parameters in the Supplementary Material. 
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Figure 4. Wiring (A) and bifurcation (B) diagram of the combined network [Figure 2 (iii)] 

without reaction 4, for different values of the association constant leading to MCC2 

formation (reaction 5, marked in yellow). The dissociation constant is unchanged. Model 

and parameters in the Supplementary Material. 

 

SUPPLEMENTARY FIGURES 

Supplementary Figure 1. Data from Table 1, normalized to the value for Mad3 in each 

study. Plots show quartiles (box) and (whiskers).  

Supplementary Figure 2. Binding reactions included in the models of Figure 2. In the 

first column, we list all reactions. In the remaining columns, we show those included in 

the individual models. 

Supplementary Figure 3. Comparison between the simplified models (dashed lines), 

described in the Supplementary Material, and the full models (solid lines) described in 

Figure 2 and 3. Parameters and equations are described in Supplementary Material. 

Supplementary Figure 4. Steady state concentration of APC/CCdc20 and APC/CMCC2, 

dependent on the total Cdc20 concentration, either assuming a lumped species, Mad, 

for Mad2 and Mad3 (solid lines), or assuming sequential Mad2 and Mad3 binding to 

Cdc20 (dashed lines).  

 

Table 1. Experimental quantifications of Mad2, Mad3, APC/C, and Cdc20 in different 

model organisms. 
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1 Modeling Approach

In the following we give more detailed information on the modeling approach used in the article, and
provide some analytical results in support of the generality of our conclusions.

Our models are straightforward translations of the wiring diagrams shown in Fig. 2 into ODEs using
mass action kinetics. All binding reactions are assumed to be reversible. For the sake of readability we
use the following abbreviations:

A free APC/C

C free Cdc20

M free Mad2, Mad3

Atotal total APC/C

Ctotal total Cdc20

Mtotal total Mad2, Mad3

AC APC/CCdc20

MCC1 MCC with one Cdc20 molecule

MCC2: MCC with two Cdc20 molecules

AMCC2: APC/CMCC2

1



Furthermore, we use the following notation to refer to the net association and dissociation reaction of two
species X and Y that can form a complex Z:

RX:Y �Z = k+
X:Y �Z [X] · [Y ] � k�

X:Y �Z [Z] , (1)

where [X] stands for the concentration of species X . To indicate the steady state level of X , we use the
notation [X̂].

The dissociation constant is defined as

KX:Y
D =

k�
X:Y �Z

k+
X:Y �Z

, (2)

For some derivations we assume that the rate is approximately the same for all reactions. In that case we
will simply refer to it as KD. We write down equations only for the concentrations of complexes. The
concentrations of free A, M , and C can then be obtained from conservation relations that are justified by
the observation that all checkpoint proteins and APC/C are stable and that total Cdc20 is at steady state.

All numerical simulations were carried out using the Python package “SloppyCell” [1, 2] and custom
written Python functions.

2 Model Parameters

Table 1 lists experimental measurements of the relevant species in different organisms derived from a
comprehensive survey of the scientific literature. A summary of the data in the form of boxplots is shown
in Suppl. Fig. 1. Relevant for our model are the concentrations of free Mad2 (not bound to Mad1),
Mad3, APC/C, and Cdc20. With very few exceptions, these concentrations do not differ by more than a
factor of five. Different studies come to very different conclusions, illustrating the difficulty of accurately
determining absolute values. As a general scheme, however, total levels of APC/C are typically lower
than Mad2/3 and Cdc20. For the simulations we assumed that all dissociation constants are small (i.e.
strong binding) and have the same value. Specifically, we used:

[Ctotal] = 1 , (3)

[Mtotal] = 1 , (4)

[Atotal] = 0.5 , (5)

KD = 0.01 . (6)

in dimensionless units (i.e. normalized to the total amount of Mad levels in wild type).
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Mad2 Mad1 free Mad2 Mad3 APC/C Cdc20 ref.
organism unit abs. rel. abs. rel. abs. rel. abs. rel. abs. rel. abs. rel.
human (HeLa) nM 202 229.5% 27 30.7% 175 198.9% 88 100% 31 35.2% 24 27.3% [3]

mol./cell 264,329 72,571 191,758 35,276 18,265 [4]
nM 200 20 180 [5]
rel. ratio 4 1 [6]
nM 230 181.1% 127 100% 285 224.4% [7]
nM 120 133.3% 90 100% 80 88.9% 100 111.1% [8]
nM 400 769.2% 30 57.7% 52 100% 33 62.5% [9]

