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Abstract—Iris-based biometric systems identify individuals by
comparing the characteristics of the iris captured by suited sen-
sors. When reflections are present in the iris image, the portion of
the iris covered by the reflections should not be considered in the
comparison since it may produce erroneous matches. This paper
presents an adaptive design methodology for reflection detection
and location in iris biometric images based on inductive classifiers,
such as neural networks. In particular, this paper proposes a set
of features that can be extracted and measured from the iris
image and that can effectively be used to achieve an accurate
identification of the reflection position using a trained classifier. In
addition, the use of radial symmetry transform (RST) is presented
to identify the reflections in iris images. The proposed design
methodology is general and can be used in any biometric system
based on iris images.

Index Terms—Biometric system, iris, neural networks, radial
symmetry transform (RST).

I. INTRODUCTION

IOMETRIC systems exploit automated methods capable

of recognizing individuals by analyzing their physiologi-
cal and/or behavioral characteristics. Physiological biometrics
is based on data derived from the direct measurement of a body
part (e.g., fingerprints, face, retina, and iris), whereas behavioral
biometrics is based on measurements and data extracted from
human actions (e.g., gait and signature) [1], [2].

Iris biometric systems identify the user by performing the
following steps: The first step is the acquisition of the iris
image (sample) by the sensor module. The second step is the
localization of the iris in the acquired image. All biometric
systems can achieve their maximum accuracy in identifica-
tion/verification only if the samples are correctly acquired [3].
For this reason, all exogenous elements that are superimposed
to the real biometric information in the sample must be removed
(e.g., iniris images, we may have reflections, eyelids, etc.). This
operation can reduce the probability of erroneous matching. In
the case of the iris sample, the exogenous elements are mainly
the following: 1) eyelids; 2) lashes; and 3) reflections. In this
step, the edges of the pupils and iris must initially be located
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in the input image, and then the eyclids, lashes, and reflections
must be identified and removed from the iris image. The third
step aims at extracting the biometric template from the iris (iris
encoding). This template will be used by the biometric system
to perform comparisons (matching) with the templates used as
reference [3], generally stored in a database or in an identifica-
tion document typically using a smartcard-based technology.

In most of the cases, the sensor is a charge-coupled-device-
based camera with a proper optics. Such systems can achieve
remote acquisition (about 0.5—1.5 m) of a face portion contain-
ing one complete eye (Fig. 1). Most of the systems require about
100 x 100 pixels of resolution for the iris to suitably identify an
individual. Nowadays, low-cost sensors, such as webcams, have
also been considered to perform iris identification. Fig. 1 shows
different iris images. Images (a) and (b) have been acquired
with cameras working in the IR band by using optics with focal
lengths of 8 and 54 mm, respectively, and image (c) has been
produced by a low-cost sensor. Images (d) and (f) show two
irises acquired by using visible light (ambient light and lamp
light, respectively), whereas image (e) has been obtained by
using a color webcam.

Reflections in iris images can occur in a great variety of
applications and acquisition systems. This phenomenon is due
to the particular shape and condition of the cornea (the spherical
and wet transparent surface that protects the iris and the inner
eye from the outside). The light coming from windows, screens,
and the illumination system (which is almost always required to
correctly acquire the iris image) is often reflected by the cornea.
Additional reflections may be caused by occlusions such as
contact lenses and eye glasses.

Unfortunately, reflections tend to be superimposed on the iris
patter, causing difficulties in the iris acquisition. Complex iris-
based biometric systems use special illumination system (e.g.,
single point IR illuminators, optical filters, etc.) and require
that users must be correctly positioned in front of the sensor.
Consequently, reflections are confined in the pupil area, hence
outside of the iris pattern. However, even in such cases, external
reflections are often very frequently present in low-cost systems
and in outdoor conditions.

This paper focuses on the creation of a pattern recognition
system capable to locate the reflections that are present in the
iris image. In particular, the contribution is twofold: the paper
proposes 1) a highly effective set of features to be extracted
from the iris image [based on the radial symmetry transform
(RST)] and 2) an innovative adaptive design methodology




Fig. 1.

for creating an inductive classifier to achieve reflection detec-
tion and location by a pixel-by-pixel approach. The proposed
method can work with any close-up image of the eye, and it
does not require any information concerning the iris position
and other segmentation information. This allows for imple-
menting flexible iris-based identification systems that are very
robust to environmental and operating conditions.

