
Sketch-Based Implicit Blending

BAPTISTE ANGLES, University of Victoria, Université de Toulouse, and IRIT / CNRS
MARCO TARINI, Università dell’Insubria and ISTI / CNR
BRIAN WYVILL, University of Victoria
LOÏC BARTHE, Université de Toulouse and IRIT / CNRS
ANDREA TAGLIASACCHI, University of Victoria

c o m p o s i t i o n f u n c t i o n s

A

B C

D

E
A C E

B D

Fig. 1. A user’s 2D sketches (bottom-left) are used to exemplify desired ways in which implicit functions should be composed together. From these, our
algorithm automatically derives new custom gradient-based composition operators (bottom-right). These can then be applied to combine any 3D (or 2D)
implicit model (top) replicating the user’s intentions, and including effects such as contacts, bulging deformation, or smooth blends.

Implicit models can be combined by using composition operators; functions
that determine the resulting shape. Recently, gradient-based composition
operators have been used to express a variety of behaviours including smooth
transitions, sharp edges, contact surfaces, bulging, or any combinations. The
problem for designers is that building new operators is a complex task
that requires specialized technical knowledge. In this work, we introduce

This work is supported by the National Science and Engineering Research Council of
Canada Discovery and CRD grants #2016-05786, the Google/Intel Industrial Research
Chair in 3D Sensing, the FOLD-Dyn project (ANR-16-CE33-0015-01), the CIMI Labex
(ANR-11-LABX-0040), PRIN project “DSurf” (2015B8TRFM), and a gift from Google.
Authors’ addresses: Baptiste Angles, University of Victoria, Université de Toulouse,
IRIT / CNRS, bangles@siggraph.org; Marco Tarini, Università dell’Insubria, ISTI /
CNR, tarini@isti.cnr.it; Brian Wyvill, University of Victoria, bwyvill@uvic.ca; Loïc
Barthe, Université de Toulouse, IRIT / CNRS, Loic.Barthe@irit.fr; Andrea Tagliasacchi,
University of Victoria, andrea.tagliasacchi@siggraph.org.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
0730-0301/2017/11-ART181 $15.00
https://doi.org/10.1145/3130800.3130825

an automatic method for deriving a gradient-based implicit operator from
2D drawings that prototype the intended visual behaviour. To solve this
inverse problem, in which a shape defines a function, we introduce a general
template for implicit operators. A user’s sketch is interpreted as samples
in the 3D operator’s domain. We fit the template to the samples with a
non-rigid registration approach. The process works at interactive rates and
can accommodate successive refinements by the user. The final result can be
applied to 3D surfaces as well as to 2D shapes. Our method is able to replicate
the effect of any blending operator presented in the literature, as well as
generating new ones such as non-commutative operators. We demonstrate
the usability of our method with examples in font-design, collision-response
modeling, implicit skinning, and complex shape design.

CCS Concepts: • Computing methodologies→ Shape modeling;

Additional KeyWords and Phrases: Implicit Surfaces; Sketch-based modeling

ACM Reference Format:
Baptiste Angles,Marco Tarini, BrianWyvill, Loïc Barthe, andAndrea Tagliasac-
chi. 2017. Sketch-Based Implicit Blending. ACM Trans. Graph. 36, 6, Arti-
cle 181 (November 2017), 13 pages. https://doi.org/10.1145/3130800.3130825

ACM Transactions on Graphics, Vol. 36, No. 6, Article 181. Publication date: November 2017.

https://doi.org/10.1145/3130800.3130825
https://doi.org/10.1145/3130800.3130825

181:2 • B. Angles et al.

union difference

intersection smooth blend

Fig. 2. Proper design of an implicit composition operator can achieve classi-
cal CSG operations such as union, difference, intersection, as well as their
smooth variants – i.e. blending.

1 INTRODUCTION
An implicit representation of a 3D object describes its surface as
a set of 3D points on which a scalar function equals a prescribed
iso-value [Bloomenthal and Wyvill 1997]. When modeled or ani-
mated, complex objects are defined by assembling their different
parts with composition operators, each part being defined by its
own scalar function. While the iso-surfaces represent the individual
shape of the parts, composition operators control the way they are
combined. For instance, the max (min) of two scalar functions pro-
duces a union (intersection) operator [Ricci 1973; Sabin 1968] which
is the basis of Constructive Solid Geometry (CSG) [Requicha and
Voelcker 1977]; see Figure 2. The blending operator, in some cases a
simple sum of the combined scalar functions [Blinn 1982], smoothes
the sharp transition between parts produced by the union. A core
feature of implicit representations is that primitives are combined
by simply applying an operator to their respective scalar functions,
regardless of their relative positions. This means that no detection
or specific treatment for collision is required. This is convenient
when the combined primitives are particles of a point-based fluid
simulation [Ihmsen et al. 2014], or limbs of a character [Vaillant
et al. 2013].
Several composition operators have been proposed, including

controlled blending [Hoffmann and Hopcroft 1985; Hsu and Lee
2003; Pasko et al. 1995; Rockwood 1989], localized blending [Pasko
and Adzhiev 2004], and contact operators that model the contact

input output blending operator
f1

f2

ou
ts
id
e

in
si
de

su
rf
ac
e

bulge

tunnel

Fig. 3. A composition operator defined as a function of solely the values of
the two input objects presents undesirable bulge and tunnel artifacts.

surface where the combined objects are colliding [Cani 1993]; see
Figure 1 for a few examples. Even though these extend the variety
of composition possibilities, they are not commonly used in practice.
Some reasons are that meshes are the standard representation for
modeling/animation and implicit modeling is not popular on its
own, these operators can be computationally intensive, the shape
they produce can be unsatisfactory in some cases, and they are often
difficult to control by a user.
Recently, gradient-based composition operators [Gourmel et al.

2013] addressed various unsatisfactory shapes in compositions and
computationally expensive operator evaluations. Noting that an
implicit surface can approximate a mesh by computing a signed
distance field [Macedo et al. 2011], implicit skinning [Vaillant et al.
2014] exploits the automatic contact handling of gradient-based op-
erators on 3D scalar functions for deformingmeshes more efficiently
when they are animated. This is an example of how implicit model-
ing/animation tools can be complementary to existing techniques for
mesh processing; the current work provides an effective solution to
the generalization and intuitive design of free-form gradient-based
composition operators.

Composition operators. The scalar functions fa (x), fb (x) : R3 →

R of two objects can be combined with a binary composition oper-
ator д : R2 → R, and the function fc defines the resulting object
as fc (p) = д(fa (p), fb (p)). Even though by suitable choices of com-
position operators д a wide variety of transitions can be obtained,
many desired behaviors cannot be captured by any choice of the
operator [Gourmel et al. 2013]. For example, an operator that pro-
duces a smooth blend at a transition will also cause a potentially
undesired bulging deformation where two objects overlap, as well
as premature bulging before the objects make contact; see Figure 3.

