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4.   Abstract 

 

AML is hierarchically organized with at the apex Leukemia Stem Cells (LSCs), a rare cell 

population able to initiate and sustain the tumor growth. LSCs share many functional 

properties with normal Hematopoietic Stem Cells (HSCs) including self-renewal capacity 

and quiescence. Quiescent LSCs can survive to radiation and chemotherapy acting as a 

reservoir for leukemia relapse, the major cause of death for AML patients. Therefore, LSCs 

quiescence is critical for leukemia maintenance and few evidences suggest that quiescence 

regulation in pre-leukemic phase plays a pivotal role for leukemogenic process as well.  

In this work, we demonstrated that the expression of NPMc+ or PML-RARα in HSCs is 

sufficient to enforce a quiescent stem cell gene expression profile. Therefore, we 

hypothesized that enhancement of the quiescent phenotype in HSCs could be a shared 

mechanism for leukemia development and maintenance. As an approach to examine the 

contribution of representative quiescence related genes in AML, we exploited RNA 

interference technology to perform in vivo screening. Among the target genes we found 

depleted during the screening, silencing of Stat1 or Sytl4 in AML blasts was sufficient to 

significantly decrease in vitro self-renewal and delay leukemia growth in vivo.  
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5.   Introduction  

 

5.1  Hematopoiesis is hierarchically organized with HSCs at the apex  

The human body produces millions of blood cells every second for the entire lifetime1. Since 

most of the various mature blood cells are short-lived, Hematopoietic Stem Cells (HSCs) 

have the role of continuously replenish multipotent progenitors and committed precursors in 

the process called hematopoiesis. HSCs are the rare cell population at the top of the well 

characterized hematopoietic hierarchy, which is depicted as a series of branches that become 

progressively restricted towards each hematopoietic lineage (Figure 1). As other stem cells, 

HSCs are able to self-renew and to differentiate, producing all the mature cells of the blood, 

both myeloid and lymphoid. Self-renewal is defined as the property of every stem cell to, 

upon division, produce one (asymmetric division) or two (symmetric division) daughter cells 

which retain the capacity for self-renewal, ensuring a long-term maintenance or expansion 

of the stem cell compartment. 
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Figure 1. The hierarchical organization of hematopoietic cells. In mice, the Lin- Sca1+ 
cKit+ compartment is enriched in stem and multipotent progenitor cells that gradually 
differentiates towards the hematopoietic lineages (adapted from Larsson and Karlsson, 
Oncogene 2005). 

 

In mammals, the first “primitive” hematopoiesis wave arises from the yolk sac, followed by 

the aorta-gonad-mesonephros (AGM) region of the embryo, the fetal liver and, in the adult, 

HSCs reside in the bone marrow (BM). HSCs are highly dependent on their niche for the 

regulation of self-renewal and differentiation potential, and their properties may vary 

depending on the different environment. For instance, while adult HSCs are mostly 

quiescent, when in the fetal liver they are mostly proliferating, to ensure the stem cell 

expansion needed for embryogenesis. In the adult bone marrow, HSCs are found to reside 

in two distinct niches, the endosteal and the vascular region2-5 (Figure 2). Bone marrow cells 

synthetize important factors for HSCs such as thrombopoietin (TPO)6, stem cell factor 

(SCF)7 and CXC-chemokine ligand 12 (CXCL12)8. The niche microenvironment is 

therefore involved in HSCs quiescence and self-renewal control.  
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Figure 2. Adult HSCs reside in specialized niches in the bone marrow. HSCs are found 
both adjacent to osteoblasts (the osteobast niche) and to blood vessels (the vascular niche). 
Bone marrow also contains stromal cells that support hematopoiesis producing cytokines 
such as c-Kit ligand, interleukins, thrombopoietin (TPO), and erythropoietin (EPO) 
necessary for HSCs self-renewal and differentiation (adapted from Orkin and Zon, Cell 
2008). 

 

In homeostatic conditions, HSCs are mostly quiescent and only a small pool actively 

contributes to blood production9. Quiescence is defined as the reversible absence of cycling, 

also named G0 phase of the cell cycle. The ability of HSCs to remain in the quiescent phase 

of the cell cycle is thought to be fundamental for stemness maintenance, even though a rapid 

cell cycle entry is required for the efficient response to conditions of hematopoietic stress 

such as bone marrow injury. In 1999, Weissman and colleagues analyzed the kinetics of the 

murine long-term HSCs (LT-HSCs) cell cycle demonstrating that, in homeostatic 

conditions, about 75% are in G0 phase and are recruited into cell cycle every 57 days, on 

average10. More recent works confirmed these findings and computational models suggested 

that adult quiescent HSCs divide approximately five times during the mouse lifetime9.  

Stem cell quiescence is actively regulated by intrinsic mechanisms and microenvironmental 

signals, both converging towards characteristic transcriptional, epigenetic and metabolic 

profiles11,12. Quiescence has been linked to HSCs long-term potential, necessary for the 

maintenance of blood compartment throughout the whole lifetime of an individual. 
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Functional HSCs maintain the capacity to rapidly enter cell cycle in response to 

physiological stresses such as blood loss. Loss of HSCs quiescence, as following hyper-

proliferative signals, leads to depletion of HSCs pool, accumulation of DNA damage and 

exhaustion of self-renewal potential13,14. Therefore, genes involved in quiescence regulation 

are critical for maintain self-renewal capacity in stem cells.  

 

5.2  Use of surface markers to identify HSCs 

In the last 30 years, many groups focused on the prospective isolation of HSCs. Florescence-

activated cell sorting (FACS) technologies have improved the accuracy of single cell 

isolation according to surface markers expression or functional properties.  

Thought the murine hematopoietic system has been more extensively characterized, it shares 

many critical features with the human, starting from the hierarchical organization. However, 

differences in the surface markers include the expression of the CD34 molecule that is 

exclusively present on human HSCs. Indeed, murine LT-HSCs are typically isolated using 

a combination of surface markers including Lin-, Sca1+, cKit+, CD34- and Flk2- (Weissman 

approach) or Lin-, Sca1+, cKit+, CD150+ and CD48- (SLAM compartment)4,15. More 

recently, highly quiescent LT-HSCs have been isolated as CD34- Flk2- cells within the 

SLAM compartment9. Human HSCs, instead, have been historically described as enriched 

in Lin-, Thy1+, CD34+, CD38neg/low cells16. More recently, Dick and colleagues described a 

combination of surface markers which is highly enriched in human functionally validated 

HSCs17 and includes Lin-, Thy1+, CD34+, CD38-, CD45RA- and CD49f+. Moreover, some 

functional properties can be used to enriched for HSCs, for instance the major efflux of 

Hoechst 3334 in the side-population18 or their enhanced label retaining properties, upon 

BrdU or H2B-GFP labeling9.  

Recent studies have challenged the traditional hierarchical organization of hematopoietic 

system19,20. Dick and colleagues, combining single cell-sorting strategy and functional 

analysis, demonstrate that hematopoietic hierarchy might not follow the classical model. In 
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their model, oligopotent progenitors are the main component in the fetal liver hematopoiesis, 

while, in the adult BM, unilineage progenitors with myeloid or erythroid potential are 

prevalent. Human definitive hematopoiesis can be therefore subdivided in two main 

compartments with HSCs and MPPs at the top and committed unipotent progenitors at the 

bottom (Figure 3)19. 

 

 

Figure 3. Redefined model for human hematopoietic system organization. Recent 
studies demonstrated that adult hematopoiesis is mainly organized two compartment: a 
multipotent one formed by HSCs and MPPs and a unipotent compartment with lineages 
committed progenitors (adapted from Notta et al., Science 2016).  

 

5.3  Quiescence regulates HSCs self-renewal  

Every HSCs fate decision, such cell division, differentiation, migration, cell death or self-

renewal, must be highly regulated to avoid HSCs exhaustion and bone marrow failure, on 

one side, and uncontrolled proliferation and leukemic transformation, on the other.  

Cell cycle is mainly controlled by cyclins, cyclin-depenent kinases (CDKs) and their 

inhibitors (CKIs, CDK inhibitors). Several CKIs of either the INK4 or CIP/KIP gene 

families have been described to play a critical role in regulation of HSCs quiescence. p21 

(Cdkn1a), is a CKI belonging to the CIP/KIP family and it is one of the major G1 phase 

checkpoint regulator. p21 knock-out (KO) mice show increased HSCs number and 

proliferation in homeostatic conditions. Upon myelo-ablative stress, such as 5-fluorouracil 

(5-FU) treatment, p21 KO mice die due to HSCs depletion. Furthermore, serial bone marrow 

transplantation (BMT) highlighted an impairment in self-renewal potential of p21 KO 
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HSCs21. Another member of the CIP/KIP family, p57 (Cdkn1c), is highly expressed in 

quiescent HSCs and progressively decreases during differentiation toward multipotent 

progenitors (MPPs)22. p57 deficient HSCs are less quiescent and are defective in self-

renewal potential. Moreover, abnormalities in p57 KO HSCs can be corrected by knocking 

p27 (Cdkn1b), another CKI, in the p57 locus, suggesting a functional overlap between the 

two genes in control HSCs homeostasis23.  

Cdk6 promotes cell-cycle progression and has the opposite role of the above described CKIs. 

Cdk6 ablation does not affect HSCs in homeostatic conditions, yet Cdk6 KO HSCs can not 

be activated upon proliferation signals and do not efficiently repopulate mice in competitive 

BMT24. Consistently, Cdk6 is non expressed in LT-HSCs, while it is present at high levels 

in short term-HSCs (ST-HSCs), where it may mediate rapid cell cycle entry upon 

stimulation. Thus, both LT- and ST-HSCs are quiescent, but the higher level of Cdk6 

expression suggests that the ST-HSCs population is primed to enter proliferation. Enforced 

Cck6 expression in LT-HSCs is sufficient to shorten quiescence exit without impact on 

functionality. Therefore Cdk6 absence preserve LT-HSC pool from exhaustion25.  

Cell cycle entry and quiescence of HSCs are also regulated by many transcription factors, 

including Gata2, Gfi1 and Cited2. Among them, Gata2 is highly expressed in quiescent 

hematopoietic cells and Gata2 KO mice die during embryonic development for defects in 

HSCs26. Enforced GATA2 expression in human cord blood CD34+ cells increases 

quiescence but reduces proliferation and performance in long-term culture-initiating cell 

assay (LTC-IC). Indeed, human HSCs expressing high level of exogenous GATA2 fail to 

contribute to hematopoiesis in NOD-SCID mice while GATA2low cells delay hematopoiesis 

contribution, remaining quiescent27. Therefore, Gata2 promotes quiescence both in vitro and 

in vivo and its expression must be fine tuned to maintain correct HSCs functionality.  

Another factor involved in quiescence regulation is Gfi1, a zinc finger transcriptional 

repressor. Gfi1 KO mice show increased number of LT-HSCs in their bone marrow due to 

increased proliferation. Gfi1 KO HSCs, however, have decreased long-term reconstitution 
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capacity in competitive BMT, thus establishing an inverse correlation between HSCs 

proliferation and self-renewal potential28.  

Lastly, overexpression of the transcriptional coactivator CITED2 in human CD34+ cells 

resulted in enhanced HSCs colony-forming efficiency in vitro and a higher engraftment 

capacity in NSG mice. CITED2 enhances quiescence of CD34+CD38− HSCs, in part by 

increasing p21 expression29. 

Soluble factors and cytokines also play a role in HSCs quiescence regulations, pointing out 

the active and fundamental role of the niche microenvironment. Thrombopoietin (TPO) 

signaling, mediated by the interaction between TPO and its receptor MPL, is critical for 

maintaining quiescence and self-renewal in adult HSCs30. HSCs that reside in the endosteal 

niche next to osteoblasts (which produce TPO) also express MPL. Inhibition of TPO/MPL 

signaling results in loss of quiescent HSCs while its activation results in p57 up-regulation6. 

Another example of environmental control of quiescence is the transforming growth factor-

beta (TGFβ), a secreted factor present at high levels in the bone marrow and a well described 

negative regulators of hematopoiesis. However, conditional deletion of TGFβ receptor I 

(Tgfbr1) does not affect normal hematopoiesis and bone marrow cells are not defective in 

their ability to long-term repopulate recipient mice in serial BMT31. Accordingly, in 

homeostatic conditions, TGFβ signaling inhibition does not induce HSCs proliferation in 

vivo. On the contrary, under stress conditions, such as treatment with chemotherapeutic 

agents, TGFβ blockage accelerates hematopoietic reconstitution and delays HSCs re-enter 

in the G0 phase. p57 has been identified as one of the key downstream mediator of TGFβ32. 

Furthermore, a recent work showed that TGFβ is highly expressed by megacaryocites (MK) 

in the bone marrow niche, and MK ablation results in HSCs exit from quiescence and 

increased proliferation. Indeed, TGFb1 injection into mice depleted of MK is able to restore 

HSC quiescence while conditional deletion of Tgfb1 in MK phenocopies their complete 

ablation in the niche33.  
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Lastly, CXCR4, the receptor of CXCL12 chemokine, is present on HSCs and its deletion in 

adult mice results in HSCs reduction in number, increased sensitivity to myelotoxic stress 

such as 5-FU and disadvantage in competitive BMT8. Moreover, deletion of Cxcl12 from 

mesenchymal cells in the niche is associated with marked loss of HSCs quiescence and long-

term reconstitution ability34.  

Additionally, HSCs maintain the quiescence state by regulating specific metabolic pathways. 

Quiescent HSCs are characterized by a low mitochondrial activity and rely on glycolysis35. 

HIF1⍺, the hypoxia inducible factor 1⍺, regulates HSCs in hypoxic conditions and promotes 

glycolysis36,37. Indeed, HIF1⍺ deficient HSCs lose their quiescence. More recently, dietary 

metabolites have been described to influence HSCs behavior. In particular, vitamin A, and 

its metabolite retinoic acid, have been linked to HSCs quiescence maintenance, while 

vitamin C signaling regulates HSCs self-renewal capacity38,39.  

 

5.4  Acute Myeloid Leukemia 

Acute Myeloid Leukemia (AML) is a heterogeneous group of diseases characterized by 

immature and hyper-proliferating leukemic cells (i.e. leukemic blasts) infiltrating the bone 

marrow, blood and other tissues, eventually leading to hematopoiesis failure. Infiltration of 

the bone marrow and low number of normal terminally differentiated blood cells (anemia, 

neutropenia/lymphocytopenia and thrombocytopenia) are at the basis of the clinical 

manifestations of the disease, including fatigue, infections and hemorrhages, and, if not 

treated, AML has a rapid fatal outcome. AML is the most common type of a hematological 

malignancy in adults, with incidence increasing with age. In the United States, AML 

incidence ranges between 3-5 cases per 100,000 population. Only in 2016, about 20,000 new 

cases have been diagnosed and more than 10,000 patients died40. Despite advances in 

therapies for some subtypes of AML and, in particular, for younger patients, prognosis for 

the majority of cases remain poor as only less than 50% of patients are definitely cured41. 

The standard therapeutic approach, which has not significantly changed in the last 30 years, 
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consists in 7 days of cytarabine infusion and 3 days of anthracycline (e.g. doxorubicine), 

followed by allogeneic bone marrow transplantation for eligible patients. The induction 

therapy allows to rapidly reduce the number of blasts but the majority of patients undergoes 

relapse after initial remission42. This year, for the first time since 2000, a new drug, 

Midostaurin (Novartis), has been approved by FDA for the treatment of AML harboring 

mutations in FLT3 gene43.  

The different AML types can be categorized using the French-American-British 

classification (FAB), established in 1976. It defines 8 classes of AML from M0 to M7 

according to the morphological evaluation of the blasts (Table 1).  

 

Type Name Cytogenetics 

M0 Acute myeloblastic leukemia, undifferentiated  

M1 Acute myeloblastic leukemia, without maturation  

M2 Acute myeloblastic leukemia, with granulocytic maturation t(8;21) RUNX1-RUNX1T1, t(6;9)  

M3 Acute promyelocytic leukemia (APL) t(15;17) PML-RAR⍺, t(11;17) 

M4 Acute myelomonoytic leukemia inv(16), del(16q), t(16;16) 

M5 Acute monocytic leukemia t(9;11) MLLT3-KMT2A, t(11;19) 

M6 Acute erythroid leukemia  

M7 Acute megakaryoblastic leukemia t(1;22) 
 

Table 1. FAB classification of AML. 

