Journal of Veterinary Internal Medicine

International Collaborative Study to Assess Cardiovascular Risk and EValuate Long-term hEALth (REVEAL) in Cats with Pre-clinical Hypertrophic Cardiomyopathy and Apparently Healthy Cats

Journal:	Journal of Veterinary Internal Medicine
Manuscript ID	JVIM-SA-17-261.R3
Wiley - Manuscript type:	Standard Article
word desired, do not have to	Feline < Species, Cardiomyopathy < Cardiology < Cardiovascular, survival, Heart Failure < Cardiology < Cardiovascular, Thromboembolism < Cardiology < Cardiovascular, Clinical Epidemiology < Clinical Trials

1	
2	
3	
4	
5	
0	
, 8	
9	
10	
11	
12	
13	
4 5 7 8 9 10 11 12 13 14 15 16	
15	
12 13 14 15 16 17 18 19	
17	
18	
20	
20 21	
20 21 22 23 24 25	
23	
24	
25	
22 23 24 25 26 27 28	
27	
28	
29	
30 21	
31 32	
32 33	
34	
34 35	
35 36 37	
37	
38	
39	
40	
41 42	
42 43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 55	
55 56	
50 57	
<i></i>	

59 60 1 International collaborative study to assess cardiovascular <u>R</u>isk and <u>EV</u>aluate

2 Long-term hEALth (REVEAL) in cats with pre-clinical hypertrophic

3 cardiomyopathy and apparently healthy cats

- 4 Corresponding author: P.R. Fox, Department of Cardiology, Caspary Research Institute,
- 5 The Animal Medical Center, 510 E. 62nd Street, New York, NY, 10065; e-mail:
- 6 philip.fox@amcny.org

Author listing by order of authorship.				
Author	Author's last	Author's	Author's affiliation	
number	name	first name		
1	Fox	Philip	Animal Medical Center, New York, NY	
2	Keene	Bruce	North Carolina State University, College of Veterinary Medicine,	
			Dept. of Clinical Sciences, Raleigh, NC	
3	Lamb	Kenneth	Lamb Consulting, Minneapolis, MN	
4	Schober	Karsten	The Ohio State University, Veterinary Clinical Sciences, Columbus, OH	
5	Chetboul	Valérie	Ecole Nationale Veterinaire d'Alfort , Cardiology Unit	
0	onebour	Valerie	Maisons-Alfort, Île-de-France, France	
6	Luis Fuentes	Virginia	Royal Veterinary College, VCS, Hatfield, Hertfordshire, UK	
7	Wess	Gerhard	Ludwig-Maximilians, University of Munich, Munich, Germany	
8	Payne	Jessie	Royal Veterinary College, Hatfield, Hertfordshire, UK	
9	Hogan	Daniel	Purdue University, VCS, W. Lafayette, IN	
10	Motsinger-Reif	Alison	North Carolina State University, Dept. of Statistics, Raleigh, NC	
11	Häggström	Jens	Swedish University of Agricultural Sciences, Dept. of Clinical	
			Sciences , Uppsala, Sweden	
12	Trehiou-Sechi	Emilie	Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort Cedex, Franc	
13	Fine-Ferreira	Deborah	University of Missouri, Columbia, MO	
14	Nakamura	Reid	Advanced Veterinary Care Center, Lawndale, CA	
15	Lee	Pamela	The Animal Medical Center, New York, NY	
16	Singh	Manreet	School of Veterinary Medicine, University of California, Davis, CA	
17	Ware	Wendy	Iowa State University, VCS & BMS, College of Veterinary	
			Medicine, Ames, IA	
18	Abbott	Jonathan	Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA	
19	Culshaw	Geoffrey	The University of Edinburgh, Div. of Veterinary Clinical Sciences	
		,	R(D)SVS Hospital for Small Animals Easter Bush Veterinary	
			Centre, Roslin, Midlothian, UK	
20	Riesen	Sabine	University of Veterinary Medicine, Vienna, Austria	
21	Borgarelli	Michele	Kansas State University, Manhattan, KS	
22	Lesser	Michael	Advanced Veterinary Care Center, Lawndale, CA	
23	Van Israel	Nicole	Animal CardioPulmonary Consultancy, Masta, Belgium	
24	Cote	Etienne	Atlantic Veterinary College, University of Prince Edward Island,	
			Charlottetown, PEI, Canada	
25	Rush	John	Tufts University, Cummings School of Veterinary Medicine, Dept.	
			of Clinical Sciences, North Grafton, MA	
26	Bulmer	Barret	Tufts University, VET, Walpole, MA	
27	Santilli	Roberto	Clinica Veterinaria Malpensa, Cardiology, Varese, Italy	
28	Vollmar	Andrea	Fachtieraerztin fur Kleintiere, Wissen, Germany	
29	Bossbaly	Maribeth	Veterinary Specialty & Emergency Center, Levittown, PA	

30	Quick	Nadine	Ludwig-Maximilians, University of Munich, Munich, Germany
31	Bussadori	Claudio	Clinica Veterinaria Gran Sasso, Cardiology Dept., Milan, Italy
32	Bright	Janice	Colorado State University, Fort Collins, CO
33	Estrada	Amara	University of Florida, College of Veterinary Medicine, Dept. of
			Small Animal Clinical Sciences, Gainesville, FL
34	Ohad	Dan	The Hebrew University of Jerusalem, The Koret School of
			Veterinary Medicine, Rehovot, Israel
35	Fernández del	Maria	Universidad de Murcia, Medicina y Cirugía, Murcia, Spain
	Palacio	Josefa	
36	Lunney Brayley	Jennifer	Veterinary Medical Specialists of Houston, Houston, TX
37	Schwartz	Denise	University of Sao Paulo, School of Veterinary Medicine, Sao Paulo, Brazil
38	Bove	Christina	Ontario Veterinary College, Guelph, ON, Canada
39	Gordon	Sonya	Texas A&M University, Small Animal Clinical Science, College
			Station, TX
40	Jung	SeungWoo	School of Veterinary Medicine, University of California, Davis, CA
	Ŭ	5	USA
41	Brambilla	Paola	University of Milan, Dept. of Veterinary Medicine, Milan, Italy
42	Moise	N. Sydney	Cornell University, Clinical Sciences, College of Veterinary
			Medicine, Ithaca, NY
43	Stauthammer	Christopher	University of Minnesota, VCS, St. Paul, MN
44	Stepien	Rebecca	University of Wisconsin Madison, School of Veterinary Medicine,
			Medical Sciences, Madison, WI
45	Quintavalla	Cecilia	University of Parma, Parma, Italy
46	Amberger	Christophe	Cabinet Vétérinaire et Centre d'Imagerie, Geneva, Switzerland
47	Manczur	Ferenc	University of Veterinary Medicine, Budapest, Hungary
48	Hung	Yong-Wei	Cardiospecial Veterinary Hospital, Taipei, Taiwan
49	Lobetti	Remo	Bryanston Veterinary Hospital, Bryanston, South Africa
50	De Swarte	Marie	University of Tennessee, Knoxville, TN
51	Tamborini	Alice	University College Dublin, Veterinary College, Ballsbridge, Irelan
52	Mooney	Carmel	University College Dublin, Veterinary College, Ballsbridge, Irelan
53	Oyama	Mark	University of Pennsylvania, Clinical Studies, Philadelphia, PA
54	Komolov	Andrey	Veterinary Clinic Beliy Clyk, Moscow, Russia
55	Fujii	Yoko	Azabu University, Sagamihara, Kanagawa, Japan
56	Pariaut	Romain	Louisiana School of Veterinary Medicine, Baton Rouge, LA, USA
57	Uechi	Masami	Jasmine Animal Cardiovascular Center, Yokohama, Kanagawa, Japan
58	Tachika Ohara	Victoria Yukie	Universidad Nacional Autónoma de México, Dept. of Medicine, Surgery and Zootechnics for Small Species, Mexico City, Mexico

8 Key words: Asymptomatic; Arterial thromboembolism; Congestive heart failure;

9 Epidemiology; Incidence; Outcome; Survival

11 Abbreviations:

- 13 AH apparently healthy cats
- 14 APCs atrial premature complexes
- 15 ATE arterial thromboembolism
- 16 bpm beats per minute
- 55 17 CHF congestive heart failure

1				
2 3	10		demostia langhair	
4	18	DLH	domestic longhair	
5	19	DLVOTO	dynamic LV outflow tract obstruction	
6	20	DSH	domestic shorthair	
7	21	EFS	event-free survival	
8	22	HCM	nonobstructive form of hypertrophic cardiomyopathy	
9	23	HOCM	obstructive form of hypertrophic cardiomyopathy	
10	24	HCM/HOCM	combined HCM and HOCM cohort	
11	25	IQR	interquartile range	
12	26	LAFB	left anterior fascicular block	
13	27	LV	left ventricular	
14 15	28	LVOTO	LV outflow tract obstruction	
16	29	NA	not estimatable	
17	30	PES	post-event survival	
18				
19	31	RBBB	right bundle branch block	
20	32	RV	right ventricular	
21	33	SAM	systolic anterior motion of mitral valve	
22	34	SD	sudden death	
23	35	SBP	systolic arterial blood pressure	
24	36	VPCs	ventricular premature complexes	
25				
26	37			
27				
28	38		ments: We thank Mary Perricone and April Jackson, for technical	
29 30	39	assistance d	uring this study. The work was done at institutions and practices by each	1
31	40	author. Prelir	ninary results were presented at the 2013 ACVIM Forum, Seattle,	
32	41	Washington.		
33	42	•	erest Declaration: This study was funded by the Morris Animal Foundation	
34	43		line Foundation.	
35	45			
36	44	Off-label Antim	nicrobial Declaration: Authors declare no off-label use of antimicrobials.	
37				
38			4	
39	45	Institutional A	nimal Care and Use Committee (IACUC) or Other Approval Declaration: Authors	
40	10	de alara na IACI	IC or other energy alway needed	
41 42	46	declare no IACU	UC or other approval was needed.	
42 43				
43 44	47			
45				
46	48			
47				
48	49			
49				
50	50			
51				
52	51			
53	-			
54	52			
55 56				
50 57				
58				3
58 59				5
60				

2
4
5
6
7
8
9
10
10 11
12
13
1/
14 15
15
16
17
18
19
20
21
22
23
24
25
26
27
28
20 29
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42 43
44 45
46
47
48
49
50
51
52
53
54
55
56
50 57
5/
58
59
60

Abstract Background: Hypertrophic cardiomyopathy is the most prevalent heart disorder in cats and principal cause of cardiovascular morbidity and mortality. Yet, the impact of pre-

55 and principal cause of cardiovascular morbidity and mortality. Yet, the impact of pre-

56 clinical disease is unresolved.

57 Hypothesis/Objectives: Observational study to characterize cardiovascular morbidity

58 and survival in cats with pre-clinical nonobstructive (HCM) and obstructive (HOCM)

59 hypertrophic cardiomyopathy and in apparently healthy cats (AH).

60 Animals: 1,730 client-owned cats (430 pre-clinical HCM; 578 pre-clinical HOCM; 722

61 AH).

Methods: Retrospective multicenter, longitudinal, cohort study. Cats from 21 countries were followed through medical record review and owner or referring veterinarian interviews. Data were analyzed to compare long-term outcomes, incidence, and risk for congestive heart failure (CHF), arterial thromboembolism (ATE), and cardiovascular death.