The gradient-blend operator. Stemming from these considerations,
a richer class of operators has recently been introduced by Gourmel
et al. [2013]. The key idea is to select the operator at each point
depending on the value of the angle θ between the local gradient
directions of the two scalar functions. More formally, a gradient-
based operator д (from now on, simply an operator) is a function
(D ⊂ R3 → R) that combines two primitives a and b into a new

θ

fa

fb

θ = 0 θ = π /2

θ = π

input operator output
Fig. 4. Through inclusion of the gradients angle θ , an operator that is
capable of resolving the shortcomings of implicit blending can be designed.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 181. Publication date: November 2017.

Sketch-Based Implicit Blending • 181:3

input user sketch operator optimization output

D D D

s̄ P

Fig. 5. Given a pair of input primitives (two overlapping circles), the user sketches the desired resulting shape (a contact surface and a bulging effect). (a) The
system generates a set of samples in the operator space D. (b) An operator template is fitted to the samples. (c) A dense regular sampling of the operator д is
generated. The resulting operator, if applied to the initial pair of primitives, produces the desired behavior and can be applied wherever this effect is desired.

shape c defined as

fc (p) = д(fa (p), fb (p), θ) (1)
where θ = ∠(∇fa (p), ∇fb (p)) (2)

∠(v,w) being the angle between vectors v and w . In the rare de-
generate cases where this angle is undefined, because the gradient
vanishes, θ is 0. The domain of the operator д, i.e. the operator-space,
is D = [0, 1] × [0, 1] × [0,π]

This can be understood as using different composition operators
for different values of θ . That is, according to whether the two gra-
dients are in opposite, orthogonal, matching directions, or anything
in between. Undesired bulging can be resolved, and pre-contact
deformations can be disabled, while in the other cases (intermediate
angles) the transition can be kept smooth. Four specific problems
of implicit modelling (bulging, locality, absorption, topology) were
addressed by defining appropriate instances of д [Gourmel et al.
2013]. The main challenges with gradient-based operators is that
designing and fine tuning an operator to obtain some desired effect
is a highly technical task, and not possible for non-expert end-users
such as 3D artists and modelers. Thus, only predefined and fully
parametrized operators can be provided to users and they have to
be set in the system by experts.

Contributions. In this research, we address this usability-gap in
composition modeling. We propose a novel, interactive editing
pipeline where the user sketches the desired behavior directly in
2D over one example, and an automatic optimization produces the
corresponding operator, transparently to the user. Importantly, the
design of an operator and its usage are kept orthogonal: an operator
can be applied in any context (2D or 3D) where the same shape
or behavior is desired, irrespective of the example where it was
designed. Our method can be applied to any shape for which we
can compute a signed distance function. The following contribu-
tions were necessary to achieve this result: (1) we introduce a new
template to represent operators, which avoids the use of transfer
functions such as those proposed in [Gourmel et al. 2013], and is
suitable both in the design and in the application phases; (2) we
present a way to map user-sketches into samples of operator-space
D; (3) we observe that the problem of fitting this template to the
samples can be cast as a deformable surface registration problem,
and we identify suitable regularizers; (4) we introduce the concept

of non-commutative operators, which we show to be useful in cer-
tain scenarios, and finally (5) we introduce some novel interesting
applications for these operators.

2 RELATED WORK
Because of the ease of representing arbitrary and changing topolo-
gies, CSG, blended and contact surfaces, implicit modeling has some
advantages over traditional surface models [Marschner and Shirley
2015]. After presenting the previous works on controllable compo-
sition operators and an overview of sketch-based implicit modeling,
we review some potential applications of our operators.

On freeform operators. Over the years, several operators have
been designed to try to fill the gap between their mathematical for-
mulation and their manipulation by end-users. In aesthetic blends,
Pasko and Savchenko [1994] optimize the three parameters of an
algebraic blending operator to approximate a user’s sketch. More
complex free-form 2D operators have been defined by blending
implicit lines [Barthe et al. 2003] or by deforming a blending opera-
tor [Barthe et al. 2004]. These operators are subject to all the limi-
tations solved by gradient-based operators and are not compatible
with this operator formulation. Rather than focusing on the operator
shape, Pasko et al. [2005] and Bernhardt et al. [2010] propose to
localize the influence of blending operators on the combined objects
by adding an additional 3D scalar function, placed automatically
or user-defined. These approaches focus on the definition of where
the blending should occur, and no explicit control is performed on
the shape of the operator itself. As introduced by Gourmel et al.
[2013], the shape of the gradient-based operators are defined by a
set of 2D profile curves in cylindrical coordinates. This definition
is unintuitive to manipulate and restricted in the variety of shapes
it can produce. To achieve better skinning with accurate contact
deformations, Vaillant et al. [2014] introduced gradient-based op-
erators discretely computed in a 3D grid, 2D slice by 2D slice, by
bi-harmonic interpolation of Dirichlet constraints at boundaries and
additional constraints on the iso-value. Their specification relies on
a lengthy trial and error process, consisting of editing a set of spline
curves for a given θ , as well as a trigonometric transfer function to
non-linearly interpolate these curves along the θ axis. Furthermore,
an interactive exploration is not feasible, as a re-computation of the
computationally intensive fairing optimization is necessary on each
update. Finally, their operator construction is tailored to a small set

ACM Transactions on Graphics, Vol. 36, No. 6, Article 181. Publication date: November 2017.

181:4 • B. Angles et al.

of effects useful in the targeted context (symmetric contacts and
bulges), whereas our operators are generic. In our work, we enable
the specification of freeform gradient-based operators at interactive
rates through the use of 2D annotations, which directly describe
the intended user-defined behavior.

Sketch based implicit systems. Sketches have long been recognized
as a powerful tool for modeling [Igarashi et al. 1999]. Sketch-based
implicit systems added the ability to do blending and CSG with
volume models in work such as [Alexe et al. 2005; de Araújo and
Jorge 2003; Singh and Fiume 1998; Tai et al. 2004], and there have
been several examples, including the popular ShapeShop by Schmidt
et al. [2005]. [Singh and Fiume 1998] shares with us the idea that
the final surface shape is modelled by a 3D curve. Closer to our
proposal, Karpenko et al. [2002] built models using an implicit rep-
resentation based on Radial Basis Functions. Their system used
the input stroke to edit a mesh, which would in turn change the
implicit representation. This implicitization approach changes the
field locally according to the user’s edit. In the above approaches,
sketches define the shape in one particular modeling instance. The
input sketch in our system defines an operator, which is not tied
to the context where it is defined, but can be applied wherever the
user desires.

2.1 Applications
This work impacts several application domains, offering interesting
contributions in each of them.

Character skinning. In the context of character skeleton-driven
animations, composition operators have been used to achieve more
realistic procedural skin distortions [Vaillant et al. 2013, 2014]. This
is also a motivation for our work. With respect to these applications,
our approach offers the ability for the designer to intuitively sketch
the exact intended deformation (e.g. skin bulging) in one instance,
and produce an operator which will reproduce that deformation in
real time. This approach is analogous to example-based deformation
schemes (see [Jacobson et al. 2014, Part 3] or [Shi et al. 2008]), but in
our case, the exemplar sketch can be drawn in 2D, and the extracted
operator can be directly applied to any other joint.