This paper is structured as follows: Section II presents the
state of the art, whereas Section III proposes the design method-
ology for reflection detection and location. Starting from the
choice of the proper set of features to be extracted from the im-
age, the design process encompasses the feature selection and
composition phases, the creation and training of the classifiers,
and a test session. In particular, Section III shows how the RST
can be used and how to tune the parameters with respect to the
input image. Section IV shows the application of the proposed
design methodology with experimental results using compu-
tational intelligence techniques, such as neural networks. The
creation of the training data set is discussed, whereas the results
of the neural networks are compared with respect to traditional
classification paradigms (e.g.. the k-nearest neighbor classi-
fiers) discussing accuracies and computational complexities.

II. STATE OF THE ART

The approaches presented in the literature traditionally con-
sider the reflections as any other occlusion in the biometric
images. A first kind of approach tries to evaluate the global
quality of the iris acquisition by measuring the global property
of the iris pattern. In [4], Ma et al. analyze the Fourier spectra of
local iris regions to characterize defocusing, motion, and occlu-
sion presence. Zhang and Salganicoff [5] examine the sharpness
of the region between the pupil and the iris. Daugman [6]
and Kang and Park [7] evaluate the iris quality by estimating
the energy of high spatial frequencies over the entire image
region. All of these techniques only consider one or two global
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features extracted from the iris/eye image to estimate the quality
of the image. These methods implicitly estimate the presence
of occlusions since their presence tend to degrade the overall
sample quality.

Differently, a second class of approaches uses a local analysis
of the iris to achieve a proper segmentation of occlusions. In [8],
Chen et al. use the local features extracted from one iris image
by using a 2-D wavelet technique. A similar local approach is
presentin [4]. In [9], Zhu et al. propose a technique based on the
analysis of a sequence of images by using wavelet coefficients.

In the literature, it is well known that the performance of an
iris-based biometric system can be enhanced if the encoding
phase of the iris pattern is performed after the reflections
have been localized and removed from further comparisons.
Reflection removal is typically achieved by localizing the re-
flections by means of a segmentation technique based on hard
thresholding. Thresholding is performed by using one or more
features extracted from the iris pattern, as previously described.
A mask image will be created to mark cach pixel that is
supposed to belong to the iris pattern and not to occlusions (as,
for example, in the well-known IrisCode technique proposed by
J. Doughman [10]).

Traditionally, the approaches available in the literature con-
sider binarization of the input grey-level image [8], [9], [12].
This is conceptually based on the fact that the reflections are
caused by external light, and hence, they tend to be charac-
terized by light grey intensities. This approach is very simple,
but it is not robust since its accuracy strongly depends on the
setup of the binarization threshold. It is very difficult to set
a proper threshold suitable for different image types, even by
using an adaptive threshold technique. In addition, some white
image regions may not contain any reflection (e.g., in the sclera
region). Therefore, the binarization approaches tend to produce
large false detection rates since they classify white portions as
reflections (e.g., the sclera region). In the following, we refer to
this method with the name BIN.



Most of the papers available in the literature can be consid-
ered as ad hoc applications since they typically miss a proper
and comprehensive methodological design approach. In the fol-
lowing section, we propose a generalized design methodology
that can be used to design a detection and localization system
for reflections by using a new set of features and a multiple
classification system.

III. DESIGN METHODOLOGY

The design of a detection and localization system for iris re-
flections can be considered as a particular case of the design of a
pattern-matching system. The peculiarities of the reflection pat-
terns must be identified and exploited to perform localization.
The proposed design methodology will therefore consist of the
following steps, which are typical of this kind of method [13]:

A) acquisition of data from the camera/sensor;

B) preprocessing of data to reduce the noise, correct lens
aberrations in the images, process contrast enhancement,
and accomplish possible other similar tasks;

C) processing of the features to extract important informa-
tion concerning the reflection presence from the signal
(also called feature extraction phase);

D) selection and composition/fusion of the extracted fea-
tures to better measure, describe, and detail the phenom-
ena associated with the presence of reflections;

E) classification of the features in a two-class output by
evaluating the presence of the reflections;

F) error evaluation of the detection and localization system.

The peculiarity of the computation intelligence techniques
can be exploited in many steps of the design chain, giving
interesting enhancement in the performances of the system.
In [10], the use of these techniques is discussed in general
by addressing the most important benefits and limits. In this
paper, we focus on the application of computational intelligence
mainly in the feature fusion and classification phases.