67 **Results:**

1 2	
2 3 4	75
5 6	76
7 8 9	77
10 11	78
12 13	79
14 15 16	80
17 18	81
19 20	82
21 22	83
23 24 25	84
25 26 27	85
28 29	86
30 31	87
32 33	88
34 35	89
36 37	90
38 39 40	91
40 41 42	92
43 44	93
45 46	94
47 48	95
49 50	96
51 52	97
53 54 55	98
55 56 57	99
58 59	
60	

75	1.3±1.7 years).	Overall, prolonged	longevity was	recorded in a	minority of pre-clinical
15	1.0 ± 1.7 years).	overall, prolonged	longevity was		minority of pre-climear

76 HCM/HOCM cats with 10% reaching 9-15 years.

77 **Conclusions and Clinical Importance:**

- 78 Pre-clinical HCM/HOCM is a global feline health problem that carries substantial risk for
 - 79 CHF, ATE, and cardiovascular death. This underscores the need to identify therapies

80 and monitoring strategies that decrease morbidity and mortality.

82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	
97	
98	
99	
	5

1 2
2
4
5
6
7
8
9
10
11
12 13
13 14
15
16
17
18
19
20
21
22 23
23 24
25
26
27
28
29
30 31 32 33
ו כ גר
33
34 35 36 37
35
36
37 38
39 40
40 41
42
43
44
45
46
47 48
49
50
51
52
53
54
55 56
50 57
58
59
60

100 Introduction

Cardiomyopathies are the principal cause of cardiovascular morbidity and mortality 101 in cats,¹⁻⁶ and hypertrophic cardiomyopathy is the most common of these disorders.⁶⁻²⁹ 102 Although the majority of affected cats are assumed to remain pre-clinical (i.e., free of 103 104 clinical signs), a proportion experiences serious complications, chief among which are congestive heart failure (CHF), arterial thromboembolism (ATE), and sudden cardiac 105 death (SD).^{2,5,7-9,15-20,25,26,28} Certain breeds including Maine Coon, Ragdoll, British 106 107 shorthair, Sphynx, Chartreux, Persian, Domestic Shorthair, and Norwegian Forest Cats are predisposed to hypertrophic cardiomyopathy, suggesting a heritable basis in these 108 populations.^{10-12,24,29,41-49} Despite the fact that this disease is widely recognized, risk of 109 attendant cardiovascular complications is unknown, and the natural history of pre-110 clinical feline hypertrophic cardiomyopathy remains unresolved. 111 Many phenotypic and clinical characteristics of feline hypertrophic cardiomyopathy, 112 including a highly variable disease course, closely resemble those reported in 113 humans.^{2,7-9,15,21-26,28,29} Whereas the obstructive form of the disease (HOCM) in 114 115 humans is a major determinant of negative outcome including progressive cardiovascular disability,³⁰⁻³⁹ equivalent risk has not been established in affected cats. 116 Nevertheless, by inference drawn from data in humans, the notion has lingered that 117 118 HOCM confers a similar negative prognosis in cats and, by extension, signifies a target for pharmacotherapy.⁴⁰ 119 Descriptions of cardiovascular complications in cats with hypertrophic 120 cardiomyopathy have originated predominantly from single-site referral centers.^{5,7,9,17-} 121 ^{20,25,26,28,29} Although informative, such results tend to concentrate severely affected 122 cases and are subject to tertiary center referral bias. This can lead to overstating 123

1 2		
2 3 4	124	adverse outcomes and fosters the impression that the disease is dominated by
5 6 7	125	pessimistic outcome. ³⁷ Furthermore, combining pre-clinical and heart failure patient data
7 8 9	126	limits risk estimation and prognosis for cats having only pre-clinical disease. ^{5,7,9,14,17,26,28}
10 11	127	Thus, to understand the natural history of pre-clinical hypertrophic cardiomyopathy,
12 13 14	128	we conducted a long-term multicenter, epidemiologic study to evaluate large cohorts of
14 15 16	129	affected and nonaffected cats in many different countries around the world. This
17 18	130	approach permitted us to identify and compare incidence and risk for cardiovascular
19 20 21	131	morbidity, mortality, and survival characteristics among these populations.
22	132	
23	133	Materials and Methods
24	134	
25	135	Study Design
26	136	v v v v v v v v v v
27 28	137	The "international, collaborative, multicenter study to assess cardiovascular Risk and
29 30 31	138	EValuate long-term hEALth (REVEAL) in feline pre-clinical hypertrophic cardiomyopathy
32 33	139	and apparently healthy cats" was a retrospective, longitudinal, cohort study. An ethical
34 35	140	review committee granted approval where required. Investigators were board-certified
36 37 38	141	veterinary cardiologists, or in countries without a certification process, focused on
39 40	142	specialty cardiology practice. Each study site had a searchable echocardiographic and
41 42 43	143	medical record database permitting detailed review and long-term health follow-up.
43 44 45	144	Cats
46 47	145	Cat populations included pre-clinical obstructive (HOCM) and nonobstructive (HCM)
48 49 50	146	forms of hypertrophic cardiomyopathy, and apparently healthy cats (AH). The term pre-
51 52	147	clinical denoted a physical condition characterized by lack of clinical signs or
53 54 55	148	manifestations, and would be referred to as "asymptomatic" in human medicine. All AH
56 57 58 59 60		7

were examined by echocardiography, had an unremarkable medical history, no known illness, and had a normal physical examination findings without gallop heart sounds at the point of study entry. Some had been examined by echocardiography due to presence of a systolic heart murmur, but those with a systolic heart murmur, trivial mitral or tricuspid valve regurgitation, or dynamic right ventricular (RV) outflow tract obstruction were included, provided that the echocardiogram was otherwise normal. Inclusion Criteria. Medical records were searched for cats diagnosed with pre-clinical hypertrophic cardiomyopathy (both HCM and HOCM) as well as apparently healthy cats free of cardiomyopathy, the health outcomes of which could be ascertained for at least 5 years after initial diagnosis. Archived echocardiographic images were examined to confirm diagnosis and measurements. Study entry represented the date when echocardiographic examination was first made. **Exclusion Criteria.** Cats were not included in the study if echocardiograms were of non-diagnostic guality, or if any of the following conditions were diagnosed at or before study entry: CHF, ATE, syncope, heartworm disease, systemic arterial hypertension (defined as acute neurologic signs or retinal changes consistent with systemic hypertension, or when measured systolic arterial blood pressure [SBP] \geq 180 mmHg), hyperthyroidism, anemia, renal disease (either serum creatinine concentration above laboratory reference range, urine concentrating ability deemed to be inadequate, or proteinuria), cardiomyopathy other than hypertrophic cardiomyopathy, congenital heart disease, or any underlying medical disease judged to be capable of limiting life expectancy. All cardiovascular medications prescribed before or at study entry were recorded, but were not considered as exclusion criteria.

2 3 4	172	Study Sites
5 6	173	Investigators worked at 49 veterinary centers in 21 countries: 22 centers in 17 states
7 8	174	of the United States of America (California, Colorado, Florida, Indiana, Iowa, Kansas,
9 10 11	175	Louisiana, Massachusetts, Minnesota, Missouri, New York, North Carolina, Ohio,
12 13	176	Pennsylvania, Texas, Virginia, Wisconsin); 4 in Italy; 3 in Germany; 2 each in Canada
14 15 16	177	and Japan; and, 1 each in Austria, Belgium, Brazil, England, France, Hungary, Ireland,
16 17 18	178	Israel, Mexico, Taiwan, Russia, Scotland, South Africa, Spain, Sweden, and
19 20	179	Switzerland.
21 22		
23 24	180	Echocardiography
25 26	181	Investigators were instructed to enter cats that had diagnostic-quality 2-dimensional,
27 28	182	color flow Doppler, and M-mode echocardiographic examinations performed in
29 30 21	183	accordance with published standards. ^{8,49-51} Diagnosis was based upon information from
31 32 33	184	all available tomographic views including right parasternal long-axis 4-chamber, long-
34 35	185	axis inflow-outflow, and short-axis views, and left apical views. Cardiac measurements
36 37	186	were made from 2-dimensional echo-guided M-mode images from right parasternal
38 39 40	187	short-axis views by most investigators or, using 2-dimensional echocardiography by
40 41 42	188	several investigators. Left ventricular (LV) hypertrophy was diagnosed when the thickest
43 44	189	end-diastolic interventricular septal, LV free wall segment or both measured \geq 6 mm. ⁸
45 46 47	190	The obstructive form (HOCM) was defined for this study as LV hypertrophy with systolic
47 48 49	191	anterior motion of the mitral valve (SAM), coupled with diffuse LV outflow tract
50 51	192	turbulence and peak systolic outflow velocity \geq 2.5 m/sec. Cases were not stratified
52 53	193	according to LV outflow tract gradient. Dynamic RV outflow tract obstruction was
54 55 56	194	designated when maximal RV outflow tract velocity was > 1.6 m/sec. ⁵²
50 57 58 59		9
60		

1 2		
2 3 4	195	
5 6	196	Data Collection and Outcomes Assessment
7 8	197	
9 10 11	198	Cats for which first diagnosis was made between November 2001 and January 2011
12 13	199	were assessed during the study period which extended between January 2010 and
14 15	200	January 2016. Data collection forms were used by investigators to record pertinent
16 17	201	demographic and health information. This data included age at diagnosis, breed, body
18 19 20	202	weight, laboratory and echocardiographic information, physical examination and
20 21 22	203	laboratory findings, arrhythmias (assessed from ECG recording or from simultaneous
23 24	204	ECG trace during echocardiographic examination), whether cardiovascular medications
25 26	205	were prescribed, and outcomes (CHF, ATE, and cardiovascular death). Outcomes
27 28 29	206	assessments were made by study investigators based upon consideration of all
30 31	207	available clinical data. Serum thyroxine and creatinine concentrations and SBP results
32 33	208	that were recorded closest to date of diagnosis were included, but were not available for
34 35 36 37 38	209	every case. Cardiovascular mortality was designated as death associated with CHF,
	210	ATE, euthanasia because of these complications, or sudden death (SD). Sudden death
39 40	211	was defined as unanticipated death with absence of clinical signs or illness within 24
41 42	212	hours of last being observed healthy, or occurring at least 7 days after resolution of
43 44 45	213	CHF. ⁸ Morbidity and mortality dates were recorded from medical records. When this
46 47	214	data was not available, information was obtained from the pet owner or attending
48 49	215	veterinarian interview, assisted by a medical questionnaire with standardized questions
50 51	216	related to cardiovascular and non-cardiac morbidity and mortality. Survival was
52 53 54	217	calculated from initial diagnosis to date of death, last recorded examination, or last
55 56	218	contact.
57 58		10

1		
2 3 4	219	
5 6	220	Statistical Analysis
7 8 9	221	
) 10 11	222	Power calculation to estimate study population size was guided by results of prior studies, ^{7,9}
12 13	223	and a planned 5-year minimum follow-up period. Based upon these assumptions, 250 cats with
14 15	224	pre-clinical hypertrophic cardiomyopathy and 250 AH were considered to provide 80% power to
16 17	225	detect a difference in survival proportions between pre-clinical cardiomyopathy compared with
18 19	226	AH, with a significance level (alpha) of 0.05.
20 21 22	227	Baseline descriptive statistics are reported as mean and standard deviation for normally
23 24	228	distributed variables and median (interquartile range [IQR]) for non-normally distributed
25 26	229	variables. The normality of the residuals was judged by visual inspection. Between-groups
27 28	230	analyses of baseline variables were performed using analysis of variance (ANOVA) or Kruskal-
29 30 31	231	Wallis tests as appropriate according to the distribution of residuals, using Holm-Sidak or
32 33	232	Dunn's test post-hoc analyses, respectively, when indicated. Analyses for proportions of
34 35	233	categorical variables were performed using a Chi-Square or Fisher's Exact analysis, as
36 37	234	appropriate. Univariate time-to-event survival analyses were performed using Kaplan Meier
38 39	235	product limit estimates where survival range was presented if median survival was not reached
40 41	236	and statistical differences among strata were determined by log-rank test. Time-to-event
42 43	237	survival time analyses represented time from diagnosis to end-date. End-date was defined as
44 45	238	first instance of death, cardiovascular morbidity, or being lost to follow-up, depending upon the
46 47 48	239	analysis. Patients remaining alive or lost to follow-up at study completion were right-censored. A
49 50	240	generalized linear model was used to calculate incidence for the entire population and cohort
51 52	241	level by age quartile expressed as rates as per 1,000 cat years, employing a Poisson
53 54	242	distribution. Proportion at risk was calculated using Kaplan Meier analysis. Patient population
55 56 57 58	243	survival variables were clinically defined and survival time was further assessed at 1, 5, and 10