S. cerevisiae mol./cell 56 54 2 59 54 [10]
mol./cell 9,600 300.0% 3,200 100% 375 11.7% 2,200 68.8% [11]
mol./cell 1,112 35.1% 656 20.7% 456 14.4% 3,171 100% 628 19.8% [12]
nM 201 300.0% 67 100% 30 44.8% [13]

S. pombe mol./cell 3,855 76.9% 5,012 100% 1,495 29.8% [14]
nM 154 208.1% 116 156.8% 38 51.4% 74 100% 14 18.9% [15]
nM 61 138.6% 39 88.6% 22 50.0% 44 100% 20 45.5% 20 45.5% [15]
mol./cell 832 341 [16]

PtK nM 1,041 60.0% 625 36.0% 416 24.0% 1,735 100% 867 50.0% [17]

X. laevis nM 185 544.1% 127 373.5% 58 170.6% 34 100% 30 88.2% 55 161.8% [18]

Table 1: Experimental measurements of molecular species involved in the SAC network. Both absolute
(abs.) and relative (rel.) amounts are shown. Relative amounts are normalized to Mad3. Values of free
Mad2 are calculated as Mad2 � Mad1.

3 Analytical Results

3.1 Sequential Inhibition Model

Equations

The wiring diagram in Fig. 2 (i) corresponds to the following set of equations:

d[AC]

dt
= RA:C�AC � RAC:MCC1�AMCC2 , (7)

d[MCC1]

dt
= RM :C�MCC1 � RAC:MCC1�AMCC2 , (8)

d[AMCC2]

dt
= RAC:MCC1�AMCC2 . (9)

Furthermore, we have the following conservation relations:

[Atotal] = [A] + [AC] + [AMCC2] , (10)

[Mtotal] = [M ] + [MCC1] + [AMCC2] , (11)

[Ctotal] = [C] + [AC] + [MCC1] + 2 · [AMCC2] . (12)

3



Approximation for small Cdc20

In the following we will often exploit the fact that the models we consider are detailed balanced. This
means that at steady state all forward reactions are individually balanced against their corresponding
reverse reactions, or

RX:Y �Z = 0 , (13)

which directly leads to

[Ẑ] =
[X̂][Ŷ ]

KX:Y
D

. (14)

For the sequential inhibition model, detailed balancing can easily be shown. Setting (9) to zero, we
immediately get

RAC:MCC1�AMCC2 = 0 . (15)

But then it follows from (7) and (8) that both other reactions are also detailed balanced.
Therefore, we obtain

[ÂC] =
[Â][Ĉ]

KA:C
D

, (16)

[ ˆMCC1] =
[M̂ ][Ĉ]

KM :C
D

, (17)

[ ˆAMCC2] =
[ÂC][ ˆMCC1]

KAC:MCC1
D

=
[Â][M̂ ][Ĉ]2

KA:C
D KM :C

D KAC:MCC1
D

. (18)

For small levels of Ctotal we can use the approximation [Â] ⇡ [Atotal] and [M̂ ] ⇡ [Mtotal]. From (16) and
(17) we immediately get

[ÂC]

[ ˆMCC1]
⇡ [Atotal]

[Mtotal]

KM :C
D

KA:C
D

. (19)

Thus, in this regime the relative amounts of AC and MCC1 are directly related to the total amounts and
the corresponding binding reactions. Furthermore, using (19) we can rewrite (18) as

[ ˆAMCC2] =
[Mtotal][ÂC]2KA:C

D

[Atotal]KM :C
D KAC:MCC1

D

, (20)
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or

[ ˆAMCC2] ⇡ 1

k
[ÂC]2 with k =

[Atotal]

[Mtotal]

KM :C
D KAC:MCC1

D

KA:C
D

. (21)

The quadratic dependence means that AMCC2 will dominate for [AC] larger than k. But k is a small
number if binding is generally strong and/or [Mtotal] > [Atotal]. Note that k is small even if all reactions
have the same binding strength and and [Mtotal] = [Atotal]. This is because there are two binding reactions
leading to the inhibited, but only one reaction leading to the active species. Mathematically this is re-
flected by the product of two KDs in the numerator of (21). Together this explains the “funneling” effect
that we observe for small levels of Cdc20.

