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Abstract In this article we propose a novel mathe-

matical description of biomass growth that combines

poroelastic theory of mixtures and cellular population

models. The formulation, potentially applicable to gen-

eral mechanobiological processes, is here used to study

the engineered cultivation in bioreactors of articular

chondrocytes, a process of Regenerative Medicine char-

acterized by a complex interaction among spatial scales

(from nanometers to centimeters), temporal scales (from

seconds to weeks) and biophysical phenomena (fluid-

controlled nutrient transport, delivery and consump-

tion; mechanical deformation of a multiphase porous
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medium). The principal contribution of this research is

the inclusion of the concept of cellular “force isotropy”

as one of the main factors influencing cellular activity.

In this description, the induced cytoskeletal tensional

states trigger signalling transduction cascades regulat-

ing functional cell behavior. This mechanims is modeled

by a parameter which estimates the influence of local

force isotropy by the norm of the deviatoric part of the

total stress tensor. According to the value of the estima-

tor, isotropic mechanical conditions are assumed to be

the promoting factor of extracellular matrix production

whereas anisotropic conditions are assumed to promote

cell proliferation. The resulting mathematical formula-

tion is a coupled system of nonlinear partial differential

equations comprising: conservation laws for mass and

linear momentum of the growing biomass; advection-

diffusion-reaction laws for nutrient (oxygen) transport,

delivery and consumption; and kinetic laws for cellular

population dynamics. To develop a reliable computa-

tional tool for the simulation of the engineered tissue

growth process the nonlinear differential problem is nu-

merically solved by: (i) temporal semidiscretization; (ii)

linearization via a fixed-point map; and (iii) finite ele-

ment spatial approximation. The biophysical accuracy

of the mechanobiological model is assessed in the anal-

ysis of a simplified 1D geometrical setting. Simulation

results show that: 1) isotropic/anisotropic conditions

are strongly influenced by both maximum cell specific

growth rate and mechanical boundary conditions en-

forced at the interface between the biomass construct

and the interstitial fluid; 2) experimentally measured

features of cultivated articular chondrocytes, such as

the early proliferation phase and the delayed extracel-

lular matrix production, are well described by the com-

puted spatial and temporal evolutions of cellular pop-

ulations.
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1 Introduction

2 Introduction

It is nowadays a founding concept in cellular and molec-

ular biology that cells are able to sense mechanical stim-

uli in their surrounding environment and produce a co-

ordinate response. Such a process, defined as mechan-

otransduction (see, e.g., the recent review in [?]), plays

important roles in several physiological processes such

as cell motility, angiogenesis, bone formation and wound

healing [?]. In this work, we present a mathematical ap-

proach for describing mechanotransduction processes

involved in tissue growth. The proposed description,

albeit very general, is applied to the scenario repre-

sented by tissue engineering. In this context, a better

knowledge of the role of biomechanical cues can help in

orchestrating a more effective artificial tissue growth.

More in detail, our work is motivated by a specific tissue

engineering application, artificial regeneration of artic-

ular cartilage. Briefly, cartilage cells (articular chondro-

cyte cells, ACCs) or other progenitor cells are seeded

into polymeric scaffolds, possibly perfused by an inter-

stitial fluid to force nutrient delivery. Cells are expected

to duplicate and, above all, produce an increasing mass

of ECM, forming cartilagineous neo-tissue. Cartilage

tissue growth in engineered constructs had been already

studied in a series of papers by S. Klisch and coau-

thors [?,?,?]. In this work, we enrich the description

of the biophysical phenomena by introducing the con-

ceptual framework developed in [?,?,?]. In these works,

the isotropic/anistropic state of the cytoskeletal ten-

sion is shown to be responsible for triggering signalling

transduction cascades which regulate functional cell be-

haviors related to proliferation and/or ECM secretion.

Under the assumption of an isotropic strain-stress re-

sponse, a uniform distribution of stress over the cell

surface - stress due to the traction forces exerted by

the cell on the surrounding environment - generates

an “isotropic cytoskeletal tension state” in which the

cell nucleus tends to maintain a roundish morphology

(see Fig. 1(a)). Conversely, in an “anisotropic cytoskele-

tal tension state” the cell nucleus tends to elongate

(see Fig. 1(b)). Macroscopically speaking, when the nu-

cleus maintains a roundish morphology, ECM secretion

is favoured, whereas an elongated nucleus favors cell

duplication by dividision along a polarization axis rep-

resented by its longer axis itself. According to a finer

biomolecular view, this process can be interpreted as

due to the fact that the shape of the nucleus is known

to regulate the porosity of its membrane and, through

this, the import flow of specific transcription factors

which regulate cell behavior (we refer to [?] and refer-

ences therein for a more biologically detailed discussion

of these complex processes).

Fig. 1 Concept of isotropic/anisotropic stress state of a cell:
a) a uniform distribution of traction forces (mediated by cell
membrane integrin/cadherins) over the cell surface generates
an “isotropic cytoskeletal tension state” in which the cell nu-
cleus tends to maintain a roundish morphology, favoring ECM
secretion; b) an “anisotropic cytoskeletal tension state” the
cell nucleus tends to elongate, favoring cell mitosis.

In order to work in a continuum mechanics frame-

work, we propose an extension of the above concepts to

aggregates of cells. Fig. 2 schematically illustrates how

the mechanobiological conditions may affect and drive

the fate of a colony of ACCs seeded in a 3D porous

scaffold. When cells are first seeded in the scaffold, they

form a thin layer covering the surface. Since the charac-

teristic dimension of the local scaffold curvature is much

larger than cell size, cells find themselves in a local pla-

nar condition (see Fig. 2 (a)). Exerting adhesion forces

on the scaffold surface, cells tend to assume a spread

elongated shape, orienting themselves along a preferred

polarization axis. According to the concept of “force

isotropy”, this represents a condition which enhances

the probability that the single cell enters into a prolifer-

ative state. This situation persists until all the pore sur-

face is covered with cells (Fig. 2 (b)). From this moment

on, cells start to occupy the empty space of the pore
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(Fig. 2 (c,d)). Cells in contact with other cells sense an

isotropic stress state condition, which drives the cell to-

wards a mature differentiated phenotype, characterized

by ECM secretion (Fig.2 (e)).

pore wall

fluid and 
nutrients

(a)

pore wall

fluid and
nutrients

(b)

pore wall

fluid and
nutrients

(c)

pore wall

fluid and
nutrients

(d)isotropic 
adhesion

ECM

pore wall

fluid and
nutrients

(e)

anisotropic
adhesion

Fig. 2 Various phases of tissue growth inside a scaffold pore:
a) seeding phase and cell polarization; b) proliferation and
formation of a monolayer; c), d) formation of new construct
layers; e) ECM secretion.

To translate the mechanobiological description of

the processes illustrated in Fig. 2 into a mathemati-

cal model, we combine the poroelastic theory of mix-

tures and cellular population models. Using the model,

we predict the spatial and temporal distribution of a

biomass aggregate of ACCs and ECM under the bio-

physical assumption that stress state and oxygen (nutri-

ent) tension act as main determinants of engineered cul-

ture evolution. The poroelastic theory of mixtures has

already been proposed elsewhere to describe mechanobi-

ological processes in growing tissues, possibly combined

with a multiscale approach. In these formulations, tis-

sue growth is represented as mass exchange between

phases in a globally mass-conserving framework. More-

over, the assumption of linear strains is made, justified

by the fact that the microscopic representative volume

in which the volume averaging is performed does not

evolve in time whereas the individual phases do. We

refer for these approaches to the comprehensive discus-

sion in [?], where several different techniques (effective

medium theory, mixture theory, volume averaging and

asymptotic (two-scale) homogenization) available to de-

scribe a poroelastic growing system are discussed and

compared. Moreover, we refer to [?] for an example of

the use of asymptotic homogenization techniques to de-

velop a model for growing poroelastic media. As for cel-

lular population models, they are used in several litera-

ture papers to describe the evolution of mixture compo-

nents. We refer in particular to the works of [?] and [?],

where multiple cellular populations are studied describ-

ing the exchange from one population to the other via

a phenomenological representation. From this perspec-

tive, the principal contribution of our mechanobiolog-

ical model is the inclusion of the concept of cellular

“force isotropy” as a determinant of the passage from

one pool of cells to the other (proliferating, ECM se-

creting o quiescent cells). A phenomenological indicator

of the stress/strain state of the continuum construct is

proposed, based on the on the norm of the deviatoric

part of the total stress tensor computed via the poroe-

lastic theory. Similarly to other models in tissue en-

gineering applications (see, e.g., [?,?], we also include

the effect of nutrient (oxygen) availability by solving

for it a transport-diffusion-reaction equations. Nutrient

levels are supposed to be as well driving mechanisms

in the cellular pool exchange. We use the model on a

preliminary simplified geometrical one-dimensional set-

ting to study the influence of the different parameters

on the evolution of the construct composition. The ex-

tensive numerical simulations carried out under differ-

ent working conditions show that fundamental roles are

played by the maximum cell specific growth rate and

by the mechanical boundary conditions at the interface

between biomass construct and interstitial fluid.