2			
- 3 4	244	years after initial diagnosis, respectively. Death type or comorbidity type was censored after 1	,
5 6	245	5, and 10 years, respectively, allowing for a cross-sectional view of the respective time points.	
7 8	246	Duration of event-free survival (EFS) comprised the time interval from the date of study entry	0
9 10	247	the date of first cardiac morbidity (CHF or ATE). Post-event survival (PES) comprised the time	;
11 12	248	from the date of first CHF or ATE morbidity to cardiac death from CHF, ATE, or SD. Additiona	I
13 14 15	249	analyses included stratification at age quartile determined by age at diagnosis. Due to varied	
15 16 17	250	study enrollment and study end dates, mean between-cohort survival times estimated by	
18 19	251	univariate Kaplan Meier method were used to calculate time to event for EFS and PES, and	
20 21	252	compared by ANOVA. All analyses were carried out with SAS 9.4 (Cary, NC 2016) and deem	əd
22 23	253	significant at P<0.05.	
24			
25 26	254	Results	
27 28	255		
29 30	256	Population Characteristics at Time of Diagnosis	
31 32 33	257	One-thousand seven-hundred thirty cats fulfilled entry criteria; 1,008 (58.3%) had	
34 35	258	hypertrophic cardiomyopathy comprising 430 (24.9%) HCM and 578 (33.4%) HOCM;	
36 37	259	and, 722 (41.7%) were AH (Table 1). Apparently healthy cats were younger (median,	
38 39 40	260	4.9 years; range, 0.5-21 years) than HCM (median, 7.4 years; range, 0.5-20 years;	
41 42	261	<i>P</i> <0.001) and HOCM (median, 5.7 years; range, 0.5-19 years; <i>P</i> <0.013); HOCM were	
43 44	262	younger than HCM (<i>P</i> <0.001). Ages recorded in 1,006 of 1,008 HCM/HOCM cats	
45 46 47	263	clustered predominantly at 1-5 years and 5-11 years, but the proportion markedly	
48 49	264	decreased after 11 years of age (Figure 1). Twenty-seven percent were ≥ 10 years of	
50 51	265	age and 10 % were 13-20 years of age. Body weight in HCM and HOCM cats did not	
52 53 54	266	differ (<i>P</i> =0.095), but was slightly higher compared to AH cats (both <i>P</i> <0.001; Table 1).	
54 55 56	267	The overall study population included 34 breeds, most commonly Domestic Shorthair,	
57 58 59			12

1	
2	
2	
ך ע	
4 5	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 22 \\ 23 \\ 24 \\ 25 \\ 27 \\ 28 \\ 29 \\ 31 \\ 32 \\ 33 \\ 35 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37$	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55 54	
55	
55 56	
50 57	
57	
50	

283

268	Main Coon Cat, Persian, Domestic Longhair, and Norwegian Forest Cat (Table 1,
269	Figure 2). Less commonly represented breeds included Abyssinian, American Shorthair,
270	Bengal, Birman, Bombay, British Shorthair, Burmese, Chartreux, Cornish Rex, Devon
271	Rex, Egyptian Mau, European Shorthair, Exotic Shorthair, Havana Brown, Himalayan,
272	Manx, Oriental Shorthair, Pixie-bob, Ragdoll, Russian Blue, Scottish Fold, Selkirk Rex,
273	Siamese, Somali, Sphynx, Turkish Angora, and Turkish Van. The prevalence of both
274	intact and neutered males was significantly higher in HCM and HOCM than AH.
275	Comparing HCM and HOCM cohorts, the proportions of intact males and neutered
276	males did not differ significantly ($P = 0.303$ and $P = 0.589$, respectively). The proportion
277	of neutered females did not differ significantly between HCM and HOCM ($P = 0.480$).
278	Intact females represented a very small proportion of HCM and HOCM compared with
279	AH cats (Table 1).
280	Systolic heart murmurs were detected commonly (Table 2). Murmur prevalence was
281	higher in HCM/HOCM (82.4%) than AH (46.4%; <i>P</i> <0.001). Moderate to loud (grade 3-5/6)
282	systolic murmurs were more common in HCM/HOCM (58.8%) than AH (14.8% ⁻ P<0.001)

systolic murmurs were more common in HCM/HOCM (58.8%) than AH (14.8%; *P*<0.001),

and in HOCM (74.9%) compared to HCM (37.2%) cats (P<0.001), respectively. Soft

284 systolic murmurs (grades 1-2/6) were more common in AH (31.6%) than HCM/HOCM

285 (23.6%) cats (*P*<0.001). Dynamic RV outflow tract obstruction was recorded in 43 (10%)

HCM cats (of which 39 had soft to moderately loud systolic murmurs), and in 80 (13.8%)

HOCM cats. Gallop sounds were recorded in 48 (11.2%) HCM compared with 40 (6.9%)

288 HOCM cats (*P*=0.025). Heart rate (median; IQR) during physical examination at study entry

- was lower in AH (180; 167-200 beats per minute [bpm]) compared to HOCM (190; 170-210
 - 13

290	bpm; <i>P</i> =0.001), but did not differ between HCM (186; 167-202 bpm) and AH (<i>P</i> =0.676), or
291	between HCM and HOCM (P=0.164).
292	Arrhythmias were recorded in 128/1,008 (12.7%) HCM/HOCM cats. These included
293	supraventricular tachycardia (n=4), atrial fibrillation (n=6), atrial premature complexes
294	(APCs, n=17), isolated ventricular premature complexes (VPCs, n=73), and 1 cat each
295	with ventricular bigeminy and non-sustained ventricular tachycardia. Bradyarrhythmias
296	included first-degree atrioventricular block (n=2) and high grade atrioventricular block
297	(n=2). Conduction abnormalities detected from ECG recordings included left anterior
298	fascicular block (LAFB) in 16 (4 HCM, 12 HOCM), right bundle branch block (RBBB;
299	n=4) and 1 cat each with ventricular pre-excitation and left bundle branch block.
300	Arrhythmias recorded in 30 (4.2%) AH were isolated VPCs (n=22), LAFB (n=5), and
301	RBBB (n=3).
302	Systolic blood pressure (median; IQR) did not differ among AH (140; 120-150 mm
303	Hg), HCM (140; 120-150 mm Hg), and HOCM (135; 120-150 mm Hg; <i>P</i> =0.168) cohorts.
304	One or more cardiovascular drugs (beta-adrenoceptor blockers, angiotensin
305	converting enzyme inhibitors, diltiazem hydrochloride, aspirin, or clopidogrel) were
306	prescribed in 52.3% HCM and 78.2% HOCM (<i>P</i> <0.001), but not in AH. No additional
307	information regarding dosage, compliance, or duration was recorded.
308	
309	Incidence and Risk for Cardiovascular Morbidity and Mortality
310	
311	Cardiovascular morbidities were recorded in 307 (30.5%) of 1,008 HCM/HOCM cats
312	comprising 361 events and in 7 (0.97%) AH (Table 3). The proportion of CHF events did
	14

not differ between HCM (106/430) and HOCM (138/578; P=0.834), nor did ATE events differ in HCM (41/430) compared to HOCM cats (76/578; P=0.094). Similarly, HCM and HOCM did not differ with respect to time from study entry to development of CHF (P=0.216) or ATE (P=0.188; Figure 3). The proportion of syncopal events was not different between HCM (n=9, 2.1%) and HOCM (n=14, 2.4%; P=0.838). Syncope was recorded in 2 (0.28%) AH. *Incidence*. The incidence of CHF, ATE, SD and all-cardiovascular death events per 1.000 cat years for each cohort was delineated by guartiles corresponding with age at the time when events occurred (group 1, < 2.5 years; group 2, 2.5-5.6 years; group 3, > 5.6-10 years; group 4, >10 years; Table 4). In the HCM/HOCM population, CHF incidence was 24.8% higher in cats > 10 years of age compared to cats < 2.5 years of age (68.1 events versus 51.2 events per 1,000 cat years, respectively). The incidence of ATE increased from the first to the third age quartile (from 22.5 to 32.7 events per 1,000 cat years, respectively), and then decreased sharply to 18.4 events per 1,000 cat years in cats > 10 years of age. Incidence of cardiovascular death was 57.1 events per 1,000 cat years for cats < 2.5 years of age, and was unchanged (57.7 events per 1,000 cat years) between 2.5 to 5.6 years of age. A higher incidence of cardiovascular death was recorded in older age guartiles. In contrast, the overall incidence of CHF or ATE in AH at initial diagnosis was 1.6 and 1.3 events per 1,000 cat years, respectively. **Risk.** The risk of cardiovascular morbidity and mortality for HCM, HOCM, and HCM/HOCM cohorts increased progressively at 1, 5, and 10-year intervals after study entry, as well over age quartiles (Table 5, Figure 4). Of the 1,008 cats with pre-clinical HCM/HOCM, the risk for CHF and ATE morbidity and all-cardiovascular death was

2		
3 4	336	approximately 3 times greater at 5 years compared with 1 year after initial diagnosis.
5 6	337	Overall, the risk of all-cardiovascular death for HCM/HOCM was approximately 1 in 15,
7 8 9	338	1 in 4.4, and 1 in 3.5 as calculated at 1, 5, and 10-year time points, respectively. Overall
9 10 11	339	risk of all cardiovascular death in AH was 1 in 100 (Table 5, Figure 4).
12 13	340	
14 15	341	Survival Analyses- Mortality
16 17 19	342	
18 19 20	343	Cardiovascular death was recorded in 281 (27.9%) of 1,008 HCM/HOCM cats (115
21 22	344	of 430 with HCM [26.7%], 166 of 578 with HOCM [28.7%]; Table 3). Sudden death
23 24 25	345	comprised 22 of these 281, a 2.2% prevalence in the 1,008 cats. Seven deaths were
25 26 27	346	attributed to cardiovascular death in the 722 AH (1.0%). Cardiovascular survival
28 29	347	(median, range) was significantly shorter in HCM/HOCM (10.9 years; 3 days-3.1 years)
30 31 32	348	than AH (not estimatable [NA] due to low event rate; 6 days-14.1 years; <i>P</i> <0.0001;
32 33 34	349	Figure 5). The oldest 10% of surviving HCM/HOCM cats at study end were 9 to 14.7
35 36	350	years of age. Cardiovascular survival was not significantly different between HCM (10.9
37 38 20	351	years; 2 days-12.5 years) and HOCM (NA; 3 days-13.1 years) over time (<i>P</i> =0.873;
39 40 41	352	Figure 6). Furthermore, no significant difference was found between HCM and HOCM
42 43	353	populations for the overall proportion of cardiovascular death (P =0.535), proportion of
44 45 46 47 48 49 50 51 52	354	cardiovascular death associated with CHF (P=0.834), and proportion of cardiovascular
	355	death associated with ATE (P=0.118). The proportions of SD did not differ between
	356	HCM and HOCM cats (P=0.960). Time (median, IQR) from study entry to SD did not
	357	differ significantly between HCM (1,290 days; 304-2176 days) and HOCM (1156; 457-
53 54 55 56 57 58	358	1777 days; <i>P</i> =0.676). Furthermore, time from onset of CHF or ATE morbidity to
-		

