| 1 | Assessment of Toxicity of Myristicin and 1'-Hydroxymyristicin in HepG2 Cell | |--|---| | 2 | Line | | 3
4
5 | Laura. Marabini*, Laura Neglia, Erika Monguzzi, Corrado L. Galli, Marina Marinovich | | 6
7
8
9 | Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Via Balzaretti 9, 20133, Milan Italy | | 10
11
12
13
14 | Running title:In vitro Myristicin and 1'-Hydroxymyristicin toxicity | | 15 | *CORRESPONDING AUTHOR: | | 16 | Dr. Laura Marabini | | 17 | Department of Pharmacological and Biomolecular Sciences | | 18 | Università degli Studi di Milano | | 19 | Via G. Balzaretti 9 | | 20 | 20133 Milan, Italy | | 21 | LiveDNA39.16551 | | 22 | E-mail: laura.marabini@unimi.it | | 23 | Phone: +390250318357 | | 24 | | | 25 | Acknowledgments/Funding Sources | | 26 | This work was supported by PlantLIBRA. EC Project N. 245199 | | 27
28
29
30
31
32
33 | Authors' contribution: Each author had a real and concrete contribution and all the co- authors have been approved the article's publication. L. Marabini, C.L. Galli, M. Marinovich develop the project and designed the experiments. L. Marabini conducted all the bioinformatics analyses L. Neglia and E. Monguzzi carried out genotoxicity tests | | 34 | Significance statement | | 35 | The literature data concerning to this alkenylbenzene compound are limited and inconsistent. This study has | | 36 | provided additional informations regarding the myristicin genotoxicity and its metabolism. New data are needed to | | 37 | deal with human risk assessment more properly. | Keywords Alkenylbenzenes; Myristicin; genotoxicity; comet assay; micronucleus; in vitro 38 39 40 toxicity; apoptosis **ABSTRACT** Background and Objective: Myristicin belongs to a class of potentially toxic chemicals (alkoxysubstitutedallylbenzenes) and despite the structural analogy with safrole, data on this compound are very controversial and unclear. In this work it was assessed the cytotoxic and genotoxic potential of myristicin and 1'-hydroxy-myristicin after 24 h of exposure in HepG2 cells. Materials and Methods: The compounds were tested up to 600 μM concentration, for 24 hours. The genotoxicity was assessed with alkaline and neutral comet assay and micronucleus assay. The data were analyzed by One -Way ANOVA. **Results**: It is to be emphasized that only the synthetic phase 1 metabolite (1'-hydroxymyristicin) showed a genotoxic effect starting from the concentration of 150 µM both in comet and micronucleus tests. However, it is important to point out that the same concentration cause a statistically significant (p<0.001) apoptotic process. **Conclusion:** The consumption of a traditional diet determine very low levels of exposure to the parent myristicin. This fact implies as the primary metabolic pathway the O-demethylation (5allyl-2,3-dihidroxyanisole) and not Phase I metabolism, which leads to the conclusion that this substance could not present a significant risk to humans. # 71 ### 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 Myristicin is an alkoxy-substituted allylbenzene (alkenylbenzene) present in a variety of botanical species such as fennel, parsley, carrot, parsnip, basil, anise, dill, celery and in some spices consumed by humans, such as nutmeg, macis, cinnamon, and clove. Myristicin is also found in some food additive oils or in traditional medicine^{1,2}. In the last year's, the consumption of botanical and botanical ingredients has increased, due to the fact that they are used as plant food supplements with the aim of enhancing health. Usually, plant food supplements and phytochemicals are considered safe because of their natural origins³. This assumption is not correct because it is known that some herbal preparations can contain individual potential harmful chemicals, among which alkylbenzenes, particular, allylalkoxybenzenes, with toxic and well known genotoxic properties⁴⁻⁶. Special attention has been given to estragole, methyleugenole and safrole since, although, at very high levels of exposure, they were found to be genotoxic and carcinogenic in animals^{7,8}. The genotoxic potential of myristicin is still questioned even if there are overall evidence that it produces DNA adducts albeit in smaller quantities and less persistent than estragole, safrole and methyleugenol^{9,10}. The compound shows neither mutagenic activity in Salmonella typhimurium TA100 and TA98 at up to cytotoxic doses with and without metabolic activation nor UDS (Unscheduled DNA Synthesis) in hepatocytes from male Fisher 