To even better understand the qualitative behavior of the Figure 3, we can exploit the conservation
relation

[Ctotal] = [Ĉ] + [ÂC] + [ ˆMCC1] + 2[ ˆAMCC2] . (22)

In the limit of strong binding [ ˆAMCC2] dominates this sum. As (19) shows, [ÂC] and [ ˆMCC1] are of
similar order. [Ĉ] is even smaller, which follows e.g. from (16):

[Ĉ] ⇡ KA:C
D

[Atotal]
[ÂC] . (23)

Therefore, we have

[ ˆAMCC2] ⇡ [Ctotal]

2
, (24)

which explains the initially approximately linear behavior of APC/CMCC2 in Figure 3 (i). Based on this
approximation we can use Equations (16)–(18) to derive expressions for the other species as well:

[Ĉ] ⇡
s

KA:C
D KM :C

D KAC:MCC1
D

2[Atotal][Mtotal]

p
[Ctotal] , (25)

[ÂC] ⇡
s

1

2

[Atotal]

[Mtotal]

KM :C
D KAC:MCC1

D

KA:C
D

p
[Ctotal] , (26)

[ ˆMCC1] ⇡
s

1

2

[Mtotal]

[Atotal]

KA:C
D KAC:MCC1

D

KM :C
D

p
[Ctotal] . (27)

From this we can understand how the steady state concentrations for small levels of Cdc20 depend
on parameters and concentrations. Moreover, we can explain the approximately linear dependence of
APC/CMCC2 and the square root dependence of the other species.
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Approximation for large Cdc20

If Ctotal is large, then every free molecule of M or A will quickly bind to a free molecule of C. With the
approximation that this binding is instantaneous and M ⇡ A ⇡ 0, we can directly calculate the steady
state values for the remaining species. For this it is sufficient to look at the three species MCC1, AC,
and AMCC2, and the only reaction left to be considered is

d[AMCC2]

dt
= RAC:MCC1�AMCC2 , (28)

because the other two species are then determined by the conservation relations. At steady state we have

[ ˆAMCC2] =
[ÂC] · [ ˆMCC1]

KAC:MCC1
D

=
([Atotal] � [ ˆAMCC2])([Mtotal] � [ ˆAMCC2])

KAC:MCC1
D

.

From this we get

([Atotal] � [ ˆAMCC2])([Mtotal] � [ ˆAMCC2]) � KAC:MCC1
D · [ ˆAMCC2] = 0 , (29)

which is a quadratic equation in [ ˆAMCC2] whose solution is

[ ˆAMCC2] =
1

2

�
[Atotal] + [Mtotal] + KAC:MCC1

D

�
±
s✓

[Atotal] + [Mtotal] + KAC:MCC1
D

2

◆2

� [Atotal][Mtotal] .

(30)

Only the “�” solution ensures that [ ˆAMCC2]  [Mtotal], [Atotal]. The relative amounts of [ ˆAMCC2] and
[ÂC] ⇡ [Atotal]� [ ˆAMCC2] mainly depend on the strength of AC binding to MCC1. For weak binding
(KAC:MCC1

D � [Mtotal], [Atotal]) we get AMCC2 ⇡ 0, while for strong binding we get [ÂC] ⇡ 0. In
general, both species co-exist and their levels becomes insensitive to changes in Ctotal.

In Suppl. Fig. 3 (i) the simulated steady state concentrations for the sequential model are shown
together with the analytical approximations for small and large Cdc20.

3.2 Competitive Inhibition Model

Equations:

The competitive inhibition model includes the additional species MCC2 which is formed by MCC1

binding an additional molecule of C. The inhibited species AMCC2 is then formed by MCC2 binding

6



to a free molecule of A. We therefore have to consider four equations:

d[AC]

dt
= RA:C�AC , (31)

d[MCC1]

dt
= RM :C�MCC1 � RMCC1:C�MCC2 , (32)

d[MCC2]

dt
= RMCC1:C�MCC2 � RA:MCC2�AMCC2 , (33)

d[AMCC2]

dt
= RA:MCC2�AMCC2 , (34)

together with the following conservation relations:

[Atotal] = [A] + [AC] + [AMCC2] , (35)

[Mtotal] = [M ] + [MCC1] + [MCC2] + [AMCC2] , (36)

[Ctotal] = [C] + [AC] + [MCC1] + 2 · ([MCC2] + [AMCC2]) . (37)

Approximation for small Cdc20

In the same way as before we can show that detailed balancing holds, and we get at steady state

[ÂC] =
[Â][Ĉ]

KA:C
D

, (38)

[ ˆMCC1] =
[M̂ ][Ĉ]

KM :C
D

, (39)

[ ˆMCC2] =
[ ˆMCC1][Ĉ]

KMCC1:C
D

=
[M̂ ][Ĉ]2

KM :C
D KMCC1:C

D

, (40)

[ ˆAMCC2] =
[Â][ ˆMCC2]

KA:MCC2
D

=
[Â][M̂ ][Ĉ]2

KM :C
D KMCC1:C

D KA:MCC2
D

. (41)