359	cardiovascular death did not differ between HCM and HOCM populations (P=0.489 and
360	P=0.578, respectively; Figure 7). Cardiovascular survival did not differ significantly
361	among age quartiles within HCM (<i>P</i> =0.206) or in HOCM (<i>P</i> =0.796) populations.
362	Cardiovascular survival did not differ significantly between HCM cats that had SBP
363	measured compared to HCM cats that did not have SBP measured (P=0.085); HOCM
364	cats that had SBP measured compared to HOCM cats that did not have SBP measured
365	(P=0.255); HCM compared to HOCM that had SBP recorded (P=0.476); or between
366	these cohorts that did not have SBP recorded (P=0.609). In addition, cardiovascular
367	survival did not differ significantly between HCM/HOCM cats that had serum thyroxine
368	concentrations measured compared to HCM/HOCM cats that did not have serum
369	thyroxine concentrations measured (P=0.263). Cardiovascular survival in HCM/HOCM
370	cats did not differ significantly between those prescribed or not prescribed \geq 1
371	cardiovascular medications at study entry (<i>P</i> =0.845).
372	
373	Time to Event, Event-Free and Post-Event Survival Analysis
374	Time to Event. Congestive heart failure and ATE morbidities occurred individually or
375	together. In HCM: CHF occurred without ATE in 90 cats (median, 57 days; range, 2-
376	2,954 days); ATE occurred without CHF in 25 cats (median, 370 days; range, 5-3,993
377	days); and, both CHF and ATE occurred in 16 cats (concurrently in 10 cats [median,
378	513 days; range, 4-3,353]; ATE preceded CHF in 3 [1,775, 2,384, and 3,334 days]; and
379	CHF preceded ATE in 3 [1,178, 1,316, and 2,409 days]). In HOCM: CHF occurred
380	without ATE in 98 cats (median, 1,017 days; range, 4-4,029 days); ATE occurred

- without CHF in 36 cats (median, 1,081 days; range, 1-2,518 days); and both CHF and

ATE were recorded in 40 cats (concurrently in 20 [median, 790 days; range, 11-2,151 days]; ATE preceded CHF in 14 [median,1,184 days; range, 3-2,980 days]; and CHF preceded ATE in 6 [median, 933 days; range, 177-2,075 days]). In AH: CHF occurred without ATE in 5 cats (median,1,633 days; range, 841-2,749 days, both CHF and ATE developed in 1 cat, and ATE occurred without CHF in 4 cats (median, 1,760 days; range, 387-2,819 days). Two of the 5 AH with CHF without ATE had developed hyperthyroidism.

Event-Free Survival. Of the 1,008 HCM/HOCM cats, 307 (30.5%) developed CHF, ATE or both, whereas 281 (27.9%) experienced cardiovascular death (22 of the 281 [7.8%] were SD). Event-free survival was calculated for the 259 cats that died from CHF, ATE or both. Of these 259 cats, 140 (54.1%) died or were euthanized on the day of their first recorded CHF or ATE morbidity, whereas 119 (45.9%) cats survived past the day of recorded morbidity and subsequently died of their cardiovascular disease. Event-free survival (mean ± standard deviation) did not differ significantly between the cohort of 140 cats (2.9 \pm 2.2 years) compared to the cohort of 119 cats (2.4 \pm 2.11 vears; *P*= 0.101; Figure 8).

Post-Event Survival. Post-event survival (the time from onset of CHF or ATE to399cardiovascular death) calculated for the 119 cats that survived > 1 day after CHF or400ATE had occurred was 1.3 ± 1.7 years, significantly shorter than both the EFS for this401cohort (P<0.0001), and for EFS of the cohort of 140 cats that died on the day of their</td>402first cardiovascular morbidity (P< 0.0001; Figure 8). Moreover, PES in these 119 cats</td>403did not differ significantly with respect to age quartiles (P=0.402) or between HCM and404HOCM cats that comprised this cohort (P=0.364).

1 2		
3 4	405	
5 6 7 8 9	406	DISCUSSION
	407	REVEAL is the first international, collaborative, epidemiologic study to evaluate pre-
9 10 11	408	clinical feline hypertrophic cardiomyopathy and AH. Intending to identify and compare
12 13	409	long-term cardiovascular incidence, risk, and survival, REVEAL documented the natural
14 15 16	410	history of cats living in geographically diverse environments, in 21 countries, and across
17 18	411	5 continents. In this population, the incidence of cardiovascular morbidity and mortality
19 20	412	in affected cats was substantial. Of the cohort of 1,008 HCM and HOCM cats, nearly
21 22	413	one-third developed CHF, ATE, or both and slightly more than one-quarter experienced
23 24 25	414	cardiovascular death. In contrast, cardiovascular death occurred in 1% of AH. Pre-
26 27 28 29	415	clinical hypertrophic cardiomyopathy therefore may be regarded as a global disease
	416	that confers reasonably high risk and denotes a major negative prognostic indicator for
30 31 32	417	cardiovascular mortality.
33 34 35 36 37 38	418	Notably, cardiovascular morbidity, mortality, and survival did not differ significantly
	419	between obstructive (HOCM) and nonobstructive (HCM) forms of feline hypertrophic
	420	cardiomyopathy, reinforcing that the clinical impression that dynamic LV outflow tract
39 40 41	421	obstruction (LVOTO) is not a predictor of adverse outcome. ^{16,18} This finding diverges
42 43	422	from the idea that LVOTO carries high risk for progressive heart failure and the cardiac
44 45	423	debilitation that characterizes HOCM in human patients. ^{30,34-39}
46 47 48	424	Reports comparing cardiovascular survival between pre-clinical feline HCM and
49 50	425	HOCM have been sparse, conflicting, and confined to small cohorts. ^{8,17} The REVEAL
51 52	426	study demonstrated no significant difference in cardiovascular morbidity or survival
53 54 55 56	427	between HCM and HOCM and should thus help resolve this debate. In reality, the
57 58		19

notion that HOCM conferred proportionately higher risk was shaped by the dominance of human literature reporting poor outcomes associated with LVOTO and increased gradients.³⁰⁻³² Echocardiography played an important role in this observation. Its introduction by the early 1970s simplified detection and characterization of cardiomyopathy in human patients, and was paralleled a decade later in veterinary medicine. In addition, echocardiography facilitated recognition of systolic anterior motion of the mitral valve (SAM) and LVOTO, characteristics of the obstructive form (HOCM) of this disease. Insofar as common clinicopathologic features shared by humans and cats hypertrophic cardiomyopathy were known,^{2,4,8,15,21} and in the absence of epidemiologic data in cats, dynamic LVOTO became regarded as a target variable for therapy in veterinary medicine.^{17,40} Our study contributes a fresh clinical perspective to the natural history of pre-clinical hypertrophic cardiomyopathy and counters this former perception. One possible explanation why clinical outcomes did not differ significantly between populations with obstructive (HOCM) and nonobstructive (HCM) disease in our study is that these designations may represent more of a functional continuum than distinct. separate entities. In humans affected with the nonobstructive form (HCM), a proportion will develop LVOTO from SAM, mid-ventricular contact or both after physiologic challenge induced by drugs or exercise. This finding the concept that hypertrophic cardiomyopathy is predominantly a disease of LV outflow tract obstruction.³³ Indeed, the fact that LVOTO can be provoked in the cat⁶ lends endorsement for this hypothesis. It also adds an element of ambiguity to the classification of this disease. If LVOTO was provoked as a result of stress-induced sympathetic tone during echocardiographic examination, such cats would be categorized as "obstructive" (HOCM), and yet may

2	
2 3 4	451
5 6	452
7 8	453
9 10 11	454
12 13	455
14 15	456
16 17	457
18 19 20	458
20 21 22	459
23 24	460
25 26	461
27 28 20	462
29 30 31	463
32 33	464
34 35	
36 37	465
38 39	466
40 41 42	467
42 43 44	468
44 45 46	469
47 48	470
49 50	471
51 52	472
53 54 55	473
55 56 57	
58	
59 60	

have been nonobstructive (HCM) under normal or baseline living conditions. In other cases, the rapid heart rate and relatively small LV end-systolic chamber of cats can challenge the detection of SAM, or render uncertain the distinction between obstructive and nonobstructive forms of this disease. Thus, SAM could have been present but missed in some cats diagnosed with the nonobstructive (HCM) form.

The REVEAL study found that CHF incidence increased slightly from youngest to oldest age, whereas ATE incidence increased up through the third age quartile, but became less common after the age of 10 years. The incidence of cardiovascular death was highest in cats > 5.6 years of age. Risk for CHF, ATE, and cardiovascular death increased over time and age. Moreover, the risk of cardiovascular death for each age quartile was progressively higher at 5 and 10 years compared to 1 year after diagnosis for each age quartile. In AH the risk of cardiovascular death was only 1%. In pre-clinical HCM and HOCM, sudden death was substantially lower in our present study than described from mixed pre-clinical and clinical feline populations.^{8,9,18,25,28} Sudden death is a well-known manifestation of hypertrophic cardiomyopathy in humans, especially in high risk sub-groups .³⁷⁻³⁹

Early onset of pre-clinical HCM or HOCM, defined as occurring in cats < 1 year of age was approximately 3% in the HCM/HOCM cohort in our study. Other reports of early onset vary widely based upon cut-off values used to define LV end-diastolic wall thickness.^{10,12,24,28,48} Age of hypertrophic cardiomyopathy associated with cardiovascular death has been reported in certain breeds, including young, highly inbred Maine Coon cats, particularly in litters where affected individuals were mated.²⁴ In addition, Ragdoll cats homozygous for the MYBPC3 R820W mutation died at a

younger age and cardiovascular survival was shorter compared to heterozygous or wild types,⁴³ and onset of CHF before 1 year of age has been observed in this breed.^b Others have reported that the age at which cardiovascular morbidity developed was younger in Maine Coon than Persian, DSH, Sphynx, and Chartreux breeds combined.²⁸ Pre-clinical HCM/HOCM in our study was diagnosed most commonly between 1 and 11 years of age, and the proportion decreased sharply thereafter. Others have reported wide age variability from pooled pre-clinical and clinically affected populations.^{7-9,12,18,} 25,26,53 Of the HCM/HOCM cats that developed CHF or ATE, the mean EFS did not exceed 3 years. Also, EFS did not differ significantly between HCM and HOCM populations. Thus, once affected cats developed cardiovascular morbidity, the trajectory of PES from onset of clinical signs to cardiovascular death was rapid, averaging just 1.3 years. Although hypertrophic cardiomyopathy has been held to presage decreased survival, REVEAL found that a proportion of affected cats survived into their second decade. Similar findings have been reported in selected pedigrees in which nearly one-third were 10 to 15 years of age and approximately 5% were > 15 years of age.²⁸ This finding indicates that pre-clinical hypertrophic cardiomyopathy can be compatible with normal life expectancy. Prolonged survival with this condition has been increasingly reported in affected humans.³⁷ The HCM/HOCM population's high male prevalence, dominated by neutered males, was similar to previously reported male predilection rates of between 63 to 79%.^{7,9,13,17,18} Heart murmurs were common in both AH as well as HCM/HOCM cats. Similar findings have been reported by others.^{4,5,9,13,16-18,26-28} The true prevalence of