A. Acquisition and Detection of the Iris

Fig. 2 plots the structure of modules that consist the reflection
detection and localization system. The first module (the detec-
tion module) acquires the eye image, preprocesses the input im-
age (phase A), and localizes the iris in the eye image (phase B).
In this module, detection of the eyelids is also typically accom-
plished. The output of this module is an image in which the
iris area has been localized. In the literature, many different
and effective techniques have been proposed to implement the
tasks of the detection module (e.g., [4], [6], and [14]-[16]). The
discussion of these techniques is beyond the scope of this paper.

In the following, we consider the detection module as a
given block, and we assume the following: 1) the input to
the reflection detection and localization system is an image in
which the iris is present; 2) the iris center has roughly been
located; and 3) the eyelids and the eye brushes may be present
even if they are overlapping the iris. These hypotheses are
very general, and they are fully satisfied by all the techniques
mentioned.

Q.
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Fig. 2. Structure of the proposed system for reflection identification.

B. Iris Feature Processing and Selection

The second module in Fig. 2 is the feature processing
module. Its input is the eye image. From the eye images, it
extracts a set of features that can be used for detecting and
localizing the reflections. This module can mainly work in two
different modalities. The first modality consists of a global
image analysis that returns a single vector of features extracted
from the whole image (for example, a set of quality indexes of
the input image). The second modality consists of a pixel-by-
pixel analysis; this returns a transformed image (often called
“map” or “transformation”) in which every pixel represents a
feature value corresponding to the properties of the pixel in the
input image in the same x—y coordinates.

These properties can be obtained by a single-pixel analysis
(e.g., the thresholding binarization techniques based on the
pixel intensity level) or by processing the local distribution of
the intensities in the input image. In the following, we will
consider both approaches. Since the first approach returns one
global feature vector for cach input image, it can be exploited
only to produce a binary answer if a reflection is present or
not in the input image. For example, if a reflection has been
detected, then the input image can be discarded, and a new
eye image can be requested to the iris acquisition and detection
module.

The second approach is more general since it can be adopted
to localize the reflections. In addition, the reflection coordinates
can be used to compensate/mask the reflections themselves, and
hence, it allows the biometric system for optimally using the
acquired image. In the next section, we will present a method
that adopts this second approach. Typically, the reflection pres-
ence on the iris pattern is measured by using the total amount
of pixels classified as reflection by the classification system. If
that value is lower than a given threshold, then the image can
be used by the biometric system. Otherwise, the iris pattern is
too much degraded to be processed as a valid sample.

In most of the cases, more than one feature is extracted from
the input image to better analyze the reflection patterns (e.g., by



exploiting the physical knowledge of the phenomenon). Once a
set of features has been extracted, a feature selection phase can
be performed to identify which features are most significant
and relevant for classification [10]. This task is frequently
accomplished offline (e.g., during the design phase or in a fine-
tuning activity), since the methods available in the literature
are usually highly computational intensive, and they are not
suitable for real-time applications. A comprehensive review of
the feature selection techniques can be found in [11].

It is worth noting that the feature sclection phase can be
considered as an optional task. Therefore, it may be neglected
in the first design stages of the biometrics system and then can
be included in the final system optimization.

C. Feature Fusion and Classification

The third module shown in Fig. 2 performs the feature
fusion and classification tasks. The feature fusion (often called
“extraction”) is an optional step of the reflection detection
and localization system that aims to intelligently compose the
incoming features to obtain a reduced and more significant
subset of features to be processed by the classifier. The fea-
ture fusion can also be described as a mapping of the input
space into a—potentially reduced—subset of features, which
are capable of augmenting the accuracy of the final classifier.
A high number of techniques are available in the literature to
perform this task. The more common technique is the principal
component analysis (PCA), which can compress most of the
variation measured in the input features into a minor number of
components [17], [18].

Since the PCA-like mappings mix the input components into
a reduced set of new features, the direct relationship between
the features and their influence on the reflection classification
is less explicit. Similar approaches in the literature are based
on neural networks and genetic algorithms. A comprehensive
review of these techniques can be found in [11]. This phase does
not necessarily reduce the number of features to be measured,
but very often an increased accuracy may be achieved. On the
other hand, the effect of the lower dimensional representation
of the inputs may produce a better generalization behavior of
the classifiers [18].

As the last step, classification is then performed in the third
module. As previously described, the classification system can
classify each single pixel of the image or produce a single
binary answer concerning the presence of reflections in the
overall input image, according to the approach adopted in the
second module. In this paper, we focus on the single-pixel
classification approach.