The paper is organized as follows: in Sect. 3, we

present the assumptions leading to the description of

the biomass as a mixture; in Sect. 4, we discuss the

kinematic laws for the growing biomass; in Sect. 5 we

formalize the balance laws for the biomass; in Sects. 6

and 7 we discuss the proposed exchange pathways inter-

connecting biomechanical cues and cell population evo-

lution along with the corresponding model; in Sect. 8,

we present the 3D mathematical model with the bound-

ary conditions, while in Sect. 9 we introduce the re-

duced 1D setting with the proposed stress indicator; in

Sect. 10, we discuss the numerical approximation of the
1D model and in Sects. 11 and 12 we present the results

of the numerical simulations and we carry out a com-

prehensive discussion. Eventually, in Sect. ?? we draw

the conclusions and we present perspectives for future

work.

3 Multiphase modeling

In this section we develop a mathematical model based

on the representation of the ensemble of the growing

cartilaginous biomass by the mixture theory. In this

framework, equations are postulated for the balance of

mass and momentum for each constituent and then for

the entire mixture according to the following ideas:

a) the growing biomass is treated as a mixture com-

posed by a multiphase solid mass and an interstitial

fluid, the latter representing a fraction of the order

of 65−80% in mass of the total biomass. The multi-
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phase solid consists of ACCs and of ECM. ACCs are

pooled in different populations according to their

life cycle status (proliferative, ECM secreting, qui-

escent), as in the works of Sengers [?] and Ducrot [?];

b) the poroelasticity theory is used to model the in-

teraction of deformation and fluid flow in the fluid-

saturated porous, elastic solid [?,?];

c) the kinematics of the solid phase of the mixture is

based on an infinitesimal–deformation approach, in-

cluding the effect on the stress field of biological

growth, according to the formulation proposed by

Klisch and co–authors [?,?,?];

d) the mass conservation balance for each single con-

stituent and for the mixture are written according

to the formulation introduced by Lemon and co-

authors [?,?] and extensively analyzed in [?,?];

e) the mass exchange terms, including the rate of switch

of cells from a population to the other, are tuned ac-

cording to the nutrient level, the latter being itself

an unknown of the problem, and to the stress state

locally experienced by the mixture, which may drive

cells into a certain functional behavior pool.

In the following, we use the term “phase” when we

refer to the solid or to the fluid part of the mixture,

while the term “component” is used to refer to any

of the constituents of the solid phase (cell populations

and ECM). When it is not necessary to distinguish be-

tween phase and component, we simply use the term

“species”. The meaning of the subscripts used through-

out the article is as follows: s=solid phase, fl=fluid phase,

cells=cell component of the solid phase, ECM= extra-

cellular component of the solid phase.

We let x and t denote the space and time variables,

respectively. We use the convention that the depen-

dence of all variables and model parameters on x and t

is left understood except otherwise stated.

The geometrical configuration of the mixture is iden-

tified by the open bounded set Ω ⊂ Rd (d = 3 unless

otherwise specified). The domain Ω does not evolve in

time, rather, it is the amount of each species at a point

x ∈ Ω that changes with t due to cell proliferation and

matrix deposition. This is the precise sense of the con-

cept of “growing mixture”. From now on, we denote by

QTend := Ω× (0, Tend) the space-time cylinder in which

the TE problem is studied, Tend > 0 being the final

time of culture process.

Referring to Fig. 3, for all t > 0 we associate with a

generic point x ∈ Ω a fixed representative elementary

volume (REV) Vx (see [?]) and denote by |Vx| its d-

dimensional volume. Then, for each component i = fl, s

of the growing mixture, we define the volume fraction

φi(x, t) =
|Vx
i (x, t)|
|Vx|

∀x ∈ Ω, ∀t > 0

biomass

cells

ECM

fluidnutrient
x

Fig. 3 A schematic view of the computational domain Ω
with a detailed view of a typical REV where the various
phases and components of the growing mixture are identi-
fied.

as the time evolving ratio of the volume occupied by

the i-th component in the REV and the volume of the

REV itself. We also let

φs(x, t) = φcells(x, t) + φECM(x, t)

∀x ∈ Ω, ∀t > 0. (1a)

According to the biochemical hypothesis a), we con-

sider three ACC populations: proliferating, ECM se-

creting state and quiescent state, denoted by the letters

n, v and q, respectively. Then, we have

φcells(x, t) = φn(x, t) + φv(x, t) + φq(x, t)

∀x ∈ Ω, ∀t > 0. (1b)

Eventually, we denote by φ = [φfl, φn, φv, φq, φECM]
T

the vector-valued function comprising the volume frac-

tions of the fluid phase, the three cellular populations

and the ECM.

The following assumptions on the mixture are also con-

sidered.

Assumption 1 (Fully saturated mixture) The mixture is

fully saturated, i.e.

φs(x, t) + φfl(x, t) = 1 ∀x ∈ Ω, ∀t > 0. (1c)

Relation (1c) is referred to as saturation condition [?,?,?]

and excludes the possibility of the formation of voids or

air bubbles inside the growing mixture.

Assumption 2 (Intrinsic incompressibility) All species

constituting the growing mixture have the same (con-

stant) mass density ρw of the physiological interstitial

fluid assimilated to water [?,?,?,?,?]. This is not, in gen-

eral, equivalent to assuming that the whole mixture is

incompressible (see [?] p. 629).

Assumption 3 (Closed mixture) The mixture is closed,

this meaning that the system does not exchange mass

with external mass sources or sinks [?].
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4 Kinematics of the growing mixture

From now on, we denote ”solid matrix” the collection

of solid phase constituents, that is, cells and ECM.

Then, we apply to the solid matrix the so–called in-

termingled mixture constraint [?], stating that all the

solid matrix constituents experience the same overall

motion. This hypothesis amounts to assuming the dis-

placement and velocity vectors of each constituent to

coincide with those of the solid matrix. Then, we de-

note by us = us(x, t) and vs = vs(x, t) =
∂

∂t
us(x, t)

the displacement and velocity at the time level t of any

point x of the solid component of the biomass, and

by εs(x, t) = 1
2 (∇us(x, t) + (∇us(x, t))

T ) the associ-

ated infinitesimal deformation of the biomass volume

surrounding the point x at time t. The intermingled

mixture constraint yields also the following relation

εη = εs η = cells,ECM. (2a)

The growth process of each mixture component (cellu-

lar growth and ECM secretion) is taken into account

by introducing the following decomposition [?]

εη = εgη + εeη, η = cells,ECM, (2b)

where εgη is the infinitesimal growth tensor associated

with each solid constituent of the biomass, accounting

for the amount and the spatial orientation of the newly

deposited mass, and εeη is the elastic accommodation

tensor necessary to reinforce at each time level the con-

tinuity of the whole solid upon growth. Finally, we de-

note by

w = vfl − vs (2c)

the relative velocity [?,?] of the fluid phase with respect

to the solid phase in the biomass, vfl being the veloc-

ity of the interstitial fluid. For notational brevity, from

now on, we simply write u and ε instead of us and εs,

respectively.

5 Balance laws for the deformable growing

biomass

In this section we illustrate the set of conservation laws

that model the mechanobiological processes regulating

biomass tissue growth. For further discussion and anal-

ysis of mixture theory applied to tissue growth model-

ing we refer the reader to [?,?,?].

5.1 Mass balance for mixture components

The mass balance equation for the growing mixture is

given by the following coupled system of PDEs in con-

servation form to be solved in QTend :

∂φ

∂t
+ divJφ = Q(φ, c,T) (3a)

Jφ = [φflvfl, φnvs, φvvs, φqvs, φECMvs]
T

(3b)

Q = [Qfl, Qn, Qv, Qq, QECM]
T

(3c)

where Jφ ∈ R5×d is the flux matrix and Q is the net

mass production rate for which the following constraint

holds, due to Assumption 3∑
ζ=s,fl

Qζ = 0. (3d)

Eq. (3b) represents a phenomenological description of

the flux density of each species under the effect of con-

vective transport due to the fluid and solid velocity,

respectively. It is worth noting that in cartilage tis-

sue growth, cells do not typically exhibit a significant

diffusive motion, rather, they need a solid support for

surviving and for developing their functional activities

(property of anchorage-dependence [?]). For this reason

in the present work we neglect the contribution to the

flux density due the the diffusive transport, unlike in

other applications where this term plays a significant

role [?,?,?].

