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For long time, the role of LDL and inflammation in the pathogenesis of atherosclerosis have been studied independently from
each other and only more recently a common platform has been suggested. Accumulation of excess cholesterol due to the
presence of increased circulating LDL promotes endothelium dysfunction and activation, which is associated with increased
production of pro-inflammatory cytokines, overexpression of adhesion molecules, chemokines and C-reactive protein (CRP),
increased generation of reactive oxygen species and reduction of nitric oxide levels and bioavailability. All these processes favour
the progressive infiltration of inflammatory cells within the arterial wall where cholesterol accumulates, both extracellularly and
intracellularly, and promotes vascular inflammation. According to this, lipid-lowering therapies should improve inflammation
and, indeed, statins decrease circulating inflammatory markers such as CRP and improve endothelial function and plaque burden.
Pleiotropic activities have been proposed to explain this effect. However, mendelian randomization studies ruled out a direct role
for CRP on coronary artery disease and studies with other lipid lowering drugs, such as ezetimibe showed that the beneficial effect
of LDL-cholesterol-lowering therapies on systemic inflammatory status, as monitored by changes in CRP plasma levels, could be
achieved, independently of the mechanism of action, only in patients presenting with baseline inflamed conditions. These
observations strengthen the direct link between cholesterol and inflammation and indicate that decreasing LDL levels is one of the
key goals for improving cardiovascular outcome.

LINKED ARTICLES
This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles
in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/
10.1111/bcp.v82.4/issuetoc

Abbreviations
CAD, coronary artery disease; CETP, cholesteryl ester transfer protein; CHD, coronary heart disease; CRP, C-reactive
protein; CV, cardiovascular; FMD, flow-mediated dilatation; HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; hs-CRP, high-
sensitivity CRP; IVUS, intravascular ultrasound; LDL-C, LDL-cholesterol; LDLR, LDL receptor; Lp(a), lipoprotein(a); NLRP3,
nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3; OxLDL, oxidized LDL; PAV,
percent atheroma volume; PCSK9, proprotein convertase subtilisin/kexin type 9; SNP, single nucleotide polymorphism;
TG, triglycerides; VLDL, very low density lipoprotein

BJP British Journal of
Pharmacology

British Journal of Pharmacology (2017) 174 3973–3985 3973

DOI:10.1111/bph.13805© 2017 The British Pharmacological Society

http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc
http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc
http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc


Introduction
Inflammation and hypercholesterolemia are linked in a
vicious cycle in which the excess of cholesterol that
accumulates in the arterial wall induces an inflammatory
response that, in turn, accelerates cholesterol deposition
and amplifies inflammation.

The role of LDL and inflammation in the pathogenesis
of atherosclerosis have been, for a long time, studied
independently from each other and only more recently a
common platform has been suggested. The role of
cholesterol (the ‘cholesterol era’) and that of cholesterol-
carrying LDL (the ‘LDL era’) in the formation of
atherosclerotic plaques has been extensively evaluated
starting from the beginning of the 20th century and was
validated by the discovery of the LDL receptor (Linton
et al., 2000; Goldstein and Brown, 2015). In parallel, the
concept of a role for inflammation as a key player in
atherosclerosis development gained attention, as a result of
studies showing that atherosclerotic plaques are characterized
by the accumulation of inflammatory cells. This accumulation,
by producing pro-inflammatory cytokines, further promotes
the entry of monocytes into the arterial wall, thus further

propagating the inflammatory reaction (Ross, 1999; Libby,
2002; Libby, 2012).

The aim of this brief review is to describe the evidence
linking cholesterol and LDL to inflammation and discuss
the data from clinical trials with lipid-lowering drugs
suggesting that the beneficial impact on inflammation is
proportional to the reduction of levels of LDL-cholesterol
(LDL-C).

Cholesterol promotes inflammation
Accumulation of excess cholesterol within the arteries
promotes endothelium dysfunction and activation, which
results in increased production of pro-inflammatory
cytokines and reactive oxygen species, overexpression of
adhesion molecules, chemokines and reduction of nitric
oxide levels and bioavailability (van Diepen et al., 2013;
Gimbrone and Garcia-Cardena, 2016) (Figure 1). These
processes contribute to the recruitment and infiltration of
monocytes, which differentiate into macrophages and,
following the uptake of modified-LDL via scavenger
receptors, become foam cells (Ross, 1999; van Diepen et al.,
2013; Sorci-Thomas and Thomas, 2016) (Figure 1). More
recently, cholesterol has been directly linked to inflammation

Figure 1
Link between cholesterol and inflammation within the arterial wall.
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via the activation of the NLRP3 inflammasome (Grebe and
Latz, 2013), which might favour the instauration and
amplification of a local and systemic immuno-inflammatory
response (Tabas and Bornfeldt, 2016), characterized by the
production of several pro-inflammatory cytokines; among
them, C-reactive protein (CRP), IL-6 and IL-1 are well-
established markers of inflammation and their possible
causal role in atherosclerosis has been widely investigated
(Ridker, 2016). In addition, among genetic traits associated
with LDL-C levels, single nucleotide polymorphisms (SNPs) in
the CELSR2/PSRC1/SORT1 locus and in the APOE/APOC1/
TOMM40 locus have been associated also with inflammatory-
related phenotypes (Kocarnik et al., 2014), which further
supports the strong relationship between cholesterol and
inflammation.