The single-pixel classification can be obtained by direct clas-
sification of the features or by using a two-phase approach in
which a measure of the reflection presence (i.e., a real value in
the O—1 range) is first produced and then used by the classifier to
generate the final binary output (reflection presence/absence).
In both cases, it is possible to use a multiple classification
system. In the literature, it has been shown that a combination
of classifiers can improve the identification accuracy [11]. In
this paper, we describe the results for both approaches. Since an
exhaustive explicit relationship between the input iris patterns

and the presence of the reflections is not available nor an
efficient algorithm has been identified, the use of an inductive
classification system is valuable. An inductive classification
system (e.g., neural networks, nearest neighbor classifiers, and
support vector machines [17]) is in fact able to learn almost any
relationship given a suited set of examples, usually under very
loose conditions.

D. Accuracy Estimation of the Final System

The final step in the design methodology is directed to
perform the following tasks: 1) tuning all the parameters;
2) classification system learning; and 3) estimating the accuracy
of the final classifier. The parameter tuning depends on the
techniques adopted for feature extraction. Each technique has
a specific method to set all the parameters. Similarly, a suited
learning algorithm for tuning the classification model on the
given training data set should be provided for the specific
classification paradigm (namely, neural networks, k-nearest
neighbors, etc.) that was adopted.

To properly estimate the accuracy of the final system classi-
fier, the example data set must be divided in two partitions, as
requested by the cross-validation techniques. The first partition
(the training data set) is used to tune the system’s parameters
and to train the inductive classifier. In some approaches, the
training data set is split in more parts, each used for one of
these tasks: parameter tuning and classifier learning will be
performed by using separated subsets of data [18]. For example,
a subset of the training data set can be used to directly test the
generalization capability of the classifier during the learning
phase, as it is typical in neural networks [19].

The second partition (validation data set) is used only once
to estimate the system classification error. More accurate tech-
niques for classification error estimation can be used (e.g., the
N-fold validation and leave one out), but their computational
complexity becomes very high for large data sets [11], [18].

In most cases, the simple classification error is not sufficient
to describe the accuracy of the system. To describe the perfor-
mance of the classification system, we also need to use the false
acceptance rate (FAR) and the false rejection rate (FRR). In
addition, other related parameters (such as specificity, sensitiv-
ity, and confusion matrix) should be taken into account in the
accuracy cvaluation [12], [20]. If the classification system uscs
a final acceptance threshold (a very common situation, particu-
larly when neural network are adopted), then the classification
errors and the FAR/FRR values directly depend on the thresh-
old value. In this case, the behavior of the overall system is
better described by the receiver operating characteristic (ROC),
which concisely represents the different FARs and FRRs of
the system with respect to the possible threshold values. An
ideal system achieves FAR and FRR equal to O for all threshold
values.

Another important point concerns the estimation of the en-
hancements that a reflection identification system can produce
in the accuracy of a complete iris identification system. This
estimation requires the development of a complete experiment
that encompasses a complete iris verification/identification
system and a real-life large database of iris images where



reflections are present. Unfortunately, most public iris data-
bases have been acquired in controlled environments, and the
presence of reflections is carefully avoided. Although the com-
plexity of the experiment, unfortunately, the obtained results
have low generality since they depend on the chosen system
and on the image databases. In [13] and [24], it has been
shown that the overall effect of the occlusions in the iris images
(eyelids, lashes, and reflections) on the accuracy of the system
can be up to a few percent. In most biometric iris systems, the
comparison between templates is achieved by comparing the
bits of the templates with the exclusion of the masking bits
related to the occlusions. Preliminary results show that the im-
provements due to the use of the masking bits are related to the
percentage of masking bits that have correctly been classified as
occlusions.

A better identification of the reflections can hence help to
reduce the error of the overall biometric system. This positive
factor can be very relevant when the system works in identifi-
cation applications, since a great number of iris comparisons
is required, and the single comparison error (the matching
error) is correspondingly multiplied. In such applications, even
small improvements in the accuracy are very relevant for the
applicability and the usability of the system.

IV. APPLICATION OF THE METHODOLOGY
AND EXPERIMENTAL RESULTS

In this section, we describe the application of the proposed
methodology by starting from the feature selection step. In
this step, all meaningful features that are useful to detect
and locate the reflections should be extracted from the input
image. In the literature, most of the papers focus on the grey
intensity level or—when feasible—on the color information
associated with the iris pattern. In this paper, we proposc the
use of a particular input image mapping called RST, which
is capable of detecting and locating the reflections from their
peculiar shape. This mapping tends to enhance the objects
in the image that have radial symmetry (such as the reflec-
tions). To compute the RST, we use the fast RST proposed by
Loy and Zelinsky [21].