 

More recently, the World Health Organization (WHO) introduced a new classification, 

which incorporated additional disease features (genetic, morphological, immunophenotypic 

and clinical) and defined 6 AML subtypes44 (Table 2). 
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Types  Genetic abnormalities 

AML with recurrent genetic abnormalities 

AML with t(8:21)(q22;q22); RUNX1-RUNX1T1  

AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 

APL with PML-RAR⍺  

AML with t(9;11)(p21.3;q23.3); MLLT3-KMT2A  

ML with t(6;9)(p23;q34.1); DEK-NUP214  

AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM 

AML (megakaryoblastic) with t(1;22)(p13.3;q13.3); RBM15-MKL1 

AML with BCR-ABL1 (provisional entity)  

AML with mutated NPM1  

AML with biallelic mutations of CEBPA  

AML with mutated RUNX1 (provisional entity) 

AML with myelodysplasia-related changes  

Therapy-related myeloid neoplasms  

AML (not otherwise specified) 

AML with minimal differentiation  

AML without maturation  

AML with maturation  

Acute myelomonocytic leukemia  

Acute monoblastic/monocytic leukemia  

Acute erythroid leukemia  

Pure erythroid leukemia  

Acute megakaryoblastic leukemia  

Acute basophilic leukemia  

Acute panmyelosis with myelofibrosis 

Myeloid sarcoma  

Myeloid proliferations related to Down syndrome 
Transient abnormal myelopoiesis  

ML associated with Down syndrome  

 

Table 2. WHO classification of AML and related neoplasms. 

 

Accurate classification is fundamental for the proper diagnosis and treatment of the disease. 

Indeed, in combination with other prognostic factors such as the age, different AML 

subtypes are associated with different clinical outcome. The broad spectrum of chromosomal 

aberrations and mutations described in different AML allows the stratification into 

favorable, intermediate and adverse risk groups. In particular, translocations t(8;21) and 

t(15;17), which cause the expression of the oncogenes AML1-ETO and PML-RAR⍺ 

respectively, are indicative of favorable prognosis. Complex karyotype and monosomy are 

instead associated with poor prognosis due to high treatment failure risk. Finally, AML 
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without cytogenetic abnormalities (NK-AML, normal-karyotype), accounting for about 50% 

of all AML cases, often falls into the intermediate risk group45. Among NK-AML, gene 

mutations are fundamental to refine risk stratification. Mutations in CEBPA or NPM1 

without concomitant mutation in FLT3 are associated with good prognosis, while mutations 

in KMT2A, DNMT3A or FLT3 itself are associated with worse prognosis46. 

One of the major obstacles in leukemia eradication is given by the extensive genomic and 

biological inter- and intra-tumoral heterogeneity. Extensive whole-exome sequencing 

experiments showed that each AML presents about 10 mutations per exome, yet more than 

a hundred of different genes were found to be recurrently mutated in AML patients14,47. 

AML intra-tumoral complexity is a well described phenomenon characterized by the 

presence of multiple genetic subclones within the leukemic bulk48,49, which contributes to 

therapy failure and relapse, the major cause of death in leukemia patients.  

Mutations in the NPM1 gene are found in 55% of NK-AML (which account for 45% of all 

AML cases)50. In the WHO classification, NPM1-mutated AML are recognized as a distinct 

category while, in the FAB classification, NPM1 mutations are associated with most 

subtypes except the M3. NPM1 gene encodes for nucleophosmin, a nucleus-to-cytoplasm 

shuttling protein. Mutations in NPM1, mainly found in exon 12, cause a frame shift in the 

C-terminus, which generate a new nuclear export signal and is associated with protein 

delocalization in the cytoplasm (NPMc+). The most common mutation consists in a 4 base 

pair insertion (type A mutation) and is found in about 80% of cases50. Despite NPM1 

mutations were discovered more than 10 years ago, the associated molecular mechanisms 

are still unclear. Available data suggest that NPMc+ posses both loss- and gain-of-

functions51. In murine models, expression of NPMc+ alone is not sufficient to induce 

leukemia, suggesting that cooperative mutations are needed52. Indeed, internal tandem 

duplication (ITD) of the FLT3 gene, which encode for a receptor tyrosine kinase, is 

frequently associated with NPMc+ in AML, suggesting genetic cooperation between the two 

mutations50. Notably, the variant allele frequency (VAF) of NPMc+ in AML is around 0.5, 
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while that of FLT3-ITD is much lower, indicating that only NPMc+ is present in 

heterozigosity in all cells of the samples, thus suggesting that the NPMc+ occurs prior to 

FLT3-ITD during leukemogenesis53. NPMc+ is also found in association with DNMT3A, 

IDH1, IDH2 and TET2, while it is mutually exclusive with chromosomal translocations 

(including PML-RAR⍺ and MLL-AF9) and mutations in MLL1, RUNX1, CEBPA and 

TP5354,55. Comparative analysis of the gene expression profile of NPMc+ and NPM1-WT 

AML allowed the identification of a NPMc+ associated signature characterized by down-

regulation of CD34 and up-regulation of HOX, MEIS1 and PBX3 genes, which are known 

master regulators of HSCs self-renewal56,57. 

Acute promyelocytic leukemia (APL) is a distinct subtype of AML, accounting for 5-15% 

of all adult AML and characterized by a block of myeloid differentiation at the promyelocyte 

stage. Almost all patients harbor a translocation between chromosome 15 and 17 that leads 

to the formation of the oncogenic fusion protein PML-RAR⍺58. PML-RAR⍺ transgenic mice 

develop APL after a long latency (6-12 months) and at variable penetrance, suggesting that 

PML-RAR⍺	  needs secondary events to induce a full-blown leukemia59-61. Indeed, several 

and different additional genetic alterations (e.g. FLT3, WT1, NRAS and KRAS) have been 

described both in human and in murine APL47,62-65. Beyond genetic complexity, 

combinatorial treatment with all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) is 

one of the best example of targeted therapy in cancer.  

Treatment with ATRA and ATO induces disease remission in the vast majority of APL 

patients, suggesting that PML-RAR⍺ expression is indispensable for the maintenance of the 

disease. Indeed, both agents induce PML-RAR⍺ degradation and restoration of the normal 

PML and RAR⍺ signaling, resulting in blasts maturation66. Notably, treatment with ATRA 

or ATO alone is invariably associated with disease relapse, frequently due to somatic 

mutations in PML-RAR⍺, PML or RAR⍺, while ATRA-ATO combination induces disease 

cure, suggesting that the two agents target PML-RAR⍺ in different cellular compartment of 

the leukemia67.  
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Rearrangements of MLL gene (KMT2A or MLL1) occur in about 10% of human AML. The 

MLL gene is located on chromosome 11 and it encodes for a H3K4 methyl-transferase 

mainly acting as a transcriptional activator. More than 50 translocation partner genes have 

been described in AML patients and among them, MLL-AF4, MLL-AF9, MLL-ENL, MLL-

AF10 and MLL-AF6 are the most frequent. MLL-fusion proteins retain the functional N-

terminal of MLL, fused to the C-terminal of the translocation partner. All the MLL-fusion 

genes are in frame and result in the expression of chimeric transcription factors capable of 

efficient transformation of HSCs and progenitor cells68,69. Critical transcriptional targets of 

the MLL-fusion proteins are the HOX cluster, MEIS1 and PBX3 regulators of HSCs self-

renewal70,71, CDK6, JMJD1C, MEF2C, EYA1, MYB and MECOM72-77.  

 

5.5  Leukemia Stem Cells 

Only a fraction of leukemic cells is able to sustain the tumor growth. These cells share 

morphological and biological features with normal HSCs, and are termed Leukemia Stem 

Cells (LSCs)78. LSCs are experimentally defined by their ability to: (1) generate a xenograft 

resembling the original tumor, (2) self-renew, assessed by serial passages in vivo, and (3) 

give rise to daughter cells, which can proliferate but are unable to establish or maintain 

leukemia in vivo (i.e. non-LSCs)79,80.  

Seminal discoveries in AML in the 90s allowed the more general conception of the Cancer 

Stem Cell (CSC) model, which is today used to explain relevant features of the intra-tumor 

biological heterogeneity of both leukemia and epithelial tumors81. According to the CSC 

model, tumors are described as aberrant tissues harboring their own hierarchical 

organization, similar to that of their normal counterparts, with CSCs placed at the apex of 

the hierarchy. In this view, CSCs are considered the only cell type which possesses self-

renewal properties and the intrinsic ability to perform asymmetric cell divisions, thus being 

responsible oh both tumor growth and generation of intra-tumoral cell 
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heterogeneity82,83(Figure 4, right panel). Accordingly, CSCs are regarded as responsible for 

tumor initiation, maintenance, propagation and disease relapse after initial remission.  

Although the CSC model is widely accepted within the scientific community, most currently 

used therapeutic approaches target highly proliferating cells and find their rationale on a 

different model of tumorigenesis, the so-called “stochastic model” of tumor growth, which 

implies that all cancer cells have equal self-renewal ability and tumorigenic potential (Figure 

4, left panel). However, in both models, intra-tumoral heterogeneity is generated by the 

acquisition of novel somatic mutations that establish subclonal populations within the tumor. 

Hierarchically-organized tumors show an additional degree of intra-tumoral heterogeneity 

due to phenotypic transition between CSCs and non-CSCs. This plasticity has been well 

described in solid tumors and is highly dependent on microenvironmental stimuli84. 

 

 

Figure 4. The two major models to describe tumor growth: stochastic vs hierarchical 
model. In the left panel is depicted the stochastic model of tumor organization in which each 
tumor cell has the same capability to growth. On the right, the hierarchical cancer 
organization is depicted: in this model, CSCs are the only cells able to self-renew and sustain 
the tumor growth. Nevertheless, a certain grade of plasticity can occur (dashed arrow). In 
both models, the acquisition of novel somatic mutations account for the genetic 
heterogeneity within the tumor (adapted from Beck and Blanpain, Nat Rev Cancer 2013). 

 

Traditional chemo- and radiotherapies, which are able to target only actively cycling cells, 

have limited or no effects on LSCs. This intrinsic resistance can be due to the prevailing 

quiescent state of LSCs, and other mechanisms, such as the expression of drug efflux pumps, 

anti-apoptotic mediators and peculiar DNA damage repair response85. Thus, development of 
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novel therapeutic strategies aimed at targeting quiescent LSCs may impact on leukemia 

eradication.  

Pioneering studies in John Dick’s lab demonstrated the existence of LSCs in human AML 

by the prospective isolation and xenotransplantation into immunocompromised mice of 

different leukemic populations based on CD34 and CD38 antigen expression. The first 

studies showed that only the CD34+CD38- compartment retains tumorigenic ability in 

vivo78,86. Nevertheless, there is great heterogeneity in the expression level of the two surface 

markers among different AML samples. Indeed, further studies identified LSCs at varying 

frequencies in different cell populations and, for instance, in NPM-mutated AML, LSC 

activity is commonly found in the CD34- compartment87. More recently, Dick and 

colleagues, combining deep sequencing and xenotransplantation, demonstrated that LSCs 

can either express HSCs/progenitors markers or be enriched in immunophenotypically 

committed cells88. Notably, regardless their immunophenotype, functionally validated LSCs 

are characterized by the same transcriptional program strongly related to stemness 

maintenance. 

 

5.6  The AML cell of origin 

Cancer development was initially described as the accumulation of sequential somatic 

mutations in a cell clone. If these mutations result in a growth advantage, the clone becomes 

the predominant cell population. This simplistic model has been intensively revised over 

years82. For many cancer types, including AML, the target cell of the transformation events 

is still not clear. The findings that AML blasts can co-expresses both myeloid and lymphoid 

markers89 and the observation that the only cells capable of transplanting leukemia in 

xenograft models have a CD34+CD38- phenotype78,86, similar to that of normal human 

HSCs, lead to hypothesize that the cell of origin resides in this compartment. However, LSCs 

do not necessarily originate from the malignant transformation of normal HSCs90. Indeed, 

xenotransplantation experiments in later studies led to the detection of LSCs in AML 
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populations with variable phenotypes downstream of HSCs. In the case of APL, the PML-

RAR⍺ fusion gene is absent in HSCs compartment while is found in more committed 

progenitors (i.e. promyelocytes) which are able to engraft in humanized ossicle xenograft 

mice91,92. Moreover, studies on murine models of spontaneous leukemogenesis have shown 

that oncogenic mutations can also confer self-renewal properties to cells with limited 

regenerative potential93-95.  

A recent study showed that the AML chromatin landscape pattern is able to reflect the 

transformed cell of origin, offering a new prognostic tool for patients96. Indeed, it is worth 

thinking that the biological properties of LSCs, then, may vary with regard to the 

immunophenotype, transcriptome, genetics, cell cycle status and multilineage potential of 

the cell of origin, as shown for other tumors, such as lymphoma97,98.  

 

5.7  Clinical implication of LSCs 

Beside the cellular origin, the existence of LSCs has important implications for treatment, 

since these cells seem to be intrinsically resistant to traditional therapies, thus preventing 

disease eradication. Moreover, especially in AML, high LSCs frequency and better 

engraftment ability in immunodeficient mice are associated with more aggressive 

disease99,100. As well, the degree of overlap between LSCs and HSCs gene expression 

profiles correlates with poor clinical outcome101. In the last years, many groups tried to 

identify expression signatures able to classify AML according to their pathogenesis and 

prognosis102. In particular, Ng and colleagues have recently published a biomarker list of 17 

genes related to stemness (the LSC17 score), differentially expressed between LSCs and 

non-LSCs, across 78 AML patients. The LSC17 score proved to be able to identify patients 

with poor outcomes in five independent patient cohorts belonging to different AML 

subtypes103. 

The ability of LSCs to survive chemotherapy and radiotherapy has been associated with 

functional properties and molecular mechanisms shared with normal HSCs, such as 
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quiescence104,105, apoptosis evasion106, enhanced DNA damage response107 and lower 

concentration of reactive oxygen species (ROS)108.  Quiescence, in particular has been linked 

to therapy resistance since the traditional therapies are usually specific for actively 

proliferating cells. Notably, cell cycle-restriction appears to be fundamental for leukemia 

development107. High-throughput analysis of neutral somatic mutations (i.e. microsatellite 

instability) at single cell level allowed the reconstruction of cell lineage trees in two AML 

patients, from diagnosis to relapse. These cell lineage trees showed that mutations present 

in minor slowly-cycling sub-clones were maintained after treatment and, suggesting that 

AML relapse can derive from rarely-dividing cells capable of surviving chemotherapy. 

Interestingly, this phenomenon was not observed in other hematological malignancies such 

as Acute Lymphoid Leukemia (ALL)109.  Quiescent cells are characterized by low oxidative 

phosphorylation and LSCs have been shown to have lower ROS levels and oxygen 

consumption rates. At the same time, LSCs are highly dependent on oxidative 

phosphorylation, becoming more sensitive to Bcl-2 inhibitors106,108. Bcl-2 inhibitors are 

currently in clinical trials for hematological malignancies including AML.   

Despite the many common features between LSCs and HSCs, it may be possible to target 

gene networks that are specific for the survival of LSCs. This is the case of miR-126, which 

was found to promote quiescence and increased self-renewal in primary LSCs, with an 

opposite function in HSCs110. The design of novel therapeutic strategies for AML treatment 

should therefore include the specific targeting of LSCs, while sparing normal HSCs.  

Since markers commonly used to study LSCs in human AML are based on the 

immunophenotype of normal hematopoietic cells, a lot of effort has been invested into 

identifying specific molecules that discriminate LSCs from both normal HSCs and the bulk 

of leukemic blasts. Many surface markers have been proposed to be specific for LSCs in 

different AML subtypes but they often allow only the partial identification of the LSCs pool. 

The CD33 antigen, for instance, is highly expressed in AML blasts and in normal human 

myeloid committed progenitors, while it is not expressed on normal HSCs111. Therefore, 
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CD33 is a potential target for new therapies and specific antibodies are currently in clinical 

trials. In particular, GO (Gemtuzumab Ozogamicin), an anti-CD33 monoclonal antibody 

conjugated to the toxin calicheamicin, gave significantly increased remission rates in 

advanced and relapsed APL112,113. Since GO is highly active against APL, as compared to 

other AMLs, APL stem cells may reside in the CD33+ compartment and posses a more 

mature phenotype114. However, in 2010 Pfizer voluntarily withdrew GO due to safety 

concerns and the drug is currently available only for palliative use. SGN-CD33A, a novel 

anti-CD33 antibody conjugated to two molecules of a pyrrolobenzodiazepine dimer drug, is 

currently in clinical trials for AML and, up to now, it has demonstrated anti-leukemic activity 

with 47% of complete remission and rapid blast clearance with relatively modest toxicity115. 

 

5.8  Targeting quiescence in LSCs 

Inducing LSCs to proliferate might appear as a counterintuitive anti-leukemic strategy, 

because of the risk to accelerate disease progression or new mutations accumulation. 

However, experimental treatments with agents that induce cell cycle entry, in combination 

with standard chemotherapy, did not show evidences of accelerated disease 

progression116,117. Moreover, since quiescence regulation is similar in normal HSCs, this 

awaking strategy could affect normal hematopoiesis. Yet, clinical studies in hematological 

malignancies have not reported excessive toxicity, suggesting that a therapeutic window 

exists to distinguish normal and leukemic stem cells, at least for some neoplasms118. Thus, 

elucidation of the molecular mechanisms underlying maintenance of quiescence in LSCs 

might be critical for the identification of novel drug targets. Many approaches directed to 

target quiescence in LSCs have been described in Chronic Myeloid Leukemia (CML) in 

which LSCs phenotype is well characterized as CD34+CD38-. 
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Figure 5. LSCs quiescence is regulated by intrinsic and extrinsic factors (adapted from 
Takeishi and Nakayama, Cancer Science 2016). 