Equations (38) and (39) are identical to (16) and (17), and the only difference between (41) and (18) is
one of the dissociation constants. Moreover, [ ˆMCC2] is very small for small levels of Ctotal and strong
binding because from (40) and (41) we get

ˆMCC2

ˆAMCC2
⇡ KAC:MCC2

D

[Atotal]
. (42)

So the model effectively reduces to the same equations as the sequential inhibition model. This explains
why for small levels of Cdc20 the steady state behavior is basically the same for sequential and compet-
itive inhibition. In particular, we see from the calculations that the funneling effect is indifferent to the
order in which the complexes are formed. This is a straightforward consequence of mass action kinetics
and detailed balancing.
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In exactly the same way as before, we can derive approximations for all species:

[ ˆAMCC2] ⇡ [Ctotal]

2
, (43)

[Ĉ] ⇡
s

KM :C
D KMCC1:C

D KA:MCC2
D

2[Atotal][Mtotal]

p
[Ctotal] , (44)

[ÂC] ⇡
s

1

2

[Atotal]

[Mtotal]

KM :C
D KMCC1:C

D KA:MCC2
D

(KA:C
D )2

p
[Ctotal] , (45)

[ ˆMCC1] ⇡
s

1

2

[Mtotal]

[Atotal]

KMCC1:C
D KA:MCC2

D

KM :C
D

p
[Ctotal] , (46)

[ ˆMCC2] ⇡ KA:MCC2
D

2[Atotal]
[Ctotal] . (47)

Again we reproduce the approximately linear behavior of APC/CAMCC2 and the square root behavior of
the other species (with the exception for free MCC2, which increases linearly, but with a very small
slope).

Approximation for large Cdc20

For high levels of Ctotal, we can assume that

[Mtotal] ⇡ [AMCC2] + [MCC2] , (48)

[Atotal] ⇡ [AMCC2] + [AC] , (49)

meaning that all species that bind to free C (i.e. A, M , and MCC) are approximately zero. With the help
of the conversation relation (37) we can then immediately derive

[Ctotal] ⇡ 2 · [Mtotal] + [AC] + [C] . (50)

This means that the system effectively reduces to a simple competition model where the inhibitor MCC2

competes with C for free A.
It can be easily shown that the inhibited species will always lose the competition if levels of Cdc20

are high. First of all, note that if [Ctotal] ! 1, then also [C] ! 1. From detailed balancing, we then get

[A] =
KA:C

D [AC]

[C]
<

KA:C
D [Atotal]

[C]
! 0 , (51)

which entails

[AMCC2] =
[A][MCC2]

KA:MCC2
D

<
[A][Mtotal]

KA:MCC2
D

! 0 . (52)
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For the special case of KD = KA:MCC2
D = KA:C

D , we can derive simple expressions for [ÂC] and
[ ˆAMCC2] as functions of [Ctotal]. Given detailed balancing, Eq. (48) leads to

[Mtotal] ⇡
[Â][ ˆMCC2]

KD

+ [ ˆMCC2] =
KD + [Â]

KD

· [ ˆMCC2] , (53)

or

[ ˆMCC2] ⇡ [Mtotal]
KD

KD + [Â]
. (54)

From Eq. (50) we can derive an analogous expression for [Ĉ]:

[Ctotal] � 2 · [Mtotal] ⇡
KD + [Â]

KD

· [Ĉ] , (55)

or

[Ĉ] ⇡ ([Ctotal] � 2 · [Mtotal])
KD

KD + [Â]
. (56)

Furthermore, rewriting (49) and afterwards substituting (54) and (56), we get

[Atotal] ⇡
[Â][ ˆMCC2]

KD

+
[Â][Ĉ]

KD

⇡ [Â] ·
 

[Mtotal]

KD + [Â]
+

[Ctotal] � 2 · [Mtotal]

KD + [Â]

!
, (57)

from which we obtain

[Â]

KD + [Â]
⇡ [Atotal]

[Ctotal] � [Mtotal]
. (58)

Combining (54), (56), and (58), we finally get

[AMCC2] =
[Â][ ˆMCC2]

KD

⇡ [Atotal][Mtotal]

[Ctotal] � [Mtotal]
(59)

and

[AC] =
[Â][Ĉ]

KD

⇡ [Atotal]([Ctotal] � 2 · [Mtotal])

[Ctotal] � [Mtotal]
. (60)

Note that these expressions depend only on the total amounts and not on the association/dissociation
parameters (for this derivation we did not use the assumption of strong binding). Most importantly, and
as already shown, we will always get AC ! Atotal and AMCC2 ! 0 for Ctotal ! 1. In other words, the

9



competitive inhibition model always becomes checkpoint deficient for sufficiently high levels of Cdc20.
The approximations for the competitive inhibition model are shown in Suppl. Fig. 3 (ii).

