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Chapter 1

Introduction

1.1 Aim of the thesis

The interest in Galerkin methods for the approximation of solutions to partial differential equa-
tions (PDEs in short) based on polytopal (i.e. polygonal, polyhedral, ...) meshes has recently
grown, due to the high-flexibility that such meshes allow. In fact, employing polytopal meshes au-
tomatically includes the possibility of using nonconvex elements, hanging nodes (enabling natural
handling of interface problems with nonmatching grids), easy construction of adaptive meshes and
efficient approximations of geometric data features.

We provide here an (incomplete and short) list of polytopal methods: hybrid high-order meth-
ods (HHO) [62], mimetic finite difference (MFD) [34,/50], hybrid discontinuous Galerkin meth-
ods (HDGM) [60], polygonal finite element method (PFEM) [69,86}99], polygonal discontinu-
ous Galerkin methods (DG-FEM) [53,/104], boundary element method-based FEM (BEM-based
FEM) [92], weak Galerkin methods (WGM) [103].

The virtual element method (VEM in short) is an alternative (and among the most successful)
approach enabling computation on polygonal (polyhedral in 3D) meshes [25/30]. It is based on
globally continuous discretization spaces that generally consist locally of Trefftz-like functions.
More precisely, the key idea of the VEM is that trial and test spaces consists of functions that
are solutions to local PDE problems in each element. Since these local problems do not admit
closed-form solutions, the bilinear form, and thereby the entries of the stiffness matrix, are not
computable in general. The computable version involves an approximate discrete bilinear form
consisting of two additive parts: the first one involves local projections on polynomial spaces, the
second one is a computable stabilizing bilinear form. We emphasize that the approximated discrete
bilinear form can be evaluated without explicit knowledge of local basis functions in the interior of
the polygonal element: an indirect description via the associated set of internal degrees of freedom
suffices.

Among the properties of the VEM, in addition to the employment of polytopal meshes, we
recall the possibility of handling approximation spaces of arbitrary C* global regularity [37,51] and
approximation spaces that satisfy exactly the divergence-free constraint [36].

Although the VEM is a very recent technology, the associated literature is widespread. We recall
only some of the topics covered by this new methodology: implementation issues [30], general linear
second-order elliptic problems [41/26}|28//56], Stokes problem [6,36}52,[55], Cahn-Hillard equation [7],
locking-free linear elasticity problem [29,/67], small deformation problems in structural mechanics
[24], plate bending problem [51], Steklov eigenvalue problem [87], residual based a-posteriori error
estimation [38,54.|88], serendipity VEM [27], application to discrete fracture network simulations
[39-41], contact problem [105], comparison with the smoothed finite element method [89], topology
optimization [66], geomechanics problem [5], Helmoltz problem [91].

In all the above mentioned works, the target was always the h version of the VEM, i.e. the
convergence of the method is obtained by keeping fixed the dimension of local spaces, while refining
the mesh.

Contrarily, the p version of a Galerkin method consists in achieving convergence by keeping fixed
the decomposition of the domain and increasing the dimension of local spaces. The combination
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of the h and p strategies goes by the name of hp version of the method under consideration.

The present thesis aims to combine the technology of the VEM with the p and the hp strategies.
More precisely, we transfer the classical analysis of [14},/20,/96] to the VEM framework. Particular
emphasis is giben to the approximation of two dimensional Poisson and Laplace problems, a priori
and a posteriori error analysis, multrigrid solvers, stabilization of the method and conditioning
of the stiffness matrix. Part of the topics covered by this thesis can be found in the following
works: [10,/311[32L58},79].

It is worth to point out that the only other polygonal methods (at least to the best of our
knowledge) where the p and hp versions have been investigated so far are DG-FEM, see e.g. [53,104],
and Hybrid High Order Methods, see e.g. [3].

Among the other reasons for which polygonal methods are useful within the hp framework, there
is the fact that they allow for extremely flexible geometries when refining towards the corners of
the domain and for an easy handling of refinement-derefinement strategies in adaptive algorithms.

The structure of the remainder of this chapter is the following. In Section [[.2] we fix some
notations involving various functional spaces and associated norms. The model problems are
introduced in Section [I.3] whereas, in Section [I.4] we discuss admissible polygonal decompositions
along with their properties. Finally, in Section [L.5] we present in detail the outline of the thesis.

We highlight that, since we are going to demand many assumptions on the polygonal decom-
position, we collect the all of them in a separate chapter at page

1.2 Some useful notations

In this section, we collect some useful notations regarding the functional spaces employed through-
out this thesis.

First of all, we underline that we mainly employ Lipschitz domains in R?; by Lipschitz domain
we heuristically define a domain whose boundary is locally the graph of a Lipschitz function; for a
more precise definition, we refer e.g. to |96, Appendix A].

Given Q a Lipschitz domain in R?, we denote by 0 the boundary of (2. We firstly define the
Lebesgue space of square integrable functions over () as:

L*(Q) = {u : Q0 — R | u is Lebesgue measurable, / lu|? < oo}. (1.1)
Q
We endow the space L?(§2) with the following inner product and norm:

(u,v)0,0 = / U, ull2 o = / |u|? Yu, v € L*(9Q). (1.2)
Q ' Q
Next, we introduce the Sobolev spaces. Let us denote, for a sufficiently regular function u, by:
D%u = 031 0,%u Va = (a1,az) € N? (1.3)

the a derivative of u, where here and henceforth by N we denote the set of natural numbers
including 0. Having set:

Co° () = {u € C*(R) | supp(u) is a compact subset of 2},

we define the concept of o weak derivative. Given u € L?({2), we say that v € L?(Q) is the
weak derivative of w if:

/qu:(q)\a\/w Vo e C(9), (1.4)
Q Q
where | - | denotes the ¢! norm:

o] = a1 + az Va = (a1,az) € N2, (1.5)