Due to the spherical shape of the cornea, the reflections
tend to be smaller than the pupil; moreover, they are generally
circularly shaped. This kind of shape has a relatively high
value in the RST. Fig. 3 shows the application of this mapping
to different images. The RST has two main parameters. The
first parameter is an array of candidate radii (N) that will be
considered in the image analysis, whereas the second parame-
ter is the radial strictness parameter (). In the transformed
image, only symmetrical objects whose radii are comparable
with those in the N array will be enhanced (high contrast).
Objects with low radial symmetry tend to be suppressed in
the transformed image (low contrast). With small values of the
parameter « (i.e., < 1), image features also having bilateral
symmetry will be enhanced. With higher values of «, only
objects/features in the image with strict radial symmetry will be
enhanced.

The RST algorithm maps the local radial symmetry of an
image I(p), where p = {x,y} is a point in the image, into a

Fig. 3. Application of the fast RST to an image containing spherical objects
(al) and to an iris image (bl). Local maxima (white pixels) in the transformed
images (a2) and (b2) are related to white objects in the input image with high
radial symmetry.

transformed image S(p) with a low computational complexity
with respect to other methods available in the literature.

The output image S is calculated with one or more radii n
belonging to the set of radii IV (e.g., ranging from 1 to 5 pixels)
by the following sum:

N
S(p) = RSTUI(P) = 737 3 S M
n=1

where S, is the radial symmetry contribution at radius n
defined as the following convolution:

S, = F, + Ax. 2)

In (2), Ay is a 2-D Gaussian kernel, and F}, is a transformed
image obtained by

My (p) ([On(P)|\*
F = ——| —F 3
n(P) I, " 3)
where « represents the radial strictness parameter, and
N — On(p)v if On(p) < kn
On(p) = { kn, otherwise @

where k,, is the scaling factor of the maps M,, (the magnitude
projection image) and O,, (the orientation projection image).
M,, and O,, are obtained by examining the gradient vector g(p)
in peculiar points called positively affected pixels and negatively
affected pixels. Loy and Zelinsky defined the positively affected
pixel as “the pixel that the gradient vector g(p) is pointing to,
a distance n away from p” and the negatively affected pixel
as “the pixel a distance n away that the gradient is pointing
directly away from” [21]. Gradient vector images can suitably
be processed by a simple 3 x 3 Sobel operator.

A. Data Set

In this paper, we used a data set of eye images captured by
different sensors (as described in Section 1) and classified by



* RSBIN 0=0.1 [

————— RSBIN =1

— “RSBIN =3
T

FRR

Fig. 4.
(Right) Total classification error with respect to the threshold level.

an expert user at pixel level. Each pixel has been labeled by
using two classes: 1) reflection and 2) nonreflection. Images
have been collected by using different sensor and optics to test
the generality of the method in different applicative contexts.
In particular, as detailed in Section I, we used cameras working
in the IR band (by using low and high focal length optic), low-
cost sensors (two different off-the-shelf color webcams), and
industrial cameras using visible light (ambient light and lamp
light). The data set consists of 153876 classified pixels. The
occurrence of reflection pixels in the image data set is about
2.34%. The probability of an iris pixel to be a reflection is about
6.92%.

B. Application of the RST

The first implementation of the method for reflection detec-
tion and localization that we propose in this paper is based on
the RST followed by of a simple thresholding technique. This
simple approach demonstrates the good intrinsic capability of
the RST to identify reflections.

Once the RST has been performed, reflections are detected
and localized by selecting the pixels in the map that have an
RST value of higher than a predefined threshold ¢; hence

1, ifRST(I(p)) >
0, otherwise.

RSBIN(p) = { (5)
The RST has low sensitivity to the average brightness of
the images (since the presence of derivative components in
the algorithm); hence, it is not particularly difficult to tune the
threshold ¢. Experiments showed that a threshold value of

t = amax (RSBIN(p)) (6)

allows for a correct reflection identification with o = 0.6. If the
input images have a larger variability in the light conditions,
then the triangular binarization method can also be considered
since it is capable of producing a very robust and adaptive
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(Left) ROC curves of the traditional binarization method (BIN) and the proposed radial symmetry binarization method (RSBIN) at different .

method for reflection identification via RST. On the current
data set, the results are comparable; hence, the method in (6)
is preferred because of its simplicity and low sensitivity with
respect to the value of the o parameter.