Cholesterol and CRP
CRP is a plasma protein belonging to the superfamily of
pentraxins, proteins involved in acute phase responses. It is
synthesized by the liver in response to IL-6 and is a well-
established marker of inflammation (Pepys and Hirschfield,
2003) whose levels significantly increase in response to
inflammatory stimuli (Gabay and Kushner, 1999). A large
meta-analysis from 54 long-term prospective studies reported
a continuous associations of plasma CRP levels with coronary
heart disease (CHD) risk (Kaptoge et al., 2010), further
supporting the concept that CRP could be a powerful risk
biomarker for first and recurrent cardiovascular (CV) events
(Koenig, 2013).

CRP is, however, synthesized in cells other than
hepatocytes, including cells within the atherosclerotic
plaques, as suggested by the co-localization of CRP and
oxidized LDL (OxLDL) and macrophages in atherectomy
specimens from patients with stable or unstable angina and
acute myocardial infarction (Meuwissen et al., 2006). Also
endothelial cells exposed in vitro to modified LDL or to pro-
inflammatory cytokines produce CRP (Venugopal et al.,
2005; Chu et al., 2013). The role of the CRP produced by the
atherosclerotic plaque, however, is unknown, and it is
unclear whether it contributes to CRP plasma levels in CVD
patients. CRP has been proposed to play a causal role in
atherosclerosis (Zhang et al., 1999; Pasceri et al., 2000; Cirillo
et al., 2005). Data from clinical trials indicating that the
greatest reduction in CV events in statin-treated patients is
observed in those achieving both LDL-C and high-sensitivity
CRP (hs-CRP) reduction (Joshi and Jacobson, 2010) support
this hypothesis. However, several other studies, including
Mendelian randomization studies, have downplayed the
causal role of CRP in CHD (Zacho et al., 2008; Elliott et al.,
2009; Wensley et al., 2011; Lane et al., 2014; Noveck et al.,
2014) and the field is still open to discussion.

Cholesterol and inflammatory cytokines
Cytokines play a key role in inflammatory diseases and a link
with hypercholesterolemia and atherosclerosis has emerged
mainly for the IL-6, IL-1 and TNFα pathways.

IL-6 is a pro-inflammatory cytokine produced by several
cell types in response to infections or other conditions,
playing a critical role in the pathogenesis of rheumatoid
arthritis (RA) (Liu et al., 2015) but also involved in
atherogenesis (Schuett et al., 2009). In endothelial cells,

modified LDL up-regulate IL-6 (Lubrano et al., 2015), which
in turn induces the expression of macrophage scavenger
receptors involved in the uptake of modified LDL, thus
promoting the formation of foam cells (Schuett et al., 2009)
and establishing an inflammatory cycle in the plaque. In
humans, IL-6 levels predict future CV risk and correlate with
endothelial dysfunction and carotid intima-media thickness
(Ridker, 2016). In addition, carriers of the Asp358Ala SNP in
the IL-6 receptor gene (IL6R) have increased serum levels
of IL-6R (probably due to an increased shedding of the
receptor) and a paradoxical increase of IL-6, but reduced
levels of the downstreammediators CRP and fibrinogen. This
is suggestive of an attenuation of the IL-6/IL-6R axis
signalling in carriers of this variant; indeed this IL6R SNP
was associated with a decreased CHD risk (Sarwar et al.,
2012; Swerdlow et al., 2012). However, data from clinical
trials in patients with RA treated with therapies targeting
the IL-6/IL-6R axis challenged this hypothesis. Indeed the
treatment of RA patients with tocilizumab, a monoclonal
antibody that blocks both membrane-bound and circulating
IL-6R, increased LDL-C levels, an effect observed also with
tofacitinib, a JAK inhibitor that blocks intracellular signalling
of several cytokines (including IL-6) (Souto et al., 2015). In vitro
tocilizumab reduced the levels of hepatic LDL receptor
(LDLR) (Strang et al., 2013), which may result in impaired LDL
catabolism and explain the increased LDL-C plasma levels
observed in RA patients treated with this biological agent
(Kawashiri et al., 2011; Strang et al., 2013; McInnes et al.,
2015). These observations further stress the interplay between
cholesterol metabolism and inflammatory signals.

