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1 Introduction

Selections are typically made according to a varying blend of objective mea-

sures and subjective judgments. A sport coach might base her team choice

on the recent performance of individuals in her squad (batting and bowl-

ing/pitching averages, tennis rankings, trial results for track and field, and

so on), and on her sense of who is the best person for each given role, given

the expected conditions. Many universities do not strictly follow SATs results

and school grades when choosing whom to admit, but take into account a

student’s social background and his potential contribution to desirable char-

acteristics of the student body, like diversity. Applicants for academic jobs

might be ranked according to bibliometric measures, but the appointment

panel’s judgment often leads to decision that do not map precisely into the

ranking.1 Large and complex procurement contracts often demand the sub-

tle evaluation of complex qualitative elements, and lowest price is seldom the

only criterion used to award these contracts.2 And so forth and so on.

Observers and decision makers might be interested in some means of

comparing the choices of different selectors. If the property of following the

measurable dimension is labelled “orderliness”, someone might want to com-

pare the orderliness of different selections, for example to determine which is

more “orderly”.

We can think of at least three conceptually distinct situations where this

1An example from recent implementation of policy which some readers will be famil-
iar with is the extent by which bibliometric criteria should be used in the evaluation of
university research departments. Unlike in Italy, the UK funding body was persuaded to
allow panels not to adhere strictly to bibliometric measures of departmental output, but
allow the latitude afforded by peer review. We reprise this theme in Section 5.

2As, for instance, the 1991 auctions for the 16 regional television franchises in the UK,
when only half the franchises were awarded to the highest bidder; see Cabizza and De
Fraja (1998), especially Table 1, pp 11-12.
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comparison is meaningful.3 First, we may want to compare different selec-

tions from the same set. For example, the public may want to know how

close the proposed shortlists of the different judges of a book or film prize

are to a market-determined (sales, box office earnings) ordering. Second, the

comparison might be of selections from altogether different sets. A cricket

fan may want to know whether Australia’s selection for the Ashes team is

closer to the players’ current rankings than England’s. A university whose

admission policies are under scrutiny in court may want to argue that its

admission policy is as based on SATs as those of comparable institutions. Or

a government minister concerned about corruption in procurement contracts

or personnel hiring may want to compare the orderliness of various commis-

sioning boards or hiring panels, to identify and perhaps investigate atypical

behaviour. On a broader scale, orderliness is a helpful yardstick when assess-

ing inequality of opportunity: it can serve as a measure of nepotism, telling

how close selection into society’s elite is to the pecking order determined by

family history, or of plutocracy, measured for example by the closeness of

membership of Parliament to a person’s position in the income distribution.

The third kind of potential comparisons is for situations where both the se-

lection and the selectors are the same, but there are two or more ways of

ordering the elements of a set. In these cases, which are close to the topic

of some related literature considered below (Kemeny 1959, Klamler 2008),

the focus is on their relative importance in the selection. For example, a

rugby analyst may want to know whether weight or speed is more important

to be selected as a three-quarter for the Springboks. Or an external funder

may want to know which of teaching and research is more important for

3Selection is of course a broader concept than full ordering: choosing the all-time best
20 in a list of 1000 footballers is different and less demanding than naming the best 20.
The relation between selection and ordering is explored in Section 4.
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promotion in a given university.

Comparing selections is straightforward only in the starkest cases. Sure,

the selection of the best ranked is unquestionably more orderly than se-

lections that do not. But is a university which, from its 102 applicants,

admits as students those ranked according to their SAT scores second to

fifth, eighth, eleventh, twelfth, twenty-fourth, twenty-fifth, thirty-eighth, and

forty-seventh more orderly than one that chooses the first twenty, the fifty-

seventh, and those ranked between 170 and 180 out of 500 applicants? Or, in

an even simpler example, is picking the second ranked out of ten candidates

for a job more orderly than selecting the third ranked out of nineteen?4

This paper takes an axiomatic approach to comparing selections. The

axioms are requirements of orderliness: a decision maker who is called to

opine which is more orderly of two selections from different sets, that is

which selection is in her opinion closer to the order – determined by a given

measure – of the set from which it is taken, should only make judgements

that obey these axioms. This is conceptually similar to the approach taken

by Sen (1976) and Cowell and Kuga (1981) in regard to judgements on which

of two groups of individuals poverty or inequality, respectively, is greater.

We begin with three natural axioms, which extend the dominance prin-

ciple in the comparison of sets (Barberà et al 2004, BBP in what follows).

The first requires that when an element is replaced in the selection with a

better one, then the selection is deemed to be more orderly. In the next two

axioms we depart from the set-up of the literature reviewed in BBP, and in

some of its extensions, such as Rubinstein and Salant (2006). The departure

is that we consider elements that are not in the original set, thus allowing

the comparison of selections from different sets, as in many of the examples

4According to our paper, it turns out that these four selections are equally orderly.
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given above. These axioms require that if a new element appears which is

better than all the selected (non-selected) ones, then the selection is consid-

ered more (less) orderly if the new element is selected. Analogously for the

appearance of a worse element. Extending the axioms to different sets im-

plies that we cannnot, like the literature cited, take the rank of the elements

as the starting point of the analysis, since a new elements change the ranks

of all the elements below it. Instead, we need to make formally explicit the

mapping from the measured performance to the rank of the elements ordered

by this measure.

These three axioms, which we show to be independent, are not charac-

terising: there are different orderings of selections from sets which satisfies

them. In our main result we show that characterisation is achieved by replac-

ing the first axiom with a stronger one, which we label “mirror invariance”.

This requires that if a change makes a selection more orderly, then the mirror

image of the selection – that is the selection of only the non-selected elements

– is made less orderly by the mirror image of the change. This is equivalent

to requiring that the importance attributed to changes in the ordering be

independent of where they occur: departures from the ranking are as impor-

tant if they occur among the best or the worst ranked elements. This result

is established in Theorem 1, which shows that the orderliness relation char-

acterised by Axioms 2-4 is represented, in close analogy to the representation

of a consumer’s preference by a utility function, by an “index of orderliness”,

given by a simple function of the number of elements in the set, the number

of selected elements, and the sum of the ranks of the selected elements.

The paper continues by showing that our index of orderliness has a simple

relation with the concept of distance between rankings originally proposed

by Kendall (1938), and given an axiomatic foundation by Kemeny (1959).
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This distance compares different selections from the same set, and, in this

case, Proposition 4 shows that if a selection is more orderly than another

selection from the same set, then the ranking of the set naturally induced by

the first selection is nearer, in the sense of the Kendall-Tau distance, to the

ordering of the set.

The paper is organised as follows: the dominance axioms and some pre-

liminary results are in Section 2. The core of the paper is Section 3, which

presents the index of orderliness, and strengthens one of the axioms to obtain

a complete ordering of all selected sets. The relation with existing literature

is explored in Section 4, and the paper ends with Section 5, which shows how

the index can be used to assess the evaluation mechanism for promotion to

professorship in Italian universities. A brief conclusion follows.

2 Axioms of “orderliness”

Let N  R contain N ∈ N\ {1} distinct elements: x, y ∈ N implies x 6= y.5

The inequality relation in R induces a transitive, complete and antisymmetric

relation between the members of N . This relation is naturally defined as the

rank in N , ρN , a bijective mapping of the elements of N into the set of the

first N natural numbers ρN : N −→ {1, 2, . . . , N}, which satisfies ρN (x) <

ρN (y) if and only if x < y. We choose this convention, that x has a better6

rank in N than y if it is smaller, for definiteness. It would refer for example,

to a situation where the real numbers are marathon runners’ personal best

5We therefore rule out ties between elements, consideration of which is important for
practical purposes, but not straightforward. We remark briefly in Section 5 below on
possible approaches when some elements of the set are ranked equally, otherwise we restrict
our attention to antisymmetric relations.

6We use the terminology “best” and “worst” ranked element, rather than highest and
lowest, given the potential linguistic ambiguity due to the lowest number being attached
to the highest ranked element.
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times; the changes needed to apply the framework to situations where a larger

real number is better, such as cricketers’ career runs or scientists’ citation

counts, are obvious.

We next define a selection K as a proper and non-empty subset of N , that

is K  N , and K 6= ∅. Let K ∈ {1, . . . , N − 1} be the number of elements

of K. We define the pair (N ,K) a “selected set”.7 Let S be the family of

selected sets.