By using this approach, it is possible to detect the reflections
from the shape information given by the RST without using
the direct values of pixel intensities. The information extracted
by this method relies on the local distribution of the pixel
intensities around the selected pixel. Since both BIN and
RSBIN approaches depend on the threshold value (which has
to be suitably set by the designers), a fair comparison between
these techniques can be performed by using the ROC curves.
ROC curves allow for identifying the best method for the ranges
of FAR and FRR in the considered application.

Fig. 4 shows the ROC curves of the traditional BIN algo-
rithm with respect to the ROC curves of the proposed RSBIN
method with different values of the parameter . The ideal
algorithm should produce FAR and FRR equal to zero for all
the threshold values (i.e., the ROC curve should coincide with
the axes). The plots show very different behaviors of the two al-
gorithms. The traditional BIN algorithm has a better behavior
in the left part of the ROC curve than the proposed RSBIN
algorithm. Conversely, in the right part of the ROC curve,
RSBIN achieves better results. For example, the classification
error of the sclera as a reflection typical of the BIN algorithm
produces in the ROC curve a large FAR rate. In Fig. 4, the plot
on the right side shows the total classification error (i.e., the sum
of FAR and FRR) of the BIN and RSBIN algorithms. The
BIN algorithm has a minimum total classification error when
the threshold is 1 (i.e., all image pixels are classified as non-
reflections): in this working point, the BI N classifier is totally
useless. On the contrary, the proposed RSBIN algorithm has
a threshold value that can effectively minimize the sum of FAR
and FRR in useful working conditions. The best performance is
obtained with the RSBIN method when o = 1.

Fig. 5 plots four different iris images (first column) and the
corresponding RSTs (second column). Notably, this mapping



Fig. 5. Application of the RST and reflection compensation.

properly detects the positions of the reflections in the iris. It can
be seen that the reflections correspond to the positions of the
local maxima in the transformed maps (the second column in
Fig. 5). The third column plots the binarized values of the RSTs
by using the threshold value expressed in (5) with & = 0.6. The
last column shows the final compensated images. The pixels be-
longing to the reflections have been compensated by processing
the mean intensity value of a 10-pixel neighborhood to quali-
tatively show on the eye image the effect of the classification
accuracy of the method: false-positive classifications produce
overwritten iris pixels, and false-negative classifications are
visible as uncompensated reflections.

C. Feature Fusion and Classification by
Using Neural Networks

To perform classification, a more discriminative and signifi-
cant set of features can be obtained by using the RSTs, possibly
integrated with other classical features (e.g., the normalized
pixel intensity). This set of features can be used as input
to a neural network that performs reflection detection and
localization better than the traditional thresholding method. In
this section, the traditional approaches are compared with the
proposed technique based on the RSTs.

Computation intelligence techniques may be advantageous
for reflection classification. In particular, neural networks can
combine the extracted features in a nonlinear manner (o create
better reflection classifiers. We aim in fact to train a neural

network to mimic the behavior of a traditional BIN classifier in
the left part of the ROC curve (Fig. 4) and to learn the behavior
of the proposed classifier based on the radial symmetry in
the right part of the ROC curve. The basic idea is to induce
the neural networks to learn the desired best behavior in the
different regions of the image by using more than one feature.
In our experiments, neural networks have been trained by
using a training data set of 8000 classified pixels, which were
obtained by random extraction from the original data set of
153 876 pixels. The trained neural networks have been verified
by using the validation data set according to the cross-validation
technique. In this paper, we only analyzed the use of neural
networks for the pixel-by-pixel approach.

A first implementation based on our approach obtains the
reflection classification by using two inputs: 1) the grey level
intensity of each pixel and 2) the corresponding value of the
RST. This input configuration has been tested by considering
a set of feedforward neural networks with a number of hidden
neurons ranging from 1 to 30, which were trained ten times with
the Levenberg—Marquardt method (chosen for its convergence
properties) and the Bayesian regularization (chosen for the
capability to enhance the generalization property of the neural
network) [11], [19].

The minimum total error rate has been obtained by using a
feedforward neural network with four neurons in the hidden
layer (FFNNI in Fig. 6). This neural network achieved a total
error rate of 1.64%, and its ROC curve is much better than
the BIN and RSBIN approaches in a wide range of the
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Fig. 6. Application of the RST and fusion of features by using neural networks.

curve. A similar behavior has been obtained by using a neural
network with six neurons in the hidden layer (FFNN2 in Fig. 6):
although it is only better in some limited ranges, it is globally a
bit worse than the previous solution. Hence, very interestingly,
the use of the FFNN method instead of the RSBIN or BIN
method can achieve a more robust behavior of the system with
respect to the threshold value. As a matter of fact, the total
classification error of the FFNN method is more stable for a
wider range of threshold values than for the RSBIN and BIN
methods.