Page 23 of 49

heart murmurs in AH is uncertain, however, because reported prevalence likely is affected by referral bias. The comparatively higher prevalence of heart murmurs and louder grades of murmurs in cats with HOCM may have provided an opportunity during physical examination to detect heart disease earlier compared to cats with HCM, accounting for the slightly younger HOCM cohort. Arrhythmias were detected at study entry in approximately 13% of pre-clinical HCM/HOCM and 4% of AH. Others have reported arrhythmias from mixed pre-clinical and decompensated cohorts.^{5,7-9,13,16,25,28} The pervasiveness of hypertrophic cardiomyopathy in the general feline population is unknown. Estimation of disease has inherent limitations including small sample size, single-site data source, selection and referral bias, skewed age and breed composition, and diagnostic verification. Additional weaknesses are imposed by lack of veterinary consensus guidelines for echocardiographic measurement technique and diagnostic cut-off values. Within this context, prevalence of feline hypertrophic cardiomyopathy has been reported. When investigators applied >5.5 mm or >6 mm diagnostic cut-off values and different measurement techniques to a cohort of 92 cats screened by echocardiography, prevalence ranged from 12%-51% in this cohort.²⁷ Prevalence reported by others using ≥ 6 mm cut-off was 14.7% in 780 cats screened at rehoming shelters in southeastern England,¹³ 14.6% in 103 cats screened in western Virginia,⁶ and 8.3% of 144 cats screened in Switzerland.¹⁰ Two additional studies using \geq 5.5mm cut-off reported 8.5% in 329 British shorthair cats in Denmark¹² and 25% in 53 Norwegian Forest cats screened in London.⁴⁶ Recently, echocardiographic reference ranges based upon allometric scaling have been proposed.⁵⁴

Page 24 of 49

United States pet ownership surveys identify steady growth in the feline pet population, estimating 74 million cats in 2012^c and 94.2 million cats between 2017-2018.^d Recently, estimates of hypertrophic cardiomyopathy prevalence in humans suggests that approximately 1 out of 200 individuals (0.5%) is genetically affected,⁵⁵ with a substantial proportion being genetically positive but phenotypically negative. If the prevalence of feline hypertrophic cardiomyopathy were conservatively extrapolated at 0.5% based upon findings reported in humans,⁵² upwards of 470,000 cats could be affected in the United States of America. Alternatively, if 8% prevalence was inferred based upon the lowest reported veterinary estimate that applied an echocardiographic cut-off value \geq 6 mm,¹⁰ approximately 7.5 million cats could be affected in the United States of America alone.

Our study has some limitations. Study cases originated from referral centers, and therefore demographics could have been subject to referral bias. However, the large study populations encompassing wide and varied geographical regions may have diminished this effect. Apparently healthy cats were significantly younger compared to HCM and HOCM cohorts. Arterial blood pressure, creatinine, and T4 data were available for a substantial number of cats with hypertrophic cardiomyopathy. Close attention was paid to the medical history and physical examination in order to exclude any cases with clinical findings indicative of systemic illness or disease. However, some cats with subclinical azotemia, increased serum thyroid hormone concentration, or increased SBP, may have been missed and inadvertently included in the HCM/HOCM cohort. In such cases, it was not possible to verify whether left ventricular hypertrophy was associated solely with hypertrophic cardiomyopathy, with abnormal loading

Page 25 of 49

conditions, or was present in conjunction with comorbidities. In HCM/HOCM cats ≥10 years of age representing greater age-related risk for comorbidities, SBP and or creatinine data were available in approximately 85%, and T4 data were available in approximately half of the cases. Although the REVEAL study found that pre-clinical hypertrophic cardiomyopathy and associated cardiovascular morbidity and death are global feline health issues, it did not test for potential regional differences in cardiovascular incidence and risk. In diagnosing hypertrophic cardiomyopathy and AH, cardiac status was based upon a single initial echocardiographic examination designating the point of study entry. Potential remodeling over time was not assessed, but theoretically could have affected outcome or diagnosis in some cases, or been affected by age-related penetrance of the hypertrophic cardiomyopathic phenotype. The thickest LV wall segment was selected to diagnose LV hypertrophy, but may not by itself have represented the pathophysiologic and clinical heterogeneity of this disease. Echocardiograms were not reviewed centrally, which would have exceeded financial and logistical resources. Nonetheless, echocardiographic diagnoses were reviewed by board-certified cardiologists or veterinarians who practice cardiology. Systolic anterior motion of the mitral valve and LVOTO could have been over-diagnosed in some cats in response to stress-induced exaggerated systolic chamber function, and such cats may not have had SAM and LVOTO under normal home conditions. Response to provocative measures were not considered as a diagnostic criterion in our study, but may have induced SAM and LVOTO in some cats exposed to these measures. However, such procedures are not currently performed as part of routine, standard echocardiographic examination in cats. Cats with HOCM were not subcategorized

based upon estimated LV outflow tract gradient. Thus, it was not possible to determine whether a subset of cats with high gradients is at higher cardiovascular risk. Although we attempted to exclude cats with known underlying diseases in preclinical hypertrophic cardiomyopathy and AH cohorts, some may have had undiagnosed or pre-clinical conditions. A standardized medical questionnaire was used to aid data collection when interviewing clients and referring veterinarians, but some details may have been incorrectly remembered or missed. Assessment of treatment compliance and potential drug effects was not possible in this retrospective study. Conclusions Data from the REVEAL study demonstrates that pre-clinical feline hypertrophic cardiomyopathy is a global health concern that imposes considerable risk for CHF and ATE morbidity, and substantially impacts cardiovascular health over time. Indeed, cardiovascular morbidities were recorded in nearly one-third and cardiovascular-related death occurred in approximately 30% of the 1,008 cats with HCM and HOCM. There was no statistically significant difference between obstructive (HOCM) and nonobstructive (HCM) forms of hypertrophic cardiomyopathy regarding cardiovascular morbidity or mortality, time from diagnosis to development of morbidity, or cardiovascular survival. Collectively, these epidemiologic data highlight cardiovascular risks associated with pre-clinical hypertrophic cardiomyopathy, and underscore the need to identify and develop health care and treatment strategies that optimize monitoring, decrease risk, and improve outcome.

1 2 3	588	Figure Legends
4 5		
6 7	589	Figure 1. Age distribution for 1,006 of the 1,008 cats with obstructive and nonobstructive
8 9	590	hypertrophic cardiomyopathy recorded at the time of diagnosis. In 2 cats age was not
10 11 12	591	recorded.
13 14 15	592	Figure 2. Most prevalent breeds in feline study populations. HCM, nonobstructive
16 17 18	593	hypertrophic cardiomyopathy; HOCM, obstructive hypertrophic cardiomyopathy.
19 20 21	594	Figure 3. Kaplan-Meier survival curves estimating percentage of 430 cats with
21 22 23	595	nonobstructive (HCM) compared to 578 cats with the obstructive (HOCM) form of
23 24 25	596	hypertrophic cardiomyopathy that have not yet experienced morbidity (Y-axis) from
26 27	597	congestive heart failure (top) or arterial thromboembolism (bottom) against time (X-
28 29 30	598	axis).
31 32 33	599	Figure 4. Percentage of 1,008 cats with nonobstructive (HCM, n=430)) and obstructive
33 34 35	600	(HOCM, n=578) hypertrophic cardiomyopathy at risk for cardiovascular mortality, by age
36 37	601	quartile when diagnosed and assessed 1, 5, and 10 years following study entry. Q, age
38 39 40	602	quartile; Yrs., years
41 42 43	603	Figure 5. Kaplan-Meier survival curves estimating percentage of 1,008 cats with
44 45	604	nonobstructive (HCM, n=430) and obstructive (HOCM, n=578) forms of hypertrophic
46 47	605	cardiomyopathy that have not yet experienced cardiovascular death (Y-axis) compared
48 49 50	606	with 722 AH against time (Y-axis). NA, median not estimatable.
51 52 53	607	Figure 6. Kaplan-Meier survival curves estimating percentage of 430 cats with
54 55	608	nonobstructive (HCM) compared to 578 cats with the obstructive form (HOCM) of
56 57 58 59 60		27

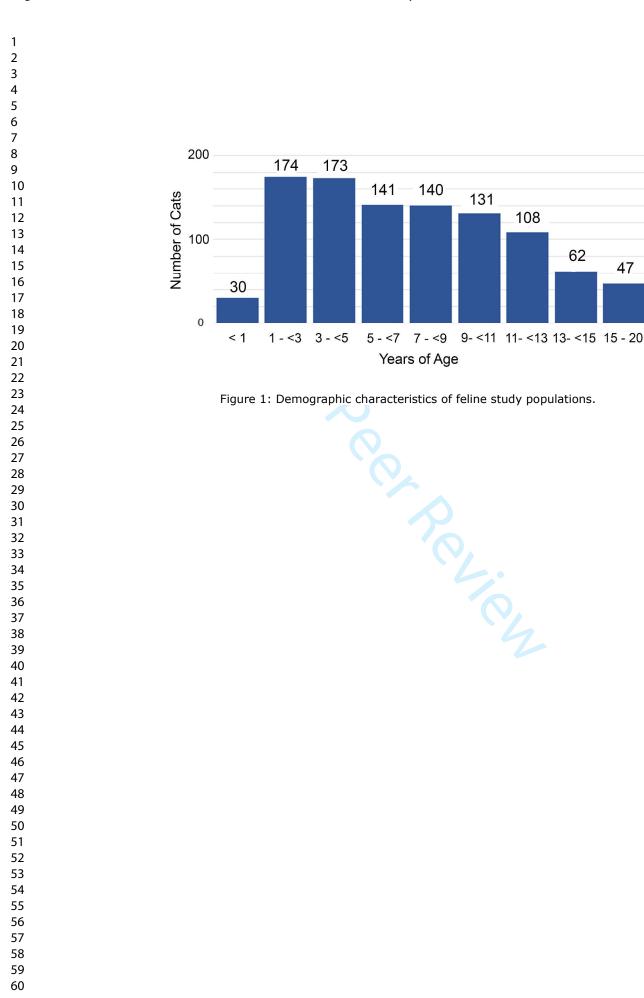
2 3	609	hypertrophic cardiomyopathy that have not yet experienced cardiovascular death (Y-
4 5		
6 7 8	610	axis) against time (X-axis). NA, median not estimatable.
9 10	611	Figure 7. Kaplan-Meier survival curves estimating the percentage of 430 cats with
11 12	612	nonobstructive (HCM) compared to 578 cats with obstructive (HOCM) hypertrophic
13 14	613	cardiomyopathy that have not yet experienced cardiovascular death (Y-axis) for
15 16 17	614	congestive heart failure (A), or arterial thromboembolism (B) against time (X-axis). NA,
18 19 20	615	median not estimatable.
21 22	616	Figure 8. Kaplan-Meier survival curves estimating the event-free survival (EFS)
23 24	617	proportion and post-event survival (PES) proportion (Y-axis) against time (X-axis). EFS
25 26 27	618	Group-A comprised a cohort of 140 cats with pre-clinical hypertrophic cardiomyopathy
27 28 29	619	who died on the day of their first recorded CHF/ATE morbidity. EFS Group-B comprised
30 31	620	a cohort of 119 cats with pre-clinical hypertrophic cardiomyopathy who survived more
32 33	621	than one day following their first recorded CHF/ATE morbidity. PES was calculated for
34 35 36 37	622	these 119 cats. * P=0.101; ** P<0.0001; SD, standard deviation.
38 39	623	
40 41 42 43	624	Table Legends
44 45 46	625	Table 1: Demographic characteristics of feline study populations.
47 48	626	Table 2: Prevalence of systolic heart murmurs in feline study populations.
49 50 51	627	Table 3: Cardiovascular morbidity and mortality in feline study populations.
52 53 54	628	Table 4: Incidence of cardiovascular morbidity and mortality events per 1,000 cat years
55 56	629	grouped by age when diagnosed.
57 58 59 60		28

