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Abstract. In 1938, Tarski proved that a formula is not intuitionistically valid
if, and only if, it has a counter-model in the Heyting algebra of open sets of

some topological space. In fact, Tarski showed that any Euclidean space Rn

with n > 1 suffices, as does e.g. the Cantor space. In particular, intuitionistic
logic cannot detect topological dimension in the Heyting algebra of all open

sets of a Euclidean space. By contrast, we consider the lattice of open sub-
polyhedra of a given compact polyhedron P ⊆ Rn, prove that it is a locally

finite Heyting subalgebra of the (non-locally-finite) algebra of all open sets of

P , and show that intuitionistic logic is able to capture the topological dimen-
sion of P through the bounded-depth axiom schemata. Further, we show that

intuitionistic logic is precisely the logic of formulæ valid in all Heyting alge-

bras arising from polyhedra in this manner. Thus, our main theorem reconciles
through polyhedral geometry two classical results: topological completeness in

the style of Tarski, and Jaśkowski’s theorem that intuitionistic logic enjoys the

finite model property. Several questions of interest remain open. E.g., what is
the intermediate logic of all closed triangulable manifolds?

1. Introduction

If X is any topological space, the collection O (X) of its open subsets is a (com-
plete) Heyting algebra whose underlying order is given by set-theoretic inclusion.
One can then interpret formulæ of intuitionistic logic into O (X) by assigning open
sets to propositional atoms, and then extending the assignment to formulæ using
the operations of the Heyting algebra O (X). A formula is true under such an in-
terpretation just when it evaluates to X. In 1938, Tarski ([35], English translation
in [36]) proved that intuitionistic logic is complete with respect to this semantics.
Moreover, Tarski showed that one can considerably restrict the class C of spaces
under consideration without impairing completeness. In particular, one can take
C := {X | X is metrisable}, and even C := {R} or C := {2N}, where 2N denotes the
Cantor space. Tarski’s result opened up a research area that continues to prosper
to this day. Immediate descendants of [35] are the three seminal papers [24, 25, 26]
by McKinsey and Tarski; [25, §3] offers a different proof of the main result of [35]
in the dual language of closed sets and co-Heyting algebras. For an exposition of
the different themes in spatial logic we refer to [2].

Intuitionistic logic has the finite model property. In 1936 Jaśkowski sketched a
proof of this fact [19]; the first detailed exposition of the result1 seems to be [31,
Theorem 5.4] (see also [11, Theorem 2.57]). Algebraically, the finite model property
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may be rephrased into the statement that there exists a set of finite Heyting algebras
that generates the equational class (or variety) of all Heyting algebras. An algebraic
proof of this result was first obtained by McKinsey and Tarski [23, 24] (see [5] for
a discussion of this proof and a comparison with the model-theoretic method of
filtration). Jaśkowski’s proof shows that, in fact, there is a countable, recursively
enumerable2 such set.

Recall that an algebraic structure is locally finite if its finitely generated sub-
structures are finite. The Heyting algebras O (R) and O (2N) are very far from
being locally finite. For example, [25, Theorem 3.33] shows that any Heyting alge-
bra freely generated by a finite set embeds into both O (R) and O (2N), and already
the Heyting algebra freely generated by one element (the Rieger-Nishimura lattice
[30, 28]) is infinite. Thus, while counter-models to formulæ that are not intuition-
istically provable always exist in O (R), they are not automatically finite: one has
to pick the open sets to be assigned to atomic formulæ with extra care in order
to exhibit a finite counter-model such as the ones guaranteed by the finite model
property, see e.g. [6].

Our main result provides a theorem in the style of Tarski that has the advantage
of using locally finite Heyting algebras of open sets only, and hence affords at the
same time the advantages of Jaśkowski’s theorem. Our result exposes and exploits,
we believe for the first time, the connection between intuitionistic logic and the
classical PL (=piecewise linear) category of compact polyhedra in Euclidean spaces
[32, 22]. The needed background is recalled in Section 2, to which the reader is
referred for all unexplained notions in the rest of this Introduction. To state our
results we prepare some notation.

For each n ∈ N := {0, 1, 2, . . .} and each (always compact) polyhedron P ⊆ Rn,
we write Subc P for the collection of subpolyhedra of P — i.e., polyhedra in Rn
contained in P . We set

Subo P := {O ⊆ P | P \O ∈ Subc P} ,
where \ is set-theoretic difference. Members of Subo P are called open (sub)polyhedra
(of P ) throughout this paper. (This choice of terminology requires some clarifica-
tions which we offer in Remark 2.11, when we discuss background on PL topology.)

It is a standard fact that Subo P is a distributive lattice under set-theoretic
intersections and unions, and hence a sublattice of3 O (P ). In Section 3 we prove
that Subo P is, in fact, a Heyting subalgebra of O (P ). In the same section we
prove that, unlike O (P ), Subo P is always locally finite. The proof provides one
of the key insights of the present paper: local finiteness essentially amounts to
the Triangulation Lemma of PL topology, and thus reflects algebraically a crucial
tameness property of polyhedra as opposed to general compact subsets of Rn.

Further tameness properties of polyhedra emerge from their dimension theory,
which is far simpler than the dimension theory of general metric spaces. All stan-
dard topological dimension theories agree on polyhedra [18, 29]. In fact, an ele-
mentary notion of dimension is available for every nonempty polyhedron ∅ 6= P ,
in that dimP 6 d holds if, and only if, any d + 2 distinct points of P are affinely
dependent. In Section 4, we establish a fundamental connection between the topo-
logical dimension of P and the structure of Subo P : the latter lies in the variety of
Heyting algebras of bounded depth d if, and only if, dimP 6 d. Let us recall how

2Each finite Heyting algebra being presented, e.g., by the finite multiplication tables for its

operations. Jaśkowski’s theorem yields at once the decidability of intuitionistic logic. More is
known: the problem of deciding whether a formula is intuitionistically provable is pspace-complete
[34].

3Here and throughout, P is always equipped with the subspace topology inherited from the
Euclidean topology of Rn.
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these varieties are defined. Consider the following inductively defined terms (over
the variables, say, X0, X1, . . .) in the similarity type of Heyting algebras:

bdd :=

{
(X0 ∨ ¬X0 ) if d = 0, and

(Xd ∨ (Xd → bdd−1 ) if d > 1.