A set of k nearest-neighbor (kNN) classifiers with k ranging
from 1 to 15, with the Euclidean norm, has been tested as
reference. The best results have been obtained with £ = 1.
Since no threshold needs to be set in the nearest-neighbor
classifier, there is no ROC curve, but only a single value for
FAR and FRR. The best kNN classifier has FAR = 1.62%),
FRR = 1.66%, and total error rate = 3.28%.

The computational complexity of the KNN model can be esti-
mated with respect to the best neural network by measuring the
execution times of the two classifiers. In our experiments, the
execution time has been measured on a real processor (Intel P4
2 GHz with 750-MB RAM running the Microsoft Windows XP
operating system) by removing unnecessary operating system
processes. Measures were averaged over 100 presentations of
the whole data set for each benchmark to reduce the influence
of the variability of the operating system processes. The whole
system has been implemented in Matlab by exploiting the
available Neural Network Toolbox and PRTOOL [23]. The
kNN model was shown to be about 190 times more complex
than the best neural network.

V. CONCLUSION

This paper has presented an adaptive design methodology for
reflection detection and localization systems in iris biometric
images. The proposed methodology addresses the main steps
of system design: feature extraction, feature selection, feature
fusion, creation of the suited classification system, and its

Threshold

error estimation. The methodology presented here is based on
an innovative approach for the detection and localization of
reflections. A suited set of features is extracted from the iris
pattern, and an inductive classifier is then used to perform the
reflection segmentation. In particular, we introduced the use
of the RST as a new significant feature, and we focused on
neural networks as classifiers. Results show that the RST can
be considered as a very good feature to detect and localize
reflections. This feature can easily be used, with a thresholding
approach, to quickly perform detection and localization of the
reflections, although not very accurately. A more discriminative
and significant set of features can be adopted by considering the
RSTs and other classical features (e.g., the normalized pixel
intensity). This set of features has successfully been used to
achieve much higher accuracy by means of neural networks.

The proposed methodology allowed for creating reflection
detection and localization systems that have been proved to be
much more accurate than those obtained using the traditional
thresholding methods. The low computational complexity of
the proposed systems is very suitable for real-time applications.
The proposed method is very general and can be used in any
biometric system based on iris images.

REFERENCES

[1] A. K. Jain, R. Bolle, and S. Pankanti, Biometrics: Personal Identification
in Networked Society. Norwell, MA: Kluwer, 1999.

[2] R. Bolle, S. Pankanti, and A. K. Jain, “Biometrics: The future of identifi-
cation,” Computer, vol. 33, no. 2, pp. 4649, Feb. 2000.

[3] J. Wayman, A. Jain, D. Maltoni, and D. Maio, Biometric Systems:
Technology, Design and Performance Evaluation. Berlin, Germany:
Springer-Verlag, 2005.

[4] L. Ma, T. Tan, Y. Wang, and D. Zhang, “Personal identification based on
iris texture analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25,
no. 12, pp. 1519-1533, Dec. 2003.

[5] G.Zhang and M. Salganicoff, “Method of measuring the focus of close-up
image of eyes,” U.S. Patent 5 953 440, Sep. 14, 1999.

[6] J. G. Daugman, “How iris recognition works,” IEEE Trans. Circuits Syst.
Video Technol., vol. 14, no. 1, pp. 21-30, Jan. 2004.

[7] B.J. Kang and K. R. Park, “A study on iris image restoration,” in Audio-
and Video-Based Biometric Person Authentication, vol. 3546. Berlin,
Germany: Springer-Verlag, Jul. 2005, pp. 31-40.



[8] Y. Chen, S. Dass, and A. Jain, Localized Iris Quality Using 2-D Wavelets.
Hong Kong: ICBA, 2006.

[9] X.Zhu, Y. Liu, X. Ming, and Q. Cui, “A quality evaluation method of iris
images sequence based on wavelet coefficients in ‘region of interest’,” in
Proc. 4th Int. Conf. Comput. Inf. Technol., Sep. 2004, pp. 24-27.

[10] A. Blum and P. Langley, “Selection of relevant features and exam-
ples in machine learning,” Artif. Intell., vol. 97, no. 1/2, pp. 245-271,
Dec. 1997.

[11] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition: A
review,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 1, pp. 4-37,
Jan. 2000.

[12] A. Webb, Statistical Pattern Recognition. New York: Wiley, 2002.