Given k € N, we now define the Sobolev space of integer order k over 2 as follows:

H*Q) = {ue L*(Q) | |lullko < oo}, (1.6)
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where the Sobolev inner product and norm of integer order k read:

(wore= Y  (D*w,D%)oq. |blia= Y  [D%[ia  Vu,veH" Q). (17)

aeN? |a|<k aeN? |a|<k

It is also possible to define Sobolev spaces with fractional order. This can be done e.g. using
interpolation theory [101,{102]. Equivalently, one can use an explicit definition. More precisely,
let k € N and 6 € (0,1). Then, H*T9(Q) is the subspace of H*(2) consisting of functions having
finite Aronszajn-Slobodeckij norm:

2 _ 2 | DYu(x) — Dau(}’)|2
T D S ) R s 12 (1.8)

|a|=k, N2

Analogously, it is possible to define Lebesgue and Sobolev spaces over 92 as well as on straight
edges.

The definition of Lebesgue spaces on the boundary, along with their inner products and norms,
is a trivial extension of and . For what instead concerns Sobolev spaces on a straight
edge s, one defines:

H*(s) = {u € L*(s) | lulr,s < o0}, (1.9)
where the Sobolev inner product and norm of integer order k read:
(U,U)k’s = Z(ajuv 3].1))075, |u|i,s = (’LL, u)k,s’ (110)
J<k

where &7u denotes the j-th tangential derivative of u on edge e.
We also explicitly write the definition of fractional space H?(99), 6 € (0,1), by imposing the
finiteness of the Aronszajn-Slobodeckij norm over 9€:

2 2 2 2 lu(€) — U(W)|2
[l on = lulon + oo = [ Wi+ [ [ HEH

We recall the following classical result, which goes by the name of Trace Theorem, see e.g. |96].

Theorem 1.2.1. Given ) Lipschitz domain, there exists a linear, continuous and surjective map,
which goes by the name of trace operator:

v: HYQ) — H?(09). (1.12)
Having defined the trace, we denote, for some g € H? (99):

Hy () = {u € H'(Q) [ (u) = g}, (1.13)

highlighting with a separate symbol the particular case of vanishing trace:
HY(Q) = {ue H(Q) | 7(u) = 0}. (1.14)

It is possible also to define negative order Sobolev spaces. We explicitly give the definition of two
of them. H~1(Q) is the dual of H(Q2) defined in (1.14) and is endowed with the following norm:

_1{u,®
[l o= sup P (1.15)
veri (@), o0 Pl
where _1(u,-); denotes the duality pairing of functional u on functions in H}(Q).
Instead, H~2 (092) is the dual space of H2 (9Q), which is defined through the finiteness of norm
(1.11)), and is endowed with the following norm:

<u,(p>%
[ull -1 00 = SUp g (1.16)
PEH? (99), $£0 3,09

1
2
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where _1(u,-)1 denotes the duality pairing of functional u on functions in H 2 (09).

In case we apply negative norms (1.15)) and (1.16]) to functions u in L?(Q) and L?(9) respec-
tively, Riesz theorem, see e.g. [49, Theorem 2.4.2] implies:

Jul-10= sup (& 2)og lul_iq=  sup (u, ®)o.00
T semy@.az0 [Phe T senton),azo 12l3.00

In addition to the standard Lebesgue and (possibly fractional) Sobolev spaces, we will also
employ more specific spaces, which arise naturally in the regularity analysis of elliptic PDEs on
polygonal domains, see Appendix [A] To this purpose, we henceforth assume that €2 is a polygonal
domain with Ng vertices and edges. Let:

(A and  {wid (1.17)
be the set of vertices and the width of the associated angles of Q, see Figure [[.I] We can now

A; Ay

N
Asg A@

D ]
A, As

Figure 1.1: Vertices of domain €.

define the so-called weighted Sobolev spaces. To this purpose, we consider, given a vector 3 =
(B1y.--,Bng) € Rf“, a weight-function:

Dg(x) = N2 min(1, [x — Ay])?. (1.18)

The weight function ®g has the property of tending to 0 whenever x tends to any of the vertices
of ©; the rate of convergence to 0 at vertex A; is described by the associated entry in the weight
vector 3.

Given now m,¢ € N with m > ¢ and B € [0,1)V2, we define the weighted Sobolev spaces

Hgl’é(Q), as the completion of C>°(Q) with respect to the norm:

m
k
HUIIHM = |ullf -1 + IU\Hme = lul-10+ D 1®per—e [D™ulllf o, (1.19)
(@)

k=t

where we have set, for k € N:

IDFul= Y |D*ul.

|a|=k, €N?
Here, we are using, with an abuse of notation, the following notation:
B+k—L=P1+k—4L,....0n, +k—1). (1.20)

For future usage, we also define, for m,¢ € N with m > £ and B € [0,1)V2, weighted Sobolev
norms and seminorms over straight edges s € &,:

m
k
IIUIIHm e = lullfg s + IUIHm e = Mullf e+ D 1 ®psk—e |0Fullf (1.21)
k=¢

where 0;u denotes the k-th tangential derivative of w.
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Example 1.2.1. Examples of functions in weighted-Sobolev spaces are provided in (A.6) and
ED.