Given a selected set (N ,K) ∈ S , there is a natural mapping induced by

ρN from S into the set S defined as

S =

 ⋃
N∈N\{1}

(
N, 2{1,...,N}\ {1, . . . , N}

) \∅,

that is as the union, over the natural numbers greater than 1, of the cartesian

product between N and the power set of {1, . . . , N}, with the set {1, . . . , N}

itself removed. The generic element of the set S is therefore (N, {i1, . . . , iK}),

where ik ∈ {1, . . . , N}. Define this map as:

m : S −→ S,

such that for (N ,K) ∈ S , where N is a set with N elements, from which

K are selected, m (N ,K) is the pair given by the cardinality of N and the

7Selecting members of a set is related but different from the administration of a test. In
the former, the number of available places is usually fixed, or at least within a given range;
whereas the important feature of a test, such as a school leaving exam, or the rejection
of potentially faulty items from a production line, is the minimisation of errors, possibly
weighted by the relative importance of type I and type II errors. Loosely speaking, one
can think of selection according to a rank and testing as inverse operations: in the former,
the number of slots is fixed, and the distribution in the population of the metric on which
the ranks are based determines the threshold for selection; in the latter, the pass/fail
threshold is fixed, and the distribution determines the number of successful elements.
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subset of {1, . . . , N} which are the ranks in N of the elements of K:

m : (N ,K) 7−→
(
N,
{
i ∈ {1, . . . , N} |ρ−1N (i) ∈ K

})
.

Recall that, because the elements of N are different, ρN is invertible. Given

a selected set (N ,K) such that m (N ,K) = (15, {2, 3, 8, 12}), implying that

the second, the third, the eighth and the twelfth ranked out of the set’s 15

elements are selected, we may represent its image under m as follows:

(N ,K) −→ 011000010001000. (1)

Elements are ranked from best to the left, to worst to the right, and a “1”

in the j-th position indicates that the j-th element is selected.

We single out the situations where the selection follows exactly the rank-

ing.

Definition 1 Given a selected set (N ,K) ∈ S , the selection K is “ perfect”

if x ∈ K and y ∈ N \K implies x < y. The selection K is “ antiperfect”

if x ∈ K and y ∈ N \K implies y < x.

In words, the selection K is perfect if no selected element has a rank

worse than a non-selected element, and it is antiperfect if every selected

element has a worse rank than every non-selected element.

Let S P ⊆ S be the set of all perfect selections, and conversely, let

S A ⊆ S be the set of all antiperfect selections. Note that since K is a

proper non-empty subset ofN , S P∩S A = ∅: no selection is simultaneously

both perfect and antiperfect.

We want to compare selections, that is order the set S , in the following

sense: consider two ranked sets NA with NA elements, and NB with NB
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elements, and selections KA and KB from NA and NB, respectively. We

want to answer the question: is the selection KA from NA closer to or farther

from the ranking of set NA than the selection KB from NB is to the ranking

of set NB? In terms of the examples given above, we want to know whether,

say, a journalist’s choice of the “all time England cricket test team” is more

based on the players’ record than an Italian chemistry academy’s choice of

the members of its scientific committee is based on the academics’ citation

count.

To formalise this question we define a binary relation M ⊆ S×S, which

we interpret as “orderliness”: orderliness is the property of being close to

the ordering of the set.

Definition 2 Given two selected sets (NA,KA) , (NB,KB) ∈ S , (NA,KA) is

at least as orderly as (NB,KB) if and only if
(
m (NA,KA) ,m (NB,KB)

)
∈

M.

We are thus defining equivalence classes in S : two selected sets (NA,KA) ,

(NB,KB) ∈ S are in the same equivalence class if and only if m (NA,KA) =

m (NB,KB), that is if the sets NA and NB have the same number of ele-

ments, and the ranks of the selected elements are the same in the selected sets

(NA,KA) and (NB,KB). In particular, the image of ({x1, . . . , xN} , {xi1 , . . . , xiK})

is the same as the image of any set where xj is replaced by any x in an inter-

val of the real line containing xj but no other element of {x1, . . . , xN}. Thus

Definition 2, accordingly, defines orderliness as a relation on the classes of

equivalence in S .

We follow the standard convention used to describe preferences, and write

(NA,KA) %M (NB,KB) when (NA,KA) is at least as orderly as (NB,KB).

“Strict orderliness”, �M, and “equal orderliness”, ∼M, are naturally defined:
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(NA,KA) is strictly more orderly than (NB,KB) if (NA,KA) %M (NB,KB)

and not (NB,KB) %M (NA,KA). And (NA,KA) and (NB,KB) are equally

orderly if (NA,KA) %M (NB,KB) and (NB,KB) %M (NA,KA).

We require the orderliness relation M to be reflexive, so that all selected

sets with the same image are equally orderly, complete and transitive. The

assumption of completeness is a strong one, though it is necessary to ensure

that orderliness can have operational value in practice, as it ensures that there

are no selections which are “not comparable”. Relatively simple examples

show that it is in principle arbitrary to construct such a complete ordering.

Consider two selected sets (NA,KA) , (NB,KB) ∈ S , such thatm (NA,KA) =

(35, {2, 5, 6, 7, 10, 16, 24, 28}) and m (NB,KB) = (21, {3, 6, 8, 10, 11}). These

can be represented graphically as:

(NA,KA) −→ 01001110010000010000000100010000000,

(NB,KB) −→ 001001010110000000000.

In (NA,KA), there are some selected elements among the best ranked, but

there are also some below the median. In the second, from a smaller set,

no selected element is below the median, but many are close to it: different

observers might well have different views as to which of the two above se-

lections is more orderly. As we show in this paper, this arbitrariness is fully

resolved if one accepts the simple axioms we propose.

Even with completeness, without any further restrictions, the orderliness

relation can still be vacuous: for example, the relation M = S×S, where

all selected sets are equally orderly, is transitive, reflexive and complete, and

so it can well represent a person’s opinion of the orderliness of selections. In

the rest of the paper, therefore, we impose some further requirements. As in

BBP, they are natural restrictions on M, the relation between the images in
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S of the sets (N ,K). BBP (p 904) begin by imposing the “extension rule”:

given x, y ∈ N , then m (N , {x}) %M m (N , {y}) if and only if x < y. We

strengthen the extension rule, requiring that the orderliness comparison be

strict, and that it applies to any set, not just singletons.

Axiom 1 (Swap-Dominance) For all (N ,K) ∈ S and x ∈ N\K and

y ∈ K, (N ,K∪{x} \ {y}) �M (N ,K) if and only if x < y.

In words, Axiom 1 requires that the swap between an element in the selec-

tion and an element not in the selection makes the selected set strictly more

(less) orderly if the rank of the newly selected element is better (worse) than

the rank of the removed element.8 Note that Axiom 1 is incompatible with

the independence axiom (BBP p 905), which, in our framework, would re-

quire that, given selections (N ,KA) , (N ,KB) ∈ S and x ∈ N\ (KA ∪ KB),

(N ,KA) �M (N ,KB) implies (N ,KA ∪ {x}) %M (N ,KB ∪ {x}). As BPP

note, this axiom rules out “certain types of complementarities” (p 906), and

runs therefore contrary to the motivation of the paper, which views selections

in their entirety. In fact, BBP show that independence is a strong require-

ment in this context, as it prevents comparison between selections, except in

very special cases (BBP, pp 910-922).

The next two Axioms we impose are the natural extension of the idea of

dominance, which “requires that adding an element which is better (worse)

than all elements in a given set A [...] leads to a set that is better (worse)

than the original set” (BBP, p 905). In our more complex set-up, we want

to compare subsets selected from different sets, and therefore we state the

axioms as binary comparisons between sets with different number of elements.

8One could make an analogy with the Dalton-Pigou principle (Dalton 1920, p 351);
a transfer of a resource (being selected in our case, or income in Dalton’s) from a worse
ranked/richer to a better ranked/poorer element/person, so long as that transfer does not
reverse the ranking of the two, will result in greater orderliness/equity.
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Axiom 2 (Better-Dominance) For all (N ,K) ∈ S and x /∈ N such

that x < y for all y ∈ K:

i. (N∪{x} ,K∪{x}) %M (N ,K); strictly unless (N ,K) ∈ S P .

ii. (N ,K) %M (N∪{x} ,K); strictly unless (N ,K) ∈ S A.