Font design. One potential application of our method is to assist
font-design, where glyphs for each letter are the result of compo-
sition operators in 2D from a pre-defined skeleton; similarly to
[Suveeranont and Igarashi 2010]. The literature on font design is
large, and covers many problems which are not addressed here,
including automatic construction of the skeletons, or a consistent
cross-parameterization for all glyphs, or even a generative manifold
of all possible fonts; see [Campbell and Kautz 2014]. In pipelines
where the skeletons of each glyph becomes available, our method
offers the ability to control the shape of one glyph (e.g. serifs and
joints), and apply it consistently to the entire type-face.

Botanical modeling. In the context of procedural synthesis of
botanical models (both realistic and stylized), implicit models have
been recognized early as suitable solution, due to their natural ability
to recreate smoothly blending branching structures [Bloomenthal
1995; Galbraith et al. 2004; Hart and Baker 1996]. Using our tool, a

input+sketches kernel+samples feedback

final operator

Fig. 6. Operator design feedback loop: because our pipeline (Fig. 5) has
interactive response times, our system allows progressive refinement of the
operator though successive strokes. Undesired blending artifacts (right) are
corrected until a final operator is constructed which is capable of reproduc-
ing the desired behavior.

user can simply trace the required shape to mimic the geometry of
these features, and incorporate this effect into the operator.

3 METHOD OVERVIEW
A visual outline of our framework is illustrated in Figure 5. Our
design process begins with the user placing two exemplar implicit
primitives in a 2D sketch. The user then annotates the desired blend-
ing behavior by sketching a curve. Given this input, an automatic
system derives an operator д by solving an inverse optimization
problem; see Section 6. The resulting operator can then be used both
to combine implicit curves in 2D and to combine surfaces in 3D. This
observation is crucial, as it allows the user to simply work in 2D to
produce operators for 3D modelling. This is even more relevant for
the design of contact surfaces, which would otherwise be difficult
to edit (or even just to visualize) in 3D, due to self-occlusions.

Feedback loop. In many cases, a single set of user sketches are
sufficient to fully determine the operator д that produces the desired
result; see Figure 5. For more complex cases, an iterative feedback
loop can be used to refine the operator and at the same time observe

ACM Transactions on Graphics, Vol. 36, No. 6, Article 181. Publication date: November 2017.

Sketch-Based Implicit Blending • 181:5

its effect; see Figure 6. First, an operator д0 is constructed from an
initial sketch and automatically applied to the exemplar primitives.
The resulting 2D drawing provides feedback to the user. The user
can then add new sketches, and a new operator is produced from
the union of all sketches. This is repeated until a satisfactory shape
is returned to the user, limited only by the expressiveness of the
gradient-based approach; see Section 7. In practice, we found we
needed no more than three iterations. For the feedback loop to be
interactive, we need to ensure that our algorithms are computa-
tionally efficient for the optimization of the operator and for its
application.

4 BACKGROUND AND PRELIMINARIES
An implicit model (surface in 3D, or contour, in 2D) is defined by a
scalar field-function f , as the set of the points where f assumes a
given iso-value. Following the convention from Bloomenthal and
Wyvill [1997], we define the surface as S = {x ∈ Rn | f (x) = 0.5}
which bounds an interior where f (x) > 0.5. The field-functions of
the primitives are, in turn, defined by their skeleton. For example, a
sphere is generated by a point skeleton, and a capsule (a cylinder
with hemispherical caps) by a line-segment skeleton. Any other
shape can be used; see Figure 13,18 for some examples.

Support and continuity. The field has a value which decreases
with the distance from the skeleton, according to a given falloff
function; see [Marschner and Shirley 2015, Ch. 22]. The area where
the field function has values f (x) > 0 is denoted the support of the
implicit object. Outside its support, the field function equals zero
and the primitive has no influence on the composition operations.
The support is compact, i.e. bounded; see Figure 7.

A central concern in implicit operator design is to ensure smooth
blends and avoid normal discontinuities at the boundaries of the
support. To this end, where functions such as min or max are used
for д [Barthe et al. 2003], filter fall-off functions are required to be
at leastC1. In our approach, where we fully control the composition
function д, this requirement can be completely dropped. Instead, we
rely on functions д with built-in smoothness, by defining appropriate
value and derivative constraints at the boundaries of its domain D;
see Section 6.3. This observation allows us to use any monotonic
C0 fall-off function for our primitives. In our examples we opt for a
simple linear function controlled by two intuitive parameters: R1,
the iso-value of the implicit model, and R2, the thickness of the
support; R1 is mapped to 1/2 and R1 + R2 to 0 (see Figure 7, top).
In the example of Figure 13, the curly branches are obtained by
linearly interpolating two values of R1 along the skeletal curve of
the branch.

Intersection and difference. In this research, we concentrate on
union composition operators д, which fuse two primitives into one
in some prescribed manner, i.e. д always returns 1 when either of
the first two parameters is 1, and 0 when both are 0. Generalization
to intersections and differences is straightforward using the same д:

дintersection(a,b,θ) = 1 − д(1 − a, 1 − b,θ) (3)
дdifference(a,b,θ) = 1 − д(1 − a,b,θ) (4)

s
fa = 0.0
fa = 0.5
fa = 1.0

fb = 0.0
fb = 0.5
fb = 1.0

R1

R2

∇fa∇fb

fb
fa

θab

D
θ

a

b
fa

θab

s̄

Fig. 7. Top: a sample s is drawn in the intersection of the supports of the
two primitives (bold colored lines) generated by the skeletons (black dots).
Lower-left: a zoom-in around s: the gradients of the two field functions fa
and fb form an angle θ . Lower-right, the corresponding sample s̄ in the
operator’s domain D (see Eq. 5).

Implicit composition. The creation of complex geometry requires
the composition of more than just two input functions. Following
the ideas introduced by Wyvill et al. [1999], we employ different
binary operators at each node of a tree, with primitive shapes at its
leaves. For example, see Figure 1 where different operators are used
in cascade.

5 CAPTURING USER INPUTS
In our system, a pair of 2D primitives are arranged freely by the user;
see Figure 6 for an example. The linear field functions fa and fb
of the two primitives are expressed in closed form, and to the user,
the two primitives are visualized as closed poly-lines. In Figure 7,
we also visualize the supports Sa and Sb of the two shapes. By
construction, the target operator can only determine the resulting
shape in the area Sa ∩ Sb , therefore user input strokes are restricted
to be inside this area with a stencil mask. The user draws the desired
shape of the resulting surface over the input primitives, with one
or multiple sketches. For most experiments we employ parametric
curves, but any drawing method such as the strokes in Figure 20c,
can be used. As described below, this is possible as only a sampling
of the sketches is required to derive an operator.

Sampling user input. From the user’s sketch, we extract a set of n
samples {s1, . . . sN }. Each sample sn ∈ R2 represents a position that
the user expects the result/output surface to cross. As illustrated in
Figure 7, for each sample sn we define a corresponding sample s̄n
in the operator domain D:

s̄n =
©«
an
bn
θn

ª®¬ = ©«
fa (sn)
fb (sn)

∠(∇fa (sn) , ∇fb (sn))

ª®¬ (5)

ACM Transactions on Graphics, Vol. 36, No. 6, Article 181. Publication date: November 2017.