3.3 Combined Model

Equations

The combined model includes both ways of producing the inhibited species AMCC2. The corresponding
set of equations is

d[AC]

dt
= RA:C�AC � RAC:MCC1�AMCC2 , (61)

d[MCC1]

dt
= RM :C�MCC1 � RMCC1:C�MCC2 � RAC:MCC1�AMCC2 , (62)

d[MCC2]

dt
= RMCC1:C�MCC2 � RA:MCC2�AMCC2 , (63)

d[AMCC2]

dt
= RA:MCC2�AMCC2 + RAC:MCC1�AMCC2 . (64)

The conservation relations are the same as (35), (36), and (37). For this network the detailed balancing
property does not follow directly from the equations, but requires certain restricting conditions on the
rate constants. It can be shown that the condition for detailed balancing for this model is

KA:C
D · KAC:MCC1

D = KMCC1:C
D · KA:MCC2

D (65)

(a procedure for deriving this condition can be found for instance in [19]). For our analysis we assume
that detailed balancing holds. The condition is obviously fulfilled in the special case that all KDs are the
same.

Approximation for small Cdc20

Given detailed balancing, the derivation of steady state expressions can be carried out in the same way as
in the case of the competitive inhibition model in Section 3.2. This directly explains why the behavior of
the combined model for small Cdc20 is the same as in the other two models.

Approximation for large Cdc20

As in Section 3.2, we can assume that all reactions involving free C are saturated. In particular, we
have MCC1 ⇡ 0, which means that the sequential production of the inhibitor RAC:MCC1�AMCC2, that
is added with respect to the competitive inhibition model, is not active at all. As a consequence, the
behavior of the combined model at saturating levels of Cdc20 is the same as the competitive inhibition
model.

The approximations for the combined model are shown in Suppl. Fig. 3 (iii).

10



3.4 Model with Mad3 as a separate species

Equations:

To incorporate Mad3 as a separate species, we assume that first Mad2 (M2) binds to Cdc20 (C) to form
Mad2:Cdc20 (M2C). Afterwards this complex binds to free Mad3 (M3) to form MCC1. This translates
to the following equations for the competitive inhibition case:

d[M2C]

dt
= RM2:C�M2C � RM2C:M3�MCC1 , (66)

d[MCC1]

dt
= RM2C:M3�M2C � RMCC1:C�MCC2 , (67)

and to

d[M2C]

dt
= RM2:C�M2C � RM2C:M3�MCC1 , (68)

d[MCC1]

dt
= RM2C:M3�M2C � RAC:MCC1�AMCC2 , (69)

for the sequential inhibition case. The equations for [AC], [MCC2], and [AMCC2] are unchanged with
respect to 3.1 and 3.2.

As before, the concentrations of the free species can be obtained from conservation relations:

[Atotal] = [A] + [AC] + [AMCC2] , (70)

[M2total] = [M2] + [M2C] + [MCC1] + [MCC2] + [AMCC2] , (71)

[M3total] = [M3] + [MCC1] + [MCC2] + [AMCC2] , (72)

[Ctotal] = [C] + [AC] + [M2C] + [MCC1] + 2 · ([MCC2] + [AMCC2]) . (73)

Approximation for small Cdc20

We can use the same strategy as before, based on the property of detailed balancing, to derive steady state
expressions for AC and AMCC2. But whereas the expression for AC is unchanged:

[ÂC] ⇡ [Atotal][Ĉ]

KA:C
D

, (74)

due to the additional species we now get

[ ˆAMCC2] ⇡ [Atotal][M2total][M3total][Ĉ]2

KA:C
D KM2:C

D KM2C:M3
D KAC:MCC1

D

(75)

11



for sequential inhibition, and

[ ˆAMCC2] ⇡ [Atotal][M2total][M3total][Ĉ]2

KM2:C
D KM2C:M3

D KMCC1:C
D KA:MCC2

D

(76)

for competitive inhibition.
As a result, we get the following relationship between active and inhibited species:

[ ˆAMCC2] ⇡ 1

k
[ ˆAMCC2]2 , (77)

where

k =
[Atotal]

[M2total][M3total]

KM2:C
D KM2C:M3

D KAC:MCC1
D

KA:C
D

(78)

for sequential inhibition, and

k =
[Atotal]

[M2total][M3total]

KM2:C
D KM2C:M3

D KMCC1:C
D KA:MCC2

D

(KA:C
D )2

(79)

for competitive inhibition.
Comparing this to (21), the corresponding equation for the model without M3, we see that the con-

stant k is now even smaller (provided that the KDs are smaller than M2 and M3) because there are four
reactions to build the inhibited species. This means that the funneling effect is even more pronounced in
a model with Mad3 as a separate species. This can be seen in Suppl. Fig. 4.