 

As already mentioned, self-renewal and quiescence of LSCs and HSCs is regulated by cell-

autonomous mechanisms and microenvironment signals (Figure 5). Among the known cell 

autonomous regulators of LSCs quiescence is the promyelocytic leukemia protein (PML), 

first identified as a component of the PML–RAR⍺ fusion protein in patients with APL 

(reviewed in Mazza and Pelicci, 2013)119. It has been demonstrated that ATO triggers 

proteasome-dependent PML-RARα degradation and reactivation of PML signaling, leading 

to LSCs eradication66,120. ATO is also effective in the treatment of CML, where like PML 

inactivation, it reduces the proportion of quiescent LSCs121. The mechanisms by which PML 

regulates quiescence may involve metabolic processes, in particular fatty acid 

oxidation121,122, and cell cycle control via regulation of p21, cyclins, and c-Myc119.   

As above-mentioned, the CKI p27 is necessary for HSCs quiescence maintenance. At the 

same time, p27 deletion in MLL-AF9 blasts reduces LSCs frequency and, inducing 

proliferation, it causes loss of drug resistance123. Another transcriptional regulator involved 

in quiescence regulation is the peroxisome proliferator-activated receptor-𝛾 (PPAR𝛾), a 

LSC

LSC$niche
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nuclear receptor that governs fatty acid storage and glucose metabolism. The PPAR𝛾 agonist 

pioglitazone induces cell cycle entry of LSCs isolated from CML patients, an effect that was 

associated with down-regulation of STAT5 and CITED2124. The combination of 

pioglitazone and Imatinib (Novartis) reduces LSCs viability in vitro and a phase II clinical 

trial in CML is currently ongoing125.  

Among enzymatic functions, the F-box protein FBXW7, the substrate recognition subunit 

of the SKP1-CUL1-FBXW7 ubiquitin-ligase complex, has been described to regulate LSCs 

quiescence. The SKP1-CUL1-FBXW7 ubiquitin-ligase complex is responsible for the 

ubiquitination and subsequent degradation of many cellular substrates including c-Myc. In 

a mouse model of CML, Fbxw7 genetic ablation induces LSCs to enter cell cycle due to 

increased expression of c-Myc126. Moreover, Fbxw7-deficient LSCs become sensitive to 

Ara-C and Imatinib treatment leading to CML eradication. Another pathway tightly 

regulated in LSCs biology is mTOR. mTORC1 inhibition, as induced by rapamycin 

treatment, is sufficient to decrease LSCs number in a Pten-depleted AML model. Moreover, 

rapamycin treatment is able to restore HSCs function in the same context127. Though the 

mTORC2 complex is not extensively characterized, it has been recently demonstrated that 

depletion of one of its component, namely Rictor, leads to hyperactivation of mTORC1 and 

MLL-AF9 LSCs exhaustion after serial BMT, due to quiescence exit128.  

Regarding the extrinsic factors regulating LSCs quiescence, treatment with the granulocyte 

colony-stimulating factor (G-CSF), a cytokine that promotes maturation, differentiation and 

proliferation of myeloid cells, has been shown to induce LSCs cell cycle entry. G-CSF 

treatment in combination with Ara-C is able to reduce LSCs frequency improving survival 

in AML xenograft models105. Chemokine ligand 12 (CXCL12) is a chemoattractive cytokine 

with the function of retaining HSCs in the BM and maintain their quiescence, interacting 

with its receptor CXCR4 present on HSCs surface8. Targeting this axis with CXCR4 

inhibitors is sufficient to sensitize AML and CML cells to chemotherapy129-131. Other 

microenvironment signals important for LSCs are the interferons (IFN), cytokines mainly 
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produced by cells of the immune system in response to infections and also tumor cells. In 

particular, IFN⍺ treatment in CML patients is able to potentiates Imatinib therapy, though 

the underlying molecular mechanisms are not clear132. The effect of INF⍺ treatment is 

instead well describe in normal HSCs where it induces cell cycle entry associated with down-

regulation of p27, p57, Foxo3a and TGFβ, all genes that support HSCs quiescence133-135. 

Lastly, angiopoietin-1 (Ang1) is a cytokine known to promote HSCs quiescence via the 

interaction with its tyrosine-kinase receptor Tie2136. Ang1 signaling pathway has been 

recently described as a mechanism of quiescence maintenance in Evi1 highly expressing 

AML, protecting leukemic cells from anti-cancer drugs137.  

Growing evidences showed that also noncoding RNAs play important role in stem cell 

maintenance. microRNAs are small non-coding RNA molecules regulating gene expression 

at post-transcriptional level. For instance, miR-99 family consists of a group of microRNA 

highly expressed in HSCs and in acute myeloid LSCs. miR-99 promotes in vitro clonogenic 

capacity both in HSCs and LSCs, while its down-regulation reduces HSCs long-term 

reconstitution ability inducing cell cycle entry, and it reduces LSCs frequency in a MLL-

AF9 driven AML mouse model by inducing blasts differentiation138.  

 

5.9  Pre-leukemic HSCs 

With the advent of massive sequencing technologies, lots of information have been produced 

on the mutational status of both normal and malignant hematopoiesis. High-throughput 

sequencing of AML samples showed that mutations such as DNMT3A, IDH2 or TET2, 

found at diagnosis are often present in patients at complete morphological remission139-142. 

Moreover, investigation of residual normal HSCs in AML samples revealed that many 

patients harbor a population of HSCs bearing some of the mutations present in the 

corresponding leukemic cells. This so-called pre-leukemic stem cells are present both at 

diagnosis and relapse and their proportion in the stem cell compartment correlates with poor 

prognosis139,140.  This finding is clinically relevant because relapses could arise both through 
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selection of pre-existing and resistant leukemic clones or through the evolution of pre-

leukemic HSCs through the acquisition of additional mutations. In the last scenario, pre-

leukemic HSCs will act as a reservoir for leukemic progression and they should be carefully 

evaluated during minimal residual disease monitoring. 

Pre-leukemic mutations have been found in healthy individuals as well. On average, clonal 

hematopoiesis, as identified by a somatic mutation, is observed in 10% of healthy individuals 

older than 65 years old143. A more recent study, able to detect very low frequent mutations 

(0.0003 VAF) in the peripheral blood of 50-60 years-old healthy individuals, indicates that 

the 95% of them is characterized by clonal hematopoiesis, frequently harboring mutations 

in DNMT3A and TET2144. Moreover, mutations are present in multiple hematopoietic 

lineages, suggesting a long lived progenitor or a HSC as the cell of origin. Clonal 

hematopoiesis is associated with higher risk of hematological cancer development143,145. In 

contrast to leukemic cells, pre-leukemic cells are not characterized by aberrant self-renewal 

or differentiation potential and they require additional mutation to establish a frank 

leukemia.  

 

5.10   Assays to study HSCs and LSCs 

5.10.1   Transplantation into immunodeficient mice 

Traditionally, HSCs functionality is assayed by transplantation of defined cell populations 

into irradiated recipient mice. In this setting, it is possible to dissect all the defining functions 

of stem cells, namely engraftment, self-renewal, bone marrow reconstitution and multi-

lineage differentiation. Transplantation experiments, coupled with cell purification based on 

surface marker expression, have been instrumental for the characterization of HSCs and 

progenitors. As for normal HSCs, the study of LSCs depends and is influenced by the 

available experimental assays. The gold standard for human LSCs identification, in fact, 

remains transplantation into immunocompromised mice. However, xenotransplantation 

assay can introduce bias due to interspecies difference in cytokines, microenvironment and 
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immune system interactions146. Various xenograft models are suitable for the engraftment 

of self-renewing leukemia cells. Cells that are able to propagate leukemia in this context are 

functionally defined as Leukemia Initiating Cells (LICs), and they correspond to the 

experimental definition of LSCs147. Although, however, in vivo transplantation provided the 

first evidence for the existence of LSCs, this assay has some technical limitations. In 

particular, leukemogenic potential can not be assessed at single cell level and LSCs potential 

can be just segregated to a previously defined cell compartment. In addition, cells able to 

initiate the disease in mice could not be the same cells responsible for leukemia growth and 

maintenance in the patients. This problem is highlighted by the fact that the same leukemic 

population shows variable engraftment potential in different mouse strains: the more 

immunodeficient the mice are, the more they are permissive to human leukemic cells growth. 

Indeed, the transition from athymic mice, which lacked T-lymphocytes, to the SCID 

(severely combined immunodeficient) strains, which also lacke B-lymphocytes, allowed the 

first AML engraftment, and the introduction of more immunodeficient models (e.g. NOD or 

NSG mice, which also have defective innate immune system), as well as strains engineered 

to express human cytokines, led to significantly higher sensitivity in xenotransplantation 

assays148,149. 

 

5.10.2   Clonal tracking 

It has been recently shown that unperturbed native hematopoiesis differs from post-

transplantation hematopoiesis150,151. Single HSC reconstitution capacity, including self-

renewal and differentiation, has been studied by lineage-tracing and clonal tracking 

experiments in mice. In vivo genetic lineage-tracing experiments are based on the expression 

of an inducible recombinase under the control of a stem cell-restricted gene (e.g. TIE2), 

which activates a stable reporter gene (e.g. YFP) in HSCs selectively, thus allowing their 

identification and tracing150. Lineage tracking experiments have been also conducted using 

inducible transposons, which allow in situ HSCs tagging without manipulation (such as 
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isolation, ex vivo transduction and transplantation in irradiated mice)151. Results obtained 

with these more physiological settings are consistent with model in which adult 

hematopoiesis is maintained by thousands of clones derived from long-lived multipotent 

progenitors, rather than from HSCs. 

On the other hand, clonal tracking experiments combine viral cellular barcoding and NGS 

allowing an accurate investigation of HSCs clonal expansion in vivo152,153. These 

experiments, based on barcoded HSCs transplantation in irradiated recipient mice, showed 

that HSCs contribute at different extent to hematopoiesis and more than one HSCs 

population exists with distinct lineage bias153. HSCs heterogeneity is well characterized in 

terms of lineage bias and proliferative kinetics, especially during aging when the HSCs pool 

increases in size and accumulates preferentially myeloid-biased stem cells with reduced self-

renewal potential154.  

As well as for normal hematopoiesis, clonal tracking strategy can be used to map leukemic 

cell kinetics in vivo. Lentiviral barcoding of leukemic blasts and transplantation in recipient 

mice allow the quantification of LIC frequency and the evaluation of leukemia clonal 

composition155. Beside LIC frequency estimation, clonal tracking experiments allow to 

study the heterogeneous proliferative capacity of single LICs as well as drug resistance 

mechanisms, as already described in solid tumors156. Moreover, it has an increased 

sensitivity because it allows single cell identification by detection of individual barcodes. 

 

5.11   RNAi screenings 

RNA interference (RNAi) was originally discovered in C. elegans in 1998157 and it rapidly 

became a broadly used tool for loss-of-function studies, both in vitro and in vivo158,159. RNAi 

screens exploit a physiological mechanism that represses gene expression, primarily by 

causing the degradation of mRNA transcripts, allowing to interrogate the function of several 

genes simultaneously160. For a successful screen several factors have to be carefully 

evaluated such as library size, coverage and target identification and validation approaches. 
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RNAi library can be organized either in array format, in which each RNAi molecule is 

individually tested, or in a pool of shRNA (short hairpin RNA) molecules simultaneously 

assayed. The combination of this approach with retro- or lentiviral vectors allowed the 

possibility to perform screening in primary mammary cells, including stem cells. Indeed, 

several groups have performed RNAi screen in normal HSCs leading to new insights on self-

renewal regulation161-164. Other groups have employed this tool to identify hematological 

disease-relevant genes, especially tumor-suppressors as in the case of Rad17 in Eµ-Myc 

lymphoma model165. Finally, several RNAi screens have been performed to identify 

potential therapeutic target in hematological malignancies. One of the best example is the 

work of Zuber and colleagues, in which they used a murine AML model, characterized by 

the expression of MLL-AF9 and NrasG12D oncogenes, to perform an in vitro RNAi screen 

targeting around 250 chromatin regulators166. The study lead to the identification of Brd4, a 

bromodomain protein which binds to acetylated histones regulating transcription, as 

necessary for leukemia maintenance, sustaining Myc expression. They also demonstrated 

that the Brd4 small molecule inhibitor JQ1 has an anti-leukemic effect in vitro and in vivo, 

establishing the basis for its clinical usage. The MLL-AF9 leukemia mouse model has been 

successfully used to identify other potential therapeutic targets via in vivo screens. In 

particular, Ebert’s group identified Itgb3 and Csnk1a1 as conceptually ideal targets because 

dispensable for normal HSCs but required for AML in vivo167,168. Beyond studies on normal 

and malignant hematopoietic systems, the use of similar screening approaches has been 

extensively used in various solid tumors, leading to the identification of genes involved in 

the tumorigenic process169,170.  
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6.   Materials and Methods 

 

6.1  AML mouse models 

Mice were housed in a pathogen-free animal facility at European Institute of Oncology. The 

procedures related to animal use have been communicated and have been approved by the 

Italian Ministry of Health.  

NPMc+ transgenic mouse model express the cDNA of the most frequent NPM mutation 

(mutA, found in about 80% of the patients)50 into the Hprt locus and under the control of the 

pCAG promoter171. These mice express the oncogene upon CRE-mediated excision of the 

STOP cassette cloned between the pCAG promoter and the NPMc+ cDNA. Conditional 

NPMc+ mice were crossed with conditional Rosa26-EYFP mice172 to obtain NPMc+fl/-

/YFPfl/- mice. In order to express the oncogene, bone marrow mononucleated cells (BM 

MNCs), isolated from NPMc+fl/-/YFPfl/-  or YFPfl/- mice,  were treated ex vivo with TAT-

CRE, a recombinant version of CRE recombinase fused with the HIV protein TAT. In 

details, total BM cells were isolated by grinding bones from posterior limbs and sternum. 

Total BM cells were layered onto density gradient (Histopaque® 1083, Sigma-Aldrich) and 

centrifuge at 1500 rpm, 45 min at 4°C. During centrifugation, BM-MNCs remain at the PBS-

Histopaque® interface and can be collected. BM-MNCs were re-suspended 5x106/ml in 

serum-free media (Hyclone, USA) and incubated for 45 min at 37°C with 100 µg/ml of TAT-

CRE. Transduction was stopped diluting samples with 10 volumes of BM-MNCs medium 

(IMDM (Gibco/Invitrogen, Carlsbad, CA), 12.5% heat inactivated fetal bovine serum (FBS), 

12.5% Horse serum, 1% L-glutamine, 100 ng/ml SCF, 20 ng/ml IL3, and 20 ng/ml IL6 

(PeproTech), 0.1% β-mercaptoethanol, and Hydrocortisone 10 ng/ml), cells were spun 

down, re-suspended in BM-MNCs medium and cultured at a density of  2x106 cells/ml for 

48 hours. YFP+ cells were FACS sorted and intravenously injected into lethally irradiated 

(7.5 Gy) C57 BL/6 Ly5.1 recipient mice. Mice transplanted with NPMc+ expressing BM-
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MNCs develop leukemia after a long latency (median 564 days) and with low penetrance 

(33%)171. 

For the PML-RAR⍺ leukemia model, we backcrossed the mCG-PR knock-in (KI) mice, 

provided by Tim Ley61, in the C57 BL/6J strain. These mice expressed the PML-RAR⍺ 

oncogene in stem and early myeloid cells under the control of the murine cathepsin G 

promoter. Mice develop spontaneously a disease resembling the human APL, with 70% 

penetrance at 6-16 months of age (median 10 months). Murine APL can be serially injected 

in C57 BL/6 Ly5.1 recipient mice. 

MLL-AF9 leukemia was generously provided by Dr Chi Wai So. Leukemia was obtained 

by MSCV-MLL-AF9-puro retroviral transduction and transformation assay (RTTA) of 

cKit+ cells isolated from BM-MNCs, as previously described173. In brief, cKit+ BM cells 

were FACS isolated from wild-type C57 BL/6 Ly5.1 mice, transduced by spinoculation with 

the retroviral vector expressing the MLL-AF9 oncogene, and serially re-plated in 

methylcellulose medium prior to injection into sub-lethally irradiated (5 Gy) C57 BL/6J 

recipient mice. Mice die of leukemia approximately one month after injection. 

Murine AML were characterized based on blasts immunophenotype and oncogene 

expression. Mice were sacrificed at the first signs of pain and leukemic blasts were isolated 

from spleen and bone marrow after centrifugation through a Histopaque® gradient, stained 

with fluorochrome-conjugated antibodies against myeloid and lymphoid markers and 

analyzed by FACS. NPMc+ expression was assessed by western blot and 

immunofluorescence analysis as described in Mallardo et al., 2013. Quantitative polymerase 

chain reactions (qPCR), from blasts isolated from leukemic spleen, were performed 

according to standard techniques using primers specific for PML-RARα cDNA (Table 3). 