In addition, IL-1 plays a relevant role in vascular
inflammation and atherogenesis (Qamar and Rader, 2012).
IL-1 is able to induce its own production but also up-regulates
the expression of downstream mediators of inflammation
such as IL-6 and CRP (Signorelli et al., 2014). Cholesterol
crystals contribute to the activation of IL-1 dependent
pathway by activating the NLRP3 inflammasome, which
favours the cleavage and secretion of IL-1 (Duewell et al.,
2010; Rajamaki et al., 2010). Several studies in humans
confirmed the involvement of IL-1 in the development of
atherosclerosis (Galea et al., 1996; Fearon and Fearon, 2008;
Olofsson et al., 2009), and patients with IL-1 polymorphisms
resulting in higher levels of pro-inflammatory cytokines were
at increased risk for the presence of coronary artery disease
(CAD) and CV events (Tsimikas et al., 2014). The central role
of IL-1 in inflammation has been confirmed by studies with
agents targeting IL-1 activity, such as anakinra (an IL-1
receptor antagonist), which decreased CRP production in
acute coronary syndrome patients (Abbate et al., 2010;
Abbate et al., 2013; Morton et al., 2015), but failed to reduce
the risk of recurrent ischaemic events, whereas it may prevent
new-onset heart failure (Abbate et al., 2015).
Canakinumab, a human monoclonal antibody that
neutralizes IL-1ß, reduces CRP and IL-6 in patients with
T2DM and established CVD without affecting plasma
cholesterol levels (Choudhury et al., 2016).

TNFα is a pro-inflammatory cytokine, which contributes
to the development of atherosclerosis by inducing
endothelial dysfunction and initiating the inflammatory
cascade inside the arterial wall (Ross, 1999). Although its
increase during acute inflammation is protective, its
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persistence at high levels during chronic inflammation may
results in alterations of both lipid and glucose metabolism
with detrimental consequences (Popa et al., 2007). In fact,
TNFα may interfere with cholesterol metabolism, by
decreasing the secretion of apolipoproteins and reducing
cholesterol catabolism and excretion, which results in
decreased LDL-C concentrations (Popa et al., 2007). In
addition, TNFα alters the quality of lipoproteins by favouring
the generation of pro-atherogenic small dense LDL and
OxLDL due to changes in sphingolipid content (Popa et al.,
2007). TNFα also reduces HDL-C levels and alters HDL
composition (Popa et al., 2007). Some SNPs in the TNFα gene
are associated with changes in LDL-C levels; the C-857T SNP
on the TNFα promoter region was associated with higher
LDL-C levels (3.14 mmol·L�1 in the T carriers [TT/CT
genotypes] and 2.89 mmol·L�1 in the non-T carriers [CC
genotype], P < 0.05) and increased frequency of carotid
plaque in patients with type 2 diabetes mellitus (DM) (87%
in the T carriers vs. 63% in the non-T carriers, P = 0.0358)
(Yamashina et al., 2007; Takahashi et al., 2010). Interestingly,
when analysed according to statin treatment, LDL-C levels
were higher in the T carriers compared with the C carriers
only in statin-treated subjects, but not in statin-untreated,
and the reduction of LDL-C levels achieved with statins was
lower in the T carriers than in the C carriers (27.6% vs.
36.4%, P = 0.031) (Takahashi et al., 2010). Similarly, among
asthmatic patients, the frequency of the promoter region
�308G/A polymorphism was higher in subjects having
metabolic syndrome and was associated with higher TNFα
levels and higher LDL-C levels in GA/AA genotypes than in
GG genotype (3.13 vs. 2.55 mmol·L�1, P = 0.029) (Yang et al.,
2015). Despite these observations, the anti-TNFα therapies
seem to be neutral on lipid profile, as reported by several
meta-analyses which could not find major significant
changes for LDL-C or apolipoprotein B following therapy
with TNFα antagonists (van Sijl et al., 2011; Daien et al.,
2012; Di Minno et al., 2014).

These observations support the concept that
hypercholesterolaemia promotes systemic and vascular
inflammation through the induction of several mediators.
Some of them could contribute to the amplification of the
inflammatory response, others, such as CRP, mark the
ongoing inflammatory response, while a direct effect of
inflammatory cytokines on plasma cholesterol levels is
debatable.

Inflammation alters lipid metabolism
Chronic inflammatory diseases (such as RA or systemic lupus
erythematosus) are associated with increased CV risk (Haque
et al., 2008) and patients present with quantitatively and
qualitatively altered lipid and lipoproteins profile that
include a reduction of total cholesterol, HDL-C and
apolipoprotein A-I, and increased levels of small dense LDL,
lipoprotein(a) [Lp(a)] and triglycerides (TG) (de Carvalho
et al., 2008; Amezaga Urruela and Suarez-Almazor, 2012;
Ammirati et al., 2014; Montecucco et al., 2015). Amore severe
disease state is associated with more pronounced alterations
in lipids and lipoproteins profile.