[13] J. Daugman, “Recognising persons by their iris patterns,” in Advances
in Biometric Person Authentication. Berlin, Germany: Springer-Verlag,
2004, pp. 5-25.

[14] H. Proenca and L. A. Alexandre, “Iris segmentation methodology for
non-cooperative recognition,” Proc. Inst. Elect. Eng.—Vis. Image Signal
Process., vol. 153, no. 2, pp. 199-205, Apr. 2006.

[15] T. A. Camus and R. Wildes, “Reliable and fast eye finding in closeup
images,” in Proc. IEEE 16th Int. Conf. Pattern Recog., QC, Canada, 2004,
pp. 389-394.

[16] L. Ma, T. Tan, Y. Wang, and D. Zhang, “Personal identification based on
iris texture analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25,
no. 12, pp. 1519-1533, Dec. 2003.

[17] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification.
New York: Wiley, 2001.

[18] K. Fukunaga, Introduction to Statistical Pattern Recognition.
Academic, 1990.

[19] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural
networks architectures,” Neural Comput., vol. 7, no. 2, pp. 219-269,
Mar. 1995.

[20] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical
Analysis. Englewood Cliffs, NJ: Prentice-Hall, 2007.

[21] G. Loy and A. Zelinsky, “Fast radial symmetry for detecting points of
interest,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 8, pp. 959—
973, Aug. 2003.

[22] X.Liu, K. W. Bowyer, and P. J. Flynn, “Experiments with an improved iris
segmentation algorithm,” in Proc. IEEE Workshop Autom. Identification
Adv. Technol. AutolD, 2005, pp. 118-123.

[23] F. van der Heiden, R. Duin, D. de Ridder, and D. Tax, Classification,
Parameter Estimation, State Estimation: An Engineering Approach Using
MatLab. New York: Wiley, 2004.

[24] S. Cimato, M. Gamassi, V. Piuri, R. Sassi, and F. Scotti, “A multi-
biometric verification system for the privacy protection of iris tem-
plates,” in Proc. Int. Workshop CISIS, Genova, Italy, Oct. 23-24, 2008,
pp. 227-234.

New York:

Fabio Scotti (M’04) received the Ing. degree in elec-
tronics engineering and the Ph.D. degree in computer
engineering from Politecnico di Milano, Milano,
Italy, in 1998 and 2003, respectively.

Since 2003, he has been an Assistant Professor
with the Department of Information Technologies,
University of Milan, Crema, Italy. His research in-
terests include biometric systems, high-level system
design, signal and image processing, and intelligent
measurement systems. His current research focuses
on multimodal biometric systems, biometric encryp-
tion and privacy-compliant biometric templates, computational intelligence
algorithms, and related technologies for industrial applications.

Vincenzo Piuri (S’84-M’86-SM’96-F’01) received
the Ph.D. degree in computer engineering from Po-
litecnico di Milano, Milano, Italy, in 1989.

From 1992 to September 2000, he was an Asso-
ciate Professor in operating systems with Politecnico
di Milano. During the summers from 1993 to 1999,
he was a Visiting Professor with the University of
Texas at Austin. Since October 2000, he has been a
Full Professor in computer engineering with the Uni-
versity of Milan, Crema, Italy. His research interests
include intelligent measurement systems, theory and
industrial applications of neural networks, biometrics, distributed and parallel
computing systems, application-specific processing architectures, digital signal
processing architectures, and fault tolerance. Original results have been pub-
lished in more than 250 papers in book chapters, international journals, and
proceedings of international conferences.

Dr. Piuri is a member of the Association for Computing Machinery,
the International Neural Networks Society, and the Associated Electrical
Industries. He was an Associate Editor of the IEEE TRANSACTIONS ON
INSTRUMENTATION AND MEASUREMENT and the IEEE TRANSACTIONS
ON NEURAL NETWORKS. He was the Vice President for Publications of
the IEEE Instrumentation and Measurement Society, the Vice President for
Members Activities of the IEEE Neural Networks Society, and a member of the
Administrative Committee of both the IEEE Instrumentation and Measurement
Society and the IEEE Computational Intelligence Society. He was the President
of the IEEE Computational Intelligence Society from 2006 to 2007. He is the
Vice President for Publications of the IEEE Systems Council and the Vice
President for Education of the IEEE Biometrics Council. In 2002, he received
the IEEE Instrumentation and Measurement Society Technical Award for his
contributions to the advancement of computational intelligence theory and
practice in measurement systems and industrial applications.



