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Abstract. The new limit on the electron lifetime is obtained from data of the Borexino
experiment. The expected signal from the e — v decay mode is a 256 keV photon detected in
liquid scintillator. Because of the extremely low radioactive background level in the Borexino
detector it was possible to improve the previous measurement by two orders of magnitude.

1. Introduction
The electric charge conservation law is a fundamental physical principle. There are no hints
for violation of this law neither in theory within the Standard model nor in any experiment.
Since the electric charge non-conservation (CNC) is admitted in exotic theories such as extra-
dimensional theories [1], investigation of such processes is an evident way to search for physics
beyond the Standard model.

The most frequently searched for CNC processes are decays of the electron into neutral
particles. Two decay modes are usually accounted for experimentally:

e — v, (1)

where a monoenergetic 256 keV photon is searched for, and
e — v, (2)

where only effects due to the electron disappearance would be observed. However, the
impossibility of occurrence of such processes is presented in [2], where it is shown that such
decays would be followed by a huge amount of low-energy bremsstrahlung photons. For the
process (1) it would mean the absence of 256 keV photon while the electron disappearance is
more model-independent and the corresponding atomic effects in the case (2) would remain the
same. Thus one can see that observing the 256 keV photon from the electron decay would mean
not only CNC but also going beyond the Standard model.
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2. Overview of experiments
Study of the electron stability has long experimental history. The list of the experiments in
which the electron decay was being searched for is presented in table 1. There are also plans for

Table 1. Experimental tests for the electron stability.

year material limit for e - v limit for e - vvvr  CL  reference

1959 Nal 10% 1017 68% 3]
1965  Nal 4 x 1022 2 x 10% 68% [4]
1975 Ge — 5.3 x 102 68% [5]
1979  Nal 3.5 x 10% — 68% 6]
1983 Ge 3 x 1023 2 x 1022 68% 7]
1986 Ge 1.5 x 10% — 68% 8]
1993 Ge 1.63 x 10% — 68% 9]
1995 Ge 2.1 x 10% 2.6 x 10% 90% [10]
1996 Xe 2 x 10% 1.5 x 10%3 68% [11]
1999  Nal — (1.5 —2.4) x 102 90% [12]
1999 Nal — 2.4 x 10% 90% [13]
2000 Xe 2 x 1026 — 90% [14]
2002 PXE 4.6 x 1026 — 90% [15]
2007 Ge 1.93 x 10%6 — 90% [16]
2012 Nal — 1.2 x 10%* 90% [17]

providing analogous studies at present and future experiments [18, 19, 20].

2.1. Nal detectors

Experiments based on Nal detectors were the first to provide the limits on the electron stability
[3, 4]. The expected signal for the mode (2) is a photon with maximal energy of 33.2 keV emitted
while filling the vacancy caused by the electron disappearance from the iodine K-shell. The
decay to a photon and a neutrino is investigated by searching for the 256 keV photon. Various
coincidence techniques are also applied in such detectors. First was the search of simultaneous
256 keV and 33.2 keV photons occurence [4]. Another approach based on the electron capture
by a nucleus without the consequent atomic number change was considered recently in [17].
Simultaneous observation of the 33.2 keV photons and the nucleus deexcitation (417.9 keV)
would mean the electron disappearance.

2.2. Ge detectors

The electron stability is widely studied using germanium detectors. The main advantage of
such detectors is good energy resolution (about 1 keV). In addition, the background level in the
region of interest is lower than that in Nal detectors. The expected signal is a photon of energy
11.1 keV for the mode (2) and a 256 keV photon for the mode (1), respectively.

2.8. Liquid scintillators

The strongest limits on the electron lifetime with respect to the decay mode (1) during the last
fifteen years have been obtained with liquid scintillation detectors. Their main advantages are
large mass and a possibility of purification from radioactive contaminations. The first one was
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Fit result for the electron decay rate = 1.23 cpd/100 tons
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Figure 1. Borexino spectrum composition.

DAMA /LXe experiment [11, 14]. This detector contains 6.5 kg (~ 2 litres) of liquid xenon. This
apparatus has rather low energy threshold and is sensitive to both electron decay modes.

The second one is the prototype of the Borexino detector, CTF-II [21]. Its main goal
was to test the purification techniques developed for Borexino. During the tests various
scintillators were used. CTF-II was filled with 4 tons of PXE (phenylxylylethane) which has less
ionization quenching in comparison with PC (pseudocumene) used in Borexino. Large mass and
extremely low background level made it possible to obtain a stronger limit of 4.6 x 10%¢ years
(90% confidence level) on the electron lifetime in shorter exposure time. This result remained
the best until the same study was performed in Borexino.