Writing > for the constant in the type interpreted as the top element of Heyting
algebras, to each d ∈ N we have a corresponding bounded-depth equation

bdd = > . (1)

The variety of Heyting algebras of bounded depth d is the class of those Heyting al-
gebras H that satisfy equation (1); in other words, H must have the property that
each evaluation of the term bdd in H results in the top element of H. For example,
Heyting algebras of bounded depth 0 coincide with Boolean algebras. Under the
standard one-one correspondence between varieties of Heyting algebras and inter-
mediate logics, the variety of Heyting algebras of bounded depth d corresponds to
the intermediate logic of bounded depth d (see, e.g., [11, Section 2.5]).

If now P is any family of polyhedra, we write LogP for the extension of in-
tuitionistic logic determined by P, namely, the unique intermediate logic corre-
sponding to the variety of Heyting algebras generated by the collection of Heyting
algebras {Subo P | P ∈P}.

Given d ∈ N, let us denote by Pd the set of all polyhedra of dimension less than
or equal to d. Consider any finite poset A of depth d ∈ N. (That is, suppose the
cardinality of the longest chain in A is d+ 1; please see Subsection 2.1 for a formal
definition.) In Section 5, using Alexandrov’s notion of nerve [3], we construct a
polyhedron P of dimension d such that the Heyting algebra of upper sets of A
embeds into the Heyting algebra Subo P . This leads to our main result:

Theorem 1.1. For each d ∈ N, Log Pd is the intermediate logic of bounded depth
d. Therefore, the logic Log

⋃
d∈N Pd of all polyhedra is intuitionistic logic.

We prove the theorem in Section 6. Our proof is self-contained to within the
standard facts from PL topology and Heyting algebras recalled in Section 2.

Returning to Tarski’s theorem, let us consider Euclidean spaces RN and Rn with
N > n ∈ N. In line with the compact setting of the present paper, let us in fact
confine attention to their unit cubes [0, 1]N and [0, 1]n. Then Tarski’s results show,
inter alia, that the Heyting algebras O ([0, 1]N ) and O ([0, 1]n) satisfy precisely the
same equations — i.e., in both cases the corresponding logic is intuitionistic logic
— regardless of the fact that one cube has strictly larger topological dimension
than the other. However, if we consider the smaller Heyting algebras of open
subpolyhedra of the two cubes, then bdn is valid in [0, 1]n and is refuted in [0, 1]N .
Restriction to a class of tame, geometric subsets of Euclidean space such as the
polyhedra of our paper thus allows us to express the dimension of Euclidean spaces
by means of intuitionistic logic and Heyting algebras.

2. Preliminaries

We assume familiarity with intuitionistic logic and Heyting algebras. A few
standard references are [4, 20, 21, 11]. In this section we recall what we need. On
the other hand, we assume rather less about PL topology. All needed definitions
and results are recalled in detail in this section. A few standard references are
[33, 17, 16, 22, 32].

‘Distributive lattice’ means ‘bounded distributive lattice’; homomorphisms are
to preserve both the maximum (>) and the minimum (⊥) element. We write ∧ and
∨ for meets and joins, and write → and ¬ for Heyting implication and negation.
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2.1. Posets and p-morphisms. We denote the partial order relation on any poset
by 6, unless otherwise specified. Given any poset A and any a ∈ A, we set

↑a := {x ∈ A | a 6 x} ,
↓a := {x ∈ A | x 6 a} .

An upper set in A is a subset U ⊆ A closed under ↑: if a ∈ A satisfies a ∈ U , then
↑a ⊆ U . Similarly, a lower set in A is a subset closed under ↓. A chain is a totally
ordered set. A chain in A is a subset C ⊆ A that is a chain when equipped with
the order inherited from A. We define the depth of A to be

depA := sup {|C| − 1 | C ⊆ A is a chain in A} ∈ N ∪ {∞} .

If A and B are posets, a p-morphism from A to B is an order-preserving function
f : A→ B that commutes with ↑: for each a ∈ A,

f [↑a] = ↑f(a).

Here and throughout, f [·] denotes direct image under the function f . Similarly,
f−1[·] will denote inverse image under the function f .

A poset is rooted if it has a minimum. Any poset A gives rise to a Heyting
algebra. First, set

UpA := {U ⊆ A | U is an upper set in A} .

Under the inclusion order, UpA is a complete distributive lattice; arbitrary meets
and joins are provided by set-theoretic unions and intersections. Hence the meet
operation has an adjoint, the uniquely determined implication of UpA that makes
it into a Heyting algebra.4 For later use in the paper, we also prepare the dual
notation

LoA := {L ⊆ A | L is lower set in A} .
As for UpA, we will always regard LoA as a complete distributive lattice under the
inclusion order. LoA has a uniquely determined co-Heyting algebraic structure.5

Conversely, we can associate a poset to any Heyting algebra H. Set

SpecH := {F ⊆ H | F is a prime filter of the distributive lattice H} ,

where the notation ‘Spec’ is for ‘Spectrum’. Equipping SpecH with the inclusion
order, we obtain a poset.

The Heyting algebras of the form UpA, as A ranges over all finite posets, are
precisely the finite Heyting algebras. To see this, given a Heyting algebra H, we
consider the Stone map:

·̂ : H −→ Up SpecH (2)

h ∈ H 7−→ ĥ := {p ∈ SpecH | h ∈ p} .

The following goes back to [9].

Lemma 2.1. For any finite Heyting algebra H, the Stone map (2) is an isomor-
phism of Heyting algebras.

Proof. For detailed proofs see [11, Sec. 8.4] and [27]. �

With the above in place, a modern statement of a part of Jaśkowski’s result cited
in the Introduction is:

4See Subsection 2.4 for the generalisation of this construction to all topological spaces.
5As well as a Heyting one that will not be used in this paper.
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Lemma 2.2 (The finite model property). The equational class of Heyting algebras
is generated by the finite Heyting algebras: any Heyting algebra is a homomorphic
image of a subalgebra of a product of Heyting algebras of the form UpA, as A ranges
over all finite posets.

Proof. See e.g. [11, Thms. 2.57 and 7.21]. �

Remark 2.3. One can restrict the class of finite posets featuring in Lemma 2.2 in
various ways. Thus, Jaśkowski exhibited a specific recursive sequence of posets. It
is also known, for instance, that the class of all finite trees (=rooted posets T such
that ↓t is a chain for each t ∈ T ) suffices, see e.g., [11, Cor. 2.33 and Ex. 2.17]. In
this paper we only need the general form of the result as stated in Lemma 2.2. �

2.2. Finite Esakia duality. Lemma 2.1 can be lifted to a contravariant equiv-
alence of categories between Heyting algebras and Esakia spaces [12]. These are
ordered topological spaces with specific properties; for detailed definitions we re-
fer the reader to [7]. In the finite case of interest here, topology can and will be
dispensed with, because a finite Esakia space can be identified with a finite poset.
Given a homomorphism of finite Heyting algebras h : H → K, set

Spech : SpecK −→ SpecH

p ∈ SpecK 7−→ h−1[p] ∈ SpecH.