5.2 Momentum balance for mixture components

Under the assumption of negligible inertial terms and

absence of body forces and volumetric fluid mass sources

and sinks, the linear momentum balance equation for

the solid and fluid phases of the growing mixture is ex-

pressed by the following PDEs in conservation form to

be solved in QTend :

divTζ(u, p, φ) + πζ = 0 ζ = s,fl (4a)

Ts(u, p, φ) =
∑

η=cells,ECM

φηTη(u, p, φ) (4b)

Tη(u, p, φ) = ση(u, φ)− pI η = cells,ECM (4c)

Tfl(u, p, φ) = −φfl pI, (4d)

where ση is the effective stress tensor of the component

η of the solid phase of the mixture, p = p(x, t) is the

pressure exerted by the fluid phase and I is the identity

tensor. The isotropic stress −pI accounts for the cou-

pling, typical of poroelasticity, between the flow of the

fluid and the deformation of the solid matrix, and in
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particular describes the contribution to the stress due

to the fluid pressure within the structure.

The quantities Tζ , ζ = s,fl, are the total stress ten-

sors of the solid and fluid phases, while πζ are the inter-

phase forces [?]. As usual, we neglect the effective stress

tensor of the fluid, meaning that we assume that the

internal fluid viscosity is negligible compared with the

friction between the fluid and the solid matrix [?,?,?].

For the mathematical characterization of the forces πζ
we refer to [?] and [?]. We observe that, for all t ∈ (0, T )

and at all x ∈ Ω, it holds

πs(x, t) + πfl(x, t) = 0. (4e)

5.3 Total mass and momentum balance for the

growing biomass

The mass balance equation for the whole growing mix-

ture is obtained by summing each component in sys-

tem (3a), using (2c) and Assumptions 1 and 3:

divv = 0, (5a)

v = φflvfl + φsvs (5b)

where v is the composite velocity of the mixture (cf.

Eq. (2.4) of [?]). A simple manipulation allows us to

write Eq. (5b) as

∂

∂t
divu + div(φflw) = 0. (5c)

In a similar manner, summing equations (4) and us-

ing (4e), we get the total momentum equation

divT(u, p, φ) = 0 (5d)

T(u, p, φ) =
∑

η=cells,ECM

φηση(u, φ)− pI. (5e)

where T is the total stress in the mixture.

5.4 Mass balance for nutrient concentration

The mass balance system (3) for the solid and fluid

phases of the growing mixture is accompanied by a cor-

responding continuity equation for the nutrient concen-

tration (oxygen) c = c(x, t) that is transported through-

out the growing on mixture by the interstitial fluid. This

continuity equation is expressed by the following PDE

in conservation form to be solved in QTend :

∂c

∂t
+ divJc = Qc(φ, c) (6a)

Jc = vflc−Dc∇c, (6b)

the interstitial fluid velocity vfl being computed us-

ing (2c) as

vfl = w + vs = w +
∂u

∂t
. (6c)

The mathematical description of the oxygen diffusion

coefficient Dc adopted in this article is the so-called

Maxwell model [?], that allows to account, in a volume-

averaged sense, for the microscopic composition of the

biomass. More precisely, we introduce the effective dif-

fusion coefficient

Dc := Dc,fl
3k − 2φfl(k − 1)

3 + φfl(k − 1)
, k := Keq

Dc,s

Dc,fl

where Dc,fl and Dc,s represent the nutrient diffusivity in

the fluid and solid phase, respectively, while Keq is the

coefficient regulating local mass equilibrium between

nutrient concentration in the solid and fluid phases (see

[?] for a detailed discussion).

The time rate of oxygen consumed by the cellular

populations is modeled by a generalized form of the

Michaelis-Menten kinetics

Qc(φ, c) = −(Rnφn +Rvφv +Rqφq)
c

c+K1/2
(6d)

where Rη, η = n, v, q, is the nutrient consumption rate

of the cellular population φη and K1/2 is the half satu-

ration constant. We refer to [?] and the literature cited

therein for a similar treatment of the oxygen consump-

tion term in the framework of a multi-phase growing

mixture.

6 Mass exchange pathways

The production terms Qη, η =cells,ECM, introduced

in Eq. (3c) mathematically describe the mechanisms of

addition and/or removal of mass for each species con-

stituting the biomass growing mixture.

n: proliferating cells

v: ECM producing cells

q: transition state

β
q-n

completion of
mitotic program

quiescencethr

anisotropic
stress

β
v-q

β
q-v

isotropic
stress

anisotropic
stress

c < c

quiescencethr
c < c

quiescencethr
c < c

kqui

kqui

kqui

kapo

kapo

age-dependent
apoptosis

age-dependent
apoptosis

τm
-1

Fig. 4 Conceptual scheme of exchange pathways among cel-
lular populations (generalization of Figure 5.3 in [?]).
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The exchange between the different functional cel-

lular pools are supposed to be mediated by local pop-

ulation concentration, local stress state, local nutrient

concentration and by natural decay times (see Fig. 4).

To quantify the stress-mediated effect we proceed as

follows. Let H(z) be the Heaviside function such that

H(z) = 0 for z < 0 and H(z) = 1 for z = 0, z being a

real number. Then, the stress-state dependent effect is

represented by H(r − r), r and r being an indicator of

the isotropy or anisotropy of the local stress state and

a threshold value, respectively. If r < r, the local state

of stress is considered as isotropic, in the other case

is considered anisotropic. According to our mechanobi-

ological picture, an anisotropic stress state enhances

transition towards the proliferative state, whereas an

isotropic stress state enhances transition towards the

ECM secreting state. We use a similar approach to

quantify the concentration-mediated effect by introduc-

ing the indicator H(c−cthr), cthr being a threshold con-

centration for cell activity. For notational brevity, we let

Hr := H(r − r̄) and Hc := H(c− cthr).

The following exchange/production rate terms are

considered:

- mitotic proliferation: we suppose cells in pool n pro-

liferate at a rate given by

φn(1− (φn + φv + φq + φECM))
c

Ksat + c
kg

= φnφfl
c

Ksat + c
kg. (7a)

Relation (7a) is a phenomenological law in which

the term φnφfl keeps into account contact inhibi-

tion effects, while the term
c

Ksat + c
kg is a nutrient–

dependent modulation (Monod law [?]), Ksat being

the half-saturation constant and kg the maximum

growth rate, respectively;

- ECM production rate: we consider here glycosamino-

glycan (GAG) as the main marker for ECM accu-

mulation [?] and we assume a simple proportionality

law between the total amount of ECM and the se-

cretion rate of GAG. Following [?] we assume the

ECM production rate to be given by

φv

Vcell
cE kGAG max

[
0, 1− φECM

φECM,max

]
. (7b)

In the above relation, Vcell is the volume of a single

cell, the constant of proportionality E > 1 accounts

for the heterogeneous composition of cartilagineous

ECM (water for 70-80% of its wet weight, collagen

fibrils for 10-15% and GAG for 5%) [?], c is oxy-

gen concentration and kGAG a growth factor. The

last term model the fact that ECM synthesis attains

its maximum value when no extracellular matrix is

present because more space is available for matrix

production. Then, as soon as sythesized matrix ac-

cumulates at each point of the biomass construct,

the available space diminuishes until φECM reaches

a maximum value φECM,max and matrix secretion

ceases. Notice that in the description of GAG secre-

tion, we are assuming that at the initial time level,

biomass is constituted by a uniform layer of cells and

matrix (see [?] for a similar approach). This corre-

sponds to neglecting the very initial phase where the

seeded cells proliferate and “pave” the scaffold wall,

and is consistent with the mathematical fact that a

continuum-based approach does not enable to repro-

duce the subcellular mechanisms that regulate the

early mitotic process. These latter processes should

be more properly described by treating seeded cells

as individual units that behave according to cellular

automata schemes [?,?,?,?].

- decay pathways: all cellular compartments may evolve

into quiescent (absence of cell activity due to an in-

sufficient oxygen intake [?,?]) or apoptotic phases

(cellular death). Quiescence occurs if nutrient con-

centration c falls below the critical level cthr, whereas

apoptotic phase is related to age dependent cell death

[?]. The time rates of change between state α (α =

n, v, q) and the inactive states (quiescence or apop-

tosis) are kqui and kapo, respectively;

– exchange rate between pools n↔ q: a first contribu-

tion in the direction n → q is regulated by the mi-

totic characteristic inverse time constant 1/τm and

take the form

∓φn
τm
. (7c)

A second contribution is regulated by the probabil-

ity rate βq→n that a cell in pool q enters into pool

n, enhanced by the mechanical factor Hr, giving the

rate term

±φqβq→nHr (7d)

– exchange rate between pools v↔ q: the probability

rate βv→q that a cell in pool v enters into pool q and

the opposite for βq→n are mediated by the mechani-

cal terms Hr and 1−Hr, respectively, to signify that

anisotropy favors proliferation while isotropy ECM

secretion.