3. The Borexino detector

Borexino is a large volume scintillation detector located deep underground in the Laboratori
Nazionali del Gran Sasso [22]. Its active media contains 278 tons of organic liquid scintillator,
namely, pseudocumene (1,2,4-trimethylbenzene) with admixture of PPO (2,5-diphenyloxazole)
at a concentration of 1.5 g/l. Borexino has extremely low background level in the region of
interest, namely 0.15 day 'ton 'keV~!. The energy threshold is above 50 keV so Borexino is
not sensitive to the disappearance mode. By comparing sensitivity of CTF and Borexino the
expected electron lifetime limit is estimated, which exceeds the previous one at two orders of
magnitude.
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4. The electron decay search

4.1. Analysis approach

The data set used in the analysis were acquired from January 2012 to May 2013 (Borexino
Phase 2). This data set was obtained after the purification campaign [23] which reduced in
particular the contamination of 3Kr and 2'°Bi which give a significant contribution in the
low-energy region.

The same 408 days data set is successfully used in the measurement of solar pp-neutrino flux
[24]. In this analysis the same energy range (150600 keV) and parameters used in the fitting
procedure are considered. The only difference is the addition of the 256 keV photon line in the
fitting function. The sample of spectral fit is shown on Fig. 4.1. One can see that the sought-for
peak (marked by arrow) is shifted to the lower energies due to ionization quenching.

4.2. Constraint on the pp-neutrino event rate

The 256 keV photon occurrence is strongly correlated with pp-neutrino event rate. Therefore
treating the pp-neutrino rate as a free parameter in the fit leads to non-physical values at
the limit. Indeed, the 256 keV photon event rate corresponding to the 90% confidence
level (~ 12 cpd/100 tons) corresponds to zero pp-neutrino rate which is not consistent with
observations by radiochemical experiments [25]. As far as the latter ones are not sensitive to the
electron decay it is reasonable to use their results to constrain the pp-neutrino event rate. This
constraint gives the limit on the event rate of 1.23 c¢pd/100 tons. The lifetime limit is expressed
as 7 2 eN.T/Sjm, where N, is the total number of electrons in the detector, € is the fraction of
electrons survived after the fiducial volume cut, T is the exposure time, and Sy, is the event
rate limit. It gives the electron lifetime of 7 > 7.2 x 10?8 years.

4.8. Systematic errors study and final results

The main sources of the systematic errors in this study are the following. The most important is
the precision of the scintillator light yield measurement (~ 1%). It strongly influences the peak
position and therefore affects the sensitivity. Another source of systematic errors is the fiducial
mass measurement precision, which gives negligible effect. Choice of the energy estimator can
also affect the result. In the present study two variables are used as energy estimators, namely,
number of PMTs hit in the time intervals of 230 ns and 400 ns. After having accounted for all
these effects the lifetime limit has become weaker and the final result for the electron lifetime
limit is 7e—5,, > 6.6 X 1028 years at the 90% confidence level. This study is described in more
details in [26].

Acknowledgments
Russian colleagues from MEPhI acknowledge partial support from MEPhI Academic Excellence
Project (contract No. 02.a03.21.0005, 27.08.2013).

References

[1] Dubovsky S L, Rubakov V A and Tinyakov P G 2000 JHEP 0008 041

[2] Okun L B 1989 Sov. Phys. Usp. 32 543

[3] Feinberg G and Goldhaber M 1959 Proc. Natl. Acad. Aci. US 45 1301

[4] Moe M K and Reines F 1965 Phys. Rev. 140 992

[5] Steinberg R I et al. 1975 Phys. Rev. D 12 2582

[6] Koval’chuk E L, Pomanskii A A and Smol'nikov A A 1979 JETP Lett. 29 145
[7] Belotti E et al. 1983 Phys. Lett. B 124 435

[8] Avignone III F T, Brodzinski R L, Hensley W K, Miley H S and Reeves J H 1986 Phys. Rev. D 34 97
[9] Balysh A et al. 1993 Phys. Lett. B 298 278

[10] Aharonov Y et al. 1995 Phys. Lett. B 353 168

[11] Belli P et al. 1996 Astropart. Phys. 5 217-9



International Conference on Particle Physics and Astrophysics (ICPPA-2015) IOP Publishing
Journal of Physics: Conference Series 675 (2016) 012025 doi:10.1088/1742-6596/675/1/012025

Belli P et al. 1999 Phys. Rev. C 60 065501

Belli P et al. 1999 Phys. Lett. B 460 236

Belli P et al. 2000 Phys. Rev. D 61 117301

Back H O et al. 2002 Phys. Lett. B 525 29
Klapdor-Kleingrothaus H V, Krivosheina I V and Titkova I V 2007 Phys. Lett. B 644 109
Bernabei R et al. 2012 Fur. Phys. J. C 72 1920

Aalseth C E et al. 2004 Phys. Atom. Nucl. 67 2002

Ardito R et al. 2005 arXiv:0501010

Wurm M et al. 2012 Astropart. Phys. 35 685-732

Alimonti G et al. 1998 Nucl. Instrum. Meth. A 406 411
Alimonti G et al. 2009 Nucl. Instrum. Meth. A 600 568-93
Bellini G et al. 2014 Phys. Rev. D 89 112007

Bellini G et al. 2014 Nature 512 383

Abdurashitov J N et al. 2009 Phys. Rev. C 80 015807
Agostini M et al. 2015 arXiv:1509.01223

Mo NN =R +=§R+=+="71H
W = O © 00~ Ut W

[N}
>

N DN