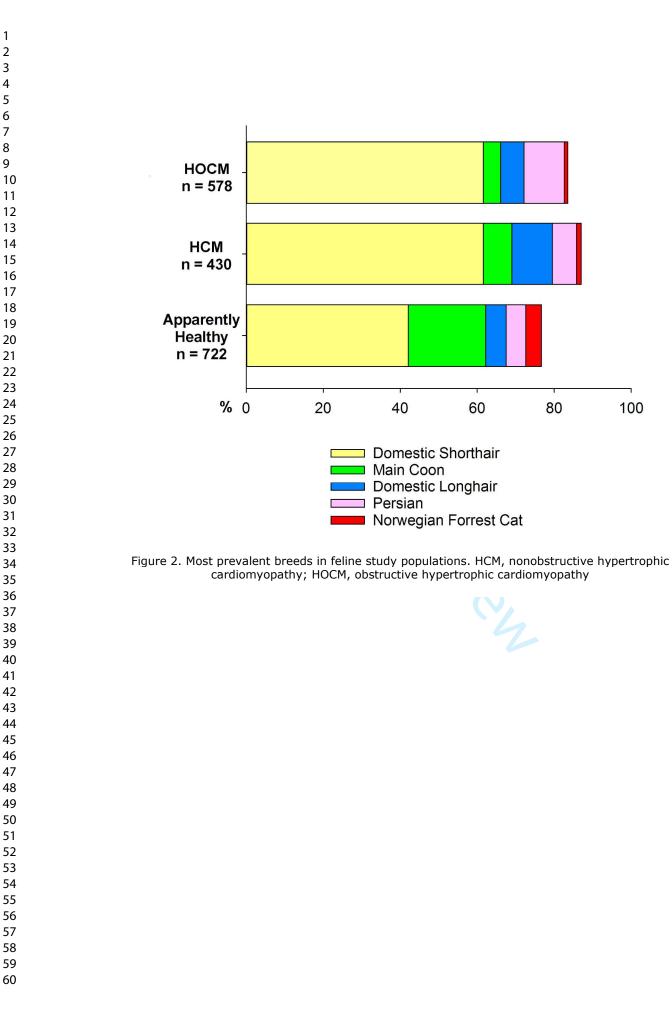
1 2		
3 4 5 6 7 8 9 10	630	Table 5: Risk of cardiac morbidity and death assessed at 1, 5, and 10 year intervals
	631	following study entry.
	632	Footnotes
11 12 13	633	^a Meurs K, Kittleson MD, Towbin J, et al. Familial systolic anterior motion of the mitral
14 15 16 17 18 19 20 21 22 23 24	634	valve and/or hypertrophic cardiomyopathy is apparently inherited as an autosomal
	635	dominant trait in a family of American Shorthair cats. J Vet Intern Med 1997;11:138
	636	(abstract).
	637	^b Lefbom BK, Rosenthal S, Tyrell WDJ, et al. Severe hypertrophic cardiomyopathy in 10
	638	young Ragdoll cats. J Vet Int Med 2001;15:308 (abstract).
25 26	639	^c AVMA, U.S. Pet Ownership & Demographics Sourcebook 2012.
 27 28 29 30 31 32 33 34 35 36 37 38 39 40 	640	^d 2017-2018 APPA National Pet Owners Survey
	641	http://americanpetproducts.org/pubs_survey.asp
	642	
	643	References
	644	
	645	1. Fox PR. Spontaneous animal models. In: Marcus FI, Nava A, Thiene G, eds.
41 42	646	Arrhythmogenic RV Cardiomyopathy/dysplasia Recent Advances. Italia: Springer-
43 44 45	647	Verlag. 2007:69-78.
46 47	648	2. Liu SK, Fox PR. Cardiovascular pathology. In: Fox PR, Sisson DD, Moise NS, eds.
48 49 50 51 52	649	Textbook of Canine and Feline Cardiology Principles and Clinical Practice.
	650	Philadelphia, PA. WB Saunders, 2 nd Ed. 1999:817-844.
53 54		
55 56		
57 58		29
59 60		

2				
- 3 4	651	3.	Fox PR, Basso C, Thiene G, et al. Spontaneously occurring restrictive	
5 6	652		nonhypertrophied cardiomyopathy in domestic cats: a new animal model of human	٦
7 8	653		disease. Cardiovasc Pathol 2014;23:28-34.	
9 10 11	654	4.	Fox PR, Maron BJ, Basso C, et al. Spontaneously occurring arrhythmogenic right	
12 13	655		ventricular cardiomyopathy in the domestic cat: A new animal model similar to the	
14 15	656		human disease. Circulation 2000;102:1863-1870.	
16 17	657	5.	Ferasin L, Sturgess CP, Cannon MJ, et al. Feline idiopathic cardiomyopathy: a	
18 19 20	658		retrospective study of 106 cats (1994-2001). J Feline Med Surg 2003;5:151-159.	
21 22	659	6.	Paige CF, Abbott JA, Elvinger F, et al. Prevalence of cardiomyopathy in apparently	у
23 24	660		healthy cats. J Am Vet Med Assoc 2009;234:1398-1403.	
25 26 27	661	7.	Atkins CE, Gallo AM, Kurzman ID, et al. Risk factors, clinical signs, and survival in	l
27 28 29	662		cats with a clinical diagnosis of idiopathic hypertrophic cardiomyopathy: 74 cases	
30 31	663		(1985-1989). J Am Vet Med Assoc 1992;201:613-618.	
32 33 34	664	8.	Fox PR, Liu SK, Maron BJ. Echocardiographic assessment of spontaneously	
35 36	665		occurring feline hypertrophic cardiomyopathy. An animal model of human disease	
37 38	666		Circulation 1995;92:2645-2651.	
39 40	667	9.	Rush JE, Freeman LM, Fenollosa NK, et al. Population and survival characteristic	s
41 42 43	668		of cats with hypertrophic cardiomyopathy: 260 cases (1990–1999). J Am Vet Med	
44 45	669		Assoc 2002;220:202-207.	
46 47	670	10	Riesen SC, Kovacevic A, Lombard CW, et al. Echocardiographic screening of	
48 49 50	671		purebred cats: an overview from 2002 to 2005. Schweiz Arch Tierheilkd	
50 51 52	672		2007;149:73-76.	
53 54				
55 56				
57 58 59				30
60				

Page 31 of 49

1 2		
3 4 5 6 7 8 9 10 11	673	11. Gundler S, Tidholm A, Häggström J. Prevalence of myocardial hypertrophy in a
	674	population of asymptomatic Swedish Maine coon cats. Acta Vet Scand 2008;50:22.
	675	12. Granström S, Godiksen MT, Christiansen M, et al. Prevalence of hypertrophic
	676	cardiomyopathy in a cohort of British Shorthair cats in Denmark. J Vet Intern Med
12 13	677	2011;25:866-871.
14 15	678	13. Payne JR, Brodbelt DC, Luis Fuentes V. Cardiomyopathy prevalence in 780
 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 	679	apparently healthy cats in rehoming centres (the CatScan study). J Vet Cardiol
	680	2015;17 Suppl 1:S244-S257.
	681	14. Inoue M, Hasegawa A, Sugiura K. Morbidity pattern by age, sex and breed in insured
	682	cats in Japan (2008-2013). J Feline Med Surg 2016;12:1013-1022.
	683	15. Cesta MF, Baty CJ, Keene BW, et al. Pathology of end-stage remodeling in a family
	684	of cats with hypertrophic cardiomyopathy Vet Pathol 2005;42:458-467.
	685	16. Schober KE, Zientek J, Li X, et al. Effect of treatment with atenolol on 5-year survival
	686	in cats with preclinical (asymptomatic)hypertrophic cardiomyopathy. J Vet Cardiol
35 36	687	2013;15:93-104.
37 38	688	17. Payne J, Luis Fuentes V, Boswood A, et al. Population characteristics and survival
39 40 41	689	in 127 referred cats with hypertrophic cardiomyopathy (1997 to 2005). J Small Anim
42 43	690	Pract 2010;51:540-547.
44 45	691	18. Payne JR, Borgeat K, Connolly DJ, et al. Prognostic indicators in cats with
46 47 48	692	hypertrophic cardiomyopathy. J Vet Intern Med 2013;27:1427-1436.
49 50	693	19. Smith SA, Tobias AH, Jacob KA, et al. Arterial thromboembolism in cats: acute crisis
51 52	694	in 127 cases (1992–2001) and long-term management with low-dose aspirin in 24
53 54 55	695	cases. J Vet Intern Med 2003;17:73-83.
55 56 57		
58 59		31


1 2		
3 4 5 6 7 8 9 10 11	696	20. Borgeat K, Wright J, Garrod O, et al. Arterial thromboembolism in 250 cats in
	697	general practice: 2004–2012. J Vet Intern Med 2014;28:102-108.
	698	21. Liu SK, Maron BJ, Tilley LP. Feline hypertrophic cardiomyopathy: gross anatomic
	699	and quantitative histologic features. Am J Pathol 1981;102:388-395.
12 13	700	22. Fox PR. Hypertrophic cardiomyopathy. Clinical and pathologic correlates. J Vet
14 15	701	Cardiol 2003;5:39-45.
16 17 18	702	23. Maron BJ, Fox PR. Hypertrophic cardiomyopathy in man and cats. J Vet Cardiol
19 20	703	2015;17 Suppl 1:S6-S9.
21 22	704	24. Kittleson MD, Meurs KM, Munro MJ, et al. Familial hypertrophic cardiomyopathy in
23 24 25	705	Maine coon cats: an animal model of human disease. Circulation 1999;99:3172-
26 27 28 29 30 31 32 33 34 35 36 37 38	706	3180.
	707	25. Payne JR, Borgeat K, Brodbelt DC, et al. Risk factors associated with sudden death
	708	vs. congestive heart failure or arterial thromboembolism in cats with hypertrophic
	709	cardiomyopathy. J Vet Cardiol 2015;17 Suppl 1:S318-S328.
	710	26. Spalla I, Locatelli C, Riscazzi G, et al. Survival in cats with primary and secondary
	711	cardiomyopathies. J Feline Med Surg 2016;18:L501-L509.
39 40 41	712	27. Wagner T, Fuentes VL, Payne JR, et al. Comparison of auscultatory and
42 43	713	echocardiographic findings in healthy adult cats. J Vet Cardiol 2010;12:171-182.
44 45	714	28. Trehiou-Sechi E, Tissier R, Gouni V, et al. Comparative echocardiographic and
46 47 48	715	clinical features of hypertrophic cardiomyopathy in 5 breeds of cats: a retrospective
48 49 50 51 52 53 54 55 56	716	analysis of 344 cases (2001–2011). J Vet Intern Med 2012;26:532-541.
	717	29. Chetboul V, Petit A, Gouni V, et al. Prospective echocardiographic and tissue
	718	Doppler screening of a large Sphynx cat population: reference ranges, heart disease
57 58 50		32

