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Introduction

This thesis is divided into two parts. The first part concerns the papers [49] and [9],
the second part regards the paper [50]. The first part, from chapter 1 to chapter 4, deals
with the category of A1-categories, dg-categories and stable 1-categories, in particular
it is devoted to give a comparison between them.

We remark that the notion of triangulated category, developed by Jean-Louis Verdier
and Alexander Grothendieck, plays an important role in algebraic geometry. The main
example of triangulated category is the derived categories of sheaves. Their applications
concern the study of the geometry of moduli spaces or some problems in birational geom-
etry.

However triangulated categories have some serious drawbacks, for example the non-
functoriality of the mapping cone or the non-existence of homotopy colimits and homo-
topy limits. These technical problems suggest the definitions of pretriangulated differential
graded category, of pretriangulated A1-categories and, more recently, stable1-categories.
Roughly speaking, such categories are dg-categories (resp. A1-categories, 1-categories)
whose homotopy category is a triangulated category, so they can be viewed as enhanced
triangulated categories.

To summarize briefly, we prove that the category of A1-categories, localized over quasi-
equivalences (resp. Morita equivalences), is equivalent to the category of dg-categories
localized over quasi-equivalences (resp. Morita equivalences).
The idea behind the construction of these equivalences is to take a quotient of the com-
position of the functor bar with the functor cobar, from the category of non-unital A1-
categories to the category of non-unital dg-categories.

Moreover, regarding the 1-stable category, we prove that the categorical nerve of
the category of dg-categories and A1-categories (localized over Morita equivalences) is
equivalent to an idempotent complete 1-stable category, using a result of Lee Cohn. Fur-
thermore we prove that the A1-nerve sends quasi-equivalences of unital A1-categories to
weak-equivalences of 1-categories. We find also some particular assumptions where the
converse is true.
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0. Introduction

As we said before, A1-categories, dg-categories and stable 1-categories are very im-
portant for the study of the derived categories of schemes. For example, we recall that
the enhancements via A1-categories is fundamental to prove the existence of non-Fourier-
Mukai functors between derived categories, or to prove the existence of non-unique en-
hancements of a triangulated category [52].

Another example of why we are interested in enhancements of triangulated categories,
concerns the Homological Mirror Symmetry Conjecture. The HMSC, formulated by Kont-
sevich, states that there exists an A1-equivalence between a dg enhancement of Db(X),
for X a smooth projective Calabi-Yau threefold, and the Fukaya category F(Y ) of the
mirror Y of X. We recall that the Fukaya category F(Y ), whose objects are Lagrangian
submanifolds of Y, is a pretriangulated A1-category. It means that his homotopy category
is a triangulated category. Roughly speaking, the objects of the A1-category F(Y ) are
Lagrangian submanifolds of Y. So, the importance of the uniqueness of dg-enhancement
of Db(X) is strictly connected to the A1-nature of F(Y ).

Moreover there is another important application of the study of such categories concern-
ing noncommutative geometry. As we will explain accurately in chapter 5, there are sev-
eral ways to approach, to noncommutative geometry. We cite, among the others, Connes’s
approach via C

⇤-algebras, the approach of Rosenberg, Gabriel and Kontsevich which iden-
tifies a scheme with the category of its coherent sheaves. Other variants are the approach
of Kontsevich and Soibelman, related to A1-algebras and homological mirror symmetry,
and the approach of Artin and Zhang.

In the second part of my thesis, we focus on the theory of noncommutative motives. The
central point of this theory is the study of algebraic varieties by using the dg-enhancements
of the derived category of their category of perfect sheaves. We remind that this approach
began, in the 80’s, thanks to the work of Beilinson, Bondal, Kapranov, Manin, etc. and
was recently developed by Tabuada in the book [59].

Roughly speaking, taking a smooth projective scheme X, there exists a relation between
the Chow ring h(X), associated to X, and the noncommutative Chow ring U(perfdgX),
associated to any dg-enhancement of the category of perfect sheaves on X.

In particular, Tabuada et al., proved that some classical conjectures about Chow ring
of X, e.g. Voevodsky nilpotence conjecture, Kimura conjecture and Schur conjecture hold,
if and only if, the corresponding conjectures in the noncommutative case hold for perfdgX.

We sketch briefly the results we obtain. First we prove Voevodsky nilpotence conjecture,
Kimura conjecture and Schur conjecture, for smooth cubic fourfolds and ordinary generic
Gushel-Mukai fourfolds. The proof of such conjecture is based on the observation that
there exists a quadric fibrations from a blow-up of these fourfolds to P3. Then, we prove
the noncommutative version of the aforementioned conjectures for the dg-enhancement
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(induced by the enhancement of X) of the Kuznetsov category AX , which is a noncom-
mutative K3 surface in sense of Kontsevich. Finally, we prove the Voevodsky nilpotence
conjecture for generic Gushel-Mukai fourfolds, containing a plane P of type Gr(2, 3). This
provides a geometrical application of the previous result.

We believe that this approach yields a new tool for the proof of Voevodsky’s conjecture
for smooth projective k-schemes whose derived category of perfect complexes contains the
noncommutative K3 surface AX .
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Ouverture

We recall that pretriangulated dg-categories, pretriangulated A1-category and stable
1-category are three ways to enhance a triangulated category. From a geometric point of
view, we remark that a large number of examples of triangulated categories are the derived
categories of (coherent sheaves) of a scheme. The study of such category was fundamental
to prove some results in algebraic geometry. Among the others, we point out the works of
Stellari, Huybrechts, Kuznetsov, Orlov etc.

There is another important application of the study of the derived categories (and
their enhancements) concerning the noncommutative geometry. There are several ways to
approach, to non commutative geometry. We cite, among the others, Connes’s approach
via C

⇤-algebras, the approach of Rosenberg, Gabriel and Kontsevich, which identifies a
scheme by the category of its coherent sheaves, the approach of Kontsevich and Soibelman,
related to A1-algebras and homological mirror symmetry, and the approach of Artin
and Zhang. Roughly speaking, the objects of study of noncommutative geometry are dg-
algebras, A1-algebras or dg-coalgebras instead of varieties.

Enhancements of a triangulated category

Let K be a field (or a commutative ring).

Given a K-linear triangulated category T . We say that T is enhanced by C if

Ho(C) ' T ,

where Ho denotes the homotopy category and C is one of the followings:

• a pretriangulated dg-category,

• a pretriangulated A1-category,

• a stable 1-category.

The aim of the first part of the thesis is to relate the, above mentioned, enhancements.
Roughly speaking, we can summarize these results with the following diagram, which is
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0. Ouverture

commutative up to weak-equivalences:

pretriangulated
A1-categories

NA1

..

U
// pretriangulated

dg-categories

Ndgpp

i

oo

Stable
1-categories

where the functor U is widely described in Chapter 2 and the functors NA1
and Ndg

are defined in Chapter 4. Moreover, we say that a triangulated category has a unique
enhancement if, give two enhancements C and D, there exist a dg (or A1, or 1)-functor,
from C to D which is a quasi (or weak)-equivalence.
We know that, given a smooth projective K-scheme X, the category of perfect complexes
perf(X) has a unique dg enhancement perfdg(X) (cf. [41] or [10]). Actually, one of the
most important questions, about this topic, is related to the uniqueness of enhancements.
In [52], Rizzardo and Van den Bergh showed that the graded field F = K[t, t�1], with K =

K(x1, .., xn+1) and n even, has two, not quasi-equivalent, A1-structures. The homotopy
category of pretrA1

(F ) provide an example of a triangulated category whose enhancements
are not unique4.

Noncommutative geometry

Under mild assumption on a K-scheme X (e.g. if K is a perfect field and X is quasi-
projective cf. [53]) we can take a generator E of the dg-category perfdg(X). Moreover
we denote by E the dg-algebra of endomorphisms Hom(E,E). The dg-algebra E has only
finitely many non zero cohomology groups (since E is perfect cf. [48]). Then, by [28], we
have a quasi-equivalence between perfdg(X) and perfdg(E ), where E is a cohomologically
bounded dg-algebra.

This fact, allow us to suggest the following definition of a noncommutative scheme:

Definition (Noncommutative scheme). We define a noncommutative scheme to be a K-
linear dg-category quasi-equivalent to a category of the form perf(E) where E is a coho-
mologically bounded differential graded K-algebra.

Now we give two examples of a noncommutative scheme, which are not equivalent to
the enhancement of the derived category of a scheme.

4Other, more general, examples are studied by Kajiura in [27].
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Example 1: Noncommutative projective spaces

We recall that the derived category of a quiver Q is defined as the derived category of
the abelian category of (finitely generated) modules over the K-algebra KQ:

D
b(Q) := D

b(mod KQ)

Now we consider the following quiver:

· // ·

The associated K-algebra KQ is given by

KQ =

( 
k1 k2

0 k3

!
| k1, k2, k3 2 K

)

where ki 2 K. The (primitive orthogonal) idempotent elements of KQ are given by:

e1 = K
 
1 0

0 0

!
, e2 = K

 
0 0

0 1

!

Moreover the modules P1 and P2, defined as KQe1 and KQe2, are indecomposable and,
by Krull-Schmidt theorem, they generate the abelian category mod KQ.
We recall that a semiorthogonal decomposition of a triangulated category is a collection
of subcategories Ai such that Hom(Ai,Aj) = 0, for i > j, and, for every object T , there
exists a chain of maps 0 = Tm ! Tm�1 ! ... ! T1 ! T , with Ti 2 Ai, such that
cone(Ti ! Ti�1) 2 Ai. Moreover we say that an object T is exceptional if Hom(E,E) = K
and Exti(T, T ) = 0, with i 6= 0. We can note that P1 and P2 are exceptional objects,
moreover by the following exact sequence in mod kQ

0! P1 ! P1 � P2 ! P2 ! 0

we have the distinguished triangle

P1 ! P1 � P2 ! P2 ! P1[1].

So the derived category of the quiver Q is generated by P1 and P2, in formula

D
b(mod KQ) = hP1, P2i.

Now by Kuznetsov [32, Theorem 7.3] we have that the Hochschild Homology of Db(Q) is

HH⇤(D
b(Q)) = HH⇤(P1)�HH⇤(P2).

Given an appropriate5 category C, we recall that HH⇤(C) = TorEndFun(C)(IdC , IdC) where
EndFun(C) denotes the category of C-endofunctors.

5with "appropriate" I mean a category C such that EndFun(C) can be replaced with a category having
a structure to define Tor. For example if C is the category of modules over an algebra A we can replace
EndFun(C) by Mod(A⌦A

op).
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0. Ouverture

In order to calculate HH0(Db(Q)) we have to calculate the 0th-Hochschild Homology of
P1 and P2. We recall ([40]) that HH0(A) = A/[A,A], for a K-algebra A.
HH0 of P1 is K (because P1 ' K), and the commutator of P2 is given by

C = [P2, P2] =

 
0 k2

0 k3

! 
0 k̃2

0 k̃3

!
�

 
0 k̃2

0 k̃3

! 
0 k2

0 k3

!
=

 
0 K
0 0

!

Thus HH0(P2) = P2/C ' K, and

HH0(D
b(Q)) := K�K.

Remark 1

The calculation above is still true for all the quivers with n-arrows of the form:

(1) ·
//

//

. . . n-arrows . . . ·

Because the indecomposable elements of mod KQ are the same.

In general, given a smooth proper connected scheme X over an algebraically closed base
field K of characteristic zero, using Hochschild-Konstant-Rosemberg-theorem we have that
the 0th-Hochschild homology is given by

HH0(X) =
M

p�q=0

H
p,q(X) = H

0,0(X)� ...�H
n,n(X) 6= C� C.

Because H
0,0(X) ' H

1,1(X) ' H
n,n(X) ' C.

Moreover thanks to the work of [29, §5.2] we have that the Hochschild homology of
the derived category of X is equivalent to the Hochschild homology of X in formula
HH0(Db(X)) ' HH0(X).
To conclude, if Q is a quiver with n arrows of the form (1), where n is not equal to 0 or 2

and K = C, then D
b(Q) is not the derived category of a scheme.

Definition (Noncommutative projective space). A n-noncommutative projective space NPn

K
is the dg-enhancement of the derived category of the quiver of the form (1).

Example 2: Cubic 3-Folds

Let X be a cubic threefold i.e. a smooth hypersurface X ⇢ P4 with deg X = 3, by [36],
we have a semiorthogonal decomposition:

D
b(X) = hAX ,OX ,OX(H)i

where H is a hyperplane section and

AX = {C 2 D
b(X) s.t. HomDb(X)(OX , C) = HomDb(X)(OX(H), C) = 0} ⇢ D

b(X).
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AX is a (smooth and proper) noncommutative scheme and, by [32, Corollary 4.4], we know
that the Serre functor of AX is given by

S
3
AX
' [5]

But there does not exists a smooth projective scheme Y such that D
b(Y ) ' AX because,

for a smooth projective scheme, the Serre functor is given by

SY := (�⌦ !Y )[dim Y ]

then
S
3
Y
= (((�⌦ !Y )⌦ !Y )⌦ !Y )[3 dim Y ]

and it can not be the shift functor [5].

A natural question arise:

• What kind of informations, about a scheme, we can recover from his noncommutative
counterpart?

In the second part of the thesis, we give an example of the use noncommutative geometry
to solve a geometrical problem.
In particular, we use the theory of noncommutative motives, developed by Tabuada in
[59], to prove Voevodsky conjecture, for some kind of varieties.
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Part I

A1-categories, dg-categories and stable

1-categories
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Chapter 1

A1-categories and dg-categories

In the first chapter we introduce some basic definitions about A1-categories and dg-
categories. We stress that we distinguish unital categories and cohomological unital cate-
gories. Then, fixed two A1-categories, we introduce the category of A1-functors, and the
homotopy relation between prenatural transformations which play the role of morphisms
in such a category. Moreover we recall the construction of pretriangulated A1-categories
originally introduced, for dg-categories, by Bondal and Kapranov in [8]. Roughly speak-
ing, as in the case of dg-categories, pretriangulated A1-categories are categories whose
homotopy category is triangulated. We refer to [56] and [30] for a complete reference about
this topic. We conclude this chapter with some definitions about dg-cocategories.

Let K be a commutative ring.

1.1 A1-categories and dg-categories

Definition 1.1.1 (A1-category). We define an A1-category to be a K-linear category
equipped by K-linear maps

m
d

A : A (xd�1, xd)⌦ ...⌦A (x0, x1)! A (x0, xd)[2� d],

for every d > 0, verifying the followings:

dX

m=1

d�mX

n=0

(�1)‡nmd�m+1
A

(ad, ..., an+m+1,m
m

A (an+m, ..., an+1), an, ..., a1) = 0.(1.1)

where ‡n = deg(a1) + ...+ deg(an)� n.

Example 1.1.1. The category of differential graded chains C(K), whose morphisms are
given by Homk

C(K)(X,Y ) :=
P

l2Z Hom(X l
, Y

l+k), equipped by the maps:

• m
1
C(K)(f

·) := df
· + (�1)deg f

·+1
f
·
d;

• m
2
C(K)(f

·
, g

·) := (�1)deg f
·(deg g

·+1)
g
·
f
·;

• m
n

C(K) = 0, for all n > 2;

3



1. A1-categories and dg-categories

is an A1-category.

Definition 1.1.2 (A1-opposite category). We define the opposite category of A (denoted
by A

op) to be the category defined by:

(op1) Obj(A op) = Obj(A );

(op2) 8x, y 2 A
op we have HomA op(x, y) = HomA (y, x);

(op3) 8n > 1 we have m
n

A op(f1, ..., fn) = (�1)✏(fn,...,f1)mn

A
(fn, ..., f1), where

✏(fn, ..., f1) =
X

1i<jk

(degfi + 1)(degfj + 1) + 1.

Definition 1.1.3 (Homotopy category). We define the homotopy category of A , denoted
by Ho(A ), to be the category1 whose:

• objects are objects of A ,

• for every pair of objects x and y, the morphisms are given by the quotient

Ho(A )(x, y) :=
Z

0(A (x, y))

B0(A (x, y))
= H

0(A (x, y)),

where Z
0(A (x, y)) := Ker(m1

A
: A

0(x, y)! A
1(x, y)) and

B
0(A (x, y)) := Im(m1

A
: A

�1(x, y)! A
0(x, y)).

The composition of such a category is given by

fg = (�1)deg(g)
m

2(f, g).

Let A be a small A1-category and let x be an object of A .

Definition 1.1.4 (Unit). We define the unit of x, denoted by ex, to be a morphism of
degree 0 such that:

• m
2
A
(f, ex) = f ,

m
2
A
(ex, g) = (�1)deg(g)

g,

• m
n

A
(..., ex, ...) = 0, for all n 6= 2.

We say that an A1-category A is unital if A is equipped with a unit ex for every object
x of A .

Given a non-unital A1-category C , we can associate to C a unital A1-category C+,
defined as:

• Obj(C+) = Obj(C ),

1such a category has no, a priori, identity arrow between objects.

4



1.1. A1-categories and dg-categories

• C+(x, y):=

8
<

:
K1K � C (x, y) if x = y,

C (x, y), otherwise.

• m
1
C+

(1x) = 0,

m
2
C+

(1x, f) = (�1)deg(f)
f ,

m
2
C+

(f, 1x) = f ,

m
n(..., 1x, ...) = 0, for every n > 2.

Viceversa, given a unital A1-category D , we can associate to D a non-unital A1-category
D�, defined as:

• Obj(D�) = Obj(D),

• D�(x, y):=

8
<

:
D(x, y)/{Kex}, if x = y,

D(x, y), otherwise.

• m
1
D�

= m
1
D

,

m
n

D�
= 0, for every n > 1.

Definition 1.1.5 (Cohomological unital category). We say that A is cohomological unital
if Ho(A ) is unital.

Definition 1.1.6 (Dg-category). We define a dg-category to be a unital A1-category such
that m

n = 0, for every n > 2.

Remark 1.1

We note that, taking a dg-category A and setting

fg = (�1)deg(g)
m

2(f, g),

we can see A as a category enriched in the category of chain complexes.

Example 1.1.2. We consider the following unital category, denoted by A , with one object
and three morphisms of degree zero:

•

f

g
Id

We have A (•, •) = K�K�K. The maps m
i

A
= 0 if i 6= 2, and:

m
2
A : A (•, •)⌦A (•, •)! A (•, •)

(a, b1, b2), (a
0
, b

0

1, b
0

2) 7! (aa0, ab01 + a
0
b1, ab

0

2 + a
0
b2).

5



1. A1-categories and dg-categories

Example 1.1.3. We consider the following category, denoted by B, with one object and
two morphisms one of degree zero and one of degree 1:

•

g
Id

We have B(•, •) = K�K[1]. The maps m
i

B
= 0 if i 6= 2, otherwise:

m
2
B : B(•, •)⌦B(•, •)! B(•, •)

(a, b), (a0, b0) 7! (aa0, ab0 + a
0
b).

Example 1.1.4. We consider the following unital dg-category, denoted by I , with one
object and two morphisms u0, u1 of degree zero, such that d(u0) = d(u1) = 0, and a
morphism h of degree 1, such that h = d(u0) = �d(u1):

•

u0

u1
h

We have I (•, •) = K�K�K. The product is given by:

· : I (•, •)⌦I (•, •)! I (•, •)

(k1u0 + k2u1 + k3h), (k4u0 + k5u1 + k6h) 7! (k1k4)u0 + (k2k5)u1 + (k3k4 + k2k6)h.

The unit of I is the morphism u0 + u1, and the homotopy category of I is K.
Moreover, given an A1-category B, we define the A1-category I ⌦B to be the category
with the same objects of B and whose morphisms, between two objects x and y, are given
by the tensor product I ⌦B(x, y). The A1-structure of I ⌦B is given by the maps:

m
1(i⌦ b) = i⌦m

1(b) + (�1)deg(i)+deg(b)
m

1(i)⌦ b,

and
m

d(id ⌦ bd, ..., i1 ⌦ b1) = (�1)
P

j>k
(deg(bj)-1)deg(ik)id...i1 ⌦m

d(bd, ..., b1),

if i > 1.

1.2 A1-functors and dg-functors

Let A , B and C be three A1-categories.
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1.2. A1-functors and dg-functors

Definition 1.2.1 (A1-functor). We define an A1-functor F : A ! B to be: a map
between the objects of A and B, and a collection of K-linear maps (for every integer
d � 1):

F
d : A (xd�1, xd)⌦ ...⌦A (x0, x1)! B(F (x0),F (xd))[1� d]

such that the followings are satisfied:
X

r�1

X

s1,...,sr

m
r

B(F sr (ad, ..., ad�sr+1), ...,F
s1(as1 , ..., a1)) =

=
dX

m=1

d�mX

n=0

(�1)‡nF
d�m+1(ad, ..., an+m+1,m

m

A (an+m, ..., an+1), an, ..., a1)

where s1 + ...+ sr = d.
Moreover, if A and B are unital A1-categories. We say that F is a unital A1-functor,
if the unit is preserved by F1, and Fd(..., ex, ...) = 0 for every d � 2.

Let us note that F induces a functor Ho(F ) : Ho(A )! Ho(B), whose action on the
morphisms is [f ]! [F 1(f)].

Definition 1.2.2 (Cohomological unital functor). Let A and B be two cohomological
unital A1-category. An A1-functor F : A ! B is cohomological unital if the functor
Ho(F ) is unital.

Definition 1.2.3 (Dg-functor). We define a dg-functor between two dg-categories C and
D to be a (unital) A1-functor F : C ! D such that F

n = 0 for every n � 1.

Example 1.2.1. Given A and B the categories defined in Example 1.1.2 and Example
1.1.3. The functors F ,G : A ! B defined in the following way:

F
n :=

8
<

:
F

1(a, b1, b2) := (a, 0), if n = 1,

0, if n 6= 1.

G
n :=

8
>><

>>:

G
1(a, b1, b2) := (a, 0), if n = 1,

G
2((a, b1, b2)⌦ (a0, b01, b

0
2)) := (0, b1b02), if n = 2,

0, if n 6= 1, 2.

are two unital A1-functors.

Example 1.2.2. Given I the category defined in Example 1.1.4 and K the category with
one object and K(•, •) = K. The functors F1 and F0 from I to K defined as

F
n

j
:=

8
<

:
F

1
j
(u0, u1, h) := (uj), if n = 1,

0, if n 6= 1,

with j = 0, 1, are two unital A1-functors.
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1. A1-categories and dg-categories

Definition 1.2.4 (Composition of A1-functors). Let F : A ! B and G : B ! C two
A1-functors. The composition G F : A ! C is the A1-functor defined, for every positive
integers d, as:

(G F )d(ad, ..., a1) =
X

r�1

X

s1,...,sr

G
r(F sr (ad, ..., ad�sr+1), ...,F

s1(as1 , ..., a1))

where s1 + ...+ sr = d.

Remark 1.2

In the situation of Example 1.2.1. We consider the followings subcategories of A :

•Id
::

g

MM

� � i1
// A • Id

zz

f

��

? _
i2

oo

We note that F ik = G ik and that, the minimal A1-category containing Im(i1) and Im(i2),
is A .

Definition 1.2.5 (Quasi-equivalence). Let A and B be a unital A1-categories, we say
that an A1-functor {F

n
} : A ! B is a quasi-equivalence if:

• Ho(F ) : Ho(A )! Ho(B) is an equivalence of categories.

• F
1 : A (x, y)! B(F 0(x),F 0(y)) is a quasi-isomorphism2.

Example 1.2.3. Two dg-categories which are quasi-equivalent are quasi-equivalent as
A1-categories.

Example 1.2.4. The functors F0 and F1, defined in Example 1.2.2, are quasi-equivalences.
Moreover the functor S from K to I defined by S (1)! u0 + u1 is a quasi-equivalence,
because F0S = F1S = IdK (and S F0 = S F1 = IdI ).