Blood smears were stained with May-Grünwald-Giemsa while bone marrow/spleen paraffin 

embedded samples were stained with haematoxylin-eosin, according to standard protocols, 

and used for AML diagnosis. 
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Primer name Sequence 5’à3’ 

PR forward AGGGACCCTATTGACGTTGAC 

PR reverse ACAGACAAAGCAAGGCTTGTAG 

mTBP forward TAATCCCAAGCGATTTGCTG 

mTBP reverse CAGTTGTCCGTGGCTCTCTT 
 

Table 3. Primers used to check oncogene expression via qPCR. 

 

6.2  Characterization of pre-leukemic transcriptional program 

6.2.1   LT-HSCs RNA purification 

NPMc+ pre-leukemic and wild-type LT-HSCs were purified from mice injected with 

NPMc+fl/-/YFPfl/- or YFPfl/- recombined BM-MNCs, 4 months after transplantation. PML-

RARα pre-leukemic and wild-type LT-HSCs were purified from the bone marrow of 10-12 

weeks old mice. BM-MNCs were isolated as previously described and stained with 

fluorochrome-conjugated antibodies against Sca1, c-Kit, Flk-2, CD34 and the lineage 

markers antibodies cocktail (Lin: B220, Ter-119, CD3, Mac1, Gr1, CD4 and CD8), all 

provided by eBioscience. LT-HSCs were then sorted via FACS as Lin-, Sca1+, cKit+, 

CD34- and Flk-2- and RNA was immediately extracted with the PicoPure™ RNA Isolation 

Kit (ThermoFisher), according to manufacturer protocol. The integrity of RNA was analyzed 

by Bioanalyzer (Agilent).  

 

6.2.2   Microarray analysis 

RNA purified from WT and pre-leukemic LT-HSCs was analyzed on Affymetrix 

GeneChip® Mouse Gene 2.0 ST array. Double stranded cDNA synthesis was performed 

with Nugen® Pico WTA Systems V2 (NuGEN Technologies, Inc.). Microarray raw data 

were normalized by RMA using Partek Genomic Suite 6.6. A set of differentially expressed 

genes between pre-leukemic and WT samples was identified by applying a threshold of 

FC>|1.5| and FDR<0.1. Gene set enrichment analysis (GSEA, v2.14 software Broad 

Institute)174 was used to investigate whether a gene set was significantly over-represented in 
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the transcriptome of the pre-leukemic cells. The curated gene sets collection 

(c2.all.v5.1.symbols.gmt) was downloaded from MSigDB. Moreover, three custom gene 

sets related to quiescence have been tested for enrichment. A gene set was identified as 

significantly enriched when associated with FDR q-val<0.1. A detailed description of the 

GSEA methodology and interpretation is provided at 

http://www.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html.  

For microarrays validations qPCR reactions, 10 ng of total RNA purified from WT or pre-

leukemic LT-HSCs was reverse-transcribed using Super Script IV (Invitrogen). cDNA was 

pre-amplified with TaqMan® PreAmp Master Mix Kit and then amplified using pre-

designed TaqMan Gene expression assays (Thermo Fisher Scientific). All experiments were 

run in triplicate and results normalized to Gapdh and Gusb mRNA expression level. 

 

6.3  shRNA screening and clonal tracking 

6.3.1   Lentiviral libraries 

The custom shRNA library used for the in vivo screenings was purchased from Cellecta Inc. 

In the pRSI16 lentiviral vector, shRNAs are cloned under the control of the U6 promoter 

and univocally associated with a 22-nucleotides barcode (BC). The vector also encodes for 

the puromycine resistance (PuroR) and the Red Fluorescence Protein (TagRFP) reporter 

gene, under the control of the UbiC promoter (Figure 6). The shRNA library (M1) contains 

1,000 different shRNAs targeting 96 genes (about 10 shRNAs/gene), including 4 controls 

(Table 4). The control library is composed of 1,200 different 22-nucleotides BCs cloned in 

the same vector.  
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Figure 6. Map of Cellecta pRSI16 vector used for shRNA screenings. 

 

Genes targeted in M1 shRNA library 

Abcb1b Egr1 Jun Rnf166 
Acox1 Esr1 Kit Rrad 
Adcy9 Etnk1 Klf6 Slc44a2 
Adgrg1 Fgl2 Kmt2a Smad3 
Adipor2 Flii Map2k3 Smarca2 
Adssl1 Fos Mcfd2 Socs2 
Angpt1 Fosb Mecom Stat1 
Anxa4 Gabarapl1 Mpl Stat3 
Atxn1l Gata2 Mprip Stat5a 
Bach1 Gbp2 Muc13 Stx3 
Bgn Gfi1 Mycbp2 Sytl4 
Brd4 Hdac5 Naga Tgfb1 

Cables1 H2-Q10 Ndfip1 Tgfbr2 
Cbfa2t3 Hoxa5 Ndrg1 Tie1 
Cdkn1a Ier3 Nfatc1 Tmbim1 
Chrnb1 Igf1r Npc1 Txnrd1 
Cited2 Igtp Nrip1 Ube2e1 
Creg1 Il18r1 Pbx1 Vamp2 

Csgalnact1 Irf1 Pdzk1ip1 Zbtb20 
Ctla2a Irf3 Pim1 Zfp68 

Cyp4v2 Irf6 Pkd1 Psma1 
Dcaf11 Itih5 Prdm16 Rpl30 
Dock9 Itm2a Rest Polr2b 
Dusp6 Jmjd1c Rhob LUC 

Table 4. Genes targeted in M1 shRNA library. 
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For the clonal tracking experiments, we purchased a lentiviral library containing two 

consecutive 18-nucleotides barcodes for a total complexity of about 30x106 different 

barcodes combinations (CellTracker™ Lentiviral Barcode Library, Cellecta Inc). The 

lentiviral backbone encodes for the PuroR and the TagRFP genes under the control of the 

UbiC promoter (Figure 7).  

 

 

Figure 7. Map of Cellecta CellTracker™ Lentiviral Barcode vector used for clonal 
tracking experiments. 

 

6.3.2   Viral production and titration 

For lentiviral production, the 2nd generation packaging vectors pMD2.G and pCMVdR8.2 

were used. 293T cells were transfected with Lipofectamine® and PLUS® reagents 

(ThermoFisher), according to manufacturer protocol. In brief, 293T were plated in 15 cm 

dishes in DMEM (Lonza), 2 mM L-glutamine, 100 U/ml penicillin/streptomycin, 10% Fetal 

Bovine Serum (FBS) and transfected when 70% confluence was reached. We mixed the 

library DNA and the packaging vectors DNA with the PLUS® reagent in 1.2 ml of serum-

free Opti-MEM™: 6 µg library DNA, 7 µg pMD2.G, 24 µg pCMVdR8.2 and 60 µl PLUS®, 
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per dish. In an other tube we mixed 90 µl Lipofectamine® with 1.2 ml of serum-free 

OptiMEM™, per dish. Both solutions were incubated separately for 15 min at room 

temperature (RT) and then mixed together. After another 15 min incubation at RT, the DNA-

Lipofectamine® mixture was added to the 293T dish. We usually transfect 10 293T 15 cm 

dishes, as suggested by Cellecta guidelines, in order to cover library complexity and obtain 

a high viral titer. Medium containing lentiviral particles was collected 24, 48 and 72 hours 

after transfection, replacing with fresh medium. Lentiviral supernatant was filtered through 

a 0.2 µm Nalgene™ Rapid-Flow™ Sterile Disposable Filter Unit (ThermoFisher), 

concentrated by ultracentrifugation at 24000 rpm, 2h at 4°C with a Optima L-90K 

ultracentrifuge (Beckman Coulter) and stored at -80°C. Lentiviral titer was evaluated by 

transdcucing 0.1x106 293T/well in 6 wells plate with serial dilution of the viral stock. 72h 

after infection, 293T were harvest and analyzed by FACS for the percentage of TagRFP+ 

cells. Viral titer, measured as transducing units per ml (TU/ml), was calculated with the 

following formula: 

𝑡𝑖𝑡𝑒𝑟	  
𝑇𝑈
𝑚𝑙 =

𝑛𝑢𝑚𝑏𝑒𝑟	  𝑜𝑓	  𝑡𝑎𝑟𝑔𝑒𝑡	  𝑐𝑒𝑙𝑙𝑠	   0.1x109 ∗ (%	  TagRFP	  positive	  cells)
𝑣𝑜𝑙𝑢𝑚𝑒	  𝑜𝑓	  𝑣𝑖𝑟𝑢𝑠	  𝑎𝑑𝑑𝑒𝑑	  (𝑚𝑙)  

 

6.3.3   Infection of AML blasts 

Leukemic blasts are maintained in Iscove’s Modified Dulbecco’s Medium (IMDM, Lonza), 

2 mM L-glutamine, 15% Fetal Calf Serum (FCS), 15% 5637-conditioned medium and 25% 

WEHI-3B-conditioned medium. Blasts are infected with lentiviral particles by spinoculation 

with MOI=3 at 2300 rpm, for 90 min at RT. For shRNA screenings, 24-50x106 blasts/well 

were plated in 6 wells RetroNectin®-coated plates in presence of 4 mg/ml of polybrene. For 

clonal tracking experiments, 1x106 blasts/well were plated in 24 wells RetroNectin® 

(Takara)-coated plates in presence of 4 mg/ml of polybrene. In order to dilute polybrene, 2 

hours after spinoculation, one volume of fresh medium was added to each well. 24 hours 
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after transduction, half of the blasts was collected and froze as reference starting point (t0) 

and the remaining cells were intravenously injected in recipient mice. Transduction 

efficiency was measured by FACS analysis of TagRFP positive cells, 72 hours after 

transduction. 

 

6.3.4   Genomic DNA extraction and samples preparation for NGS 

Both for screening and clonal tracking experiments, leukemic blasts were harvested from 

spleen and bone marrow of moribund mice. Genomic DNA was isolated by 

phenol/chloroform extraction as follow: cells were resuspended in 5-10 ml P1 buffer with 

RNAse A (Qiagen) and 0.5% SDS and incubated 5 min at RT. The resuspension volume 

depends on the amount of cells. For clonal tracking experiments, NB4 spike-in cells were 

added prior to phenol/chloroform extraction. One volume of phenol:chloroform:isoamyl 

alcohol 25:24:1 (Sigma Aldrich) was added to cell suspension and the mix was vigorously 

vortexed and centrifuged at 4200 rpm for 2h at RT. The upper phase was collected and 

washed with an additional volume of chloroform (VWR). DNA precipitation was performed 

adding 1 volume of isopropanol (Panreac AppliChem) and 0.125 volumes of 3M sodium 

acetate to the upper phase. After over night incubation, the mixture was spun at 4200 rpm 

for 1h at RT. DNA pellet was then washed with 10 ml ethanol 70%, spun at 4200 rpm 10 

min at RT and air-dried. DNA was finally dissolved in nuclease-free water and quantified 

by NanoDrop ND-100 (Thermo Fisher).  

According to Cellecta guidelines, libraries for NGS were prepared using all the genomic 

DNA extract from each sample, in order to ensure the complete representation of the 

barcodes. The strategy foresees two nested PCR with primers designed to include the 

sequencing adapters needed for Illumina HiSeq 2000 flow cell clustering. In the first PCR, 

DNA barcodes are amplified from the total genomic DNA while, in the second PCR, a 

sampling of the 1st reaction is used to remove non-specific PCR products and excess genomic 

DNA. For all reactions, Titanium® Taq DNA polymerase (Takara) was used because very 
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efficient in amplify high amount of DNA. The 1st PCR reaction was prepared as following: 

25 µg genomic DNA, 0.3 µM of each primer, dNTPs 200 µM, 1x Titanium® Taq Buffer, 

0.5 U Titanium® Taq DNA polymerase, in a final volume of 100 µl per tube. The 1st PCR 

program is: 

 

Temperature Time Cycles 
94°C 3 min 1 
94°C 30 sec  
60°C 10 sec 16 
72°C 20 sec  
68°C 2 min 1 

 

After the 1st PCR round, all reactions from the same sample were combined together and 5 

µl of the first amplification were used for the 2nd PCR with primers containing P5 and P7 

adapter sequences. The 2nd PCR reaction was prepared as following: 5 µl 1st PCR, 0.5 µM 

of each primer, dNTPs 200 µM, 1x Titanium® Taq Buffer, 0.5 U Titanium® Taq DNA 

polymerase, in a final volume of 100 µl. The 2nd PCR program is: 

 

Temperature Time Cycles 
94°C 3 min 1 
94°C 30 sec  
65°C 10 sec 16 
72°C 20 sec  
68°C 2 min 1 

 

Due to differences in the shRNA and clonal tracking vectors, specific primers are used 

during barcodes amplification (Table 5). 10 µl of the 2nd PCR was run on a 3% agarose gel 

to confirm the correct size of the amplicons: 251 bp for M1 and 1.2k libraries and 267 bp for 

clonal tracking library. PCR products were purified with QIAquick PCR purification kit 

(Qiagen) following the manufacturer’s protocol and quantified by Qubit™ dsDNA HS 

Assay Kit (Thermo Fisher). DNA libraries were sequenced on Illumina HiSeq 2000 

sequencing platform, with 51 bp single-end reads, using the GexSeq sequencing primer. 20-

40 million reads were generated for each sample. The original Cellecta strategy does not 
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allow to insert any index during library preparation, therefore it was not possible to sequence 

more samples in the same lane of the flow cell. To overcome this important limitation, we 

modified primers used in the second PCR in order to insert different 6 bp indexes. With this 

optimization and a specific bioinformatics pipeline we were able to sequence up to 5 samples 

in the same lane.  

 

Primer name  Sequence  5’à3’ Use 

F2 TCGGATTCGCACCAGCACGCTA shRNA 1st PCR  

R2 AGTAGCGTGAAGAGCAGAGAA shRNA 1st PCR  

Gex1_NF2 CAAGCAGAAGACGGCATACGATCGCACCAGCACGCTACGCA shRNA 2nd PCR  

Gex2_NR2 AATGATACGGCGACCACCGAGAGCACCGACAACAACGCAGA shRNA 2nd PCR  

Gex1_2 CAAGCAGAAGACGGCATACGAT ACATCG CGCACCAGCACGCTACGCA shRNA 2nd PCR (index2) 

Gex1_4 CAAGCAGAAGACGGCATACGATTGGTCACGCACCAGCACGCTACGCA shRNA 2nd PCR (index4) 

Gex1_6 CAAGCAGAAGACGGCATACGATATTGGCCGCACCAGCACGCTACGCA shRNA 2nd PCR (index6) 

Gex1_7 CAAGCAGAAGACGGCATACGATGATCTGCGCACCAGCACGCTACGCA shRNA 2nd PCR (index7) 

Gex1_12 CAAGCAGAAGACGGCATACGATTACAAGCGCACCAGCACGCTACGCA shRNA 2nd PCR (index12) 

FwdHTS3 TCGGATTCAAGCAAAAGACGGCATA clonal tracking 1st PCR 

R2 AGTAGCGTGAAGAGCAGAGAA clonal tracking 1st PCR 

Gex1_Bpi TCAAGCAGAAGACGGCATACGAAGACA clonal tracking 2nd PCR 

P5_NR2 AATGATACGGCGACCACCGAGACGAGCACCGACAACAACGCAGA clonal tracking 2nd PCR  

GexSeq AGAGGTTCAGAGTTCTACAGTCCGAA NGS primer  

 

Table 5. Primers used for NGS library preparation. 

 

6.3.5   Preparation of NB4 spike-in control 

We selected independent clones from a DNA library containing 13,000 different barcodes 

(Cellecta, Inc.). This library differs from the CellTracker™ library for the barcode structure, 

indeed it contains just a single barcode of 18 bp. Since the two libraries are cloned in the 

same lentiviral backbone, barcodes can be amplified with the same PCR strategy, described 

in section 6.3.4. Single barcodes were selected by bacterial transformation and isolation of 

single colonies. Plasmidic DNA isolated from bacteria was analyzed by Sanger sequencing 

to confirm the presence of a single barcode and used to produce lentiviral particles, as 
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described in section 6.3.2. NB4 cells were transduced at low MOI with each barcode to 

ensure the presence of single integrant per cells. Infected cells were selected with 1 µg/ml 

puromycin for 48 hours and defined numbers of NB4 cells clones were combined to prepare 

the spike-in control for clonal tracking experiments.  

 

6.3.6   NGS reads alignment  

FASTQ files were prepared from the sequencing runs to count the number of reads per 

barcode. For each sample, reads were aligned to the respective reference sequences (1.2k or 

M1 library) using the Bowtie aligner175 and by considering only those reads having, at most, 

three mismatches for each alignment. Barcodes frequency was calculated by normalizing 

each barcode read count on the total number of aligned reads. For subsequent analysis, fold 

change was calculated as the ratio of barcodes reads between the spleen and the reference 

samples, either for 1.2k and M1 screening samples.  

