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Germany
22 Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
23 Dipartimento di Fisica e Scienze della Terra Università degli Studi di Ferrara e INFN, Via
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Abstract. Borexino is a liquid scintillator detector primary designed to observe solar
neutrinos. Due to its low background level as well as its position in a nuclear free country,
Italy, Borexino is also sensitive to geo-neutrinos. Borexino is leading this interdisciplinary field
of neutrino geoscience by studying electron antineutrinos which are emitted from the decay of
radioactive isotopes present in the crust and the mantle of the Earth. With 2056 days of data
taken between December 2007 and March 2015, Borexino observed 77 antineutrino candidates.
If we assume a chondritic Th/U mass ratio of 3.9, the number of geo-neutrino events is found to
be 23.7+6.5

−5.7 (stat) +0.9
−0.6 (syst). With this measurement, Borexino alone is able to reject the null

geo-neutrino signal at 5.9σ, to claim a geo-neutrino signal from the mantle at 98 % C.L. and to
restrict the radiogenic heat production for U and Th between 23 and 36 TW.

1. Introduction
Geo-neutrinos are electron antineutrinos which are produced by the decay of radioactive isotopes
present in the crust and the mantle of our planet. Since the chemical composition of the Earth
is not yet perfectly known, having a new source of information will help to better understand
our planet. The idea of using geo-neutrinos as direct messengers was suggested in 1965 by G.
Eder [1] and in 1968 by G. Marx [2] before being reviewed by L.M. Krauss, S.L. Glashow and
D.N. Schramm in 1984 [3]. So far, only the KamLAND experiment in Japan [4, 5] and the
Borexino experiment in Italy [6, 7, 8] have reported geo-neutrino measurements.

2. Geo-neutrino analysis and results
In Borexino, the detection of geo-neutrinos relies on the signature of the inverse β decay (IBD)
reaction ν̄e + p → e+ + n where the positron, the “prompt” signal, is followed in time by the
neutron capture on hydrogen, the “delayed” signal. The prompt and the delayed signals are
correlated in space and time, allowing to accurately identify electron antineutrino signal. With
an IBD threshold of 1.806 MeV, only geo-neutrinos coming from the decay of 238U and 232Th
chains can be detected.

Despite Italy is a nuclear free country, the dominant background remains electron
antineutrinos emitted by abroad nuclear reactors. It is nonetheless possible to estimate the
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expected number of nuclear reactors events, Nreact, as follows:

Nreact =

R∑
r=1

M∑
m=1

ηm
4πL2

r

Prm ×
∫

dEν̄e

4∑
i=1

fi
Ei
φi(Eν̄e)σ(Eν̄e)Pee(Eν̄e , Lr), (1)

where r runs over the number of nuclear reactors R considered, m runs over the number of
months M considered, ηm stands for the exposure in month m and includes detector efficiency,
Lr is the detector-reactor distance, Prm is the effective thermal power of reactor r in month m,
i runs over the spectral components of 235U, 238U, 239Pu and 241Pu, fi is the power fraction of
component i, Ei the average energy released per fission of component i, φi(Eν̄e) the antineutrino
energy spectrum per fission of component i, σ(Eν̄e) the IBD cross section and Pee(Eν̄e , Lr) the
survival probability of the emitted antineutrinos of energy Eν̄e created at distance Lr.

Table 1. Estimated background components in terms of number of events taken from [8]. The
combined upper limit is obtained by Monte Carlo.

9Li-8He 0.194+0.125
−0.089

Accidental coincidences 0.221± 0.004
Time correlated 0.035+0.029

−0.028
(α, n) in scintillator 0.165± 0.010
(α, n) in buffer < 0.51
Fast n’s (µ in WT) < 0.01
Fast n’s (µ in rock) < 0.43
Untagged muons 0.12± 0.01
Fission in PMTs 0.032± 0.003
214Bi-214Po 0.009± 0.013
Total 0.78+0.13

−0.10
< 0.65 (combined)

Other backgrounds can mimick an IBD reaction in Borexino, like (α, n) background,
accidental coincidences and cosmogenic background such as 9Li-8He. In Borexino, the overall
background rate is estimated to be a factor 100 lower than the antineutrino one. The estimated
background for each components is reported in table 1.