Definition 1.2.6 (Category of dg-categories). We define the category of small dg-categories,
denoted by dgcat , to be the category whose:

• objects are the small dg-categories,

• the morphisms are dg-functors.

Definition 1.2.7 (Homotopy category of dg-categories). We define the homotopy cat-
egory of dg-categories, denoted by Ho(dgcat), to be the localisation of the category of
dg-categories over the class of quasi-equivalences.

Definition 1.2.8 (Category of unital A1-categories). We define the category of unital
A1-categories, denoted by A1-cat, to be the category whose:

• objects are small unital A1-categories,

2F1 induces an equivalence H
n(A (x, y)) ' H

n(B(F0(x),F0(y))), for every integer n.

8



1.3. Prenatural transformations and homotopy between functors

• the morphisms are unital A1-functors.

Definition 1.2.9 (Homotopy category of unital A1-categories). We define the homotopy
category of unital A1-categories, denoted by Ho(A1-cat), to be the localisation of the
category of unital A1-categories over the class of quasi-equivalences.

Definition 1.2.10 (Category of cohomological unital A1-categories). We define the cat-
egory of cohomological unital A1-categories, denoted by A1-catcu, to be the category
whose:

• objects are small cohomological unital A1-categories,

• the morphisms are cohomological unital A1-functors.

Definition 1.2.11 (Homotopy category of cohomological unital A1-categories). We de-
fine the homotopy category of cohomological unital A1-categories, denoted by Ho(A1-catcu),
to be the localisation of the category of cohomological unital A1-categories over the class
of quasi-equivalences.

1.3 Prenatural transformations and homotopy between functors

Let F and G be two A1-functors between two A1-categories A and B.

Definition 1.3.1 (Prenatural transformation). We define a prenatural transformation T

of degree g to be a sequence (T 0
, T

1
, ..., T

d
, ...) of K-multilinear maps, such that, for every

d > 0:
T

d : A (xd�1, xd)⌦ ...⌦A (x0, x1)! B(F 0(x0),G
0(xd))[g � d].

Moreover T
0 associates to every x in A a morphisms in B(F 0(x),G 0(x)).

We denote by HomA1-Fun(F ,G )g the prenatural transformations between F and G

of degree g. On the other hand, HomA1-Fun(F ,G ) denotes all prenatural transformations
(in any degree) between F and G .

Definition 1.3.2 (Differential of prenatural transformation). Given a prenatural trans-
formation T 2 HomA1-Fun(F ,G ), we define the differential µ1 of T to be the prenatural
transformation µ

1(T ) such that, for every d > 0:

µ
1(T )d(ad, ..., a1) =

dX

r=1

X

s1,...,sr

rX

i=1

(�1)†1mr(G sr (ad, ..., ad�sr+1), ...

...,G
si+1(..., as1+...+si+1), T

si(as1+...+si
, ..., as1+...+si�1+1),

F
si�1(as1+...+si�1 , ...), ...,F

s1(as1 , ..., a1))+

+
dX

i=1

dX

j=1

(�1)deg(T )+‡iT
d�j(ad, ...,m

j(ai+j+1, ..., ai+1), ..., a1).

Where s1+...+sr = d and †1 = (deg(T )�1)(deg(a1)+...+deg(as1+...+si�1)�s1�...�si�1)

and ‡i = deg(a1) + ...+ deg(ai)� i.
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1. A1-categories and dg-categories

We call natural transformation, a prenatural transformation T whose differential µ1

is zero. The name "natural transformation" follows from the fact that, if F and G are
cohomological unital, T induces a natural transformation between Ho(F ) and Ho(G ) in
the classical sense.

Definition 1.3.3 (Product of prenatural transformations). Given two prenatural trans-
formations T1 2 HomA1-Fun(F0,F1) and T2 2 HomA1-Fun(F1,F2), we define the product
µ
2(T2, T1) to be the prenatural transformation in HomA1-Fun(F0,F2) given by:

µ
2(T2, T1)

d(ad, ..., a1) =
X

r,i,j

X

s1,...,sr

(�1)�mr

B(F sr

2 (ad, ..., ad�sr+1), ...,F
sj+1

2 (...)),

T
sj

2 (as1+...+sj
, ..., as1+...+sj�1+1),F

sj�1

1 (...), ...,F si+1

1 (...),

T
si

1 (as1+...+ss1+...+si�1+1),F
si�1

0 (...), ...,F s1
0 (as1 , ..., a1)),

where � =
s1+...+sj�1X

k=1

(deg(T2)� 1)(deg(ak)� 1) +

s1+...+si�1X

k=1

(deg(T1)� 1)(deg(ak)� 1).

More generally µ
d is defined, for all d � 1, and the following result holds.

Theorem 1.3. The category of A1-functors between two A1-categories A and B, to-
gether with prenatural transformations, is an A1-category denoted by A1-Fun(A ,B) (or
shortly A1-Fun). Moreover if B is a dg-category, then A1-Fun(A ,B) is a dg-category.

Proof. See §7 of [19] or [56, pp. 19-20].

Example 1.3.1. Given an A1-category A , we call A1-Fun(A op
, C(K)) the A1-category

of right non-unital modules.

We say that two A1-functors F and G are homotopic if, there exists a prenatural
transformation H, of degree 0, such that H0 = 0 and F

d
�G

d = µ
1(H)d, for every n � 1.

We point out that homotopy is an equivalence relation.

Definition 1.3.4 (Strictly unital homotopy). We define a strictly unital homotopy to be
an homotopy H, between two A1-functors, such that H

n(an, ..., e, ..., a1) = 0, for every
n � 1.

Remark 1.4

We note that, T is a homotopy between F and G if and only if, the maps

H
d : A (xd�1, y)⌦ ...⌦A (x, x1)!(I ⌦B)(x, y)

ad, ..., a1 7! u0 ⌦F
d(ad, ..., a1) + u0 ⌦ G

d(ad, ..., a1)

+ (�1)†dh⌦ T
d(ad, ..., a1).

define an A1-functor, where I , I ⌦B, F0 and F1 are defined in Example 1.1.4 and
1.2.2.

10



1.4. Pretriangulated A1-categories

Moreover if F , G and T are strictly unital, then H is strictly unital. We have the following
commutative diagram:

B

A

F
//

G //

H
// I ⌦B

F0⌦IdB

;;

F1⌦IdB
##

K⌦B
S⌦IdB

oo

B

where S is the quasi-equivalence defined in Example 1.2.4 cf. [56, Remark 1.11].

Remark 1.5

We recall, by [56, (2c)] and [56, Lemma 2.5.], that if A is a (strictly unital) cohomological
unital A1-category, and F is homotopic to G , then they are isomorphic as objects of
Ho(A1-Fun).

1.4 Pretriangulated A1-categories

In this section we recall the construction of the pretriangulated envelope of an A1-
category and some fundamental properties of such a construction. We assume a little
familiarity with triangulated categories. For the non-expert reader we suggest the book by
Neeman [47, Chapter 1].

The next definition is probably due to Kontsevich, we refer to [7] for the proofs. Let
A be a K-linear A1-category.

Definition 1.4.1 (Shifted category and shift functor). We define the category ⌃(A ) to
be the A1-category such that Obj(⌃A ) = (Obj(A ))⇥ Z, and morphisms are defined as
follow

⌃(A )(x[n], y[m]) := A (x, y)[m� n],

where x, y 2 A . We note immediately that A induces an A1-structure on ⌃A .
Moreover the endofunctor sending x[n] to x[n+ 1] is called shift functor .

Definition 1.4.2 (Closure under shift). We say that A is closed under shift if the inclusion
functor A ,! ⌃(A ) is a quasi-equivalence.

Definition 1.4.3 (A1-twisted complexes). A twisted complex in A is a finite set of
objects (Ei[ni])i2Z of ⌃(A ) together with maps ↵ij 2 A (Ei, Ej)nj�ni+1, if i < j, such
that:

+1X

k=1

mk(↵, ...,↵) = 0

Remark 1.6

The set of A1-twisted complexes, defined above, has the structure of an A1-category

11



1. A1-categories and dg-categories

[56], [7], we denote such an A1-category by pretrA1
(A ). Moreover we have an A1-

functor iA1
: A ,! pretrA1

(A ) cf. §3 of [56] for the complete construction. Given an
A1-morphism F we denote by pretrA1

F the induced functor.

Definition 1.4.4 (Pretriangulated A1-categories). We say that an A1-category A is
pretriangulated if A is closed under shifts and the functor iA1

: A ,! pretrA1
(A ) is a

quasi-equivalence.

Remark 1.7

If C is a dg-category pretr(C ) = pretrA1
(C ). Where pretr(C ) denotes the pretriangulated

envelope of the dg-category C according to the notation of [30].

We recall the fundamental proposition which motivates also the name "pretriangu-
lated":

Proposition 1.8. Let C be a pretriangulated dg-category, or a pretriangulated A1-
category, then the homotopy category Ho(C ) is a triangulated category.

We have the following [56, Lemma 3.25.]:

Theorem 1.9. Let F : A ! B be a quasi-equivalence between two A1-categories. Then
pretrA1

F : pretrA1
(A )! pretrA1

(B) is a quasi-equivalence.

Definition 1.4.5 (Idempotent completion). We say that an additive category K is idem-
potent complete if any endomorphism E : k ! k such that E

2 = E (idempotent) is such
that k = Im(E)� ker(E).

According to [3], in general, we can always embed an additive category in a idempotent
complete category (we denote by (�)ic such an embedding) moreover if K is a triangulated
category we have the following [3, Thm.1.5.]:

Proposition 1.10. If K is a triangulated category, its idempotent completion (K )ic

admits a unique triangulated structure such that the canonical functor (�)ic is exact.

Definition 1.4.6 (Idempotent complete). We say that a pretriangulated dg-category T

(or A1-category) is idempotent complete if the homotopy category Ho(T ) is idempotent
complete.

Definition 1.4.7 (Morita equivalence). Let A , B be A1-categories, we say that an
A1-functor {F

n
} : A ! B is a Morita-equivalence if:

• pretrA1
(F )ic : pretrA1

(A )ic ! pretrA1
(B)ic is a quasi-equivalence.

Definition 1.4.8 (Homotopy (Morita) category of A1-categories). We define the homo-
topy Morita category of A1-category , denoted by Hmo(A1-cat), to be the localisation of
the category of unital A1-category over the class of Morita-equivalences.

Remark 1.11

We say that a dg-functor is a Morita equivalence if it is a Morita equivalence as A1-functor.

12



1.5. Dg cocategories

1.5 Dg cocategories

In this last section, we introduce the category of dg-cocategories that will be funda-
mental in the next chapter to define the bar and cobar constructions.

Definition 1.5.1 (Dg cocategory). We define a cocategory C to consist of the data:

• a set of objects, denoted by Obj(C ),

• a differential graded K-module, with differential d, for every pair of objects x and y

in C ,

• a comultiplication

�x,y : C (x, y)!
X

z2Obj(C )

C (x, z)⌦ C (z, y),

for every pair x, y 2 Obj(C ), such that, for every z, w 2 Obj(C ), the following
diagram

C (x, z)

�xwz

✏✏

�xyz
// C (x, y)⌦ C (y, z)

�xwy⇥IdHom(y, z)
✏✏

C (x,w)⌦ C (w, z)
IdHom(y, z)⇥�wyz

// C (x,w)⌦ C (w, y)⌦ C (y, z)

commutes. Here �xyz denotes the composition ⇡y�xz, where ⇡y is the projection
on the object y.
Moreover, we require also that � is of degree zero, and that the following diagram

C (x, y)

d

✏✏

�
//

X

z2Obj(C)

C (x, z)⌦ C (z, y)

d⌦1+1⌦d

✏✏

C (x, y)
�

//

X

z2Obj(C)

C (x, z)⌦ C (z, y)

commutes, for every x, y and z.

Let C and C
0 be two cocategories.

Definition 1.5.2 (Counit). Given an object x in C . We define the counit of x to be a
map ⌘ : C (x, x)! K such that the following diagram:

C (x, x)⌦ C (x, y)

⌘⌦Id

✏✏

C (x, x)
�

oo

K⌦ C (x, y)

33

commutes.
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1. A1-categories and dg-categories

Definition 1.5.3 (Dg cofunctors). A dg cofunctor F between C and C
0 is given by the

following data:

• a map of sets F0 : Obj(C )! Obj(C 0),

• a K-linear map F1 : C (x, y)! C
0(F0(x), F0(y)), for x and y objects in C , such that

the following diagram

C (x, y)

F1

✏✏

�xyz
// C (x, y)⌦ C (y, z)

F1⌦F1

✏✏

C
0(F0(x), F0(y))

�0

F0(x)F0(y)F0(z)
// C

0(F0(x), F0(y))⌦ C
0(F0(y), F0(z))

commutes. Here � denotes the comultiplication of C , and �0 denotes the comulti-
plication of C

0.
Moreover we require that:

dF1(f) = F1d(f)

for every pair of objects x and y and for every morphism f 2 C (x, y).

Definition 1.5.4 (Category of dg-cocategories). We define the category of dg-cocategories,
denoted by dgcocat, to be the category whose:

• objects are dg-cocategories,

• morphisms are dg-cofunctors.

Definition 1.5.5 (Coderivation). Let F and G be two cofuntors between C and C
0. We

define a (F,G)-coderivation to be a map D : C ! C
0 such that:

• �D = (D ⌦ F1 +G1 ⌦D)�.

14



Chapter 2

Bar and cobar constructions

In this chapter we recall the bar and cobar constructions. To the best of our knowledge,
the bar construction is originally due to Eilenberg and MacLane, to pass from algebras
to Hopf algebras. On the other hand the cobar construction was originally develop by
J. F. Adams, to define a functor from cocommutative differential graded coalgebras, to
cocommutative differential graded Hopf algebras. Of course, there are several ways to
use bar and cobar constructions. We suggest [62] for a detailed discussion on this topic.
Roughly speaking, we use these construction, to pass from an A1-category (or a dg-
category) to a dg-cocategory, and viceversa. Even if such constructions are functorial,
they have some problems concerning the unit. For this reason, in the last section, we
define a new functor which works well with respect to the unit. We point out that, most
of the results of this section, were already proven in the case of algebras, in [39] or just
announced, in the case of categories, by Fukaya. Hence the aim of this chapter, is to write
a complete, and self contained reference about these constructions.

Notations

Given a positive integer n.
X

?
n

k

denotes
nX

k=1

X

i1,...,ik

with i1 + ...+ ik = n.

X

⇧n

denotes
nX

k=1

X

i1,...,ik

with 1  i1 < ... < ik  n.

2.1 A1-categories vs dg cocategories

Let C be a small unital A1-category.

We define the dg-cocategory Bar(C ) to be a category such that:

• Obj(Bar(C )) = Obj(C ),

15



2. Bar and cobar constructions

• Bar(C )(x, y) :=
X

n�0

X

†n

C (xn, y)[1]⌦ ...⌦ C (x, x1)[1].

Where †0 = C (x, y)[1] and †n = {{x1, ..., xn} such that xi 2 Obj(C )}.

We say that the element fn[1]⌦ ...⌦ f1[1] of Bar(A )(x, y) has length n.
Fixed a positive integer j, we denote by pj the projection from Bar(A )(x, y) to the
elements of length j.

• Fixed two objects x and y of Bar(C ), we define the comultiplication:

� : Bar(C )(x, y)!
X

z2C

Bar(C )(z, y)⌦ Bar(C )(x, z)

as

�(fn[1]⌦ ...⌦ f1[1]) =
n�1X

i=1

fn[1]⌦ ...⌦ fi+1[1]
O

fi[1]⌦ ...⌦ f1[1],

And �(f [1]) = 0.

• Given a morphism fn[1] ⌦ ... ⌦ f1[1] 2 Bar(C ), the differential d̂ : Bar(C )(x, y) !

Bar(C )(x, y) is given by

d̂ =
nX

k=1

d̂k

Where

d̂k(fn[1]⌦ ...⌦ f1[1]) =
n�k+1X

l=1

(�1)‡l�1fn[1]⌦ ...⌦mk(fl+k�1, ..., fl)[1]⌦ ...⌦ f1[1],

and ‡l�1 = deg(f1) + ...+ deg(fl�1)� (l � 1).

Clearly, we have
d̂(d̂(fn[1]⌦ ...⌦ f1[1])) = 0,

because A is an A1-category.
Conversely, given a graded K-linear category C , if Bar(C ) is a dg-cocategory then C is an
A1-category, by setting:

m
n(fn, ..., f1) := p

n(d̂(fn[1]⌦ ...⌦ f1[1]))[�1].

It means that we have:

Theorem 2.1. The A1-structures on C are in bijection with the dg structure on the
cocategory Bar(C ).

Example 2.1.1. Let A be a dg-algebra. The construction bar induces the dg-algebra
Bar(A) :=

X

i�1

A[1]⌦i.
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2.2. A1-functors vs dg cofunctors

2.2 A1-functors vs dg cofunctors

Let F from A to B be an A1-functor.

We define a functor of dg-cocategories, denoted by Bar(F ), from Bar(A ) to Bar(B)

in the following way:

• Bar(F )0(x) = F
0(x), for every x 2 Obj(A ),

• Given fn[1]⌦ ...⌦ f1[1] 2 Bar(A )(x, y), we define

Bar(F )(fn[1]⌦ ...⌦ f1[1]) : =
X

?
n

k

F
i1(fn, ..., fin�i1+1)[1]⌦ ...

...⌦F
ik(fik , ..., f1)[1].

Example 2.2.1. Let F : A ! B be a dg-functor then

Bar(F )(fn[1]⌦ ...⌦ f1[1]) := F
1(fn)[1]⌦ ...⌦F

1(f1)[1].

Lemma 2.2. The construction Bar is functorial.

Proof. By Example 2.2.1, we have immediately that

Bar(Id�) = IdBar(�),

because the identity is a dg functor.
Given two A1-functors F , G and a morphism f1[1]⌦ ...⌦ fj [1], we have:

Bar(G )(Bar(F )(f1[1]⌦ ...⌦ fj [1])) =

= Bar(G )(
X

?
j

k

F
i1(f1, ..., fi1)[1]⌦ ...⌦F

ik(fj�ik+1, ..., fj)[1])

=
X

?
j

k

Bar(G )(F i1(f1, ..., fi1)[1]⌦ ...⌦F
ik(fj�ik+1, ..., fj)[1])

=
X

?
j

s

(
X

1qs

i
q

1+...+i
q

jq
=tq

G
j1(F i

1
1(f1, ..., fi1), ...,F

i
1
j1 (ft1�i

1
j1

+1, ..., ft1))[1]⌦ ...

...⌦ G
js(F i

s

1(fj�ts+1, ..., fis1�j+ts
), ...,F i

s

js (fj�i
s

js
+1, ..., fj))[1])

=
X

?
j

s

(G F )t1(f1, ..., fi1)[1]⌦ ...⌦ (G F )tk(fj�ik+1, ..., fj)[1])

= Bar(G F )(f1[1]⌦ ...⌦ fj [1]).

Lemma 2.3. The construction Bar commutes with the differential.
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2. Bar and cobar constructions

Proof. We calculate:

d(Bar(F )(fj [1]⌦ ...⌦ f1[1])) =

= d(
X

?
j

k

F
i1(fj , ..., fj�i1+1)[1]⌦ ...⌦F

ik(fik , ..., f1)[1])

=
X

?
j

k

d(F i1(fj , ..., fj�i1+1)[1]⌦ ...⌦F
ik(fik , ..., f1)[1])

=
X

?
j

k

(
X

1rk

X

s

(�1)?F i1(fj , ..., fj�i1+1)[1]⌦ ...⌦F
is�1(fj�is�1�1, ...)[1]⌦

⌦m
r

A (F is(...), ...,F is+r(...))[1]⌦F
is+r+1(fj�ik+1, ..., fj)[1]⌦ ...⌦F

ik(fik , ..., f1)[1])

= Bar(F )(d(fj [1]⌦ ...⌦ f1[1])).

Where ? = deg(F ik(fik , ..., f1)) + ...+ deg(F is+r+1(fj�ik+1, ..., fj))� r.

Lemma 2.4. (Bar(F )⌦ Bar(F ))� = �Bar(F ).

Proof. We calculate:

(Bar(F )⌦ Bar(F ))�(fn[1]⌦ ...⌦ f1[1]) =

=
nX

j=1

(Bar(F )⌦ Bar(F ))(fn[1]⌦ ...⌦ fj+1[1])
O

(fj [1]⌦ ...⌦ f1[1])

=
nX

j=1

Bar(F )(fn[1]⌦ ...⌦ fj+1[1])
O

Bar(F )(fj [1]⌦ ...⌦ f1[1])

=
nX

j=1

(
X

?
n�j

s

F
ts(fn, ..., fn�ts+1)[1]⌦ ...⌦F

t1(fj+t1 , ..., fj+1)[1])
O

O
(
X

?
j

k

F
i1(fj , ..., fj�i1+1)[1]⌦ ...⌦F

ik(fik , ..., f1)[1])

= �(
X

?
n

k

F
i1(fn, ..., fn�i1+1)[1]⌦ ...⌦F

ik(fik , ..., f1)[1])

= �(Bar(F )n(fn[1]⌦ ...⌦ f1[1])).

Where ?n�j

s
means j + 1  s  n and t1 + ...+ ts = n� j.

Theorem 2.5. Bar(F ) is a dg-cofunctor.

Proof. The proof is a consequence of Lemma 2.3 and Lemma 2.4.

2.3 Prenatural transformations vs coderivations

Let T be a prenatural transformation between the A1-functors F and G .

We define

Bar(T )(fn[1]⌦ ...⌦ f1[1]) =
X

s1,s2,s3

(�1)deg(T )†1Bar(G )s3(fn[1]⌦ ...⌦ fn�s3+1[1])⌦

18



2.4. Properties of bar construction

⌦ T
s2(fn�s3 , ..., fs1+1)[1]⌦ Bar(F )s1(fs1 [1]⌦ ...⌦ f1[1]).

Where s1, s2, s3 are positive integers with s1 + s2 + s3 = n and †1 = deg(fs1) + ... +

deg(f1)� s1.
The following lemma follows immediately from the definition:

Lemma 2.6. Given a prenatural transformation T . We have:

p1(Bar(T )n(fn[1]⌦ ...⌦ f1[1]))[�1] = T
n(fn, ..., f1).

Theorem 2.7. Bar(T ) is a (Bar(G ),Bar(F ))-coderivation.

Proof. We calculate:

(Bar(G )⌦ Bar(T ) + Bar(T )⌦ Bar(F ))�(fn[1]⌦ ...⌦ f1[1]) =

= (Bar(G )⌦ Bar(T ) + Bar(T )⌦ Bar(F ))
n�1X

i=0

(fn[1]⌦ ...⌦ fi+1[1])
O

(fi[1]⌦ ...⌦ f1[1])

=
n�1X

i=0

(Bar(G )n�1(fn[1]⌦ ...⌦ fi+1[1])⌦ Bar(T )i(fi[1]⌦ ...⌦ f1[1])

+ Bar(T )n�i(fn[1]⌦ ...⌦ fi+1[1])⌦ Bar(F )i(fi[1]⌦ ...⌦ f1[1]))

= (�1)deg(T )
n�1X

i=0

(Bar(G )n�1(fn[1]⌦ ...⌦ fi+1[1])⌦
X

s1,s2,s3

Bar(G )s3(fi[1]⌦ ...⌦ fi�s3+1[1])⌦

⌦ T
s2(fi�s3 , ..., fs1+1)[1]⌦ Bar(F )s1(fs1 [1]⌦ ...⌦ f1[1])

+
X

s1,s2,s3

Bar(G )s3(fn[1]⌦ ...⌦ fn�s3+1[1])

⌦ T
s2(fi�s3 , ..., fs1+i+1)[1]⌦ Bar(F )s1(fs1+i[1]⌦ ...⌦ fi+1[1])

⌦ Bar(F )i(fi[1]⌦ ...⌦ f1[1]))

= �Bar(T )n(fn[1]⌦ ...⌦ f1[1]).