344^{11,12}. The discrepancy emerged from in vivo and in-vitro experiments, could likely be a different ability of DNA damage repair activity in the models considered. Myristicin induces apoptotic death in human neuroblastoma SK-N-SH cells accompanied by an accumulation of cytochrome c and by activation of caspase 313. More evidence of apoptosis induction were observed in a study in hamster ovary CHO cells² and, more recently, a study revealed that myristicin induces apoptosis **INTRODUCTION** in human leukemia K562 cells¹⁴, besides changes in the mitochondrial membrane potential, the release of cytochrome c, activation of caspase-3 and cleavage of PARP and DNA fragmentation. Furthermore, the same study showed that myristicin down-regulated genes involved in DNA damage response pathways, such as genes for the nucleotide excision repair, the double strand break repair, the DNA damage signaling and stress response¹⁴. Alkenylbenzenes can undergo different metabolic pathways (Fig. 1). It is reported in the literature that a notable increase in the formation of the 1'-hydroxy metabolites occurs after an increase in dose of the parent compound, which is accompanied by a shift in metabolic pathways^{15,16}. This metabolite can then become the substrate of sulfotransferase enzymes, going through a reaction of esterification. The esterified metabolite can dissociate and give the reactive carbocation, able to link nitrogenous bases forming adducts with DNA. In human hepatic cells (HepG2), it is evident that myristicin yields DNA adducts quantitatively equivalent to that of saffole¹⁷The aim of this work is to study the *in vitro* cyto- and genotoxicity of myristicin and 1'- OH myristicin (Fig 1), using a metabolically active model of human hepatoma cell line (HepG2). We believe that more information is needed to obtain sufficient data for a correct risk ### **MATERIALS AND METHODS** ### **Chemicals and reagents** assessment. RPMI-1640 medium, pyruvic acid, L-glutamine, penicillin-streptomycin solution, 3-(4-5-dimethylthiazol-2-11)-2,5-diphenyl tetrazolium bromide (MTT), Neutral Red solution (0,33%), dimethyl sulfoxide (DMSO), trypsin-EDTA solution 1X, low-melting point agarose (LMA), agarose for routine use, propidium iodide (1mg/ml in water), sodium chloride (NaCl), tris (hydroxymethyl)aminomethane, sodium hydroxide (NaOH), potassium chloride (KCl), Triton X-100, hydrochloric acid (HCl), sodium-citrate, citric acid and sucrose were obtained from Sigma- - 122 Aldrich, Italy. Fetal bovine serum (FBS), Sytox green and 6 µm fluorescent beads were purchased - from Invitrogen.-Life technologies (Italy) - 124 Myristicin was purchased from Sigma-Aldrich (Milan, Italy) while 1'-hydroxymyristicin was - synthesized and provided from Division of Toxicology, Wageningen University (Wageningen, The - 126 Netherlands). - Myristicin and 1'-hydroxymyristicin both were dissolved in DMSO and solutions obtained were - 128 dissolved 1:1000 in RPMI-1640 medium (Fig.1). 129 130 ### Cell cultures - 131 HepG2 cells, a human hepatocellular carcinoma cell line, were purchased from - 132 Istitutozooprofilattico (Brescia, Italy). Cells were maintained in RPMI-1640 medium added with - 133 10% of heat inactivated FBS, 0.01% of pyruvic acid, 0.03% of L-glutamine and 1% penicillin- - streptomycin solution and placed at 37°C, under humidified air supplemented with 5% CO₂. - Confluent monolayers were exposed to myristicin (600µM) or 1'-hydroxymyristicinconcentrations - 136 (from 50 to 600 μ M) in RPMI-1640 medium for 24 hours at 37°C. 137 138 ### Cytotoxicity assessment ### 139 MTT assay - This assay was conducted according to Schiller et al. 18, HepG2 cells were grown in a 96-well plate, - myristicin or 1'-hydroxymyristicin were added and then removed after 24 hours. MTT dye (final - 142 concentration 0.5 mg/ml) was added to each well. After removal of MTT solution, cells were lysed - with 150 µl of DMSO in order to dissolve the formazan crystals. The plate was read at 550 nm with - 144 the spectrophotometer (Multilabel counter Victor Wallace 1420, Perkin-Elmer, Italy) and - absorbance was determined. Samples with a cell viability less than 50% were subsequently - excluded from genotoxicity analysis. # **Neutral Red assay** The neutral Red assay was based on Rodrigues method¹⁹. HepG2 cells were grown in 96-well plates and subsequently treated. Then plates were washed with PBS and 200 µl of the neutral red solution, 25 µg/ml in the culture medium, were added to each well after a centrifugation