Suppose a new element is added9 to the set N , and this new element has

better rank than every selected element. Then Axiom 2 requires that, if this

new element is selected, the selection becomes more orderly (Axiom 2.i); if

it is not selected, the selection becomes less orderly (Axiom 2.ii).

Axiom 3 (Worse-Dominance) For all (N ,K) ∈ S and x /∈ N such that

y < x for all y ∈ K:

i. (N∪{x} ,K) %M (N ,K); strictly unless (N ,K) ∈ S P .

ii. (N ,K) %M (N∪{x} ,K∪{x}); strictly unless (N ,K) ∈ S A.

Axiom 3 is the converse of Axiom 2 at the other end of the ranking of

the set N : if a new element is added to the set N which is worse ranked

than every selected element, then the selection becomes more (respectively,

less) orderly if this new element is not selected, Axiom 3.i (respectively, is

selected, Axiom 3.ii).

To see these axioms “in action”, consider the selected set represented

graphically in (1). Axioms 2 and 3 are illustrated by the following changes

in the selected set, where the new element is boxed.

9Note that the statement of Axioms 2 and 3 requires that x can be measured against
the existing elements of N . Thus if N is the set of English test cricketers, x is the record
of a newly eligible player; if N is the set of Italian chemistry professors, x is the citation
count of a newly appointed one.

11



Axiom
new element

in set (1)

selected

Y/N?
New selected set

more/less

orderly?

2.i better than every selected yes 1 011000010001000 more

2.ii better than every selected no 0 0 11000010001000 less

3.ii worse than every selected yes 01100001000100 1 0 less

3.i worse than every selected no 011000010001 0 000 more

In the first and fourth rows the selection becomes more orderly, and in

the second and third less so. In the first two rows the new element can

indifferently be in the first or second position of the ranking; and in the third

and fourth row, in any of the bottom four positions.

The selection (1) is neither perfect nor antiperfect, and so all the

comparisons between it and the selected sets in the above table are strict.

The three axioms are independent: it is possible to define different orderli-

ness relations such that one Axiom is violated but the other two are satisfied.

To see this, consider an orderliness relation, M̂, which, given a selected set

(N ,K) and an element x /∈ N , requires (N ,K) �M̂ (N ∪ {x} ,K ∪ {x}) if

there exists z ∈ N\K such that x < z < y for all y ∈ K. In word, in or-

der for a new element to make the selection more orderly, it must be better

than at least one non-selected element in N which is better than all the se-

lected elements. Clearly M̂ violates Axiom 2, and obeys Axioms 1 and 3. A

symmetric argument holds in respect of Axiom 3. Lastly, consider an order-

liness relation, M̃, which, given a selected set (N ,K) and any two elements

x ∈ N\K and y ∈ K, requires (N ,K) �M̃ (N ,K ∪ {x} \ {y}) if there exists

z ∈ N , such that x < z < y. That is, in order to make a selection more

orderly, a swap must be between elements which are separated by at least

one element in N . M̃ violates Axiom 1, and obeys Axioms 2 and 3.

12



Axioms 2 and 3 dictate the relative orderliness of two selected sets where

the ranked sets, N and N∪{x}, differ in size by 1. The dominance axioms,

labelled by BBP (p 905) the Gärdenfors principle (Gärdenfors 1976), im-

pose an ordering on selections from a given ranked set, therefore they apply

to sets of the same size. We derive them in our framework as immediate

consequences of Axioms 2 and 3 in the following corollary.

Corollary 1 i. For all (N ,K) ∈ S and x ∈ N\K such that x < y for all

y ∈ K, (N ,K∪{x}) %M (N ,K); strictly unless (N ,K) ∈ S A.

ii. for all (N ,K) ∈ S and x ∈ K such that x < y for all y ∈ K\ {x},

(N ,K) %M (N ,K\{x}); strictly unless (N ,K) ∈ S P .

iii. For all (N ,K) ∈ S and x ∈ K such that y < x for all y ∈ K\{x},

(N ,K\{x}) %M (N ,K); strictly unless (N ,K) ∈ S P .

iv. for all (N ,K) ∈ S and x ∈ N\K such that y < x for all y ∈ K,

(N ,K) %M (N ,K∪{x}); strictly unless (N ,K) ∈ S A.

Proof. We only establish the first claim, as the proof of the remainder is

essentially identical. Consider a selected set (N ,K), and an x ∈ N\K such that

x < y for all y ∈ K. Note that this implies that (N ,K) /∈ S P . Take z /∈ N ,

such that z < y for all y ∈ K, and xRz (that is z is better than every selected

element, but worse than x). By Axiom 2.ii, (N ,K) �M (N ∪ {z} ,K). Next note

that, by Axiom 3.i, (N ∪ {z} ,K) �M (N ∪ {z} \ {x} ,K). Finally, notice that

m (N ∪ {z} \ {x} ,K) = m (N ∪ {x} ,K), since an excluded element better than

all selected elements is replaced by another, and so (N ,K) �M (N ∪ {x} ,K).

Intuitively, if a non-selected element that is better ranked than every

selected element were instead selected, the selection would become more or-

derly (Corollary 1.i), and if the best element in the selection were removed,

13



the selection would become less orderly (Corollary 1.ii). Conversely, con-

sider an element in N which is worse ranked than every selected element:

if it is removed from the selection, then the selection becomes more orderly

(Corollary 1.iii); if it is added to the selection, then the selection becomes

less orderly (Corollary 1.iv).

While Corollary 1 is an obvious consequence of Axioms 2 and 3, the

next result is less immediate, and shows that, although Axioms 1-3 may

seem weak, they do have some bite, as can be inferred from one of their

implications on the comparison of “extreme” selections from different sized

sets.

Proposition 1 i. Let (Np1 ,Kp1) , (Np2 ,Kp2) ∈ S P . Then (Np1 ,Kp1) ∼M

(Np2 ,Kp2).

ii. Similarly, let (Na1 ,Ka1) , (Na2 ,Ka2) ∈ S A. Then (Na1 ,Ka1) ∼M (Na2 ,Ka2).

iii. Let (N ,K) ∈ S \S P\S A; let (Np,Kp) ∈ S P ; let (Na,Ka) ∈ S A.

Then (Np,Kp) �M (N ,K) and (N ,K) �M (Na,Ka).

Proof. Let us begin with (i). Consider a perfect selection of Kp elements

from a set (Np,Kp), with (Np,Kp) ∈ S P . Clearly the best ranked Kp elements are

inKp, the rest inNp\Kp. Now add to the set and to the selection an element z1 such

that z1 < x for all x ∈ Kp. By Axiom 2.i, (Np,∪{z1} ,Kp∪{z1}) %M (Np,Kp).

Next return to the selection (Np,Kp), and add, again to the set and to the selection,

an element z2 such that x < z2 for all x ∈ Kp, and z2 < y for all y ∈ Np\Kp (that

is z2 is worse ranked than every selected element, but better ranked than every

non-selected element). By Axiom 3.ii, (Np,Kp) %M (Np,∪{z2} ,Kp∪{z2}). But

now notice that both new selections select only the best ranked Kp + 1 elements:

hence, m (Np,∪{z1} ,Kp∪{z1}) = m (Np,∪{z2} ,Kp∪{z2}). By transitivity, these

both equal m (Np,Kp). The process can be repeated to show that all perfect
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selections are equally orderly. The proof of (ii) is identical. Consider (iii) next.

Take a selection (N ,K) with (N ,K) ∈ S \S P \S A. Let N and K be the number

of elements in N and K. Now let x1 ∈ K be the best ranked selected element

such that there is a non-selected element y ∈ N\K such that y < x1. Because the

selection is not perfect, it is possible to find such a x1. Next let y1 ∈ N\K be the

best ranked non-selected element such that there a selected element x ∈ K such

that y1 < x. Again, because the selection is not antiperfect, it is possible to

find such a y1. Now by Axiom 1, (N ,K∪{x1} \ {y1}) �M (N ,K). If the selection

(N ,K∪{x1} \ {y1}) is perfect, then we are done. If not, we can repeat, until

a perfect selection in reached. This happens in at most min {K,N −K} steps,

and establishes that (Np,Kp) �M (N ,K). The demonstration that (N ,K) �M

(Na,Ka) is identical.

In words, Proposition 1 says that all perfect selections are equally or-

derly, and similarly, that all antiperfect selections are equally orderly.