Dually, given a p-morphism of posets f : A→ B, set

Up f : UpB −→ UpA

U ∈ UpB 7−→ f−1[U ] ∈ UpA.

Let now HAf and Posf denote the categories of finite Heyting algebras and their
homomorphisms, and of finite posets and p-morphisms, respectively. Then the
above defines functors

Spec: HAf −→ Posop
f ,

Up: Posf −→ HAop
f .

(We are indicating by Cop the category opposite to the category C, as is standard.)

Lemma 2.4 (Esakia duality, finite case). The functors Spec and Up are an equiv-
alence of categories.

Proof. See [11, Exs. 7.5, 7.6 and Sec. 8.5] and [27]. �

Remark 2.5. As with all duality results, Lemma 2.4 provides a dictionary between
notions in HAf and notions in Posf . For example, one shows that a surjective p-
morphism of finite posets dualises to an injective homomorphism of finite Heyting
algebras, i.e. to a Heyting subalgebra, and conversely. We do not dwell on the
details of such translations, and use them whenever needed in the sequel. �

2.3. Bounded depth. Through the bounded-depth equations bdd of the Introduc-
tion, one can equationally express the analogue for Heyting algebras of the Krull
dimension of commutative rings.6

Lemma 2.6. For any non-trivial Heyting algebra H and each d ∈ N, the following
are equivalent.

(i) The longest chain of prime filters in H has cardinality d+ 1.
(ii) dep SpecH = d.

6For recent related literature see [8], where a Krull dimension is defined for any topologi-
cal space and is used in obtaining fine-grained topological completeness results for modal and
intermediate logics.
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(iii) H satisfies the equation bdd = >, and fails each equation bdd′ = > with
0 6 d′ < d.

Proof. See [11, Prop. 2.38 and Table 9.7] and [8]. �

2.4. Heyting and co-Heyting algebras of open and closed sets. The open
(closed) sets of a topological space provide important examples of (co-)Heyting
algebras. For background on co-Heyting algebras we refer to [25, §1 and passim],
where these structures were first axiomatised equationally, and systematically inves-
tigated under the name of ‘Brouwerian algebras’. We write ¬to denote co-Heyting
negation, and ← to denote co-Heyting implication.7

If X is any topological space, we write O (X) for its collection of open sets. Then
O (X) is a complete distributive lattice, bounded above by > := X and below by
⊥ := ∅, with joins given by set-theoretic unions and meets given by∧

F := int
⋂
F

for any family F of open subsets of X, where int denotes the interior operator of the
given topology on X. Therefore O (X) has exactly one structure of Heyting algebra
compatible with its distributive-lattice structure; namely, for any U, V ∈ O (X) the
Heyting implication is given by

U → V :=
⋃
{O ∈ O (X) | U ∩O ⊆ V } = int ( (X \ U) ∪ V ) ). (3)

In particular, the Heyting negation is given by

¬U := U → ⊥ = int (X \ U).

Dually, the family C (X) of closed sets of X is a complete distributive lattice,
bounded above by > := X and below by ⊥ := ∅, with meets given by set-theoretic
intersections and joins given by ∨

F := cl
⋃
F

for any family F of closed subsets of X, where cl denotes the closure operator
of the given topology on X. Therefore C (X) has exactly one structure of co-
Heyting algebra compatible with its distributive-lattice structure; namely, for any
C,D ∈ C (X) the co-Heyting implication is given by

C ← D :=
⋂
{K ∈ C (X) | C ⊆ D ∪K} = cl (C \D). (4)

In particular, the co-Heyting negation is given by

¬D := > ← D = cl (X \D).

Remark 2.7. All our results in this paper have versions for Heyting and co-Heyting
algebras. We stressed the Heyting version in the Introduction, as this relates most
directly to intuitionistic logic. However, we will see below that it is at times con-
venient in proofs to establish the co-Heyting version of the results first, because it
is traditional in simplicial topology to work with closed simplices and polyhedra.
Proofs for the corresponding Heyting versions are obtained through dual arguments,
which we sometimes omit. �

7McKinsey’s and Tarski’s original notations were ¬ and
.
−, respectively.
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2.5. Polyhedra: basic notions. An affine combination of x0, . . . , xd ∈ Rn is an

element
∑d
i=0 rixi ∈ Rn, where ri ∈ R and

∑d
i=0 ri = 1. If, additionally, ri > 0 for

each i ∈ {0, . . . , d},
∑d
i=0 rixi is a convex combination. Given any subset S ⊆ Rn,

the convex hull of S, written convS, is the collection of all convex combinations of
finite subsets of S. Then S is convex if S = convS, and a polytope if S = conv V
for a finite set V ⊆ Rn. A polyhedron in Rn is any subset that can be written as a
finite union of polytopes. The union over an empty index set is allowed, so that ∅ is
a polyhedron. Any polyhedron is closed and bounded, hence compact. If P ⊆ Rn
is a polyhedron, then by an open (sub)polyhedron in P we mean the complement
(within P ) of a polyhedron which is included in P . The points x0, . . . , xd ∈ Rn
are affinely independent if the vectors x1 − x0, x2 − x0, . . . , xd − x0 are linearly
independent, a condition which is invariant under permutations of the index set
{0, . . . , d}. A simplex in Rn is a non-empty8 subset of the form σ := conv V ,
where V := {x0, . . . , xd} is a set of affinely independent points. Then V is the
uniquely determined such affinely independent set [22, Proposition 2.3.3], and σ is
a d-simplex with vertices x0, . . . , xd. A face of the simplex σ is the convex hull of
a non-empty subset of V , and thus is itself a d′-simplex for a uniquely determined
d′ ∈ {0, . . . , d}. Hence the 0-faces of σ are precisely its vertices.