181:6 • B. Angles et al.

pa1,4

pb5,4

Fig. 8. Our template is a surface P is made of two bi-quadratic patches, depicted with orange and violet control points – red ones are shared, creating a seam
at the junction. This template is able to represent a variety of useful composition operators; see Section 6.2.

Computations of s̄n from sn are conveniently fast because functions
fa and fb are available in closed form. Their gradient is either
available in closed form or approximated by finite differences. The
regressed operator д evaluated at s̄n should return the value (0.5), or
in other words д(s̄n) = 0.5. Hence, after optimization, the designed
blending operator kernel д should interpolate each sample s̄n .

Sketches over 3D rendering. As a variation, sketches can be drawn
over a 3D rendering of the implicit surfaces, seen from arbitrary
viewing angle; e.g. see Fig. 17. In our prototype, the sketch is in this
case assumed to lie on an plane parallel to the image at a predefined
depth. Our framework requires no further adaptation to deal with
this case. A more advanced interface could identify depth automati-
cally, for instance by projecting the first point of the sketch on the
shape, similarly to the sketch-based modeling interface proposed
by Bernhardt et al. [2008].

6 FITTING THE COMPOSITION OPERATOR
The blending operator requires a 3D function д to be defined over its
entire space D, however samples collected from user’s strokes only
define the behavior of д in a small subset of D. On the other hand,
many characteristics of the function д are known a-priori, such as
its general shape (Sec. 6.1), its continuity requirements (Sec. 6.2)
and the values on the boundaries of D (Sec. 6.3). We approach this
reconstruction problem in two steps: first, we identify the set of 0.5
values of д, as a parametric surface P embedded in D, which is fitted
to the samples (Sec. 6.4); we then compute a 3D lattice covering the
domain of д by propagating the iso-values in P (Sec. 6.5). The final
operator is then evaluated by tri-linear interpolation of the lattice
values.

6.1 The operator template
In previous work [Gourmel et al. 2013; Vaillant et al. 2013, 2014],
д(a,b,θ) is formulated as a collection of two dimensional functions
for a few particular values of θ , each independently defined as a
curve defining the portions of the domain where д evaluates to (0.5).
These cases can be interpreted as axis aligned slices of the domainD.
In our work, we conveniently represent the operatorд as one surface
P embedded in D representing its (0.5) iso-value; see Figure 5b. This
approach allows us to define a template for the surface P , designed
to represent a wide class of useful operators: sharp unions (see
Figure 8a), smooth blends (see Figure 8b), stretch (see Figure 8c),
articulated contact (see Figure 8d) and asymmetric contact (see
Figure 8e) amongst many others; see Figure 21.

Parametric representation. Our template for P is a surface made
by a pair of third-order B-Spline patches, each with I × J control
points, joined at their boundary and arranged as in Figure 8a. The
surface P is fully determined by the positions of the control points
pai, j and pbi, j in D. We found I=J=5, for a total 45 distinct control
points, to provide the necessary expressiveness while avoiding ex-
cessive redundancy. The continuity of P at the junction is enforced
by imposing ∀i ∈ [1..I] : pai, J = pbi, J , while other boundary and
regularization constraints will be discussed later.

6.2 Template expressiveness
A fundamental characteristic of our operator template lies in its ex-
pressiveness. In particular, in Figure 21 we illustrate how, to the best
of our knowledge, all results obtained by any composition operators
which have been proposed in the literature can be expressed by our
template. We now detail how several operators can be realized by
properly deforming our template.

Sharp creases: if a sharp crease is desired in the transition between
the two operand surfaces (e.g. with union) then д needs to
break C1continuity, and consequently P must have a normal
discontinuity. In our template, this discontinuity is easily
accommodated by construction at the junctions between the
two splines.

Smooth blends: if д is required to generate surfaces without any
sharp creases in the transition between the two operand sur-
faces, it needs to be C1continuous, and consequently, surface
P must be smooth, including at the junction between splines.
This can be easily obtained by aligning the points {pai, J−1,
pai, J = p

b
i, J , p

b
i, J−1 }.

Contact surfaces: another important feature of operators is the
ability to produce contact surfaces at the transitions between
the two primitives [Cani 1993; Vaillant et al. 2014]; see Fig-
ure 21efg. Our template can easily reproduce this situation
by making the two patches partially coincide, thus realizing
a non-manifold operator.

Symmetry: many existing composition operators д are commuta-
tive in their first two parameters, which in our setup makes
surfaces P symmetric with respect to the a = b plane in D.
Given ϕ : D → D is the planar mirroring transformation
ϕ(x ,y, z) = (y,x , z), this can be easily obtained by enforcing
pai, j = ϕ(pbi, j). Clearly, non-commutative operators, such as
those in Figure 8d can also be represented.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 181. Publication date: November 2017.

Sketch-Based Implicit Blending • 181:7

Fig. 9. We illustrate the sketches in operator space, and a few iterations of the operator registration optimization in Equation 10. The manifold surface folds
onto itself to be able to reproduce a non-manifold configuration. At the same time, the way we enforce the symmetry constraint helps the optimization to
avoid undesirable self-intersections. In this example, the optimization converged after 9 (two-steps) iterations; none of our experiemnts required more than 20.

In summary, our template can recreate each of the features above. If
required, our system allows users to explicitly enforce these condi-
tions; however, it is not strictly necessary to do so, as surface P will
naturally conform to these conditions whenever they are suggested
by the user data as a result of the fitting process. This observation
can aid the design of user interfaces based on our method.

6.3 Boundary conditions
When fa (p) = 0, the point p is outside the (compact) support of
fa , and hence beyond its range of influence, so fc should exactly
reproduce the values of fb (p) to ensure C0 continuity. Analogous
considerations apply to the fb (p) = 0, fa (p) = 1 and fb (p) = 1
boundary planes of D, leading to the constraints:

∀θ ,∀a : д(a, 0,θ) = a and д(a, 1,θ) = 1
∀θ ,∀b : д(0,b,θ) = b and д(1,b,θ) = 1

(6)

Further, to achieve (normal) shading smoothness at the boundaries
of the supports, we must enforceC1continuity of the blending oper-
ation by vanishing the derivatives:

∀θ ,∀a : ∂д
∂b (a, 0,θ) = 0, ∀θ ,∀b : ∂д

∂a (0,b,θ) = 0 (7)

As θ represents the unsigned angle between the two gradient
vectors, the function д is implicitly mirrored at both ends [0,π]
of its third parameter. Therefore, to achieve C1continuity we also
impose:

∀a,∀b : ∂д
∂a (a,b, 0) = 0 ∀a,∀b : ∂д

∂b (a,b,π) = 0 (8)

The constraints above translate into Dirichlet and Neumann bound-
ary conditions for surface P , which can be conveniently expressed
in terms of linear hard constraints on its control points. To enforce
Equation 6, the control points on opposite ends of P are constrained
to lie on the two line segments at the boundary of D: (0.5, 0,θ)
and (0, 0.5,θ). To enforce Equation 7 and Equation 8, the control
points neighboring the boundaries of P must be constrained to be
vertically/horizontally aligned to the boundary control points.