For clonal tracking experiments, barcodes reads were perfect match aligned to the reference 

library using the Bowtie aligner. Spike-in reads were aligned with the same procedure to the 

known barcode sequences. All read counts were normalized based on the total number of 

reads per sample and frequency distribution was calculated.  

 

6.3.7   shRNA screening bioinformatics analysis 

In order to identify depleted genes during the screening we developed two distinct 

bioinformatics approaches. ECDF analysis: we summed the 1.2k FC distributions to obtain 

a unique empirical cumulative distribution function (ECDF). The empirical distribution 

function is an estimate of the cumulative distribution function that generated the points in 

the sample; specifically, the cumulative distribution function (CDF) of a real-valued random 

variable X, or just distribution function of X, evaluated at x, is the probability that X will 

take a value less than or equal to x. Therefore, by mean of resulting ECDF from 1.2k 

samples, we calculated an empirical pValue for each shRNA present in M1 samples. We 
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then aggregate these shRNA pValues among sample replicates with Fisher’s Method in order 

to obtain a FC, a pValue and a qValue for each shRNA. With the purpose of define enriched 

and depleted genes, we evaluated how many depleted shRNAs we would find by recursively 

1000 random picking 10 shRNAs, regardless the gene they target. One gene can be 

considered depleted if at least 5 out of 10 hairpins are significantly depleted, with 95% 

confidence. The threshold for significant enrichment is instead of at least 4 out of 10 

shRNAs.  

EdgeR analysis: EdgeR package was developed for RNAseq analysis but it can be used as 

well for shRNA screening statistical analysis176. Prior to proceed, samples were adjusted to 

account for differences in library size. In particular, TMM normalization was applied on 

counts and then a multidimensional scaling (MDS) plot was generated to assess the 

consistency between replicate samples. The barcodes variability was estimated under the 

assumption that common dispersion across barcodes is flat and the more the barcodes are 

present, the lower dispersion we have. Samples were analyzed by fitting a generalized linear 

model (GLM). We first analyzed the changes in barcodes abundance during the 1.2k 

screening to set a threshold for enrichment/depletion analysis in M1 screening. Statistical 

testing for changes in barcodes abundance between spleens and reference samples was 

carried out using exact test that allow results to be ranked by significance. We then applied 

the significance thresholds calculated on 1.2k control samples, to the shRNAs of M1 

samples. Finally, since 10 hairpins per gene are present, we used Roast, a gene set analysis 

tool, to obtain a gene-by-gene ranking, rather than a shRNA specific one.  

 

6.4  Limiting dilution transplantation assay 

For the limiting dilution transplantation assay, MLL-AF9 cells, freshly isolated from 

moribund mice, were intravenously injected (from 5x105 to 100 cells per mice) into sub-

lethally irradiated (5 Gy) C57 BL/6 J recipient mice, with 2x105 splenocytes as carrier. LIC 

frequency was measured used ELDA software177.  
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6.5  Validation experiments  

6.5.1   Virus production 

Single shRNA targeting candidate genes were cloned in the same lentiviral vector used for 

the screening (pRSI16, see section 6.3.1). We used empty vector and shRNA directed against 

Luciferase as controls. Lentiviral particles were produced transfecting 293T cells with 

shRNA plasmid and 2nd generation packaging vectors, as reported in section 6.3.2.  

 

6.5.2   Blasts infection and sorting 

MA9 blasts were maintained in Iscove’s Modified Dulbecco’s Medium (IMDM, Lonza), 2 

mM L-glutamine, 15% Fetal Calf Serum (FCS), 15% 5637-conditioned medium and 25% 

WEHI-3B-conditioned medium. 20x106 blasts/well were plated in 6-wells RetroNectin®-

coated plates and infected with single shRNA lentiviral particles by spinoculation at 2300 

rpm, for 90 min at RT, in presence of 4 mg/ml of polybrene. 2 hours after spinoculation, one 

volume of fresh medium was added to each well. Transduction efficiency was measured by 

FACS analysis 72 hours after transduction and infected blasts were sorted as TagRFP+ cells 

using MoFlo® Astrios™ cell sorter (Beckman Coulter). 

 

6.5.3   RNA reverse-transcription and qPCR  

RNA was extracted from TagRFP+ sorted cells using PicoPure™ RNA Isolation Kit 

(ThermoFisher), according to manufacturer protocol. 0.1-1 µg of total RNA was reverse-

transcribed using ImProm-II™ Reverse Transcriptase kit (Promega). RNA was first 

incubated with random primers (0.5 µg/reaction) at 70°C for 15 min and then immediately 

on ice. The following mix was then added: 
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ImProm-II™ 5X reaction buffer 10 µl 
MgCl2 25 mM 5 µl 
dNTPs (10 mM each) 2.5 µl 
recombinant RNAse inhibitor 1.5 µl 
ImProm-II™ Reverse Transcriptase 1 µl 
Nuclease-free water to 50 µl 

 

Reaction was incubated at 42°C for 70 min and then at 70°C for 15 min. cDNA was stored 

at -20°C. 

For gene expression analysis, qPCR was performed using 10 ng of cDNA, 0.2 µM of both 

primers and 10 µl of FAST SYBR™ Green Master Mix, AmpliTaq® Fast DNA Polymerase 

(ThermoFisher) in a final volume of 20 µl per reaction in 96-well plate. Fluorescence 

accumulation during qPCR reaction was detected on CFX96 Touch™ Real-Time PCR 

Detection System (Biorad). Relative mRNA quantification was performed by the 

comparative ΔΔCt method using Tbp for normalization. Primers used are listed in Table 6.  

 

Primer name  Sequence  5’à3’ 

Brd4 forward AAAACTCCAACCCCGATGAG 

Brd4 reverse GAACCAGCAATCACGTCAAC 

Stat1 forward GCCGAGAACATACCAGAGAATC 

Stat1 reverse GATGTATCCAGTTCGCTTAGGG 

Syt4 forward AATGGTGTGAGGCTGGAAG 

Syt4 reverse ACCACTTCGCCATTACTGATC 

Socs2 forward TGAAGCATGAGCCTTTCCTC 

Socs2 reverse GCAGACACTGTCACCCAC 

Gfi1 forward TGGAGCAACACAAGGCAG 

Gfi1 reverse AGTACTGACAGGGATAGGGC 

Tie1 forward CCAGTGCCAGTGTCAAAATG 

Tie1 reverse CCTATGTTGAACTCCACCTCTG 

Hoxa5 forward CAAGCTGCACATTAGTCACG 

Hoxa5 reverse GGTAGCGGTTGAAGTGGAAT 

Tbp forward TAATCCCAAGCGATTTGCTG 

Tbp reverse CAGTTGTCCGTGGCTCTCTT 
 

Table 6. qPCR primers used to check gene silencing. 
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6.5.4   Serial colony-forming-unit assay 

500 TagRFP+ sorted MA9 blasts were plated in MethoCult M3434 (StemCell Technologies) 

in 35 mm dish. 7 days after plating, colony formation was quantified. For serial passages, 

500 cells of each replicate were used for subsequent plating in MethoCult M3434.  

 

6.5.5   Validation in vivo 

2x105 TagRFP+ sorted MA9 blasts were intravenously injected in sub-lethally irradiated 

C57 BL/6 J 8-12 weeks old mice (3-4 mice/group). Latency in leukemia development was 

monitored and mice were sacrificed when moribund, according to animal facility guidelines. 

Leukemic infiltration was assessed in peripheral blood, spleen and bone marrow by 

measuring bt FACS the percentage of TagRFP+ cells over the total CD45.1+ population.  
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7.   Aim of the project 

 

Chemotherapy-resistant AML cells are thought to be enriched in quiescent LSCs and several 

publications highlighted the importance of quiescence for AML maintenance. However, 

additional studies are required to define the role of quiescence and underlying mechanisms 

during LSCs selection and leukemia development.  

Our lab had previously demonstrated that cell cycle restriction is critical in preventing excess 

DNA-damage accumulation and functional exhaustion of LSCs in PML-RARα and AML1-

ETO driven leukemia107. Moreover, NPMc+ expression in normal bone marrow is able to 

expand the LT-HSCs number without depleting the pool of quiescent LT-HSCs, therefore 

preserving their functionality (unpublished results).  

We decided to investigate if induction of HSCs quiescence is a distinctive property of AML-

associated oncogenes, the role of HSCs quiescence during the leukemogenic process, and if 

HSCs quiescence is required for LSCs maintenance of leukemia outgrowth. Therefore, the 

general aim of my thesis project is to investigate whether oncogene-induced pathways 

controlling HSCs quiescence, as identified in pre-leukemic cells, are also critical for the 

retention of LSCs self-renewal capacity and ultimately for leukemia maintenance. As 

experimental approach, we decided to take advantage of RNA interference technology to 

perform in vivo screenings to identify genes that could be required for the maintenance of 

AML. In particular, the specific aims of the project are: 

1.   To obtain gene expression profiles of pre-leukemic HSCs expressing different AML 

initiating oncogenes, namely NPMc+ and PML-RARα. 

2.   To identify common pathways enriched in the pre-leukemic transcriptional profiles, 

with a particular focus on stemness- and quiescence-related genes.  

3.   To select ~100 quiescence-related genes induced by the leukemic oncogenes in pre-

leukemic HSCs to design a low complexity shRNA library. 
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4.   To perform in vivo shRNA screening on NPMc+ and PML-RARα driven murine 

AML samples. 

5.   To develop a bioinformatics pipeline to identify genes significantly depleted or 

enriched during the screening in order to proceed with validation experiments in vitro 

and in vivo. 

Employing this strategy on a number of leukemia characterized by different genetic 

alterations, we aimed at identifying not only genes fundamental for a single subtype but to 

discover key genes common to several AML, which may offer new therapeutic strategies in 

a wide group of patients. 
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8.   Results 

 
 

8.1  NPMc+ and PML-RAR⍺  AML models are characterized by a prolonged pre-

leukemic phase 

As model system, we started our investigation with two AML mouse models characterized 

by the expression of the cytoplasmic mutant of NPM1 (NPMc+)171 or the fusion proteins 

PML-RARα61. In both model systems, leukemia recapitulates the main features of the 

corresponding human diseases and develops after a prolonged pre-leukemic phase.  

NPMc+ transgenic mice harbor the cDNA of the most frequent NPM1 mutation (mutA, 

found in about 80% of the patients)50 which is expressed upon CRE-mediated excision of 

the floxed STOP cassette present between the promoter and the NPMc+ cDNA171. Oncogene 

expression can be tracked in situ thanks to the co-expression of NPMc+ and the yellow 

florescent protein (YFP) (see Materials and Methods, section 6.1). Bone marrow 

mononucleated cells (BM-MNCs) isolated from NPM1c+fl/-/YFPfl/- (NPMc+/YFP) or YFPfl/- 

control mice (YFP) were treated ex vivo with the recombinant TAT-CRE protein and FACS-

sorted in YFP+ and YFP- subpopulations. Notably, NPMc+ is expressed only in the YFP+ 

population, with a recombination efficiency of ~85%, assessed by immunofluorescence 

(unpublished, not shown). BM MNCs expressing NPMc+ are transplanted in irradiated 

syngeneic recipient mice which develop leukemia with low penetrance (33.3%) and long 

latency (median 564 days)171. PML-RARα transgenic mice harbor the cDNA of the fusion 

protein targeted into the murine cathepsin G locus. These mice express constitutively low 

level of PML-RARα in HSCs and progenitors, and develop leukemia with high penetrance 

(90%) and 10 months median latency61.  

Thus, both NPMc+ and PML-RARα oncogenes are sufficient to initiate the leukemogenic 

process but require other genetic lesions for the full expression of a leukemia phenotype. 

Indeed, the two models are characterized by a prolonged phase whereby oncogenes are 
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expressed in an otherwise normal bone marrow. During the pre-leukemic phase, the 

organization of the hematopoietic tissue is near identical to that of normal mice, thus 

allowing direct comparison of identical cell types, such as the HSCs, and unambiguous 

identification of de-regulated gene expression. Given the long latency we observed prior of 

leukemia development, we were able to evaluate early perturbation occurring upon oncogene 

expression in normal hematopoietic cells, in order to define critical mechanisms during the 

leukemogenic process.  

 

8.2  Gene expression profiles of pre-leukemic LT-HSCs showed an enforcement of 

quiescent stem cell transcriptional program 

To investigate the transcriptional changes induced by oncogene expression in HSCs, we 

performed global gene expression analysis of LT-HSCs, purified as Lin-, Sca1+, cKit+, 

CD34- and Flk2- cells, from NPMc+ and PML-RARα pre-leukemic mouse models. Sorting 

strategy is depicted in Figure 8. LT-HSCs NPMc+/YFP+ or YFP+ have been isolated 4 

months after BMT while LT-HSCs PML-RARα or WT have been isolated from 10-12 

weeks old mice.  

 

 

Figure 8. Pre-leukemic and WT LT-HSCs are sorted form from BM-MNCs. 
Representative FACS plot of sorting strategy used to isolate both WT and pre-leukemic LT-
HSCs. LSK (Lin-, Sca1+, cKit+) population was gated within the lineage negative cells. LT-
HSCs were gated as CD34-, Flk2- cells within the LSK population. 
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RNA was extracted just after sorting and hybridized on Mouse Gene ST 2.0 Arrays. NPMc+ 

expression induced a total of 562 deregulations (322 up-regulations, FC>1.5; 240 down-

regulations, FC<-1.5, FDR<0.1) while PML-RARα induced a total of 195 deregulations 

(117 up-regulations, FC>1.5; 78 down-regulations, FC<-1.5, FDR<0.1).  

We ran a Gene Set Enrichment Analyses (GSEA)174 on the two pre-leukemic expression 

profiles. GSEA revealed that NPMc+ expression in LT-HSCs: (1) induces the expression of 

genes associated with HSCs and reduces the expression of genes associated with mature 

hematopoietic cells178,179 (Figure 9 A), (2) up-regulates genes involved in quiescence-related 

pathways such as TGFβ and TPO (Figure 9 B) and, (3) shows a marked correlation with the 

expression profiles from acute myeloid LSCs and human AML with mutated NPM1101,180 

(Figure 9 C). 
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Figure 9. NPMc+ expression in LT-HSCs enforces a stem cell transcriptional program 
promoting quiescence. GSEA plots demonstrating enrichment levels of indicated gene sets 
in NPMc+ LT-HSCs compared to WT LT-HSCs. A. GSEA plot correlating genes up-
regulated in NPMc+ LT-HSCs with HSCs transcriptional program and genes down-
regulated in NPMc+ LT-HSCs with mature hematopoietic cells expression profile. B. GSEA 
plot correlating genes up-regulated in NPMc+ LT-HSCs with TGFβ and TPO pathways. C. 
GSEA plot correlating genes down-regulated in NPMc+ LT-HSCs with genes down-
regulated in NPM1 mutated AML, and genes up-regulated in NPMc+ LT-HSCs with genes 
enriched in HSCs and LSCs. Normalized enrichment score (NES) and false discovery rate 
(FDR) are indicated.  
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As expected, among the up-regulated genes, we also found the HoxA cluster and Meis1, 

genes involved in self-renewal maintenance and often deregulated in AML, including 

NPMc+ AML56. Thus, GSEA data suggest that NPMc+ expression in LT-HSCs enforces a 

quiescent HSCs transcriptional program, which also characterizes LSCs. To further 

investigate molecular mechanisms related to quiescence regulation, we manually curated a 

list of genes directly involved in the maintenance of HSCs or LSCs quiescence, using data 

available in literature. Notably, we found many quiescence genes up-regulated by NPMc+ 

in LT-HSCs in our microarray data (Table 7).  

 

Gene symbol FC Reference 

Gata2 2.1 27 

Angpt1 2 136 

Smad3 1.9 181 

Meis1 1.8 182 

Cdkn2c 1.7 183 

CD81 1.6 184 

Cbfa2t3 1.6 185 

Cdkn1a 1.6 21 

Tgfbr2 1.6 181 

Egr1 1.6 186 

Cited2 1.4 29 

Tgfb1 1.4 181 

Mpl 1.4 6 

Pml 1.4 121 

Pbx1 1.4 187 

Terc 1.4 188 

Kit 1.3 189 

Gfi1 1.3 28 

Chd4 1.3 190 

Cebpa 1.3 191 
 

Table 7. NPMc+ expressing LT-HSCs up-regulated a set of quiescence positive 
regulators. For each quiescence gene is reported the FC of expression in NPMc+ LT-HSCs 
compared to WT LT-HSCs, based on microarray data, and the reference describing the role 
in quiescence regulation. 
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We validated by qPCR 15 out of 17 tested genes, including self-renewal genes (HoxA cluster 

and Meis1) and quiescence genes such as Gata2 and Gfi1 (Figure 10). 