We write

σ = x0 · · ·xd, σ 4 τ, and σ ≺ τ

to indicate that σ is the d-simplex whose vertices are x0, . . . , xd, that σ is a face of
τ , and that σ is a proper (i.e. 6= τ) face of τ , respectively. If σ = x0 · · ·xd ∈ Rn,
the relative interior of σ, denoted relintσ, is the topological interior of σ in the
affine subspace of Rn spanned by9 σ. (Thus, the relative interior of a 0-dimensional
simplex — a point — is the point itself.) To rephrase through coordinates, note
that by the affine independence of the vertices of σ, for each x ∈ σ there exists

a unique choice of ri ∈ R with x =
∑d
i=0 rixi and ri > 0,

∑d
i=1 ri = 1. The

ri’s are traditionally called the barycentric coordinates of x. Then relintσ coincides
with the subset of σ of those points x ∈ σ whose barycentric coordinates are strictly
positive. Note that cl relintσ = σ, the closure being taken in the ambient Euclidean
space Rn. In the rest of this paper, for any set S ⊆ Rn we use the notation

clS (5)

to denote the closure of S in the ambient Euclidean space Rn. Observe that if
P ⊆ Rn is a polyhedron and S ⊆ P , then the closure of S in the subspace P of Rn
agrees with clS, because P is closed in Rn.

2.6. Polyhedra: the Triangulation Lemma.

Definition 2.8 (Triangulation). A triangulation10 is a finite set Σ of simplices in
Rn satisfying the following conditions.

(1) If σ ∈ Σ and τ is a face of σ, then τ ∈ Σ.
(2) If σ, τ ∈ Σ, then σ ∩ τ is either empty, or a common face of σ and τ .

The support, or underlying polyhedron, of the triangulation Σ is

|Σ| :=
⋃

Σ ⊆ Rn.

8It is expedient in this paper not to regard ∅ as a simplex.
9Recall that the affine subspace spanned by a subset S ⊆ Rn is the collection of all affine

combinations of finite subsets of S, or equivalently, the intersection of all affine subspaces of Rn

containing S.
10Also known as (geometric) simplicial complex. Note that the empty triangulation ∅ is

allowed.
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One also says that Σ triangulates the subset |Σ| of Rn. A subtriangulation of
the triangulation Σ is any subset ∆ ⊆ Σ that is itself a triangulation. This is
equivalent to the condition that ∆ be closed under taking faces — i.e. satisfies just
(1) in Definition 2.8 — for then (2) follows [22, Proposition 2.3.6]. By the vertices
of Σ we mean the vertices of the simplices in Σ.

Observe that a subtriangulation of Σ is precisely the same thing as a lower
set of Σ, the latter being regarded as a poset under inclusion. This fact will be
heavily exploited below, cf. in particular Section 4. The following standard fact
makes precise the idea that a triangulation Σ provides a finitary description of the
triangulated space |Σ|.

Lemma 2.9. If Σ is a triangulation, for each x ∈ |Σ| there is exactly one simplex
σx ∈ Σ such that x ∈ relintσ.

Proof. See [22, Proposition 2.3.6]. �

In light of Lemma 2.9, in the sequel we adopt the notation σx without further
comment; the simplex σx is called the carrier of x (in Σ).

Any subset of Rn that admits a triangulation, being a finite union of simplices, is
evidently a polyhedron. The rather less trivial converse is true, too, in the following
strong sense.

Lemma 2.10 (Triangulation Lemma). Given finitely many polyhedra P, P1, . . . , Pm
in Rn with Pi ⊆ P for each i ∈ {1, . . . ,m}, there exists a triangulation Σ of P such
that, for each i ∈ {1, . . . ,m}, the collection

Σi := {σ ∈ Σ | σ ⊆ Pi}

is a triangulation of Pi, i.e. |Σi| = Pi.

Proof. [32, Theorem 2.11 and Addendum 2.12]. �

Remark 2.11. Recall from the Introduction that Subc P and Subo P denote the
collections of polyhedra and open polyhedra in P ⊆ Rn, respectively. As an anony-
mous referee appropriately pointed out to us, a remark on our terminology is in
order. Let us first recall that in the literature on PL topology a polyhedron is a
subset Q ⊆ Rn such that Q :=

⋃
Σ for some locally finite, not necessarily finite,

triangulation Σ. In turn, Σ is a locally finite triangulation if it is a (possibly infi-
nite) set of simplices in Rn meeting conditions (1) and (2) in Definition 2.8, and
such that each simplex in Σ has a neighbourhood in Rn that intersects finitely
many members of Σ. Cf. e.g. [13, pag. 97]. For the purposes of this remark, let
us call a subset Q ⊆ Rn satisfying these conditions a polyhedral set, to distinguish
it from our polyhedra. A polyhedral set is in general neither open nor closed in
the subspace topology it inherits from Rn. And closed and open polyhedral sets in
Rn have the expected meaning — they are just the polyhedral sets in Rn that are
closed and open subsets of Rn, respectively. It follows that a polyhedral set is a
polyhedron (in the sense of this paper) if, and only if, it is compact if, and only if,
it admits a finite triangulation. This last equivalence is based on the Triangulation
Lemma above. Our usage of “polyhedron” tout court as a shorthand for “compact
polyhedron” is frequent in the literature. Now, if P ⊆ Rn is a polyhedron, we
defined an open (sub)polyhedron O in P to be the set-theoretic complement in P
of a polyhedron Q ⊆ P . Such a subset O ⊆ P is then open in the topology of
P , and can be shown to be also a polyhedral set in Rn. However, the notion of
“polyhedral set in Rn that is a subset of P and happens to be open in the topology
of P” is much more general than our notion of “open polyhedron in P”. Indeed,
it is a non-trivial fact (see e.g. [13, Corollary 3.2.22]) that the former sentence just
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describes the collection of all subsets of P that are open in the topology of P —
whether their complement in P is a polyhedron or not! The usual duality between
open and closed sets thus breaks down: in Rn, on standard PL terminology, the
posets of open and closed polyhedral sets are not order-dual. Our more restrictive
notion of open subpolyhedron, though not standard in PL topology, reinstates that
duality. �

The Triangulation Lemma is the fundamental tool in this paper. Here is a first
consequence11 of Lemma 2.10.

Corollary 2.12. For any polyhedron P ⊆ Rn, both Subc P and Subo P are dis-
tributive lattices (under set-theoretic intersections and unions) bounded above by P
and below by ∅. �

Proof. Given polyhedra A,B ⊆ P , by Lemma 2.10 there is a triangulation Σ of P
along with two subtriangulations ΣA,ΣB with A = |ΣA| and B = |ΣB |. Then the
triangulation ∆ := ΣA ∩ΣB triangulates A ∩B. Indeed, |∆| ⊆ A ∩B. Conversely,
if x ∈ A ∩ B then there are σA ∈ ΣA, σB ∈ ΣB with x ∈ σA and x ∈ σB . Setting
τ := σA ∩ σB , we have x ∈ τ 6= ∅ and τ ∈ Σ. Since τ is a face of σA ∈ ΣA, τ ∈ ΣA.
Similarly, τ ∈ ΣB . Hence τ ∈ ∆, and A ∩B ⊆ |∆|. Similarly, it is elementary that
the triangulation ∇ := ΣA ∪ ΣB triangulates A ∪ B. It is obvious that P and ∅
are the upper and lower bounds of Subc P . The statements about Subo P follow at
once by taking complements. �

In Subsection 3.1 we shall strengthen Corollary 2.12 to the effect that Subo P is
a Heyting subalgebra of the Heyting algebra O (P ).