2.4 Properties of bar construction

Let C and D be two A1-categories.

The following lemma characterizes every functor between the image of two A1-categories
via the bar construction.

Lemma 2.8. Let F be a dg-cofunctor from Bar(C ) to Bar(D).
For every positive integer n, we have:

F1(f1[1]⌦ ...⌦ fn[1]) =
X

⇧n

p1F1(f1[1]⌦ ...⌦ fi1 [1])⌦ ...⌦ p1F1(fik+1[1]⌦ ...⌦ fn[1]).

19



2. Bar and cobar constructions

Proof. We immediately note that F1(f [1]) = p1(F1(f [1])) and, fixed a positive integer n,
we can write F1(f1[1]⌦ ...⌦ fn[1]) as

p1(F1(f1[1]⌦ ...⌦ fn[1])) + p2(F1(f1[1]⌦ ...⌦ fn[1])) + ...+ pn(F1(f1[1]⌦ ...⌦ fn[1])).

We prove the lemma by induction on the length of f1[1]⌦ ...⌦ fn[1].

Let n = 2, then F1(f1[1]⌦ f2[1]) = p1F1(f1[1]⌦ f2[1]) + p2F1(f1[1]⌦ f2[1]).
We have:

�F1(f1[1]⌦ f2[1]) = p2F1(f1[1]⌦ f2[1]),

and
(F1 ⌦ F1)�(f1[1]⌦ f2[1]) = F1(f1[1])⌦ F1(f2[1]).

Comparing the two equation above we have:

p2F1(f1[1]⌦ f2[1]) = F1(f1[1])⌦ F1(f2[1])

i.e.
F1(f1[1]⌦ f2[1]) = p1F (f1[1]⌦ f2[1]) + p1F1(f1[1])⌦ p1F1(f2[1]).

Now, we assume that

F1(f1[1]⌦ ...⌦ fn�1[1]) =
X

⇧n�1

p1F1(f1[1]⌦ ...⌦ fi1 [1])⌦ ...⌦ p1F1(fik [1]⌦ ...⌦ fn�1[1]).

We want to prove

F1(f1[1]⌦ ...⌦ fn[1]) =
X

⇧n

p1F1(f1[1]⌦ ...⌦ fi1 [1])⌦ ...⌦ p1F1(fik [1]⌦ ...⌦ fn[1]).

We calculate

(2.1) �F1(f1[1]⌦ ...⌦ fn[1]) =
nX

j=2

(j � 1)pjF1(f1[1]⌦ ...⌦ fn[1])

and
(2.2)

F1⌦F1�(f1[1]⌦...⌦fn[1]) =
n�1X

i=0

iX

↵=1

n�iX

�=1

p↵F1(f1[1]⌦...⌦fi[1])⌦p�F1(fi+1[1]⌦...⌦fn[1]).

Comparing (2.1) and (2.2), for every fixed j  n� 1, we have

(j � 1)pjF1(f1[1]⌦...⌦ fn[1]) =

=
j�1X

↵=1

↵X

i=1

p↵F1(f1[1]⌦ ...⌦ fi[1])⌦ pj�↵F1(fi+1[1]⌦ ...⌦ fn[1]).
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2.4. Properties of bar construction

Using the induction hypothesis on p↵F1(f1[1]⌦ ...⌦ fi[1]) and pj�↵F1(fi+1[1]⌦ ...⌦ fn[1])

we have

(j � 1)pjF1(f1[1]⌦ ...⌦ fn[1]) =

=(j � 1)
X

4j�1

p1F1(f1[1]⌦ ...⌦ fi1 [1])⌦ ...⌦ p1F1(fij�1+1[1]⌦ ...⌦ fn[1]),

where 4j�1 = {i1, ..., ij�1} with 1  i1 < ... < ij�1  n, and we are done.

Remark 2.9

In the proof of Lemma 2.8 we only used that �F = (F ⌦ F )�.

Lemma 2.10. Setting

F
n(fn, ..., f1) := p1F1(fn[1]⌦ ...⌦ f1[1])[�1],

F defines an A1-functor.

Proof. By definition of dg-cofunctor we have d̂F1(fn[1] ⌦ ... ⌦ f1[1]) = F1(d̂(fn[1] ⌦ ... ⌦

f1[1])). Applying the projection p1, we have

p1d̂F1(fn[1]⌦ ...⌦ f1[1]) = p1F1(d̂(fn[1]⌦ ...⌦ f1[1]))

The left hand side is given by

p1d̂F1(fn[1]⌦ ...⌦ f1[1]) =m
1(p1F1(fn[1]⌦ ...⌦ f1[1]))

+m
2(p1F1(fn[1]⌦ ...⌦ f2[1]), p1F1(f1[1]))

+...

+m
n(p1F1(fn[1]), ..., p1F1(f1[1]))

=
nX

r=1

X

s1,...,sr

m
r(F sr (fn, ..., fn�sr+1), ...,F

s1(fs1 , ..., f1)).

Where s1 + ...+ sr = n.
The right hand side is given by

p1F1(d̂(fn[1]⌦ ...⌦ f1[1])) =p1F1(
X

j

(�1)‡ifn[1]⌦ ...⌦m
j(...)⌦ fi[1]⌦ ...⌦ f1[1])

=
nX

j=1

(�1)‡jFn�j+1(fn, ..., fn�j+2,m
j(fn�j+1, ...

..., fj+1), fj , ..., f1).

Thus we are done.

Combining Lemma 2.8 and Lemma 2.10 we have the following:

Theorem 2.11. The functor Bar induces the following bijection:

• A1-functors between A and B  ! dg cofunctors between Bar(A ) and Bar(B).
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2. Bar and cobar constructions

2.5 Homotopy between A1-functors

Lemma 2.12. Let T be a prenatural transformation and ad[1]⌦ ...⌦ a1[1] 2 Bar(A ), we
have:

µ
1(T )d(ad, ..., a1)[1] =p1((�1)

deg(T )Bar(T )(d̂(ad[1]⌦ ...⌦ a1[1]))

+d̂(Bar(T )d(ad[1]⌦ ...⌦ a1[1]))).

Proof. We calculate the right hand side of the equality:

p1(Bar(T )(d̂(ad[1]⌦ ...⌦ a1[1])) =

= p1(Bar(T )(
nX

k=1

X

j

(�1)‡i(ad[1]⌦ ...⌦m
j(ai+j+1, ..., ai+1)[1]⌦ ...⌦ a1[1]))

=
nX

k=1

X

j

(�1)‡ip1(Bar(T )d�j(ad[1]⌦ ...⌦m
j(ai+j+1, ..., ai+1)[1]⌦ ...⌦ a1[1]))

=
nX

k=1

X

j

(�1)‡iT d�j(ad, ...,m
j(ai+j+1, ..., ai+1), ..., a1)[1],

and

p1(d̂(Bar(T )d(ad[1]⌦ ...⌦ a1[1])))[�1] =

= p
1(d̂(

X

s1,s2,s3
s1+s2+s3=d

(�1)deg(T )†1Bar(G )s3(ad[1]⌦ ...⌦ ad�s3+1[1])⌦

⌦ T
s2(ad�s3 , ..., as1+1)[1]⌦ Bar(F )s1(as1 [1]⌦ ...⌦ a1[1])))

= p
1(d̂(

X

s1,s2,s3
s1+s2+s3=d

(�1)deg(T )†1

s3X

k=1

X

i1,...,i
k

i1+...+ik=s3

G
i1(ad, ..., ad�i1)[1]⌦ ...⌦ G

ik(..., ad�s3+1)[1]⌦

⌦ T
s2(ad�s3 , ..., as1+1)[1]⌦

⌦

s1X

t=1

X

r1,...,rt

r1+...+rt=s1

F
r1(as1 , ...)[1]⌦ ...⌦F

rt(art , ..., a1)[1]))

=
dX

t=1

t�1X

k=0

X

i1,...,it

(�1)deg(T )†2m
t(G it(ad, ..., ad�it+1), ...

...,G
ik+2(aik+2, ...), T

ik+1(aik+1 , ..., aik+1),F
ik(aik , ...), ...,F

i1(ai1 , ..., a1))[1].

Where †1 = deg(as1) + ... + deg(a1) � s1 and †2 = deg(aik) + ... + deg(a1) � ik. This is
enough to conclude.

Remark 2.13

Using the lemma above we have:

Bar(µ1(T )d(ad, ..., a1)) =(�1)deg(T )Bar(T )(d̂(ad[1]⌦ ...⌦ a1[1]))
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2.6. Cobar construction

+d̂(Bar(T )d(ad[1]⌦ ...⌦ a1[1])).

So

d̂(Bar(µ1(T ))d(ad[1]⌦ ...⌦ a1[1])) = (�1)deg(T )Bar(µ1(T ))d̂(ad[1]⌦ ...⌦ a1[1]).

Theorem 2.14. Given F an A1-functor. If F
0 = F + µ

1(⌅) where ⌅ is a prenatural
transformation then F

0 is an A1-functor.

Proof. By Theorem 2.11 we show that G = Bar(G ) is a dg cofunctor.
We take Bar(F ) = F , and T = Bar(µ1(⌅)).

�G1 = �(F1 + T1)

= (F1 ⌦ F1)�+ (F1 ⌦ T1 + T1 ⌦G1)�

= (F1 ⌦ F1 + F1 ⌦ T1 + T1 ⌦G1)�

= (F1 ⌦ (F1 + T1) + T1 ⌦ (F1 + T1))�

= ((F1 + T1)⌦ (F1 + T1))�

= (G1 ⌦G1)�

By Remark 2.13, G is also a dg-functor.

2.6 Cobar construction

Using a construction which is very similar to the bar one, we can associate to a dg-
cocategory a non-unital dg-category. We explain below such a construction, called cobar
construction.
Let D be a small dg-cocategory.

We define the (not unital) dg-category ⌦(D) to be the category such that:

• Obj(⌦(D)) = Obj(D),

• ⌦(D)(x, y) :=
X

n�0

X

†n

D(xn, y)[�1]⌦ ...⌦D(x, x1)[�1].

Here †0 = D(x, y)[�1] and †n = {{x1, ..., xn} such that xi 2 Obj(D)}.

We say that the element fn[�1] ⌦ ... ⌦ f1[�1] 2 ⌦(D)(x, y) has length n. Fixed
a positive integer j, we denote by pj the projection from ⌦(D)(x, y) to the elements
of length j.
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2. Bar and cobar constructions

• Fixed three objects x, y and z in ⌦(D), we define the multiplication:

m
2
⌦(D) : ⌦(D)(y, z)⌦ ⌦(D)(x, y)! ⌦(D)(x, z)

as

m
2
⌦(D)(fn[�1]⌦ ...⌦ f1[�1], gm[�1]⌦ ...⌦ g1[�1]) =

= fn[�1]⌦ ...⌦ f1[�1]
O

gm[�1]⌦ ...⌦ g1[�1].

Here fn[�1]⌦ ...⌦ f1[�1] 2 ⌦(D)(x, y) and gm[�1]⌦ ...⌦ g1[�1] 2 ⌦(D)(y, z).

• The differential is given by

d(fn[�1]⌦ ...⌦ f1[�1]) =
nX

i=1

(�1)deg(f1)+...+deg(fi�1)fn[�1]⌦ ...⌦ fi+1[�1]⌦

⌦�(fi)[�1]⌦ fi�1[�1]⌦ ...⌦ f1[�1]+

+
nX

i=1

(�1)deg(f1)+...+deg(fn)fn[�1]⌦ ...⌦ fi+1[�1]⌦

⌦ d(fi)[�1]⌦ fi�1[�1]⌦ ...⌦ f1[�1].

Let F be a cofunctor then

⌦(F )(fn[�1]⌦ ...⌦ f1[�1]) = F1(fn)[�1]⌦ ...⌦ F1(f1)[�1].

It means ⌦(F )(fn[�1]⌦ ...⌦ f1[�1]) = ⌦(F )(fn)[�1]⌦ ...⌦ ⌦(F )(f1)[�1].

Let T be a (F,G)-coderivation, where F and G are dg-cofunctors from C to D, then
⌦(T ) is the prenatural transformation defined as follow:

⌦(T )d : ⌦(C)(xd�1, xd)⌦ ...⌦ ⌦(C)(x0, x1)! ⌦(D)(F0x0,F0xd)

(fd

nd
[�1]⌦ ...⌦ f

d

1 [�1])⌦ ...⌦ (f1
n1
[�1]⌦ ...⌦ f

1
1 [�1]) 7! T (fd

nd
)[�1]⌦ ...⌦ T (fd

1 )[�1]⌦ ...

...⌦ T (f1
n1
)[�1]⌦ ...⌦ T (f1

1 )[�1].

As before, we prove that such a construction is functorial and sends dg-cofunctors to
dg-functors.

Lemma 2.15. The construction cobar commutes with differentials.

Proof. We calculate:

d(⌦(F )(fn[�1]⌦ ...⌦ f1[�1])) = d(F1(fn)[�1]⌦ ...⌦ F1(f1)[�1])

=
nX

i=1

(�1)deg(f1)+...+deg(fi�1)F1(fn)[�1]⌦ ...⌦ F1(fi+1)[�1]⌦
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⌦�F1(fi)[�1]⌦ F1(fi�1)[�1]⌦ ...⌦ F1(f1)[�1]+

+
nX

i=1

(�1)deg(f1)+...+deg(fn)F1(fn)[�1]⌦ ...⌦ F1(fi+1)[�1]⌦

⌦ d(F1(fi))[�1]⌦ F1(fi�1)[�1]⌦ ...⌦ F1(f1)[�1]

=
nX

i=1

(�1)deg(f1)+...+deg(fi�1)F1(fn)[�1]⌦ ...⌦ F1(fi+1)[�1]⌦

⌦ F1(�
1
fi)[�1]⌦ F1(�

2
fi)[�1]⌦ F1(fi�1)[�1]⌦ ...⌦ F1(f1)[�1]+

+
nX

i=1

(�1)deg(f1)+...+deg(fn)F1(fn)[�1]⌦ ...⌦ F1(fi+1)[�1]⌦

⌦ F1(dfi)[�1]⌦ F1(fi�1)[�1]⌦ ...⌦ F1(f1)[�1]

=⌦(F )(d(fn[�1]⌦ ...⌦ f1[�1])).

Lemma 2.16. The construction cobar is functorial.

Proof. We have immediately that

⌦(Id�) = Id⌦(�).

Moreover, given two dg-cofunctors F and G and a morphism fn[�1]⌦ ...⌦f1[�1], we have:

⌦(F )(⌦(G)(fn[�1]⌦ ...⌦ f1[�1])) =⌦(F )(G1(fn)[�1]⌦ ...⌦G1(f1)[�1])

=(F1G1)(fn)[�1]⌦ ...⌦ (F1G1)(f1)[�1]

=⌦(FG)(fn[�1]⌦ ...⌦ f1[�1])).

2.7 The functor U

Using the constructions bar and cobar, we get a functor from the category of A1-
categories to the category of dg-categories, given by the composition ⌦(Bar(�))+.
In this section, using the constructions bar and cobar, we propose a functor U, strongly
inspired by [39, Dèfinition 2.3.4.2] and [52, Appendix C], from A1-categories to dg-
categories. As the reader can see, given a unital A1-category A, the composition of the
bar and cobar constructions does not preserve the unit. The great advantage of the functor
U is that it does not "forget" the existence of the unit in the category A.

Let A be a unital A1-category.

• Obj(U(A )) = Obj(⌦(Bar(A ))+).

• The morphisms U(A )(x, y) := ⌦(Bar(A ))+(x, y)/⇠ where:

i (fn[1]⌦ ...⌦ e[1]⌦ ...⌦ f1[1])[�1] ⇠ 0,
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2. Bar and cobar constructions

ii (ex[1])[�1] ⇠ 1x, where 1x is the unit in ⌦(Bar(A ))+(x, x).

• The composition and the differential are the same of ⌦(Bar(A ))+.

We give an explicit description of the morphisms of U(A ):

• The morphisms U(A )(x, y) are generated by

– the morphisms of the form

(fm

nm
[1]⌦ ...⌦ f

m

1 [1])[�1]⌦ ...⌦ (f1
n1
[1]⌦ ...⌦ f

1
1 [1])[�1],

if x 6= y,here f
i

j
2 A (xi

j+1, x
i

j
), f 6= e, x1

1 = x and x
m

nm+1 = y.

– the morphisms of the form

(fm

nm
[1]⌦ ...⌦ f

m

1 [1])[�1]⌦ ...⌦ (f1
n1
[1]⌦ ...⌦ f

1
1 [1])[�1] or K · 1x,

if x = y here f
i

j
2 A (xi

j+1, x
i

j
), f 6= e and x

m

nm+1 = x
1
1 = x.

• The composition m
2(A )(�,�) is given by:

m
2(gm[�1]⌦ ...⌦ g1[�1], hl[�1]⌦ ...⌦ h1[�1]) =

= hl[�1]⌦ ...⌦ h1[�1]⌦ gm[�1]⌦ ...⌦ g1[�1],

where gm[�1]⌦ ...⌦ g1[�1] 2 U(A )(y, z) and hl[�1]⌦ ...⌦ h1[�1] 2 U(A )(x, y).

• The differential is given by the following formula:

d((fm

nm
[1]⌦ ...⌦ f

m

1 [1])[�1]⌦ ...⌦ (f1
n1
[1]⌦ ...⌦ f

1
1 [1])[�1]) =

=
mX

i=1

(�1)deg(g1)+...+deg(gi�1)gm[�1]⌦ ...⌦ gi+1[�1]⌦

⌦

niX

j=2

(f i

ni
[1]⌦ ...⌦ f

i

j
[1])[�1]

O
(f i

j�1[1]⌦ ...⌦ f
i

1[1])[�1]⌦

⌦ gi�1[�1]⌦ ...⌦ g1[�1]+

+
mX

i=1

(�1)deg(g1)+...+deg(gm)
gm[�1]⌦ ...⌦ gi+1[�1]⌦

⌦

niX

k=1

ni�k+1X

j=1

(�1)deg(fi

1)+...+deg(fi

k�1)(f i

ni
[1]⌦ ...⌦ f

i

k+j
[1]⌦

⌦m
j

A
(f i

k+j�1, ..., f
i

k
)[1]⌦ f

i

k�1[1]⌦ ...⌦ f
i

1[1])[�1]⌦

⌦ gi�1[�1]⌦ ...⌦ g1[�1].

Where (fm

nm
[1]⌦ ...⌦ f

m

1 [1])[�1]⌦ ...⌦ (f1
n1
[1]⌦ ...⌦ f

1
1 [1])[�1] = gm[�1]⌦ ...⌦ g1[�1].

Given an A1-functor F , we note immediately that the construction U induce a dg-
functor U(F ) between U(A ) and U(B). Moreover, we have that the construction U is
functorial, i.e. U defines a functor between unital A1-categories and dg-categories.
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Chapter 3

Categories of A1-categories and

dg-categories

The aim of this chapter is to provide a natural equivalence between the localisations
of the categories of A1-categories and dg-categories, over some classes of morphisms. In
detail, we prove that: the homotopy categories of unital A1-categories (resp. cohomolog-
ical unital), dg-categories and the category of unital A1-categories (resp. cohomological
unital) localized over the homotopy relation, are equivalent. We prove also that the locali-
sations of the categories of A1-categories and dg-categories, over Morita equivalences, are
equivalent.

A similar result (for A1-algebras) was already obtained in [39]. In 2002 indeed, Lefèvre
provided a canonical model structure (without limits) on the category of A1-algebras.
Making use of such a model structure, he proved an equivalence between the homotopy
category of dg-algebras and the homotopy category of A1-algebras. For categories, finding
an appropriate model structure is much more complicated. We avoid this problem, with
direct computation which uses the constructions of previous chapter.

The results of this section are part of the paper [9], which I wrote during the last year
of PhD with Prof. Canonaco and Prof. Stellari.

We assume that all the dg-categories and A1-categories are small. From now on K
stands for a field. This hypothesis is necessary for the proof of Lemma 3.18, some other
results works even K is a commutative ring.

3.1 Completeness and cocompleteness

First we discuss some properties about completeness and cocompleteness, of the cate-
gories of dg-categories and A1-categories.

Proposition 3.1. The category of dg-categories is complete and cocomplete.
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3. Categories of A1-categories and dg-categories

Proof. The final object is the already mentioned category K, and the initial object is the
empty set ;. The pullback is defined in the canonical way, and the existence of pushouts
is guaranteed by Proposition 7.2, 7.4 and Lemma 6.6. of [16].

In the case of the category of A1-categories, initial and final objects are the same
as for the category of dg-categories. However the situation for pullback and pushout is
different. The fact that the category of A1-algebras (or A1-categories) is not complete
is well know, but we could not find an example in the existing literature. The next two
propositions and lemmas are devoted to prove that the category of unital A1-categories
has no equalizers.

Proposition 3.2. In the category of A1-categories the diagram

D := A

F
))

G

55

B

(where the categories and the functors are defined in Example 1.2.1) does not admit limit.

Proof. We suppose that D admits the equalizer Eq(F ,G ) = (E, e) where E is a unital
A1-category and e is a monomorphism. We suppose that c1 and c2 are two objects in E.
Let we consider the following diagram

E // A

F
))

G

55

B

K

fc1

HH

fc2

OO

i

>>

where fci denotes the morphism sending the (only) object of K to ci. Using the universal
property of the equalizer E, by the previous diagram we deduce that fc1 = fc2 so c1 = c2.
It means that the equalizer has just one object, i.e. E is an A1-algebra. Now if E is an
equalizer, then by Remark 1.2, it has to contain A . But it cannot be possible because
F 6= G .

Now we prove that the category of cohomological unital A1-categories is not complete.

Proposition 3.3. The diagram of Proposition 3.2 does not admit limit in the category
A1-catcu.

Proof. The proof is the same of Proposition 3.2 using Lemma 3.5 and Lemma 3.4.

Lemma 3.4. Given an element d 2 E (as in Proposition 3.2) there exists an A1-functor
Fd : K! E which is cohomologically unital and such that Im(F 0

d
) = d.

Proof. By Lemma 3.6 we have a quasi-equivalence � from the category E to a unital
A1-category D

0 whose objects are exactly the objects of E and, thanks to [56, Theorem
2.9.], we have a quasi-equivalence  from D

0 to E. Then, using Proposition 3.2, we get an
A1-functor:

K fd
// D

0
 
// E
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3.2. Equivalence between Ho(A1-catcu) and Ho(A1-cat)

The composition of the functors above yields Fd0 .

Lemma 3.5. The functor d : E ! A is injective on objects.

Proof. Let d1 and d2 two objects in E such that d(d1) = d(d2). Let us consider the
functors Fd1 and Fd2 as in Lemma 3.5. We take the composition of A1-cohomological
unital functors dFdj

: K ! A (where j = 1, 2). Since K and A are unital in degree zero,
the only non trivial component of such an A1-functor is

(dFdj
)1 = d1(Fdj

)1.

But H(d1(Fdj
)1)(1) = 1d(dj), since A1 = H

0(A1), we have d1(Fdj
)1(1) = 1d(dj).

Thus, for j = 1, 2, we have (dFd1)1 = (dFd2)1. Since they are the only non trivial com-
ponent of dFdj

, we get dFd1 = dFd2 . Then d is a monomorphism so Fd1 = Fd2 and
d1 = d2.

3.2 Equivalence between Ho(A1-cat
cu) and Ho(A1-cat)

In this section we prove that the homotopy category of the unital A1-categories and
the homotopy category of the cohomological unital A1-categories are equivalent.
We begin with three lemmas:

Lemma 3.6. Let A be a cohomological unital A1-category. There exists a unital A1-
category A

0 quasi equivalent to A .

