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Abstract 

Cysteine-containing antimicrobial peptides of diverse phylogeny share a common structural 

signature, the  core, characterized by a strong polarization of charges in two antiparallel  sheets. 

In this work we analyzed peptides derived from the tomato defensin SolyC07g007760 

corresponding to the protein  core and demonstrated that cyclization of the peptides, which 

results in segregation of positive charges to the turn region, produces peptides very active against 

Gram negative bacteria, such as Salmonella enterica and Helicobacter pylori. Interestingly these 

peptides show very low hemolytic activity and thus represent a scaffold for the design of new 

antimicrobial peptides. 
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Introduction 

A tremendous effort has been recently devoted to the discovery of biologically active peptides 

from natural sources.[1-3] Plants produce a wide variety of antimicrobial peptides and proteins 

showing activity against either plant or human pathogens.[4] Many of these, such as thionins and 

knottins are rich in cysteines and are stabilized by a number of disulfide bonds.[5, 6] Interestingly 

some of the structural features displayed by peptides produced in plants are well conserved also 

within proteins produced by evolutionarily diverse organisms and, in fact, the existence of 

multidimensional signatures for antimicrobial peptides has been hypothesized.[7-9] Thecore 

motif has recently been indicated as a three dimensional signature for antimicrobial peptides or 

proteins and, generally, as a feature shown by membrane-active proteins. In particular, the  core 

motif, characterized by a conserved CXG sequence and two antiparallel  sheets, is common to 

host defence polypeptides showing multiple disulfide bonds such as toxins, kinocidins and 

thionins.[10, 11] This structural motif can be generated by different amino acid sequences and can 

exist in the dextromeric or levomeric form, depending on whether it is derived by the amino acid 

forward or reverse sequence (Figure 1). In all cases  core motifs show polarization of positive 

charge and segregation of hydrophobic amino acids. There are some cases in which the only  core 

is sufficient for the peptide antimicrobial activity, as observed for protegrins,  defensin RTD-1, 

and other cases in which the core represents the scaffold around which helices and sheets packs, 

as for kinocidins.[12, 13] 

In a recent paper we identified, after a bioinformatics analysis of the tomato genome, the tomato 

defensin SolyC07g007760 (iTAG v.2.3) and demonstrated that a synthetic peptide (SolyC) 

corresponding to its  core exerts antimicrobial activity against both Gram positive and Gram 

negative bacteria, being particularly active against different strains of the Gram negative 

bacterium H. pylori.[14, 15] Interestingly the peptide SolyC was able to discriminate between 



pathogens and probiotic bacteria, killing only the minority of the probiotic tested. In addition, 

SolyC down-regulated the pro-inflammatory cytokines to an extent comparable to the known anti-

inflammatory drug acetyl salicylic acid , did not cause red blood cell hemolysis and was not toxic 

toward eukaryotic cells. 

SolyC is a peptide composed by 17 amino acids and contains three cysteines in positions 6, 13 and 

15. The results described so far were obtained employing the peptide in its linear form. The 

presence of three cysteines which might be subjected to spontaneous oxidation and the 

observation that in typical  cores those cysteines are involved in disulfide bonds urged us to 

investigate how formation of disulfide bonds in a controlled fashion could affect the secondary 

structure and the antimicrobial activity of the peptide. Two peptides in which Cys13 or Cys15 was 

mutated into a serine were obtained in the linear and oxidized form. Disulfide bonds were formed 

between C6 and C13 (SolyC1) or C6 and C15 (SolyC2); in both cases one cysteine was missing. 

Truncated peptides, starting from the conserved GXC motif were also obtained in the linear and 

oxidized form. The secondary structure of all peptides was analyzed by Circular Dichroism; the 

antimicrobial activity of the peptides was tested against Gram positive and Gram negative 

bacteria. All the oxidized peptides are highly active against Gram negative bacteria; the linear 

peptide SolyC2 shows antimicrobial activity against Gram negative bacteria comparable to that of 

the reference peptide SolyC, while linear SolyC1 exhibits an antimicrobial activity against Gram 

negative bacteria at higher concentrations. The activity of modified peptides against Gram positive 

bacteria was found in all cases lower as compared to that of the reference peptide. These results 

suggest that the interaction of the peptides with the membranes of Gram negative bacteria is 

stronger when the positive charges are exposed and this likely occurs when the peptides are in the 

oxidized form, in which the antiparallel  sheets are constrained by the disulfide bond. 

 



Materials and methods 

Reagents 

The amino acids used for the peptide synthesis, Fmoc-Arg(Pbf)-OH, Fmoc-Asn(Trt)-OH, Fmoc-

Cys(Trt)-OH, Fmoc-Gly-OH, Fmoc-Lys(Boc)-OH, Fmoc-Phe-OH, Fmoc-Ser(OtBu)-OH, Fmoc-Thr(tBu)-

OH , the Rink amide MBHA resin and the activators N-Hydroxybenzotriazole (HOBT) and O-

Benzotriazole-N,N,N’,N’-tetramethyl-uronium-hexafluoro-phosphate (HBTU) were purchased from 

Novabiochem (Gibbstown, NJ, USA). Acetonitrile (ACN) was from Reidel-deHaën (Seelze, Germany) 

and dry N,N-dimethylformamide (DMF) from LabScan (Dublin, Ireland). All other reagents were 

from Sigma Aldrich (Milan, Italy). LC-MS analyses were performed on a LC-MS Thermo Finnigan 

with an electrospray source (MSQ) on a Phenomenex Jupiter 4μ Proteo (50x4.6 mm) column for all 

peptides except for SolyC-t which was analysed on a Jupiter 4μ Proteo (150x4.6 mm) column. 