At this point, we define the countably normed spaces, also known as Babuska spaces. Given
¢€Nand B € [0,1)Ne:
B4(Q) = {u € HIH(QVm > 02 0| [®p4pe| D¥ulllogn < cudi (k= O, Vk €N, k > e},

0%4(Q) = {u € Hy2(Q)Vm > 2| |Dru(x)| < ¢, di(k)!®5L,_ (x), Vk €N, k> 2, Vx € Q}
(1.22)

where ¢, and d,, are two positive constants greater than 1 and depending only on function wu.
It was proven in [17, Thorem 2.2], that the following inclusion holds true:

B3(Q) c 03(Q)  vBel[0,1)Ve. (1.23)
By:
B3(0Q) and  03(0), (1.24)

we denote the spaces of traces of functions in spaces B3(2) and O3(9Q) respectively.
We also define the set of polynomials and harmonic polynomials of given degree ¢ € N over a
domain D C R? with the following symbols:

Py(D), H,(D). (1.25)

1.3 The model problems

Throughout this thesis, we will focus our attention to the following model problem. Given Q C R?
polygonal domain, f: Q — R and g : 92 — R sufficiently regular, the aim is to find u such that:

{Auf in Q

. (1.26)
u=gq on 0f)

Most of the time, we will consider the Poisson problem endowed with homogeneous boundary
conditions, i.e. by imposing g = 0. The associated weak formulation reads:

find u € V' such that (1.27)
a(u,v) = (f,v)o0 VveV
where:
V = H} (), a(u,v) = (Vu, Vo). Yu,veV. (1.28)

A particular situation occurs in Chapter [d] where the target problem is instead a Laplace problem,
which is, problem (|1.26)) with f = 0 and g # 0. In this case, the weak formulation reads a bit
differently:

find w € V; such that (1.29)
a(u,v) =0 VYveV
where:
V= H,(Q). (1.30)

It is well-known, see e.g. [49], that the Lax-Milgram lemma implies the well-posedness of problem

(T:27), assuming f € L?(Q).

The well-posedness of problem , assuming g € H %(GK ), is known as well; nonetheless,
we briefly recall here its proof. Owing to Theorem and in particular to the surjectivity of the
trace operator, there exists a function G' € V;. Moreover, problem is equivalent to:

{ﬁnd u €V such that 7 (1.31)

a(,v) =a(-G,v) YveV
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where © has the form @ = u — G. Obviously, one has that u € V.

Using the fact that a(—G,v) is a linear continuous functional, we can apply again the Lax-
Milgram lemma for proving the well-posedness of problem . In order to conclude, it suffices
to pick u = u + G.

For the sake of completeness, the weak formulation of the full problem (with nonhomo-
geneous Dirichlet boundary conditions) reads, for f € L?(2) and g € H 3 (09):

(1.32)

find u € V; such that
a(u,v) = (f,v) YveV

The issue of the regularity of the weak solution to problem (|1.32) is addressed in Appendix

1.4 Polygonal decompositions

The VEM, as already emphasized, can be considered as a generalization of the FEM to polytopal
meshes. In this section, we introduce regularity assumptions on sequences of meshes {7}, o that
are instrumental for the theoretical analysis in the next chapters.

Preliminarily, we highlight two facts. The first one is that, in the following, we will need
“locally” stricter assumptions; we postpone the description of such assumptions when needed.
The second one is that it is possible to weaken the regularity assumptions that we present here, as
done in [35], but for the sake of simplicity we stick to simpler ones.

Let us firstly fix some notations. Let {7}, oy be a sequence of polygonal decompositions of €.
Let V,, (V2) and &, (E2) be the set of (boundary vertices) and edges of decomposition 7,, for all
n € N.

To each edge s € &,, we associate a tangential vector 7, = 7 and a normal versor ny = n
obtained by a counterclock-wise rotation of 5. When no confusion occurs, we denote 75 and ng
by 7 and n.

We demand the following very basic assumption on 7, for all n € N:

(G0) 7, is a conforming polygonal decomposition of €, i.e. each boundary edge s € £ is an edge
of only one element K € 7,,, whereas each internal edge s € &, \ £ is an edge of ezactly two
elements Ky and K5 of T,.

Note that, since in our construction it is possible to have angles with magnitude 180°, assumption
(GO) implies that hanging nodes are automatically included in the geometry of the decomposition,
see Figure We also fix the notation for the mesh size function of an edge, of an element and

S1

52

Figure 1.2: Two pentagons with two distinct adjacent edges s; and sg as interface.

of a mesh. Given 7, polygonal decomposition, K € T, and s € &, we define:

hs = length(s), hx = diam(K), hr, = h = max hg. (1.33)

KeT,

Moreover, given K € T,, we also define:

TK, the barycenter of polygon K. (1.34)

1.4.1 Regular and quasi-uniform polygonal meshes

We introduce next two additional assumptions under which we will say that {75}, is a regular
sequence of polygonal meshes. For all n € N:
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(G1) every K € T, is star-shaped (see [49, (4.2.2)]) with respect to a ball of radius greater than
or equal to pg h, where pg is a universal positive constant;

(G2) given any K € T,, for all edges s of K, it holds that hs > po hx, where py is a universal
positive constant; without loss of generality, we assume that pg is the same constant of
assumption (G1); besides, the number of edges in K is uniformly bounded independently of
the geometry of the domain.

In addition to (G1)-(G2), we occasionally demand an additional assumption, which allows us to
define the concept of quasi-uniform meshes. For all n € N:

(G3) for all K € T, h < chg, being ¢ a universal positive constant.

Under (G0)-(G1)-(G2)-(G3), we will discuss in Chapter [2| the h and p version of the VEM with
quasi-uniform meshes. In Figure [1.3] we depict four possible meshes originating sequences of
quasi-uniform meshes.

1 1
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
% 0.2 0.4 0.6 0.8 1 % 0.2 0.4 0.6 0.8 1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Figure 1.3: Up-left: unstructured triangular mesh. Up-right: square mesh. Down-left: Voronoi-Lloyd mesh.
Down-right: regular-hexagonal mesh.

1.4.2 Geometrically graded meshes

When employing the full hp strategy, one needs to use meshes that are geometrically refined
towards the vertices of domain 2. More specifically, such meshes will be employed in Chapters
and [4] Here, we want to present a formal construction of such meshes.