Lemma 3.7. Let A , A
0 be two A1-categories. Given a cohomological unital functor

F : A ! A
0, we can find a strictly unital A1-functor F

0 homotopic to F . Moreover the
homotopy ⌅0 from F to F

0 is unital.

Lemma 3.8. Let A , A
0 be two strictly unital A1-categories and let F , F

0 be two unital
A1-functors. Given a cohomological unital homotopy H : F ! F

0, we can find a unital
homotopy H

0 from F to F
0.

We are ready to prove the main theorem of the section.

Theorem 3.9. The categories Ho(A1-catcu) and Ho(A1-cat) are equivalents.

Proof. By Lemma 3.6 we have that, for every cohomological unital A1-category A , there
exists a strictly unital A1-category A

0 such that [A ] = [A 0] in Ho(A1-catcu).
Then, by Remark 1.4 and by Lemma 3.7 for every cohomological unital A1-functor F ,
there exists a strictly unital A1-functor F

0 such that [F ] = [F 0] in Ho(A1-catcu).
We define the functor

R : Ho(A1-catcu)! Ho(A1-cat)

such that:

[A ] 7! [A 0]

[F ] 7! [F 0].
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3. Categories of A1-categories and dg-categories

By Lemma 3.8, we have that the functor R is well defined. Moreover the inclusion is the
inverse of R.

Proofs of Lemmas 3.6, 3.7 and 3.8

Proof of Lemma 3.6. This lemma is well known in the literature see [39], [37], [19] or [56].
What follows is just a sketch of a construction, due to Seidel, turning a cohomological unital
A1-category A in a unital A1-category A

0. For a complete proof of the Lemma cf. [56,
Lemma 2.1.]. Roughly speaking the strategy of the proof is to find a formal diffeomorphism
� i.e. an arbitrary sequence of maps such that �1 is a linear automorphism of HomA (x, y).
Then, solving recursively the conditions of Definition 1.2.1, we get a new A1-structure
mA 0 such that � : A ! A

0 is an A1-functor ([56, §(1c)]). We write A
0 = �⇤A .

At first, for each object x, we choose a cocycle ex 2 Hom0
A (x, x) representing the identity

in the homotopy category of A . We can find a chain map

m
2
A 0 : HomA (y, z)⌦HomA (x, y)! HomA (x, z)

representing the composition in Ho(A ), and which satisfies the unital condition of Defini-
tion 1.2.1.
We can take the formal diffeomorphism with �11 = Id, such that each �21 is a chain homo-
topy between m

2
A

to m
2
A 0 . Then m

1
A 0 = m

1
A

and the composition is the chosen m
2
A 0 .

Now the construction becomes recursive. We suppose that we have an A1-category A

together with a unit ex, moreover we consider the following family of conditions (Ud,n),
indexed by d > 2 and 0  n  d:

(Ud,n) m
i

A
(ai�1, ..., aj+1, exj

, aj , ..., a1) = 0, for i < d and arbitrary j, as well as for
i = d and j < n.

We suppose that A already satisfies (Ud,n) for some n < d. We can take a formal diffeo-
morphism �1 such that

�
1
1 = Id,

�
k

1 = 0 for 2  n  d� 1,

�
d�1
1 (ad�1, ..., a1) = (�1)‡nmd

A
(ad�1, ..., an+1, exn

, an, ..., a1),

�
d

1(ad, ..., a1) = (�1)‡nmd+1
A

(ad, ..., an+1, exn
, an, ..., a1).

From the definition the composition maps in A
0 agree with those of A for orders  d� 1.

Moreover, more involved computation shows that A
0 has property (Ud,n+1).

Now we can repeat the process getting a formal diffeomorphism �2 such that the A1-
structure given by (�2�1)⇤A satisfies more of the strict unitality condition. By repeating
this process we get a sequence of formal diffeomorphisms �1, �2,...
Now we take the transfinite composition � = �k · ... · �1 with k ! 1, then �⇤A is the
strictly unital A1-category A

0.
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3.2. Equivalence between Ho(A1-catcu) and Ho(A1-cat)

Proof of Lemma 3.7. By definition we have F (e) = e�µ
1(f), we define F(1) := F�µ

1(⌅),
where ⌅ is a prenatural transformation such that ⌅1(e) := �f and zero otherwise. We
have

F
1
(1)(e) = F

1(e)� µ
1(⌅)1(e) = e.

Now we suppose that, given two positive integers n and k such that k < n,

F
s(as, ..., e, ..., a1) = 0

for every s < n, and F
n(an, ..., aj , ..., ar, e, ar�1, ..., a1) = 0 for every r such that 2  r 

j � 1.
Moreover we suppose that F

n(an, ..., aj , e, aj�1, ..., a1) 6= 0.
Let ⌅(1) be a prenatural transformation of degree 1:

⌅n

(1) : HomA (xn�1, xn)⌦ ...⌦HomA (x0, x1)! HomA (F0(x0),F0(xn))[1� n].

defined as:

⌅m

(1) = 0, if m 6= n� 1 or n,

⌅n�1
(1) (an�1, ..., a1) = (�1)‡j�1F

n(an�1, ..., e, aj�1, ..., a1),

⌅n

(1)(an, ..., a1) = (�1)‡jFn+1(an, ..., e, aj�1, ..., a1).

We define F(1) : A ! A
0 as

F
n

(1)(an, ..., a1) :=F
n(an, ..., a1)� µ

1(⌅(1))
n(an, ..., a1)

By definition, we have that F
t

(1) = F
t for every t < n.

Now we prove that F
n

(1)(an, ..., e, aj�1, ..., a1) = 0.

F
n

(1)(an, ..., e, aj�1, ...,a1) := F
n(an, ..., e, aj�1, ..., a1)

�µ
1(⌅(1))

n(an, ..., e, aj�1, ..., a1)

=F
n(an, ..., e, aj�1, ..., a1)

�[m1(⌅n(an, ..., e, aj�1, ..., a1))+

+m
2(F 1(an),⌅

n�1
(1) (an�1, ..., e, aj�1, ..., a1))

+m
2(⌅n�1

(1) (an, ..., e, aj�1, ..., a2),F
1(a1))

�

n�2X

l=0

(�1)‡l⌅n�1
(1) (an, ...,m

2(al+2, al+1), al, ..., e, aj�1, ..., a1)

�

n�1X

l=0

(�1)‡l⌅n

(1)(an, ...,m
1(al+1), al, ..., e, aj�1, ..., a1)]

=F
n(an, ..., e, aj�1, ..., a1)

�[(�1)‡jm1(Fn+1(an, an�1, ..., e, e, aj�1, ..., a1))

+(�1)‡jm2(F 1(an),F
n(an�1, ..., e, e, aj�1, ..., a1))

+(�1)‡jm2(Fn(an, ..., e, e, ..., a2),F
1(a1))
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3. Categories of A1-categories and dg-categories

�

n�2X

l=0

(�1)‡l+‡jF
n(an, ...,m

2(al+2, al+1), al, ..., e, e, aj�1, ..., a1)

�

n�1X

l=0

(�1)‡l+‡jF
n+1(an, ...,m

1(al+1), al, ..., e, e, aj�1, ..., a1)]

=F
n(an, ..., e, aj�1, ..., a1)

+(�1)‡j�1[m1(Fn+1(an, an�1, ..., e, e, aj�1, ..., a1)

+m
2(F 1(an),F

n(an�1, ..., e, e, aj�1, ..., a1))

+m
2(Fn(an, ..., e, e, ..., a2),F

1(a1))

�

n�2X

l=0

(�1)‡lFn(an, ...,m
2(al+2, al+1), al, ..., e, e, aj�1, ..., a1)

�

n�1X

l=0

(�1)‡lFn+1(an, ...,m
1(al+1), al, ..., e, e, aj�1, ..., a1)]

=F
n(an, ..., e, aj�1, ..., a1).

Moreover we prove that F
n

(1)(an, ..., aj , ..., ar, e, ..., a1) = 0, if 2  r  j.
Firstly we suppose that 2 < r, we have:

F
n

(1)(an, ..., aj , ..., e, ..., a1) :=F
n(an, ..., aj , ..., e..., a1)

�µ
1(⌅(1))

n(an, ..., aj , ..., e..., a1)

=F
n(an, ...,m

2(e, aj�1), ..., e..., a1)

+� [(�1)‡jm1(Fn+1(an, ..., e, aj�1, ..., ar, e, ..., a1))

+(�1)‡j�1m
2(F 1(an),F

n(an�1, ..., e, aj�1, ..., e, ..., a1))

+(�1)‡j�1m
2(Fn(an, ..., e, aj , ..., e, ..., a2),F

1(a1))

�

n�2X

l=0

(�1)‡l⌅n�1
(1) (an, ...,m

2(al+2, al+1), al, ..., aj , ..., e, ..., a1)

�

n�1X

l=0

(�1)‡lFn+1(an, ...,m
1(al+1), al, ...

..., e, aj�1, ..., e, ..., a1)]

=F
n(an, ...,m

2(e, aj�1), ..., e..., a1)

+(�1)‡j�1 [m1(Fn+1(an, ..., e, aj�1, ..., ar, e, ..., a1))

+m
2(F 1(an),F

n(an�1, ..., e, aj�1, ..., e, ..., a1))

+m
2(Fn(an, ..., e, aj , ..., e, ..., a2),F

1(a1))

�

n�2X

l=j

(�1)‡lFn(an, ...,m
2(al+2, al+1), al, ...

..., e, aj�1, ..., ar, e, ..., a1)

�

j�2X

l=0

(�1)‡lFn(an, ..., e, aj , ...
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3.2. Equivalence between Ho(A1-catcu) and Ho(A1-cat)

...,m
2(al+2, al+1), al, ..., ar, e, ..., a1)

�

n�1X

l=0

(�1)‡lFn+1(an, ...,m
1(al+1), al, ...

..., e, aj�1, ..., e, ..., a1)]

=(�1)‡j�1 [m1(Fn+1(an, ..., e, aj�1, ..., ar, e, ..., a1))

�(�1)‡r�2F
n(an, ..., e, aj , ...,m

2(ar, e), ar�2, ..., a1)

�(�1)‡r�3F
n(an, ..., e, aj , ..., ar,m

2(e, ar�2), ..., a1)

�

n�1X

l=0

(�1)‡lFn+1(an, ...,m
1(al+1), al, ...

..., e, aj�1, ..., e, ..., a1)]

=(�1)‡j�1+1[(�1)‡r�2F
n(an, ..., e, aj , ..., ar, ar�2, ..., a1)

+(�1)‡r�2+1
F

n(an, ..., e, aj , ..., ar, ar�2, ..., a1)

=0.

Now we suppose that r = 2, we have:

F
n

(1)(an, ..., aj , ..., e) :=F
n(an, ..., aj , ..., e)

�µ
1(⌅(1))

n(an, ..., aj , ..., e)

=F
n(an, ...,m

2(e, aj�1), ..., e)

+� [(�1)‡jm1(Fn+1(an, ..., e, aj�1, ..., a2, e))

+(�1)‡j�1m
2(F 1(an),F

n(an�1, ..., e, aj�1, ..., a2, e))

+(�1)‡j�1m
2(Fn(an, ..., e, aj , ..., e, ..., a2),F

1(e))

�

n�2X

l=0

(�1)‡l⌅n�1
(1) (an, ...,m

2(al+2, al+1), al, ..., aj , ..., e)

�

n�1X

l=0

(�1)‡lFn+1(an, ...,m
1(al+1), al, ..., e, aj�1, ..., e)]

=(�1)‡j�1[m2(Fn(an, ..., e, aj , ..., a2),F
1(e))

�

n�2X

l=j

(�1)‡lFn(an, ...,m
2(al+2, al+1), al, ..., e, aj�1, ..., e)

�

j�2X

l=0

(�1)‡lFn(an, ..., e, aj , ...,m
2(al+2, al+1), al, ..., e)

=(�1)‡j�1 [m2(Fn(an, ..., e, aj , ..., a2),F
1(e))

�

j�2X

l=0

(�1)‡lFn(an, ..., e, aj , ...,m
2(al+2, al+1), al, ..., e)

=(�1)‡j�1 [Fn(an, ..., e, aj , ..., a2))
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3. Categories of A1-categories and dg-categories

�

j�2X

l=0

(�1)‡lFn(an, ..., e, aj , ...,m
2(al+2, al+1), al, ..., e)

=(�1)‡j�1 [Fn(an, ..., e, aj , ..., a2))�F
n(an, ..., e, aj , ..., a2)]

=0.

Theorem 2.14 proves that F(1) is an A1-functor.
By repeating this process, we get a sequence of A1-functors F(1),...,F(n),... homotopically
equivalent to F . By definition we have that F(k) are increasingly close to a strictly unital
functor. As in the previous proof, taking the transfinite composition F(k) · ... · F(1) with
k ! 1, we get the desired strictly unital A1-functor F

0. Moreover, if we define ⌅0 as
⌅(k) with k !1, we obtain a strictly unital homotopy from F to F

0.

Proof of Lemma 3.8. Let n and k be two positive integers such that k < n. We suppose
that H

s(as, ..., e, ..., a1) = 0 for every s < n, and

H
n(an, ..., aj , ..., ar, e, ar�1, ..., a1) = 0,

for every r such that 1  r  j. Moreover we suppose that

H
n(an, ..., aj , e, aj�1, ..., a1) 6= 0.

Let ⌥(1) be a prenatural transformation of degree deg(H) + 1 defined as:

⌥m

(1) = 0, if m 6= n� 1,

⌥n�1
(1) (an�1, ..., a1) = (�1)deg(H)+‡j�1F

n(an�1, ..., e, aj�1, ..., a1),

⌥n

(1)(an, ..., a1) = (�1)deg(H)+‡jF
n(an, ..., e, aj�1, ..., a1).

We define H(1) : F ! F
0 as

H
n

(1)(an, ..., a1) :=H
n(an, ..., a1)� µ

1(⌥(1))
n(an, ..., a1)

By definition, we have that H
t

(1) = H
t for every t < n.

Now we prove that H
n

(1)(an, ..., e, aj�1, ..., a1) = 0.

H
n

(1)(an, ..., e, aj�1, ...,a1) := H
n(an, ..., e, aj�1, ..., a1)

�µ
1(⌥(1))

n(an, ..., e, aj�1, ..., a1)

=µ
1(H)n(an, ..., e, aj�1, ..., a1)

=(F 0n
�F

n)(an, ..., e, aj�1, ..., a1)

=0.

Moreover we prove that H
n

(1)(an, ..., aj , ..., ar, e, ..., a1) = 0, if 2  r  j:

H
n

(1)(an, ..., aj , ..., e, ..., a1) :=H
n(an, ..., aj , ..., e..., a1)
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3.3. Equivalences between Ho(A1-cat) and Ho(dgcat) and between Hmo(A1-cat) and
Hmo(dgcat)

�µ
1(⌥(1))

n(an, ..., aj , ..., e..., a1)

=µ
1(H)n(an, ..., aj , ..., ar, e, ..., a1)

=(F 0n
�F

n)(an, ..., aj , ..., ar, e, ..., a1)

=0.

By repeating this process we get a sequence of prenatural transformations, once again,
taking the transfinite composition H(k) · ... ·H(1) with k !1, we get the desired strictly
unital homotopy H

0.

3.3 Equivalences between Ho(A1-cat) and Ho(dgcat) and

between Hmo(A1-cat) and Hmo(dgcat)

In this section we prove that the homotopy category of unital A1-categories and the
homotopy category of dg-categories are equivalent. Moreover we prove that the localisa-
tion of the category of unital A1-categories and the one of dg-categories, over Morita
equivalences, are equivalent. In order to construct these equivalences we begin with some
theorems and propositions that we will prove in the next two subsections.

Through this section i denotes the inclusion dgcat ,! A1-cat.

Proposition 3.10. Given a quasi-equivalence F : A ! B. Then U(F ) is a quasi-
equivalence.

Theorem 3.11. There exists a natural transformation ↵ between IdA1-cat and iU such
that, for any an A1-category A , ↵A is a quasi-equivalence.

Theorem 3.12. There exists a natural transformation ↵ between Ui and Iddgcat. More-
over, for any C a dg-category, �C is a dg-functor such that �C↵C = IdC .

Theorem 3.13. The functor U is left adjoint to i.

Now we can prove the main results of this section.

Theorem 3.14. The natural transformations ↵ and � give rise to an equivalence between
the categories Ho(A1-cat) and Ho(dgcat).

Proof. First of all we note that, using the universal property of localisation and Proposition
3.10, we can define the functor U by the following diagram

A1-cat

U

✏✏

// Ho(A1-cat)

9!U
✏✏

dgcat // Ho(dgcat)

In same vein, by Example 1.2.3, we can define i from Ho(dgcat) to Ho(A1-cat). Now, by
Theorem 3.11 and Theorem 3.12 we have that, for every dg-category C , �C is a quasi-
equivalence. Then, as before, ↵ and � induce two natural isomorphisms on the homotopy
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3. Categories of A1-categories and dg-categories

categories, in formula
↵ : IdHo(A1-cat) ! iU,

and
� : Ui! IdHo(dgcat).

and we are done.

Theorem 3.15. The category Hmo(A1-cat) is equivalent to Hmo(dgcat).

Proof. The first step is to prove that, if F : A ! B is a Morita equivalence, then U(F )

is a Morita equivalence. By definition, we have that pretr(F )ic : pretr(A )ic ! pretr(B)ic

is a quasi-equivalence, then by the following diagram we deduce that U(F ) is a Morita
equivalence

pretrA1
(A )ic

⇠
//

✏✏

pretrA1
(U(A ))ic

✏✏

pretrA1
(B)ic

⇠
// pretrA1

(U(B))ic.

Now, as in the previous theorem, we note that, using the universal property of localisation
and Proposition 3.10, we can define a new functor U by the following diagram

A1-cat

U
✏✏

// Hmo(A1-cat)

9!U
✏✏

dgcat // Hmo(dgcat)

In same vein, by Remark 1.11, we can define i from Hmo(dgcat) to Hmo(A1-cat). Then we
note that the natural transformations ↵ and � provide two natural isomorphisms between
the localisations over Morita equivalences, in formula

↵ : IdHmo(A1-cat) ! iU,

and
� : Ui! IdHmo(dgcat).

and we are done.

Proofs of Theorem 3.10 and 3.11

We define an A1-functor ↵A : A ! U(A ) in the following way:

• ↵
0
A
(x) = x, for every x 2 Obj(U(A )).

• For every integer n, we have:

↵
n

A : A (xn�1, y)⌦ ...⌦A (x, x1)! U(A )(x, y)[1� n]

(fn, ..., f1) 7! (fn[1]⌦ ...⌦ f1[1])[�1].
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Lemma 3.16. ↵A is a strictly unital A1-functor.

Proof. It is sufficient to prove the following:

dU(A )((ad[1]⌦ ...⌦ a1[1])[�1]) +
d�1X

i=1

(ad[1]⌦ ...⌦ ai+1[1])[�1]⌦ (ai[1]⌦ ...⌦ a1[1])[�1] =

=
X

m,n

(�1)†n(ad[1]⌦ ...⌦ an+m+1[1]⌦ (mm(an+m, ..., an+1)[1])⌦ an[1]⌦ ...⌦ a1[1])[�1].

By an easy calculation, we have:

d((ad[1]⌦ ...⌦ a1[1])[�1]) =
ni�1X

j=1

(ad[1]⌦ ...⌦ aj+1[1])[�1]
O

(aj [1]⌦ ...⌦ a1[1])[�1]+

+
nX

j=1

d�jX

k=1

(�1)deg(a1)+...+deg(aj)(ad[1]⌦ ...⌦ ak+j+1[1]⌦

⌦m
k

A (ak+j , ..., aj+1)[1]⌦ aj [1]⌦ ...⌦ a1[1])[�1].

Lemma 3.17. ↵ gives rise to a natural transformation between IdA1-cat to iU.

Proof. Given an A1-functor F from A to B, we calculate:

(↵BF )n(fn, ..., f1) :=
nX

r=1

X

i1,...,ir

↵
r

B(F ir (fn, ..., fn�ir+1), ...,F
i1(fi1 , ..., f1))

=
nX

r=1

X

i1,...,ir

(F ir (fn, ..., fn�ir+1)[1]⌦ ...⌦F
i1(fi1 ..., f1)[1])[�1]

= (Bar(F )(fn[1]⌦ ...⌦ f1[1])[�1])

= (U(F )((fn[1]⌦ ...⌦ f1[1])[�1])

= (U(F )↵A )n(fn, ..., f1)

= U(F )(↵n

A (fn, ..., f1)).

Where i1 + ...+ ir = n.

Lemma 3.18. We fix two objects x and y in A . The functor:

↵
1
A : A (x, y)! U(A )(x, y)

f 7! (f [1])[�1].

is a quasi-isomorphism.

Proof. First of all, we provide a filtration for A (x, y), setting

FnA (x, y) :=

8
>><

>>:

Kex, if x = y and n = 0,

0, if x 6= y and n = 0,

A (x, y), if n > 0.
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Now we provide a filtration for U(A )(x, y). We set,

F0U(A )(x, y) :=

8
<

:
K1x, if x = y,

0, if x 6= y,

and FnU(A )(x, y) is generated by the elements of the form:

f1[1]⌦ ...⌦ fa1 [1])[�1]⌦ ...⌦ (fam
[1]⌦ ...⌦ fm[1])[�1],

with m  n.
We consider the case x = y, the proof in the case x 6= y is similar.
The graded chains, associated to the previous filtrations, are given by:

gr
F
A (x, x) = Kex �

A (x, x)

Kex
�

A (x, x)

A (x, x)
�

A (x, x)

A (x, x)
� ...

= Kex �A (x, x)/Kex,

and

gr
F
U(A )(x, x) =gr0

F
(U(A )(x, x))� gr1

F
(U(A )(x, x))� gr2

F
(U(A )(x, x))� ...

=U(A�)(x, x) = K1x � ⌦B(A�)(x, x).

We have that the A1-functor ↵1
A

induces a functor grn
F
A (x, x) ! grn

F
U(A )(x, x), for

every positive integer n.
In order to prove that ↵1

A
is a quasi-isomorphism, we have to prove that ↵1

A
induces a

quasi-isomorphism between grn
F
A (x, x)! grn

F
U(A )(x, x), for every positive integer n.

If n = 0 and n = 1, it is clearly a quasi-isomorphism.
So we have to prove that, if n > 1, every cycle is a boundary in grnU(A )(x, x).
First of all, we note that the cycles in grnU(A )(x, x) are of the form fn[1][�1] ⌦ ... ⌦

f1[1][�1] with
nX

j=1

(�1)†j�1(fn[1])[�1]⌦ ...⌦ (dfj [1])[�1]⌦ ...⌦ (f1[1])[�1] = 0.

It means that

d(
nX

j=1

(fn[1])[�1]⌦ ...⌦ (fj+1[1]⌦ fj [1])[�1]⌦ ...⌦ (f1[1])[�1]) =

= (n� 1)fn[1][�1]⌦ ...⌦ f1[1][�1]

and we are done.

Proof of Proposition 3.10. By Lemma 3.17 we have the following commutative diagram:

A

F

✏✏

↵A
// U(A )

U(F)

✏✏

B
↵A
// U(B).

Using the previous lemma we deduce that U(F ) is a quasi-equivalence.
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Proof of Theorem 3.12

Let C be a dg-category.

We define the following:

�C : U(C )(x, y)! C (x, y)

�C ((fm

nm
[1]⌦ ...⌦ f

m

1 [1])[�1]⌦ ...⌦ (f1
n1
[1]⌦ ...⌦ f

1
1 [1])[�1]) :=

8
<

:
f
m

1 ...f
1
1 , if nj = 1

0, otherwise,

Lemma 3.19. �C is a dg-functor.