Inflammatorymediators such as IL-6, IL-1ß and TNFαmay
alter lipid metabolism (Khovidhunkit et al., 2004), by
increasing very low density lipoprotein (VLDL) production

and secretion by the liver, paralleled by a decreased clearance
of TG-rich lipoproteins, with the net effect of increasing
serum TG levels (Khovidhunkit et al., 2004). As a
consequence, the activity of the cholesteryl ester transfer
protein (CETP), in the attempt to transfer TG from VLDL/LDL
to LDL/HDL, increases; these TG-enriched particles become
the substrate of the hepatic lipase and lipoprotein lipase with
the generation of small dense LDL and HDL as final products.
Small dense LDL enter the arterial intima more easily
(Diffenderfer and Schaefer, 2014), and are more prone to
oxidation while small dense HDL possess a limited antioxidant
and anti-inflammatory activity (Welty, 2013). In addition, the
presence of IL-6 responsive elements present in the promoter
of apo(a) gene contribute to the increased Lp(a) levels observed
during inflammation. (Wade et al., 1993).

In addition, LDL levels and composition change during
inflammation. On one hand, LDL-C levels decrease as a
consequence of increased LDLR expression, which however
fosters the intracellular accumulation of cholesterol (Ruan
et al., 2006; Ye et al., 2009) and might induce inflammasome
activation. On the other hand, circulating LDL have an
increased susceptibility to oxidation (Frostegard et al., 2005;
Garcia-Gomez et al., 2014), which explain the increased
plasma levels of OxLDL in patients with chronic
inflammatory disease (Ahmad et al., 2014; Nowak et al.,
2016). OxLDL are more atherogenic, can amplify the
inflammatory response but can also favour the accumulation
of cholesterol in lysosomes, which results in increased
cellular toxicity by favouring lysosome disruption, because
of the presence of cholesterol crystals (Roma et al., 1992).
Similarly, apart from a decrease in serum HDL, also HDL
particle functions are altered during inflammation, resulting
in the deterioration of most steps of the reverse cholesterol
transport process and a reduced ability of ‘inflamed’ HDL to
protect LDL from oxidation (Namiri-Kalantari et al., 2015).

Altogether, these observations indicate a convincing link
between inflammation and lipids in the process of
atherosclerosis. Is there clinical evidence that inflammation
can be modified by lipid-lowering therapies?

Effects of statins on vascular inflammation
As LDL-C levels are directly correlated with systemic
inflammation, which is a key element in the pathogenesis
of atherosclerosis (Ross, 1999; Viola and Soehnlein, 2015)
targeting lipoprotein metabolism should represent a
therapeutic option to reduce the burden of inflammation
and of CHD. Indeed, it is well known that statins
[3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA)
reductase inhibitors] decrease levels of LDL-C and reduce
CAD. Statins inhibit the biosynthesis of cellular cholesterol
in the liver, thus resulting in an increased expression of the
LDLR in the hepatocytes, which in turn favours the increased
catabolism of LDL from the circulation. By reducing LDL-C
levels, statins decrease the number of LDL particles that can
infiltrate the vessel wall and thus limit atherosclerosis
progression. Beyond this mechanism, several experimental
studies have shown that statins exert additional effects,
which, at the molecular level, relate to their ability to
influence protein prenylation (Jasinska et al., 2007), thus in
turn affecting different intracellular signalling pathways
independently of their lipid-lowering property. These
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additional functions are grouped under the umbrella of
‘pleiotropic effects of statins’, which have been extensively
reviewed elsewhere (Bellosta et al., 2000; Mihos et al., 2014;
Satoh et al., 2015). Among them, statins improve endothelial
function and reduce platelet aggregation, increase the
number and activity of endothelial progenitor cells, inhibit
migration and proliferation of smooth muscle cells, stabilize
coronary plaques and promote atheroma regression (Bellosta
et al., 2000; Mihos et al., 2014; Satoh et al., 2015). Are the
beneficial effects of statins on inflammation a consequence
of their pleiotropic effects or the consequence of LDL
cholesterol lowering?

A key effect of statins is the ability to decrease the levels of
inflammatory markers including CRP (Table 1). In the
primary prevention setting, lovastatin (20 to 40 mg)
(AFCAPS/TexCAPS study) (Ridker et al., 2001) showed to
reduce CRP levels by approximately 15%, after 1 year of
treatment. The MIRACL and the REVERSAL studies showed
a dose-dependent effect of statins on CRP reduction, with
the more aggressive therapy (atorvastatin) to be more
effective than the standard therapy (pravastatin) (Kinlay
et al., 2003; Nissen et al., 2004).