6.4 Surface registration
In this phase, we fit the template parametric surface P to the col-
lected samples s̄i . P maps each point uv = (u,v) of its 2D paramet-
ric space into a position P(uv) ∈ D, as determined by the control
points {pki, j }. We start with an initial guess, which corresponds to
a union operator: a surface P where the two B-spline patches are

simply planar and reciprocally orthogonal; see Figure 8a. We then
non-rigidly register the template onto the samples following the
approach in [Bouaziz et al. 2016]; see Figure 9. This optimization
consists of the alternation of two optimization steps:

local: arg min
(uvn)

∥P(uvn) − s̄n ∥2, ∀s̄n (9)

global: arg min
{pki, j }

Ematch({p
k
i, j }, {uvn }) + Epriors({p

k
i, j }) (10)

That is, our local-global ICP optimization first computes closest-
point projections, and then it globally modifies the surface control
points, resulting in a non-rigid deformation of our surface. To ef-
ficiently implement the local step, we first triangulate P (we em-
ploy a resolution of 40 × 40), and use a regular volumetric grid to
accelerate closest-point queries from s̄n to the triangles. We also
constrain each of the I rows of control points to lie at a constant
equally spaced θ values. The global step is implemented as one Least
Squares minimization, as both energy terms are quadratic in the
variables; Ematch represents the data-to-model error, while Eprior
accounts for shape-priors as well as optimization regularization. Fur-
ther implementation details are available in our publicly released
source code.

Matching term. The data-to-model error is computed as the aver-
aged squared distances of samples from the tangent planes of their
projections onto P :

Ematch =
1
N

∑
n

[nn · (s̄n − P(uvn))]
2 (11)

where nn is the normal at P(uvn). This point-to-plane metric leads
to better convergence compared to point-to-point errors. The term
is a quadratic function of the variables, because P(uvn) and nn are
both constants in the global step.

Priors. The prior energy includes several terms weighted by pa-
rameters. These terms enforce: operator fairness, potential contact
constraints, and regularization of the optimization:

Eprior = wfair Efair + wcontact Econtact + wtikh Etikh (12)

Fairness prior. We penalize oscillations in the surface with a bi-
harmonic energy defined on the control points pki, j :

Efair =
∑
i, j

∥∆uvp
k
i, j ∥

2 (13)

ACM Transactions on Graphics, Vol. 36, No. 6, Article 181. Publication date: November 2017.

181:8 • B. Angles et al.
(a
)s
ym

m
et
ric

(b
)a

sy
m
m
et
ric

(c
)a

sy
m
m
et
ric

Fig. 10. (a) Symmetric contact operators a-la [Cani 1993] can be constructed
through the enforcement of symmetry in D. We introduce asymmetric con-
tact operators which can model phenomena as: (b) a rubber ball hitting a
concrete wall, or (c) a steel ball hitting a sheet of softer metal.

where ∆uv represents the 2D Laplacian operator defined in the
uv domain, adapted to have control vertices stored in matrix form
pki, j . This regularizer has multiple advantages: (1) in under-sampled
areas it ensures a smooth interpolation, (2) it prevents over-fitting and,
(3) as the sketches only provide a sparse sampling inD, it regularizes
our optimization ensuring the problem remains well-conditioned.
Additionally, these fairness energies are known to penalize surface
fold-overs [Botsch and Kobbelt 2004]. Following [Li et al. 2008], we
start by a strong enforcement of fairness to avoid local minima, and
progressively relax this constraint to allow the surface to eventually
closely fit to the data. Specifically, we employ the weight scheduling
wf air = 103 · 2−t + 10−4, where t is the iteration number.

Full-contact prior. When we detect that the user sketch corre-
sponds to a full-contact (e.g. see Figure 21e, where two objects are
fully separated by a contact interface), we also enable a prior that
ensures the seam control points connecting the two patches of our
template project on the boundary of the domain D:

Econtact =
∑

(i, j)∈S

∏
{nm }

∥ni · (pi, j − [1, 1, 1])∥2

n1 = [1, 0, 0] n2 = [0, 1, 0]
(14)

Because of the multiplication
∏
, this energy is non-linear, hence

when computing its gradient we only enable the term that has the
smallest point-to-plane residual.

Fig. 11. Our sketched implicit operators are easily controllable by the artist.
In this figure, we demonstrate several variants of two types of operators:
(top) the smooth-union from [Gourmel et al. 2013], as well as the (bottom)
implicit-contact from [Vaillant et al. 2013].

Tikhonov regularization. As the fitting energy is linearized within
each local step, we avoid overshooting with a mild Tickhonov regu-
larizer, by settingwtikh = 10−3 which penalizes displacements from
the previous solution:

Etikh =
∑
i, j,k

∥pki, j (t) − pki, j (t − 1)∥2 (15)

6.5 3D-Lattice filling
Once the surface P describing the (0.5) iso-values of д is defined,
the next step is to regularly sample its domain D and assign scalar
values on each cell of the lattice. This is executed in three sub-steps:

Step 1 – Initialization: we assign the voxels immediately surround-
ing P with the signed distance from either of its two patches,
by rasterizing them over the 3D lattice. Grid receiving two
values are set to the greatest (i.e. most internal) one; this en-
sures robust evaluation when the two patches are coplanar,
as in the case of contact operators, as the contact surface is
in the interior of the object.

Step 2 – Boundary assignment: for each θ slice of D, we assign
the values the four sides {(0, ∗,θ), (1, ∗,θ), (∗, 0,θ), (∗, 1,θ)}
according to the boundary constraints in Equation 6.

Step 3 – Value propagation: the values assigned in the previous
two sub-steps are diffused over the remaining portions of
D by solving a bi-harmonic fairing optimization (where the
values set in previous steps act as hard constraints).

ACM Transactions on Graphics, Vol. 36, No. 6, Article 181. Publication date: November 2017.

Sketch-Based Implicit Blending • 181:9

k=0.2

k=1.2

k=0.4
k=0.6

k=0.8

k=1.4
k=1.6

k=1.8

k=0.0

k=1.0

дa

дb

Fig. 12. We define two symmetric contact operators through the sketches in the first column, generating дa and дb resulting in the composition visualized in
the second column. By leveraging the consistency in the operator’s parameterization, other operators can be generated as дk = (1 − k)дa + kдb ; for k ∈ (0, 1)
we obtain operators whose behavior is intuitively interpolated (top), while extrapolation can be obtained for values of k outside of this range (bottom).

Step 3* – Efficient value propagation: Step 3 is time-consuming,
as its complexity is cubic in the linear resolution of the lattice.
Fortunately, this is only necessary when the operator must
be used in successive compositions. When only two objects
need to be combined, as during the operator design process,
only the lattice values surrounding the (0.5) surface are rel-
evant, and the other ones can be safely disregarded. This
observation drastically reduces the latency of the feedback
loop, effectively enabling the interactive design discussed in
Section 3.

7 EVALUATION
We evaluate our work by verifying the expressiveness of our sketched
operators, the controllability of results, as well as the possibility of
interpolating between different operators.