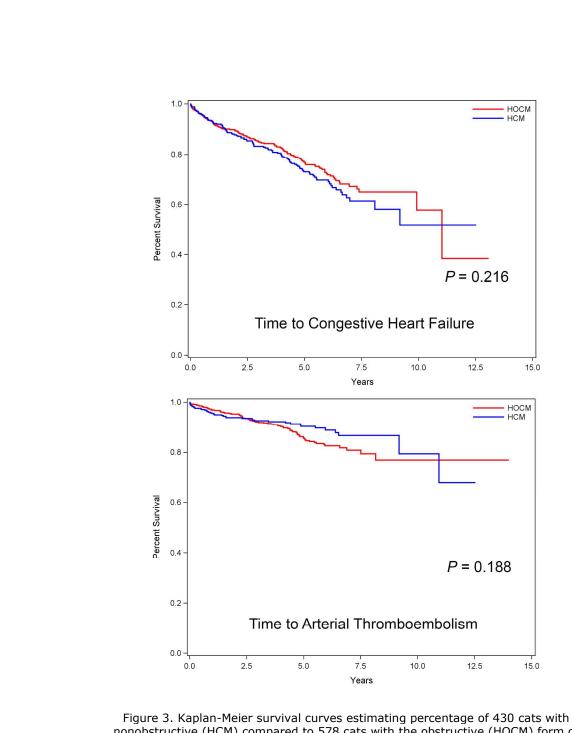

2		
3 4	719	prevalence and genetic aspects. J Vet Cardiol 2012;14:497-509.
5 6	720	30. Maron MS, Olivotto I, Betocchi S, et al. Effect of left ventricular outflow tract
7 8	721	obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med
9 10 11	722	2003;348:295-303.
12 13	723	31. Ommen SR, Maron BJ, Olivotto I, et al. Long-term effects of surgical septal
14 15	724	myectomy on survival in patients with obstructive hypertrophic cardiomyopathy.
16 17	725	J Am Coll Cardiol 2005;46:470-476.
18 19 20	726	32. Elliott PM, Gimeno JR, Tome MT, et al. Left ventricular outflow tract obstruction and
20 21 22	727	sudden death risk in patients with hypertrophic cardiomyopathy. Eur Heart J
23 24	728	2006;27:1933-1941.
25 26 27	729	33. Maron MS, Olivotto I, Zenovich AG, et al. Hypertrophic cardiomyopathy is
27 28 29	730	predominantly a disease of left ventricular outflow tract obstruction. Circulation
30 31	731	2006;114:2232-2239.
32 33	732	34. Ommen SR, Shah PM, Tajik AJ. Left ventricular outflow tract obstruction in
34 35 36	733	hypertrophic cardiomyopathy: past, present and future. Heart 2008;94:1276-1281.
30 37 38	734	35. Maron MS, Rowin EJ, Olivotto I, et al. Contemporary natural history and
39 40	735	management of nonobstructive hypertrophic cardiomyopathy. J Am Coll Cardiol
41 42	736	2016;67:1399-1409.
43 44 45	737	36. Desai MY, Bhonsale A, Smedira NG, et al. Predictors of long-term outcomes in
46 47	738	symptomatic hypertrophic obstructive cardiomyopathy patients undergoing surgical
48 49	739	relief of left ventricular outflow tract obstruction. Circulation 2013;128:209-216.
50 51	740	37. Maron BJ, Ommen SR, Semsarian C, et al. Hypertrophic cardiomyopathy: present
52 53 54	741	and future, with translation into contemporary cardiovascular medicine. J Am Coll
55 56	, 11	
57 58		33
59 60		

1 2		
2 3 4	742	Cardiol 2014;64;83-99.
5 6 7 8 9 10 11	743	38. Maron MJ, Maron MS. Hypertrophic cardiomyopathy. Lancet 2013;381:242-255.
	744	39. Maron BJ, Doerer JJ, Haas TS, et al. Sudden deaths in young competitive athletes:
	745	analysis of 1866 deaths in the United States, 1980-2006. Circulation 2009;119:1085-
12 13	746	1092.
14 15	747	40. Rishniw M, Pion PD. Is treatment of feline hypertrophic cardiomyopathy based in
16 17 18	748	science or faith? A survey of cardiologists and a literature search. J Feline Med
19 20 21 22	749	Surg. 2011;13:487-497.
	750	41. Meurs KM, Sanchez X, David R, et al. A cardiac myosin binding protein C mutation
23 24 25	751	in the Maine Coon cat with familial hypertrophic cardiomyopathy. Hum Mol Genet
25 26 27	752	2005;14:3587-3593.
28 29	753	42. Meurs KM, Norgard MM, Ederer MM, et al. A substitution mutation in the myosin
30 31	754	binding protein C gene in ragdoll hypertrophic cardiomyopathy. Genomics
32 33 34	755	2007;90:261-264.
35 36	756	43. Borgeat K, Casamian-Sorrosal D, Helps C, et al. Association of the myosin binding
37 38	757	protein C3 mutation (MYBPC3 R820W) with cardiac death in a survey of 236
39 40 41	758	Ragdoll cats. J Vet Cardiol 2014;16:73-80.
42 43	759	44. Godiksen MT, Granstrøm S, Koch J, Christiansen M. Hypertrophic cardiomyopathy
44 45	760	in young Maine Coon cats caused by the A31P cMyBP-C mutationthe clinical
46 47 48	761	significance of having the mutation. Acta Vet Scand 2011;9;53:57.
49 50	762	45. Mary J, Chetboul V, Carlos Sampedrano C, et al. Prevalence of the MYBPC3-A31P
51 52	763	mutation in a large European feline population and association with hypertrophic
53 54 55	764	cardiomyopathy in the Maine Coon breed. J Vet Cardiol 2010;12:155-161.
55 56 57		
58 59		34

1 2		
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	765	46. März I, Wilkie LJ, Harrington N, et al. Familial cardiomyopathy in Norwegian Forest
	766	cats. J Feline Med Surg 2015;17:681-691.
	767	47. Carlos Sampedrano C, Chetboul V, Mary J, et al. Prospective echocardiographic
	768	and tissue Doppler imaging screening of a population of Maine Coon cats tested for
	769	the A31P mutation in the myosin-binding protein C gene: a specific analysis of the
	770	heterozygous status. J Vet Intern Med 2009;23:91-99.
	771	48. Wess G, Schinner C, Weber K, et al. Association of A31P and A74T polymorphisms
	772	in the myosin binding protein C3 gene and hypertrophic cardiomyopathy in Maine
	773	Coon and other breed cats. J Vet Intern Med 2010;24:527-532.
	774	49. Silverman SJ, Stern JA, Meurs KM. Hypertrophic cardiomyopathy in the Sphynx cat:
25 26 27	775	a retrospective evaluation of clinical presentation and heritable etiology J Feline Med
28 29 30 31 32 33 34 35 36 37 38	776	Surg 2012;14:246-249.
	777	50. Thomas WP, Gaber CE, Jacobs GJ, et al. Recommendations for standards in
	778	transthoracic two-dimensional echocardiography in the dog and cat.
	779	Echocardiography Committee of the Specialty of Cardiology, American College of
	780	Veterinary Internal Medicine. J Vet Intern Med 1993;7:247-252.
39 40 41	781	51. Häggström J, Luis Fuentes V, Wess G. Screening for hypertrophic cardiomyopathy
41 42 43	782	in cats. J Vet Cardiol 2015;17 Suppl 1:S134-149.
44 45	783	52. Chetboul V, Sampedrano CC, Tissier R, et al. Quantitative assessment of velocities
46 47 48 49 50 51 52 53 54	784	of the annulus of the left atrioventricular valve and left ventricular free wall in healthy
	785	cats by use of two-dimensional color tissue Doppler imaging. Am J Vet Res
	786	2006;67:250-258.
	787	53. Schober KE, Savino SI, Yildiz V. Right ventricular involvement in feline hypertrophic
55 56 57		
58 59		35

2		
3 4	788	cardiomyopathy. J Vet Cardiol 2016;18:297-309.
5 6	789	54. Häggström J, Andersson ÅO, Falk T, et al. Effect of body weight on
7 8	790	echocardiographic measurements in 19,866 pure-bred cats with or without heart
9 10 11	791	disease. J Vet Intern Med 2016;30:1601-1611.
12 13	792	55. Semsarian C, Ingles J, Maron MS, et al. New perspectives on the prevalence of
14 15	793	hypertrophic cardiomyopathy. J Am Coll Cardiol 2015;65:1249-1254.
16 17 18	794	
19 20	795	
21 22		
23 24 25		
26		
27 28		
29 30		
31		
32 33		
34		
35 36		
37		
38 39		
40 41		
41		
43 44		
44 45		
46		
47 48		
49		
50 51		
52		
53		
54 55		
56		
57		
58 59		36
60		

- носм


- HCM

12.5

15.0

15.0

HOCM HCM

nonobstructive (HCM) compared to 578 cats with the obstructive (HOCM) form of hypertrophic cardiomyopathy that have not yet experienced morbidity (Y-axis) from congestive heart failure (top) or arterial thromboembolism (bottom) against time (Xaxis).

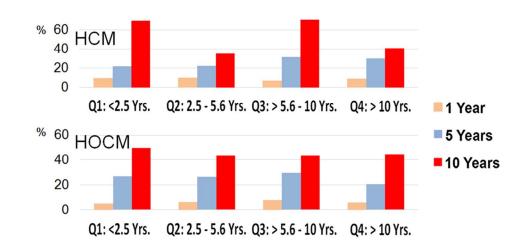


Figure 4. Percentage of 1,008 cats with nonobstructive (HCM, n=430) and obstructive (HOCM, n=578) hypertrophic cardiomyopathy at risk for cardiovascular mortality, by age quartile when diagnosed and assessed 1, 5, and 10 years following study entry. Q, age quartile; Yrs., years

101x53mm (300 x 300 DPI) Perez.

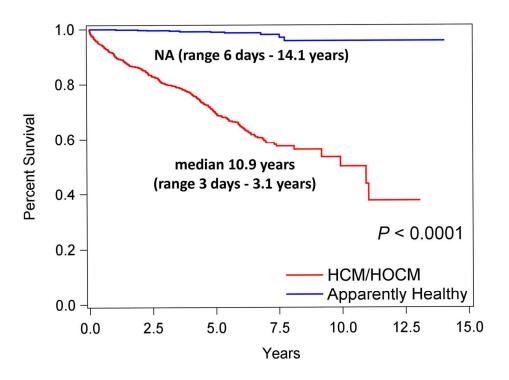


Figure 5. Kaplan-Meier survival curves estimating the percentage of 1,008 cats with nonobstructive (HCM, n=430) and obstructive (HOCM, n=578) forms of hypertrophic cardiomyopathy that have not yet experienced cardiovascular death (Y-axis), compared with 722 apparently healthy cats, against time (Y-axis). NA, median not estimatable.

140x110mm (300 x 300 DPI)

HOCM

- HCM

HOCM median NA

(range 3 days - 13.1 years)

Т

10.0

P = 0.873

12.5

15.0

1.0

0.8

0.6

0.4

0.2

0.0 -

0.0

2.5

Percent Survival

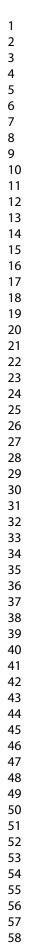
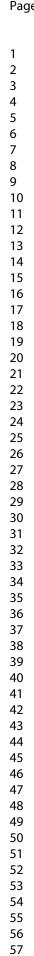


Figure 6. Kaplan-Meier survival curves estimating the percentage of 430 cats with nonobstructive (HCM) compared to 578 cats with obstructive (HOCM) forms of hypertrophic cardiomyopathy that have not yet experienced cardiovascular death (Y-axis), against time (Y-axis). NA, median not estimatable.