In order to define geometrically graded meshes, we assume the following (actually non manda-
tory) simplifying requirement:

(G4) 0 is a vertex of Q and is denoted by Aj, see (|1.17); moreover, the geometric refinements
are performed only towards vertex 0 and not towards the other vertices. We also denote by
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HEI’Z(Q, 0), 8 € R, the weighted Sobolev and Babuska spaces with a unique singular vertex,
the spaces obtained by the completion of C*°(£2) using the norm:

m
Hulliﬂ;,z(m = [lullf_10 + Iu\ig,z(m = [lull7-1.0+ D 1®s1r—elD*ul§ o (1.35)
k={
and:
B5(2,0) = {u € B3(Q) | B=(B,0,0,...,0)} (1.36)

respectively, where the weight function ®3 has been modified to:
®s(x) = min(1, |x — 0/7). (1.37)

We deem that under (G4) the presentation of the forthcoming theoretical results simpler.

Let assumptions (G0)-(G1)-(G2)-(G4) hold true and let o € (0,1) be a given parameter; o is
related to the “rate of refinement” towards vertex 0.

We assume that, for all n € N, 7, consists of n 4+ 1 “layers”, where the concept of “layer” is
defined as follows.

We set the 0-th layer L,, o = Lo as the set of all polygons K € 7,, abutting 0, which we recall
by (G4) is the unique “singular corner” of 2. The other layers are defined by induction as:

L,;=L;:= {K1 €T, | KiNKjy#0 for some Ky € Lj_y and K; ¢ Ug;éLi} Vi=1,...,n.
(1.38)
Next, we describe a procedure for building geometric (polygonal) graded meshes. Let Ty = {Q}.
The decomposition 7,41 is obtained by refining decomposition 7, only at the elements in the
finest layer Lg. In order to have a proper geometric graded sequence of meshes, we demand for
the following assumption.

(G5)

" if K€L
hie ~ 9 BAEL . (1.39)
—Cdist(K,0) ifKeLj j=1,...,n

A consequence of (G5) is that hxr ~ 0™, j being the layer to which K belongs. This, in addition
to guarantees that the distance between K € L;, j =1,...,n and 0 is proportional to ¢" 7.
Moreover, following 72}, equation (5.6)], it can be shown that the number of elements in each layer
is uniformly bounded with respect to the geometric parameters discussed so far.

The sequence of meshes that we build is then characterized by very small elements near the
singularity, while the size of the elements increases proportionally with the distance between the
elements themselves and 0.

Example 1.4.1. In Figure we present three polygonal meshes extrapolated from sequences of
meshes satisfying assumption (G0)-(G2)-(G4)-(G5). We observe that the the sequence of meshes
generated by the mesh in Figure (right) does not fulfill the star-shapedness assumption (G1),
whereas the other two meshes do.

jii =]

Figure 1.4: Decomposition T, n = 3, made of: squares (left), nonconvex hexagons and quadrilaterals (center),
nonstar-shaped/nonconvex decagons and nonstar-shaped/nonconvex hexagons (right).

In Figure we depict instead the first three elements associated with the mesh depicted in
Figure (center); as an example, we fix the geometric parameter o to %
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Figure 1.5: First three elements 77 (left), 72 (left-center), T3 (right-center), 71 (right) associated with the mesh
depicted in Figure (center). Here, geometric parameter o is fixed to %

1.4.3 Additional notation

Given 7, polygonal decomposition, we introduce some notations concerning 7.
In particular, we can split the bilinear form a defined in as a sum of local contributions:

a(u,v) = Z a® (u,v) = Z (Vu, Vv)o i Vu,veV. (1.40)

KeT, KeT,

Moreover, we can also define the broken-H' seminorm and norm as:

= bk Mullin =D lulix  VueP@QNHY(K) VKeT, (1.41)
KeT, KeT,

Finally, we associate to each element K € 7T, a number px € N. We collect all these numbers in a
vector p € N°ard(T») and we consider the bijection:

Tn <— P with K+ pk. (1.42)

Then, we can define the space of continuous and discontinuous piecewise polynomials over decom-
position 7, with polynomial distribution given by p, as:

SPURT) = {a€C%(Q) | dlx € Py (K)}, SPTHRTa) = {g € L*(Q) | dlx € Py (K)}-
(1.43)

In case p; = p forall i = 1,...,card(T,), we use the notation SP*(Q, T,,) = SP*(Q, T,.), k = —1,0.
Analogously, we can define the space of continuous and discontinuous piecewise harmonic poly-
nomials over decomposition 7, with polynomial distribution given by p, as:

SR To) = {a €C°(Q) | alx € Hp (K)}, SRTHRTa) = {g € L(Q) | dlx € Hp, (K)}.
(1.44)

In case p; = p foralli = 1,...,card(7,), we use the notation Sg’k(Q, Tn) = SZ’k(Q, Ta), k= —1,0.

Throughout the thesis, we write f < g for two positive quantities f and g depending on a
discretization parameter (typically h or p) if there exists a parameter-independent positive constant
¢ such that f < c¢g holds for all values of the parameter. We write f =~ g if f < g and g < f hold.