 

 

Figure 10. NPMc+ expression in LT-HSCs induces the up-regulation of self-renewal 
and quiescence genes. qPCR analysis of WT and pre-leukemic LT-HSCs RNA for self-
renewal (upper panel) and quiescence genes (lower panel) up-regulated by NPMc+. Results 
were normalized to the expression levels in WT LT-HSCs (** p<0.01). 

 

In the other model, GSEA revealed that PML-RAR⍺ expressing LT-HSCs are characterized 

by: (1) induced expression of genes associated with HSCs and reduced expression of genes 

associated with mature hematopoietic cells transcriptional profiles179 (Fig. 11 A), (2) down-

regulation of genes associated with proliferating HSCs192,193 (Fig. 11 B), (3) up-regulation 

of genes involved in RXR/RAR pathways or bound by PML-RAR⍺194 (Fig. 11 C) and, (4) 

reduced expression of genes down-regulated in LSCs195 (Fig. 11 D). 
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Figure 11. PML-RAR⍺  expressing LT-HSCs are enriched in stem cells and quiescence 
signatures. GSEA plots demonstrating enrichment levels of indicated gene sets in PML-
RAR⍺ LT-HSCs compared to WT LT-HSCs. A. GSEA plot correlating genes up-regulated 
in PML-RAR⍺ LT-HSCs with genes up-regulated in HSCs and genes down-regulated in 
PML-RAR⍺ LT-HSCs with genes expressed in mature hematopoietic cells. B. GSEA plot 
correlating genes down-regulated in PML-RAR⍺ LT-HSCs with genes down-regulated in 
quiescent HSCs and proliferating genes. C. GSEA plot correlating genes up-regulated in 
PML-RAR⍺ LT-HSCs with genes bound by PML-RAR⍺ and with the retinoic acid/vitamin 
D nuclear receptors pathway. D. GSEA plot correlating genes down-regulated in PML-
RAR⍺ LT-HSCs with genes down-regulated in LSCs. Normalized enrichment score (NES) 
and false discovery rate (FDR) are indicated. 
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Moreover, PML-RAR⍺ up-regulated the expression of a different set of quiescence positive 

regulators, described in Table 8. Interestingly, although PML-RAR⍺ and NPMc+ are very 

different leukemic oncogenes, we found 6 quiescence genes commonly up-regulated by both 

oncogenes: Gata2, Cbfa2t3, Cdkn1a, Cdkn2c, Smad3 and Tgfbr2. We validated by qPCR 

the PML-RAR⍺	  dependent	  up-regulation in LT-HSCs of all the quiescence genes we tested 

(Figure 12). 

 

Gene symbol FC Ref 

Cdkn1a 2.1 21 

Egr3 2.1 196 

Hes1 1.7 197 

Satb1 1.5 198 

Tgfbr2 1.5 181 

Junb 1.5 199 

Fzd8 1.4 200 

Cbfa2t3 1.4 185 

Smad3 1.4 181 

Atg7 1.4 201 

G0s2 1.4 202 

Cdkn2c 1.3 183 

Gata2 1.3 27 

 

Table 8. PML-RAR⍺  LT-HSCs up-regulate a set of quiescence positive regulators. For 
each gene is reported the FC of expression in PML-RAR⍺ LT-HSCs compared to WT LT-
HSCs, based on microarray data, and the reference describing the role in quiescence 
regulation. Genes up-regulated in common with NPMC+ LT-HSCs are depicted in red. 
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Figure 12. PML- RAR⍺  expression in LT-HSCs up-regulates quiescence genes. qPCR 
analysis of WT and pre-leukemic LT-HSCs RNA for a set of quiescence genes up-regulated 
by PML-RAR⍺. Results were normalized to the expression levels in WT LT-HSCs (** 
p<0.01). 
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in stem cells quiescence regulation and we designed a shRNA library to perform in vivo 

genetic screening. 

 

 

Figure 13. NPMc+ and PML-RAR⍺  LT-HSCs up-regulate the same set of genes 
characteristic of quiescent HSCs.  A. GSEA plots showing the enrichment of a quiescent 
HSCs signature in NPMc+ and PML-RAR⍺ LT-HSCs compared to WT LT-HSCs. B. 
Heatmap showing the most enriched quiescent HSCs genes up-regulated by NPMc+ and 
PML-RAR⍺, compared to WT LT-HSCs, and their overlap (p<0.012). Decreased gene 
expression is indicated by shades of blue; increased expression is indicated by shades of red.  
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8.4  The in vivo shRNA screening in NPMc+ and PML-RAR⍺  AML revealed 

clonality issues 

We charged Cellecta Inc. with the design of a custom shRNA library cloned in the pRSI16 

lentiviral vector. Lentiviral vectors allow transduction of both cycling and non-cycling cells, 

such as quiescent LSCs, and infected cells can be identified by the expression of the TagRFP 

reporter gene, also encoded by the pRSI16 backbone. The library used in the screen, from 

now on called M1 library, has a total complexity of 1,000 different shRNAs, targeting 92 

genes and 4 controls, with 10 different hairpins for each gene. It is important to include 

control shRNAs (e.g. with an expected behavior with respect to the phenotype selected), 

such as shRNAs targeting essential genes, as controls of depletion, and shRNAs with no 

biological effect, as control of infection of a sufficient number of LSCs. In our library we 

inserted 20 hairpins targeting the essential genes Polr2b, Psma1 and Rpl30 and 20 shRNAs 

targeting the neutral gene Luciferase (LUC). Genes targeted in the screen are involved in 

diverse cellular process ranging from JAK/STAT pathway (Stat1, Stat3, Stat5a, Socs2), to 

TGFβ pathway (Tgfb1, Tgfbr2, Jun, Smad3, Cited2), some of them are involved in cytokines 

signaling (Il18r1, Irf1, Irf3, Irf6, Angpt1, Kit, Tie1, Mpl), in metabolic processes (Abcb1b, 

Acox1, Adcy9, Adssl1, Txnrd1) or in transcriptional and epigenetic regulation (Pbx1, Gata2, 

Jun, Fos, Hoxa5, Kmt2a, Hdac5, Brd4). Importantly, each shRNA is univocally associated 

with a unique 22 bp DNA barcode, allowing identification and quantification of the 

corresponding hairpins by NGS.  

To study the behavior of barcodes during the screening in vivo, and better characterize our 

model system, we designed a control library composed by 1,200 different DNA barcodes 

but not associated to any shRNA (thereafter	  1.2k library). Therefore, the in vivo distribution 

of the barcodes is not affected by gene silencing but it only reflects the intrinsic functional 

heterogeneity of the blasts. We performed experiments in parallel using the two libraries. 

The direct comparison between the shRNAs and the non-targeting barcodes allows 
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identification of the shRNAs that are enriched or depleted during leukemia growth, as 

compared to the neutral selection of the barcodes.  

The experimental strategy for shRNA screening is depicted in Figure 14. Transduction of 

murine NPMc+ or PML-RAR⍺ leukemic blasts, obtained from our mouse models, was 

performed in vitro by spinoculation, using concentrated viral supernatant at low multiplicity 

of infection (MOI=3). 24 hours after transduction, half of the cells were harvested as 

reference point (t0), while the remaining were intravenously injected in two recipient mice. 

For the NPMc+ leukemia samples, recipient mice were sublehtally (5 Gy) irradiated 6-8 

hours before transplantation to allow engraftment (that for this leukemia is dependent on 

prior irradiation).  

 

 

Figure 14. Strategy for shRNA screen in vivo.  

 

Mice have been checked weekly for leukemia development by monitoring the peripheral 

blood (PB). When the percentage of blasts in the PB was >80% (measured as percentage of 

CD45.2+ cells in C57 BL/6 Ly5.1 recipient mice), mice were sacrificed and spleen (SPL) 

and bone marrow were collected. Genomic DNA was purified and libraries for NGS were 

prepared according to Cellecta protocol (see Materials and Methods section 6.3.4). NGS data 

have been processed as described in detail in the Materials and Methods section 6.3.6.  

NGS data showed that in the reference samples, harvested 24 hours after transduction, all 

barcodes, of both the M1 and the 1.2k library were present, with a distribution range 

comprised within a 10-fold variance (Figure 15 A-B). This reflects the expected barcode 
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distribution, based on how libraries have been synthetized by the supplier. Therefore, there 

were no unbalanced representation of shRNAs/barcodes in the cells used for the in vivo 

screen. 

 

 

Figure 15. Barcode distribution is balanced in NPMc+ and PML-RAR⍺  reference 
samples (t0). A. Log10 frequency distribution of barcodes in reference samples infected with 
1.2k library, 24 hours after transduction. B. Log10 frequency distribution of shRNAs in 
reference samples infected with M1 library, 24 hours after transduction. In NPMc+ P1E M1 
ref sample is present one shRNA at very low frequency.  

  

NGS analysis of the in vivo grown samples, instead, did not allow the identification of every 

barcode in the leukemic specimens. In experiments performed using the NPMc+ 414 AML, 
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and of the barcodes in the 1.2k screening. Moreover, their distribution showed a strong shift 
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towards the low frequencies due to a significant expansion of few barcodes, as shown in 

Figure 16 A-B.  

 

 

Figure 16. Barcode frequency distribution show a strong shift upon AML growth. A. 
Log10 frequency distribution of .2k library barcodes in reference sample (Ref) and in two 
spleens (Spl E and Spl F) after leukemia growth. Spl E and Spl F were collected from two 
mice transplanted with the same blasts transduced with 1.2k barcodes library (same infection 
of Ref sample). B. Log10 frequency distribution of shRNAs in reference sample (Ref) and in 
two spleens (Spl A and Spl B) after leukemia growth. Spl A and Spl B were collected from 
two mice transplanted with the same blasts transduced with M1 shRNA library (same 
infection of Ref sample). 
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In particular, in sample Spl A, the 20 most represented shRNAs accounted for ~80% of the 

sample reads, while in Spl B the 20 most represented shRNAs accounted for more than 99% 

of the sample, with the first 2 shRNAs accounting for >87% (Figure 17 B). The most 

represented hairpins in the SPL samples were not the most abundant in the reference sample 

and, among the top 20 hairpins, only one was found in both replicates, reflecting the poor 

correlation between the two samples (r=0.23) and suggesting that the expansion of selected 

shRNA was not biologically driven (Figure 17 D). Accordingly, the same behavior was 

found in in the control screening with the 1.2k library, where the 20 most represented BCs 

in the two replicates, Spl E and Spl F, accounted for >90% of the samples (Figure 17 A). 

The barcode-identity correlation between the two 1.2k replicates was lower than in M1 

screening (r=0.16), however in this case it was expected since barcodes should distribute 

randomly in vivo (Figure 17 C). Unfortunately, we obtained similar results with another 

independent NPMc+ leukemia (NPMc+ P1E) and with one PML-RAR⍺ (PRKI 18) murine 

leukemia (not shown).  
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Figure 17. Few barcodes are highly expanded during in vivo screens with NPMc+ 
leukemia. A. Barcodes frequency distribution in 1.2k SPL samples. Spl E and Spl F were 
collected from two mice transplanted with the same blasts transduced with 1.2k barcodes 
library (same infection of Ref sample). B. shRNAs frequency distribution in M1 SPL 
samples. Spl A and Spl B were collected from two mice transplanted with the same blasts 
transduced with M1 shRNA library (same infection of Ref sample). *N.B. colors do not 
indicate barcodes identity. C. Pearson’s correlation between barcodes representation in Spl 
E and Spl F (replicates of 1.2k screening). D. Pearson’s correlation between shRNAs 
representation in Spl A and Spl B (replicates of M1 screening).  
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performing shRNA screening with AML samples in vivo, it is critical to evaluate the growth 

potential of individual LICs.  

 

8.5  Clonal tracking experiments allow to study clonal growth in vivo 

In order to further verify our hypothesis on clonal expansion and to set up a standard assay 

to evaluate in vivo clonal behavior of a given AML sample, we traced LICs in vivo using 

viral cellular insertion DNA barcoding and high-throughput sequencing. In particular, we 

performed clonal tracking experiments in which 1 million of leukemic blasts were 

transduced with a lentiviral library of DNA barcodes with a molecular complexity of 30 

million, generated by the combination of 18+18 degenerated nucleotides sequences. In vitro 

transduction was performed at low multiplicity of infection (MOI=3) by spinoculation (see 

Materials and Methods section 6.3.3). The high library complexity and the low MOI used 

for the transduction assured integration of a unique DNA barcode into the cell genome 

(preliminary data on human AML, not shown) and identification of the cell progeny 

descending from each labelled cell. 24 hours after transduction, cells were intravenously 

injected into recipient mice and one aliquot has been frozen as reference (t0). Once mice 

developed leukemia, we harvested blasts from spleen and bone marrow to extract genomic 

DNA. Upon DNA library preparation, barcode sequences were identified by NGS (see 

Materials and Methods sections 6.3.4). For each sample, sequence reads were aligned to the 

reference library with no mismatch allowed and reads per barcode were normalized on total 

number of reads obtained. Reference samples were characterized by the presence of many 

barcodes at very low frequency (median 0.0003%, not shown), indicating that no barcode 

unbalance was present before transplantation.  
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8.6  Spike-in to set a threshold for clone identification 

Due to the presence of several barcodes at low frequency, in order to establish a threshold 

for clone identification, we took advantage of a spike-in control. Prior to genomic DNA 

extraction from the in vivo grown samples, we added known quantities of NB4 cells (from 

10 to 250,000 cells) each infected with a single different barcode of 18 nucleotides that can 

be amplified with the same PCR primers used for clonal tracking barcodes amplification. 

Therefore, during DNA library preparation for NGS, PCR product of samples containing the 

spike-in show two bands, one at the expected size of 267 bp and one smaller (249 bp) 

identifying barcodes in NB4 cells. After sample sequencing, we evaluated the relationship 

between the number of NB4 cells in the spike-in and the number of reads obtained for each 

barcode. As shown in Figure 18, we observed a linear relationship between the amount of 

cells harboring a specific barcode and the number of reads obtained for that barcode. Barcode 

associated to 10 cells did not retrieve any reads and barcode associated with 50 cells had a 

number of reads out of the linear range. However, considering only barcodes associated with 

higher amount of cells (>100 cells), we calculated a good linear correlation (R2>0.98), 

indicating that PCR amplification does not saturate the relative frequency among different 

clones.  
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Figure 18. Spike-in control showed a linear relationship between the number of cells 
harboring a specific barcode and the NGS reads for the same barcode. In the table are 
reported the number of NB4 cells infected with a specific barcode and the number of reads 
retrieved by NGS in two independent NPMc+ AML samples. The graph in the lower panel 
show the linear relationship between number cells and NGS reads.  

 

8.7  Clonal tracking in vivo confirms clonal expansion during leukemia growth 

Clonal tracking experiments on two NPMc+ AML samples showed that very few clones are 

highly expanded in vivo. In particular, in both NPMc+ leukemia, only 2 barcodes account 

for >90% of total reads (Figure 19). Interestingly, identity of the predominant barcodes in 

the spleen and the bone marrow of the same mouse was conserved (Figure 19 A). 

These findings confirmed our hypothesis that among leukemic cells, few LICs have a strong 

growth advantage and are clonally selected in vivo. This, in turn, is associated with the 

presence of minor clones at very low frequency, below the threshold of sensitivity set by the 

spike-in.  
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Figure 19. Clonal tracking confirmed a strong clonal expansion during NPMc+ 
leukemia growth in vivo. Clonal tracking barcodes frequency distribution in two 
independent NPMc+ leukemia samples. A. Barcodes distribution in NPMc+ 414 SPL and 
BM. B. Barcodes NPMc+ P1E SPL. All barcodes found in the samples are depicted in the 
graph. *N.B. colors do indicate barcodes identity only between SPL and BM in NPMc+ 414 
samples. 

 

Assuming that only LICs are able to grow upon transplantation in recipient mice, the number 

of clonal barcodes retrieved in vivo can be used to measure LIC frequency, with the 

following formula: 

 

𝐿𝐼𝐶	  𝑓𝑟𝑒𝑞 =
𝑛𝑟.	  	  𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑑	  𝑐𝑒𝑙𝑙𝑠	  𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑

𝑛𝑟. 𝑜𝑓	  𝑏𝑎𝑟𝑐𝑜𝑑𝑒𝑠	  𝑎𝑏𝑜𝑣𝑒	  𝑡ℎ𝑒	  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 

However, in our experimental conditions, only a small proportion of clones were present at 

a frequency above the threshold set by the spike-in, due to the excessive clonal expansion of 

very few clones, therefore preventing a reliable evaluation of the LIC frequency in our AML 

samples (Table 9). Indeed, LICs with lower growth potential could not be scored in clonal 

representation because of the threshold set for clone identification.  
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 NPMc+ 414 SPL NPMc+ P1E SPL 

Total barcodes (BCs) 68 99 
BCs considering spike-in threshold to 100 cells  5 2 
Transduction efficiency 15% 14%  
LIC frequency 1:30,000 1:70,000 

 

Table 9. LIC frequency calculated by clonal tracking is affected by the low number of 
barcodes above the threshold.   