The third statement asserts that every perfect selection is strictly more

orderly than every non-perfect selection, and every antiperfect selec-

tion is strictly less orderly than every non-antiperfect selection. This is

entirely reasonable when the selection is from the same set. Thus, selecting

the best ten from a set of one hundred elements is clearly more orderly than

selecting the best nine and the eleventh. However, as we want to extend

the range of selected sets to be compared, it is possible to think of extreme

situations when the size of the sets and of the selections is different, and

when the argument that a perfect selection is more orderly is less clear-

cut. Consider, for example, the following case: is selecting the better of the

two elements of a set unquestionably more orderly than selecting the best

25 and the 27-th ranked out of a set with 10,000 elements? Proposition 1

answers unambiguously yes, but someone might argue in favour of the op-

15



posite, on the grounds that the former is more likely than the latter to have

been determined by other criteria, which by chance happen to coincide with

the rank, whereas the selection of the first 25 and the 27-th elements out of

a very large set would almost surely be seen as the consequence of a deter-

minate intention to use the rank as the criterion for selection, with the 26-th

element being excluded due to some other criterion.

3 An index of “orderliness”

Definition 3 An index of orderliness is a function M : S −→ [−1, 1] such

that, given any two selected sets (NA,KA) , (NB,KB) ∈ S , (NA,KA) %M

(NB,KB) if and only if M (m (NA,KA)) >M (m (NB,KB)).

Note that we require the index to takes values ranging from −1 to 1, in the

cases of an antiperfect and a perfect selection, respectively. Of course,

a different normalisation would allow us to choose any two end points. How-

ever, in analogy with the measures of correlation, having 1 indicating perfect

orderliness, and −1 its antithesis, where the selection perversely chooses the

worst elements, does seem the natural choice. In analogy with the theory

of consumers’ preferences, existence of the index of orderliness is ensured by

the additional requirement that the orderliness relation is continuous. The

formal proof is identical with the proof of the existence of a utility function;

as with consumer theory, a lexicographic relation illustrates well the need of

continuity to represent orderliness through an index. Consider the following

way of comparing the orderliness of any two selected sets: take first the best

ranked element in each: if only one selection includes it, then that selection

is strictly more orderly than the other. Otherwise, look next at the second

best ranked element, and again, if it is included only in one selection, this is
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the more orderly one. Again, if they are both or neither selected, go to the

next ranked element and so on. If one selection “runs out of elements” before

the other, then it is less orderly. In analogy with consumer preferences, this

relation is reflexive, complete and transitive, but it is not continuous, and so

it cannot be represented by an index of orderliness.10

To ensure existence of a orderliness index representing a relation M, there-

fore we require that the orderliness relation be continuous.11

Uniqueness, on the other hand, is not ensured by the three axioms pro-

posed: it is possible to find pairs of relations both satisfying the three axioms,

which rank differently the orderliness of given selected sets, and therefore are

represented by indices of orderliness which attach differently ordered values

to given selected sets. To see this, consider the following two indices.

M (m (N ,K)) =
N + 1− 2

K

∑
x∈K ρN (x)

N −K
, (2)

and

M1(m (N ,K)) =
2K2+1

3
+N (N −K + 1)− 2

K

∑
x∈K ρN (x)2

(N + 1) (N −K)
. (3)

10The relation given in the text can be formalised as follows.
Given any two selected sets (NA,KA) , (NB ,KB) ∈ S , take x1 ∈ NA with ρ (x1) = 1 and
y1 ∈ NB with ρ (y1) = 1. If x1 ∈ KA and y1 /∈ KB then (NA,KA) �M (NB ,KB), and vice
versa if x1 /∈ KA and y1 ∈ KB then (NB ,KB) �M (NA,KA). Otherwise, that is if either
(x1 ∈ KA and y1 ∈ KB) or (x1 /∈ KA and y1 /∈ KB), then take x2 ∈ NA with ρ (x2) = 2
and y2 ∈ NB with ρ (y2) = 2. If x2 ∈ KA and y2 /∈ KB then (NA,KA) �M (NB ,KB), and
vice versa if x2 /∈ KA and y2 ∈ KB then (NB ,KB) �M (NA,KA).
For i > 2: if (xi ∈ KA and yi ∈ KB) or if (xi /∈ KA and yi /∈ KB), then: if KA = i
and KB = i, then (NB ,KB) ∼M (NA,KA); if KA > i and KB = i, then (NA,KA) �M

(NB ,KB), and vice versa if KA = i and KB > i, then (NB ,KB) �M (NA,KA); if KA > i
and KB > i, then take xi+1 ∈ NA with ρ (xi+1) = i+1 and yi+1 ∈ NB with ρ (yi+1) = i+1.
If xi+1 ∈ KA and yi+1 /∈ KB then (NA,KA) �M (NB ,KB), and vice versa if xi+1 /∈ KA

and yi+1 ∈ KB then (NB ,KB) �M (NA,KA).
11That is, the inverse image M of any open subset of S is itself open. Given a set s ⊆ S,

its inverse image is the set M−1 (s) = {s ∈ S|∃s1 ∈ s : sMs1}. Because the cardinality of
the set S is the same as that of the set of real numbers (Lucas 1990, pp 134–135), open
sets in S are those that are put in correspondence with open intervals in R by a surjection.
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For future reference, it is convenient to denote the sum of the ranks of the

selected elements as:

r =
∑
x∈K

ρN (x) . (4)

Using (4), the expression in (2) can then be written as

M(m (N ,K)) =
rN,K + rK − 2r

rN,K − rK
,

where rK and rN,K are the sum of the ranks when the best and the worst

K elements are selected, respectively, and therefore they are given by: rK =∑K
j=1 j, and rN,K =

∑N
j=N−K+1 j. Similarly for M1(m (N ,K)): it can be

written as

M1(m (N ,K)) =
rN,K1 + r1,K − 2

∑
x∈K ρN (x)2

rN,K1 − r1,K
,

where r1,K and rN,K1 are the sum of the squares of the ranks when the best and

the worst K elements are selected, r1,K =
∑K

j=1 j
2, and rN,K1 =

∑N
j=N−K+1 j

2.

Proposition 2 A relation represented by the index M(m (N ,K)) satisfies

Axioms 1-3.

Proof. Suppose a relation M on S × S is given, which can be represented by

the index (2), M(m (N ,K)). We begin by showing that M satisfies Axioms 2 and

3. In each of these axioms, a new element z is added to the set N . Therefore N

increases by 1. What happens to K and to the total rank r depends on which part

of which Axiom is considered. In Axiom 2.i the new element z is in the selection,

and so K also increases by 1, and as z is better than every selected element, the

total rank increases by ρN (z) + K: each of the K previously selected elements

increases by 1, and the new element’s rank ρ (z) is added to the total. The value
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of M therefore changes from
N + 1− 2

K r

N −K
(5)

to
N + 2− 2

K+1 (r + ρN (z) +K)

N −K
.

The difference is
2 r
K − 2ρN (z)−K + 1

(N −K) (K + 1)
, (6)

which is increasing in r, and equals 2
(N−K)(K+1) > 0 when r takes its lowest possible

value given ρN (z),
∑ρN (z)+K

j=ρN (z)+1 j. Thus it is positive for every feasible value of r.

If the new element is not selected, Axiom 2.ii, then K does not change, but the

total rank of the selected elements increases by K, since the rank of every selected

element increases by 1, and so the value of the index changes from (5) to

N − 2
K r

N + 1−K
.

The difference with (5) is − 2N−K+1− 2
K
r

(N+1−K)(N−K) which is increasing in r, and since it is

0 at the maximum value of r, rN,K = K(2N−K+1)
2 , it is strictly negative for any

other value of r, establishing the result.

Next consider Axiom 3. There is a new element in N which is worse than

all the elements selected. In Axiom 3.i, the new element is not selected, and so

neither K nor r change. In this case, the index (2) becomes

N + 2− 2
K r

N + 1−K
.

The difference with its previous value, (5), is − K+1− 2
K
r

(N+1−K)(N−K) , which is increasing

in r. Since it is 0 at the minimum value of r, which is rK = K(K+1)
2 , it is strictly

positive for any other value of r, and so the index increases in this case. Finally

Axiom 3.ii: the new element, worse than all those already selected, is itself selected.
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Table 1: Summary of the proof of Proposition 2.

∀y ∈ K, z /∈ N , zRy ∀y ∈ K, z /∈ N , yRz
Axiom 2.i: z ∈ K.

r increases by ρN (z) +K,

K increases by 1.