According to the exchange laws illustrated above,

the production terms associated with cell populations
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are defined as:

Qn = −φn

τm
+ φqβq→nHr

+φnφfl
c

Ksat + c
kg − kquiφn(1−Hc) (8a)

Qv = −φvβv→qHr + φqβq→v (1−Hr)

−kquiφv(1−Hc)− kapoφv (8b)

Qq =
φn

τm
− φqβq→nHr + φvβv→qHr

−φqβq→v (1−Hr)− kquiφq (1−Hc)− kapoφq. (8c)

QECM =
φv

Vcell
cE kGAG max

[
0, 1− φECM

φECM,max

]
−kdegφECM. (8d)

To conclude the mathematical description of mass

exchange terms, we define the extracellular fluid pro-

duction Qfl in such a way to satisfy Assumption 3 and,

consistently, relation (3d)

Qfl = −
∑

η=cells,ECM

Qη. (8e)

From a biophysical point of view this is equivalent to as-

sume that mass exchanges occur only among cells/ECM

and fluid, meaning that dead cells and degrading ECM

are deteriorated into extracellular fluid, and conversely

that the latter is “consumed” whenever cells duplicate

or secrete ECM [?]. From a computational point of

view, relation (8e) allows us to eliminate the dependent

variable φfl and the corresponding mass balance equa-

tion from system (3a) as done in [?], Sect. 2.2, in such

a way that the fluid volume fraction can be computed

by simple post-processing as

φfl = 1−
∑

η=cells,ECM

φη. (8f)

7 Bio-mechanical models for the deformable

growing biomass

In this section we provide a mathematical description

of the mechanobiological phenomena involving growth

processes (cell duplication and ECM secretion). To this

purpose, we introduce suitable bio-mechanical models

for the growth tensors in the decomposition (2b) by

extending the theory developed in [?] and [?].

7.1 Growth laws

We propose the following definitions of the growth ten-

sors:

εgϑ(x, t;φ) = gθ(x, t;φ)I ϑ = v, q,ECM (9a)

εgn(x, t;φ) = gn(x, t;φ)dpol(x, t)⊗ dpol(x, t) (9b)

where the symbol ⊗ represents the tensor dyadic prod-

uct and gθ, gn are growth coefficients for which a model

equation is provided below. Eqns. (9) state that the

mass increment of each mixture solid constituent is

isotropically deposited for the v, q and ECM compo-

nents, while is accumulated along a specific polarization

direction, identified by the unit vector dpol, for prolif-

erating cells.

Biophysical motivations support our choice of the

growth laws (9). Firstly, according to the concept of

“force isotropy” on the cell introduced in [?,?], cells

that occupy the bio-synthesizing compartment (v com-

partment) experience an isotropic adherence condition

and consequently tend to assume a spherical shape (see

Fig. 5, left) whereas cells that live in the proliferat-

ing compartment (n compartment) are subjected to an

anisotropic adhesion state and tend to elongate (see

Fig. 5, right). Secondly, according to the infinitesimal

deformation growth theory developed in [?], the defor-

mation of an infinitesimal sphere of biomass growing

into an ellipsoid can be reasonably described by an

anisotropic growth tensor, while the deformation of an

infinitesimal sphere growing into a larger sphere can

be characterized by a isotropic growth tensor. For the

sake of simplicity, the infinitesimal growth tensor for

the species q and ECM are supposed to be isotropic.

The definition of dpol in Eq. (9b) and the law for its

isotropic growth anisotropic growth

Fact

isotropic adhesion => isotropic stress state anisotropic adhesion => anisotropic stress state

DISCRETE MODEL

CONTINUUM MODEL

Fig. 5 Cellular level (top): pictorial representation of the
isotropic/anisotropic adherence condition. Continuum level
(bottom): isotropic/anisotropic biomass growth.
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time evolution is a delicate issue. In [?], dpol is char-

acterized according to the dynamics of the evolution of

the cell cytoskeleton, which reorganizes itself according

to its mechano–sensing mechanisms. A simplified ver-

sion of the model proposed in [?], and also adopted in

the present work, is represented by the choice

dpol(x, t) = dε(x, t) ∀x ∈ Ω, ∀t > 0 (9c)

where dε is the normalized eigenvector of the infinites-

imal strain tensor εs, associated with the eigenvalue

of largest module, which physically corresponds to the

maximum principal dilatation of the biomass around

such a point [?].

The coefficients gη(x, t;φ), η = n, v, q,ECM, give

a measure of the amount of mass of the cellular pop-

ulation of type η deposited at time t at point x. To

determine these quantities, we proceed as in [?] and [?]

and require the following growth continuity initial value

problem to be satisfied for all x ∈ Ω and for η =

cells,ECM:

∂

∂t
Trεg

η(x, t;φ) = cR,η(x, t;φ) t ∈ (0, Tend] (9d)

Trεg
η(x, 0;φ) = 0. (9e)

The quantity cR,η(x, t;φ) represents the amount of

mass of the cellular population η deposited at time t

at point x per unit time and per unit reference mass.

According to the general indications illustrated in Sect.

2.2.4 of [?], the growth laws are phenomenological equa-

tions that indirectly describe chemical processes respon-

sible for growth and can be typically expressed as ”syn-

thesis” rate minus a ”degradation” rate, that may in-

clude a mass conversion rate from one constituent of

the mixture to another. Also, the constants that ap-

pear in a specific growth law may depend parameter-

ically on biological factors such as, for example, the

level of a specific growth factor. Thus, based on the de-

scription carried out in Sect. 6, we set cR,η(x, t;φ) :=

Qη(x, t;φ), η = cells,ECM, in such a way that the ini-

tial value problems that furnish the characterization of

the growth coefficients become, for θ = v, q,ECM:

∂

∂t
gθ(x, t;φ) =

1

3
Qθ(x, t;φ) t ∈ (0, Tend] (9f)

gθ(x, t;φ) = 0 (9g)

and:

∂

∂t
gn(x, t;φ) = Qn(x, t;φ) t ∈ (0, Tend] (9h)

gn(x, t;φ) = 0 (9i)

having used the identities Tr(I) = 3 and Tr(dpol ⊗
dpol) = 1.

7.2 Constitutive equations for the mechanical and

fluid subsystems

We assume that cells and ECM behave like linear elas-

tic solids, so that the effective stress tensors associated

with the solid components of the biomass are defined

as

ση(u, φη) = 2µηε
e
η(u, φη) + ληTrεe

η(u, φη)I

= 2µη
(
ε(u)− εgη(φη)

)
+ ληTr

(
ε(u)− εgη(φη)

)
I,

(10a)

where λη and µη are the Lamé parameters of each com-

ponent of the solid phase, η = n, q, v,ECM, and εgη(φη)

are the growth strain tensors introduced in (9). More so-

phisticated constitutive models might be adopted [?,?,?,?],

but their use is beyond the scope of the present work

which is mainly devoted to proposing a computation-

ally feasible mechanobiological model of in vitro carti-

lage tissue growth. We assume the relative velocity in

Eq. (5c) to be expressed by the Darcy law (see, e.g., [?]

and references cited therein)

φflw = −K(φfl)∇p (10b)

where the isotropic permeability tensor K(φfl) =
φ2
fl

CF
I

is defined as in [?], CF being a friction coefficient. To

provide a physically consistent characterization of CF

we apply the classic Stokes theory for viscous drag to

the biomass mixture and obtain

CF = CF,cellφs =
6πµfl

Acell
(1− φfl) =

3µfl

2R2
cell

(1− φfl)

(10c)

Rcell and µfl being cell radius and interstitial fluid dy-

namic viscosity, respectively, from which we get

K(φfl) = Kref
φ2

fl

1− φfl
I, Kref =

2

3

R2
cell

µfl
. (10d)

8 The mathematical model in 3D

In this section we summarize the mathematical model

for the multiphase mixture constituting the growing tis-

sue. We refer to Tab. ?? for the definition of all model

parameters and their quantitative value used in numer-

ical simulations.