Proof. We show that �C is compatible with composition:

�C (((fn[1])[�1]⌦ ...⌦ (fj+1[1])[�1])⌦ (fj [1])[�1]⌦ ...⌦ (f1[1])[�1]) =

=(fn...fj+1)(fj ...f1)

=�C ((fn[1])[�1]⌦ ...⌦ (fj+1[1])[�1])�C ((fj [1])[�1]⌦ ...⌦ (f1[1])[�1]).

Now we prove that �C commutes with differential:

d(�C ((fn[1])[�1]⌦ ...⌦ (f1[1])[�1])) = d(fn...f1) =
n�1X

j=1

(�1)†jfn...(dfj+1)fj ...f1

= �C (
n�1X

j=1

(�1)†j (fn[1])[�1]⌦ ...⌦ (dfj+1[1])[�1]⌦ (fj [1])[�1]⌦ ...⌦ (f1[1])[�1])

= �C (d(fn[1])[�1]⌦ ...⌦ (f1[1])[�1])))

Lemma 3.20. �C gives rise to a natural transformation between Ui and Iddgcat, where i

denotes the inclusion dgcat ,! A1-cat.

Proof. Trivial by construction.

Lemma 3.21. Given a dg-category C , we have (�C↵C ) = IdC . It implies that �C is a
quasi-equivalence.

Proof. If n = 1, then (�C↵C )1(f) = �C ((f [1])[�1]) = f .
If n > 1, then (�C↵C )n(fn, ..., f1) = �

1
C
(↵n

C
(fn, ..., f1)) = �

1
C
((fn[1]⌦...⌦f1)[�1]) = 0.

Proof of Proposition 3.13. Let A be an A1-category, and let B be a dg-category. We
define the isomorphism  

 : Homdgcat(U(A ),B)!HomA1-cat(A ,B)

F 7!F↵A ,
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with the inverse

 
�1 : HomA1-cat(A ,B)!Homdgcat(U(A ),B)

F 7!�A U(F ).

3.4 Equivalence between Ho(A1-cat) and A1-cat/⇠

First of all, given a dg-category C , we define the dg-category Mor(C ) in the following
way:

• the objects are the triples (x, y, f), where x, y are objects in C and f is an arrow
from x to y.

• The morphisms HomMor(C )((x, y, f), (x
0
, y

0
, f

0)) are given by the lower triangular
matrices of the form:  

a 0

b c

!
,

where a : x! x
0, b : x! y

0 and c : y ! y
0,

• the differentials are given by
 

d(a) 0

d(b) + (�1)n(f 0
a� cf) d(c)

!
,

Moreover we have two dg-functors, S and T from Mor(C ) to C , defined respectively,
on the objects, as S : (x, y, f) 7! x and T : (x, y, f) 7! y, and on morphisms as

S :

 
a 0

b c

!
7! a,

and

T :

 
a 0

b c

!
7! c,

We recall also that, given two cohomologically unital A1-functors F , G between two
dg-categories, C

0 and C
0, and a prenatural transformation H, between F and G such that

µ
1(H) = 0, we can define an A1-functor:

 H : C
0
! Mor(C ),

setting, for every integer d:

 
d

H
(fd, ..., f1) := (F d(fd, ..., f1),G

d(fd, ..., f1), H
d(fd, ..., f1)).

The fact that  H is an A1-functor follows by Lemma 4.8. of [20]. We note that if F

and G are cohomological unital (resp. unital) then, also  H is cohomological unital (resp.
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unital).
Moreover one can see immediately that S = F and T = G .

Given two cohomological unital (resp. unital) A1-categories A and B.
Let F0 and F1 be two cohomological unital (resp. unital) A1-functors from A and B.

Definition 3.4.1. We say that F0 ⇠ F1 (resp. F0 ⇠u F1) if and only if F0 and F1 are
isomorphic, as objects, in Ho(A1-Funcu(A ,B)) (resp. Ho(A1-Fun(A ,B))).

Here A1-Funcu(A ,B) denotes the category whose objects are cohomological unital
A1-functors from A to B, and whose morphisms are prenatural transformations. Sim-
ilarly, from now on A1-Fun(A ,B) will denote the category whose objects are unital
A1-functors from A to B (cf. Chapter 1, §1.3).

We point out that ⇠ and ⇠u are equivalence relations. Thus we define two categories
A1-catcu/⇠ and A1-cat/⇠u

.

Theorem 3.22. The category A1-catcu/⇠ is equivalent to Ho(A1-catcu).

Proof. Let F0 and F1 be two functors from two cohomological unital A1-categories A

and B, such that F0 ⇠ F1.
By [56, Theorem 2.9.], we can replace A and B by two dg-categories A and B. Moreover
we have the A1-functors

Q : A ! A and P : B ! B

with
Q

�1 : A ! A and P
�1 : B ! B

such that Q
�1

Q ⇠ Id, QQ
�1
⇠ Id, and P

�1
P ⇠ Id, PP

�1
⇠ Id.

So we get a functor ( ) from A1-catcu/⇠ to dgcat/⇠, by setting F 7!P
�1

FQ.
Then, by the fact that F ⇠ G , we have that there exist H : F ! G and T : G ! F such
that µ

1(H) = µ
1(T ) = 0 and HT = Id and TH = Id in Ho(A1-Funcu(A ,B)).

It means that the functor  H factors through the full dg-subcategory P (B) of Mor(B),
whose objects are the triples (x, y, f), such that f is invertible in Ho(B).
So we have the following commutative diagram

B

A

G
""

F

<<

 H
// P (B)

S

OO

T

✏✏

B
IB
oo

B

where IB denotes the quasi-equivalence defined on objects by x ! (x, x, ex), and on
morphisms by f ! (f, f, 0). It is sufficient to prove that [F ]=[G ] in Ho(A1-catcu). We
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get �1 : A1-catcu/⇠ ! Ho(A1-catcu).
Conversely, given a quasi-equivalence F we have, by again by Theorem 2.9. of [56], a
quasi-equivalence I such that I I ⇠ id and I I ⇠ Id. It means that I is invertible in
A1-catcu/⇠ and the functor A1-catcu ! A1-catcu/⇠, given by the localisation, factor
through �2 : Ho(A1-catcu)! A1-catcu/⇠.
A direct computation shows that �1�2 ' Id and �2�1 ' Id.

Theorem 3.23. The category A1-cat/⇠ is equivalent to Ho(A1-cat).

Proof. Using the same procedure of the previous Theorem, we get a functor from A1-cat/⇠
to Ho(A1-cat).
Conversely, by Theorem 9.2.0.4. of [39] we have an equivalence between Ho(A1-cat) and
A1-cat/⇡, where F ⇡ G if and only if they are A1-equivalent (in sense of Definition
9.2.0.1. of [39]). Moreover, by Lemma 9.1.0.4. of [39] we have that F and G are A1-
equivalent if and only if they are isomorphic in Ho(A1-Fun(A ,B)).
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Chapter 4

1-categories

As we said in the introduction, we can enhance a triangulated category as a dg-
category, an A1-category or a stable 1-category. We point out that, due to Theorem
3.14, we have an equivalence, up to quasi-equivaleces, between the category of dg-categories
and A1-categories. In this chapter we complete the comparison between the above men-
tioned categories. In particular we prove that the1-stable categories N(Hmo(dgcat)) and
N(Hmo(A1-cat)) are equivalent. Moreover, given a pretriangulated A1-category A we
prove that NA1

(A ) is a stable 1-category.

At the beginning, we introduce the language of1-categories, then using a result in [11]
we prove that the categorical nerves of the category of A1-categories and of dg-categories,
localised over Morita equivalences, are both1-equivalent to the category of stable idempo-
tent complete1-categories. Moreover, we prove that the A1-nerve of two quasi-equivalent
A1-categories are weak equivalent in the Joyal model structure, a consequence of this fact
is that the A1-nerve of a pretriangulated A1-category is a stable 1-category.

4.1 Brief background on 1-categories

Definition 4.1.1 (Minimal K-linear category). Let n be a nonnegative integer. We define
the minimal K-linear category [n]K to be the category such that the objects are the positive
integers {0, 1, 2, ..., n} and the morphisms are defined by

Hom[n]K(i, k) =

8
>><

>>:

0K, if i > k

hjikiK, if i < k

h1KiK, if i = k.

Here 0K is the zero vector space and hjikiK is the K-vector space generated by the element
jik. The composition is defined as follow, let i1 < i2 < i3 be positive integers. Then:

· := Hom[n]K(i2, i3)⌦K Hom[n]K(i1, i2)! Hom[n]K(i1, i3)
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is such that
ji2i3 · ji1i2 = ji1i3 ,

where ji1i3 is the unique morphism in Hom[n]K(i1, i3).

Remark 4.1

The definition above works even without the K-linear enrichment.

Definition 4.1.2 (Simplex category). We define the simplex category to be the category
whose objects are the minimal K-linear categories [n] and whose morphisms are the func-
tors f such that f(i)  i and f(i1)  f(i2) if i1  i2. We denote the resulting category by
�.

Definition 4.1.3 (Simplicial set). We define a simplicial set to be a contravariant functor
from the simplex category � to the category of sets.

We will denote by sSet the category of simplicial sets whose morphisms are the natural
transformations.

Remark 4.2

We can consider, instead of �, the category �+ which is the category � with the empty
ordinal (formally denoted by [�1]). We define the augmented simplicial set to be a con-
trovariant functor from �+ to Set. We denote the category of augmented simplicial set by
sSet+. Moreover the inclusion functor � ,! �+ induces a pair of adjoint functors:

t
⇤ : sSet+ // sSet : t⇤oo

Example 4.1.1. Given a positive integer n, the functor �n defined as Hom�(�, [n]) :

�op
! Sets is a simplicial set. Moreover for each 0  i  n the functor generated by all

the maps dj : [n� 1]! [n] (which are the injective maps not having j in the image), with
i 6= j, is a subsimplicial set of �n. We call such a simplicial set (n, i)-horn and we denote
it by ⇤n

i
.

Example 4.1.2. Given a positive integer n, we call the i
th-face @i�n of �n the simplicial

subset generated by d
i
2 �n

n�1.

Example 4.1.3. Given a positive integer n, we define the simplicial n-sphere @�n to be
the simplicial subset of �n given by the union of the faces @0�n

, ..., @n�n.

Definition 4.1.4 (1-category). We define an 1-category to be a simplicial set X such
that, for every positive integer n and every natural transformation � : ⇤n

k
! X, with

0 < k < n, there exists (at least) one map �̃ such that the following diagram:

⇤n

k_�

✏✏

�
// X

�n

�̃

>>

commutes.
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Let X be an 1-category, the objects of X are given by the elements of the set X0 and
the set of morphisms from x to y, denoted by Map

X
(x, y), is given by the pullback of the

following diagram:

Map
X
(x, y)

✏✏

// X1

(d,c)

✏✏

•
(x,y)

// X0 ⇥X0

where d = X(d1) : X1 ! X0, and c = X(d0) : X1 ! X0.
We say that an object x in X is terminal if every morphism

� : @�n
! X

with target x, can be extended to a map �̃ : �n
! X.

Example 4.1.4. Let X be an 1-category. Fixing two elements x and y 2 X0, we get a
simplicial set, denoted by HomR

X
(x, y), whose 0-simplices are 1-simplices in X from x to

y, whose 1-simplices are 2-simplices of the form:

x

��

x

1x
??

// y

and whose n-simplices are (n + 1)-simplices whose target is y and whose (n + 1)th-face
degenerates at x.

Example 4.1.5. Let C be a category, the simplicial set defined as the set of the compo-
sitions of n-arrows of C , for every n > 0, and as the set of objects of C , if n = 0, is an
1-category. We call such a simplicial set the nerve of C and we denote it by NCat(C ) (or
shortly N(C )).

Given an 1-category X and two morphisms f, g 2 Map
X
(x, y) we say that f is homo-

topic to g if there exists a natural transformation � : �2
! X of the form:

x

f

��

x

1x
??

g

// y

The homotopy relation is an equivalence relation.

Definition 4.1.5 (Homotopy category). We define the homotopy category of an 1-
category X to be the category whose objects are the elements of X0 and whose morphisms,
fixed two objects x and y, are given by the quotient of Map

X
(x, y) by the homotopy rela-

tion defined above. We denote such a category by Ho(X).

45



4. 1-categories

Limits (and colimits) in an 1-category

In this subsection we want to give just a sketch of the definition of limit (resp. colimit)
in an 1-category. We refer to [24, §16] for the details.

We start defining an operation in the category sSet+ and sSet:

Definition 4.1.6 (Join of augmented simplicial sets). The join X ? Y of two augmented
simplicial sets X and Y is defined to be the augmented simplicial set given by

(X ? Y )n :=
G

i+j=n

Xi ⇥ Yj

for every positive integer n.

We have that the operation ? on sSet+ induces a monoidal structure on sSet. Using
the previous formula we can define the join X ? Y of two simplicial sets X and Y by the
following:

(X ? Y )n := Xn t Yn t

G

i+1+j=n

Xi ⇥ Yj

for every positive integer n.

Now we fix a simplicial set Y , avoiding technical details (you can find a complete
exposition in [24, §6]), we can define a functor IY sending a simplicial set X in the inclusion
X ,! X ? Y . The functor IY has a right adjoint R with target in sSet. We denote by X/d

the image of d : Y ! X via the right adjoint R. Moreover, if X is an 1-category, we have
that the simplicial set X/d is an 1-category. We point out that, for any simplicial set A,
there is a bijection between the maps A! X/d and the maps A ? Y ! X which extends
d along the inclusion Y ,! A ? Y :

Y_�

✏✏

d

""

A ? Y // X

Now we are ready to define the limits (and colimits) in an 1-category X. First of all
we define a diagram in X to be a morphism of simplicial sets D ! X. For example we call
�1
⇥ �1

! X a commutative square in X. We call projective cone a map c from 1 ? D

to X, where 1 denotes the category with one object. The base of the cone is given by the
composition ci where i denotes the inclusion i : D ,! 1?D. In particular the set of objects
X/d0 is given by the cones 1 ?D ! X whose base is d.

Definition 4.1.7 (Exact cone). We say that a cone c : 1 ?D ! X with base d : D ! X

is exact if it is a terminal object of the 1-category X/d.

Definition 4.1.8 (Limit). We define the limit l of the diagram d : D ! X to be the
image of the unique object of 1 via c.

If the limit of a diagram exists then it is unique up to homotopy. Dually we can define
the colimit of a diagram the notions of initial object and of coexact inductive cone.
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4.2 Stable 1-categories

Definition 4.2.1 (Zero object in 1-category). Let X be an 1-category, we define the
zero object 0 to be an object of X that is both initial and final, i.e.

Map
X
(c, 0) ' Map

X
(0, c) ' ⇤

for all c 2 X0.

Remark 4.3

The zero object (if it exists) is unique up to equivalence.

Definition 4.2.2 (Pointed 1-category). We define a pointed 1-category to be an 1-
category equipped with a zero object.

Definition 4.2.3 (Fiber (cofiber) sequence). Let X be a pointed1-category, we consider
the functor of simplicial sets T : �1

⇥�1
! X of the form:

x

✏✏

f
// y

g

✏✏

0 // z

We call T a triangle in X. If T is a pullback square we call it fiber sequence (fiber of g),
if T is a pushout square we call it cofiber sequence (cofiber of f).

Remark 4.4

It easy to check that a triangle T is the datum of:

• Two morphisms f , g 2 X1.

• Two 2-simplices in X2 of the form:

x

✏✏

h

��

x
f
//

h
��

y

g

✏✏

0 // z z

We will denote the triangle T by

x
f
// y

g
// z.

Definition 4.2.4 (Stable 1-category). We say that X is a stable 1-category if

(S1) X is an 1-category equipped with zero object (pointed 1-category).

(S2) Every morphism has fibers and cofibers.

(S3) Every triangle in X is a fiber sequence if and only if it is a cofiber sequence.
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4. 1-categories

Given a stable 1-category X, we have an auto-equivalence

⌃ : X ! X

called suspension functor, with inverse ⌦ called loop functor, obtained via the category
of subfunctors of Fun(�1

⇥�1
, X) generated by the following pullbacks and pushouts in

�1
⇥�1

! X:
x

✏✏

// 0

✏✏

x⌦
//

✏✏

0

✏✏

00 // x⌃ 00 // x

where 0 and 00 are zero objects in X (cf. Chapter 1 of [43] for a precise definition). If
n > 0 we will denote by x[n] the ⌃ functor applied n-times to x 2 X, if n < 0 we will
denote by x[n] the ⌦ functor applied n-times to x.
We have the following fundamental theorem:

Theorem 4.5. Let X be a stable1-category. Then the homotopy category Ho(X) is a tri-
angulated category with ⌃ the suspension functor as shift functor. Distinguished triangles
are given by the following �2

⇥�1
! X diagram:

x

✏✏

// 0

✏✏

y

✏✏

// z

✏✏

00 // w.

We denote by CatSt

1
the category of stable 1-categories whose objects are the stable

1-categories and whose morphisms are the functors of 1-categories.

A functor between 1-categories "a priori" does not give information about the zero
object and the fiber sequences, so in the case of stable 1-categories we prefer use the
following definition of functors.

Definition 4.2.5 (Exact functor). Let F : X ! X
0 be a functor between stable 1-

categories. We say that F is exact if the followings are satisfied:

(E1) F (0X) = 0X0 .

(E2) F carries fiber sequences to fiber sequences.

Remark 4.6

If (E1) holds, than F carries triangles to triangles. Moreover F satisfies (E2) if and only
if F carries cofiber sequences to cofiber sequences.

Example 4.2.1. The identity functor of a stable 1-category and the composition of two
exact functors are exact functors.
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4.3. Nerves

We denote by CatEx

1
the exact stable 1-category whose objects are the stable 1-

categories and whose morphisms are the exact functors.

4.3 Nerves

The nerves are useful tools to pass from a category to an 1-category. In this section
we will define the A1-nerve, originally defined in [18], which is a generalization of the
dg-nerve of Lurie.

The nerve of a category A , is the 1-category defined, for every positive integer n, as:

N(A )n = HomCat([n]K,A ),

where Cat denotes the category of (small) categories.
We recall that the nerve of Hmo(dg-cat) is equivalent to the1-category of K-linear stable
1-categories. Then, using Theorem 3.15 and [11, Corollary 5.4.], we have the following:

Theorem 4.7. N(Hmo(A1-cat)) is equivalent to N(Hmo(dgcat)), which is equivalent to
the 1-category of K-linear stable 1-categories.

A1-nerve

Proposition 4.8. Let n be a positive integer and C be an A1-category (unital). Every
map {F

n
} 2 HomA1-Cat([n]K,C ) is uniquely determined by:

1. n+ 1-objects {Xi}0in of C ,

2. A set of morphisms fI for all set of integers I = {i0 < i1 < ... < im < im+1} where
0  i0 < im+1  n satisfying the following:

m
1
C (fI) =

X

1jm

(�1)j�1
fI�ij

+
X

1jm

(�1)1+(m+1)(j�1)
m

2
C (fij ...im+1 , fi0...ij )

+
X

r>2

X

‡r

(�1)1+✏rmr

C (fim+1�sr
...im+1 , ..., fi0...is1

).(4.1)

where

‡r = {s1,..., sr 2 N |

rX

j=1

sj = m+ 1}

✏r(i1, ..., ir) =
X

2kr

(1� ik + ik�1)ik�1.

Proof. Given an A1-unital functor F = {Fm}m�0 : [n]K ! C the image of the map
F0 is uniquely determined by n + 1 objects {Xi}0in in C because [n]K has exactly
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4. 1-categories

n + 1 objects. Moreover fixed two integers i� and i+ 2 [n] such that i� < i+, for every
0  m  n we consider the map:

Fm : Hom[n]K(im�1, i+)⌦ ...⌦Hom[n]K(i�, i1)! HomC (FX�,FX+)[1�m]

the unique non-trivial ones are those such that i� < i1 < i2 < ... < im�1 < im < i+. So
the image of Fm is non-zero if and only if we have a set I of m + 1-elements in [n] such
that I = {i� < i1 < i2 < ... < im�1 < im < i+}. Then Fm is uniquely determined by
the image fI = Fm(jim�1i+ , ..., ji�i1) where jkl denotes the only one non trivial map in
Hom[n]K

(ik, il), and clearly they satisfy (4.1) because they are the image of the A1-functor
F .

Proposition 4.9. Given a map ↵ : [m] ! [n] in � and C as above, we have an induced
map

HomA1-Cat(↵,C )

given by:

HomA1-Cat(↵,C ) : HomA1-Cat([n]K,C )! HomA1-Cat([m]K,C )

({Xi}0in, {fI}) 7! ({X↵(j)}0jm, {gJ}),

where gJ is:

gJ =

8
>><

>>:

f↵(J), if ↵|J is injective

1Xi
, if J = {j, j

0
} and ↵(j) = ↵(j0) = Xi

0, otherwise,

such that, given ↵ : [m]! [n] and � : [n]! [l], then

HomA1-Cat(� · ↵,C ) = HomA1-Cat(↵,C ) · HomA1-Cat(�,C ).

Moreover given Id : [n]! [n] then

HomA1-Cat(Id,C ) = IdHomA1-Cat([n],C ).

Proof. First of all, we want to associate to ↵ an A1-unital functor (denoted by {↵})
between the minimal categories [m]K ! [n]K. We define the A1-functor {↵n}n�0 : [m]K !
[n]K in the following way:

• if k = 0, ↵k = ↵,

• if k = 1,
↵1 : Hom[n]K(l, s)! Hom[m]K(↵(l),↵(s))

jls 7! ↵1(jls) =

8
>><

>>:

0, if l > s

1, if l = s

j↵(l)↵(s), if l < s

.

• if k > 1, ↵k = 0.
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4.3. Nerves

The induced map HomA1-Cat(↵,C ) is given by the composition with the A1-functor
{↵n}n�0. Let F 2 HomA1-Cat([n]K,C ). For all t � 1 we have:

(F↵)t =
tX

r=1

X

i1+...+ir=t

Fr(↵ir
, ...,↵i1).

Since only ↵1 is non-trivial, we have r = t, i1 = i2 = ... = it = 1 and (F↵)t becomes:

(F↵)t = Ft(↵1, ...,↵1).

Therefore
F1(↵1(ji0i1)) = F1(j↵(i0)↵(i1)),

F2(↵1(ji0i1),↵1(ji1i2)) = F2(j↵(i0)↵(i1), j↵(i1)↵(i2)),

...

Fn(↵1(ji0i1),↵1(ji1i2), ...,↵1(jin�1in)) = Fn(j↵(i0)↵(i1), j↵(i1)↵(i2), ..., j↵(in�1),↵(in)).

Of course, ik are positive integers smaller than m (because ↵ : [m] ! [n]). So if we take
an element in HomA1-Cat([n]K,C ) denoted by ({Xi}0in, {fI}) this is sent to

({X↵(j)}0jm, {gJ}),

where gJ is:

gJ =

8
>><

>>:

f↵(J), if ↵|J is injective

1Xi
, if J = {j, j

0
} and ↵(j) = ↵(j0) = Xi

0, otherwise.

This concludes the proof.

Definition 4.3.1 (A1-nerve). Let C be a unital A1-category. We define the A1-nerve
of C to be the simplicial set (denoted by NA1

(C )) such that for all positive integers n

NA1
(C )n := HomA1-Cat([n]K,C ).

And for every ↵ : [m] ! [n] 2 � the element ({Xi}0in, {fI}}) in NA1
(C )n is sent to

({X↵(j)}0jm, {gJ}}) where gJ is:

gJ =

8
>><

>>:

f↵(J), if ↵|J is injective

1Xi
, if J = {j, j

0
} and ↵(j) = ↵(j0) = Xi

0, otherwise.