Expressiveness. We empirically validate our approach by demon-
strating a variety of effects. We collect all the fundamental types of
implicit blending operator that have been proposed in the literature
(to the best of our knowledge), and verify that our template can be
optimized to express the same behavior. To this extent, Figure 21
reports a number of representative images from the literature, and
the 2D sketch necessary to generate the desired operator. We vi-
sualize the optimized (deformed template) operator, and the result
of its application on the 2D input geometry. We also show how all
our custom operators extend to 3D in a completely straightforward
fashion. Our sketches can be used to: (a) represent traditional CSG
operations [Sabin 1968]. (b) smoothly blend two primitives [Blinn
1982] and [Ricci 1973], (c) perform bulge-free blend [Gourmel et al.
2013]. (d) avoid premature-blending [Gourmel et al. 2013], (e) model
bulge-on-contact between two objects [Cani 1993], as well as (f,g)
represent the partial-contact from implicit-skinning [Vaillant et al.
2013]. In fact, the expressiveness of our operators go beyond the
capabilities of those proposed in the literature, and allows us to
extend the contact operators pioneered by [Cani 1993], towards the
representation of asymmetric-contact, without having to edit the
input scalar fields; see Figure 10.

Controllability and interpolation. As our algorithm receives user
sketches as input, the behavior of the operator is easily controllable.
In Figure 11, we demonstrate how several variants of blending and

contact operators can be faithfully reproduced by specifying the
desired behavior with a simple 2D sketch. Another form of compo-
sition control can be obtained by blending two distinct composition
operators. As illustrated in Figure 8, the topology of the template
is consistent across all of our examples. This allows us to blend
operators through simple linear interpolation/extrapolation of its
control points; see Figure 12.

8 APPLICATIONS
Wepresent several example applications that benefit from the sketch-
based generation of blending operators. The input sketches can
either be drawn freely, or rotoscoped over annotated images.

R(1)1

R(2)1

Fig. 13. Modeling quasi-biological structures such as a procedural curly-tree
(top) and an oak leaf (bottom). We show the input primitives and the artist
sketches (a), as well as the composition result (b). The leaf design starts with
the placement of a few skeletal branches, from which the leaf boundary (d)
or a single sketch (f) can be used to design a corresponding blending (e,g).

ACM Transactions on Graphics, Vol. 36, No. 6, Article 181. Publication date: November 2017.

181:10 • B. Angles et al.

Fig. 14. A rubber ball that elongates according to its velocity, and squishes
when it comes into contact with the floor in an artist-defined fashion.

Botanical modeling. Our curly tree shown in Figure 13-top is in-
spired by the images returned by the search query “curly tree”. The
placement and shape of primitives can be produced by any proce-
dural grammar-based algorithm [Lienhard et al. 2017]. Our tech-
nique allows for the automatic generation of controllable smooth-
blends connecting branches to each other. Two user strokes are
sufficient to define the desired operator behavior, and the result is
applied to a large quantity of compositions. In this case a single
operator was used, but variability can be easily achieved by inter-
polating multiple variants (see Figure 12) with random weights; a
3D example of this process is visualized in Figure 17. In Figure 13-
bottom, we apply our sketch-driven operators to the procedural
generation of botanical leaves. The skeletal structure of the leaf is
generated via an appropriate grammar, as in the tree example. In
this setup we experiment with two different sketches. In Figure 13d,
the sketch is the entire boundary of the leaf from Figure 13c, while
in Figure 13f the user has sketched the operator himself. The opti-
mized operators result in blended geometry closely mimicking the
geometry of natural leaves (we superimpose the original texture to
make this more apparent).

Approximating contact behavior. In Figure 14, we approximate
the behavior of a rubber ball in motion through the design of two
operators. The first distorts the shape of the ball, modeled via a
“ghost” primitive whose position is determined according to the
velocity vector. The second operator captures the contact behavior
between the projectile and the deformable wall. In our stop-motion

no effect mercury water cross-section

Fig. 15. Applying implicit contact operators to the output of a fluid simu-
lation produces a noticeable improvement in visual quality. This effect is
efficient to apply, as many fluid solvers represent liquids with implicit func-
tions. While our operator can apply to any geometry, we choose a simple
and familiar scene that can be more easily appreciated.

simple union hydrophobic operator hydrophilic operator
Fig. 16. The same sphere lying in proximity of a plane can produce contact
deformations simulating both hydrophobic and hydrophilic deformations
according to the type of asymmetric blending designed by the artist.

illustration the distortion was interpolated, while the contact be-
havior was extrapolated. Asymmetric contact operators can also be
used to approximate the fine-scale behavior of liquids when they
come in contact with surfaces coated with different materials; see
Figure 16. Obtaining such effects through fluid dynamic simulation
is difficult as it requires a volume-preserving solver and careful
implementation of boundary conditions; [Wang et al. 2005]. Such
effects, due primarily to surface tension, can also be approximated
by evaluating a curvature flow on surfaces [Thürey et al. 2010]. Our
approach approximates these effects without the need for complex
physical simulation, and allows their application in a lightweight
fashion as a post-processing step; see Figure 15.

Implicit vector font design. Another application is the creation of
font libraries, in particular as our method allows a user to explore
the design space interactively; see Figure 18. In this example, we use
multiple sketches on the letter T and A to derive one operator, re-
producing the desired behavior for orthogonal and non-orthogonal
configurations. Again, the composition operators is derived from
a few exemplars and then applied to all other cases. The user can
explore different variants for a character, and export the blend-
ing operator to create a self-consistent font library. An example
showcasing the extensibility of font design to three dimensions
is illustrated in Figure 1. In typography, another common task is
the application of serifs to characters. In this example, we apply
our composition operators to this task. To achieve this, the yellow
primitive removes ink from the pink primitive, with a difference
operation (see Equation 4). This setup provides the user with a fast
and easy method to prototype different serif styles, as illustrated.
Because our operator kernel P is an algebraic surface, the operator д
can be generated at any scale; hence, as long as the input primitives
can also be expressed in algebraic form (as in the examples shown),
our fonts can be synthesized at any desired resolution.

9 CONCLUSIONS
Implicit models have recently re-emerged as a powerful model-
ing technique with the introduction of gradient-based operators
[Gourmel et al. 2013], solving several problems that were often re-
garded as intrinsic to implicit modelling. While more expressive
the new operators are difficult to control. In this work we have
introduced a solution based on an inverse approach which allows
sketch-based design of new operators. The designer directly de-
scribes the desired effect of the operator on the resulting surface,
without having to understand the mathematics of the operator space.
We have shown a number of practical applications demonstrating
that our approach enables a designer to quickly take advantage of
the powerful nature of implicit modelling. In addition, our approach

ACM Transactions on Graphics, Vol. 36, No. 6, Article 181. Publication date: November 2017.

Sketch-Based Implicit Blending • 181:11

blending with simple union blending a-la metaball sketched blend
(a) (b) (c) (sketch) (c-zoom)

(a-zoom) (b-zoom)

Fig. 17. (a) A procedural tree generated by [Lienhard et al. 2017] as a collection of sphere-meshes [Tkach et al. 2016]. (b) a traditional blending operator results
in unwanted bulges (e.g. Blender’s metaballs), (c) our blending operator designed via a simple 2D sketch is propagated to all branches in the hierarchy.

also serves as a conceptual tool to investigate the space of possible
gradient-based operators. Using it, we were able to create a new
class of non-commutative operators; see Figure 10.