The orderliness is higher:
N+2− 2

K+1
(r+ρN (z)+K)

N−K > M (N ,K)

Axiom 3.ii: z ∈ K.

r increases by ρN (z),

K increases by 1.

The orderliness is lower:
N+2− 2

K+1
(r+ρN (z))

N−K < M (N ,K)

Axiom 2.ii: z /∈ K.

r increases by K,

K does not change.

The orderliness is lower:
N− 2

K
r

N+1−K < M (N ,K)

Axiom 3.i: z /∈ K.

r does not change,

K does not change.

The orderliness is higher:
N+2− 2

K
r

N+1−K > M (N ,K)

Thus K increases by 1 and r by ρN (z), and so index (2) becomes

N + 2− 2
K+1 (r + ρN (z))

N −K
,

and the difference with (5) is
K+1−ρN (z)+ 2

K
r

(N−K)(K+1) , increasing in r and taking, for given

ρN (z), its maximum value, 0, at r =
∑ρN (z)−1

j=ρN (z)−K j = K
(
ρN (z)− 1+K

2

)
.

Consider finally Axiom 1, which is straightforward: the swap between an ele-

ment in the selection and an element not in the selection changes neither K nor N .

It only changes r, and so clearly the index M increases if r decreases, that is if a

better ranked element takes the place of a worse ranked one in the selection. This

establishes that the index (2) satisfies all the Axioms and completes the proof.

Table 1 summarises the proof of Lemma 2, by presenting a schematic

description of the effects of adding a new element to a selected set, and of

the effects which Axioms 2 and 3 require on the value of the index: in all

cases, N increases by 1, and K, r, and M (N ,K) are the original values of the

size of the selection, of the sum of the ranks, and of the index of orderliness.
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The analogous of Proposition 2 for the index (3) holds, but its proof is

essentially identical to the above proof and is omitted.

Proposition 3 A relation represented by the index M1(m (N ,K)) satisfies

Axioms 1-3.

Now consider the following two selected sets, (NA,KA) and (NB,KB) such

that m (NA,KA) = (11, {2, 3, 5, 8, 9}) and m (NB,KB) = (11, {1, 2, 3, 8, 11}).

Graphically, these differ only in the selection of the elements in the boxes:

(NA,KA) −→ 0 110 1 001 1 0 0 ,

(NB,KB) −→ 1 110 0 001 0 0 1 .

We haveM(m (NA,KA)) < M(m (NB,KB)) andM1(m (NA,KA)) > M1(m (NB,KB)):

if the relation of orderliness is represented by index (2), then the second is

more orderly, and vice versa, if orderliness is described by a relation repre-

sented by index (3) then the first is more orderly. Thus both indices M and

M1 satisfy Axioms 1-3, and yet they give a different answer to the question

of the relative orderliness of the two sets: Axioms 1-3 are not characterising.

The restriction required to ensure characterisation is remarkably simple,

as the rest of the paper shows. We replace Axiom 1 with the following.

Axiom 4 (Mirror invariance) For all (N ,K) ∈ S and x /∈ N ,
(
N ∪

{x} ,K ∪ {x}
)
%M (N ,K) if and only if (N ,N\K) %M (N ∪ {x} ,N\K).

In words, suppose that a new element is added to the set N , and that this

makes the new selected set more orderly. Then it must be the case that the

“mirror image” of the new selected set, that is the selection from the same set

which includes all the elements which are not selected in the original selection,

and excludes all those which were included, is less orderly than the mirror
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image of the original selected set. Axiom 4 is stated for the case when the

new element is selected, but it of course implies the opposite case:
(
N ∪{x} ,

K
)
%M (N ,K) if and only if (N ,N\K) %M (N ∪ {x} ,N\K ∪ {x}). Axiom

4 is illustrated below, using the representation of a selected set given above:

(N ,K) −→ 001001010110000000000,

(N ,N\K) −→ 110110101001111111111,

(N∪{x} ,K∪{x}) −→ 0010 1 01010110000000000,

(N∪{x} ,N\K) −→ 1101 0 10101001111111111.

If the first selected set is more orderly than the third, which differ from

the first as it has a new element, ranked 5, which is selected, then it must be

the case that the second is less orderly than the fourth, which is the mirror

image of the third, and vice versa.

We can now establish the main result of the paper.

Theorem 1 A reflexive transitive, complete and continuous orderliness rela-

tion M satisfies Axioms 2-4 if and only if it can be represented by a monotonic

transformation of the index of orderliness M(m (N ,K)), given in (2).

The “if” part of this result follows immediately from Proposition 2: to

see this simply note that Axiom 4 implies Axiom 1. To establish the “only

if” part, suppose that there is an orderliness relation which satisfies Axiom

4, which is represented by an index M which is not a function of the sum of

the ranks of the selected elements. In particular take a set (N ,K) and a new

element x /∈ N , and let the index attached to the set (N ,K) have value M0.

This can be mapped into the index of orderliness (2), so that

M (m (N ,K)) =
N + 1− 2

K
r

N −K
, (7)
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The “only if” part is based on the following Lemma, which also has

independent interest.

Lemma 1 An index of orderliness represents a relation M satisfying Axiom

4 if and only if it is a decreasing function of the sum of the ranks of the

selected elements.

Proof. Consider a set (N ,K). We show, first, that the index (7), which is

decreasing in the sum of the ranks of the selected elements, does indeed satisfy

Axiom 4, and, second, that an index which satisfies Axiom 4 must be decreasing

in the sum of the ranks of the selected elements.

Starting from the set (N ,K) , suppose that we add a new element x, which

takes rank ρN (x), and with kx selected elements in the “initial” set (N ,K) with

better rank than x. The sum of the ranks of the selected elements in the new set

(N ∪ {x} ,K ∪ {x}) is (r + ρN (x) + (K − kx)), and hence the index of orderliness

of this new set is given by:

M (m (N ∪ {x} ,K ∪ {x})) =
N + 2− 2

K+1 (r + ρN (x) +K − kx)

N −K
. (8)

Suppose that this new element x makes the selection more orderly, and so the

expression on the RHS of (8) must exceed the corresponding expression in (7):

N + 2− 2
K+1 (r + ρ (x) +K − kx)

N −K
>
N + 1− 2

K r

N −K
.

Re-arranging, we can see that the above inequality holds, and therefore that the

index of orderliness increases when the new element x is added to the selected set

and selected, if and only if

r

K
− ρN (x) + kx >

K − 1

2
. (9)

Now, for Axiom 4 to hold, we require that the mirror image of the new set is
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less orderly than the mirror image (N ,N\K) of the “initial” set, since the set

(N∪{x} ,K∪{x}) is more orderly than the “initial” set (N ,K).

We therefore proceed to calculate the index of orderliness for the mirror image

of the “initial” set (N ,K), that is for the selected set (N ,N\K). In this set, there

are N elements of which (N −K) are selected. The sum of the selected elements

of (N ,N\K) is given by N(N+1)
2 − r, and so we have:

M (m (N ,N\K)) =
N + 1− 2

N−K

(
N(N+1)

2 − r
)

K
. (10)

The mirror image of the “new” set (N∪{x} ,K∪{x}), is the set (N ∪ {x} ,N\K).

In this set there are N − ρN (x) + 1 elements with rank worse than x, of which

(K − k) are not selected. Therefore N − ρN (x) + 1 − (K − kx) are selected, in-

creasing the sum of the ranks of the selected elements by this amount. Thus:

M (m (N ∪ {x} ,N\K)) =

N + 2− 2
N−K

((
N(N+1)

2 − r
)

+N − ρN (x) + 1− (K − kx)
)

K + 1
. (11)

Axiom 4 requires that the RHS of (10) exceeds the RHS of (11). Simple algebraic

re-arrangement shows that this is the case if and only if condition (9) holds. We

have therefore shown that an orderliness relationship that is represented by the

index (7) satisfies Axiom 4.

Next we show that if an orderliness relationship satisfies Axiom 4, then it must

be decreasing in the sum of the ranks of the selected elements. And thus there is

a monotonic transformation such that it equals index (7).