2.7. Polyhedra: dimension theory. The (affine) dimension of a d-simplex σ =
x0 · · ·xd in Rn is the linear-space dimension of the affine subspace of Rn spanned
by σ, and that dimension is precisely d because of the affine independence of the
vertices of σ. The (affine) dimension of a nonempty polyhedron P in Rn is the
maximum of the dimensions of all simplices contained in P ; if P = ∅, its dimension
is −1. We write dimP for the dimension of P . Given a triangulation Σ in Rn, the
(combinatorial) dimension of Σ is

dim Σ := max {d ∈ N | there exists σ ∈ Σ such that σ is a d-simplex}.

Again, the dimension of an empty triangulation is −1. The facts stated in the
following lemma are standard.

Lemma 2.13. For any polyhedron ∅ 6= P ⊆ Rn and every d ∈ N, the following are
equivalent.

(i) dimP = d.
(ii) There exists a triangulation Σ of P such that dim Σ = d.
(iii) All triangulations Σ of P satisfy dim Σ = d.

Proof. With the Triangulation Lemma 2.10 available, the equivalences (i)⇔ (ii)⇔
(iii) follow from linear algebra. �

Remark 2.14. Items (i)–(iii) in Lemma 2.13 refer to the affine structure of the
Euclidean space Rn. We point out that the dimension of P could also be defined in
purely topological terms as the Lebesgue covering dimension [29, Definition 3.1.1]
of the topological space P . The equivalence of this latter definition with item (i)
in Lemma 2.13 is, in essence, the content of the Lebesgue Covering Theorem [18,
Theorem IV 2]. �

11Cf. [22, Proposition 2.3.6(d)].
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3. The locally finite Heyting algebra of a polyhedron

Throughout this section we fix n ∈ N along with a polyhedron P ⊆ Rn. We shall
study the distributive lattice Subo P (Corollary 2.12). We begin by proving that
Subo P is in fact a Heyting algebra. We then prove that Subo P is always locally
finite.

3.1. The Heyting algebra of open subpolyhedra. Let us record a well-known,
elementary observation on relative interiors for which we know no convenient ref-
erence.

Lemma 3.1. Let Σ be a triangulation in Rn, let τ = x0 · · ·xd be a simplex of Σ,
and let x ∈ relint τ . Then no proper face σ ≺ τ contains x. Hence, in particular,
the carrier σx of x in Σ is the inclusion-smallest simplex of Σ containing x.

Proof. There are r0, . . . , rd ∈ (0, 1] such that x =
∑d
i=0 rixi and

∑d
i=0 ri = 1. Let

ρi := x0 · · ·xi−1xi+1 · · ·xd. Clearly ρi ≺ τ for each i ∈ {0, . . . , d}, and for each
σ ≺ τ there exists i ∈ {0, . . . , d} such that σ 4 ρi. Hence, if we assume by way of
contradiction that x ∈ σ ≺ τ , then x ∈ ρi for some i ∈ {0, . . . , d}; say x ∈ ρ0. Then

x =
∑d
i=1 sixi, for some s1, . . . , sd ∈ [0, 1] such that

∑d
i=1 si = 1. It follows that

r0 =
∑d
i=1(si − ri), and so

0 = x− x =

d∑
i=1

sixi −
d∑
i=0

rixi =

d∑
i=1

(si − ri)xi − r0x0 =

d∑
i=1

(si − ri)(xi − x0).

Since r0 > 0, there must be i ∈ {1, . . . , d} such that si − ri 6= 0, contradicting the
affine independence of x0, . . . , xd. �

The next lemma is the key fact of this subsection.12

Lemma 3.2. Let P and Q be polyhedra in Rn with Q ⊆ P , and suppose Σ is a
triangulation of P such that

ΣQ := {σ ∈ Σ | σ ⊆ Q}

triangulates Q. Define

• C := cl (P \Q),
• ΣC := {σ ∈ Σ | σ ⊆ C}, and
• Σ∗ := {σ ∈ Σ | There exists τ ∈ Σ \ ΣQ such that σ 4 τ}.

Then

(1) ΣC = Σ∗, and
(2) |ΣC | = |Σ∗| = C.

In particular, C is a polyhedron.

Proof. We first show that Σ∗ triangulates C, that is:

|Σ∗| :=
⋃

Σ∗ = C. (*)

To show |Σ∗| ⊆ C, let σ ∈ Σ∗, and pick τ ∈ Σ\ΣQ such that σ 4 τ . We prove that
relint τ ⊆ P \ Q. For, if x ∈ relint τ , by Lemma 3.1 there are no simplices σ ∈ Σ
such that x ∈ σ ≺ τ . Then, by definition of triangulation, for any simplex ρ ∈ Σ,
x ∈ ρ entails τ 4 ρ. Hence no simplex of ΣQ contains x, or equivalently, x 6∈ Q and
therefore relint τ ⊆ P \Q.

Now, it is clear that any simplex τ satisfies τ = cl relint τ . It follows that
σ ⊆ τ = cl relint τ ⊆ cl (P \Q), and thus |Σ∗| ⊆ C as was to be shown.

12Cf. [22, Proposition 2.3.7].
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Conversely, to show C ⊆ |Σ∗|, let x ∈ C. Since C is the closure of P \Q in Rn,
there exists a sequence {xi}i∈N ⊆ P \ Q that converges to x. Clearly the carrier
σxi of xi in Σ lies in Σ \ ΣQ, for all i ∈ N. Since Σ \ ΣQ is finite, there must exist
a simplex τ ∈ Σ \ ΣQ containing infinitely many elements of {xi}i∈N. Then there
exists a subsequence of {xi}i∈N that is contained in τ and converges to x. Since τ
is closed, x ∈ τ , and therefore x ∈ |Σ∗| as was to be shown.