Also in a post hoc analysis of a study with pravastatin in
secondary prevention (CARE study), this statin (5 years of
treatment) reduced CRP by approximately 17% (Ridker
et al., 1999) (Table 1). In both the A to Z trial and the PROVE
IT-TIMI 22 study, the best outcomes were observed in
patients who reached both an LDL-C less than 70 mg·dL�1

and an hs-CRP less than 2.0 mg·L�1, with even greater
benefit in those individuals in which the hs-CRP was less
than 1.0 mg·L�1 (Ridker et al., 2005; Morrow et al., 2006). This

observation supported the concept of a ‘dual target therapy’,
in which patients benefit from both LDL-C and hs-CRP
lowering. These observations paved the road for the most
important trial which to date examined the effect of statins
on hs-CRP and the resulting clinical outcomes, which is the
JUPITER trial. This study investigated approximately 17 800
patients with median LDL-C of 108 mg·dL�1 but elevated
hs-CRP (>2.0 mg·L�1) (Ridker et al., 2008) which were treated
with rosuvastatin (20 mg) or placebo. Major CV events
such as stroke, nonfatal myocardial infarction,
revascularization, unstable angina or death from CV causes
were reduced by 44% (P < 0.00001) in the treatment arm as
was the case for both LDL-C and CRP (Ridker et al., 2008). A
major finding of the study was the observation that the
greatest reduction in CV events was in the treatment group
that achieved both LDL-C less than 70 mg·dL�1 and hs-CRP
less than 2 mg·L�1 (65% reduction), compared with only a
33% risk reduction in patients that achieved one or neither
target (P < 0.0001) (Ridker et al., 2009).

However, other clinical trials (ASCOT and CARDS)
(Table 1) have reported different findings. Indeed the lowest
risk for CV events was observed in statin-treated subjects
who achieved LDL-C level below the median independent
of on-treatment CRP levels, suggesting that on-therapy LDL-
C levels are the major determinant of the beneficial effects
of statins (Sever et al., 2013; Soedamah-Muthu et al., 2015).

It is important to note that baseline CRP levels in the
CARDS trial were much lower compared with the JUPITER
trial (1.4 vs. 4.3 mg·L�1). Similarly, in the ASCOT trial the
median level of CRP in patients without history of CV events
(~90%of the studied population) was 2.4mg·L�1 (Ridkeret al.,

Table 1
Effect of statins on CRP levels in clinical trials

(Ref.) Drug
Time of
intervention

Median baseline
CRP level (mg·L�1)

CRP % change
(P value)

(Ridker et al., 1999) Pravastatin 5 years 2.3 �17.4 (P = 0.004)

(Ridker et al., 2001) Lovastatin 1 year 1.6 �14.8 (P < 0.001)

(Albert et al., 2001) Pravastatin 24 weeks 2.0 �14.2 (P < 0.001)

(Jialal et al., 2001) Pravastatin 6 weeks 2.6 �20.3 (P < 0.025)

Simvastatin �22.8 (P < 0.025)

Atorvastatin �28.3 (P < 0.025)

(Kinlay et al., 2003) Atorvastatin 16 weeks 11.5 �34 (P < 0.0001)

(Nissen et al., 2004) Pravastatin 18 months 3.0 �5.2

Atorvastatin �36.4 (P < 0.001
vs. pravastatin)

(Ridker et al., 2005) Atorvastatin 24 months 12.2 �89.3 (P < 0.001)

Pravastatin 11.9 �82.4 (P < 0.001)

(Morrow et al., 2006) Simvastatin 4 months 2.4 �29.2 (P < 0.0001)

(Ridker et al., 2008) Rosuvastatin 48 months 4.2 �57.1 (P < 0.001)

(Emberson et al., 2011) Simvastatin 5.0 years 3.07 �27 (P < 0.0001)

(Sever et al., 2013) Atorvastatin 6 months 2.4 w/o events
3.0 w/ events

�25.8 (P < 0.02)

(Soedamah-Muthu
et al., 2015)

Atorvastatin 1 year 1.3 �9.8
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2008; Sever et al., 2013; Soedamah-Muthu et al., 2015). In
addition, the different characteristics of the subjects included
in these studies may have influenced the results. In fact, the
JUPITER study included apparently healthy subjects with
baseline LDL-C levels <130 mg·dL�1 (but CRP ≥2 mg·L�1)
(Ridker et al., 2008), while CARDS enrolled type 2 diabetes
patients (Soedamah-Muthu et al., 2015) and ASCOT
hypertensive patients with other ≥3 other CV risk factors
(Sever et al., 2013).

Furthermore, a meta-analysis, which included 23 studies
with statins, reported that 89 - 98% of the CRP reduction
was directly related to the degree of LDL-C reduction
obtained (Kinlay, 2007). Thus, although individual statin
studies have shown a poor relationship between CRP
reduction and LDL-C reduction, when data are analysed as
aggregate, a strong correlation can be observed. The possible
relationship between LDL-C and CRP reductions in different
clinical settings might be under-estimated, as many authors
reported a lack of correlation for individual data. Although
this may be explained by large measurement error and large
intra-individual variations in CRP levels, we would like to
offer a different interpretation that relies on individual
variability to the cholesterol and lipid burden-mediated
inflammatory response in tissues that makes each of us
unique as responder. This interpretation will also explain
why CRP is a very good predictor of event, independent of
LDL; because it captures the information derived from
individual variability.