at 5000 rpm for 5 minutes. Neutral red (0.33%) was dissolved in culture medium the day before the test and left at 37°C during the night. The day of the test, plates with neutral red solution was incubated at 37°C for three hours and then cells were rinsed with PBS and lysed with a solution containing acetic acid, ethanol, and water (1:50:49), in order to let neutral red going out from lysosomes. After 30 minutes of agitation, plates were read at 550 nm with the spectrophotometer (Multilabel counter Victor Wallac1420, Perkin-Elmer Italy) and absorbance was determined. The absorbance measured correlates with the number of living cells for each well, considering that each sample is referred to the negative control to which is attributed a 100% cell viability. Samples with a cell viability less than 50% were excluded from genotoxicity analysis. ### Apoptosis evaluation (Annexin V assay) This assay measures a number of cells that are going toward an apoptotic process, differentiating in early and late stages of this mechanism. Annexin V is a human protein Ca²⁺- dependent that for this assay is labeled with a fluorophore. Annexin V has an high affinity for phosphatidylserine (PS), a phospholipid that normally stays on the cytoplasmic surface of cell membrane and that during apoptosis is translocated on the outer side of the membrane, becoming able to be linked by annexin V. The test was performed with Alexa Fluor 488 Annexin V/Dead cell Apoptosis Kit (Invitrogen). Cells were seeded 24 hours before treatment in 60 mm plates at a density of 6.5x10⁵ cells/ml. After treatment, cells were collected with trypsin and centrifuged for 5 min at 2000 rpm. Cells are then suspended in 1 ml of PBS+5% FBS and counted with trypan blue. A volume of 10⁶ cells/ml is calculated for each sample and cells are subsequently combined with 100 μl annexin binding buffer 0.5x. Annexin binding buffer 0.5x was obtained with Na citrate (0.1%) Then 5 μl of Annexin V were added to each sample and finally also 1 μ l of working solution (propidium iodide dissolved 1:10 in ABB 0.5x) was added to each sample. Samples were left at RT in the dark for 15 min. In the end, 400 μ l of ABB 1:10 were added and samples were read in flow cytometry at a wave length of excitation of 496 nm with an emission of 519 nm. Results are expressed as apoptotic cells percentage for each sample. 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 178 174 175 176 177 ### **Genotoxicity evaluation** ### **Alkaline Comet Assay** Experiments were carried out according to Singh et al ²⁰ HepG2 cells were plated in 60 mm culture dishes and after 24 hours they were exposed to studied compounds. Then the cells were collected with trypsin and centrifuged at 2000 rpm for 5 minutes. Pellet was suspended in 1 ml of culture medium with a 20 G syringe needle. A total of 2*10⁴ cells/ml were suspended in 200 µl of 0.5% low-melting- point agarose (LMA) in PBS and then transferred onto pre-coated microscope slides with 1% agarose for routine use in PBS and covered with a coverglass. Slides were stored at 4°C for 10 minutes, then coverglasswas removed and the second layer of LMA was added to each slide. After 10 minutes at 4°C, slides were immersed in lysis solution (2.5 M NaCl, 100 mM Na-EDTA, 10 mMTris, 250 mMNaOH, 10% DMSO, 1% Triton X-100, pH 10) at 4°C for 1 hour. Slides were then rinsed with neutralization solution (0.4 M Tris, pH 7.5) and placed in a horizontal gel electrophoresis tank (PBI) filled with ice-cold electrophoresis buffer (0.3 M NaOH, 1 mM Na-EDTA, pH > 13) and left this way for 35 min, in order to let DNA unwinding. Then electrophoresis run was done at 300 mA for 45 min, followed by 5 min of neutralization with neutralization solution and finally, slides were fixed with ethanol at -20° C for 5 min. Slides were left to dry at room temperature and then nuclei were stained with propidium iodide (20 µg/ml in water) and analyzed using fluorescence microscope (Axioplan 2, Zeiss; Milan, Italy) at 25- fold magnification. For each sample, at least 100 randomly selected nucleoids were examined. Images of nucleoids were analyzed with TriTek Comet Score Imaging software 1.5 and tail length, tail moment and % of DNA in the tail were measured. Moreover, nucleoids were classified into five different categories according to area, shape, and intensity of fluorescence of their tail.(A: normal nucleoid; B, C, D: damaged nucleoids; E: ghosts). 