1.5 Structure of the thesis

In this section, we describe the topics covered in the thesis. For a more detailed description of such
topics, we refer to the introduction of the forthcoming chapters.

e The h and p version of the VEM on quasi-uniform meshes is investigated in Chapter |2} here,
the issue of the regularity of the solution in not taken into account and we limit ourselves
to prove convergence results for solutions with “desired” finite Sobolev regularity or, even,
analytic solution.
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e The case of solutions having instead the “natural” Sobolev regularity on polygons (thus
taking corners into account) along with the full Ap technology employing geometrically refined
meshes, is addressed in Chapter [3 while in Chapter [] the same issues are investigated for the
solution to Laplace problems. The reason for which we split the analysis of the Poisson and
Laplace equations is that in the latter case the structure of the approximation space takes
advantages from the structure of the problem, leading in fact to a very efficient method.

e The a posteriori analysis of the hp VEM is studied in Chapter [f} we anticipate that this is
a very preliminary investigation of this topic (no numerical tests are performed, no optimal
bounds in terms of p for L? approximation by means of functions in local VE spaces, ...); a
deeper analysis concerning a posteriori Ap VEM is the subject of future works.

e In the previous parts, the issue of choosing a proper stabilization of the method, typical of
the construction of the VEM, was not addressed. For this reason, Chapter [f] is devoted to
introduce various stabilizations along with, both theoretical and numerical, explicit bounds
in terms of the polynomial degree p.

e Having introduced various stabilizations, we present in Chapter [7| a number of numerical
experiments aimed to validate the approximation results shown in Chapters and

e It is well-known that the p version of triangular FEM is haunted by ill-conditioning of the
stiffness matrix, see [90]; the p version of the VEM makes no exception. Therefore, in Chapter
we suggests possible remedies in order to alleviate such ill-conditioning.

e The issue of having fast solvers for the solution to the final system is also important, e.g. in
view of 3D problems; for this reason, we discuss in Chapter |§| a multigrid algorithm (with
non-inherited sublevel solvers) for the pure p version of the VEM.

e Finally, we briefly describe future challenges, related to the topics discussed so far, in Chapter
LLO)

e Two appendices are also presented. Appendix [A] is committed to recall regularity results
of elliptic PDEs on polygonal domains. A number of hp inverse estimates on triangles and
general polygons are discussed and proven in Appendix



Chapter 2

The h and p version of the virtual
element method for the Poisson
problem on quasi-uniform meshes

The aim of this chapter is to study the approximation of Poisson problem ; for simplicity, we
assume homogeneous Dirichlet boundary conditions and therefore we look at the weak formulation
(1.27). The treatment of inhomogeneous boundary conditions can be dealt with as in Chapter

The standard h and p versions of VEM on quasi-uniform meshes are discussed; the issue of
approximating solutions with the “natural” regularity, i.e. with a proper singular behaviour at the
vertices of the computational domain, cf. Appendix [A] is not here addressed but postponed to
Chapters [3] and

Here, we assume either that the solution to problem has a finite Sobolev regularity, or that
it is analytic (on a proper enlarged domain). As in the standard h and p FEM framework [14}/96],
in the former case both the h and the p version lead to an algebraic decay of the error, whereas,
in the latter, exponential convergence in terms of p can be achieved.

The outline of the present chapter follows. In Section we introduce the VEM with uniform
degree of accuracy and we prove an abstract error analysis result asserting that the error of the
method is bounded, up to a pollution factor due to the stabilization typical of VEM, with three
terms involving oscillation of the right-hand side, best error approximation by means of piecewise
discontinuous polynomials and by means of functions in the VE space; moreover, we recall from [25]
the convergence result for the h version of the method. In Section under the assumption that
the solution to has finite Sobolev regularity, we discuss algebraic convergence in terms of p
of the error of the method; for the purpose, we discuss local hp local approximation properties of
polynomials and of functions in the VE space on polygons. Such algebraic convergence is proven
in a different fashion in Section [2.3} here, we additionally prove exponential convergence in terms
of p assuming that the solution is analytic on a proper enlarged domain. A hint regarding the
double rate of convergence employing the p version of VEM is given in Section

We highlight that the topics here discussed are presented in [31].

2.1 Virtual elements for the Poisson problem with uniform
degree of accuracy

Let {Tn},cn be a sequence of (quasi-uniform) polyhedral meshes satisfying assumptions (GO)-
(G1)-(G2)-(G3). Let p € N be given.

The aim of the present section is to introduce Vj,;, a finite dimensional space of V' defined in
, anp * Vip X Vip — R, a discrete bilinear form mimicking its continuous counterpart a defined
in and finally fr,p, an element of V; , the dual space of Vi, and a duality pairing ( fap, -)np,

16
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such that the following VEM:

{ﬁnd Unp € Vip such that 21

anp(Unp, Vnp) = (frps Vhp)hp Y Vnp € Vip

is well-posed and it is possible to prove some h and p approximation estimates.
We begin with the definition of the approximation space. Having set the space of piecewise
continuous polynomials of degree p over the boundary of each element K:

Bhp(0K) = {vpy € C°(OK) | vnpls € Ppy(s), for all s edge of K}, (2.2)
we define the local VE spaces:
Vip(K) = {’Uhp € Hl(K) | Avpy € Pp_o(K), vpplox € Bhp(aK)} VK €T, (2.3)

Importantly, we observe that P,(K) C V4, (K) for any K € T,,. For every function vy, € Vip(K),
we identify the following set of local degrees of freedom:

o the values of vy, at vertices of K,

e the values of vy, at (p — 1) distinct internal nodes of each edge s of K (for instance at the
p — 1 internal GauB-Lobatto nodes),

e the internal moments

1 /
qaVhp, (24)
(K| S ™
dim Pp,_ 5 (K)

where {qa}o—1 is a basis of Pp_o(K). Various choices for the polynomial basis
{qa}dlmPP’Q(K) are presented in Section

a=1

In order to show that this is a set of unisolvent degrees of freedom, we refer to |25, Proposition
4.1].
In Figure 2.1} we depict on a polygon the degrees of freedom for p = 1,2, 3.

Figure 2.1: Degrees of freedom on a nonconvex pentagon for p = 1 (left), p = 2 (center), p = 3 (right). The red
and blue dots denote vertex and edge dofs respectively, the green triangles denote internal moments.

The dimension of local VE spaces with uniform degree p is therefore given by:

. —1)(p—2
dim(Vip(K)) = Ngp + %, (2.5)
where:
Ny = # of vertices and edges of polygon K. (2.6)

A possible way to describe the construction of local VE spaces is the following.