Approximation for large Cdc20

For large levels of Cdc20 the model including Mad3 behaves very similarly to the simpler models, pro-
vided that [M3total] = [Mtotal], i.e. M3 is limiting.

For the competitive inhibition scenario, the model is approximated by exactly the same reduced net-
work as the model in 3.2. This is because MCC1 ⇡ 0, and therefore also M3, M2C ⇡ 0 (using again
detailed balancing).

In the case of sequential inhibition we are left with two remaining reactions: RM2C:M3�MCC1 and
RAC:MCC1�AMCC2. Thus there is again an equilibrium between AC and AMCC2, but the levels are
slightly shifted because [MCC1] < [M3total]. Under the assumption that binding of M2C to M3 is
strong, the asymptotic levels of AC and AMCC2 are very close to those in 3.1, as can be seen in
Suppl. Fig. 4.
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number of observation per strain description of each category
CDC20

ALL X1/X1 X3/X3 X5/X5 X1/∆

320 132 49 53 86 Clb2 is degraded

2 2 0 0 0 Movie ends before Clb2 degradation

50 13 2 5 29 Cell die before Clb2 degradation

372 147 51 58 115 TOTAL

Table 4.2: Observation dataset for nocodazole experiments in diploids.
All the observations are included in Figure 3.15(b).
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Table 4.4: Table of strains.

strain genotype source

yAC1011 MATalpha

yAC1070 MATa, his3-11,15::HIS3tetR-GFP (single integration),

ura3::3XURA3tetO112

yAC1156 MATalpha, mad2::TRP1

yAC2341 MATa, trp1::MET3pr-yEVenus::TRP1, htb2::HTB2-mCherry::HIS3,

leu2-3::LEU2::GAL1-MAD2 (multiple copies), ura3::MET3-

CDC20::URA3

yAC2398 MATa, trp1::CDC20::TRP1

yAC2400 MATa, trp1::CDC20::TRP1 (x2)

yAC2435 MATalpha, cdc20::LEU2, trp1::CDC20::TRP1

yAC2437 MATalpha, trp1::CDC20::TRP1

yAC2450 MATa, trp1::CDC20::TRP1 (x2), cdc20::LEU2

yAC2453 MATalpha, trp1::CDC20::TRP1 (x2)

yAC2621 MATa/alpha, pds1::18MYC-Pds1::LEU2 /leu2,

MND2/mnd2::KanMX6

yAC2622 MATa/alpha, mnd2::KanMX6 /MND2, cdc20::LEU2/CDC20,

trp1::CDC20::TRP1/trp1::CDC20::TRP1

yAC2675 MATa, ura3::CDC20::URA3 (x2)

yAC2831 MATalpha, trp1::CDC20::TRP1(x2), ura3::CDC20::URA3 (x2),

scc1::Scc1-3mCherryFP::NAT

yAC2886 MATa, ADE2, mad2::MAD2-3myeGFP-dcu::NAT cdc23::CDC23-

3mCherry-dcu::hphNT1

yAC2919 MATa, ADE2, mad2::MAD2-3myeGFP-dcu::NAT bub3::BUB-

3mCherry-dcu::hphNT1

yAC2932 MATa, ADE2, cdc23::CDC23-3mCherry-dcu::hphNT1, apc5::APC5-

3myeGFP-dcu::NAT

yAC2940 MATa, ADE2, bub3::BUB3-3myeGFP-dcu::NAT mad3::MAD3-

3mCherry-dcu::hphNT1

yAC2954 MATa, ADE2, cdc16::CDC16-3myeGFP-dcu::NAT, cdc23::CDC23-

3mCherry-dcu::hphNT1

yAC2991 MATa, trp1::CDC20::TRP1 (2X), ura3::CDC20::URA3 (2X)