This establishes (*). It now suffices to prove (1). For the non-trivial inclusion
ΣC ⊆ Σ∗, let σ ∈ Σ be such that σ ⊆ C, and pick β ∈ relintσ. There is a sequence
{xi}i∈N ⊆ P \ Q converging to β ∈ σ. Since each xi is in some simplex of Σ \ ΣQ
and Σ is finite, there must exist a simplex τ ∈ Σ \ ΣQ containing a subsequence of
{xi}i∈N that converges to β. Since τ is closed, β ∈ τ . But by Lemma 3.1, σβ = σ,
so that σ ⊆ τ and σ ∈ Σ∗. �

Corollary 3.3. Given polyhedra Q1, Q2 in Rn, the set cl (Q2 \Q1) is a polyhedron.

Proof. Observe that Q2\Q1 = Q2\(Q1 ∩ Q2) and apply Corollary 2.12 together
with Lemma 3.2 to the set P := conv (Q1 ∪Q2), which clearly is a polyhedron. �

Corollary 3.4. The lattice Subc P is closed under the co-Heyting implication (4)
of C (P ). Dually, the lattice Subo P is closed under the Heyting implication (3) of
O (P ).

Proof. The first statement is an immediate consequence of Corollary 3.3. The
second statement follows by dualising. �

3.2. Local finiteness through triangulations. Having established that Subo P
is a Heyting subalgebra of O (P ), we infer an important structural property of
Subo P , local finiteness. For this, we first identify the class of subalgebras of Subo P
that corresponds to triangulations of P . These algebras will have a central rôle in
the sequel, too.

Definition 3.5 (Σ-definable polyhedra). For any triangulation Σ in Rn, we write
Pc (Σ) for the sublattice of C (|Σ|) generated by Σ, and Po (Σ) for the sublattice of
O (|Σ|) generated by {|Σ| \ C | C ∈ Pc (Σ)}. We call Pc (Σ) the set of Σ-definable
polyhedra, and Po (Σ) the set of Σ-definable open polyhedra.

Note that we have

Pc (Σ) = {C ⊆ Rn | C is the union of some subset of Σ}.

Lemma 3.6. For any triangulation Σ of P , Pc (Σ) is a co-Heyting subalgebra of
Subc P . Dually, Po (Σ) is a Heyting subalgebra of Subo P .

Proof. For any ∅ 6= C,D ∈ Pc (Σ), it follows immediately by the assumptions that
C and D are triangulated by the collection of simplices of Σ contained in C and
D, respectively. Hence C ← D := cl (C \D) = |Σ∗| =

⋃
Σ∗ by Corollary 3.3 and

Lemma 3.2, where Σ∗ is the appropriate subset of Σ as per Lemma 3.2. Thus
C ← D ∈ Pc (Σ). �

Corollary 3.7. Let H be the co-Heyting subalgebra of Subc P generated by finitely
many polyhedra P1, . . . , Pm ⊆ P . Let further Σ be any triangulation of P that
triangulates each Pi, i ∈ {1, . . . ,m}. Then H is a co-Heyting subalgebra of Pc (Σ).
In particular, H is finite. Dually for the Heyting subalgebra of Subo P generated by
P \ Pi, i ∈ {1, . . . ,m}.

Proof. Each Pi is the union of those simplices of Σ that are contained in Pi,
by assumption. It follows that the distributive lattice L generated in Subc P
by {P1, . . . , Pm} is entirely contained in Pc (Σ). Now, if C,D ∈ L, C ← D :=
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cl (C \D) = |Σ∗| =
⋃

Σ∗ by Corollary 3.3 and Lemma 3.2, where Σ∗ is the ap-
propriate subset of Σ as per Lemma 3.2. Hence C ← D ∈ Pc (Σ), as was to be
shown. �

Corollary 3.8. The Heyting algebra Subo P is locally finite, and so is the co-
Heyting algebra Subc P .

Proof. The second statement is Corollary 3.7 together with the Triangulation Lemma
2.10. The first statement follows by dualising. �

4. Topological dimension and bounded depth

The aim of this section is to prove:

Theorem 4.1. For any polyhedron ∅ 6= P ⊆ Rn and every d ∈ N, the following are
equivalent.

(i) dimP = d.
(ii) The Heyting algebra Subo P satisfies the equation bdd = >, and fails each

equation bdd′ = > for each integer 0 6 d′ < d.

We deduce the theorem from a combinatorial counterpart of the result for trian-
gulations, Lemma 4.5 below. In turn, this lemma will follow from the analysis of
posets arising from triangulations that we carry out first.

4.1. Posets dual of algebras of definable polyhedra. Consider a triangulation
Σ, and the finite Heyting algebra Po (Σ). We shall henceforth regard Σ as a poset
under the inclusion order, whenever convenient. Note that the inclusion order of
Σ is the same thing as the “face order” σ 4 τ we have been using above: since Σ
is a triangulation (as opposed to a mere set of simplices), σ ⊆ τ implies σ 4 τ ,
and the converse implication is obvious. Indeed, the poset Σ is a much-studied
object in combinatorics, where it is known as the face poset of a simplicial complex.
We next show what rôle Σ plays for the Heyting algebra Po (Σ), by establishing
an isomorphism of Heyting algebras Up Σ ∼= Po (Σ); equivalently, through Esakia
duality (Lemma 2.4), the face poset Σ is isomorphic to the dual poset of the algebra
Po (Σ). This result is technically important, because the prime filters of Po (Σ), or
what amounts to the same, its join-irreducible elements, are somewhat harder to
visualise than the simplices of Σ. There are corresponding results for the co-Heyting
algebra Pc (Σ) which we do not spell out as we do not need them for the proof of
our main result.

We recall the notion of open star of a simplex, cf. e.g. [22, Definition 2.4.2].

Definition 4.2 (Open star). For Σ a triangulation, the open star of σ ∈ Σ is the
subset of |Σ| defined by

o(σ) :=
⋃

σ⊆τ∈Σ

relint τ.

Although not immediately obvious, it is classical (see e.g. [22, Proposition 2.4.3])
that the open star of any simplex is an open subpolyhedron, that is, for each σ ∈ Σ

o(σ) ∈ Po (Σ). (6)

Indeed, set

Kσ := {τ ∈ Σ | σ 6⊆ τ}.
Then Kσ is clearly a subtriangulation of Σ, |Kσ| is a subpolyhedron of |Σ|, and
thus O := |Σ| \ |Kσ| ∈ Po (|Σ|); but one can show using Lemma 2.9 that O = o(σ),
so (6) holds.
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We now define a function

γ↑ : Up Σ −→ Po (Σ) (7)

U ∈ Up Σ 7−→
⋃
σ∈U

relintσ.