Fig. 6 Schematic representation of the 3D computational do-
main. The case of the boundary conditions for the mechanical
block of the model is considered. In the considered example,
uD = 0 whereas tN is nonvanishining only on a subset of

Γ
(u,p)
N .
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In what follows, we denote by Ω an open bounded

set of R3 representing the computational domain in

which the biomass growth process physically takes place,

and by Γ := ∂Ω the boundary of Ω on which an out-

ward unit normal vector n is defined (see Fig. 6). In

view of the definition of the boundary conditions to

be supplied to the mechanobiological model, it is con-

venient to indicate by U := {(u, p), c,φ} the set of

the dependent variables of the problem. Then, for each

u ∈ U we assume that Γ is divided into two disjoint por-

tions, denoted by ΓuD and ΓuN , such that Γ = ΓuD ∪ ΓuN ,

and where Dirichlet and Neumann boundary conditions

are applied, respectively. By doing so, if u = (u, p)

the boundary conditions are for the model block of

Sect. 5.3, if u = c the boundary conditions are for the

model block of Sect. 5.4 whereas if u = φ the bound-

ary conditions are for the model block of Sect. 5.1. We

notice that, in general, there is no geometrical rela-

tion between the various decompositions of the domain

boundary belonging to the same typology of boundary

condition. The sole requirement is that, for each con-

sidered dependent variable, the union of the Dirichlet

and Neumann partitions is the whole domain boundary

Γ . For a similar treatment of the splitting of the do-

main boundary we refer to [?] and [?]. Having specified

the geometrical setting of the biomass growth process,

the mathematical model proposed in the present article

consists of the following PDE subsystems:

Poroelastic IV-BVP for biomass: for given φ =

φ(x, t), find the solid displacement u, the fluid friction

velocity w and pressure p such that the following equa-

tions are satisfied in QTend :

∂

∂t
divu + div (φflw) = 0 (11a)

divT(u, p,φ) = 0 (11b)

φflw = −K(φfl)∇p, K(φfl) = Kref
φ2

fl

1− φfl
I (11c)

T(u, p,φ) =
∑

η=cells,ECM

φηση(u,φ)− pI (11d)

ση(u,φ) = 2µη(ε(u)− εgη(φη)) + ληTr(ε(u)− εgη(φη))I

(11e)

ε(u) =
1

2
(∇u + (∇u)T ) (11f)

∂

∂t
gn(x, t;φ) = Qn(x, t;φ) (11g)

∂

∂t
gθ(x, t;φ) =

1

3
Qn(x, t;φ) (11h)

supplied with the following initial and boundary condi-

tions:

u(x, 0) = u0(x) in Ω (11i)

u(x, t) = uD(x, t) (x, t) ∈
(
Γ

(u,p)
D × (0, Tend)

)
(11j)

T(u, p,φ)n(x, t) = tN (x, t) (x, t) ∈
(
Γ

(u,p)
N × (0, Tend)

)
(11k)

where u0 : Ω → R3 is the initial mixture displacement

in the domain whereas uD :
(
Γ

(u,p)
D × (0, Tend)

)
→ R3

and tN :
(
Γ

(u,p)
N × (0, Tend)

)
→ R3 are the given dis-

placement and traction fields defined on the decomposi-

tion Γ
(u,p)
D ∪Γ (u,p)

N of the computational domain bound-

ary in the mechanical block of the model.

Mass balance IV-BVP for nutrient concentra-

tion: for given w = w(x, t), u = u(x, t) and φ =

φ(x, t), find the nutrient concentration c and the nu-

trient flux density Jc such that the following equations

are satisfied in QTend :

∂c

∂t
+ divJc = Qc(φ, c) (12a)

Jc = vflc−Dc∇c (12b)

vfl = w +
∂u

∂t
(12c)

Qc(φ, c) = −(Rnφn +Rvφv +Rqφq)
c

c+K1/2
(12d)

supplied with the following initial and boundary condi-

tions:

c(x, 0) = c0(x) in Ω (12e)

c(x, t) = cD(x, t) (x, t) ∈ (Γ cD × (0, Tend)) (12f)

−Dc∇c · n(x, t) = gN (x, t) (x, t) ∈ (Γ cN × (0, Tend))

(12g)

where c0 : Ω → R+ is the initial nutrient concentration

in the domain whereas cD : (Γ cD × (0, Tend)) → R and

gN : (Γ cN × (0, Tend)) → R are the given concentration

and diffusive nutrient flux defined on the decomposition

Γ cD ∪Γ cN of the computational domain boundary in the

nutrient block of the model.

Mass conservation IV-BVP for cellular popula-

tions: for given φ = φ(x, t), c = c(x, t), T = T(x, t)

and u = u(x, t), find the volume fractions φ such that
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the following equations are satisfied in QTend :

∂φ

∂t
+ div Jφ = Q(φ, c,T) (13a)

Jφ = [φflvs, φnvs, φvvs, φqvs, φECMvs]
T

(13b)

vs =
∂u

∂t
(13c)

φfl = 1− φs (13d)

where Q = [Qfl, Qn, Qv, Qq, QECM]T , with

Qn = −φn

τm
+ φqβq→nHr

+φnφfl
c

Ksat + c
kg − kquiφn(1−Hc) (13e)

Qv = −φvβv→qHr + φqβq→v (1−Hr)

−kquiφv(1−Hc)− kapoφv (13f)

Qq =
φn

τm
− φqβq→nHr + φvβv→qHr

−φqβq→v (1−Hr)− kquiφq (1−Hc)− kapoφq. (13g)

QECM =
φv

Vcell
cE kGAG max

[
0, 1− φECM

φECM,max

]
−kdegφECM (13h)

supplied with the following initial and boundary condi-

tions:

φ(x, 0) = φ0(x) in Ω (13i)

Jφn(x, t) = 0 (x, t) ∈ (Γ × (0, Tend)) (13j)

where φ0 : Ω → (R+)5 is the initial distribution of

cellular volume fraction in the domain. Condition (13j)

amounts to assuming that no cellular flux is exchanged

with the external environment during the biomass growth

process.

9 The mechanobiological model in 1D

In this section we formulate the proposed mechanobi-

ological model in a one-dimensional (1D) geometrical

configuration. This is a first step toward the simula-

tion of a realistic structure such as the 3D scaffolded

bioreactor used in the experimental analysis discussed

in [?]. The 1D-formulation is constructed by describing

the biomass as a nonhomogeneous bar (fixed at one end-

point) subject to a uniaxial state of mechanical stress

in such a way that each point of the bar undergoes the

same deformation. Then we consider the following as-

sumptions:

– all model variables depend on the sole spatial coor-

dinate x and on the time variable t;

– the solid displacement field u has only one non-

vanishing component, that is u = [u, 0, 0]T with

u = u(x, t);

– the strain tensor has only one nonvanishing compo-

nent, that is εxx(u, t) = ∂u(x, t)/∂x;

Fig. 7 shows the computational domain. The region

x < 0 represents the scaffold wall, the open intervalΩ =

(0, L) is the growing tissue whereas the region x > L

corresponds to the interstitial fluid that brings nutrient

to the growing construct. We denote by Γ := ∂Ω =

{0, L} the boundary of the computational domain and

by n the outward unit normal vector on ∂Ω. We have

n = −1 at x = 0 and n = +1 at x = L.

n=-1 n=+1

pore 
wall

Fig. 7 Schematic representation of the 1D scaffold-based
bioreactor.

The 1D mechanobiological model consists of the follow-

ing PDE subsystems:

Poroelastic IV-BVP for biomass: for given φη and

gη, η = cells,ECM,fl, find the solid displacement u :

QTend → R, the fluid friction velocity w : QTend → R
and the pressure p : QTend → R that satisfy the follow-

ing system of partial differential equations in balance

form:

∂Txx
∂x

= 0 (14a)

∂

∂t

∂u

∂x
+
∂V

∂x
= 0 (14b)

V = −K(φfl)
∂p

∂x
(14c)

Txx = HAφs
∂u

∂x
− p−HAφngn −HB

∑
η=v,q,ECM

φηgη

(14d)

where

K(φfl) = Kref
φ2

fl

1− φfl
(14e)

is the tissue permeability with Kref defined in Eq. (10d)

(right) whereas HA = λ+ 2µ is the so-called aggregate

modulus [?] with HB = 3λ+ 2µ. To close the problem,
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we specify the following initial and boundary condi-

tions:

u(x, 0) = u0(x) in Ω (14f)

u(0, t) = 0 ∀t ∈ (0, T ) (14g)

Txx(L, t) · n = Tb(t) ∀t ∈ (0, T ) (14h)

p(0, t) = 0 ∀t ∈ (0, T ) (14i)

V (L, t) · n = Vb(t) ∀t ∈ (0, T ). (14j)

Mass balance IV-BVP for nutrient concentra-

tion: for given u, V and φη, η = n, v, q,fl, find the oxy-

gen nutrient concentration c : QTend → R+ that satis-

fies the following system of partial differential equations

in balance form:

∂c

∂t
+
∂Jc

∂x
= Qc(φ̃, c) (15a)

Jc = vflc−Dc
∂c

∂x
(15b)

where:

w =
V

φfl
(15c)

vfl = w +
∂u

∂t
(15d)

and

Dc = Dc,fl
3k − 2φfl(k − 1)

3 + φfl(k − 1)
, k := Keq

Dc,s

Dc,fl
(15e)

Qc(φ̃, c) = −(Rnφn +Rvφv +Rqφq)
c

c+K1/2
. (15f)

To close the problem, we specify the following initial

and boundary conditions:

c(x, 0) = c0(x) in Ω (15g)

∂c

∂x

∣∣∣∣
x=0

= 0 ∀ t (15h)

c(L, t) = cext(t). (15i)

Mass conservation IV-BVP for cellular popula-

tions: for given u, p and c, find the volume fractions

φ̃ = [φn, φv, φq, φECM]
T

: (QTend)4 × (R+)4 (16)

and φfl : QTend → R+ that satisfy the following system

of partial differential equations in balance form:

∂φ̃

∂t
+
∂Jφ̃
∂x

= Q(φ̃, c,T) = (P(φ̃, c,T)−C(c,T))φ̃

(17a)(
Jφ̃

)
η

= φηvs −Dη
∂φη
∂x

η = cells,ECM (17b)

where vs = ∂u/∂t is the solid phase velocity, the pro-

duction terms are:

P(φ, c,T) = (17c)[
φfl

c

Ksat + c
kg, 0, βq→nHr, 0;

0, 0, βq→v (1−Hr) , 0;

1

τm
, βv→qHr, 0, 0;

0,
1

Vcell
cE kGAG max

[
0, 1− φECM

φECM,max

]
, 0, 0

]
(17d)

C(c,T) = (17e)

diag
( 1

τm
+ kqui(1−Hc), βv→qHr + kqui(1−Hc) + kapo,

βq→nHr + βq→v (1−Hr) + kqui (1−Hc) + kapo, kdeg

)
.