203 204 205 206 207 208 209 210 211 212 200 201 202 ### **Neutral Comet Assay (NRA)** Slides with alayer of lysed cells and LMA were placed in the horizontal electrophoresis tank with a buffer (pH 8.3) containing 90 mM Tris, 2 mM EDTA, 90 mM boric acid and left this way for 15 min before starting the electrophoretic run at 80 mA for 25 min. Nucleoids were stained with propidium iodide (20 µg/ml in water) and analyzed using fluorescence microscope (Axioplan 2) at 25- fold magnification²⁰. For each sample, at least 100 randomly selected nucleoids were examined. Images of nucleoids were analyzed with TriTek Comet Score Imaging software 1.5 and tail length, tail moment and % of DNA in the tail were measured. 213 214 215 216 217 218 220 221 222 223 224 225 ### Micronucleus assay Experiments were done according to Bryce et al.²¹ making an analysis of micronuclei in flow cytometry, associated also with a measure of cell viability through fluorescent microspheres (beads). Cell viability measure made through fluorescent beads is considered more accurate than measure obtained with normally used cytotoxicity assays, which can overestimate a number of living cells. The day before treatment, cells were seeded at a density of 6.5 x10 ⁵ cells/ml. After 219 treatment, a period of 24 hours followed in which cells were left in the medium at 37°C, in order to give time to have cell division. The day of the experiment, cells were collected and centrifuged for 5 min at 2000 rpm, then each sample was suspended in 1 ml of PBS + 2% FBS and counted by trypan blue method, in order to obtain a quantity of 5*10 5 cells/ml for each sample. Calculated volume was suspended in PBS + 2% FBS in order to reach a total volume of 1 ml for each sample. After 5 minutes of centrifugation, 300 µl of propidium iodide (2 µg/ml) were added to each tube and samples were left in the dark at real temperature for 10 min. Samples were centrifuged and pellets were suspended in 1 ml of PBS + 2% FBS, after another centrifugation of 2000 rpm for 5 min, pellets were left in the dark at RT for 30 minutes with just 50 μl of supernatant covering them. Then 500 μl of Lysis 1 solution (0.584 mg/ml NaCl, 1.13 mg/ml Na-citrate, 0.3 μl/ml IGEPAL©CA630, 0.5 mg/ml RNAse, 0.4 μM Sytox Green) were added to each sample. After 1 hour at RT in the dark, 500 μl of Lysis 2 solution (85.6 g/ml sucrose, 16.4 mg/ml citric acid, 0.4 μM Sytox Green, 2 drops/ml beads) were added to each sample. After at least 30 min in the dark at RT, samples were transferred to FACS tubes and stored at 4°C until flow cytometry analysis. MN number was determined through the acquisition of at least 20,000 gated nuclei for each sample and it is expressed as fold increase respect negative control. Fold increase ≥ 3 was considered a positive result for this test. Nuclei/beads ratio was determined for each sample and referred to that of negative control, in order to have an evaluation of relative cell survival. ### **Statistical Analysis** Triplicate experiments were performed with independent samples. The results were analyzed using ANOVA t-test to assess statistical significance, one-way or two-way ANOVA analysis followed by post-hoc Dunnett Results were considered statistically significant at P < 0.05. Analysis was carried out using the software package 6.0 GraphPad Prism version (Graph Pad Prism Software Inc. La Jolla USA). Statistical differences were considered at the p<0.05, p<0.01 or p<0.001 level vs. the control group as indicated in the figures and captions. In the following, the results are expressed as means \pm standard deviation. 250 RESULTS 251 MTT AND NRA Concentrations of myristicin and 1'-hydroxymyristicin suitable to conduct reliable genotoxicity studies were established on the basis of concentrations that did not cause a reduction of more than 50% cell viability Cells exposed to myristicin (range $50-600~\mu\text{M}$) for 24 h did not show a significant cell viability reduction, both with MTT and NRA up to 600 μ M (data not shown). Differently, cells exposed to 1'-hydroxymyristicin, at the same range of concentrations, showed a dramatic viability reduction (p<0.001) starting from 150 μ M in MTT test and from 50 μ M concentration in NRA (Fig.2). The MTT and NRA dose–response were very similar. 259 260 261 262 252 253 254 255 256 257 258 # ALKALINE COMET ASSAY (pH>13) # Myristicin - Cells were exposed for 24 h to 450 and 600 µM myristicin concentration (Fig.3). None of the - parameters showed a significant difference in respect to control. 