We proceed from a selected set (N ,K), to which we add a new element x /∈ N ,

which is selected, and then remove a selected element of N , y ∈ K. Thus we start

from set (N ,K) and arrive at a “final” set (N ∪ {x} \ {y} ,K ∪ {x} \ {y}), which

has the same N and the same K. Suppose that this makes the new set more

orderly. We show that the change in the sum of the ranks of the selected elements
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from the “initial” set and the “final” set has the opposite sign of the corresponding

change in their mirror images. Recall that, since this orderliness relation satisfies

Axiom 4, then the mirror image of the “new” set is more orderly than the mirror

image of the original set (N ,N\K), and so the index is monotonic in the sum of the

ranks of the selected elements. Moreover, because it must take values −1 and 1 at

antiperfect and perfect selections respectively, then it must be monotonically

decreasing, and this proves the Lemma.

So to establish the above argument, we compute the sum of the ranks of the

selected elements in these four sets, namely the “initial” set (N ,K), the “final” set

(N ∪ {x} \ {y} ,K ∪ {x} \ {y}), and their respective mirror images, (N ∪ {x} ,N\K)

and (N ∪ {x} \ {y} ,N\K). Begin with a selected set (N ,K) , and let r be the sum

of the ranks of the selected elements. Add x, and the sum of the selected ranks

of the selected elements of this set, (N ∪ {x} ,K ∪ {x}), is r + ρN (x) + (K − kx),

where, as above, kx is the number of selected elements in the “initial” set (N ,K)

with better rank than x. Now remove from this set the element y, which has rank

ρN∪{x} (y) in the set (N ∪ {x} ,K ∪ {x}). The sum of the rank in the set thus

obtained, (N ∪ {x} \ {y} ,K ∪ {x} \ {y}), is

(
r + ρN (x) + (K − kx)

)
− ρN∪{x} (y)− (K + 1− ky) , (12)

where ky is the number of selected elements in the “intermediate” set (N ∪ {x} ,K ∪ {x})

with better rank than y.

Now consider the mirror images. For the initial set (N ,N\K), this is (N+1)N
2 −

r. The sum of the ranks of the selected elements in the mirror image of the interme-

diate set (N ∪ {x} ,N\K) is, as shown above, (N+1)N
2 −r+(N −K − (ρN (x)− 1− kx))

(the initial number of selected elements, minus the number of those which are

better than x: there are (ρN (x)− 1) elements of rank lower than x and kx are se-

lected). Finally, remove y from the mirror image of the intermediate set, to obtain

the mirror image of the final set. The sum of the ranks of the selected elements of
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this set is

(
(N + 1)N

2
− r + (N −K − (ρN (x)− 1− kx))

)
−
(
N −K − ρN∪{x} (y) + ky

)
.

(13)

The first brackets contain the sum of the ranks of the selected elements in the

intermediate set. This is changed by the removal of y: we must subtract 1 for

each of those elements that were in the “intermediate” set (N ∪ {x} ,K ∪ {x}),

had worse rank than y, and were not selected: N −K were not selected, and ky

were better than y. So ρN∪{x} (y)− ky were not selected and are better than y.

To establish the Lemma we need to show that if the sum of ranks (12) is lower

than r (the sum of the ranks in the “initial” set (N ,K)), then the sum of the ranks

of (13) is higher than (N+1)N
2 − r, the sum of the ranks in the mirror image of the

“initial” set (N ,N\K). That is if

(
r + ρN (x) + (K − kx)

)
− ρN∪{x} (y)− (K + 1− ky) < r, (14)

then

(
(N + 1)N

2
− r + (N −K − (ρN (x)− 1− kx))

)
−
(
N −K − ρN∪{x} (y) + ky

)
>

(N + 1)N

2
− r. (15)

As required, (14) and (15) are equivalent, and the proof is complete.

This Lemma implies that a change that decreases the sum of the ranks

of the selected elements makes the set more orderly would make the mirror

image of the selected set less orderly, as required by Axiom 4.

We can now prove the main theorem, by showing that every index of

orderliness representing a relation M satisfying Axioms 2 and 3 which is a

decreasing function of the sum of the ranks of the selected elements is a
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strictly monotonic transformation of M(m (N ,K)).

Proof of Theorem 1. Given the ordinal property of the ranking determined

by the index, any strictly decreasing function of the sum of ranks can be mapped

through a monotonic transformation into a decreasing linear function of the sum

of ranks. That is, any index of orderliness which is a function of the sum of the

ranks, r, can be transformed into one that is written as

M(m (N ,K)) = aK,N − bK,Nr.

Moreover Proposition 1 constrains all perfect selections have the same value,

and all antiperfect selections also to have the same value: these values can be

normalised to 1 and −1 respectively . This implies that for every N > 1 and every

K < N , the following must hold

aK,N − bK,N
K (K + 1)

2
= 1, (16)

aK,N − bK,N
K (2N −K + 1)

2
= −1. (17)

The first condition requires all perfect selections to give value 1 to the index

and the second all antiperfect selections to give value −1. Solving the above in

aK,N and bK,N , we get:

aK,N =
N + 1

N −K
, (18)

bK,N =
2

K (N −K)
. (19)

Next, we proceed by induction on N . When N = 2, its lowest possible value,

there are two possible selections from the set {1, 2}, K = {1} which has sum of

ranks r = 1 and K = {2} which has sum of ranks r = 2. The former is perfect,

and so we must have a1,2 − b1,2 = 1, and the latter is antiperfect, and so

a1,2 − 2b1,2 = −1. (18) and (19) satisfy these constraints. In addition, (18) and
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(19) must also satisfy Axioms 2 and 3.

• When the selection is K = {1}, adding a new element to N can result in a

selected set with any of the following images: {1, 2} (Axiom 2.i or Axiom 3.i),

{2} (Axiom 2.ii), {1} (Axiom 3.i) and {1, 3} (Axiom 3.ii). Of these {1, 2}

and {1} are perfect, and so it must be a2,3− 3b2,3 = 1 and a1,3− b1,3 = 1:

both of these hold. Conversely, {2} and {1, 3} are not perfect, and so

a1,3 − 2b1,3 ∈ (−1, 1) and a2,3 − 4b2,3 ∈ (−1, 1) which hold.

• Similarly, when the selection is K = {2}, the add operation can result in

any of the following new selected sets: {1, 3} (Axiom 2.i) {2, 3} (again Ax-

iom 2.i and also Axiom 3.ii), {3} (Axiom 2.ii), {2} (Axiom 3.i). Selection

{2, 3} is antiperfect, and so a2,3 − 5b2,3 must equal −1, and selection is

also antiperfect {3}, which requires a1,3 − 3b1,3 = −1. The remaining

selections are not antiperfect, and this requires: a2,3 − 4b2,3 ∈ (−1, 1),

and a1,3 − 2b1,3 ∈ (−1, 1). All these hold when aK,N and bK,N are given by

(18) and (19).

This establishes that the coefficients a and b satisfy (16) and (17) and so are

given by (18) and (19) when N = 2, and establishes the first step of the induction

process. For the second step, assume to have shown that the statement holds for

N − 1, that is:

aK,N−1 =
N

N − 1−K
, (20)

bK,N−1 =
2

K (N − 1−K)
, (21)

for all K = 1, . . . , N − 2. Recall that rK and rN,K are the lowest and highest

possible values for the sum of ranks r when the set has size N and the selection
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has size K. We must have:

aK−1,N−1 − bK−1,N−1rK−1 = aK,N − bK,NrK

= aK,N − bK,N (rK−1 +K) , (22)

because if the selection is perfect then including a new element both in N and

in K increases the lowest possible sum of the ranks by K. And similarly for the

highest possible sum of ranks:

aK−1,N−1 − bK−1,N−1rN−1,K−1 = aK,N − bK,NrN,K

= aK,N − bK,N
(
rN−1,K−1 +N

)
. (23)

By the induction hypothesis, (20)-(21), we have that

aK−1,N−1 =
N

N −K
,

bK−1,N−1 =
2

(N −K) (K − 1)
.

Substitute these into the two above equations, (22) and (23):

N

N −K
− 2rK−1

(N −K) (K − 1)
= aK,N − bK,N (rK−1 +K) ,

N

N −K
− 2rN−1,K−1

(N −K) (K − 1)
= aK,N − bK,N

(
rN−1,K−1 +N

)
;

now substitute

rK−1 =
(K − 1) ((K − 1) + 1)

2
=
K (K − 1)

2
,

rN−1,K−1 =
(K − 1) (2 (N − 1)− (K − 1) + 1)

2
=

(2N −K) (K − 1)

2
,
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to get:

N

N −K
− K (K − 1)

(N −K) (K − 1)
= aK,N − bK,N

(
K (K − 1)

2
+K

)
,

N

N −K
− (2N −K) (K − 1)

(N −K) (K − 1)
= aK,N − bK,N

(
(2N −K) (K − 1)

2
+N

)
.