To see that γ↑(U) indeed lies in Po (Σ) use the fact that Σ is a finite poset to list
the minimal elements σ1, . . . , σu of the upper set U . Then

U = ↑σ1 ∪ · · · ∪ ↑σu,

so that

γ↑(U) = γ↑(↑σ1) ∪ · · · ∪ γ↑(↑σu)

=

 ⋃
σ1⊆τ∈Σ

relint τ

 ∪ · · · ∪
 ⋃
σu⊆τ∈Σ

relint τ


= o(σ1) ∪ · · · ∪ o(σu).

Thus γ↑(U) is a union of open stars and hence a member of Po (Σ).

Lemma 4.3. The map γ↑ of (7) is an isomorphism of the finite Heyting algebras
Up Σ and Po (Σ).

Proof. It suffices to show that γ↑ is an isomorphism of distributive lattices. It is
clear that γ↑ preserves the top and bottom elements, and that it preserves unions:
if U, V ∈ Up Σ then

γ↑(U ∪ V ) =
⋃

σ∈U∪V
relintσ =

(⋃
σ∈U

relintσ

)
∪

(⋃
σ∈V

relintσ

)
= γ↑(U) ∪ γ↑(V ).

Concerning intersections,

γ↑(U) ∩ γ↑(V ) =

(⋃
σ∈U

relintσ

)
∩

(⋃
τ∈V

relint τ

)

=
⋃
σ∈U

(
relintσ ∩

⋃
τ∈V

relint τ

)
=
⋃
σ∈U

⋃
τ∈V

(relintσ ∩ relint τ)

=
⋃

σ∈U, τ∈V
(relintσ ∩ relint τ) (8)

By Lemma 2.9, for any two σ, τ ∈ Σ the intersection relintσ ∩ relint τ is empty as
soon as σ 6= τ . Hence from (8) we deduce

γ↑(U) ∩ γ↑(V ) =
⋃

δ∈U∩V

relint δ = γ↑(U ∩ V ),

as was to be shown.
To prove γ↑ is surjective, let O ∈ Po (Σ) and set P := |Σ| \O ∈ Pc (Σ). Then, by

definition of Pc (Σ), there is exactly one subtriangulation ∆ of Σ such that P = |∆|,
and ∆ is a lower set of (the poset) Σ. Set U := Σ \∆, so that U is an upper set of
Σ. We show:

O =
⋃
σ∈U

relintσ. (9)
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ab cdbc adac
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Figure 1. A triangulation Σ of [0, 1]2 and the corresponding poset
that is (isomorphic to) the Esakia-dual of the Heyting algebra
Po (Σ) of Σ-definable open polyhedra. Cf. Example 4.4.

To prove (9) we use the fact that, since P is a member of Pc (Σ), for every σ ∈ Σ
we have

relintσ ∩ P 6= ∅ if, and only if, σ ⊆ P. (10)

Only the left-to-right implication in (10) is non-trivial, and we prove the contra-
positive. Assume σ 6⊆ P . Then we have

σ ∩ P = σ ∩ |∆| = σ ∩
⋃
δ∈∆

δ =
⋃
δ∈∆

σ ∩ δ.

Then σ ∩ δ is either empty or else a proper face of σ, and hence σ ∩P is a union of
finitely many (possibly zero) proper faces of σ, which entails relintσ ∩ (σ ∩ P ) = ∅
and therefore relintσ ∩ P = ∅. This establishes (10).

Now, to show (9), if x ∈ O then the carrier σx ∈ Σ is such that relintσx∩P = ∅,
so σx 6⊆ P ; equivalently, σx 6∈ ∆. Then σx ∈ U and hence x ∈

⋃
σ∈U relintσ.

Conversely, if x 6∈ O, then x ∈ P , so relintσx∩P 6= ∅ and thus σx ⊆ P ; equivalently,
σx ∈ ∆ . Then σx 6∈ U and hence x 6∈

⋃
σ∈U relintσ. This proves (9).

In light of (9) we now have γ↑(U) = O, so that γ↑ is surjective.
Finally, to prove injectivity, it suffices to recall that relative interiors of simplices

in Σ are pairwise-disjoint, so the union in (7) is in fact a disjoint one, which makes
the injectivity of γ↑ evident. �

Example 4.4. Consider the unit square [0, 1]2, and let Σ be its triangulation shown
on the left of Fig. 1. The reader can verify that the set Σ ordered by inclusion
— whose Hasse diagram is depicted on the right in Fig. 1 — is isomorphic to the
Esakia-dual poset of the Heyting algebra Po (Σ) of Σ-definable open polyhedra. �

4.2. Topological dimension through bounded depth. We can now prove:

Lemma 4.5. Let Σ be a triangulation in Rn.

(1) The join-irreducible elements of Pc (Σ) are the simplices of Σ.
(2) The join-irreducible elements of Po (Σ) are the open stars of simplices of Σ.
(3) In both Pc (Σ) and Po (Σ) there is a chain of prime filters having cardinality

dim Σ + 1. In neither Pc (Σ) nor Po (Σ) is there a chain of prime filters
having strictly larger cardinality.

Proof. Item (1) follows from direct inspection of the definitions. Item (2) is an
immediate consequence of Lemma 4.3 along with Esakia duality (Subsection 2.2).
To prove (3), set d := dim Σ and note that by definition Σ contains at least one
d-simplex σ = x0 · · ·xd ∈ Σ. By item (1) the chain of simplices x0 < x0x1 <
· · · < x0x1 · · ·xd = σ is a chain of join-irreducible elements of Pc (Σ), and the
principal filters generated by these elements yields a chain of prime filters of Pc (Σ)
of cardinality d + 1. On the other hand, any chain of prime filters of Pc (Σ) must
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be finite because Pc (Σ) is. If p1 ⊂ p2 ⊂ · · · ⊂ pl is any such chain of prime filters,
then each pi is principal — again because Pc (Σ) is finite — its unique generator
pi is join-irreducible, and we have pl < pl−1 < · · · < p2 < p1 in the order of the
lattice Pc (Σ). Then pi ∈ Σ, and clearly, since the simplex p1 has l− 1 proper faces
of distinct dimensions, dim p1 > l − 1. But d > dim p1 by definition of d := dim Σ,
and therefore d + 1 > l, as was to be shown. The proof for Po (Σ) is analogous,
using item (2). �

To finally relate the bounded-depth formulæ to topological dimension, we give a
proof of Theorem 4.1.

Proof of Theorem 4.1. (i) ⇒ (ii) By Lemma 2.13, dim Σ = d for any triangulation
Σ of P . By Lemmas 2.6, 3.6, and 4.5, the subalgebra Po (Σ) of Subo P satisfies the
equation bdd = >, and fails each equation bdd′ = > for each integer 0 6 d′ < d. To
complete the proof it thus suffices to show that any finitely generated subalgebra of
Subo P is a subalgebra of Po (Σ) for some triangulation Σ of P . But this is precisely
the content of the Triangulation Lemma 2.10.