Remark 4.10

Note that if C is a dg-category then NA1
(i(C )) = Ndg(C ) where Ndg is the dg-nerve

defined in [44, 1.3.1.6].

Theorem 4.11. Let C be an A1-category, then NA1
(C ) is an 1-category.

Proof. [18, Prop. 2.2.12.].
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4. 1-categories

4.4 Properties of the A1-nerves

This section is divided into three parts: in the first one we will introduce some notions
that will be useful to characterize the mapping space of the A1-nerve. In the second we
will recall some classical results about model categories. Finally we will prove the main
theorem of the chapter that will be the fundamental tool to give a comparison between
A1-categories and stable 1-categories.

Simplicial Objects and DK-correspondence

Let A be an abelian category, we denote by Ch�0
A

the category of bounded above chain
complexes. In particular if A is the category of K-modules, we denote by Ch�0

K the the
category of bounded above chain complexes of K-modules.

Definition 4.4.1 (Simplicial Object). A simplicial object A in A is a functor X : �op
! A.

We have a functor N⇤ : Fun(�op
,A)! Ch�0

A
that associates to each simplicial object

A the chain:

... // N2(A)
A(d0)

// N1(A)
A(d0)

// N0(A) // 0 // ...

where:
Nn(A·) :=

\

1in

ker(A(di))

and dj : [n� 1]! [n] is the natural injective map such that j 62 Im(dj).

We have also a functor DK• : Ch�0
A
! Fun(�op

,A) that associates to each chain C
•

the simplicial object DK⇤(C•) : �op
! A defined, for every n, to be:

DKn(C
•) :=

M

↵:[n]![k]

Ck,

where ↵ is a surjective map.
Moreover, given a map � : [n0]![n], we define DK•(�) to be the matrix with (↵,↵0) entries:

(f↵,↵0) :
M

↵

Ck !

M

↵0

Ck0

such that:

f↵,↵0 =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

1Ck
, if ↵ and ↵0 fit the diagram [n]

�
//

↵

✏✏

[n0]

↵
0

✏✏

[k0] [k]

dk, if ↵ and ↵0 fit the diagram [n]

↵

✏✏

�
// [n0]

↵
0

✏✏

[k � 1]
d0

// [k]

0, otherwise.
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4.4. Properties of the A1-nerves

Theorem 4.12. The functors DK• and N⇤ are adjoints in both directions i.e. DK• ` N⇤

and N⇤` DK•.

Proof. [15, Satz 3.6].

Let Z�n denote the free abelian group generated by �n[j], for every j. Let us build
the chain associated N⇤(Z�n).

Example 4.4.1. Let us consider �0 = Hom�(�, [0]). If n = 0, then N0(Z�0) =

ker(Z�0
0 ! 0) = Z�0

0 = {1 generator g0}. Moreover if n = 1, by definition, N1(Z�0) =

ker(d1 : Z�0
1 ! Z�0

0) = 0, because Z�0
1 is generated by g00 and d

1(g00) = g0 6= 0. We
can procede in the same way for any other n � 1. Hence the chain associated to Z(�0) is
given by:

... // 0
d
0
// 0 // < g0 > // 0 // ...

Example 4.4.2. Let us consider �1 = Hom�(�, [1]). If n = 0 we have N0(Z�1) =

ker(Z�1
0 ! 0) = Z�1

0 = {2 generators g0 and g1}. If n = 1, we have N1(Z�1) = ker(d1 :

Z�1
1 ! Z�1

0). In Z�1
1 we have three generators g00, g01 and g11 given by the following

maps:

0 // 0

1

33

1

g00

, 0 // 0

1 // 1

g01

, 0

++

0

1 // 1

g11

N1(Z�1) is given by the elements Z�1
1 of the form ↵00g00 � ↵01g01 � ↵11g11 such that

d
1 = 0, where ↵ij 2 K. By definition:

d
1(↵00g00 � ↵01g01 � ↵11g11) = ↵00g0 � ↵01g0 � ↵11g1

= (↵00 + ↵01)g0 � ↵11g1.
(4.2)

and it is zero only if ↵00 + ↵01 = 0 and ↵11 = 0.
Hence ker(Z�1

1 ! Z�1
0) =< g00 � g01 >.

Then the associated chain Z(�1) is given by:

... // 0 // < g00 � g01 >
d0
// < g0 > � < g1 > // 0 // ...

such that d0 < g00 � g01 >= g0 � g1

Let C be a dg-category and x, y two fixed objects in C . By Example 4.4.1, we can
identify the homomorphisms of complexes f : N⇤(Z�0) ! HomC (x, y) with the maps
f : x ! y of degree zero such that df = 0. By Example 4.4.2, we can identify the
homomorphisms of complexes f : N⇤(Z�1) ! HomC (x, y) with the set of the maps
f02, f12, f012 : x ! y such that deg f02 = deg f12 = 0, deg f012 = �1, df012 = f02 � f12

and df02 = df12 = 0.
More generally let us discuss an important lemma (implicitly assumed by Lurie [43, pg.
66]) which characterizes the maps between N⇤(Z�n) and HomC (x, y).
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Lemma 4.13. We can identify f : N⇤(Z�n) ! HomC (x, y) to the maps fI : x ! y of
degree |I|� 2 for all subset I = {0  i0 < ... < ij < j + 1  n} such that:

(Ü) dfI =
X

0kj

(�1)kfI�k.

Proof. We denote by gi0...ij the free generator associated to the map [j]! [n] which sends
the integer k 2 [j] to ik 2 [n]. It follows immediately that

h

M

0i0...ijn

gi0...ij i = Z�n

j
.

By definition, an element
M

0i0...ijn

↵i0...ijgi0...ij is in Nj(Z�n) if and only if

(4.3)

8
>>>>>><

>>>>>>:

d
j(

M

0i0...ijn

↵i0...ijgi0...ij ) = 0

...

d
1(

M

0i0...ijn

↵i0...ijgi0...ij ) = 0

Now, if we focus on the first row in (4.3), we have that

d
j(

M

0i0...ijn

↵i0...ijgi0...ij ) = 0(4.4)

if and only if
nX

ij=ij�1+1

↵i0...i = �↵i0...ij�1ij�1 .

So we can rewrite (4.3) in terms of the following system of j � 1 equations

(4.5)

8
>>>>>><

>>>>>>:

d
j�1(

M

0i0...ijn

↵i0...ij (gi0i1...ij � gi0...ij�1ij�1) = 0

...

d
1(

M

0i0...ijn

↵i0...ij (gi0i1...ij � gi0...ij�1ij�1) = 0.

Proceeding as for the first row, we obtain the following system of j�2 equations equivalent
to (4.5)

(4.6)

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

d
j�2(

M

0i0...ijn

↵i0...ij (gi0i1...ij � gi0...ij�2ij�2ij+

�(gi0i1...ij�1 � gi0...ij�2ij�2ij�1)) = 0

...

...

d
1(

M

0i0...ijn

↵i0...ij (gi0i1...ij � gi0...ij�2ij�2ij+

�(gi0i1...ij�1 � gi0...ij�2ij�2ij�1)) = 0.
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We can go on as before by removing one by one the equations from the system. In the
end we have that

M

0i0...ijn

↵i0...ijgi0...ij is in Nj(Z�n) if it is of the form

M

0i0...ijn

↵i0...ij (
X

0k
0
1,...,k

j�1
j

1

(�1)

4

i
k
0
1

1 ...i

k
j�1
j

j g

i0i
k
0
1

1 ...i
k
j�1
j

j

)

where

i
k
l1
l2

l
=

8
<

:
il2 , if kl1

l2
= 0

il1 , if kl1
l2

= 1

and
4

i
k
0
1

1 ...i
k
j�1
j

j

= k
0
1 + ...+ k

j�1
j

.

We note that, if there exists p such that ip = ip�1, then

X

0k
0
1,...,k

j�1
j

1

(�1)

4

i
k
0
1

1 ...i

k
j�1
j

j g

i0i
k
0
1

1 ...i
k
j�1
j

j

= 0.

This means that Nj(Z�n) = 0 if j > n. Otherwise Nj(Z�n) is generated by

M

0i0<...<ijn

(
X

0k
0
1,...,k

j�1
j

1

(�1)

4

i
k
0
1

1 ...i

k
j�1
j

j g

i0i
k
0
1

1 ...i
k
j�1
j

j

).(4.7)

Now, every map of complexes f : N⇤(Z�n) ! HomC (x, y) is uniquely determined, for
every integer j, by the image of the generators in (4.7). We will denote such image by
fi0...ij(j+1). Moreover f is a chain of complexes. So

d
j(fi0...ij(j+1)) = fj�1(

X

0k
0
1,...,k

j�1
j

1

(�1)

4

i
k
0
1

1 ...i

k
j�1
j

j g

i
k
0
1

1 i
k
1
2

2 ...i
k
j�1
j

j

))

= fj�1(
X

0k
1
2,...,k

j�1
j

1

(�1)

4

i
k
1
2

2 ...i

k
j�1
j

j (g
i1i

k
1
2

2 ...i
k
j�1
j

j

� g

i0i
k
1
2

2 ...i
k
j�1
j

j

))

= fi1...ij(j+1) � fj�1(
X

0k
1
2,...,k

j�1
j

1

(�1)

4

i
k
1
2

2 ...i

k
j�1
j

j (g
i0i

k
1
2

2 ...i
k
j�1
j

j

)).

(4.8)

Note that, for every t, we have

g

i
k
0
1

1 i
k
1
2

2 ...i
k
t�3
t�2

t�2 i
k
t�1
t

t
i
k
t

t+1
t+1 ...i

k
j�1
j

j

= g

i
k
0
1

1 i
k
1
2

2 ...i
k
t�3
t�2

t�2 it...i
k
j�1
j

j

� g

i
k
0
1

1 i
k
1
2

2 ...i
k
t�3
t�2

t�2 it�1...i
k
j�1
j

j

= g

i
k
0
1

1 i
k
1
2

2 ...i
k
t�3
t�2

t�2 i
k
t�2
t

t
i
k
t

t+1
t+1 ...i

k
j�1
j

j

+

� g

i
k
0
1

1 i
k
1
2

2 ...i
k
t�3
t�2

t�2 i
k
t�2
t�1

t�1 ...i
k
j�1
j

j

.

This means that equation (4.8) gives precisely the condition (Ü).
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Remark 4.14

By Theorem 4.12 we have that

Hom(Z�n
,DK•(⌧�0HomC (x, y))) ' HomChK(N⇤(Z�

n), ⌧�0HomC (x, y)).

Using the characterization in Lemma 4.13 we have that the morphisms fI with the property
(Ü) are in bijection with DKn(⌧�0HomC (x, y)).

Model structures

We briefly recall some classical notions about model structures on categories. Basics
definitions and examples are treated in the Appendix, a complete reference about model
structures is [23].

Example 4.4.3. The category of (small) dg-categories has two canonically model struc-
tures due to Tabuada [58] [57]: the first one has as weak equivalences the quasi-equivalences
and the second one has as weak equivalences the Morita equivalences. We recall, from
Chapter 1, that F : C ! C

0 is a Morita equivalence if:

(Me1) F induces an equivalence on perfect-complexes

Ho(F ) : Ho(pretr(C ))ic ! Ho(pretr(C 0))ic

(Me2) HomC (x, y)! HomC 0(F (x), F (y)) is a quasi-isomorphism for all x, y 2 C .

Clearly every weak equivalence in the first model structure is a Morita equivalence.

Remark 4.15

A functor between pretriangulated idempotent complete dg-categories is a weak equiva-
lence if and only if it is a Morita equivalence.

Definition 4.4.2 (Weak equivalence [25]). Let X, Y be 1-categories, F : X ! Y is a
weak equivalence if:

• Ho(X) ' Ho(Y ) (as categories),

• 8x, y 2 X the geometric realization of the morphism

HomR

X
(x, y)! HomR

Y
(F0(x), F0(y))

is a weak homotopy equivalence of topological spaces.

Weak equivalences together with monomorphisms (i.e. Fn : Xn ! Yn monomorphisms
for all n > 0) as cofibrations and fibrations, defined by the right left property (cf. Definition
1.1.2. [23]), forms a model structure over sSet called Joyal model structure.

Remark 4.16

We can see a simplicial object as a simplicial set.
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4.4. Properties of the A1-nerves

Using [51, Thm. 4] we can endow the category of simplicial objects with a model struc-
ture by defining weak equivalences (resp. fibrations) as the morphisms of simplicial objects
where the underling functor is a weak equivalence (resp. Kan fibrations) of simplicial sets.

Remark 4.17

Let x and y be objects of C , where C is a unital A1-category. The simplicial set HomR

NA1

(x, y)

can be naturally enriched over the monoidal category of modules over the commutative
ring K. So HomR

NA1

(x, y) 2 Fun(�op
,K-Mod) and the identification HomR

NA1

(x, y) '

DK•(⌧�0HomC (x, y)) makes sense.

Remark 4.18

The category Ch�0
K has a model structure where weak equivalences are quasi-isomorphisms,

fibrations are degreewise epimorphisms and cofibrations are degreewise monomorphisms
with degreewise projective cokernels.
Moreover the functors DK• and N⇤ match cofibrations, fibrations and weak equivalences
of the model structures on Ch�0

K and of the above model structure over the simplicial
objects Fun(�op

,K-Mod) [55, 4.1].

Characterization of mapping spaces of A1-nerves

Now we are ready to prove some new results about A1-nerves that will be useful, in
the last section, to give a comparison between pretriangulated A1-categories and stable
1-categories. Let X be a simplicial set and let x, y be two elements in X0. Let C be an
A1-category.

Definition 4.4.3 (Degenerate simplex). We define the degenerate n-simplex on x to be
the image of x via X(�), where � : [n]! [0].

Example 4.4.4. A degenerate 2-simplex on x in NA1
(C ) is represented by the following

diagram:
x

1x

  

x

1x
>>

1x
//

0

33 x

Definition 4.4.4 (Mapping space). For every couple of elements of C , we define the
mapping space HomR

X
(x, y) to be the1-category whose n-simplexes are the n+1-simplices

of Xn+1 such that X|{n+1}
= y and X|{0,...,n}

is the degenerate n-simplex on x.

Lemma 4.19. The mapping space HomR

NA1
(C )(x, y) is equivalent to DK•(⌧�0HomC (x, y)).

Proof. First of all we calculate the degenerate n-simplex in NA1
(C ). Let us consider the

degenerate map � : [n]! [0]. Using Theorem 4.9, the image of x in NA1
(C )n via NA1

(�)

is given by:

• n+ 1 copies of x, because ↵(i0) = ... = ↵(in) = 0;
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4. 1-categories

• identity maps between x and itself, because ↵(ji0i1) = 1Xi0
;

• all the higher maps fi0i1i2 ,... are zero, because [0] has only one object.

By definition we have that, for every integer n, HomR

NA1
(C )(x, y)n ⇢ NA1

(C )n+1. Then
an element of HomR

NA1
(C )(x, y)n is a set of elements satisfying (4.1) for all sets I = {0 

i0 < i1 < ... < im < im+1  n+ 1}.
Now, using the previous calculation on degenerate n-simplices, we have that every fipiq

with iq 6= n+ 1 is the identity and every fip...iq , with q 6= n+ 1, is 0.
Then we can say that every element in HomR

NA1
(C )(x, y)n is given by the identity maps

on the vertex x and, for all subsets I = {0  i0 < i1 < ... < im < im+1 = n+1}, the maps
fI (i.e. the maps with target y) satisfy:

m
C

1 (fI) =
X

1jm

(�1)j�1(fI�ij
)� (�1)0mC

2 (fi1...im+1 , fi0i1) +
X

r>2

X

‡r

(�1)1+✏r0.

This means that

m
C

1 (fI) =
X

1jm

(�1)j�1(fI�ij
)� (�1)0mC

2 (fi1...im+1 , fi0i1) +
X

r>2

X

‡r

(�1)1+✏r0

= �fi1...im+1 +
X

1jm

(�1)j�1(fI�ij
)

=
X

0jm

(�1)j+1(fI�ij
)

Hence, after a change of sign, all the maps in HomR

NA1
(C )(x, y) satisfy (Ü). So, using

Remark 4.14 and Theorem 4.12, we have

HomR

NA1
(C )(x, y) ' DK•(⌧�0HomC (x, y))

This is what we wanted to prove.

Theorem 4.20. Let C , D be A1-categories unital and let F : C ! D be a quasi-
equivalence of A1-categories. Then NA1

F : NA1
(C ) ! NA1

(D) is a weak equivalence
in the Joyal model structure.

Proof. If {Fn
} is a quasi-equivalence then, by definition, the functor induced between the

homotopy categories Ho(C ) and Ho(D) is an equivalence (we1). We observe that the homo-
topic category of an1-category X is given by the category having as objects the elements
of X0 and as morphisms the elements of X1 that are quotient by the homotopy relation.
So Ho(NA1

(C )) has the same objects as C and as morphisms the set Z
0(HomC (x, y))

such that f ' g if and only if there exists h 2 HomC (x, y)�1 such that dh = f � g. It
follows that NA1

(F ) induces an equivalence between the homotopy categories of NA1
(C )

e NA1
(D).

Now we have to prove that, given two objects x, y 2 C , the map

(4.9) HomR

NA1
(C )(x, y)! HomR

NA1
(C )(F0(x),F0(y))
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is an homotopy equivalence between the corresponding Kan complexes. Using Lemma
4.19, we have that it is enough to prove that

(4.10) DK•(⌧�0HomC (x, y))! DK•(⌧�0HomD(F0(x),F0(y)))

is a weak equivalence, and this is true because the functor DK• preserves weak equivalences
and the map of complexes HomC (x, y)! HomD(F0(x),F0(y)), induced by F , is a quasi-
isomorphism by (we2).

Corollary 4.21. Given a unital A1-category C , we have that the following 1-categories
are weak equivalent:

NA1
(C ) ' NA1

(U(C )) ' Ndg(U(C )).

Proof. The first weak equivalence is a consequence of Theorem 4.20 using the fact that ↵
is a weak equivalence of A1-categories, the second weak equivalence is a straightforward
consequence of Remark 4.10.

Remark 4.22

In the case of dg-categories, Lurie proved in [43, Prop.1.3.1.20] that the dg-nerve in-
duces a right Quillen functor from the classical model structure on the category of (small)
dg-categories (the first one in Example 4.4.3) to the Joyal model structure over sSet. Un-
fortunatly in the case of the category of A1-categories there is currently no known model
structure. However there exists a canonical model structure (without limits) on the cate-
gory of A1-algebras due to Lefèvre [39] and Le Grignou proves in [38] that NA1

preserves
weak equivalences and fibrations in such a structure. Obviously this correspondence be-
tween equivalences and fibrations do not guarantee the existence of a right Quillen functor
due to the lack of limits.

Remark 4.23

Given a weak equivalence F : NA1
(C )! NA1

(C 0), we have that F induces an equivalence
between the homotopy categories Ho(C ) and Ho(D). Moreover given two objects x and y 2

C we have a quasi-isomorphism F1 between ⌧�0HomC (x, y) and ⌧�0HomC 0(F0(x), F0(y))

given by the following diagram:

NA1
(C )

F
// NA1

(C 0)

MapR

X
(x, y)

✏✏

?�

O

F
// MapR

Y
(F0(x), F0(y))

✏✏

?�

O

DK•(⌧�0HomC (x, y))

⇠

✏✏

// DK•(⌧�0HomC 0(F0(x), F0(y)))

⇠

✏✏

⌧�0HomC (x, y) // ⌧�0HomC 0(F0(x), F0(y))
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4. 1-categories

More explicitly, we set F1 = DK• � F �N⇤.
Unfortunately in general it is not true that, given a weak equivalence F : NA1

(C ) !

NA1
(C 0), then C and C

0 are quasi-equivalent as A1. For example if we take the category
K with two objects x and y and a morphism g : x ! y of degree �1 such that dg = 0

and the category K
0 with two objects without nontrivial morphisms then NA1

(K ) =

NA1
(K 0) but K 6' K

0. In the last section we will see, that under specific hypotheses
Theorem 4.20 has a converse.

4.5 Stable 1-categories vs pretriangulated A1-categories

In this section we will prove that the pretriangulated A1-categories are identified to
the stable 1-categories, via the A1-nerve.

Theorem 4.24. Let A be a pretriangulated A1-category. Then NA1
(A ) is a stable

1-category. The functor induced between the homotopy categories is an equivalence of
triangulated categories. Moreover A is idempotent complete if and only if NA1

(A ) is an
idempotent complete stable 1-category.

Proof. If A is pretriangulated, then U(A ) is a pretriangulated dg-category. By [18, Thm.
4.3.1.] we have that the dg nerve Ndg(U(A )) is a stable 1-category. By Corollary 4.21,
we have that Ndg(U(A )) is weak equivalent to NA1

(A ). Hence it is a stable 1-category.
Moreover, by Lemma 1.2.4.6 in [43], a stable 1-category is idempotent complete if and
only if the homotopy category is idempotent complete, so A is idempotent complete if
and only if NA1

(A ) is idempotent complete.

Lemma 4.25. Let F : NA1
(A ) ! NA1

(A 0) be an exact functor between A1-nerves
then, for every object x, F0(⌃(x)) ' ⌃(F0(x)).

Proof. If A is pretriangulated A1-category, then NA1
(A ) is a stable 1-category. More-

over, in [18], it is proven that, given a morphism g 2 A of degree 0 with trivial differential
(i.e. g 2 NA1

(A )1), the diagram

x

✏✏

g
// y

✏✏

0 // Cone(g)

is a cofiber sequence. In particular, if we take g = 0 and Y = 0, then we have that

x

✏✏

0
// 0

✏✏

0 // Cone(0)
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4.5. Stable 1-categories vs pretriangulated A1-categories

is a cofiber sequence. Using the axioms TR1 and TR2 of triangulated categories in Ho(A )

(see Definition 1.1.2. [47]), we have that Cone(0) ' ⌃(x). Hence the diagram

x

✏✏

0
// 0

✏✏

0 // ⌃(x)

is a cofiber sequence. By definition, F carries cofiber sequences to cofiber sequences. In
particular, the diagram above will be carried to a cofiber sequence,

F0(x)

✏✏

0
// 0

✏✏

0 // F0(⌃(x))

in NA1
(A0). Therefore we have that F0(⌃(x)) ' ⌃(F0(x)), for every object x 2 A .

Now we are ready to give a converse to Theorem 4.20.

Theorem 4.26. Let A , A
0 be two pretriangulated A1-categories. A weak equivalence

F : NA1
(A )! NA1

(A 0) in CatEx

1
induces a quasi-equivalence between A and A

0.

Proof. A weak equivalence F induces an equivalence between the categories Ho(A ) and
Ho(A 0) (see Remark 4.23). So, for all x, y 2 A , we have the following equivalence of
categories

H
0(Hom·

A (x, y))
⇠
// H

0(Hom·

A 0(F0(x),F0(y)))

Moreover, for all n 2 Z, we have

H
n(Hom·

A (x, y)) ' H
0(Hom·

A (x, y)[n]) ' H
0(Hom·

A (x[n], y)),

because A is pretriangulated. By the previous equivalence, we have

H
0(Hom·

A (x[n], y)) ' H
0(Hom·

A 0(F0(x[n]), F0(y))).

Now, by Lemma 4.25, we have

Hom·

A 0(F0(x[n]), F0(y)) ' Hom·

A 0(F0(x)[n],F0(y)).