(17f)

and the fluid fraction is computed as

φfl = 1−
∑

η=n,v,q,ECM

φη. (17g)

To close the problem, we specify the following initial

and boundary conditions:

φ̃(x, 0) = φ̃
0
(x) in Ω (17h)

∂φη
∂x

∣∣∣∣
x=0

= 0 ∀ t η = n, v, q,ECM (17i)

∂φη
∂x

∣∣∣∣
x=L

= 0 ∀ t η = n, v, q,ECM. (17j)

The boundary conditions (17i)- (17j) express the fact

that cellular phases can flow out of the biomass only

because of the presence of an advective field.

9.1 Indicator of the isotropy of the local stress state

In the 1D configuration, the total stress tensor T can be

decomposed into the sum of isotropic and anisotropic
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components T = Tiso + Taniso given by:

Tiso = λ

(
φs
∂u

∂x
− gnφn

)
I

−
(

2

3
µ+ λ

) ∑
η=v,q,ECM

gηφηI− pI (18a)

Taniso = 2µ

(
φs
∂u

∂x
− gnφn

)
dpol ⊗ dpol, (18b)

where dpol is the unit vector [1, 0, 0]T . We use Taniso to

measure the degree of anisotropicity of the stress state

at any point x of the mixture and at any time t. Namely,

we define the parameter r as

r(x, t) =
‖Taniso(x, t)‖F

2µ

=
∣∣∣φs(x, t)

∂u(x, t)

∂x
− gn(x, t)φn(x, t)

∣∣∣ (18c)

where ‖ · ‖F is the Frobenius norm. We can give a me-

chanical interpretation of (18c) by studying the Mohr

circle at point (x, t). The principal components of T

are:

σI = HAφs
∂u

∂x
− p−HAgnφn −HB

∑
η=v,q,ECM

gηφη

(18d)

σII = σIII = λφs
∂u

∂x
− p− λgnφn −HB

∑
η=v,q,ECM

gηφη,

(18e)

from which it follows that the Mohr circle at (x, t) has

center C = (σI + σII)/2 and radius equal to the maxi-

mum total shear stress at (x, t)

τmax(x, t) =
σI(x, t)− σII(x, t)

2

= µ

(
φs(x, t)

∂u(x, t)

∂x
− gn(x, t)φn(x, t)

)
.

Comparing the latter relation with (18c) we conclude

that the indicator of the local stress state anisotropy

can be written as

r(x, t) =
|τmax(x, t)|

µ
. (18f)

We also need to characterize an appropriate value for

the threshold parameter r̄ representing the level of hy-

drodynamic shear stress that induces metabolic activ-

ity of the cell population n and therefore separates the

isotropic regime from the anisotropic regime. In [?,?] it

is shown that hydrodynamic shear below 10 mPa may

promote GAG synthesis, so that, coherently with (18f),

we assume

r̄ =
10mPa

µ
. (18g)

10 Numerical approximation of the 1D

mechanobiological model

Solving in closed form the mechanobiological model pro-

posed in this article is a very difficult task because of

the strong nonlinear nature of the problem. Therefore,

in this section we illustrate the approximation methods

that are used to solve numerically the equation system

in the 1D setting of Fig. 7.

10.1 Computational algorithm

Prior to discretization, we need to reduce the solution of

the whole coupled system to the solution of a sequence

of linearized equations of simpler form. For this purpose

we set

U = [u, p, φn, φv, φq, φECM, c]
T

(19a)

and subdivide the time interval [0, Tend] into NT ≥ 1

uniform subintervals of length ∆t = Tend/NT , in such

a way that the discrete time levels tk = k∆t, k =

0, . . . , NT , are obtained. Then, for each k = 0, . . . , NT−
1, we set U(0) := Un and for all m ≥ 0 until conver-

gence we perform the fixed point iteration schemati-

cally illustrated in Fig. 8. The algorithm consusts of

two nested loops, a temporal outer loop and a spatial

inner loop. For each step m of the inner loop we solve

in sequence three linear PDE system blocks. For the

convenience of the reader, for each substep of the in-

ner loop ,we indicate in Fig. 8 the equations that are

solved in the step referring to their numbering in Sec-

tion 9. In order, the subproblems to be solved are: a

poroelastic system for biomass displacement and fluid

pressure, an advection-diffusion-reaction (ADR) system

for oxygen concentration and an ADR system for cellu-

lar populations and ECM. For each system we indicate

on the right of the corresponding block the values of

the dependent variables that are given inputs whereas

the updated values of the dependent variables that are

returned as outputs of the block are indicated on the

right of the downward arrow that exits out the block.

We notice that as soon as a newly updated variable is

available such variable is immediately plugged into the

successive block as input variable. For this reason the

algorithm of Fig. 8 can be regarded as a nonlinear block

Gauss-Seidel method (see [?] Chapt. 7).

Two remarks are in order about the above described

solution map. The first remark concerns the linear poroe-

lastic system. The weak formulation of this problem

leads to solving a saddle-point problem in block sym-

metric form to which the abstract analysis of [?], Chapt.

7 and [?] can be applied to prove existence and unique-

ness of the solution pair u(m+1), p(m+1). The second
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Poroelastic 
  system
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system for O
2

system for cells

ADR

U
(0)

= U
n
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Φ
(m+1)

m m+1

Φ = Φ
(m)
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Outer loop

k=0

k k+1

Fig. 8 Solution map.

remark concerns with the two linear ADR problems to

which the application of the maximum principle (see [?])

allows to prove nonnegativity of the solutions c(m+1)

and φ
(m+1)
η , η = cells,ECM.

10.2 Finite element discretization

The computational procedure described in Sect. 10.1

leads to solving two kinds of BVPs: (i) a saddle-point

problem; (ii) two ADR equations. We numerically solve

(i) and (ii) using the Galerkin finite element approxi-

mation scheme on a family of partitions {Th}h>0 of the

computational domain, h being the discretization pa-

rameter (see [?]). In the case of the saddle point prob-

lem (i) we employ piecewise linear finite elements on Th
for both solid displacement and fluid pressure. Equal-

order interpolation for u and p does not give rise to

numerical instabilities as it would be the case if the

Stokes equations for an incompressible fluid were to be

solved (cf. [?], Chapt. 9), because in the present model

the variable p is not a Lagrange multiplier (as in the

Stokes system), rather, it is the solution of an elliptic

Darcy problem (for a similar treatment see [?]). In the

case of the ADR equation we employ for the approxi-

mation of the concentration and of the cellular volume

fractions the primal-mixed finite element discretization

scheme with exponential fitting stabilization proposed

and investigated in [?]. This choice is taken because it

ensures that the computed numerical solutions satisfy a

strict positivity property even in the case of a strongly

advective regime. Moreover, it can be checked that, if

advective terms do not play a major role compared to

oxygen molecular diffusion in the biomass, then the ef-

fect of the stabilization introduced by the primal-mixed

method of [?] becomes negligible so that the accuracy

of the scheme is not spoiled. This, instead, would not be

the case if the classic upwind stabilization were adopted

(see [?] for a discussion of this important issue).

11 Simulation tests

In this section we show the numerical results obtained

by solving the 1D problem with the computational al-

gorithm described in Sect. 10. We denote henceforth

by Tb and Vb the normal stress and normal velocity

externally applied at x = L whereas cext is the exter-

nal oxygen concentration. Two sets of simulation tests

are performed. In the first set of simulations we set

Tb = Vb = 0 with the aim of investigating a static

culture environment (see [?,?]). In the second set of

simulations we set Tb = 100mPa and Vb = 50µms−1 as

in [?]. These values are characteristic of a culture in a

perfusion bioreactor where an external hydrodynamic

shear stress is applied [?,?,?].

The first investigated question is the effect of the

input model parameter amount A of cell density at the

beginning of the culture process (t = 0) and at the

pore wall (x = 0). For cells and ECM we set φη(x, 0) =

Aη exp(−x/Ld), η = n, v, q,ECM, with Ld = L/5, and

for each set of simulations we use the following values

of A:

(IC1) An = 0.005, Aη = 0.001 η = v, q,ECM;

(IC2) An = 0.05, Aη = 0.01 η = v, q,ECM.