Finally, solve the above in aK,N and bK,N , to obtain (18) and (19). This establishes

the Theorerm.

Obviously any strictly monotonic transformation of the index (2) would

represent a relation satisfying Axioms 2-4. The functional form in (2), which

is linear in the sum of ranks, has the natural property of being 0, in expecta-

tion, if the selection is completely random: to see this, note that the expected

rank of K random draws is K(N+1)
2

. Substitute this in (2), to obtain 0.

Theorem 1 is the main result of the paper: in words, it shows that the

index of orderliness (2) satisfies the dominance Axioms 2 and 3, and the mir-

ror invariance Axiom 4, and, conversely, that any index which satisfies the

dominance Axioms 2 and 3, and the mirror invariance Axiom 4, is a mono-

tonic transformation of the index of orderliness (2). Only index (2) satisfies

all three axioms, and it is the only one (up to monotonic transformations) to

do so: Axioms 2, 3 and 4 together characterise the index of orderliness (2).

The structure of the proof of Theorem 1 allows to replace the mirror in-

variance Axiom with an equivalent one, which gives a different interpretation

to the restriction imposed on the orderliness relation to obtain characterisa-

tion.

Axiom 5 (Position Irrelevance) For every (N ,K) ∈ S and for ev-

ery y1 ∈ N\K and x1 ∈ K, satisfying ρ (x1) = ρ (y1) + a, and any y2 ∈

N\K∪{x1} and x2 ∈ K∪{y1}, satisfying ρ (x2) = ρ (y2) − a, where a is
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any integer such that ρ (y1) + a, ρ (y2) − a ∈ {1, . . . , N}, then (N ,K) ∼M

(N ,K∪{y1, y2} \ {x1, x2}).

In words, Axiom 5 considers two subsequent “swaps” between a selected

and a non-selected element. The element newly included in the selection and

the one removed differ in rank by a. The second swap turns the intermediate

selection obtained with the first swap into the final one, by selecting an

element not selected and removing another element from the (intermediate)

selection which are −a ranks apart. Thus, for example, if the first swap

selects the (originally non-selected) 12-th ranked element and de-selects the

19-th ranked; their difference in rank is −7. Suppose the second swap selects

the (originally non-selected) 56-th ranked element and de-selects the 49-th

ranked; their difference in rank is 7.12 Then, by Axiom 5, the initial and

the final selection are equally orderly. In shorter, looser words, the effect of

a change in the selection depends only on the extent of the change, not on

whether it affects the upper or the lower tail of the distribution.13 We note

that the relative importance of the position in the ranking is at the core of the

analysis of distance between preferences in Can (2014). It is straightforward

to establish the following.

Corollary 2 A reflexive transitive, complete and continuous orderliness re-

lation M satisfies Axioms 2, 3, and 5 if and only if it can be represented by

a monotonic transformation of the index of orderliness M(m (N ,K)), given

12The element swapped in the second swap need not be different from the elements
swapped in the first.

13A simple example may illustrate this idea: in some sports, a team’s success is deter-
mined by the performance of its best athletes. This is typically the case, for example, in
“Grand Tour” cycling, where a team’s objective is for the team leader to win the race. In
rowing (and in team pursuit cycling), on the other hand, everyone must push at the same
rate, and the team’s result is heavily influenced by the performance of its weakest mem-
bers. Ranking of selections would, in these sports, violate Axiom 5. Conversely, relays in
track and field (especially the 4×400) approximately satisfy Axiom 5.
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in (2).

Proof. This is simply a consequence of Lemma 1 together with the obvious

observation that the sum of the ranks is left unchanged by a swap that satisfies

Axiom 5.

Note that Theorem 1 and Corollary 2 together imply that Axioms 4,

mirror invariance, and Axiom 5, position irrelevance, are equivalent: each

holds for a relation if and only if the other does.

4 The index M and the Kendall-Tau distance

The study of metrics on orders, initiated by Kendall (1938) has developed

a measure of distance between two rankings of the elements of a given set

N , the Kendall-Tau distance (Kemeny 1959), recently extended to choice

functions (Klamler 2008). This is obtained by counting the number of times

the two rankings “switch” two elements x, y ∈ N . That is, if ρ1 and ρ2

are the two rankings, the distance between them is the number of pairs

(x, y) ∈ N ×N such that ρ1 (x) > ρ2 (x) and ρ1 (y) < ρ2 (y). This count can

then be normalised by the maximum possible number of switches.

This idea has been applied to voting mechanism, whereby a ranking is

interpreted as a vote, and the outcome of an election as the aggregation of

the rankings of different voters.14 We view the Kendall-Tau distance from

a different angle: note in the first place that the index of orderliness (2)

applies to a broader range of situations, such as those where the selections

being compared are from different sets. Secondly, the orderliness index (2)

compares selections, rather than rankings, as the Kendall-Tau distance does.

14Young (1995) includes an intuitive introduction; among the many more recent exam-
ples, Davenport and Kalagnanam (2004), or Betzler and Dorn (2010).
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Nevertheless, a selection does rank the elements of a set, albeit in a very

coarse manner: the K selected elements are joint first, and the non-selected

ones are joint (K + 1)-th. Recall that the Kendall-Tau distance is defined

when there are ties, and so we can measure the Kendall-Tau distance between

the ranking determined by a selection and a given ranking ρ of N . In this

section we study the relation between this Kendall-Tau distance and the

index of orderliness (2), M(N ,K).

To develop the formal analysis, given a selected set (N ,K), define a map-

ping κNK : N −→ {1, . . . , N} as follows:

κNK : x 7−→

{
1 if x ∈ K,

K + 1 if x ∈ N\K.
(24)

That is the ordering κNK assigns a better rank to x ∈ N than to y ∈ N

if and only x is selected and y is not. We can label κNK the ordering induced

by the selection K. Since it is an ordering of the set N , we can define the

Kendall-Tau distance between ρ and κNK. To count the number of switches

between rankings ρ and κNK, note that a switch occurs only when the better

element is not selected and the worse one is. The total number of switches

is thus measured by:∣∣κNK (x)− κNK (y)
∣∣

2K

(
1− ρ (x)− ρ (y)

|ρ (x)− ρ (y)|
κNK (x)− κNK (y)− ε
|κNK (x)− κNK (y)− ε|

)
,

where ε ∈ (0, 1). To see this, note simply that the first term is 1
2

if only one

of x and y is selected, and is 0 otherwise. Consider the second factor: given

that κNK (x) 6= κNK (y), its second term is 1 if ρ and κ agree, and −1 if they

do not, and so the whole term is 2 if a switch occurs. The role of ε is to

ensure that the denominator is never 0. To sum up, the Kendall distance,

33



between the ranking of a set N and the ranking induced by the selection K

is given by

τ(N ,K) =
∑
x∈N

∑
y∈N\{x}

∣∣κNK (x)− κNK (y)
∣∣

2K

(
1− ρ(x)−ρ(y)

|ρ(x)−ρ(y)|
κNK(x)−κNK(y)− 1

2

|κNK(x)−κNK(y)− 1
2 |

)
.

Next note that the maximum number of switches is (N −K)K, which hap-

pens in an antiperfect selection, where the first N −K elements have K

switches each, and therefore the normalised Kendall-Tau distance is

τ̂(N ,K) =
τ(N ,K)

K (N −K)
. (25)

One would want that the shorter the distance between the given ranking

in the set N and the ordering induced by the selection K, the more orderly

the selected set (N ,K). The next results shows that this is indeed the case:

it shows that there is a very simple link between the normalised Kendall-Tau

distance (25) and the index of orderliness (2).

Proposition 4 M(m (N ,K)) = 1− 2τ̂(N ,K).