(ii) ⇒ (i) We prove the contrapositive. Suppose first dimP > d > 0. Then, by (i)
⇒ (ii), Subo P fails the equation bdd, so that (ii) does not hold. On the other hand,
if 0 6 d′ := dimP < d, by (i) ⇒ (ii) we know that Subo P satisfies the equation
bdd′ = >, so again (ii) does not hold. �

5. Nerves of posets, and the geometric finite model property

In this section we use a classical construction in polyhedral geometry to realise
finite posets geometrically. Our aim is to prove:

Theorem 5.1. Let A be a finite, nonempty poset of cardinality n ∈ N. There exists
a triangulation Σ in Rn satisfying the following conditions.

(1) depA = dim Σ.
(2) There is a surjective p-morphism Σ � A, where Σ is equipped with the

inclusion order.

Construction. The nerve ([3, passim], [10, p. 1844]) of a finite poset A is the set

N (A) := {∅ 6= C ⊆ A | C is totally ordered by the restriction of 6 to C × C} .

In other words, the nerve of A is the collection of all chains of A. We always regard
the nerve N (A) as a poset under inclusion order.13 Let us display the elements
of A as {a1, . . . , an}. Let e1, . . . , en denote the vectors in the standard basis of
the linear space Rn. The triangulation induced by the nerve N (A) is the set of
simplices

∇ (N (A)) := {conv {ei1 , . . . , eil} ⊆ Rn | {ai1 , . . . , ail} ∈ N (A)} .

Then it is immediate that ∇ (N (A)) indeed is a triangulation in Rn, and its
underlying polyhedron | ∇ (N (A))| is called the geometric realisation of the poset
A. For the proof of Theorem 5.1, we set

Σ := ∇ (N (A)).

Using the fact that simplices are uniquely determined by their vertices (see Sub-
section 2.5), we see that the map

ai1 < ai2 < · · · < ail ∈ N (A) 7−→ conv {ei1 , . . . , eil} ∈ Σ

13In the literature on polyhedral geometry the nerve is most often regarded as an “abstract
simplicial complex”, or “vertex scheme”. See e.g. [3]. We do not need to explicitly use this notion
in this paper.
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is an order-isomorphism between N (A) and Σ, the latter ordered by inclusion.
Therefore,

dim Σ = cardinality of the longest chain in A = depA,

so that (1) holds. To prove Theorem 5.1 it will therefore suffice to construct a
p-morphism N (A)� A. To this end, let us define a function

f : N (A) −→ A

C ∈ N (A) 7−→ maxC ∈ A,

where the maximum is computed in the poset A. �

Proof of Theorem 5.1. To show that f preserves order, just note that C ⊆ D ∈
N (A) entails maxC 6 maxD in A. To show that f is a p-morphism, for each
C ∈ N (A) we prove:

f [↑C] = {ak ∈ A | ak > maxC} = ↑maxC = ↑f(C). (11)

Only the first equality in (11) needs proof, and only the right-to-left inclusion is
non-trivial. So let ak ∈ A be such that ak > maxC. Then the set D := C ∪ {ak}
is a chain in A, i.e. a member of N (A), and D ∈ ↑C because C ⊆ D. Further,
maxD = ak, because ak > maxC, so that f(D) = ak. Hence ak ∈ f [↑C], and the
proof is complete. �

Remark 5.2. The reader may be interested in comparing the construction above
of the Heyting algebra Up Σ from the finite distributive lattice UpA with the de-
scription of the prelinear Heyting algebra14 freely generated by a finite distributive
lattice in [1], along with that of the Heyting algebra freely generated by a finite
distributive lattice in [14] (see also [15]). It is an interesting open question whether
the construction given here using the nerve is the solution to a universal problem,
too. �

6. Proof of Theorem 1.1

Proof of Theorem 1.1. By Theorem 4.1, Log Pd contains the intermediate logic of
bounded depth d. Conversely, suppose a formula α is not contained in the inter-
mediate logic of bounded depth d. By Lemmas 2.1, 2.2 and 2.6, there exists a
finite poset A satisfying depA 6 d such that there is an evaluation into the poset
A that provides a counter-model to α; equivalently, interpreting α as a term in
the similarity type of Heyting algebras, the equation α = > fails in the Heyting
algebra UpA. By Theorem 5.1 there exists a triangulation Σ in R|A| such that
depA = dim Σ 6 d, along with a surjective p-morphism

p : Σ −� A. (12)

We set P := |Σ| and consider the Heyting algebra Subo P and its subalgebra Po (Σ),
per Corollary 3.4 and Lemma 3.6, respectively. Since dimP 6 d, we have LogP ⊇
Log Pd by Theorem 4.1.

By Lemma 4.3 there is an isomorphism of (finite) Heyting algebras

γ↑ : Up Σ −→ Po (Σ)

defined as in (7). By finite Esakia duality (Lemma 2.4) we have isomorphisms of
posets

Σ ∼= Spec Up Σ ∼= SpecPo (Σ).

14A Heyting algebra is prelinear if it satisfies the equation (X → Y ) ∨ (Y → X) = >.
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The Esakia dual Spec p : UpA ↪→ Up Σ of the surjective p-morphism (12) is an
injective homomorphism. We thus have homomorphisms

UpA
Spec p
↪−−−−→ Up Σ

γ↑

∼= Po (Σ) ⊆ Subo P,

where the inclusion preserves the Heyting structure by Lemma 3.6. Since the
equation α = > fails in UpA, it also fails in the larger algebra Subo P ; equivalently,
α 6∈ LogP ⊇ Log Pd, and the proof of the first statement is complete. The second
statement follows easily from the first using Lemma 2.2. �

Remark 6.1. Intuitionistic logic is capable of expressing properties of polyhedra
other than their dimension. To show this, let P consist of the class of all polyhedra
that are, as topological spaces, closed (=without boundary) topological manifolds.
Then LogP contains intuitionistic logic properly. Indeed, it is a classical theorem
that for any triangulation Σ of any d-dimensional manifold M ∈P, each (d− 1)-
simplex σ ∈ Σ is a face of exactly two d-simplices of Σ. It follows from our results
above that LogP contains (all instances of) the well-known bounded top-width
axiom schema of index 2, cf. [11, p. 112], which is refuted by intuitionistic logic.
The problem of determining which intermediate logics are complete for classes of
polyhedra is open; e.g., what is the logic of the class P of all closed triangulable
manifolds? �
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