One wants to have a space containing polynomials, since it is well-known that they have good
approximation properties.

Next, one observes that polynomials satisfy a local Poisson problem with prescribed polyno-
mial right-hand side and boundary datum. Nonetheless, employing piecewise polynomial spaces
over a polygonal decomposition does not enable in general the construction of H' conforming
approximation spaces.
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In order to recover H! conformity, one enriches the polynomial space over an element by adding
the non polynomial solutions to local PDEs with completely general polynomial right-hand side
and boundary datum, getting thus the local VE space.

The global Virtual Space is consequently obtained by the continuous matching of the local
spaces over the element boundaries:

Vip = {vnp € C°(Q) | vnpl i € Vip(K), viploa = 0}, (2.7)

with the natural definition of the global degrees of freedom obtained from the local ones.
Importantly, functions in the local VE space Vj,(K) are known explicitly only on the boundary
of K and not at the interior. For this reason, it is not possible to compute exactly the H!(K)
inner product of two functions in Vj,,(K).
Therefore, we proceed as follows. We begin with introducing the following operator:

a® (qp, vhp — HX’thp) =0

Vap € Pp(K), Voupy € Vip(K),
PO(onp =TI v1) = 0 4 € Pp(K),  Vony € Vi (K)

I Vip (K) — Py(K) s. t. {

(2.8)
where Py : Vjp(K) — R is a functional having the role of fixing the constant part of energy
projector H;Y’K-

Typically, functional Py has the following form. For p = 1, one sets for instance:

Nk
Palons) = 3= 3 vun(v5), 29)

where {v; };V:Kl denotes the set of vertices of K, whereas, for p > 2, one sets:

Po(l)hp) = Ilﬂ/K’Uhp. (210)

The reason for the double choice (2.9)-(2.10) is that when employing low-order VEM, i.e. VEM
with p = 1, the quantity is not computable since the set of degrees of freedom does not
contain any sort of internal moments.

It is worth to stress that operator HX K is computable via the degrees of freedom as discussed
in [25,/30]. In fact, it suffices to compute:

gy ) = [

(Ongp)vnp _/ Agp Vpyp-
oK K

The boundary term is computable through the boundary degrees of freedom, while the bulk term
via the internal degrees of freedom ([2.4)).
When no confusion occurs, we denote by H;Y the energy projector H;Y’K .

Having defined operator HIY, we observe that Pythagorean theorem in Hilbert spaces asserts:

a® (Unp, vip) = o (I1Y wpp, ILY ) + @ (I = T Yunp, (1 — T Yonp)  V tipp, Wiy € Vip(K).
(2.11)
The first term on the right-hand side of (2.11)) is now actually computable owing to the com-
putability of HX, whereas the second is still not. Therefore, we substitute the second term with:

aK((I - HZ)uhm (I—- H;Y)vhp) — SK((I - H;Y)uhzw (I - HZ)Uhp)a

where S¥ : ker(HZ) X ker(HZ) — R is any computable bilinear form, which goes by the name of
stabilization of the method, on which we assume that:

cx()lonplt i < S (vnp, vip) < *D)lonplt i VY onp € ker(IL), (2.12)

where c¢.(p) and c¢*(p) are two positive constants depending only on p and the parameter pg
introduced in assumptions (G1)-(G2).
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Importantly, we allow constants c.(p) and ¢*(p), which henceforth will go under the name of
stability constants, to depend on p.

Specific choices for S¥ and explicit bounds in terms of p of the stability constants are not the
target of the present section, but are postponed to Chapter [6]

To summarize, we have built a local discrete bilinear form of the following sort:

ape, (Unp, Vnp) = " (I i, ILY 0pp) + S™ (1 = I1Y Y, (I =TI Yupyp) Y Unp, Vhp € Vip(K).

It is also possible to prove, owing to , the following two properties of affp: 219
(Appl) polynomial consistency: for all K € 7y, it must hold:
aK(quhp) = ath(qp,Uhp) Vg, € Pp(K), VUrp € Vip(K); (2.14)
(A}p2) stability: for all K € 7, it must hold:
Qs (p)lvhpﬁ,}{ < a{fp(vhlﬂ Uhp) < a*(p)|vhp iKv Vopp € Vhp(K)v (2.15)

where 0 < a.(p) < a*(p) < 400 are two constants which may depend on p.

More precisely, it holds true that:

ax(p) = min(L, c(p)), o’ (p) = max(L, ¢*(p))- (2.16)

Assumptions (Ap,1)-(App2) are instrumental for proving the forthcoming abstract error result
Lemma In addition to that, assumption (Ap,1) guarantees that the method passes the
so-called patch test; this means that if the solution to problem is a polynomial, then the
method returns the exact solution, assuming to work in exact arithmetic. On the other hand,
assumption (Ajp,2) is needed in order to have the well-posedness of method .

The global discrete bilinear form reads:

ahp(uhp,vhp) = Z ath(Uhp7Uhp)a Y Unhp, Vhp € Vip. (2.17)
KeTn

Analogously to what we said for the bilinear form, also the right-hand side of (|1.27)) is not explicitly
computable, since functions in the VE space are not known pointwise at the interior of each element.
For this reason, we introduce a discrete bilinear form, which is based on another (piecewise defined)
projector.

Given K € T, we define HZO)’_K2 as the L?(K) projection:

K K
H2L2 Vip(K) = Ppa(K) st (gp—2,0np — H%—QWLP)O,K Vgp—2 € Pp_o(K), Vupy € Vip(K).
(2.18)
We stress that the projector Hg’_KQ is computable via the internal dofs (2.4). When no confusion
. 0 . . 0,K
occurs, we write II,_, in lieu of IT75.
We are now in business for defining the discrete right-hand side. In particular, we set:

(frps Vnp)hp = Z (frps Vnp) K hp» (2.19)

KeT,

where:
_[J (0 ) p 22
(fhps Vhp) K hp {fK f(Po(vnp)) ifp=1

where we recall that P, is defined in .