In order to measure the number of geo-neutrinos and antineutrinos from nuclear reactors,
we implement an unbinned maximum likelihood fit of the prompt energy spectrum of our
antineutrino candidates. We define the log-likelihood function as follows:

lnL(Ngeo, Nreact, Nacc, NLiHe, Nαn) = −Nexp(Ngeo, Nreact, Nacc, NLiHe, Nαn)

+

N∑
i=1

ln (fν̄e(Ei, Ngeo, Nreact) + fbg(Ei, Nacc, NLiHe, Nαn))− 1

2

∑
bg

(
Nbg − (Nbg)est

(δbg)est

)2

,

(2)

with:
fν̄e(Ei, Ngeo, Nreact) = fgeo(Ei, Ngeo) + freact(Ei, Nreact) (3)

fbg(Ei, Nacc, NLiHe, Nαn) = facc(Ei, Nacc) + fLiHe(Ei, NLiHe) + fαn(Ei, Nαn) (4)

where Nexp corresponds to the expected total number of events and i runs over the N = 77
antineutrino candidates. fgeo, freact, facc, fLiHe and fαn are the individual spectra of the
geo-neutrinos, the antineutrinos from nuclear reactors, the accidental coincidences, the 9Li-8He
events and the (α, n) events. Ngeo and Nreact are left as free parameters while the last term
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Figure 1. −2 ∆ lnL profiles for Ngeo (a) and Nreact (b).

constrains the background components reported in table 1.
If we assume a chondritic Th/U mass ratio of 3.9, our best fit values are Ngeo =

23.7+6.5
−5.7 (stat) +0.9

−0.6 (syst) and Nreact = 52.7+8.5
−7.7 (stat) +0.7

−0.9 (syst) events, which is equivalent to

43.5+11.8
−10.4 (stat) +2.7

−2.4 (syst) and 96.6+15.6
−14.2 (stat) +4.9

−5.0 (syst) TNU30 respectively. This result allows
to reject the null geo-neutrino signal at 5.9σ. Figure 1 shows the −2 ∆ lnL profiles for Ngeo and
Nreact.

A signal from the mantle can then be assessed by retrieving the crust signal (investigated in [9]
and [10]) to the total signal measured in Borexino. Using the geo-neutrino log-likelihood profile
and assuming a Gaussian approximation for the crust contribution, one can extract a signal
from the mantle equal to 20.9+15.1

−10.3, leading to a 98 % C.L. geo-neutrino signal from the mantle.
Finally, a fit where both U and Th spectra are left as free parameters has also been performed,
restricting the radiogenic heat production from these isotopes between 23 and 36 TW.

3. Investigation on a possible georeactor
In addition to the standard geo-neutrino analysis, we report an investigation on a possible
natural nuclear reactor, called georeactor, standing inside the Earth. We assume this reactor
to release a constant power for the whole data taking period. The Monte Carlo spectrum is
built such that 235U/238U has been set to 0.75/0.25 while the Pu contribution is set to 0. The

0 2 4 6 8 10 12
0

1

2

3

4

5

Ngeoreact

-
2

D
ln

L

Figure 2. −2 ∆ lnL profile for Ngeoreact.

fit has been done in the energy range above 1510 p.e. in order to get rid of the geo-neutrino
spectrum. The background components have been normalized to the [1510, 5000 p.e.] energy

30 One TNU corresponds to one event detected over one year exposure of 1032 target protons at 100 % efficiency.
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range of interest and the reactor component has been constrained to the theoretical value and
error of 56 ± 2 (30 ± 1 in the [1510, 5000 p.e.] energy range of interest).

Figure 2 shows the −2 ∆ lnL profile for Ngeoreact. The best fit value is 0 and the upper limit in
terms of number of events is 8.4 (10.5) at 90 % C.L. (95 % C.L.). This limit is usually expressed
in terms of TW. On the whole energy range, 1 TW is found to be equal to 4.4 events with an
exposure of 5.5 × 1031 proton × year, oscillation through core and mantle taken into account.
It corresponds to 2.5 events in the [1510, 5000 p.e.] energy range of interest, which leads to an
upper limit of 3.4 TW (4.2 TW) at 90 % C.L. (95 % C.L.).

4. Conclusion
From 2056 days of data taking, Borexino alone is able to reject the null geo-neutrino signal at
5.9σ, to claim a geo-neutrino signal from the mantle at 98 % C.L. and to restrict the radiogenic
heat production for U and Th between 23 and 36 TW. With a signal-to-background ratio of
the order of 100, Borexino provides a real time spectroscopy of geo-neutrinos. Finally, we
have investigated the hypothesis of a georeactor and we have set an upper limit for a 3.4 TW
georeactor (4.2 TW) at 90 % C.L. (95 % C.L.).
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