Indeed statin therapy was associated also with the
reduction of IL-6, TNF-α and cell adhesion molecule levels
in patients with CV risk factors (van de Ree et al., 2003; Ascer
et al., 2004). In the MIRACL study, the reduction of IL-6
achieved with atorvastatin therapy was associated with a
relative reduction of the risk of stroke after an acute coronary
syndrome (Kinlay et al., 2008).

Apart from the beneficial effects on inflammatory
markers, statins also improve endothelial function in
patients at high CV risk or with CAD (Fichtlscherer et al.,
2006). Several meta-analyses have evaluated the benefit of
statins on endothelial function in different cohorts. The data
indicate that statin therapy is associated with significant
improvement in both peripheral and coronary endothelial
function (Reriani et al., 2011). Of note, controversies exist
among trials reporting the effects of statins on endothelial
dysfunction in patients with diabetes mellitus and while
the overall finding was that statins improve endothelial
function also in diabetics, patients with a more compromised
endothelial function are less likely to benefit from statin
treatment (Zhang et al., 2012). A key gap in these meta-
analyses is that it is not known whether the benefit of statins
on endothelial function is proportional to the reduction of
LDL-C levels.

Aside from affecting endothelial function, statins were
also demonstrated to favour atherosclerosis regression, by
reducing the percent atheroma volume (PAV), as determined
by intravascular ultrasound (IVUS). This was clearly shown in
the SATURN and ASTEROID trials (Nicholls et al., 2011),
where average on-treatment LDL-C levels below 70 mg·dL�1

for 24 months were associated with a significant PAV
reduction. A pre-specified post hoc analysis later indicated
that CRP levels, but not LDL-C levels, were associated with

coronary atheroma regression and CV events. However, the
absolute change in CRP was not prognostic of major CV
events (Puri et al., 2013).

All these observations clearly point to a beneficial effect of
statins in inflammation, which is reflected in a decrease of
circulating inflammatory markers such as CRP and
improvement of endothelial function and plaque burden.

Effects of LDL-C-lowering therapies other than
statins on vascular inflammation and
outcomes
While there is no doubt that statins improve systemic and
vascular inflammation, the rationale for using a statin to
decrease CRP and therefore to target a causal factor in
vascular inflammation associated with atherosclerosis should
be carefully considered. Indeed, several analyses have shown
that CRP does not play a causal role in the pathogenesis of
atherosclerosis (Zacho et al., 2008; Elliott et al., 2009;
Wensley et al., 2011) and the acute manifestations of CAD.
On the basis of these results, it is likely that the effect of
statins on CRP could mirror the beneficial effect of this class
of drugs on other atherogenic players, rather than a direct
anti-inflammatory/vasculoprotective effect mediated
through CRP reduction. This leaves the room open for
considering that statins might exert their anti-inflammatory
activities through the ability of reducing the pro-
inflammatory/pleiotropic effects of cholesterol-rich
lipoproteins. If this is the case, then pharmacological
approaches aimed at reducing LDL-C via mechanisms that
are independent of HMG-CoA reductase inhibition should
demonstrate a benefit in terms of CRP reduction and vascular
inflammation, which should be proportional to the
reduction of LDL-C achieved. This is the case for some but
not all lipid lowering agents.

Ezetimibe, by inhibiting the cholesterol transport
protein NPC1-like 1, reduces the intestinal absorption of
cholesterol and is utilized in clinical practice as monotherapy
or as an adjunct to statins (Sudhop et al., 2009). This drug has
been extensively studied for the ability not only to decrease
plasma LDL-C levels but also to decrease CRP and improve
CV outcome. Two-pooled analyses of randomized, placebo-
controlled trials of ezetimibe in hypercholesterolemic
patients have demonstrated that patients treated with
placebo had a 5% increase in CRP levels while those treated
with ezetimibe had a 1% decrease, with a between-treatment
difference of 6%, that however was not statistically
significant (Pearson et al., 2009). LDL-C decreased
significantly with ezetimibe (�18%) compared with placebo
(+0.5%) (Pearson et al., 2009). When ezetimibe was added to
a statin, CRP was significantly reduced compared with statin
monotherapy (�12% vs. �1%), as it was LDL-C (�27% vs.
�3%) (Pearson et al., 2009). When data available from the
different clinical trials with ezetimibe are investigated and
the two arms (statins only or statins + ezetimibe) are
compared, the reduction in CRP levels is proportional to the
reduction observed in LDL-C levels (Figure 2). The correlation
between the changes of the two parameters is similar in the
statins only and in the statin + ezetimibe group (Figure 2).