264 265 ### 1'-Hydroxymyristicin - 266 Cells were exposed for 24 h to 50-450 µM concentrations of 1'-hydroxymyristicin (Fig. 4a, b, c). - Tail moment and nucleoids classification showed a significant difference between cells exposed to - 268 1'-hydroxymyristicin 450 μM and non- treated cells. A significant increase was measured in the - percentage of nucleoids category (A, BCD damaged and E) from 150 µM and above (Fig. 4a, b, c). 270 271 ### NEUTRAL COMET ASSAY (pH 8) - Using the neutral version of comet assay that identifies double strand damage, a significant dose- - 273 response increase of DNA damage has been observed only in cells exposed to 1'- - 274 hydroxymyristicin, 150 and 450 μM (Fig. 5 a,b). In this test, the parameters normally utilized are tail length and tail moment. These results supported the increase of nucleoids E (see alkaline comet assay results) and the reduction of viability already highlighted. ### MICRONUCLEUS ASSAY The increase of Micronucleus frequency, detecting the presence of damaged chromosomes in cells after division, confirms the extent of DNA damage observed in the comet assay (alkaline and neutral test). As shown in Fig.6, cells exposed only to 150 and 450 μ M 1'-hydroxymyristicin showed a marked increase in the number of micronuclei largely exceeding the threshold level (n=3) for this test. The decrease of the effect at 450 μ M 1'-hydroxymyristicinis likely due to the cytotoxicity (see also Fig.2). No genotoxic response was elicited by myristicin (600 μM). ### ANNEXIN V ASSAY The cytotoxicity and the type of DNA damage have led us to investigate a possible apoptotic effect associated with 1' hydroxymyristicin treatment. A significant increase (p<0.01, and p<0.001) in apoptotic cell numbers (both in early Fig. 7 A and late apoptotic stage Fig. 7 B and therefore not only as phosphatidylserine (PS) expression on the outer leaflet membrane but also as a triggered apoptotic process), was actually observed in cells exposed to concentration of 150 and 450 μ M1'-hydroxymyristicin (Fig7 A and B). These evidence support the results previously obtained with alkaline comet assay (Nucleoids E) and also with MTT and NRA. 299 DISCUSSION 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 Toxicity of allylbenzenes, constituents of a variety of botanical-based food, is strongly dependent on the presence of functional groups that may influence the chemical reactivity and, accordingly, the biological activity of these natural constituents. The allylbenzene family is very diversified by the presence or absence of alkylation products of their para-hydroxyl substituents, and/or position of the double bond in the alkyl side chain. Besides this, also minor structural variations may elicit differences in bioactivation/detoxification pathways that can affect the toxicological assessment. This becomes relevant when considering the formation of reactive metabolites. In the scientific literature, there are conflicting data on the toxicity of allyl alkoxy benzenes (myristicin, estragole, propenylalkylbenzenes (anethole, isoeugenolmethylether), methyl eugenol and safrole), allylhydroxybenzenes (chavicol and eugenol) and propenylhydroxybenzenes (isochavicol and isoeugenol)⁷. While estragole, methyleugenol, safroleand anethole haveproved to be hepatotoxic, genotoxic and carcinogenic, the genotoxic and possibly carcinogenic potential of myristicin at equivalent doses is not to be expected .Dose-dependent formation of protein and DNA adducts in liver²²⁻²⁹ was observed with allyl alkoxy benzenes. Although DNA adducts in the liver of CD1 female mice were isolated, the binding of myristicin to mouse-liver DNA was weaker than those of other compounds such as safrole, estragole, and methyleugenol¹⁰. This study tries to clarifythe genotoxic potential of myristicin, oe of the constituents of nutmeg powder, to which diverse populations are exposed through food and beverages. The human hepatoma line (Hep G2) has retained the activities of various Phase I And Phase II enzymes which play a crucial role in the activation /detoxication of genotoxic procarcinogens³⁰. No carcinogenicity studies of myristicin in animals were available in the literature. Miller et al.^{25,26} performed comprehensive sets of bioassays to characterize the hepatocarcinogenic potential of naturally occurring and synthetic alkylbenzene derivatives including myristicin and its metabolites; 325 intraperitoneally treatment of male B6C3F1 mice 24 hours after birth and at days 8, 15, and 22 for a 326 total dose of 4.75 µmol/mouse did not show carcinogenic effects at 13 months. 