The above values of An and Aη agree with the bio-

physical evidence that at the beginning of the growth

process, proliferating cells are present in larger amount

than the other cellular populations.

The second investigated question is the effect of the

input model parameter cellular growth rate kg. In our

computations we use two values of this parameter, kg1

and kg2 (cf. Tab. ??). These two values are selected by

comparison with the maximum specific cell growth rate

kg0 used in [?] in such a way that kg < kg0 corresponds
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to ”low growth regime” whereas kg > kg0 corresponds

to ”high growth regime”.

The third investigated question is the effect of the

input model parameter maximum value of the external

oxygen concentration cext supplied to the growing struc-

ture by the surrounding environment. To determine the

effect of oxygen availability on biomass growth we set

cext(t) = csat and cext(t) = cthr for all t ∈ [0, Tend],

csat and cthr being the saturation and threshold oxygen

concentration, respectively (see Tab. ??).

For a synthetic representation of the isotropy indi-

cator r, we define the following (equivalent) parameter

ξ = ξ(r) as ξ(r) = 1 if r ≤ r̄ and ξ(r) = 0 if r > r̄.

In the remainder of the discussion, no plot is reported

for the fluid volume fraction φfl because this variable

can be computed by post-processing using (8f). Sim-

ulations are run over the time interval [0, Tend], with

Tend = 30 days, and the one-dimensional plots show

the time evolution of the solid and fluid mixture com-

ponents at the spatial coordinate x = L/2. The values

of model parameters used in the numerical experiments

are reported in Tab. ??.

12 Discussion of simulation results

In this section we address a critical discussion of the

more significant outcomes of the simulations of the model

illustrated in Section 9. The adoption of the 1D setting

has three points of strength. The first point of strength

is that the simplicity of the geometry permits a ver-

ification of reliability of model predictions based on

biophysical intuition. The second point of strength is

that, despite being simple, the 1D setting preserves the

main features of the 3D biomass growth process, per-

mitting a comparison with experimental measurements.

The third point of strength is that it is relatively easy

to single out the presence of critical parameters in the

mathematical formulation and investigate their quan-

titative influence on the evolution of mixture compo-

nents.

1. The illustrated numerical results indicate that the

in vitro cell cultivation process is strongly sensitive

to variations of (i) the initial seeding density of cells,

(ii) the value of the maximum growth rate and (iii)

the mechanical boundary conditions. In particular,

the amount of seeded cells turns out to be deter-

minant for cell responsiveness: initial cell density

should be high enough to ensure optimal conditions

for proliferation, but not so high that grow factors

are rapidly depleted from the medium and the con-

tact inhibition phenomenon prevents the formation

of new colonies (see Fig. ??). To furtherly support

this conclusion, Fig. ?? shows that at high seeding

density no significant change in cell number is pre-

dicted by the model in the first stage of the culture

because proliferating cells fluctuate around a mean

value, that represents the average level of prolifer-

ation measured in the first two weeks of the exper-

iments (see Fig. 3c of [11]). Furthermore the value

of parameter kg influences the long-term behavior of

the biomass. Model simulations indicate that if kg is

smaller than the reference value kg,0, cell metabolic

activity and ECM synthesis significantly decrease

in the cultured construct and are completely ex-

hausted at about 10 days of culture (Figs. ??, ??

top). On the contrary, model predictions show that

if the maximum growth rate exceeds the reference

value, cell and ECM volumetric fractions increase

until convergence to a finite value that represents

a stable steady state of the mathematical system

(Figs. ??, ?? bottom). This finding represents a fa-

vorable result from the experimental point of view,

because it predicts the formation, at the end of the

cultivation and under specific conditions, of the bio-

artificial texture to be used for replacing damaged

tissues, that constitutes the real aim of TE. A sim-

ilar objective can be reached by conveniently as-

signing the mechanical boundary conditions at the

interface between the biomass construct and the in-

terstitial fluid. Model results indicate that when the

biomass is stimulated by both external fluid veloc-

ity and pressure, even if kg is tuned on a under-

threshold value, the amount of cells and ECM in the

construct remains considerable until the end of the

simulation (see Fig. ?? top panel). Such a behavior

is mainly due to the fact that the external force ex-

erted by the fluid gives rise to an anisotropic stress

state that instantaneously propagates throughout

the domain, as shown in Fig. ?? bottom, main-

taining the anisotropic mechanical configuration in

both low and high growth regimes. This mechanical

stimulus is the sole responsible of the strong mitotic

functional activity occurring within the biomass be-

cause, as evidenced in Fig. ??, oxygen consumption

is practically absent. This outcome reinforces the

notion that mechanical stimulation in perfused cul-

tures may promote chondrogenesis and ECM pro-

duction [?,?,?]. Actually, in order to achieve this

optimal result, nutrient concentration at the fluid-

biomass interface should not fall under a critical

level otherwise cell functionality could be rapidly

reduced until cell apoptosis (see Fig. ?? top). In

these conditions, cell survival is ensured only if the

growth rate kg is large enough (Fig. ?? bottom).
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2. The behavior of the solid mixture components is in

excellent agreement with the experimental trends

obtained by cultivation of engineered tissues in biore-

actors. In particular, the temporal evolution of con-

struct cellularity and ECM content, especially for

an under-threshold value of kg, agree with experi-

mental results shown in several papers [?,?,?,?].

3. The characterization of the (an)isotropicity of the

biomass intrinsic stress state through the equivalent

parameter ξ demonstrated to be a successful strat-

egy to model the mechanical regulation of culture

progression and to link the mechanisms occurring

at the micro-scale level to the macroscopic function-

ing of the growing tissue (see [?]). Model predic-

tions indicate that the parameter ξ is an effective

indicator of the propagation of the isotropic and

anisotropic waves within the construct and allows

an easy and immediate identification of the adhe-

sion mechanisms developing at the single cell-level,

that, accordingly, drive the evolution of the volu-

metric fraction φv and φn respectively.

Grigi/Static_csat_IC1_cells_kgmin_spessa.pdf

Fig. 9 Temporal evolution of cellular populations and ECM
in the static culture for cext = csat. Initial condition IC1;
kg = kg1. Solid line: φn; dashed line: φv; dotted line: φq;
dash-dot line: φECM

.

13 Conclusions and future perspectives

In the present article we propose a novel mathemati-

cal formulation based on the continuum assumption to

describe the biomechanical sensitivity of articular chon-

drocytes. The natural application of our model is Tissue

Engineering, a continuously growing discipline within

the wider area of Regenerative Medicine, in which the

control of cell response to multi-factorial stimuli is of ut-

most importance to obtain products suitable to clinical

Grigi/Static_csat_IC1_cells_kgmag_Z.pdf

Fig. 10 Temporal evolution of cellular populations and ECM
in the static culture for cext = csat. Initial condition IC1.
Top: kg = kg2. Bottom: kg = kg2, zoom of the first eight
days of culture. Solid line: φn; dashed line: φv; dotted line:
φq; dash-dot line: φECM

.

Grigi/Static_cthr_IC1_cells_kgmin.pdf

Grigi/Static_cthr_IC1_cells_kgmag.pdf

Fig. 11 Temporal evolution of cellular populations and ECM
in the static culture for cext = cthr. Initial condition IC1. Top:
kg = kg1. Bottom: kg = kg2. Solid line: φn; dashed line: φv;
dotted line: φq; dash-dot line: φECM.
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Grigi/Static_csat_IC2_cells_kgmin.pdf

Grigi/Static_csat_IC2_cells_kgmag.pdf

Fig. 12 Temporal evolution of cellular populations and ECM
in the static culture for cext = csat. Initial condition IC2. Top:
kg = kg1. Bottom: kg = kg2. Solid line: φn; dashed line: φv;
dotted line: φq; dash-dot line: φECM.

Fig. 13 Spatial and temporal evolution of oxygen concen-
tration in the static culture for cext = csat. Initial condition
IC2. Left: kg = kg1. Right: kg = kg2. In the case of initial
condition IC1 we observe a similar behavior of cox except for
a delayed decay.

practice. However, it is worth noting that the proposed

scheme may be used as well to describe more general

settings in Cellular Biology, for example, the expansion

of staminal cells.

The principal novelty of our contribution is the de-

velopment of a model based on the use of Partial Dif-

ferential Equations (PDEs) that incorporates the con-

Grigi/Perfused_csat_IC1_cells_kgmin.pdf

Grigi/Perfused_csat_IC1_cells_kgmag.pdf

Fig. 14 Temporal evolution of cellular populations and ECM
in the perfused culture for cext = csat. Initial condition IC1.
Top: kg = kg1. Bottom: kg = kg2. Solid line: φn; dashed line:
φv; dotted line: φq; dash-dot line: φECM.