Limitations and future work. The expressiveness of the gradient-
based implicit operators, defined as in Equation 1, while being supe-
rior to the traditional 2D operators, is still insufficient for some cases.
For example, regardless of how it is designed, no such operator can
reproduce the shape sketched in Figure 20a. This situation arises
when different sketches define constraints that are conflicting in the
operator domain. For instance, in Figure 20a, the top left and top
right fields are mirrored by vertical symmetry. In that case, pairs of
symmetric points in the Euclidean space define the same point in
the operator space. If two different sketches are defined in each side,
as the sharp angle in the top left and the blend in the top right, the
result of our fitting process provides an “average” shape that can

Fig. 18. (top)Multiple sketches on different primitives are used to synthesize
a blending operator that can be used to produce font variations as well as an
entire “infinite resolution” font family. (bottom) Sketching negative blends
to apply a “serification” effect.

be unsatisfactory when the input sketches are too different. In the
future we intend to further generalize blending operators, to aug-
ment the range of achievable effects; e.g. anisotropic operators. We
have shown that operators based on a 3D domain can be designed
with 2D sketches; the same approach could be applied to higher
dimensional operators, which have additional parameters.
The applicability of our custom operators is not limitless either.

While they can be applied to any implicit model, the fall-off functions
are assumed to be roughly similar, otherwise the shape produced
by the operator can diverge arbitrarily from the user’s sketch; e.g. if
one of the two support radii R2 is vastly different.
Another inherited limitation of gradient-based operators is that

they can generate artifacts where scalar fields exhibit gradient dis-
continuities. This rarely occurs in practice.

A different issue is that our operators, in general, lack associativity.
Associative binary operators are desirable because they constitute a
natural definition of operators working on any number of operands.
An interesting open question is whether the input primitives could
be inferred along with the operators. Finally, it would be interesting
to handle a sketch on more than two overlapping primitives.

Fig. 19. The leaf geometry from Figure 13e is lifted to 3D, and combined
with a set of randomly placed spheres through the hydrophobic contact
operator from Figure 16.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 181. Publication date: November 2017.

181:12 • B. Angles et al.

C1

C0

(a) (b) (c)

Fig. 20. (a) The sketches result in conflicting samples in the operator domain
D, revealing a limitation in expressiveness of gradient-based operators;
the user can nonetheless opt for an operator exhibiting either C0 or C1

continuity to approximate its input. (b) The smooth nature of the operators
is unsuitable to capture dense high-frequency information, which is simply
ignored as noise by the optimization. (c) On the other hand, this could be
thought of as an advantage, as an artist can draw multiple noisy strokes,
and obtain an operator fitting them well.

ACKNOWLEDGMENTS
We would like to thank the inspiration provided by the McGill
University Bellairs Institute, Chris Wojtan and Alyn Rockwood
for their insightful feedback, Stefan Lienhard for the procedural
models, François-Xavier Nhieu for his work on the teaser image,
Daniel Rebain and Nicolas Guillemot for proofreading the paper,
and Angela di Sante for her help with video compositing.

REFERENCES
A. Alexe, L. Barthe, M.P. Cani, and V. Gaildrat. 2005. Shape modelling by sketching

using convolution surfaces. In Pacific Graphics (Short Papers).
L. Barthe, N. A. Dodgson, M. A. Sabin, B. Wyvill, and V. Gaildrat. 2003. Two-dimensional

Potential Fields for Advanced Implicit Modeling Operators. Computer Graphics
Forum 22, 1 (2003), 23–33. https://doi.org/10.1111/1467-8659.t01-1-00643

Loïc Barthe, Brian Wyvill, and Erwin De Groot. 2004. Controllable binary csg operators
for soft objects. International Journal of Shape Modeling (2004).

Adrien Bernhardt, Loic Barthe, Marie-Paule Cani, and Brian Wyvill. 2010. Implicit
blending revisited. Proc. of Eurographics, Computer Graphics Forum 29, 2, 367–376.

A. Bernhardt, A. Pihuit, M. P. Cani, and L. Barthe. 2008. Matisse: Painting 2D Regions
for Modeling Free-form Shapes. In Proc. of the Fifth Eurographics Conference on
Sketch-Based Interfaces and Modeling (SBM’08). Eurographics Association, 57–64.

James F Blinn. 1982. A generalization of algebraic surface drawing. ACM transactions
on graphics (TOG) 1, 3 (1982), 235–256.

Jules Bloomenthal. 1995. Skeletal Design of Natural Forms. Ph.D. Dissertation. University
of Calgary.

Jules Bloomenthal and Brian Wyvill (Eds.). 1997. Introduction to Implicit Surfaces.
Morgan Kaufmann Publishers Inc.

Mario Botsch and Leif Kobbelt. 2004. A remeshing approach tomultiresolutionmodeling.
In Proc. of the Eurographics/ACM SIGGRAPH symposium on Geometry processing.

Sofien Bouaziz, Andrea Tagliasacchi, Hao Li, and Mark Pauly. 2016. Modern Tech-
niques and Applications for Real-Time Non-rigid Registration. Proc. SIGGRAPH
Asia (Technical Course Notes) (2016).

Neill D. F. Campbell and Jan Kautz. 2014. Learning a Manifold of Fonts. ACM Trans. on
Graphics (TOG) (2014).

Marie-Paule Cani. 1993. An Implicit Formulation for Precise Contact Modeling Between
Flexible Solids. In ACM Trans. on Graphics (Proc. of SIGGRAPH).

Bruno de Araújo and Joaquim Jorge. 2003. BlobMaker: Free-Form Modelling with
Variational Implicit Surfaces. In 12th Encontro Português de Computação Gráfica.

Callum Galbraith, Lars Muendermann, and Brian Wyvill. 2004. Implicit Visualization
and Inverse Modeling of Growing Trees. (2004).

Olivier Gourmel, Loic Barthe, Marie-Paule Cani, Brian Wyvill, Adrien Bernhardt, Math-
ias Paulin, and Herbert Grasberger. 2013. A Gradient-based Implicit Blend. ACM
Trans. on Graphics (TOG) (2013).

John C Hart and Brent Baker. 1996. Implicit modeling of tree surfaces. In Proc. EG
workshop on implicit surfaces.

Christoph Hoffmann and John Hopcroft. 1985. Automatic surface generation in com-
puter aided design. The Visual Computer 1, 2 (1985), 92–100.

P. C. Hsu and C. Lee. 2003. Field Functions for Blending Range Controls on Soft Objects.
Proc. of Eurographics, Computer Graphics Forum 22, 3 (2003), 233–242.

Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. 1999. Teddy: A Sketching
Interface for 3D Freeform Design. In Proc. of the 26th Annual Conference on Computer
Graphics and Interactive Techniques.

Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias
Teschner. 2014. SPH Fluids in Computer Graphics. In Eurographics 2014 - State of
the Art Reports.

Alec Jacobson, Zhigang Deng, Ladislav Kavan, and JP Lewis. 2014. Skinning: Real-time
Shape Deformation. In ACM SIGGRAPH 2014 Courses.