327 The genotoxic potential of alkoxy-substituted allylbenzenes is likely due to the CYP-catalysed formation of the 1'-hydroxy metabolite and subsequent activity of sulfotransferase 1A1 328 329 (SULT1A1), that catalyses the formation of the 1'-sull foxy conjugate. Myristicinin vivo, in the range 330 of human food intake, ,may metabolically be converted mainly by CYP1A1 and 2A6 to epoxy- or hydroxy-derivatives that undergo glucuronidation and are readily excreted. At high doses in rodents, 331 332 O-demethylation becomes saturated and then takes place 1'-hydroxylation and epoxidation of the 333 allyl side-chain. This change in the balance of metabolic pathways, at high doses, leads to a 334 predominant formation of 1'-hydroxy-metabolites and the subsequent formation of 1'-sull foxy metabolites by SULT 1A1 and SULT 1C2 that have been associated with the genotoxicity and 335 carcinogenicity ^{7,31}. 336 337 The unstable sulfate ester forms a reactive electrophilic intermediate (carbonium ion or quinolinium cation), which binds to proteins and DNA. Sulfate inhibition studies and in vivo-in vitro 338 339 unscheduled DNA synthesis (UDS) assays of myristicin, elemicin, estragole, methyl eugenol and the 1'-hydroxy metabolites of estragole and methyl eugenol^{12,21,32} provide additional evidence that 340 341 the sulfate ester of the 1'-hydroxy metabolite is the ultimate toxic metabolite in animal. Data related 342 to the safety of estragole and safrole, structurally related to myristicin, indicate that at low dose 343 levels (below 1-10 mg kg b.w. in rodents and humans), allylalkoxybenzenes are rapidly cleared 344 from the body, with O-demethylation being the major metabolic route. Metabolic shifting from O-345 demethylation to 1'hydroxylation results in increased formation of 1'hydroxymetabolite and 346 accordingly of the toxic reactive electrophilic 1'-sull foxy conjugate metabolite at higher dose level $(30 - 300 \text{ mg kg bw.})^{31}$. 347 348 Our data showed no genotoxic potential of myristicin in comparison to other alkenylbenzenes with similar structures (safrole, estragole)^{33,34}. Besides, myristicin does not elicit any cytotoxicity differently from its 1'hydroxymetabolite that elicited cytotoxic, genotoxic and apoptotic effects 349 350 from a concentration of 150 μ M. The appearance of the apoptotic effect must be considered because it can mask the genotoxic effect. It is also evident that 600 μ M myristicin in our experimental conditions does not generate a sufficient 1'-hydroxymyristicin quantity to give the final toxicant product. 355 CONCLUSION 356 . Our data confirm no genotoxic potential of myristicin. The fact that only the hydroxyl metabolite is genotoxic in a narrow range of doses underlines that the mechanism of carbocation formation (1'-sull foxy conjugate toxic metabolite production) is necessary for genotoxic activity. This is an important point to consider in the risk assessment of dietary exposure to myristicin, which is mainly carried through consumption of the spices nutmeg and mace and of non alcoholic beverages. The average exposure for myristicin may be as high as to 162 μ g/day (3/684 μ g/day lower and upper limits equal to 0.05 and 11.4 μ g/kg b.w. /day, respectively for an adult of the average weight of 60 kg) in Europe. The results lead to the conclusion that myristicin presents no significant risk to humans through consumption of a traditional diet because the very low levels of exposure . The low doses cause essentially the primary involvement of the O-demethylation #### **Conflict of interest** leading to a safer metabolic path. The authors declare that there are no conflicts of interest. ### References - 1. H. Hallström, H. and A. Thuvander, 1997. Toxicological evaluation of myristicin, Nat. Toxins 5:186–192. - 2. C. Martins, C., C. Doran, A. Laires, J. RueffandA. S. Rodrigues, 2011. Genotoxic and apoptotic activities of the food flavourings myristicin and eugenol in AA8 and XRCC1 deficient EM9 cells. Food Chem. Toxicol. 49: 385–392. - 3. van den Berg, S., A. Punt, A. Soffers, J. Vervoort, S. Ngeleja, B. Spenkelink and I.M.C.M. Rietjens, 2012. Physiologically based kinetic models for the alkenylbenzene elemicin in rat and human and possible implications for risk assessment. Chem. Res. Toxicol. 