Fig. 15 Spatial and temporal evolution of oxygen concentra-
tion in the perfused culture for cext = csat. Initial condition
IC1. Left: kg = kg1. Right: kg = kg2.

cept of “force isotropy” on the cell within the general

and well established framework of poroelastic theory of

mixtures and of cell population models. Specifically, the

model translates into a simplified mathematical formal-

ism, based on the use of suitably parametrized Heavi-

side functions, how the induced cytoskeletal tensional

states trigger signalling transduction cascades regulat-

ing functional cell behavior, for example, the trasloca-

tion of specific transcription factors in the nucleus. Ac-

cording to the concept of force isotropy, it turns out that
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Fig. 16 Spatial and temporal evolution of parameter ξ in
the static culture (top) and in the perfused culture (bottom)
for cext = csat. Initial condition IC1. Top left: kg = kg1. Top
Right: kg = kg2. Bottom: kg = kg1, kg2.

Grigi/Perfused_cthr_IC1_cells_kgmin.pdf

Grigi/Perfused_cthr_IC1_cells_kgmag.pdf

Fig. 17 Temporal evolution of cellular populations and ECM
in the perfused culture for cext = cthr. Initial condition IC1.
Top: kg = kg1. Bottom: kg = kg2. Solid line: φn; dashed line:
φv; dotted line: φq; dash-dot line: φECM.

if cell adhesion-mediated traction forces have approxi-

mately the same strength over the cell surface, then the

cell nucleus tends to maintain a roundish morphology,

otherwise the cell nucleus tends to elongate. In the first

case, the cell tensile condition is defined as “isotropic

cytoskeletal tension” whereas in the second case the cell

tensile condition is defined as “anisotropic cytoskeletal

tension”.

Having defined the cytoskeletal stress characteriza-

tion at the single cellular level, the next step of our

approach is to build upon the concept of continuum-

based approach to extend the above described descrip-

tion to the local stress tensor associated with the biolog-

ical construct to mathematically represent the isotropic

or anisotropic cell adhesion state. To this purpose, we

generalize in a natural manner the previous definitions

prescribing that if the anisotropic part of the local stress

tensor is lower than a fixed threshold then the local

stress state of the system is isotropic otherwise the lo-

cal stress state of the system is anisotropic.

The final step of our model construction is to incor-

porate the above illustrated mechanobiological scheme

within the setting of the theory of poroelasticity of a

mixture composed by a solid and a multi-component

fluid phases. The mixture represents the cellular con-

struct in which several different cellular populations

are well-mixed and oxygen delivery and consumption

is taken into account to regulate in a dynamical man-

ner the progressive fate of the evolving (macroscopic)

tissue. The overall mathematical formulation consists

of a system of conservation laws (mass and linear mo-

mentum) for the phases and components of the mixture

that includes stress state and oxygen tension as main

determinants of cellular culture evolution.

A thorough investigation of the PDE system is crit-

ically performed in a simplified 1D setting to allow an

easy preliminary validation of the formulation. Exten-

sive simulation tests outline a generally sound response

of the computational model with respect to biophysi-

cal conjectures. In particular, numerical results indicate

that the in vitro cell cultivation process is strongly sen-

sitive to variations of (i) the initial seeding density of

cells, (ii) the value of the maximum growth rate and

(iii) the mechanical boundary conditions.

Below, we mention several future steps that we in-

tend to take in the prosecution of this promising re-

search activity.

1. A stability analysis of the homogeneous steady states

of the dynamical system that describes the conserva-

tion of mass of the solid mixture components. Such

a study will allow us to characterize the admissi-

ble range of values of model constitutive parame-
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ters that ensures the biophysical consistency of the

proposed mathematical representation, in the same

spirit as in [?] and [?].

2. The introduction of a visco-elastic component in the

constitutive law for the total stress (as recently done

in [?]). This extension of the model will allow us to

perform a validation of the model and of the com-

putational tool against available analytical solution

and data (see [?]).

3. The inclusion of other mixture constituents, such as

proteoglycan and collagen as done in [?]. This ex-

tension of the model will allow us to provide a more

realistic biomechanical description of the growing

tissue.

4. The extension of the computational algorithms to

treat a fully three-dimensional representation of the

scaffold pore to allow a deeper model validation

against previous existing simulation results and ex-

perimental data (see, e.g., [?,?,?]). In particular, a

3D implementation of the model could provide a

very interesting in silico scheme to simulate dif-

ferent levels of isotropy/anisotropy that otherwise

should be reproduced in vitro at the price of com-

plex engineering strategies, as described in [?]. Once

a wide range of simulated mechanical configurations

is available, it should be easier to relate cell re-

sponse to the external mechanical stimuli and, con-

sequently, to predict cell behavior in terms of cell

adhesion, proliferation and differentiation. The 3D

model could also be used to reproduce one pore

of the microscaffold structures recently developed

in [?] to mimic the native cellular environment. Cells

confined into micropores are subject to similar envi-

ronmental cues as in vivo, so that the behavior pre-

dicted by 3D computations could be directly com-

pared with the in vivo cellular processes. Of course,

passing to a 1D implementation to a fully 3D simu-

lation tool requires to face and solve, at least, four

computational challenges. The first challenge is the

need of a flexible tool for the generation of an accu-

rate geometrical description of the structure to be

simulated. The preferable choice is to use tetrahe-

dral elements and to this purpose a very good 3D

mesh generator is the open-source program gmesh.

The second challenge is the selection of a stable and

accurate time-advancing discretization method. The

obvious choice is to continue to emply the Backward

Euler scheme. If a more accurate method is in or-

der, the choice might fall on the second-order Trape-

zoidal or TR-BDF2 methods (for description and

analysis, see [?], Chapter 11). The third challenge

is the need of extending the selection of the stable

and accurate finite element spaces used to approx-

imate the various subproblems to be solved with

the fixed-point map illustrated in Section 10.1. To

this purpose, the Mini element and the Taylor-Hood

pair are the best options for an accurate and sta-

ble treatment of the poroelastic equations, whereas

the Edge Averaged Finite Element scheme investi-

gated in [?] is a very effective method for accurately

dealing with sharp layers in the nutrient concentra-

tion and/or cellular population profiles while ensur-

ing the positivity of the computed solution. In the

perspective of implementing the mechanobiological

model within a 3D finite element framework a pos-

sible interesting programme might be to exploit the

facilities of the software MP-FEMOS (Multi-Physics

Finite Element Modeling Oriented Simulator) that

has been developed by one of the authors [?,?,?,?].
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Symbol Definition Value Units Reference
c0 O2 concentration for t = 0 5 × 10−6 g cm−3 this work
csat O2 saturation concentration 6.4 × 10−6 g cm−3 [?]
cthr O2 threshold concentration 1.6 × 10−6 g cm−3 [?]
capo O2 apoptosis concentration 3.2 × 10−7 g cm−3 [?]
Keq O2 local mass equilibrium coefficient 0.1 - [?]
Dc,s O2 diffusivity in the solid phase 0.75 × 10−5 cm2 s−1 [?]
Dc,fl O2 diffusivity in the fluid phase 1 × 10−5 cm2 s−1 [?]
Vb inlet velocity of perfusion fluid 50 × 10−4 cm s−1 [?]
Tb stress due to perfusion fluid 100 mPa [?]
µfl fluid dynamic viscosity at 20◦ C 1.002 · 10−2 g cm−1 s−1 [?]
Rn = Rv O2 consumption rate for n/v-cells 3.9 × 10−8 g (cm3 s)−1 [?]
Rq O2 consumption rate for q-cells 10−8 g (cm3 s)−1 this work
K1/2 O2 half saturation constant 3.2 × 10−6 g cm−3 [?]
βA→B transition rate from state A to state B 10−5 s−1 this work
kapo apoptosis transition rate 3.858 × 10−7 s−1 [?]
kqui quiescence transition rate 3.858 × 10−7 s−1 this work
kdeg ECM degradation rate 7.7 × 10−7 s−1 [?]
kg0 maximum specific cell growth rate 5.8 × 10−6 s−1 [?]
kg1 ”low” specific cell growth rate 1 × 10−7 s−1 this work
kg2 ”high” specific cell growth rate 1 × 10−5 s−1 this work
E expansion coefficient 20 [?]
kGAG GAG synthesis rate 8.61 × 10−11 cm6 (cell s g)−1 [?]
Ksat Monod saturation constant 1.927 × 10−6 g cm−3 [?]
Dη cells and ECM diffusion coefficient 1 × 10−9 cm2 s−1 this work
λη cells and ECM Lamé’s parameter 5.1937 × 103 dyne cm−3 [?]
µη cells and ECM Lamé’s parameter 1.8248 × 103 dyne cm−3 [?]
φECM,max maximum ECM volume fraction 0.1 this work
Rcell cell radius 5 × 10−4 cm this work
Vcell cell volume 5.236 × 10−10 cm3 this work
τm mitotic characteristic time 172800 s [?]
Kref reference permeability 1.67 · 10−5 cm3s g−1 this work

Table 1 Numerical values of model parameters used in the simulation tests.
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