Olga Karpenko, John F Hughes, and Ramesh Raskar. 2002. Free-form sketching with
variational implicit surfaces. In Computer Graphics Forum.

Hao Li, Robert W Sumner, and Mark Pauly. 2008. Global Correspondence Optimization
for Non-Rigid Registration of Depth Scans. In Computer graphics forum, Vol. 27.
Wiley Online Library, 1421–1430.

S. Lienhard, C. Lau, P. Müller, P. Wonka, and M. Pauly. 2017. In Design Transfor-
mations for Rule-based Procedural Modeling. Computer Graphics Forum (Proc. of
Eurographics).

Ives Macedo, Joao Paulo Gois, and Luiz Velho. 2011. Hermite radial basis functions
implicits. In Computer Graphics Forum, Vol. 30. Wiley Online Library, 27–42.

Steve Marschner and Peter Shirley. 2015. Fundamentals of computer graphics (4th ed.)
Chapter 22 Implicit Modeling. A. K. Peters/CRC Press, Ltd.

Alexander Pasko and Valery Adzhiev. 2004. Function-based shape modeling: mathe-
matical framework and specialized language. In Automated Deduction in Geometry,
Lecture Notes in Artificial Intelligence 2930.

Alexander Pasko, Valery Adzhiev, Alexei Sourin, and Vladimir Savchenko. 1995. Func-
tion representation in geometric modeling: concepts, implementation and applica-
tions. The Visual Computer (1995).

Alexander A Pasko and Vladimir V Savchenko. 1994. Blending Operations for the Func-
tionally Based Constructive Geometry, In Set-theoretic Solid Modeling: Techniques
and Applications. CSG 94 Conference Proc..

Galina I. Pasko, Alexander A. Pasko, and Tosiyasu L. Kunii. 2005. Bounded Blending
for Function-Based Shape Modeling. IEEE Comput. Graph. Appl. 25, 2 (2005), 36–45.

A.A.G. Requicha and H.B. Voelcker. 1977. Constructive Solid Geometry. Production
Automation Project, University of Rochester.

A Ricci. 1973. A constructive geometry for computer graphics. Comput. J. 16, 2 (1973),
157–160.

A. P. Rockwood. 1989. The Displacement Method for Implicit Blending Surfaces in
Solid Models. ACM Trans. on Graphics (TOG) (1989).

M.-A. Sabin. 1968. The use of potential surfaces for numerical geometry. British Aircraft
Corporation, Weybridge, UK, Technical Report No. VTO/MS/153 (1968).

Ryan Schmidt, BrianWyvill, Mario Costa-Sousa, and JoaquimA. Jorge. 2005. ShapeShop:
Sketch-Based Solid Modeling with the BlobTree. In Proc. 2nd Eurographics Workshop
on Sketch-based Interfaces and Modeling. Eurographics.

Xiaohan Shi, Kun Zhou, Yiying Tong, Mathieu Desbrun, Hujun Bao, and Baining Guo.
2008. Example-based dynamic skinning in real time. In ACM Trans. on Graph-
ics (TOG).

Karan Singh and Eugene Fiume. 1998. Wires: A Geometric Deformation Technique. In
Proc. of SIGGRAPH’98. ACM, New York, NY, USA, 405–414.

Rapee Suveeranont and Takeo Igarashi. 2010. Example-based Automatic Font Genera-
tion. In Proceedings of the 10th International Conference on Smart Graphics (SG’10).
Springer-Verlag, Berlin, Heidelberg, 127–138. http://dl.acm.org/citation.cfm?id=
1894345.1894361

C. Tai, H. Zhang, and J. Fong. 2004. Prototype modeling from sketched silhouettes
based on convolution surfaces. In Computer Graphics Forum, Vol. 23. 71–83.

Nils Thürey, ChrisWojtan, Markus Gross, and Greg Turk. 2010. Amultiscale approach to
mesh-based surface tension flows. In ACM Trans. on Graphics (Proc. of SIGGRAPH).

Anastasia Tkach, Mark Pauly, and Andrea Tagliasacchi. 2016. Sphere-meshes for real-
time hand modeling and tracking. ACM Trans. on Graphics (Proc. of SIGGRAPH Asia)
(2016).

Rodolphe Vaillant, Loïc Barthe, Gaël Guennebaud, Marie-Paule Cani, Damien Rohmer,
Brian Wyvill, Olivier Gourmel, and Mathias Paulin. 2013. Implicit Skinning: Real-
time Skin Deformation with Contact Modeling. ACM Trans. on Graphics (Proc. of
SIGGRAPH) (2013).

Rodolphe Vaillant, Gäel Guennebaud, Loïc Barthe, Brian Wyvill, and Marie-Paule Cani.
2014. Robust Iso-surface Tracking for Interactive Character Skinning. ACM Trans.
on Graphics (Proc. of SIGGRAPH Asia) (2014).

Huamin Wang, Peter J Mucha, and Greg Turk. 2005. Water drops on surfaces. In ACM
Transactions on Graphics (TOG), Vol. 24. ACM, 921–929.

Brian Wyvill, Andrew Guy, and Eric Galin. 1999. Extending the csg tree. warping,
blending and boolean operations in an implicit surfacemodeling system. InComputer
Graphics Forum, Vol. 18. Wiley Online Library, 149–158.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 181. Publication date: November 2017.

https://doi.org/10.1111/1467-8659.t01-1-00643
http://dl.acm.org/citation.cfm?id=1894345.1894361
http://dl.acm.org/citation.cfm?id=1894345.1894361

Sketch-Based Implicit Blending • 181:13
(a
)u

ni
on

[S
ab
in

19
68
]

(b
)s
m
oo

th
bl
en
d

[B
lin

n
19
82
]

(c
)b

ul
ge
-fr

ee
bl
en
d

[G
ou

rm
el
et

al
.2
01
3]

(d
)b

le
nd

+u
ni
on

[G
ou

rm
el
et

al
.2
01
3]

(e
)c
on

ta
ct
+b

ul
ge

[C
an
i1
99
3]

(f
)s
ki
nn

in
g

[V
ai
lla
nt

et
al
.2
01
4]

(g
)s
ki
nn

in
g+

bu
lg
e

[V
ai
lla
nt

et
al
.2
01
4]

target image primitives+sketches optimized operator applied in 2D applied in 3D

Fig. 21. Our sketch-based construction method can be used to effortlessly produce every gradient blend operator proposed in past literature (pioneering
citation is indicated). Starting from images depicting the final results of each operator (leftmost column), we simply sketched over 2D contour (second column).
From these sketches, our system reverse-engineers the operator (central column). This can be applied (in 2D or 3D alike, rightmost columns) to reproduce the
same results. Our target images are courtesy of [Gourmel et al. 2013] and [Vaillant et al. 2014].

ACM Transactions on Graphics, Vol. 36, No. 6, Article 181. Publication date: November 2017.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Applications

	3 Method Overview
	4 Background and preliminaries
	5 Capturing user inputs
	6 Fitting the composition operator
	6.1 The operator template
	6.2 Template expressiveness
	6.3 Boundary conditions
	6.4 Surface registration
	6.5 3D-Lattice filling

	7 Evaluation
	8 Applications
	9 Conclusions
	Acknowledgments
	References