 

In conclusion, two features of either NPMc+ or PML-RARa leukemias, namely relatively-

low LIC frequency and high clonal heterogeneity of LICs, prevent the possibility of 

performing in vivo genetic screens, due to the low molecular complexity supported by both 

models. 

 

8.8  The MLL-AF9 driven AML model  

We then considered the possibility to use a different AML model. Notably, like human 

NPMc+ leukemia, human MLL-rearranged leukemia are characterized by the de-regulated 

expression of members of the HOX gene family203, which are involved both in HSCs in self-

renewal regulation and AML development. Both NPMc+ and MLL fusion proteins have 

been shown to cooperate with the BET chromatin regulator BRD4 in the regulation of gene 

expression204,205. In NPMc+ leukemia, inhibition of BRD4 by NPM1 is lost, while, in MLL-

rearranged AML, the fusion partner is often part of the super elongation complex (SEC) that 

recruits BRD4 to promote transcription. Recently, the SEC complex, MLL1 and the H3K79 

methyltransferase DOT1L have been shown to control MEIS1 and HOX genes expression 

in NPMc+ AML206. Moreover, in AML patients, NPMc+ and DNMT3A mutations often co-

occur while both alterations are mutually exclusive with MLL-rearrangements54,207, 

indicating that mutations in distinct epigenetic regulators share a convergent mechanism to 

induce self-renewal deregulation through MEIS1and HOX genes overexpression. Therefore, 

based on the similarity to NPMc+ AML, and the fact that it has been previously used to 
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perform shRNA screen both in vitro and in vivo166,167,208, we decided to perform our genetic 

screens using the MLL-AF9 (MA9) murine AML.  

 

8.9  The MLL-AF9 pre-leukemic LSK gene expression profile is enriched in 

quiescent stem cell signatures 

To analyze MA9-dependent transcription in defined hematopoietic subpopulation, we 

generated pre-leukemic mice, by transplanting MA9 tranduced Lin- cells into lethally 

irradiated recipient mice. Mice were analyzed after 4 weeks from Lin- transplantation, to 

allow complete HSCs engraftment in the bone marrow niche. However, at this time point, 

the physiological organization of the bone marrow was totally lost (not shown), due to the 

ability of MA9 expression to induce accelerate leukemogenesis. Unfortunately, at 2 weeks 

after transplantation, control mice, transplanted with Lin- cells transduced with empty 

vector, had not yet completely reconstituted the bone marrow of the animals, while mice 

transplanted with MA9 Lin- cells showed a transformed-like phenotype (not shown). In 

conclusion, the MA9 behaves as a potent transforming oncogene in this model system, 

preventing appreciation of a pre-leukemic phase.	  	  

Thus, we decided to take advantage of previously reported transcriptional profiles of MA9 

pre-leukemic LSK cells (Lin-, Sca1+ and Kit+) derived from MA9 KI mice209. The LSK 

compartment is enriched in stem cells and it is composed by LT-HSCs, ST-HSCs and MPPs. 

MA9 KI mice harbor the fusion gene in the endogenous Mll locus and are characterized by 

a prolonged pre-leukemic phase (∼6 months) with myeloid proliferation and expansion of 

LSK cells, as compared to WT mice. Interestingly, this phenotype is similar to what we 

observed in our NPMc+ model where, upon transplantation of NPMc+ expressing BM-

MNCs, we scored an expansion of the donor LSK compartment (unpublished data). In 

addition, the authors described a MA9-associated gene signature composed by 192 genes 

up-regulated in four pre-leukemic subpopulations (LSK, CMP, GMP and CLP). 
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Interestingly, NPMc+ and PML-RAR⍺ LT-HSCs gene expression profiles are enriched in 

this MA9 signature (Figure 20). 

 

	    

Figure 20. Genes up-regulated by MA9 are enriched in NPMc+ and PML-RAR⍺  LT-
HSCs gene expression profiles. A. GSEA plot correlating genes up-regulated in NPMc+ 
LT-HSCs with genes up-regulated by MA9. B. GSEA plot correlating genes up-regulated in 
PML-RAR⍺ LT-HSCs with genes up-regulated by MA9. 

 

Analysis of the MA9 LSK gene expression profile showed a strong up-regulation of genes 

directly involved in quiescence regulation such as Tie2 (FC=1.8) and its ligand Angpt1 

(FC=1.4)136, Gimap5 (FC=1.7)210, Gata2 (FC=1.5)27, Tal1 (FC=1.3)211 and Pdk2 (FC=1.3)37.  

 

8.10   Clonal tracking and LIC frequency evaluation in MLL-AF9 leukemia  

To evaluate LIC frequency and the extent of LIC clonal heterogeneity in the MA9 leukemia, 

we performed in vivo clonal tracking experiments: one million MA9 blasts were infected 

with the 30 million barcodes library and transplanted in recipient mice. Upon leukemia 

development, we prepared sequencing libraries from genomic DNA extracted form the 

collected leukemic spleens. Samples were submitted to NGS and reads aligned to the 

reference library with no mismatches allowed. We retrieve 3,636 barcodes from one 

reference sample (Ref) and 159 different barcodes from one spleen (SPL) (Figure 21). 

Notably, the most represented barcode account for 14.8% of total reads, as compared to the 

PML$RAR⍺ LT$HSCsNPMc+/LT$HSCs

NES=2.14
FDR<0.01

NES=1.37
FDR=0.04



 74 

NPMc+ leukemia, where the most represented barcodes accounted for 50-80% of the 

sample.  

 

 

Figure 21. MA9 leukemia grows in vivo without major clonal expansion. Clonal tracking 
barcodes distribution in reference (Ref) and spleen (SPL) samples. All barcodes found in the 
samples are depicted in the graph. *N.B. colors do not indicate barcodes identity. 

 

We identified 52 barcodes above the threshold, set by the spike-in (>100 cells). Considering 

the amount of injected MA9 blasts (1x106) and the transduction efficiency of 2%, measured 

by FACS analysis as percentage of TagRFP+ cells, we estimated a LIC frequency of 1 in 

385 blasts. LIC frequency was also confirmed by Limiting Dilution Transplantation Assay 

(LDTA), the gold standard to evaluate LIC frequency in a given sample. Leukemic cells 

were transplanted into recipient mice at decreasing doses (from 500,000 to 100) and the 

proportion of mice that developed leukemia was used to calculate the number of self-

renewing cells present in the sample. The results confirmed a high LIC frequency in MA9 

leukemia model of 1:471 blasts (Table 10). Interestingly, in this AML model, LIC frequency 

estimation gave similar results with both the assay used, suggesting that all the LICs are able 
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to contribute to the growth of the leukemia in vivo and can be tracked under our experimental 

conditions.  

 

Cell dose MA9 Mice Dead 

500000 2 2 

100000 4 4 

10000 4 4 

1000 5 3 

100 5 4 

   

Confidence intervals for 1/(stem cell frequency) 

Lower Estimate Upper 

1253 471 177 
 

Table 10. MA9 LIC frequency calculation by limiting dilution. LDTA was performed by 
injecting decreasing numbers of MA9 into recipient mice (range 100-500000). The number 
of mice died of leukemia is indicated for each cell dose. LIC frequency was calculated using 
ELDA software177.  

 

In conclusion, analysis of LIC frequency and clonal heterogeneity suggest that MA9 

leukemia can support the molecular diversity of our libraries during in vivo screenings. 

 

8.11   MLL-AF9 shRNA screening in vivo 

In vivo screens were performed as described for NPMc+ and PML-RAR⍺ leukemia. Briefly, 

MA9 blasts were transduced in vitro with the M1 or 1.2k libraries at MOI=3 using the 

spinoculation protocol (see Materials and Methods section 6.3.3). Based on the calculated 

LIC frequency, we determined the number of MA9 blasts to be transduced in order to cover 

the complexity of our shRNA library. Indeed, especially in drop-out screens, every shRNA 

should be ideally present in 5-10 LICs to score its effect and avoid false negative results. To 

this end, estimating a transduction efficiency of ~20%, we independently transduced 24x106 

blasts for each replica. 24 hours after transduction, we collected half of the cells as reference 

points (t0) and used the other half for intravenously transplantation in recipient mice. A small 
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aliquot of cells was FACS analyzed 72 hours after transduction to evaluate infection 

efficiency, as percentage of TagRFP+ cells. Transduction efficiency was, on average, 17% 

and 22% for the M1 and 1.2k samples, respectively. We transplanted 6 mice for M1 and 4 

mice for 1.2k screening. Three weeks post transplantation mice showed signs of leukemia 

development such as high percentage of donor cells and high WBC count in the peripheral 

blood, palpable splenomegaly and pale limbs. Therefore, we sacrificed all the animals and 

collected blasts from both the spleen and the bone marrow. All mice showed splenomegaly 

and high blasts infiltration in spleen and bone marrow, measured as percentage of CD45.1+ 

cells (MA9 blasts) on total cells retrieved from the same animals (C57 BL/6 J). We then 

proceed with genomic DNA extraction and library preparation for NGS (see Materials and 

Methods section 6.3.4). For each mouse we sequenced DNA from the spleen sample and the 

corresponding reference sample, for a total of 20 samples.  

 

8.12   Identification of genes depleted during the in vivo screening  

For each sample, barcodes sequencing reads were aligned to the corresponding reference 

library. Reference samples (Ref) had a uniform barcodes distribution comprised in around 

10-fold variance for both libraries (Figure 22 A-C). Spleen samples (SPL), instead, showed 

a shift towards low frequencies for a number of barcodes, in both the M1 and in 1.2k library, 

much more evident in the M1 samples (Figure 22 B-D). However, this shift was not 

pronounced as the one observed in NPMc+ and PML-RAR⍺ screens, and we did not observe 

expansion of few barcodes, neither for M1 nor for 1.2k library. Indeed, the most abundant 

barcode accounted for <4% of total reads in each M1 sample, while it accounted for <0.5% 

of total reads in each 1.2k sample. 
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Figure 22. Barcode frequency distributions show a moderate shift during screening in 
vivo. A. Log10 barcodes distributions of 1.2k Ref samples. B. Log10 barcodes distributions 
of 1.2k SPL samples after in vivo screen. C. Log10 barcodes distributions of M1 Ref samples. 
D. Log10 barcodes distributions of M1 SPL samples after in vivo screen. 
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The correlation between M1 SPL samples was much higher than the one we obtained in the 

previous screens, with Pearson’s correlation coefficients ranging from 0.44÷0.55 (Figure 

23). 

 

	  	  	    

Figure 23. shRNAs have a similar distribution in the 6 screening replicates. Pearson’s 
correlation of shRNAs abundance between each M1 SPL samples. 

 

To increase the robustness of the screen, we analyzed 3 additional M1 samples (M1G, M1H 

and M1L) and one 1.2k, obtained from an independent in vivo screening, performed under 

identical experimental conditions. Samples were normalized and a multi-dimensional 

analysis was performed to visualized similarities among them. Interestingly, 2 out of the 3 

additional M1 SPL samples, M1G and M1L, clustered together with the other M1 SPL 

samples, while all the reference samples clustered very close to each other (Figure 24 B). 

On the contrary, 1.2k SPL samples were less homogenously organized, with some of them 

clustering with the Ref samples (1.2k spl C, spl D, spl E and spl F), and other far away from 

each other (1.2k spl A and spl B) (Figure 24 A). Since the 1.2k barcodes should be devoided 

of any biological effect, they are expected to behave randomly in vivo.  

 

M1A M1B M1C M1D M1E M1F

M1A 0.55 0.53 0.48 0.51 0.52

M1B 0.55 0.53 0.47 0.52 0.54

M1C 0.53 0.53 0.44 0.49 0.52

M1D 0.48 0.47 0.44 0.47 0.48

M1E 0.51 0.52 0.49 0.47 0.49

M1F 0.52 0.54 0.52 0.48 0.49
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Figure 24. Multi-dimensional scaling (MDS) plot show relationship between screening 
samples. A. 4 out of 6 1.2k Spl samples cluster with 1.2k Ref samples while two 1.2k Spl 
samples cluster far away from each other. B. Most of M1 Spl samples cluster together far 
from Ref samples. 

 

We then performed bioinformatics analyses of the 9 replicates for the shRNA screening and 

the 5 replicates for the control screening. We developed two different pipelines for the 

identification of genes depleted or enriched during screenings in vivo. In the first pipeline, 

we analyzed the barcodes distribution in the SPL and the respective Ref sample calculating 

the fold change for each barcode (FC=SPL/t0). Distribution of FC showed that M1 samples 

have a clear bimodal distribution of shRNAs that is less evident in 1.2k samples (Figure 25).  

 

 

M1#samples1.2k#samplesA B

t0#
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Figure 25. shRNAs fold change distribution shows a number of depleted hairpins in 
vivo. The upper panel shows the log2FC (SPL/t0) distributions of the barcodes in the 5 
samples of 1.2k screening. The lower panel shows the log2FC (SPL/t0) distributions of the 
shRNAs in the 9 samples of M1 screening.  

 

We then used the “random” distribution of the 1.2k barcodes in vivo to define a threshold 

for the identification of significantly depleted/enriched shRNAs in M1 samples. To calculate 

an empirical pValue for each shRNA of each M1 sample, we computed an empirical 

cumulative distribution function (ECDF) summing up all 1.2k control sample distributions. 

We then aggregated these pValues among replicates for each shRNA using the Fisher’s 

Method, and obtained, for each shRNA, a FC, a pValue and a qValue. We identified 291 

significantly depleted shRNAs and 223 significantly enriched shRNAs. Since for each gene 

were designed 10 hairpins, we established a threshold to define how many depleted/enriched 

shRNAs were sufficient to call a gene as depleted. To this end, we evaluated how many 

depleted shRNAs we would find by random picking 10 shRNAs among the others, 

M1 9$shRNAs samples

5$barcoded5only$ samples

Log2$FC$spl/t0
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regardless the gene they target, for 1,000 times. This analysis revealed that if one gene has 

at least 5 of its hairpins depleted, we can define it as depleted with 95% confidence. We did 

the same for enrichment and we set the threshold to ≥4 shRNAs to define a gene as enriched 

with 95% confidence. With this analysis we identified 15 significantly depleted and 14 

significantly enriched genes.  

For the second bioinformatics workflow, we took advantage of a previously published tool 

based on the EdgeR pipeline176. Briefly, after sample normalization, we used the FC (SPL/t0) 

and pValue distributions of the 1.2k control samples to set a significance threshold to be 

applied to shRNA samples. We thus identified 167 significantly depleted shRNAs and 205 

significantly enriched shRNAs. EdgeR package contains a gene set analysis-based tool, 

Roast, which allows to define if a gene is significantly depleted/enriched taking into 

consideration all the shRNAs targeting that gene. Roast analysis identified 19 significantly 

depleted and 18 significantly enriched genes. Among the depleted genes, in both analysis, 

we scored essential genes such as Rpl30 and Polr2b, and Brd4, already known to be critical 

for MA9 leukemia maintenance166 (Figure 26). 

 

 

Figure 26. Essential genes are scored as depleted by Roast gene set analysis. Barcode 
plots highlighting the rank of shRNAs targeting a specific gene relative to all other hairpins 
present in the M1 library.  

 

We decided to start validation experiments by targeting genes in common between the two 

analyses which overlap for 10 genes (Figure 27). 

FDR<0.01 FDR<0.01 FDR<0.01

Rpl30+ Polr2b Brd4
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Figure 27. Depleted genes in common between the two analyses are selected for 
validation experiments. Overlap between the depleted genes identified with the first 
pipeline (ECDF, in blue) and depleted genes identified with EdgeR pipeline (in yellow).  

 

8.13   Candidate genes validation 

MA9 blasts were transduced with single shRNAs targeting each of the candidate gene, or 

with empty vector (EV) as control, and TagRFP+ cells were sorted 72 hours after 

transduction to obtained a pure population of infected blasts. RT-qPCR confirmed silencing 

of target genes at sorting time, compared to blasts infected with EV (Figure 28 A). To 

functionally test the effect of gene silencing in vitro, 500 sorted blasts were plated in 

methylcellulose (MC) cultures and colonies counted after one week. MA9 cells infected with 

shRNA targeting Brd4, Stat1 or Sytl4 were significantly less clonogenic, as compared to 

EV-transduced MA9 cells (Figure 28 B). 
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Figure 28. shRNA-mediated gene silencing reduces colony-forming efficiency in vitro. 
A. qPCR analysis of MA9 blasts infected with shRNAs targeting Brd4, Stat1 or Sytl4, 
compared to MA9 blasts infected with empty vector (EV), 72h post transduction. B. 500 
MA9 TagRFP+ blasts infected with Brd4, Stat1 or Sytl4 shRNAs or EV were cultured in 
methylcellulose medium. The number of colonies scored after one week is shown (*p<0.05, 
**p<0.01). 