yAC2994 MATa, ADE2, mad2::MAD2-3myeGFP-dcu::NAT, bub3::BUB3-

3mCherry-dcu::hphNT1, mad3::kanMX

yAC3042 MATa, ADE2, mad2::MAD2-3myeGFP-dcu::NAT, bub3::BUB3-

3mCherry-dcu::hphNT1, mad3::kanMX, mad1::HIS3

yAC3103 MATa, ADE2, mad2::MAD2-3myeGFP-dcu::NAT, cdc23::CDC23-

3mCherry-dcu::hphNT1, mad3::kanMX

yAC3106 MATa, cdc20::CDC20pr::yEVenusdegron-TRP1::CDC20, htb2::HTB2-

mCherry::HIS3

yAC3108 MATa, cdc20::CDC20pr::yEVenusdegron-TRP1::CDC20, htb2::HTB2-

mCherry::HIS3, leu2-3::LEU2::GAL1-MAD2 (multiple copies)
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Table 4.4: Table of strains (continued)

strain genotype source

yAC3112 MATa, trp1::MET3pr-yEVenus::TRP1, ura3::MET3pr-

mCherry::URA3

yAC3127 MATa, ADE2, mad3::MAD3-3mCherry-dcu::hphNT1, mad2::MAD2-

3myeGFP-dcu::NAT, bub3::LEU2

yAC3153 MATa, ADE2, mad3::MAD3-3mCherry-dcu::hphNT1, mad2::MAD2-

3myeGFP-dcu::NAT, trp1::CDC20::TRP1 (2X)

yAC3176 MATa, ADE2, cdc23::CDC23-3mCherry-dcu::hphNT1, mad2::MAD2-

3myeGFP-dcu::NAT, trp1::CDC20::TRP1 (2X)

yAC3179 MATa, ADE2, cdc23::CDC23-3mCherry-dcu::hphNT1, mad2::MAD2-

3myeGFP-dcu::NAT, trp1::CDC20::TRP1

yAC3181 MATa, ADE2, mad3::MAD3-3mCherry-dcu::hphNT1, mad2::MAD2-

3myeGFP-dcu::NAT, trp1::CDC20::TRP1

yAC3202 MATa

yAC3227 MATa, ADE2, mad3::MAD3-3mCherry-dcu::hphNT1, mad2::MAD2-

3myeGFP-dcu::NAT mnd2::HIS3

yAC3261 MATa, apc4::APC4myc9-TRP1

yAC3262 MATa, apc5::APC5myc9-TRP1

yAC3266 MATa bub3::BUB3-3Cherry::hphNT1, mad2::MAD2-3GFP-KanMX6

yAC3268 MATa, ADE2, mad3::MAD3-3mCherry-dcu::hphNT1, mad2::MAD2-

3myeGFP-dcu::NAT

yAC3307 MATa, cdc20::Myc9-CDC20-TRP1

yAC3312 MATa, ADE2, cdc23::CDC23-3mCherry-dcu::hphNT1, mad2::MAD2-

3myeGFP-dcu::NAT, cdc16:CDC16-6A-TRP1, cdc27::CDC27-5A-

KAN

yAC3346 MATa, ADE2, mad3::MAD3-3mCherry-dcu::hphNT1, mad2::MAD2-

3myeGFP-dcu::NAT, cdc16:CDC16-6A-TRP1, cdc27::CDC27-5A-

KAN

yAC3353 MATa, cdc20::Myc9-CDC20-TRP1, cdc27::CDC27myc9-TRP1

yAC3359 MATa, leu2-3::LEU2::GAL1-MAD2 (multiple copies), htb2::HTB2-

mCherry::HIS3, MET3pr-yEVenusdegron::TRP1(single integration)

yAC3365 MATa cdc27::CDC27myc9-TRP1

yAC3367 MATa, cdc23::CDC23myc9-LEU2, cdc20::Myc9-CDC20-TRP1

yAC3371 MATa, cdc23::CDC23myc9-LEU2

yAC3380 MATa, ADE2, mad3::MAD3-3mCherry-dcu::hphNT1, mad2::MAD2-

3myeGFP-dcu::NAT, trp1::CDC20::TRP1 (2X), ura3::CDC20::URA3

(2X)

yAC3384 MATa, ADE2, cdc23::CDC23-3mCherry-dcu::hphNT1, mad2::MAD2-

3myeGFP-dcu::NAT, trp1::CDC20::TRP1 (2X), ura3::CDC20::URA3

(2X)

yAC3400 MATa, ADE2, cdc23::CDC23-3mCherry-dcu::hphNT1, mad2::MAD2-

3myeGFP-dcu::NAT, mnd2::HIS3

yAC3415 MATa, sfGFP∆C-URA3-NOP1pr-sfGFP-CDC20
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Table 4.4: Table of strains (continued)