Studies with other lipid lowering drugs, including those
inhibiting the synthesis of apolipoprotein B containing
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lipoproteins, such as lomitapide or mipomersen (Norata
et al., 2013), as well as those increasing LDL-C metabolism,
such as inhibitors of the proprotein convertase
subtilisin/kexin type 9 (PCSK9) (Norata et al., 2014; Norata
et al., 2016) or CETP inhibitors have not investigated in detail
the effects on CRP reduction and the few available data do not
show a robust correlation between the magnitude of LDL-C
reduction and that of CRP (Flaim et al., 2014; Stroes et al.,
2014; Cannon et al., 2015; Hovingh et al., 2015; Raal et al.,
2015a, b; Nicholls et al., 2016; Sahebkar et al., 2016). While
it could appear surprising that PCSK9 inhibitors, which
decrease LDL-C levels up to 60% (Robinson et al., 2015;
Sabatine et al., 2015), do not affect CRP levels, also in the
placebo arm (statins and/or ezetimibe treated patients) of
almost all clinical trials, no significant changes in CRP plasma
levels were observed (Figure 3). These findings could be
explained by noting that, in clinical trials with anti-PCSK9
therapies, the median baseline levels of CRP were below
2 mg·L�1 (also in those trials who tested statin-intolerant
patients), thus excluding patients with systemic
inflammation from these studies and perhaps limiting the
possibility to appreciate a beneficial effect of lipid-lowering
drugs in spite of LDL-C reduction. Indeed when clinical trials
with CRP levels above 2 mg·L�1 are considered, CRP is
reduced by lipid-lowering therapies, independently of the
mechanism of action (Figure 3). Furthermore, even in the
SATURN study, rosuvastatin, in spite of a LDL-C reduction
of �43.5%, decreased CRP levels only in those patients with
CRP baseline level of 2.3 mg·L�1 (0.8 mg·L�1 at follow-up),

while no effect or rather a small increase was reported in
the group with CRP baseline level of 1.1 mg·L�1 (1.6 mg·L�1

at follow-up) (Puri et al., 2013). This further suggests that the
beneficial effect of LDL-C-lowering therapies on systemic
inflammatory status, as monitored by changes in CRP
plasma levels, is evident only in patients presenting with
increased inflammatory conditions. Could these findings
be transferred also to markers of vascular dysfunction and
inflammation?

The PANACEA study showed that, in obese patients with
metabolic syndrome, a low-dose statin/ezetimibe
combination (10/10 mg) not only resulted in a similar of
LDL-C reduction compared to high-dose statin monotherapy
(simvastatin 80 mg) but also in a comparable endothelial
function as determined by both flow-mediated dilatation
(FMD) and peripheral arterial tonometry (EndoPAT)
(Westerink et al., 2013). Similar observations were previously
reported also in other studies. Stable CAD patients with
dysglycemia that commonly are dyslipidemic but also
present endothelial dysfunction and vascular inflammation,
were treated with simvastatin 80 mg or
ezetimibe/simvastatin 10/10 mg for 6 weeks. Similar LDL-C
reductions from the baseline were obtained as well as similar
improvement of FMD (Settergren et al., 2008). Similarly,
obese women with LDL-C ≥100 mg·dL�1 treated with
simvastatin 80 mg or ezetimibe/simvastatin 10/10 mg for
8 weeks showed similar reductions of LDL-C levels (�27%
and �30%, respectively) and similar increases of FMD
(+39% and +41%, respectively) (Garcia et al., 2016). These

Figure 2
Association between reduction in LDL-C levels and reduction in CRP levels among clinical trials comparing statin monotherapy with ezetimibe/statin
combination. The following studies were included in the figure: VYVA: Ballantyne, Am Heart J, 2005; VYMET: Robinson, Am J Cardiol, 2009;
EXPLORER: Ballantyne, Am J Cardiol, 2007; ENHANCE: Kastelein, NEJM, 2008; SANDS: Fleg, J Am Coll Cardiol, 2008; A: Sager, Atherosclerosis,
2005; B: Goldberg, Mayo Clin Proc, 2004; C: Bays, Clin Ther, 2004; D: Ballantyne, Circulation, 2003; E: Gagne, Am J Cardiol, 2002.
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observations, suggesting that lipid-lowering per se rather than
pleiotropic properties of statins plays a key role in the
improvement of endothelial function, were further
supported by the results of a meta-analysis including six trials
with 213 participants which compared high-dose statin
versus low-dose statin combined with ezetimibe (Ye et al.,
2012). The two lipid-lowering regimens induced similar
reductions of LDL-C (P = 0.12 between treatments) and CRP
levels (P = 0.89) and similar increments of FMD (P = 0.68),
suggesting similar beneficial effects. In line with these
findings, we have reported that pravastatin and ezetimibe
reduced LDL-C levels similarly and increased FMD at a
comparable extent in subjects with moderate
hypercholesterolemia (Grigore et al., 2013).