Then H
0(Hom·

A 0(F0(x[n]), F0(y))) ' H
n(Hom·

A 0(F0(x), F0(y))) and we are done.
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Noncommutative motives

63





Chapter 5

Noncommutative motives

The first part of this chapter is devoted to recall the theory of pure motives. In par-
ticular, we are interested in Voevodsky’s nilpotence conjecture (formulated in [64]) that
states that the group of algebraic cycles of X, modulo the smash-nilpotence equivalence
relation, coincides with the group of algebraic cycles of X, modulo the classical numerical
equivalence relation.
Furthermore, in the second part of the chapter, we introduce the theory of noncommuta-
tive motives developed by Tabuada in [59]. In particular, we focus on the relation between
this new theory and the classical theory of motives.
We recall that making use of noncommutative motives, Voevodsky’s conjecture was proven
for quadric fibrations, intersection of quadrics, linear sections of Grassmannians, etc. (cf.
[5] and [6]).

5.1 Background in pure motives

In this first section we give some information about the theory of pure motives. In par-
ticular, we define the group of algebraic cycles and some adequate equivalence relations
on it. Then, we give an idea of the construction of the category of Chow motives; cf. [2]
for a complete exposition of such a construction. Finally, we recall some basic properties
of rational motivic decomposition that we will use in the next part.

The letter k will stand for a field.

Definition 5.1.1 (Group of algebraic cycles). Let X be a (smooth) projective k-scheme.
We define the group of algebraic cycles Z

⇤(X) to be the direct sum
L

d2N Z
d(X), where

Z
d(X) denotes the group

Z
d(X) :=

n
V =

X

i

niVi,
s.t. ni 2 Z and Vi is an irreducible reduced
closed subscheme with codimX(Vi) = d

o
.

We call d-cycle an element of Zd(X).

Remark 5.1

Given a field of characteristic zero F , we set Z
⇤(X)F = Z

⇤(X)⌦ F .
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5. Noncommutative motives

Now we suppose that X is smooth. For any pair ↵, � 2 Z
⇤(X)F , we denote by ↵ ·� the

intersection product. In order to define a ring structure on the group of algebraic cycles
induced by the intersection product, it is necessary to quotient the group by an adequate
equivalence relation. We give some examples of adequate equivalence relation.

Example 5.1.1. (Rational equivalence) We say that two algebraic cycles ↵ and � in
Z

d(X)F are rationally equivalent (↵ ⇠rat �) if there exists an algebraic cycle � 2 Z
d(X ⇥

P1)F , flat over P1, such that i
�1
0 � � i

�1
1
� = ↵ � �. The maps i0 : X ⇥ {0} ! X ⇥ P1

and i1 : X ⇥ {1}! X ⇥ P1 are the corresponding inclusions. In the case of divisors, the
condition above is equivalent to say that there exists a rational function f on X such that
↵ � � = Z(f). We call Chow ring the ring Z

⇤(X)F /⇠rat and we denote by CHd(X) the
quotient of Zd(X) by the subgroup of d-cycles rational equivalent to zero.

Example 5.1.2 (Smash-nilpotence equivalence). We say that an algebraic cycle ↵ 2

Z
⇤(X)F is smash-nilpotent if there exists a positive integer n such that ↵⌦n is equal to

0 in Z
⇤(Xn)F /⇠rat . Two algebraic cycles ↵, � 2 Z

⇤(X)F are smash-nilpotent equivalent
(↵ ⇠⌦nil �) if the algebraic cycle ↵� � is smash-nilpotent equivalent to zero.

Example 5.1.3 (Numerical equivalence). We say that an algebraic cycle ↵ 2 Z
⇤(X)F is

numerically trivial if for all � 2 Z
n�d(X)F , � · ↵ = 0 2 Z

n(X)F . Two cycles ↵ and � are
numerically equivalent (↵ ⇠num �) if the algebraic cycle ↵� � is numerically trivial.

Roughly speaking, we can define the category of Chow motives, denoted by Chow(k),
as follows. The objects are the triples (X, p, r), where X is a smooth projective k-scheme,
p is an idempotent endomorphism and r is an integer, and the morphisms are:

HomChow(k)((X, p, r), (Y, q, s)) := q CHdim(X)+r-s(X ⇥ Y ) p.

It is well known that Chow(k) is an additive, idempotent complete and rigid symmetric
monoidal category.
For further details about the construction of Chow(k) and Chow(k)

F
consult [2].

We have a contravariant symmetric monoidal functor

h : SmProj(k)op ! Chow(k)

X 7! (X, IdX , 0),

where SmProj(k) denotes the category of smooth projective k-schemes. We list some prop-
erties of the functor h.

Projective space

Let us denote by 1 the ⌦-unit of the category Chow(k); we recall that h(P1) = 1� L,
where L denotes the Lefschetz motive.
In more general terms, for every positive integer n, we have the decomposition

h(Pn) =
nM

i=0

1(�i),

66



5.2. Voevodsky’s nilpotence conjecture, Kimura’s conjecture and Schur’s finiteness
conjecture

where 1(1) denotes the Tate motive (i.e. the inverse of L, formally 1(�1) = L) and �(i)
denotes � ⌦ 1(1)⌦i. Moreover we have that (X, p,m) = p h(X) ⌦ L⌦�m, it means that
h(X)(r) = (X, IdX , r).

Blowups

The functor h is "well behaved" with respect to blowups. In detail, let X be a smooth
projective variety over a field k and let j : Y ,! X be a smooth closed subvariety of codi-
mension r. Then the blowup ⇡Y : BlY (X)! X of X in Y induces an isomorphism of Chow
motives h(X) �

L
r�1
i=1 h(Y )(i) ! h(BlY (X)) (see [45]). As a consequence, if dimY  2,

then V(BlY (X)) holds if and only if V(X) holds.

Flat morphisms

Let f : X ! B be a flat morphism in SmProj(k), with X and B of dimension dX

and dB , respectively. We denote by Xb the fiber of f over a point b in B and let ⌦ be
a universal domain containing k. Assume that CHl(Xb) = Q, for all 0  l <

dX�dB

2 and
for all points b 2 B(⌦). Then we have a direct sum decomposition of the Chow motive of
X as h(X) '

L
dX�dB

i=0 h(B)(i) � (Z, r, bdX�dB+1
2 c), where Z is a smooth and projective

variety of dimension

dZ =

8
<

:
dB � 1, if dX � dB is odd,

dB , if dX � dB is even.

For a complete proof of this result, we refer to [63], Theorem 4.2 and Corollary 4.4.

Remark 5.2

We point out that the same results hold for the category Chow(k)F for any commutative
ring F .

5.2 Voevodsky’s nilpotence conjecture, Kimura’s conjecture and

Schur’s finiteness conjecture

First of all we state Voevodsky’s nilpotence conjecture. Then, we recall two notions
of finiteness for monoidal categories in order to state Schur’s finiteness conjecture and
Kimura’s conjecture.

In [64] Voevodsky conjectured the following statement for the algebraic cycles:

Conjecture 5.2.1 (V). Let X be a smooth projective k-scheme; let Z
⇤
⌦nil

(X)F and
Z

⇤
⌦num(X)F be the ring of algebraic cycles modulo the relation in Example 5.1.2 and in

Example 5.1.3, respectively. Then Z
⇤
⌦nil

(X)F coincides with Z
⇤
⌦num(X)F .

Remark 5.3

Conjecture V was proven for curves, surfaces, abelian threefolds, uniruled threefolds,
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5. Noncommutative motives

quadric fibrations, intersection of quadrics, linear sections of Grassmannians, linear sec-
tions of determinantal varieties, and some homological projective duals (see [2], [26], [46],
[64], [65], [5]).

Let C be a F -linear pseudoabelian rigid symmetric monoidal category (cf. Appendix
§ A.3.2).

Definition 5.2.1 (Kimura-finiteness). We say that an object x 2 C is Kimura-finite if x
decomposes as x = x

+
� x

� with ^nx+ = S
n
x
� = 0 for some n >> 0. We say that C is

a Kimura category if EndC (1) = F and every object x 2 C is Kimura-finite.

Conjecture 5.2.2 (K). Let X be a smooth projective k-scheme; then the image h(X)F 2

Chow(k)
F

of the functor h on X is Kimura-finite.

Remark 5.4

Conjecture K holds for abelian varieties.

Let � be a partition of a positive integer n. A Schur functor S� : C ! C sends an
object x 2 C to a direct component of x⌦n determined by the tuple �. For details about
the construction we refer to [14]. In particular, if � = (1, ..., 1) and � = (n), the Schur
functor S� is respectively equal to ^n and S

n.

Definition 5.2.2 (Schur-finite). We say that an object x 2 C is Schur finite if it is
annihilated by some Schur functor. Moreover, we say that C is a Schur category if End(1) =
F and all objects x 2 C decompose as direct sum of Schur finite objects.

Remark 5.5

We recall that every Kimura-finite object is Schur-finite, but in general the converse is
false. For example, in the category of super-representations of GL(p|q), there exist some
Schur-finite objects which are not Kimura-finite (see [31]).

Conjecture 5.2.3 (S). Let X be a smooth projective k-scheme; then the image h(X)F 2

Chow(k)
F

of the functor h on X is Schur finite.

The next result explains the relation between the conjectures above.

Theorem 5.6. If V(X) holds for every X 2 SmProj(k) then:

V) K) S.

Proof. [2, Theorem 12.1.6.6.].

5.3 Pure motives vs noncommutative motives

The aim of this section is to give a comparison between the theory of pure motives and
the theory of noncommutative motives. This section is divided into three parts. In the first
we recall some basic properties about the symmetric monoidal category of dg categories.
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Then, in the second part, we give the notion of noncommutative Chow motives and we
state Voevodsky’s nilpotence conjecture in the noncommutative case. Finally, in the last
part, we relate such a conjecture with the classical Voevodsky’s nilpotence conjecture for
pure motives.

Noncommutative Chow motives

We briefly recall the construction of noncommutative Chow motives; for a complete
explanation see [59].

Before continuing we remark that, given a dg-category A , we can associate to A a
derived category D(A ) by taking the localisation of the category of right dg-modules over
quasi-isomorphisms [30, §3]. Here the category of right dg-modules is the category of
dg-functors from A

op to C(k) (cf. Chapter 1 §1.3) and the quasi-isomorphisms are the
natural transformations inducing an isomorphism in homology.

Let A, B be two dg-categories, the tensor product A ⌦ B is the dg-category whose
objects are given by obj(A)⇥ obj(B) and whose morphism spaces is given by

(A⌦ B)((x, y), (x0
, y

0)) = A(x, y)⌦ B(x0
, y

0)

with the natural compositions and units.
We note that the tensor product of dg-categories gives rise to a symmetric monoidal struc-
ture -⌦ - on dgcat. The ⌦-unit is the dg category with one object k. Moreover the tensor
product gives rise to a symmetric monoidal structure on Hmo(k), where Hmo(k) denotes
the localisation of dgcat with respect to the class of Morita equivalences (cf. Chapter 3).
We fix two dg categories A and B. We denote by rep(A ,B) the full triangulated sub-
category of D(A op

⌦
L

B) consisting of the bimodules M : (A op
⌦

L
B)op ! C

dg(k) such
that M(-, x) : B

op
! C

dg(k) is compact in D(B), for every x in A .
We recall that A ⌦

L
B is the tensor product Acof ⌦B, where Acof denotes the cofibrant

replacement of A (cf. Example 4.4.3). We have the following bijection

Iso[rep(A ,B)]! HomHmo(A ,B)(†)

M 7! -⌦L
A M,

where Iso denotes the set of isomorphism classes of objects in rep(A ,B). Moreover, using
the bijection (†), we have an induced composition law in Hmo(k).
Now we define the category Hmo(k)0 to be the category with the same objects as Hmo(k)
and whose morphisms are given by

HomHmo(k)0(A ,B) := K0(rep(A ,B)).

Here K0(rep(A ,B)) denotes the Grothendieck group of the triangulated subcategory
rep(A ,B). As before, the composition law in Hmo(k)0 is the one induced by the bi-
jection (†).
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We recall that the derived tensor product on Hmo(k) gives rise to a symmetric monoidal
structure on Hmo(k)0.
We have a sequence of symmetric monoidal functors:

U : dgcat! Hmo(k)! Hmo(k)0.

Finally, we denote by Hmo(k)sp0 the full subcategory of the smooth and proper dg categories
in Hmo(k). We recall that a dg category A is smooth if the associated bimodule

IdA : A⌦L
A

op
! Cdg(k)

(x, y) 7! A(y, x).

is compact in D(Aop
⌦

L
A). Moreover, A is proper if, for every couple of objects x, y 2 A ,

the complex of k-modules A (x, y) is compact in the derived category D(k). It is well
known, that if A is a smooth and proper dg category, then we have an equivalence of
triangulated categories

rep(A ,B) ' Dc(A op
⌦

L
B),(‡)

where Dc(A op
⌦

L
B) denotes the subcategory of compact objects in D(A op

⌦
L

B).
Using the equivalence (‡), we can describe the morphisms of Hmo(k)sp0 as

HomHmo(k)sp0
(A ,B) ' K0(Dc(A op

⌦
L

B)) ' K0(A
op
⌦

L
B).

Now we are ready to define the rigid symmetric monoidal category of noncommutative
Chow motives.

Definition 5.3.1. We define the category of noncommutative Chow motives to be the
pseudoabelian envelope1 of HomHmo(k)sp0

. We denote such a category by NChow(k).

Remark 5.7

We note that the functor U extends naturally to NChow(k).

Remark 5.8

Let X be a smooth projective k-variety. We know that the category of perfect complexes
perf(X) has a unique dg enhancement perfdg(X) (cf. [41] or [10]), which is smooth and
proper as a dg category.
Moreover, suppose that the derived category of perfect complexes on X has a semiorthog-
onal decomposition of the form perf(X) = hA1, ...,Ani (cf. [34]). Then, by [57], we have
that every dg category A

dg
i

is smooth and proper (where A
dg
i

denotes the dg enhancement
of the subcategory Ai induced from perfdg(X)) and U(perfdg(X)) = A

dg
1 � ...�A

dg
l

.

Remark 5.9

Given a commutative ring F , we can define the category NChow(k)
F

taking the F -
linearization K0(A op

⌦
L

B)F .
1further details in Appendix §A.3
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Voevodsky conjecture in the noncommutative case

Let A be a smooth and proper dg category. We denote by K0(A ) the Grothendieck
group K0(Dc(A )). In analogy to algebraic cycles we can define some equivalence relations
on K0(A ). We give two examples.

Example 5.3.1 (⌦-nilpotence equivalence relation). We say that an element [M ] in
K0(A ) is ⌦-nilpotent if there exists a positive integer n such that [M ⇥ n] = 0 in the
Grothendieck group K0(A ⌦n). Given [M ] and [N ] in K0(A ) we say that [M ] and [N ] are
⌦-nilpotent equivalent (shortly [M ]⇠⌦nil [N ]) if [M ]-[N ] is ⌦-nilpotent.

We have a bilinear form �(�,�) on K0(A ) defined as

(M,N)!
X

i

(�1)idim HomDc(A )(M,N [i]).

The left and right kernels of �(�,�) are the same [59, Prop. 4.24.].

Example 5.3.2 (Numerical equivalence relation). We say that an element [M ] in K0(A )

is numerically trivial if �([M ], [N ]) = 0 for all [N ] 2 K0(A ). We say that [M ] and [N ] are
numerically trivial equivalent (shortly [M ]⇠⌦num [N ]) if [M ]-[N ] is numerically trivial.

Remark 5.10

If char(F ) = 0, the equivalence relations defined above give rise to well defined equivalence
relations on K0(A )F .

In [5] Bernardara, Marcolli and Tabuada conjectured the following statement:

Conjecture 5.3.1 (Vnc). Let A be a smooth proper dg category. Then K0(A )/⇠⌦nil is
equal to K0(A )/⇠⌦num .

Pure motives vs noncommutative motives

Given a smooth projective k-scheme X, we know that the category of perfect com-
plexes perf(X) has a unique dg enhancement perfdg(X) (cf. [41] or [10]), which is smooth
and proper as a dg category. Then, by [5], we have that every dg category A

dg
i

is smooth
and proper (where A

dg
i

denotes the dg enhancement of the subcategory Ai induced from
perfdg(X)).

We recall that, given a smooth projective k-scheme, we have a relation between the cat-
egory of Chow motives and the category of noncommutative Chow motives. In particular,
we have the following commutative diagram

SmProj(k)op

h

✏✏

perfdg
// dgcat(k)

U

✏✏

Chow(k)
�·⌘

// NChow(k)
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5. Noncommutative motives

where � is fully faithful and ⌘ is the functor from Chow(k) to the orbit category Chow(k)/�⌦1(1)

(cf. Appendix § A 3.3). Moreover, we have the following result which relates the Voevod-
sky’s nilpotence conjecture and noncommutative motives:

Theorem (BMT). Let X be a smooth projective k-scheme. The conjecture V(X) holds if
and only if the conjecture Vnc(perfdg(X)) holds.
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Chapter 6

Voevodsky’s conjecture for cubic

fourfolds and Gushel-Mukai fourfolds

In this chapter we prove Voevodsky’s conjecture for cubic fourfolds and ordinary generic
Gushel-Mukai fourfolds. We point out that to prove this conjecture, we use the decom-
position in rational Chow motives of a flat morphism computed by Vial in [63] that we
recalled in §5.1.3. Then, making use of noncommutative motives, we prove the noncom-
mutative version of Voevodsky’s nilpotence conjecture for the Kuznetsov category of a
cubic fourfold and an ordinary generic Gushel-Mukai fourfold. Indeed, we recall from [33]
that the derived category of a cubic fourfold X has a semiorthogonal decomposition of
the form D

b(X) = hAX ,O,O(H),O(2H)i, where AX is a noncommutative K3 surface
in the sense of Kontsevich. As second result we give a proof of conjecture Vnc for A

dg
X

,
where A

dg
X

denoted the dg enhancement of the category AX induced from perfdg(X). As
an application of this result we prove Voevodsky’s conjecture for generic Gushel-Mukai
fourfolds containing a ⌧ -plane. We believe that this result provides a new tool for the
proof of Voevodsky’s conjecture of a smooth projective k-scheme whose derived category
of perfect complexes contains the noncommutative K3 surface AX .

6.1 Cubic fourfolds and Gushel-Mukai varieties

In this section we briefly recall some facts about cubic fourfolds and Gushel-Mukai
varieties. We are interested in finding a quadric fibration from the blow-up of a cubic
fourfold (resp. a GM fourfold) over a line (resp. a surface) to the projective space P3.
Throughout this chapter we will assume that all cubic fourfolds and Gushel-Mukai varieties
are smooth. From now on the field k will be the field of complex numbers C.

Cubic fourfolds

Definition 6.1.1 (Cubic fourfold). A cubic fourfold is a smooth complex hypersurface of
degree 3 in P5.
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6. Voevodsky’s conjecture for cubic fourfolds and Gushel-Mukai

fourfolds

We observe that a cubic fourfold X contains (at least) a line l. Indeed, let F (X) be
the Fano variety of lines associated to X, which parametrizes the lines of P5 contained in
X. By [17], [1], [4], we know that F (X) is a smooth and connected projective variety of
dimension 4. In particular, X contains certainly (at least) a line. We denote by l a line in
X and by Bll(X) the blow-up of X in l. The aim of this paragraph is to recall the well
known fact that the projection from the line l induces a flat and smooth quadric fibration
from Bll(X).

Lemma 6.1. Let X be a smooth cubic fourfold and let l be a line in X. Then the linear
projection from the line l induces a smooth flat quadric fibration from the blow-up Bll(X)

to P3.

Proof. We can take a six-dimensional vector space V6 such that X ⇢ P(V6) ⇠= P5. Moreover
we can denote by V2 a two-dimensional subvector space of V6 such that l = P(V2) ⇠= P1 and
we set V4 := V6/V2. Let us denote by Bll(P(V6)) the blow-up of P(V6) over the line l. We
have that the projection from the line l defines a regular map ⇡ : Bll(P(V6))! P(V4) ⇠= P3.
Let ⇡l : Bll(X)! X be the blow-up of X along l. So the restriction of the projection ⇡ to
Bll(X) induces a smooth flat conic fibration f : Bll(X)! P(V4). To summarise, we have
the following commutative diagram

Bll(X)

⇡l

✏✏

� �
//

f
&&

Bll(P(V6))

⇡

✏✏

X P(V4).

Gushel-Mukai varieties

Let V5 be a k-vector space of dimension 5; considering the Plücker embedding, we have
that Cone(Gr(2, V5)) ⇢ P(k�^2V5). We denote by W a linear subspace of dimension n+5

of ^2V5 � k (with 2  n  6).

Definition 6.1.2 (Gushel-Mukai n-fold). We define a Gushel-Mukai n-fold X to be a
smooth and transverse intersection of the form

X = Cone(Gr(2, V5)) \Q,

where Q is a quadric hypersurface in P(W ).
We say that X is:

• Ordinary if X is isomorphic to a linear section of Gr(2, V5) ⇢ P9,

• Special if X is isomorphic to a double cover of a linear section of Gr(2, V5) branched
along a quadric section.

From now on, we will write GM instead of Gushel-Mukai.
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6.1. Cubic fourfolds and Gushel-Mukai varieties

Let X be a GM n-fold. We note that, if we suppose that X is smooth, then X does
not contain the vertex of the cone over Gr(2, V5). Thus, we have a regular map defined by
the projection from the vertex:

�X : X ! Gr(2,V5).

Definition 6.1.3 (Gushel bundle). Let U be the tautological bundle of rank 2 over
Gr(2, V5). We define the Gushel bundle to be the pullback UX := �

⇤

X
U .

Denoting by ⇡ : PX(UX)! X the projectivization of the bundle UX , we can consider
the map

⇢ : PX(UX)! P(V5)

induced by the embedding UX ,! V5 ⌦OX . Moreover, by [13, Proposition 4.5.], we have
that ⇢ is a quadric fibration.
Now, we suppose that X is an ordinary GM fourfold. By [13], Remark 3.15 and Remark
B.4, the fibers of ⇢ are all conics in P2 except for the fiber over a point v0 in P(V5), which
is a 2-dimensional quadric in P3. We fix a four-dimensional subvector space V4 of V5 such
that the point v0 is not contained in P(V4). We set

X̃ := PX(UX)⇥P(V5) P(V4)

and we denote by ⇢̃ the restriction of ⇢ to X̃. Thus, we have the following commutative
diagram

(6.1) X̃

�

}}

⇢̃

✏✏

// PX(UX)

⇢

✏✏

⇡

  

X P(V4)oo // P(V5)ll

So, the restriction ⇢̃ is a flat conic fibration over P(V4) ⇠= P3.

The rest of the section is devoted to prove that, when X is generic, ⇢̃ is smooth (Lemma
6.2) and X̃ is the blow-up of X over a surface E (Proposition 6.3).

We begin defining E. We note that for every x in X, the fiber of � over x is equal to
P(UX,x \ V4). In particular, we have that ��1(x) is a point (resp. a line) if the dimension
of UX,x\V4 is equal to 1 (resp. if UX,x ⇢ V4). It follows that the locus of non trivial fibers
of � is the intersection

(6.2) E := Gr(2, V4) \X = Gr(2, V4) \ P(W ) \Q ⇢ P(
2̂

V5) ⇠= P9
.

Since the Grassmannian Gr(2, V4) has degree 2, we have that the degree of E is at most
4. Moreover, the expected dimension of E is 2. On the other hand, by Lefschetz theorem
the fourfold X cannot contain a divisor with degree less than 10, because its class has to
be cohomologous to the class of a hyperplane in X. Thus, we conclude that dim(E)  2.
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In the next lemma, we show that E is smooth under generality assumptions on P(W ) and
Q; in this case, E is a del Pezzo surface of degree 4.

Lemma 6.2. If W is a generic vector space of dimension 9 in
V2

V5 and Q is a generic
quadric hypersurface in the linear system |OP(W )(2)|, then E defined in (6.2) is a smooth
and irreducible surface.