25: 2352–2367. - 4. Scientific Committee on Food (SCF), 2001a. Opinion of the Scientific Committee on Food on the safety of the presence of safrole (1-allyl-3,4-methylene dioxy benzene) in flavourings and other food ingredients with flavouring properties .pp 1–10. - 5. Scientific Committee on Food (SCF), 2001b. Opinion of the Scientific Committee on Food on Estragole (1- Allyl-4-Methoxybenzene), pp 1-10. - 6. Scientific Committee on Food (SCF) 2001c. Opinion of the Scientific Committee on Food on Methyleugenol (4-Allyl-1,2-Dimethoxybenzene), pp 1-10. - 7. Rietjens, J.M.C.M., S.M. Cohen, S. Fukusima, N.J. Gooderham, S. Hecht, L.J. Marnett., R.L. Smith, T.B. Adams, M. Bastaki, C.G. Harmanand S.V. Taylor, 2014. Impact of structural and metabolic variations on the toxicity and carcinogenicity of hydroxy- and alkoxy-substituted allyl and propenylbenzenes. Chem. Res. Toxicol. 27: 1092-1103. - 8. van den Berg S.J., P. Restani, M.G. Boersma, L. Delmulle and I.M.C.M. Rietjens, 2011. Levels of genotoxic and carcinogenic compounds in plant food supplements and associated risk assessment. Food Nutri Sci 2: 989-1010. - 9. Phillips, D.H., M.V. Reddy and K. Randerath, 1984. 32P-post-labelling analysis of DNA adducts formed in the livers of animals treated with safrole, estragole and other naturally-occurring alkenylbenzenes. II. New born male B6C3F1 mice. Carcinogenesis 5:1623–1628. - 10. Randerath, K., R.E. Haglund, D.H. Phillips and M.V. Reddy, 1984. 32P-post-labelling analysis of DNA adducts formed in the livers of animals treated with safrole, estragole and other naturally-occurring alkenylbenzenes. I. Adult female CD-1 mice. Carcinogenesis 5: 1613–1622. - 11. Marcus, C., E.P. Lichtenstein (1982). Interactions of naturally occurring food plant components with insecticides and pentobarbital in rat and mice. J. Agric. Food Chem. 30:563-568. - 12. Hasheminejad G. and J. Caldwell, 1994. Genotoxicity of the alkenylbenzenes alpha- and beta-asarone, myristicin and elemicin as determined by the UDS assay in cultured hepatocytes. Food Chem. Toxicol. 3(22):223–231. - 13. Lee, B.K., J.H. Kim, J.W. Jung, J.W. Choi, E.S. Han, S. H. Lee, K.H. Ko and J.H. Ryu, 2005. Myristicin-induced neurotoxicity in human neuroblastoma SK-N-SH cells. Toxicol. Lett. 157:49–56. - 14. Martins, C., C. Doran, I. C. Silva., C. Miranda, J. Rueff and A. S. Rodrigues,2014. Myristicin from nutmeg induces apoptosis via the mitochondrial pathway and down regulates genes of the DNA damage response pathways in human leukaemia K562 cells. Chem. Biol. Interact. 218:1–9. - 15. Al-Malahmeh A.J., A. Al-Ajlouni, S. Wesseling, A.E.M.F Soffers, A. Al-Subeih, R. Kiwamoto, J. Vervoortand, I.M.C.M. Rietjens, 2016. Physiologically based kinetic modelling of the bioactivation of myristicin. Arch. Toxicol. 91: 713-734. - 16. Zangouras, A., J. Caldwell, A. J. Huttand R. L. Smith, 1981. Dose dependent conversion of estragole in the rat and mouse to the carcinogenic metabolite, 1'-hydroxyestragole. Biochem. Pharmacol. 30:1383–1386. - 17. Zhou,G.D.,B. Moorthy, J. Bi, K.C. Donnelly and K. Randerath, 2007. DNA adducts from alkoxyallylbenzene herb and spice constituents in cultured human (HepG2) cells. Environ. Mol. Mutagen. 48:715–721. - 18. Schiller, C.D., A. Kain, K. Mynettand, A. Gescher,1992. Assessment of viability of hepatocytes in suspension using the MTT assay. Toxicol. Vitro 6:575–578. - 19. Rodrigues, R.M., M. Bouhifd, G. Bories , M.G. Sacco, L. Gribaldo, M. Fabbri, S. Coecke and M.P. Whelan, 2013. Assessment of an automated in vitro basal cytotoxicity test system based on metabolically-competent cells. Toxicol. Vitro 27:760–767. - 20. Sing, N.P.,M.T McCoy, R.R. Tice and E.L. Schneider, 1988. A simple technique for quantitation of low levels of DNA damage in individual cells Exp. Cell Res. 175:184-191. - 21. Bryce, S.M., J.C. Bemis, S.L. Avlasevich and S.D. Dertinger, 2007. In vitro micronucleus assay scored by flow cytometry provides a comprehensive evaluation of cytogenetic damage and cytotoxicity. Mutat. Res. 630: 78–91. - 22. Boberg, E.W., E. C. Miller, J. A. Miller, A. Poland and A. Liem,1983. Strong evidence from studies with brachymorphic mice and pentachlorophenol that 1'-sulfooxysafrole is the major ultimate electrophilic and carcinogenic metabolite of 1'-hydroxysafrole in mouse liver. Cancer Res. 43: 5163–5173. - 23. Drinkwater, N.R., E.C. Miller, J.A. Miller and H.C. Pitot, 1976. Hepatocarcinogenicity of estragole (1-allyl-4-methoxybenzene) and 1'-hydroxyestragole in the mouse and mutagenicity of 1'-acetoestragole in bacteria. J. Natl. Cancer Inst. 57:1323–1331. - 24. Swanson, A.B., E.C. Miller and J.A. J.A. Miller, 1981. The side-chain