Т

5.0


HCM median 10.9 years

range 2 days - 12.5 years

7.5

Years

147x122mm (300 x 300 DPI)

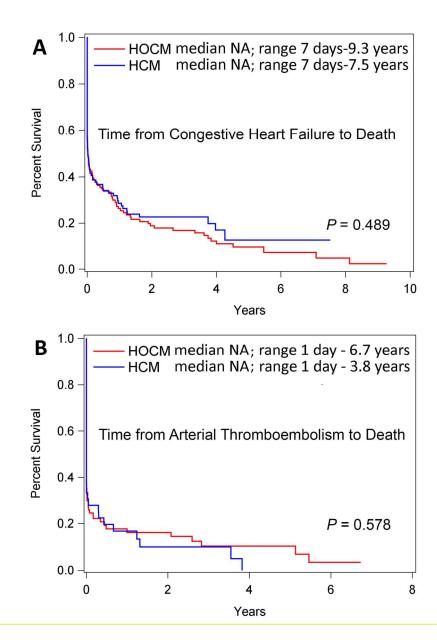


Figure 7. Kaplan-Meier survival curves estimating the percentage of 430 cats with nonobstructive (HCM) compared to 578 cats with obstructive (HOCM) hypertrophic cardiomyopathy that have not yet experienced cardiovascular death (Y-axis) for congestive heart failure (A), or arterial thromboembolism (B) against time (X-axis). NA, median not estimatable

177x220mm (300 x 300 DPI)

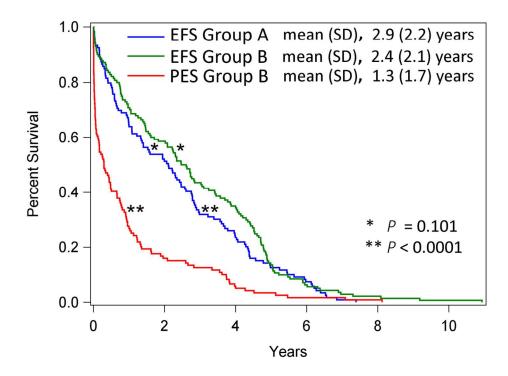


Figure 8. Kaplan-Meier survival curves estimating the event-free survival (EFS)_T proportion and post-event survival (PES) proportion (Y-axis) against time (X-axis). EFS Group-A comprised a cohort of 140 cats with pre-clinical hypertrophic cardiomyopathy who died on the day of their first recorded CHF/ATE morbidity. EFS Group-B comprised a cohort of 119 cats with pre-clinical hypertrophic cardiomyopathy who survived more than one day following their first recorded CHF/ATE morbidity. PES was calculated for these 119 cats. * $P=597 \ 0.101$; ** P<0.0001; SD, standard deviation._T

140x111mm (300 x 300 DPI)

Table 1: Demographic characteristics of feline study populations.

				S	Study Popula	tion Gro	oups				
Characteristic	Apparently Healthy		НСМ		НОСМ	НСМ/НОСМ			Apparently Healthy vs HCM	Apparently Healthy vs HOCM	Apparently Healthy <i>vs</i> HCM/HOCM
	n=722		n=430	n=578		n=1,008			_		
• • • • • • •			7 4 (4 4 4)							Comparison P	
Age, years (Median; IQR)	4.9 (1.9-9)		7.4 (4-11)		5.7 (3-9)		6.5 (3-10)		<0.001	0.013	<0.001
Breed	Number	%	Number	%	Number	%	Number	%			
Domestic Shorthair	304	42.1	265	61.6	353	61.1	618	61.3	<0.001	<0.001	<0.001
Maine Coon	145	20.1	32	7.4	26	4.5	58	5.8	<0.001	<0.001	<0.001
Domestic Longhair	38	5.3	45	10.5	35	6.1	80	7.9	0.001	0.620	0.038
Persian	37	5.1	27	6.3	60	10.4	87	8.6	0.487	<0.001	0.007
lorwegian Forest Cat	30	4.2	5	1.2	5	0.9	10	1.0	<0.001	<0.001	<0.001
Siamese	24	3.3	11	2.6	6	1.0	17	1.7	0.579	0.011	0.041
Sphynx	21	2.9	5	1.2	8	1.4	13	1.3	0.083	0.095	0.026
Ragdoll	14	1.9	2	0.5	2	0.3	4	0.4	0.071	0.020	0.004
Other	109	15.1	38	8.8	83	14.4	121	12.0	0.003	0.769	0.072
Sex Male Intact	97	13.4	39	9.1	41	7.1	80	7.9	0.033	<0.001	<0.001
Vale Neutered	264	36.6	268	62.3	372	64.4	640	63.5	< 0.001	<0.001	<0.001
Female Intact	159	22.0	25	5.8	21	3.6	46	4.6	<0.001	<0.001	<0.001
Female Neutered	202	28.0	98	22.8	144	24.9	242	24.0	0.061	0.238	0.057
Body weight, kg (Median, IQR)	4.5 (3.6-5.4)		5.2 (4.2-6.0)		5 (4.2-6.0)		5 (4.2-6.0)		<0.001	<0.001	<0.001

IQR, interquartile range; HCM, nonobstructive hypertrophic cardiomyopathy; HOCM, obstructive hypertrophic cardiomyopathy;

Other, pedigree crosses and all other non-specified breeds.

Table 2: Prevalence of systolic heart murmurs in feline study populations.

 .

11 12 13 14 15	Number of	Apparently Healthy (n=722)		HCM (n=430)		HOCM (n=578)		HCM/HOCN (n=1,008)		Apparently Healthy <i>vs</i> HCM	Apparently Healthy <i>vs</i> HOCM	Apparently Healthy <i>vs</i> HCM/HOCM
6 7 8	cats with heart	005	%	004	%		%	004	%			
9 0 1 2	murmurs Heart murmur grade	335	46.4	294	68.4 <	537	92.9	831	82.4			
3 4 5	1	60	8.3	25	5.8	13	2.3	38	3.8	0.028	<0.001	<0.001
5	2	168	23.3	109	25.3	91	15.7	200	19.8	0.465	0.007	0.078
7 3 9	3	91	12.6	120	27.9	271	46.9	391	38.8	<0.001	<0.001	<0.001
) 1	4	16	2.2	39	9.1	157	27.2	196	19.4	<0.001	<0.001	<0.001
<u>2</u> 3	5	0	0.0	1	0.2	5	0.9	6	0.6	0.195	0.012	0.038
4 5 6 7 8 9 0 1 2 3 4 5	HCM, nonobsi	tructive hype	rtrophic o	cardiomyop	oathy; HC)CM, obstri	uctive hy	pertrophic c	ardiomyc	pathy		

Table 3: Cardiovascular morbidity and mortality in feline study populations.

5		Study Population Groups													
7 3			ly Healthy 722		CM 430		CM 578	HCM/HOCM n=1008							
€ 0 1	Cardiovascular Morbidity	Number Events	% Normal	Number Events	% HCM	Number Events	% HOCM	Number. Events	% HCM/HOCM						
2 3 4	CHF	6	0.83	106	24.7	138	23.9	244	24.2						
5 6 7 8	ATE	5	0.69	41	9.5	76	13.2	117	11.6						
19 20 21 22 23 24	Sudden death	0	0	9	2.1	13	2.3	22	2.2						
25 26 27 28 29 30 31	All cardiovascular death	7	0.97	115	26.7	166	28.7	281	27.9						

HCM, nonobstructive hypertrophic cardiomyopathy; HOCM, obstructive hypertrophic cardiomyopathy; CHF, congestive heart failure; ATE, arterial thromboembolism

Table 4: Incidence of cardiovascular morbidity and mortality events per 1,000 cat years grouped by age when diagnosed.

Age Group	Population Cohorts	CHF Morbidity	ATE Morbidity	Sudden Death	All-Cardiovascular Death
	Apparently Healthy	1.6	1.3	0	1.8
Total	HCM	62.9	22.2	4.6	64.8
Population	HOCM	54.2	29.5	5.3	62.5
	HCM/HOCM	57.6	26.6	5.0	63.4
- <i>i</i>	Apparently Healthy	0.7	0.7	0	0
Group 1	НСМ	52.6	11.7	2.9	46.7
(<2.5 years)	HOCM	50.4	28.3	6.3	62.7
	HCM/HOCM	51.2	22.5	5.1	57.1
Group 2	Apparently Healthy	2.3	0	0	1.1
(2.5 - 5.6	HCM	55.1	22.8	8.2	55.5
years)	HOCM	57.8	31.0	3.6	59.1
	HCM/HOCM	56.8	28.0	5.3	57.7
Group 3	Apparently Healthy	2.4	2.4	0	4.7
(>5.6 -10	HCM	62.6	33.1	1.8	78.8
years)	HOCM	53.4	32.4	6.1	69.9
	HCM/HOCM	57.1	32.7	4.4	72.7
	Apparently Healthy	2.0	3.9	0	3.9
Group 4	HCM	81.4	15.3	5.0	75.1
(>10 years)	HOCM	54.4	21.7	5.3	53.6
-	HCM/HOCM	68.1	18.4	5.1	64.7

HCM, nonobstructive hypertrophic cardiomyopathy; HOCM, obstructive hypertrophic cardiomyopathy; CHF, congestive heart failure; ATE, arterial thromboembolism

 Table 5: Risk of cardiac morbidity and death assessed at 1, 5, and 10 year intervals following study entry.

4 5 6	C	HF	A	TE	Sudder	n Death	All-Cardiovascular Death		
7 8 9 10	% Population Remaining at-Risk	% Population Affected	% Population Remaining at-Risk	% Population Affected	% Population Remaining at- Risk	% Population Affected	% Population Remaining at-Risk	% Population Affected	
¹¹ ₁₂ Risk									
13 1-year post diagnosis									
14 Apparently Healthy	100	0.0	100	0.0	100	0.0	100	0.0	
15 HCM	93.3	6.7	95.8	4.2	99.3	0.7	92.3	7.7	
16 HOCM	92.7	7.3	97.1	2.9	99.1	0.9	94.1	5.9	
17 HCM/HOCM	93.0	7.0	96.5	3.5	99.2	0.8	93.3	6.7	
18 19									
$^{19}_{20}$ 5-years post diagnosis									
21 Apparently Healthy	99.6	0.4	99.6	0.4	100	0.0	99.3	0.7	
22 HCM	79.5	20.5	92.3	7.7	98.1	1.9	77.7	22.3	
23 HOCM	80.4	19.6	88.7	11.3	96.7	3.3	76.8	23.2	
24 HCM/HOCM	80.1	19.9	90.3	9.7	97.3	2.7	77.2	22.8	
25									
²⁶ 10-years post diagnosis									
Apparently Healthy	99.2	0.8	99.3	0.7	100	0.0	99.0	1.0	
²⁸ HCM 29 HCM	75.6	24.4	91.2	8.8	97.4	2.6	73.3	26.7	
HOCM	76.5	23.5	86.8	13.2	96.0	4.0	70.6	29.4	
31 HCM/HOCM	76.1	23.9	88.7	11.3	96.6	3.4	71.7	28.3	
32									
33									
34 35									
35 36									
³⁷ HCM, nonobstruct	ive hypertrophi	c cardiomyona	thy HOCM of	ostructive hype	ertrophic cardion	wonathy: CHE	concestive her	art failure [.]	
$^{38}_{38}$ ATE, arterial thron	21 1	o caraioniyopa				iyopaniy, orn ,			
$_{39}$ ATE, alternal through									
40									
41									
42									