strain genotype source

yAC3427 MATa, apc4::APC4myc9-TRP1, cdc23::CDC23myc9-LEU2

yAC3429 MATalpha, leu2::NatNT2-GAL1pr-I-SCEI

yAC3430 MATa, apc5::APC5myc9-TRP1, cdc23::CDC23myc9-LEU2

yAC3436 MATa cdc27::CDC27myc9-TRP1

yAC3456 MATa, CDC20::sfGFP-CDC20

yAC3509 MATa, clb2::CLB2-3mCherry-dcu::hphNT1

yAC3536 MATalpha clb2::Clb2-3mCherry-dcu-hphNT1 CDC20::sfGFP-CDC20

yAC3538 MATa, clb2::CLB2-3mCherrydcu::hphNT1, mad2::MAD2-3GFP-

KanMX6

yAC3552 MATa, clb2::CLB2-3mCherry-dcu::hphNT1, mad2::MAD2-3GFP-

KanMX6, trp1::CDC20::TRP1 (2X), ura3::CDC20::URA3 (2X),

yAC3555 MATa, clb2::CLB2-3mCherry-dcu::hphNT1, mad2::MAD2-3GFP-

KanMX6, trp1::CDC20::TRP1 (2X)

yAC3565 MATa, clb2::CLB2-3mCherry-dcu::hphNT1, mad2::MAD2-3GFP-

KanMX6, trp1::CDC20::TRP1

yAC3612 MATa, ADE2, clb2::Clb2-3mCherry-dcu-hphNT1, CDC20::sfGFP-

CDC20, mnd2::HIS3

yAC3614 MATa, ADE2, clb2::Clb2-3mCherry-dcu-hphNT1, CDC20::sfGFP-

CDC20

yAC3623 MATa, cdc20::CDC20pr::yEVenusdegron-TRP1::CDC20, htb2::HTB2-

mCherry::HIS3, trp1::CDC20::TRP1

yAC3627 MATa, cdc20::CDC20pr::yEVenusdegron-TRP1::CDC20, htb2::HTB2-

mCherry::HIS3, trp1::CDC20::TRP1 (2X), ura3::CDC20::URA3 (2X)

yAC3630 MATa, trp1::CDC20::TRP1 (2X), cdc20::CDC20pr::yEVenusdegron-

TRP1::CDC20, htb2::HTB2-mCherry::HIS3

yAC3738 MATa, clb2::CLB2-3mCherrydcu::hphNT1, mad2::MAD2-3GFP-

KanMX6, mad3::TRP1

yAC3801 MATa/alpha, clb2::CLB2-3mCherry-dcu::hphNT1/clb2::CLB2-

3mCherry-dcu::hphNT1, mad2::MAD2-3GFP-

KanMX6/mad2::MAD2-3GFPKanMX6

yAC3802 MATa/alpha, clb2::CLB2-3mCherry-dcu::hphNT1/clb2::CLB2-

3mCherry-dcu::hphNT1, mad2::MAD2-3GFP-

KanMX6/mad2::MAD2-3GFPKanMX6, trp1::CDC20::TRP1

(2X)/trp1::CDC20::TRP1 (2X)

yAC3803 MATa/alpha, clb2::CLB2-3mCherry-dcu::hphNT1/clb2::CLB2-

3mCherry-dcu::hphNT1, mad2::MAD2-3GFP-

KanMX6/mad2::MAD2-3GFPKanMX6, trp1::CDC20::TRP1

(2X)/trp1::CDC20::TRP1 (2X), ura3::CDC20::URA3

(2X)/ura3::CDC20::URA3 (2X)

yAC3804 MATa/alpha, clb2::CLB2-3mCherry-dcu::hphNT1/clb2::CLB2-

3mCherry-dcu::hphNT1, mad2::MAD2-3GFP-

KanMX6/mad2::MAD2-3GFPKanMX6, CDC20/cdc20::HIS3
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name description origin

pAC97 CDC20pr -yEVenusdegron::TRP1 this study
pAC130 MET3pr -CDC20 this study
pAC136 MET3pr -yEVenus::TRP1 this study
pAC138 CDC20pr -CDC20 -CDC20 ter (TRP1) this study
pAC142 CDC20pr -CDC20 -CDC20 ter (URA3) this study
pAC156 MET3pr -mCherry (URA3) this study
pST70 3mCherry-dcu-hphNT1 Boeke et al. [2014]
pST72 3myeGFP-dcu-natNT1 Boeke et al. [2014]
pMaM189 N-sfGFP∆C-I-SceIsite-CYC1term-URA3-NOP1pr -I-SceIsite-sfGFP Khmelinskii et al. [2011]
pND32 GAL1pr -I-SCEI Khmelinskii et al. [2011]
pRS402 ADE2 Brachmann et al. [1998]

Table 4.5: Table of plasmids used in this study
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