Proof. We consider the intersection Y := P(W )\Gr(2, V4) ⇢ P(
V2

V5) ⇠= P9. By Bertini’s
theorem on hyperplane sections (see [21]), we have that Y is smooth and irreducible,
because P(W ) is a generic hyperplane in P9.
Let i : Y ,! P8 be the embedding of Y in P(W ) ⇠= P8. We note that if Y is contained
in the quadric Q, then Y = E would be a smooth divisor in X with degree less than
10, in contradiction with the previous observation. Hence, we have that the quadric Q
does not contain Y . Again by Bertini’s Theorem, the intersection Y \ Q = E is smooth
and irreducible. Indeed, we can consider the embedding of P8 in P(H0(P8

,O(2))) ⇠= PN

defined by O(2). The quadric hypersurfaces in P8 correspond to hyperplanes in PN via
this embedding. Thus, by Bertini’s Theorem for hyperplane sections, we conclude that
the intersection of the image of Y with the generic hyperplane in PN , corresponding to
the generic quadric Q, is smooth and irreducible. So, we conclude that E is smooth and
irreducible of dimension 2.

As a consequence, we obtain the smoothness of the restriction to a hyperplane of the
conic fibration ⇢.

Proposition 6.3. Let X be an ordinary generic GM fourfold. Then X̃ is the blow-up of X
in E (so it is smooth) and the map ⇢̃ : X̃ ! P(V4) defined in (6.1) is a flat conic fibration.

Proof. We observe that the quadric Q which defines X is generic in the linear system
|OP(W )(2)|, because X is a generic quadric section of the intersection P(W ) \ Gr(2, V5).
On the other hand, we recall that, by [13, Lemma 2.7], there exists a functor between
the groupoid of polarized GM varieties to the groupoid of GM data, which is an equiva-
lence by [13, Theorem 2.9.]. In particular, a generic X corresponds to a generic GM data
(W,V6, V5, L, µ,q, "). Thus, the vector spaces and the linear maps which define this GM
data are generic and, then, W is a generic subvector space in

V2
V5. By Lemma 6.2, we

have that the locus E defined by (6.2) is smooth and irreducible. We note that ��1(E) is by
definition the projective bundle PE(UX)! E. On the other hand, the exceptional divisor
of the blow-up of X in E is isomorphic to the projectivized conormal bundle PE(N ⇤

E|X
).

Since E can be represented as the zero locus of a regular section of U
⇤

X
, the conormal

bundle of E in X is isomorphic to UX . So, we deduce that X̃ is the blow-up of X in E. It
follows that X̃ is smooth and ⇢̃ : X̃ ! P(V4) is a flat conic fibration.
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6.2 Voevodsky’s nilpotence conjecture for cubic fourfolds and

generic GM fourfolds

This part is devoted to prove Voevodsky’s nilpotence conjecture for cubic fourfolds and
ordinary generic GM fourfolds.

Theorem 6.4. Let X be a cubic fourfold or an ordinary generic GM fourfold. Then the
conjecture V(X) holds.

Proof. Let X be a cubic fourfold and we consider the blow-up of X along a line l. By
Subsection 5.1 and Lemma 6.1, the Chow motive of the blow-up decomposes as

h(Bll(X)) '
1M

k=0

h(P3)(k)� (Z, r, 1) '
1M

k=0

(
3M

i=0

1(�i))(k)� (Z, r, 1),

where r 2 End(h(Z)) and dim Z = dim P3
� 1 = 2. It means that conjecture V holds for

Bll(X). By Subsection 5.1 we conclude that conjecture V holds for X.
If X is an ordinary generic GM fourfold, the same strategy applied to the conic fibration
of Proposition 6.3 gives the required statement.

6.3 Noncommutative Voevodsky’s nilpotence conjecture for the

Kuznetsov category

In this section we recall some facts about the decomposition of the derived category
of a cubic fourfold X. In particular, we remark some properties about the Kuznetsov
category AX associated to X. Then we prove Voevodsky’s nilpotence conjecture for the
Kuznetsov category of a cubic fourfold.

Kuznetsov category

Let X be a cubic fourfold. The derived category of perfect complexes perf(X) admits
a semiorthogonal decomposition given by

perf(X) = hAX ,O,O(H),O(2H)i,(?)

where H is a hyperplane section and AX is defined as:

AX = hO,O(H),O(2H)i?

= {E 2 perf(X) s.t. RHomperf(X)(OX(i), E) = 0 for i = 0, 1, 2}

We call AX the Kuznetsov category.
We recall that the admissible subcategory AX is a Calabi-Yau category of dimension 2;
indeed, the Serre functor is equal to the shift by 2, i.e. for every pair of objects F,E we
have

RHomAX
(E,F )⇤ ' RHomAX

(F,E)[2].
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6. Voevodsky’s conjecture for cubic fourfolds and Gushel-Mukai

fourfolds

Moreover, AX has the same sized Hochschild (co)homology of the derived category of a
K3 surface. Thus, the Kuznetsov category is a noncommutative K3 surface in the sense of
Kontsevich (see [33], [36, Corollary 4.3.] and [34, Proposition 4.1.]).

Remark 6.5

We recall that if X is a cubic fourfold containing a plane, we can prove V-conjecture via
noncommutative motives. In fact, if X contains a plane, we have that AX is equivalent to
D

b(S,B), where S is a K3 surface, B is a sheaf of Azumaya algebras on S and D
b(S,B)

is the derived category of coherent B-modules on S (see [33, Theorem 4.3.]). Then by [60]
we have the following decomposition in NChow(k):

U(perfdg(X)) ' U(perfdg(S))� U(C)� U(C)� U(C).

Since V(S) holds, we conclude that also V (X) holds, as we claimed.

Similarly, let X be a GM n-fold; in [35, Proposition 4.2.], it is proved that its derived
category of perfect complexes has a semiorthogonal decomposition of the form

(⇤) perf(X) = hAX ,OX ,U
_

X
,OX(H),U _

X
(H), ...,OX((n� 3)H),U _

X
((n� 3)H)i,

where U
_

X
is the dual of the Gushel bundle previously defined and AX is defined as:

AX = hOX ,U
_

X
,OX(H),U _

X
(H), ...,OX((n� 3)H),U _

X
((n� 3)H)i?.

Again we call AX the Kuznetsov category of X.
Assume that X is a GM fourfold. Then, the Serre functor on AX is the shift by two
and the Hochschild cohomology of AX is isomorphic to that of a K3 surface. As before
the component AX of a GM fourfold is a noncommutative K3 surface in the sense of
Kontsevich (see [35, Proposition 5.18]).

Noncommutative Voevodsky’s conjecture for the Kuznetsov category

Theorem 6.6. Let X be a cubic fourfold or an ordinary generic GM fourfold. Then
Vnc(U(Adg

X
)) holds, where A

dg
X

is the dg enhancement of AX induced from perfdg(X).

Proof. First of all, we suppose that X is a cubic fourfold. Using the decomposition ?, we
have that the dg enhancement of the triangulated category perf(X) admits the following
decomposition in NChow(k):

U(perfdg(X)) = U(Adg
X
)� U(C)� U(C)� U(C).

Hence, the result is a straightforward consequence of Theorem 6.4. The proof in the case
of an ordinary generic GM fourfold X is analogous, applying the decomposition ⇤ and
Theorem 6.4.

Remark 6.7

We point out that Theorem 6.6 holds for every cubic fourfold X even if it does not contain
a plane.
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6.4 Voevodsky’s nilpotence conjecture for GM fourfolds

containing surfaces

In this section we will prove Voevodsky’s nilpotence conjecture for generic GM fourfolds
containing a ⌧ -plane and for ordinary GM fourfolds containing a quintic del Pezzo surface.
The proof of the conjecture in the first case provide an application of Theorem 6.6.
Let X be a GM fourfold containing a ⌧ -plane P , i.e. a plane P of the form Gr(2, V3) for
some 3-dimensional subvector space V3 of V5. In [35, Lemma 7.8], they proved that there
exists a cubic fourfold X

0 containing a smooth cubic surface scroll T such that the blow-up
of X in P is identified to the blow-up of X 0 in T . More precisely, if p : X̃ ! X is the
blow-up of X along P and q is the regular map induced by the linear projection from P ,
then the diagram

(6.3) X̃

p

��

q

  

X X
0

commutes and q is identified with the blow-up of X
0 along T . Moreover, they showed

that, if the GM fourfold X does not contain a plane of the form P(V1 ^ V4) for some
subvectorspaces satisfying V1 ⇢ V3 ⇢ V4 ⇢ V5, then the cubic fourfold X

0 is smooth. We
point out that this construction had already been described in [12].
They also observed that a generic GM fourfold containing a ⌧ -plane does not contain a
plane of the form P(V1 ^ V4) as above; hence, the associated cubic fourfold X

0 obtained
with this geometric construction is smooth. In this case, they proved that there exists an
equivalence of Fourier-Mukai type

(6.4) � : AX ' AX0

between the Kuznetsov category of X and the Kuznetsov category of X 0 (see [35, Theorem
1.3]).

Using this construction and Theorem 6.6, we can prove the Voevodsky’s nilpotence
conjecture for this class of GM fourfolds.

Theorem 6.8. Let X be a generic GM fourfold containing a plane P of type Gr(2, 3).
Then Vnc(perfdg(X)) holds.

Proof. The derived category of perfect complexes of X has the following decomposition:

perf(X) = hAX ,OX ,U
_

X
,OX(H),U _

X
(H)i.

Since the functor � defined in (6.4) is of Fourier-Mukai type, we know that � has a dg lift,
thanks to the works of [42], [54] and [61]. Then the proof is a consequence of Theorem
6.6.

Remark 6.9

Alternatively, we can prove Theorem 4.19 by observing that the isomorphism of triangu-
lated categories AX ' AX0 is induced by diagram (6.3). Then, conjecture Vnc(perfdg(X))

follows from subsection 5.1 and Theorem 6.4.
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In a similar way, we can prove conjecture Vnc for the category of perfect complexes of
ordinary GM fourfolds containing a quintic del Pezzo surface.

Theorem 6.10. Let X be an ordinary GM fourfold containing a quintic del Pezzo surface.
Then Vnc(perfdg(X)) holds.

Proof. By [35], Theorem 1.2 we have that there exist a K3 surface Y and an equivalence
 : AX ' D

b(Y ) of Fourier-Mukai type. Since  has a dg lift and conjecture V holds for
Y , the proof follows from Theorem 5.3.

Corollary 6.11. Let X be a generic GM fourfold containing a plane P of type Gr(2, 3)
or an ordinary GM fourfold containing a quintic del Pezzo surface. Then V(X) holds.

Proof. The proof is a consequence of Theorem 5.3.
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Appendix A

Tools of category theory

This appendix is devoted to recall some notions we implicitly assumed well known by
the reader.

A.1 Linear algebra

Let K be a commutative ring.

Definition A.1.1 (K-algebra). We define a K-algebra to be a K-module endowed with:
a K-liner associative multiplication A ⌦K A ! A, and a unit 1A such that, for all x 2 A,
1⌦K x = x⌦k 1 = x.

Definition A.1.2 (K-linear category). We define a K-linear category A to be a category
such that, for every x, y 2 A, the set of morphisms A(x, y) is a K-module and, for every
x, y an z 2 A, there exists a K-linear associative map:

A(y, z)⌦K A(x, y)! A(x, z)

that is the usual composition in category theory.

Example A.1.1. An additive category is a Z-linear category.

Remark A.1

We recall that the tensor product of two graded maps f and g, of grade p and q respectively,
between graded K-modules, is defined using the Koszul sign rule i.e.

(f ⌦ g)(x⌦ y) = (�1)pqf(x)⌦ g(y).

Definition A.1.3 (Tensor product of modules). Let f and g be two dg-modules we define
the tensor product f ⌦ g to be the graded K-module (f ⌦ g)n =

L
p+q=n

f
p
⌦K g

q, 8n 2 Z,
with differential dn = dV ⌦ 1 + 1⌦ dW

1.

1
d⌦K 1 is a tensor product of graded maps (Koszul sign rule)
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A.2 Model categories

Definition A.2.1 (RLP). Let C be a category. We say that a morphism f : X ! Y has
the right lifting property, respect g : A! B (RLP) if, for every commutative diagram

A //

g

✏✏

X

f

✏✏

B //

h

>>

Y

there exists a unique lifting h that makes the diagram commutative.

Dually we say that g has the left lifting property respect f (LLP).

Notations.
� �
// denote a cofibration, // // denote a fibration, ⇠

// denote a weak
equivalence, �

� ⇠
// denote a weak cofibration and ⇠

// // denote a weak fibration.

Definition A.2.2 (Model category). A model category M is a category with three classes
of morphisms C , F , W , called respectively cofibrations, fibrations and weak equivalences.
We call weak fibrations the maps in W \F and weak cofibrations the maps in W \ C .
The category M have to satisfy the following axioms:

(M1) M is complete and cocomplete.

(M2) If g is a fibration (cofibration or weak equivalence) and f is retracts of g i.e. if we
have the following commutative diagram:

A

Id

''

//

f

✏✏

B

g

✏✏

// A

f

✏✏

A
0

Id

66

// B
0

// A
0

then f is in the same class of g.

(M3) The classes, defined above, are closed by composition of maps.

(M4) Every couple, cofibration and weak fibration (or weak cofibration and fibration), has
RLP, i.e. there exist the lifting map l for the commutative diagram below:

X //� _

✏✏

Z

⇠

✏✏

✏✏

X //� _

⇠

✏✏

Z

✏✏

✏✏

Y //

l

>>

W Y //

l

>>

W

(M5) Every map is composition of a cofibration and a weak fibrations and weak cofibration
and fibration i.e.

X //

o✏

  

Y X //

o✏

⇠

  

Y

Z

⇠

??

??

Z

??

??
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Definition A.2.3 (Model structure). We says that a, complete and cocomplete, category
C has a model structure if there exist three distinguished classes of morphisms (fibrations,
cofibrations and weak equivalences) satisfying the axioms above.

Remark A.2

If C is a model category then C
op is a model category, cf. [23, Rem. 1.1.7].

From now on, let M be a model category and X an object of M .

Definition A.2.4 (Cofibrant object). We say X is cofibrant if the morphism 0! X is a
cofibration, where 0 denoted the initial object in M .

Definition A.2.5 (Cofibrant resolution). We say that Xcof is a cofibration resolution of
X, if Xcof is a cofibrant object weak equivalent to X, in formula:

0 �
�

// Xcof
⇠
// X

Definition A.2.6 (Fibrant object). We say that X is fibrant if the morphism X ! 1 is
a fibration, where 1 denoted the final object in M .

Definition A.2.7 (Fibrant resolution). We say that Xfib is a Fibrant resolution of X, if
Xfib is a fibrant object weak equivalent to X, in formula:

X
⇠
// Xfib

// // 1

By axiom (M5) we have that the cofibrant and fibrant resolutions there always exist.

Definition A.2.8 (Right proper model category). We say that M is right proper, if the
pullback of a weak equivalence along a fibration is a weak equivalence.

Dually we have:

Definition A.2.9 (Left proper model category). M is left proper, if the pushout of a
weak equivalence along a cofibration, is a weak equivalence.

We have the following [22, Prop. 13.1.2]:

Proposition A.3. In every model category.

(1) Every pushout of a weak equivalence along a cofibration is a weak equivalence.

(2) Every pullback of a weak equivalence along a fibration is a weak equivalence.

Definition A.2.10 (Left Bousfield localization). Let M be a model structure over C , we
define a left Bousfield localization, to be a model structure M

0 over C , such that M
0 has

the same cofibrations of M , but weak equivalences of M are weak equivalences of M
0 (i.e.

WM ⇢ WM 0 .)

Example A.2.1. The category C(K)�0 of upper chain complexes over the abelian category
of K-modules has a canonical model structure, such that:
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A. Tools of category theory

W The weak equivalences are quasi-isomorphisms.

F The fibrations are degreewise epimorphisms.

C Cofibrations are degreewise monomorphisms with degreewise projective cokernel.

Homotopy category

Definition A.2.11 (Path object). We define the path object , of an object X in M , to be
the an object X

I fitting in the following commutative diagram:

X

s
  

(1X ,1X)
// X ⇥X

X
I

;;

where s is a weak equivalence.

Definition A.2.12 (Cylinder object). We define the cylinder object of an object X in M

to be the an object Cyl(X) fitting in the following commutative diagram:

X tX

%%

(1X ,1X)
// X

Cyl(X)I

s

;;

where s is a weak equivalence.

Definition A.2.13 (Homotopy category). We define the homotopy category of M to be
the localization of M , on the weak equivalences W , we denoted such a category by Ho(M ).

Definition A.2.14 (Homotopic morphisms). Two morphisms f, g 2 HomM (X,Y ) are
homotopic if there exist h, i, j, C(X) such that f and g are fit in commutative diagram

X

i

✏✏

f

""

X C(X)
⇠

p

oooo

h
// Y

X

j

OO

g

<<

and the induced morphism i t j : X tX ! C(X) is cofibration.

The following theorem gives an explicit description of the homotopy category of a
model category.

Theorem A.4. Let M
cf
/ ⇠ be the category of cofibrant and fibrant objects in M , whose

morphisms are the homotopy class, then the induced functor:

M
cf

// Ho(M ).

is an equivalence of categories.
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A.2. Model categories

Quillen adjointness

Given two categories C and D .

Let F and G functors, such that F : C
//

D : Goo .

Theorem A.5. The followings are equivalent:

A1 There exists a natural isomorphism ↵X,Y s.t.

HomD(FX, Y ) ' HomC (X,GY ),

for every X 2 C and Y 2 D .

A2 There exist two natural isomorphisms

⇠Y : FGY ! Y,

⌘X : X ! GFX,

for every X 2 C and Y 2 D . We call ⇠� and ⌘�, respectively, unit and counit.

Proof.

(A1) A2) We define the counit ⇠Y as ↵�1
GY,Y

(1GY ) and the unit ⌘X as ↵X,FX(1FX).

(A1( A2) We define the natural isomorphism as ↵X,Y (f) := Gf⌘X and the inverse
as ↵�1

X,Y
(g) := ⇠Y Fg.

Definition A.2.15. We say that F and G are adjoint functors (in formula, F a G and
F ` G) if F and G satisfies A1.

Example A.2.2. Every equivalence F : C ! D , give rises to a couple of adjoint functors
F and F

�1, such that F a F
�1 and F ` F

�1.

Definition A.2.16. Let M and M
0 be two model categories, we say that a couple of

adjoint functors
F : M

//

M
0 : G,oo

is a Quillen adjunction if F preserves cofibrations and acyclic cofibrations or equivalently
if G preserves fibrations and acyclic fibrations.

Remark A.6

If F and G are Quillen adjoint functors, then they induce an adjunction

L(F ) : Ho(M ) // Ho(M 0) : R(G)oo

between homotopy categories.
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A. Tools of category theory

A.3 Monoidal categories

Definition A.3.1 (Monoidal category). We define a monoidal category M to be a cat-
egory equipped with a bifunctor ⌦ : M ⇥M ! M and an object I, satisfying the
followings:

• Given three objects X, Y , Z, there exists a natural isomorphism ↵X,Y,Z : (X⌦Y )⌦

Z ! X ⌦ (Y ⌦ Z).

• For every A 2 M , there exist two natural isomophisms �A : I ⌦ A ! A and
⇢A : A⌦ I ! A.

• The pentagon coherence condition:

(A⌦ (B ⌦ C))⌦D

↵A,B⌦C,D

))

((A⌦B)⌦ C)⌦D

↵A,B,C⌦1
55

↵A⌦B,C,D

✏✏

A⌦ ((B ⌦ C)⌦D)

1⌦↵B,C,D

✏✏

(A⌦B)⌦ (C ⌦D)
↵A,B,C⌦D

// A⌦ (B ⌦ (C ⌦D))

• Given a pair of objects, in M , A and B, the following diagram

(A⌦ I)⌦B
↵A,I,B

//

⇢A⌦1
&&

A⌦ (I ⌦B)

1⌦�B
xx

A⌦B

commutes.

Definition A.3.2 (Internal Hom). Given a monoidal category (M ,⌦), we define an
internal Hom in M to be a functor

[�,�] : M
op
⇥M !M

such that there exists a pair of adjoint functor

�⌦X a [X,�] : M !M

for every X of M

Definition A.3.3 (Closed monoidal category). We define a closed monoidal category to
be a monoidal category equipped with an internal Hom functor.

Definition A.3.4 (Symmetric monoidal category). We define a symmetric monoidal cat-
egory to be a monodical category equipped with a natural isomorphism sA,B : A ⌦ B !

B ⌦A , for every couple of objects A and B, such that the following diagrams commute:
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A.3. Monoidal categories

• Unit coherence
A⌦ I

sA,I
//

⇢A

""

A⌦ I

�A

||

A

• The associativity coherence

(A⌦B)⌦ C

↵A,B,C

✏✏

sAB⌦1
// (B ⌦A)⌦ C

↵B,A,C

✏✏

A⌦ (B ⌦ C)

sA,B⌦C

✏✏

B ⌦ (A⌦ C)

1⌦sA,C

✏✏

(B ⌦ C)⌦A
↵B,C,A

// B ⌦ (C ⌦A)

• The inverse law:
B ⌦A

sB,A

%%

A⌦B

sA,B

99

A⌦B

Example A.3.1. Let R be a ring, the category of chain complexes over A the abelian
category of R-modules, denoted by Ch•(A ) is a closed monoidal category whose internal,
for every X and Y , Hom is given by:

[X,Y ]
n
:=
Y

i2Z
HomA (Xi, Yi+n),

with differentials df := dY f � (�1)nfdX .

Rigid category

Let (M ,⌦, 1) be a symmetric monoidal category.

Definition A.3.5 (Dualizable object). We say that a is a dualizable object in M if there
exist an object a

V
2 M and two morphisms ev : a ⌦ a

V
! 1 and co : 1 ! a

V
⌦ a such

that:
a ' a⌦ 1

id⌦co
// a⌦ a

V
⌦ a

ev⌦id
// 1⌦ a ' a

a
V
' 1⌦ a

co⌦id
// a

V
⌦ a⌦ a

V
id⌦ev

// a
V
⌦ 1 ' a

V

are the identity, aV is called the dual of a.

We call a monoidal category rigid if every object is dualizable.
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A. Tools of category theory

Pseudoabelian category

We recall that an idempotent morphism p is an endomorphism such that p
2 = p.

Definition A.3.6 (Pseudoabelian category). A pseudoabelian category is a preadditive
category such that every idempotent morphism has a kernel.

Given a preadditive category A we can construct a pseudoabelian category associated
to A, denoted by kar(A), in the following way:

• the objects of kar(A) are pairs (X, p) where X is an object of A and p is an idempotent
of X,

• the morphisms
f 2 Homkar(A)((X, p), (Y, q))

are those morphisms f : X ! Y such that f = q � f = f � p in C.

The functor
kar : A! kar(A)

is given by taking X ! (X, idX).

Example A.3.2. The category of associative non-unital rings (also known as rngs pro-
nunced "rungs") together with multiplicative morphisms is pseudoabelian.

Orbit category

Let (M,⌦, 1) be a F -linear, additive rigid, monoidal symmetric category.

Definition A.3.7 (Orbit category). Let O be a ⌦-invertible object in M, we define the
orbit category associated to O, denoted by M/�⌦O, to be the category whose objects are
the objects of M and whose morphisms are given by

HomM/�⌦O
(a, b) :=

M

i2Z
HomM(a, b⌦O

⌦i).

The composition of morphisms is given, for every k, by

(g · f)k :=
X

i2Z
(gk�i ⌦O

⌦i)fi,

where f = {fi} : a! b and g = {gj} : b! c

We have a canonical functor

µ : M!M�⌦O

a 7! a

f 7! f := {fi}i2Z

where f0 = f and fi = 0. Moreover we have that the orbit category M�⌦O is F -linear
and additive, and the functor µ is symmetric monoidal.
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