With the choice performed for space V3, defined in (2.7)), the discrete bilinear form ay, defined
in and discrete right-hand side fp), defined in is clear that method is well-posed
for all 7,, and p € N.

Before concluding this section, we recall the following abstract error analysis result, which can
be regarded as a Strang-like lemma in the framework of VEM. Let Fj, be the smallest constant
satisfying:

YV upp € Vip(K), (2.20)

|(f, vnp)o.2 = (frps Uhp)hpl < Fiplonplie Vunp € Vip. (2.21)
Then, the following holds true.
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Lemma 2.1.1. Under assumptions (App1)-(Anp2), let w and upy be the solution to (1.27) and

@.1) respectively. Let ur be any function in SP~1(Q,T,) defined in (1.44) and let ur be any
function in Vi, defined in (2.7). Then, the following estimate is valid:

a*(p)

uU—u < uU—u -+
u = unp|1,0 O[*(p){l wli 7+

(2.22)

Proof. See |25, Theorem 3.1]. O

Lemma [2.1.1|states that, up to the pollution factor £ E ; due to the choice of the stabilization,

the error of the method is bounded by the sum of three terms:

e a best error term with respect to piecewise discontinuous polynomials over Tp;
e a best error term with respect to functions in the global VE space V,;, defined in (2.7));
e a term due to the oscillation of the right-hand side.

The two forthcoming sections are devoted to estimate these three terms, assuming either that the
solution has finite Sobolev regularity, see Section or analytic regularity on a proper enlarged
domain, see Section

It is worth to stress that the convergence results in terms of h have been already discussed
in [25].

2.2 Algebraic convergence for finite Sobolev regularity so-
lutions

In this section, we study the convergence of method assuming that u, the solution to problem
(L.27), belongs to H*1(Q) for some k € N.

The section is organized as follows. In Sections [2.2.1], 2.2.2] and [2.2.3] we bound respectively
the first, the second and the third terms appearing on the right-hand side of ; in Section
we collect all these local bounds in order to achieve h and p convergence of the method.

2.2.1 Polynomial approximation term

We start by bounding the term |u — u, |1, 7, of the right-hand side of . In order to derive the
bound, we need to prove a generalized-polygonal version of a classic result, namely [20, Lemma
4.1]. In this lemma, it was shown the existence of a sequence of polynomials which approximate
functions in H**! over the triangular and square reference elements. We extend this result for
generic polygons having diameter equal to 1. Thus, we are ready to show the following result.

Lemma 2.2.1. Let K C R? be a polygon with diam(f():l. Moreover, assume that K is star-shaped
with respect to a ball of radius greater than or equal to po and the distance between any two vertices
of K is greater than or equal to po, po being the constant introduced in assumptions (G1)- (GQ)

Then, there exists a family of approximation operators {H }pen, with HK : Hk“(K) - P (K)
for all p € N such that, for each 0 < £ <k+1,uec H YK ) keN, it holds.

i — TSl 7 < ep F 0@l s (2.23)
where ¢ is a positive constant independent of u and p.

Proof. We assume without loss of generality that xg, the barycenter of K defined in (11.34),
coincides with the origin 0. For a given r > 0, we define:

R(r) == {(z,y) eR* | |z| <, |y| <r}. (2.24)

Thanks to the fact that diam(f?)zl and xp = 0, we have R(1) D K. Let ro > 1. Then, it
obviously holds K C R(rg). We note that OK is Lipschitz; consequently, using [98, Chapter VI,
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Theorem 5|, there exists E : H*¥1(K) — H*"1(R(2ry)) extension operator such that E(@) = 0
on R(2ro) \ R(3r¢) and ||E(Q)|[k+1,Rr(2r) < clltll,,, z- A careful inspection of |98, Chapter VI,
Theorem 5] shows that the constant ¢ depends only on &, the involved Sobolev order, and on the
“worst angle” value:

Op = erélir:? min {0, 27 — 6},

where Az denotes the set of the (magnitude of) internal angles of K. In particular, the constant ¢
may explode when 05 — 0. It is possible to check that, under the regularity hypotheses on K, the
angle parameter 6 % is bounded from below by a constant depending only on the star-shapedness
parameter of polygon K.

Therefore, it holds || E(U)||x+1,r(2re) < c(k, po)HﬂHkHﬁ. The remaining part of the proof, that
is based on the approximation of the extended function E(@), follows exactly the same steps as
in |20, Lemma 4.1], and is therefore not shown. O

Using this result, we are able to give a generalized-polygonal version of |20, Lemma 4.5], which
will play the role of local hp estimate result on |u — ur|1,x, where K is a polygon of the decompo-
sition 7,,.

Lemma 2.2.2. Let K € T, satisfying assumptions (G0)-(G1)-(G2) and u € H***(K). Then
there exists a sequence of approzimation operators {IIK} cn, with TIE : H¥H(K) — P,(K) for all
p € N such that for any 0 < £ < k+1, k € N, the following holds true:

n+1-—2¢
K < C#H“HH—LK’ (2.25)

u—

where p = min(p, k) and c is a positive constant independent of u, h and p.
Proof. We consider the mapping F(x) = i(x —xg) and let K = F(K). Clearly, diam(K) = 1
and the barycenter of K is in the origin, xp = 0. We denote the pull-back of a function by adding
a hat at the top of it.