 

Unexpectedly, upon two subsequent MC re-plating experiments, colonies quantification did 

not show the same differences scored in the first passage (not shown). However, when we 

counted only the TagRFP+ colonies (e.g. cells expressing the specific shRNAs) we scored a 

significant decrease in the Brd4, Stat1 and Sytl4 silenced samples, as compared to the control 

(Figure 29 A). Accordingly, upon serial passages, the percentage of TagRFP+ cells 

decreased in all shRNA samples, while it was maintained constant in the control blasts 

infected with EV (Figure 29 B). These data demonstrated that down-regulation of Brd4, 

Stat1 or Sytl4 was sufficient to decrease colony-forming efficiency of MA9 leukemia.  

 

 

Figure 29. MA9 blasts infected with Brd4, Stat1 or Sytl4 shRNA are counter selected 
in vitro. A. 500 MA9 blasts from 1st plating in methylcellulose have been re-plated and 
TagRFP+ colonies only were counted one week later. B. At each re-plating in 
methylcellulose, the percentage of TagRFP+ cells was measured by FACS (*p<0.05, 
**p<0.01). 
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We next investigated the relevance of the candidate genes in leukemia maintenance in vivo. 

We intravenously injected 2x105 TagRFP+ sorted blasts infected with EV, Brd4, Stat1, Sytl4 

or LUC (Luciferase) shRNA in sub-lethally irradiated recipient mice and we monitored 

leukemia development. Silencing of candidate genes significantly delayed leukemia onset, 

as compared to controls (median survival: EV=33 days, LUC=34 days, Brd4=51 days, 

Stat1=57 days and Sytl4=79 days) (Figure 30). EV and LUC mice succumbed of leukemia 

with the latency observed in other experiments, confirming that lentiviral infection did not 

alter the growth potential of MA9 leukemia in vivo. 

 

 

Figure 30. Brd4, Stat1 or Sytl4 down-regulation significantly delays MA9 leukemia 
burden. 2x105 TagRFP+ sorted blasts were intravenously injected into sub-lethally 
irradiated mice and leukemia development was monitored (Mantel-Cox log-rank test 
*p<0.05). 

 

Brd4 requirement for MA9 AML has already been extensively described and, in line with 

Zuber’s work166, we verified that blasts harboring Brd4-shRNA were depleted when 

leukemia appeared, by measuring the percentage of TagRFP+ blasts (CD45.1+) in PB, SPL 

and BM of leukemic mice (Figure 31 A).  Interestingly, we obtained the same results for 

Stat1, suggesting that MA9 blasts expressing Stat1 shRNA were counter selected during 

leukemia growth in vivo. To test this hypothesis, we evaluated the mRNA level of Brd4 and 

Stat1 respectively, in leukemic cells collected when mice were sacrificed. As expected, 

outgrown leukemic blasts lost Brd4 or Stat1 silencing, with expression levels that were 
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comparable to controls (Figure 31 B-C). Collectively, these data demonstrated that Stat1, 

likewise Brd4, is critical for MA9 growth in vivo. 

 

 

Figure 31. MA9 blasts harboring Brd4 or Stat1 shRNA are counter selected during 
leukemia growth in vivo. Mice injected with MA9 blasts infected with Brd4 or Stat1 
shRNA eventually died of leukemia. A. Evaluation of TagRFP+ cells in leukemic peripheral 
blood (PB), spleen (SPL) and bone marrow (BM) of mice injected with blasts infected with 
LUC, Brd4 or Stat1 shRNAs. B. qPCR analysis of Brd4 mRNA level in AML deriving from 
blasts infected with Brd4 shRNA, compared to blasts infected with LUC shRNA. C. qPCR 
analysis of Stat1 mRNA level in AML deriving from blasts infected with Stat1 shRNA, 
compared to blasts infected with LUC shRNA (**p<0.05).  

 

The most strikingly delay in leukemia latency was observed in mice transplanted with blasts 

harboring Sytl4-shRNA (p=0.02, Mantel-Cox log-rank test). The Sytl4 (or Slp4) gene 

encodes for the Synaptogamin like protein 4, also known as Granuphilin-A, and it interacts 

with Rab27a GTPase, and important regulator of exosome release212. Exosomes are small 

vesicles produced by cells in physiological conditions, which recently gained attention for 

their role in inter-tumoral trafficking of proteins, RNA and DNA. Therefore, we are 
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investigating this pathway by treating leukemic mice with GW4869, a sphingomyelinase (n-

SMase) inhibitor which prevent exosome biogenesis (see Future plans). 

We then started the validation of further 4 candidate genes identified as depleted during the 

screening in vivo: Socs2, Gfi1, Tie1 and Hoxa5. MA9 blasts were transduced and TagRFP+ 

cells sorted 72h after infection, as in the previous experiments. 500 sorted blasts were plated 

in MC cultures and colonies counted after one week. MA9 cells infected with shRNA 

targeting Gfi1, Tie1 or Hoxa5 were significantly less clonogenic, as compared to EV control, 

while blasts infected with Socs2 shRNA were not significantly different in clonogenic 

capacity (Figure 32 A). During subsequent passages in MC, blasts infected with Gfi1 shRNA 

were significantly counter selected, as shown in Figure 32 B by the percentage of TagRFP+ 

cells.  

 

   

Figure 32. MA9 blasts infected with Gfi1, Tie1 or Hoxa5 shRNA have decreased 
clonogenic potential in MC. A. 500 MA9 TagRFP+ blasts infected with Socs2, Gfi1, Tie1 
or Hoxa5 shRNAs or EV were cultured in methylcellulose medium. The number of colonies 
scored after one week is shown. B. 500 MA9 blasts from 1st plating in methylcellulose have 
been serially re-plated and percentage of TagRFP+ cells was scored at each passage by 
FACS (*p<0.05, **p<0.01). 

 

However, RT-qPCR analysis at sorting time (i.e. 72h after transduction) revealed that only 

blasts infected with Socs2 shRNA showed a clear down-regulation of the target gene, while 

for Gfi1, Tie1 and Hoxa5, silencing was not effective at this time point (Figure 33). 
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Figure 33. Socs2 was efficiently down-regulated 72 hours after transduction. qPCR 
analysis of MA9 blasts infected with shRNAs targeting Socs2, Gfi1, Tie1 or Hoxa5 
compared to MA9 blasts infected with empty vector (EV), 72h post transduction (**p<0.05).  

 

Given these not conclusive results, we are repeating the experiments with different hairpins. 

Since three days of culture might not be sufficient to obtain a shRNAs effect on target genes, 

we analyzed gene silencing 5 days after transduction in TagRFP+ sorted cells. As shown in 

Figure 34, we were able to down-regulate Gfi1 and Tie1 compared to control, therefore we 

will proceed in performing both in vitro and vivo experiments using these two shRNAs.  

 

 

Figure 34. Gfi1 and Tie1 were down-regulated 5 days after transduction. qPCR analysis 
of MA9 blasts infected with shRNAs targeting Gfi1 or Tie1 compared to MA9 blasts 
infected with empty vector (EV) (*p<0.05, **p<0.01). 
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8.14   Future plans 

We have shown that quiescence genes that are up-regulated by relevant AML-associated 

oncogene in pre-leukemic cells are critical for the maintenance of leukemia growth. Our next 

goal is to demonstrate that the anti-leukemic effect of the selected quiescence genes is indeed 

due to their ability to regulate LSCs quiescence. Except for Gfi1, the role in quiescence of 

HSCs for the other candidate genes has not yet established. Therefore, we will investigate 

the effect of their silencing in WT and pre-leukemic HSCs by performing cell cycle analysis 

on stem cell compartment isolated from recipient mice after long term transplantation. Since 

our hypothesis arose from the biological effect of NPMc+ expression in LT-HSCs, we will 

especially study the impact of gene silencing in this pre-leukemic context. 

Moreover, we will address if down-regulating our targets we will be able to score a 

diminished quiescence in the LSCs compartment of MLL-AF9 leukemia, where their 

immunophenotype has been extensively characterized. Unfortunately, the identification, by 

surface markers, of LSCs in murine NPMc+ and PML-RAR⍺ leukemia is not well 

established. Finally, in order to obtain indications regarding a possible therapeutic strategy, 

we will treat leukemic mice with combinations of chemotherapeutic agents and specific 

drugs targeting the quiescence genes/pathways identified in the screening.   
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9.   Discussion 

One of the major obstacles in AML eradication is the genomic and biological heterogeneity 

of the tumor. AML genomic complexity is a well described phenomenon characterized by 

the presence of multiple subclones within the leukemic bulk population48,49. This intra-

tumoral heterogeneity contributes to therapy failure and leukemia relapse, the major cause 

of death in AML patients. At biological level, AML are hierarchically organized and only 

LSCs, a minor population of the leukemic cells, are able to sustain tumor growth. Traditional 

chemo- and radiotherapies, which only target actively cycling cells, have limited effects on 

LSCs, mainly due to their quiescent state85. Quiescence is an intrinsic property of HSCs and 

it closely linked to long-term self-renewal capacity, necessary for the maintenance of blood 

compartment throughout the whole lifetime of an individual. Similarly, LSCs are enriched 

in quiescent cells with the ability to self-renew and propagate the disease. Therefore, the 

development of therapeutic strategies aimed to target quiescent LSCs may have a profound 

impact on leukemia eradication. 

In this work, we demonstrated that two non-related leukemic oncogenes, namely NPMc+ 

and PML-RARα, are able to induce a common transcriptional program in HSCs. 

Specifically, a gene signature peculiar of quiescent stem cells is further enforced in the pre-

leukemic HSCs expression profiles. Strikingly, a set of genes, already described to have a 

functional role in stem cells quiescence maintenance, was found to be up-regulated by 

NPMc+ and PML-RARα during the pre-leukemic phase. In the same way, preliminary data 

on AML1-ETO pre-leukemic HSCs expression profile showed an enrichment in the same 

quiescent HSCs signature (not shown), indicating that the perturbations induced by different 

leukemic oncogenes converge on similar pathways. Consistently, a series of data obtained 

expressing different oncogenes in HSCs suggested that a tight regulation of cell cycle is 

functionally relevant for leukemia development107. Moreover, NrasG12D, a known leukemia 

initiating oncogene, has been described to exert a bimodal on HSCs213. NrasG12D expression 

is able to increase self-renewal potential in one subset of HSCs, maintaining their quiescent 
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state, while it increases the proliferation rate in another subset of HSCs. The author proposed 

a model where short lived but rapidly dividing NrasG12D HSCs presumably outcompete wild-

type HSCs and are replenished over time by the quiescent NrasG12D HSCs, slowly recruited 

into cell cycle.  

Our data suggested that the ability to enforce quiescence in HSCs is indeed a novel common 

feature of leukemia initiating oncogenes. Therefore, deeper characterization of the molecular 

mechanisms underlying oncogene-induced quiescence will shed light on functional relevant 

pathways in AML development, maintenance and response to therapies.  

To assess if the quiescence-related genes induced in pre-leukemic phase are also relevant for 

leukemia maintenance, we investigated their role with in vivo shRNA screening. 

Unfortunately, we found an unexpectedly marked expansion of few clones during NPMc+ 

and PML-RARα leukemia growth, confirmed by lentiviral clonal tracking experiments. 

Clonal expansion reflects the intrinsic biological heterogeneity within the LSCs 

compartment in terms of growth potential. So far, few studies have used cellular barcodes to 

study AML clonal dynamics and, consequently, the relationship between LSCs functional 

heterogeneity and leukemia clonal composition remains not clear. In a leukemia mouse 

model, tracking of barcoded cells, from cancer initiation to leukemia development, showed 

that clonal composition fluctuates during leukemogenesis eventually resulting in oligoclonal 

leukemia214. Transplantation of human AML samples showed that xenografts are 

predominantly composed of few single genetically-defined subclones which are not the 

predominant in the primary sample80. On the contrary, cellular barcoding of human B-ALL 

samples showed high polyclonal composition upon xenotransplantation in NSG mice. 

Interestingly, clones are asymmetrically distributed in mouse niches highlighting the 

influence of the environmental selective pressure155. The major technical issue in clonal 

tracking experiments is cell transplantation in recipient mice which introduces by itself a 

strong selective proliferation pressure.  
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The strong clonal expansion we observed in NPMc+ and PML-RARα leukemia prevented 

any meaningful analysis of the screenings we performed. Therefore, we evaluated other 

AML models and we chose the MLL-AF9 driven leukemia, which showed a less prominent 

clonal growth in vivo. Interestingly, MLL-AF9 expression in normal stem cell compartment 

was able to up-regulate a set of quiescence genes, similarly to the other leukemia initiating 

oncogenes we examined. For these reasons, we performed the in vivo shRNA screening in 

this model, in parallel to a control screening with a non-targeting library composed by the 

same number of DNA barcodes. We implemented a novel strategy to analyze shRNA 

screening results based on the barcodes distribution of the non-targeting library in vivo. This 

library turned to be fundamental to account for the diverse proliferation capacity of LSCs 

upon in vivo transplantation. Two different bioinformatics pipelines allowed the 

identification of 10 significantly depleted genes, common to both the analyses. Among the 

targets we identified, we found Brd4, already described to play a critical role in MLL-AF9 

leukemia maintenance166. Polr2b and Rpl30, two essential genes we introduced in the 

screening as positive controls, scored as depleted in both analysis. Other depleted genes 

included Esr1, Gfi1, Hoxa5, Socs2, Stat1, Sytl4 and Tie1. In particular, Stat1 or Sytl4 down-

regulation in MLL-AF9 blasts was sufficient to significantly delay leukemia onset in mice.  

Stat1, a transcription factor member of the STAT proteins family, is specifically activated 

by interferons and is involved in cell survival and pathogen response. Upon phosphorylation 

mediated by receptor associated kinases and Janus kinases (JAKs), STATs proteins form 

homo- or heterodimers and translocate to the nucleus where they regulate transcription of 

target genes. Stat1 is mainly described as a negative regulator of quiescence since INF⍺ 

treatment is sufficient to trigger HSCs G0 exit, in a Stat1-dependent manner133. Moreover, 

Stat1 depletion is sufficient to rescue the HSCs hyperproliferative caused by KO of Irgm1, 

a well known HSCs quiescence positive regulator215. On the other side, Stat1 can induce cell 

growth arrest by inducing the expression of p21 and p27 and down-regulating cMyc in U937 

cells216,217. Interestingly, in hematological malignancies models, Stat1 has been described to 
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play a role in LSCs expansion218, in immunological surveillance escaping219 and in therapy 

resistance220. Moreover, the constitutive activation of STAT proteins has been demonstrated 

in leukemic cell lines and AML blasts221,222, laying the basis for several clinical trials with 

JAK/STAT inhibitors.  

Furthermore, we showed that down-regulation of Sytl4 in MLL-AF9 blasts is sufficient to 

decrease colony-forming efficiency in vitro and significantly delay leukemia growth in vivo. 

Sytl4 interacts with Rab27a, a key regulator of exosomes release. Impaired exosome 

maturation has already been linked to HSCs exit from quiescence. Indeed, HSCs release 

extracellular vesicles containing cytokines such as Angptl2 and TPO which are necessary to 

maintain HSCs activity through an autocrine signaling effect223. AML patients are 

characterized by high plasma levels of blasts-derived exosomes which decrease after 

induction therapy, mirroring blasts reduction in the bone marrow. Moreover, patients 

achieving long-term remission typically have exosomes plasma levels comparable to healthy 

individuals, suggesting that this parameter might have prognostic significance224. Vesicles 

content partially depends on the parent cell type and, in particular, AML exosomes are 

important for the crosstalk between leukemic cells and the environment by modulating 

immune response, blast survival, angiogenesis and resistance to therapies225. Strategies to 

specifically block exosome release in AML need further mechanistic studies to avoid 

indiscriminate interfering with physiological processes.   

As discuss in the future plans, our main goal is now to link the effect of the identified 

quiescence genes on leukemia growth to a direct role in quiescence maintenance. To this 

aim we will study both the effect of gene silencing in normal and pre-leukemic LT-HSCs in 

homeostatic conditions, and the extent of LSCs G0 exit, wherever they are 

immunophenotypically defined. To overcome this limitation, we will exploit functional 

assays for the identification of LSCs such as the H2B-GFP lentiviral labelling tool226. 

Leukemic blasts transduced with lentiviral Tet-Off H2B-GFP vector can be treated with 
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doxycycline to dilute the GFP signal upon cell divisions. With this system we can 

functionally isolate slow cycling LSCs in the fraction of GFP label-retaining cells.  

The following step will be to investigate if the mechanism is conserved in human samples. 

To this purpose, we can take advantage of the large cohort of AML xenografts already 

available in the lab. Ultimately, we hope to discover new therapeutic targets able to induce 

LSCs to proliferate becoming sensitive to standard chemotherapy strategies. Indeed, the 

exclusive target of LSCs may be insufficient to obtain effective leukemia cure because of 

the hyperproliferation of the bulk population. On the contrary, a biological meaningful 

combination of therapies directed against both LSCs and proliferating blasts, would allow 

to reach a definitive leukemia eradication.  
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