Proof. We proceed by induction on N , the number of elements of N . It is

trivially true for N = 2. In this case, K = 1: when the better (worse) element

is selected M(m (N ,K)) = 1 and τ̂(N ,K) = τ(N ,K) = 0 (M(m (N ,K)) = −1

and τ̂(N ,K) = τ(N ,K) = 1). Next, suppose to have demonstrated the result for

N − 1; let K be the number of selected elements, so we have

M(m (N ,K)) = 1− 2τ̂(N ,K),

and

M(m (N ,K)) =
N − 2

K

∑
x∈K ρ (x)

N − 1−K
=
K (N − 1−K)− 2τ(N ,K)

K (N − 1−K)
, (26)
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which implies: ∑
x∈K

ρ (x)− τ(N ,K) =
1

2
K (K + 1) . (27)

Now increase the number of elements in the set from N−1 to N , which is achieved

via the inclusion in N of a new element, z. Its rank in the new set N∪{z} is ρ (z) ∈

{1, . . . , N}, and z is either selected, giving the new selected set (N ∪ {z} ,K ∪ {z}),

or not selected, giving the set (N ∪ {z} ,K). Consider the first case: the new

number of selected elements is K + 1. In this case note that the total rank of the

selected elements increases by ρ (z) + s, where s is the number of elements in the

set {y ∈ K|ρ (y) > ρ (z)}. The new value of τ , is instead equal to the previous one,

τ(N ,K), increased by the number of new switches generated by z: all the previous

switches remain such of course. This is given simply by the number of elements in

the set {y ∈ N\K|ρ (y) < ρ (z)}, which can be obtained by noting that there are

ρ (z)− 1 elements ranked better than z, and that K − s are selected (because s is

the number of selected elements with rank worse than z). Thus the increase in τ

is (ρ (z)− 1− (K − s)). This gives:

M (m (N ∪ {z} ,K ∪ {z})) =
N + 1− 2

K+1

∑
x∈K ρ (x)− (ρ (z) + s)

(K + 1) (N −K − 1)

=
(K + 1) (N −K − 1)− 2τ(N ,K)− 2 (ρ (z)− 1− (K − s))

(K + 1) (N −K − 1)
.

Rearrange to obtain (27) again. Suppose instead z is not selected, and the new

set is (N ∪ {z} ,K). The total rank of the selected elements increases only by s,

where again s is the number of elements in the set {y ∈ K|ρ (y) > ρ (z)}. The new

value of τ is instead equal to the previous one, τ(N ,K), increased by the number

of new switches generated by z, which in this case is s, the number of selected

elements with rank worse than z. Hence we can write

M (m (N ∪ {z} ,K)) =
N + 1− 2

K

(∑
x∈K ρ (x)− s

)
N −K

=
K (N −K)− 2τ(N ,K)− 2s

K (N −K)
.
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which again gives (27) and completes the proof.

Thus, in addition to satisfying natural axioms, the index (2) coincides,

in the situations where both can be applied, with an established measure of

distance between rankings. This paper therefore provides a micro-foundation

of the Kendall-Tau distance, which currently lacks one.

The Kendall-Tau distance and the Spearman coefficient of rank corre-

lation give in general different answers to the question of the comparison

between two rankings: this implies that there at least one of the axioms

is violated by the Spearman coefficient of correlation between the original

ranking and the ordering κNK derived in (24). The Spearman coefficient,

originally intended for situations with no ties in either ordering, has been

adapted by Taylor (1964) for the case of ties: the adaptation involves re-

placing the ties with ”fractional ties” and adjust with one correction factor

for each set of tied values, again, in either of the two orderings. Given the

assumption of no ties in the ordering of the set N , and given that there are

only two ranks in (24), and thus exactly two correction factors will be re-

quired, one for K, the other for (N-K) tied elements, the Spearman coefficient

of correlation between the original ranking and the ordering κNK derived in

(24) is given by:

1−
6
N

∑N
i=1

(
ρi (x)− κNK (x)

)2
+ N2−1−3K(N−K)

2

N2 − 1
. (28)

We now show one example of a violation of one of the Axioms. Consider

a selected set (N ,K) represented by 0101110000000. Applying the above

formula, we find that the Spearman correlation coefficient is 0.3929. Now

consider adding a new element which occupies the seventh place in the new

ranking, hence is worse that all of the selected elements, and is itself selected,
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so the new selected set can be represented by 010111 1 0000000 (the new

element is the one in the box). By Axiom 3.ii, the new set must be less

orderly. However, applying the above formula to the new set gives a higher

value of 0.4154, in violation of Axiom 3.ii. Similar counterexamples can be

found for the other Axioms, except Axiom 1.

Another measure of correlation is the Kappa correlation. This applies

to ranking with very few steps (and coincides with the selection when there

are only two categories). This suggests a direction for future research in this

area, namely the extension of the index of orderliness to situations where the

selection is more nuanced than simply “in” and “out”. An example is a coach

selection of the first team and of the second team for a sport tournament.

5 Example: orderliness in Italian universities

The orderliness index proposed here finds a natural application in the anal-

ysis of promotions in hierarchical organisations, where, at given intervals,

individuals from the pool of potential candidates are assessed and some are

promoted, some are not. The determinants of promotions may be stated

formally or known implicitly: thus for example, academic promotions may

be decided by criteria ranging from scientific productivity, to teaching per-

formance, fund-rising ability, seniority, or age; the relative importance of

performance along the various criteria may of course vary from institution

to institution and from discipline to discipline.

As explained in Checchi et al (2014), academic careers in Italy are firmly

channelled along narrowly defined research fields: every academic is allocated

to one and only one of 371 scientific sectors (SSDs), changing sector is rel-

atively unusual, and the members of the promotion panels in each scientific
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Figure 1: Orderliness of scientific sectors by productivity and by age - 1995-2011.

sector are chosen exclusively among academic post holders in that sector.

The dataset assembled by Checchi et al (2014) allows us to rank all the

candidates for promotion to associate professor in each scientific sector in the

period from 1995 to 2011 according to two criteria, their record of publication

in international journals15 and their age.

Since with minor exceptions, each panel could select for promotion only

candidates from the lower rank within the same sector, it is a simple matter

to calculate the orderliness of the selections made by the promotion panel in

each scientific sector, in each of the four separate sub-periods which Checchi

et al (2014) suggest to aggregate calendar years to reflect the pattern of the

15Details are again in Checchi et al (2014): from the Thomson Reuters Web of Knowl-
edge dataset, we construct for each candidate a score given by a combination of research
output and impact: the former measured by the number of publications, and the latter
by the individual h-index.
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promotion rounds.

Figure 1 describes the outcome of this process. Each dot corresponds to

one of 371 scientific sectors, except the smaller ones, in one 4-year interval.

The abscissa of a dot is the orderliness according to scientific productivity, its

ordinate the orderliness according to age.16 Broad scientific areas are colour

coded; we have also singled out economics and econometrics among the social

science sectors. An analysis of the Italian university sector might use these

indices as characteristics of the selection procedures used in promotion and

appointments. A cursory visual analysis suggests that overall productivity

matters more than age, and also that it matters more in STEM subjects.

6 Concluding remarks

Often an agent chooses a number of options from a larger set, the elements

of which can be ranked in some objective or generally accepted manner.

We propose a way to assess how close this agent’s selection is to the order

of the set. Aside from its intrinsic interest in the examples given in the

introduction, availability of this measure might address the need reported in

the medical literature for an objective evaluation of clinical services (Iverson

1998, Bickman 2012), or help the study of aspects of social mobility, such

as the importance of a person’s family position in her access to leadership

positions in society.17 In this paper, we require that the comparison between

16Occasionally, the rankings we constructed in this way display ties. The analysis of
this paper applies to antisymmetric relations on the set N , and thus it excludes ties at the
outset. To break the ties in the construction of the orderliness index displayed in Figure
1, we have followed a randomisation approach, by bootstrapping the orderliness index (2)
over many repetitions of the procedure, whenever a scientific sector’s ranking has ties.

17Orderliness is at the basis of the popular book and film Moneyball (Lewis 2004),
which tell the story of a baseball team with relatively scarce financial resources which was
able systematically to outperform its much wealthier rivals by basing all its selections on
the players’ ranks; Hakes and Sauer (2006) confirm econometrically the book’s intuition.
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selections satisfies some natural dominance requirements (Axioms 2 and 3),

and the requirement that the mirror image of a change that nears a selection

to the ranking must push the mirror image of that selection away from the

ranking (Axiom 4). These three simple axioms prove very strong, in that

they identify a unique index which provides an unambiguous comparison of

the relative closeness of any selection to the order of the set from which it

is taken. This index has a very simple expression, which depends only on

the sum of the ranks of the selected elements, and the number of elements in

the set and in the selection. The paper ends with a specific example of the

potential applications of our index to the Italian university system.
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