epoxidation and hydroxylation of the hepatocarcinogens safrole and estragole and some related compounds by rat and mouse liver microsomes. Biochem. Biophys. Acta, 673: 504–516. - 25. Miller, J.A.,E.C. Millerand, D.H. Phillips, 1982. The metabolic activation and carcinogenicity of alkenylbenzenes that occur naturally in many spices. In: Stich, H.F., ed. Carcinogens and mutagens in the environment. Vol. 1. Food products. Boca Raton, FL, USA, CRC Press, pp. 83–96. - 26. Miller, E.C., A.B. Swanson, D.H. Phillips, T.L. Fletcher, A. Liem and J.A. Miller, 1983. Structure-activity studies of the carcinogenicities in the mouse and rat of some naturally occurring and synthetic alkenylbenzene derivatives related to safrole and estragole. Cancer Res. 43: 1124–1134. - 27. Gardner, I., P. Bergin and P. Stening ,1995. Protein adducts derived from methyleugenol. In: Meeting report of the 4th International ISSX Meeting, Vol. 8. Washington, DC, USA, International Society for the Study of Xenobiotics, p. 208. - 28. Gardner, I., P. Bergin and P. Stening, 1996. Immunochemical detection of covalently modified protein adducts in livers of rats treated with methyleugenol. Chem. Res. Toxicol. 9(4):713–721. - 29. Daimon, H., S. Sawada, S. Asakura and F. Sagami, 1998. In vivo genotoxicity and DNA adduct levels in the liver of rats treated with safrole. Carcinogenesis 19(1):141–146. - 30. Knasmüller S., W. Parzefall, R. Sanyal, S. Ecker, C. Schwab, M. Uhl, V. Mersch-Sundermann, G. Williamson, G. Hietsch, T. Langer, F. Darroudi, and A.T. Natarajan, 1998. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutation Res. 402: 185-202. - 31. Smith, R.L., T.B. Adams and J. Doull, 2002. Safety assessment of allylalkoxybenzene derivatives used as flavouring substances methyl eugenol and estragole Food and Chemical Toxicology 40: 851–870 doi:10.1016/S0278-6915(02)00012-1. - 32. Chan, V.S. and J. Caldwell, 1992. Comparative induction of unscheduled DNA synthesis in cultured rat hepatocytes by allylbenzenes and their 1'-hydroxy metabolites. Food Chem. Toxicol. 30:831–836. - 33. Rietjens, J.M.C.M., M.G. Boersm, H. van der Woude, S.M.F. Jeurissen, M.E. Schutte and G.M. Alink, 2005. Flavonoids and alkenylbenzenes: mechanisms of mutagenic action and carcinogenic risk. Mutat. Res. 574: 124–138. - 34. Rietjens, J.M.C.M., W. Slob, C. Galli and V. Silano, 2008. Risk assessment of botanicals and botanical preparations intended for use in food and food supplements: emerging issues. Toxicol. Lett. 180,131–136. ### **Figure Legends** - Fig. 1 Proposed metabolic pathways of the alkenylbenzenemyristicin¹⁵ - **Fig. 2** Cytotoxicity evaluation, through MTT and Neutral red assay in HepG2 cells exposed to 1'-hydroxymyristicin for 24 h. Data are elaborated through One Way Anova (Dunnett's *post hoc* test) analysis. - **Fig.3** Evaluation of genotoxic damage by alkaline comet test (pH >13) in HepG2 cells exposed to myristicin (450-600 μ M) for 24 h. C-,vehicle (DMSO 0.1%); C+ positive control (mitomycin 0.1 μ g/ml). Data are elaborated through One Way Anova (Dunnett's *post hoc* test) analysis. **A.** Tail moment (μ m). **B.** % BCD nucleoids **C.** % E nucleoids . - **Fig. 4** Evaluation of genotoxic damage by alkaline comet test (pH >13) in HepG2 cells exposed to 1'-hydroxymyristicin (50-450 μ M) for 24 h. C-,vehicle (DMSO 0.1%); C+ positive control (mitomycin 0.1 μ g/ml). Data are evaluated through One Way Anova (Dunnett's *post hoc* test) analysis. - A. Tail moment (µm). B. % BCD nucleoids C. % E nucleoids - **Fig.5** Neutral Comet test (pH 8) evaluation in HepG2 cells exposed to 1'-hydroxymyristicin (50-450 μM) for 24 h. C-,vehicle(DMSO 0.1%). Data are evaluated trough One Way Anova (Dunnett's *post hoc* test) analysis. **A.** Tail length (μm) **B.** Tail moment (μm) - Fig.6 Evaluation of genotoxic damage through micronucleus test in HepG2 cells exposed to myristicin and 1'-hydroxymyristicin. Detection of micronuclei is made in flow cytometry. C+ positive control (mitomycin 0.1 μ g/ml). Micronuclei values are expressed as fold increase respect negative control (value of 1 on Y axis). A fold increase ≥ 3 gives an indication of positive results. - **Fig.7** Evaluation of apoptotic cells by Annexin V test in HepG2 cells exposed to 1'-hydroxymyristicin for 24 h. C-, vehicle (DMSO 0.1%). C+, positive control (staurosporine 8.56 μM). Data are elaborated through One Way Anova (Dunnett's *post hoc* test) analysis. - A. Percentage of early apoptotic cells - **B.** Percentage of late apoptotic events