Let ﬁf{ u be the sequence of approximating polynomials of degree p of & associated with polygon
K introduced in Lemma We set HK u to be the push-forward of the above sequence with

respect to the transformation F7 ie. H]Ifu = (Hff( )) o F, where = ¢ o F~! for a sufficiently
regular function ¢. Then, it is possible to check, by a simple change of variables argument that:

|u — Hfuv,K < ch}(_qﬂ— Hff%,f(,

where ¢ is a constant independent of K (hence on K ), h, u and p. Besides, ¢ is independent also
of ¢, thanks to the fact that F'is the composition of a translation with a dilatation.
We apply Lemma [2 and we obtain, by adding and subtracting any g, € P (K ):

O~ o~ =K ~
|U_H5U|Z,K < Ch}< H(U_(Zp) H;I){( Q;D) oK

1 ~ (2.26)
WHU - LIkaHf( Vg, € Pp(K),

IN

Cc

where ¢ on the right-hand side of (2.26]) is a constant depending on k. Using the classical Scott-
Dupont theory (see e.g. [65]) and a scaling argument, bound ([2.26]) yields:

1-¢ k+1 2 h”“ ¢
lu — H,I,(UV,K < C}ﬁ Z |17|72f( <c WH“H/@H K, p=min(p, k), (2.27)
i=p+1
where c is independent of u, p and h. [

Remark 1. We note that if £ < p then it is possible to take the seminorm on the right-hand side

of (2.25]), yielding:

k+1—¢
lu — HKu| < L
D (LK > Ckarl*Z ‘u|k)+1,K7

where c is a constant independent of h, p and u. This automatically follows from (2.27)).
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We are now able to give a global estimate on |u — u,|1 7, in ([2.22), where u, € S»~1(Q,T,)
defined in (1.44). In fact, by choosing u,|x = Hff u for all K € T, and recalling the shape-regularity
property (G1), we obtain:

h* .
|u = Unrl1,T, < Cp?‘|“||k+1,ﬂa p = min(p, k),

i (2.28)

h
|u — Url1,7, < Cﬁ|u\k+1,§z, for p > k,
where c is a constant independent of h, p and w.

2.2.2 Virtual interpolation term
We turn now to the term |u — ur|; o of the right-hand side of (2.22).

Remark 2. Assumptions (G1)-(G2)-(G3) imply that there exists 7, an auxiliary conforming
triangulation that refines 7,,, obtained by connecting, for all K € T, the Nk vertices of K to the
center of the ball that realizes assumption (G1) for K. Moreover, it is possible to check that T,
forms a shape-regular sequence, with shape-regularity constant depending solely on the parameters
po and ¢ introduced in assumptions (G1)-(G2)-(G3).

In fact, assume by contradiction that {ﬁ} is not a shape-regular sequence of subtriangu-

ne
lations. This means that it is possible to build sequences of triangles such that:
(i) the magnitudes of a sequence of angles tend to 0, see Figure (left);

(ii) the magnitudes of a sequence of angles tend to 7, see Figure (right).

Al S0 A2
A1 S0 A2

Figure 2.2: Left: (i) the magnitudes of a sequence of angles tend to 0. Right: (ii) the magnitudes of an angle tend
to .

We distinguish what happens in the three cases. We denote by C and r the radius and the
center of the ball with respect to which K is star-shaped; moreover, in order to ease the proof, we
employ the notation in Figure

If (i) holds, then:

e if C = Ay, we have:

e ]

Instead, if (ii) holds, then:

e if C = Ay, we have:
1%h7KzL§dlst(Ao,so)_>O 5
ol [sol Isol
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Figure 2.3: Failure of the star-shapedness assumption with respect to a ball. The red segment necessarily sticks
out the polygon under consideration, whatever the polygon is. In fact, the magenta edge of the light-blue triangle
is by assumption an edge of the original polygon.

e if C = A, (analogously one treats the case C = A) we argue saying that, if this case holds
true, then the polygons in the sequence 7, associated with 7,, are definitively not star-shaped
with respect to a ball with radius comparable to hg, see Figure 2.3

We denote by SP’O(Q,ﬁ) the set of piecewise continuous polynomials of degree p over the
auxiliary triangular decomposition 7,. It is well-known, see [20, Theorem 4.6] that there exists
onp € SPO(Q, T,,) with @pplan = 0 such that, for any u € H*1(Q), k € R*, the following holds
true:

h* . 1
lu—onpllia < Clp7||u\|k+1,sz with k > 2,
b (2.29)

h 1
v — @npliao < 02ﬁ|u\k+179 with & > 3 and p > k,

where ¢; and ¢y are two constants independent of u, p and h and where g = min(p, k).
Now, we use ¢p, in (2.29) in order to construct a virtual interpolant u; € V3, of u. To this
purpose, we modify a particular technique which was firstly introduced in [87].

Lemma 2.2.3. Under assumptions (G0)-(G1)-(G2)-(G83) and given u € H**1(Q), k € N, there
exists ur € Vyy such that:
ht .
lu —urlio < Cp7\|u||k+1,§z, p = min(p, k), (2.30)

where ¢ is independent of h, p and u.

Proof. Let u, be the function defined in (2.28)) and let ¢p, be the function described in (2.29).
For each K € Ty, we define us|k the solution to the following problem:

—Aur = —Au, in K
{ UL = Php on 0K (2.31)

Clearly one has that ur|g € Vi, (K). Moreover, since uy € C°(Q2) N H (), it holds that u; € Vjy.

Using ([2.31)), we can write:
—A(ur —ur) =0 in K
U — Ug = Ppp — Uz o0 OK

Therefore, since u;y — u, is harmonic, it holds:
|ur — trl1,x = inf {|z|1,K7 z€ HY(K) |z = Php — Uyx ON (’9K} < |@np — Un|1,K- (2.32)
Finally, by (2.32]), we obtain:

lu—url,x < |u—urlik + Jur —urlix < U —url,x + [ux — Onplix

< 2|u — x|,k + U — Pnpl1, k-

The proof is completed by summing on all the elements in (2.33) and usi