Not all studies are in agreement with these findings.
Treatment of dyslipidemic subjects without signs of CAD
with simvastatin 40 mg or ezetimibe/simvastatin 10/10 mg
for 4 weeks resulted in the comparable decreases in LDL-C
levels (�38.5% vs. �34.8%), while FMD was improved in
subjects treated with simvastatin 40 mg but not in those
who received the combination therapy (Liu et al., 2009).
Patients with CAD treated with atorvastatin 40 mg (either de
novo therapy or dose escalation from chronic 10 to 40 mg)
had improvement in their endothelial function, whereas
those treated with ezetimibe 10 mg alone or added to chronic
simvastatin 10 mg did not show changes, despite LDL-C
levels decreased similarly with all considered therapeutic
regimens (Fichtlscherer et al., 2006). Similar results were

Figure 3
Effects of lipid-lowering therapies on plasma CRP levels reduction according to CRP baseline levels.
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observed in patients with chronic heart failure, in which
simvastatin 10 mg or ezetimibe 10 mg reduced LDL-C levels
to a similar extent but only simvastatin improved endothelial
function (Landmesser et al., 2005).

Of note, the results from the GLAGOV trial, which was
aimed at investigating the effects of PCSK9 inhibition in
patients with angiographic coronary disease, showed a
greater decrease in PAV after 76 weeks of treatment with
evolocumab compared with statins alone (Nicholls et al.,
2016). Baseline CRP levels were 1.6 mg·L�1 and were
unaffected by the treatment, further supporting a beneficial
effect of LDL-C lowering on atherosclerosis, which was
independent of systemic inflammatory status (Nicholls
et al., 2016).

In summary, most studies indicate that lipid-lowering per
se may play a key role in reducing vascular inflammation,
although the well-established pleiotropic effects of statins
still leave the question open.

Conclusion
Historically, atherosclerosis has been seen as the consequence
of impaired lipid metabolism, which promotes endothelial
dysfunction and cholesterol deposition into the plaque, thus
resulting in the recruitment of inflammatory cells. This
response to injury becomes uncontrolled and generates the
inflammatory response. On this basis, therapeutic
approaches aimed at controlling either the excess of
lipoproteins or the dampening the inflammatory response
were tested. While most of the studies with anti-
inflammatory agents did not show a relevant benefit in terms
of CV risk reduction, statins, by promoting LDL-R expression
and LDL-C reduction, demonstrated a significant and robust
benefit in terms of CV risk reduction. Later this benefit was,
at least in part, ascribed to the ability of statins to reduce
CRP. However, Mendelian randomization studies have
clearly demonstrated that CRP is not a causal factor for
atherosclerosis but rather a marker of systemic inflammation.
The question of why statins by decreasing CRP levels,
independently of LDL-C reduction, improved CV risk has
been involving the scientific community for the last 15 years.
Lipid lowering treatments such as ezetimibe or anti-PCSK9
monoclonal antibodies, which reduce LDL-C through
mechanisms independent of the inhibition of HMG-CoA
reductase, result in CRP reduction only in those patients with
baseline levels above 2 mg·L�1, which is the threshold
indicating the presence of an inflammatory condition. On
the contrary, in patients with CRP below 2 mg·L�1, any type
of LDL-C-lowering treatment, from statins to ezetimibe to
anti-PCSK9 antibodies, do not change CRP levels in spite of
a substantial LDL-C reduction, probably because these
patients do not present a relevant systemic inflammation.
Of note, even in patients where CRP is below 2 mg·L�1 and
not altered by the therapy, such as in the GLAGOV study,
LDL-C reduction with anti-PCSK9 antibodies results in
atherosclerotic plaque regression as determined by IVUS
(Nicholls et al., 2016). As a further proof of concept directly
linking LDL-Cwith vascular impairment, data demonstrating
that LDL-C reduction via different approaches will translate
into a decrease of CV events also when baseline CRP levels

are below 2 mg·L�1 (thus not expected to be modulated by
the therapy) have been recently published (Sabatine et al.,
2017). The FOURIER trial showed that, in more than 27 500
patients with atherosclerotic disease, the addition of
evolocumab to an optimized regimen of lipid-lowering
therapy significantly reduced the risk of CV events as a
consequence of LDL-C reduction (from 92 to 30 mg·dL�1),
compared to that of patients maintaining the optimized
regimen of lipid-lowering therapy (Sabatine et al., 2017). Of
note, the level of CRP was 1.7 mg·L�1 (IQR 0.9–3.6) at
baseline and 1.4 mg·L�1 (IQR 0.7–3.1) after 48 weeks of
treatment in both arms (Sabatine et al., 2017).

Nomenclature of targets and ligands
Key protein targets and ligands in this article are
hyperlinked to corresponding entries in http://www.
guidetopharmacology.org, the common portal for data from
the IUPHAR/BPS Guide to PHARMACOLOGY (Southan
et al., 2016), and are permanently archived in the Concise
Guide to PHARMACOLOGY 2015/16 (Alexander et al.,
2015a,b).
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