Purification was carried out on a Onyx monolithic semi-prep C18 (100x10mm) column. 

Synthesis 

Peptides were synthesised on solid phase by Fmoc chemistry on the MBHA (0.54 mmol/g) resin by 

consecutive deprotection, coupling and capping cycles.[16] Deprotection: 30% piperidine in DMF, 

5 minutes (2x). Coupling: 2.5 equivalents of amino acid + 2.49 equivalent of HOBT/HBTU (0.45 M in 

DMF/DMSO 75/25 v/v) + 3.5 equivalents NMM, 40 minutes. Capping: acetic 

anhydride/DIPEA/DMF 15/15/70 v/v/v, 5 minutes. 

Peptides were cleaved off the resin and deprotected by treatment of the resin with a solution of 

TFA/TIS/EDT/H2O 94/1/2.5/2.5 v/v/v/v, 3h, rt. TFA was concentrated and peptides were 

precipitated in cold ethylic ether. Analysis of the crudes was performed by LC-MS using a gradient 

of acetonitrile (0.1% TFA) in water (0.1% TFA) from 5 to 70% in 15 minutes. Purification was 



performed by semipreparative RP-HPLC using a gradient of acetonitrile (0.1% TFA) in water (0.1% 

TFA) from 5 to 70% in 15  minutes.  

 

SolyC (Da): Calculated for 1994.32: [M+2H]2+: 998.16; [M+3H]3+: 665.77; Found:  [M+2H]2+: 997.55; 

[M+3H]3+: 665.64; 

Retention Time: 5.40 min 

SolyC-t (Da): Calculated for 1703.01: [M+2H]2+: 853.50;  [M+3H]3+: 568.67; Found: [M+1H]1+: 

1702.58;  [M+2H]2+: 852.29;  [M+3H]3+: 568.52;  

Retention Time: 12.0 min 

SolyC1 (Da): Calculated for 1978.26: [M+2H]2+: 990.13; [M+3H]3+: 660.42; Found: [M+2H]2+: 

990,13; [M+3H]3+: 660.41; 

Retention Time: 5.12 min 

SolyC1-t (Da) Calculated for  1686.95: [M+2H]2+: 844.47; [M+3H]3+: 563.31; Found: [M+2H]2+: 

844.40; [M+3H]3+: 563.21; 

Retention Time: 5.12 min 

SolyC2 (Da): Calculated for  1978.26 [M+2H]2+: 990.13; [M+3H]3+: 660.42; Found: [M+2H]2+: 

989.90; [M+3H]3+: 660.21 

Retention Time: 5.33 min 

SolyC2-t (Da): Calculated for 1686.95: [M+2H]2+: 844.47; [M+3H] 3+: 563.31; Found: [M+2H]2+: 

844.03; [M+3H]3+: 563.23; 



Retention Time: 4.93 min 

 

Oxidation reaction 

Disulfide-bridged analogues were obtained from the purified linear peptides after an oxidation 

reaction. Linear peptides  were dissolved in a mixture of  H2O/acetic acid (95/5, v/v) at a final 

concentration of 2.5mM (9mL total volume);  pH was adjusted to 6 with ammonium hydrogen 

carbonate and then DMSO (1 mL) was added. The reaction was complete after 24h.   Analysis of 

the crudes was performed by LC-MS using a gradient of acetonitrile (0.1% TFA) in water (0.1% TFA) 

from 5 to 70% in 15 minutes. Purification was performed by semipreparative RP-HPLC using a 

gradient of acetonitrile (0.1% TFA) in water (0.1% TFA) from 5 to 70% in 15  minutes. 

 

SolyC1_ox (Da): Calculated for 1976.26: [M+2H]2+: 989.13; [M+3H]3+: 659.75; Found: [M+2H]2+: 

988.70; [M+3H]3+: 659.60; 

Retention Time: 5.35 min 

SolyC1-t-ox (Da): Calculated for 1684.94: [M+2H]2+: 843.47; [M+3H]3+: 562.64; Found: [M+2H]2+: 

843.23; [M+3H]3+: 562.53; 

Retention Time: 4.96 min 

Solyc2-ox (Da): Calculated for 1976.26: [M+2H]2+: 989.13; [M+3H]3+: 659.75; Found: [M+2H]2+: 

988.60; [M+3H]3+: 659.60; 

Retention Time: 5.10 min 



SolyC2-t-ox (Da): Calculated for 1684.94: [M+2H]2+: 843.47; [M+3H]3+: 562.64; Found: [M+2H]2+: 

843.26; [M+3H]3+: 562.50; 

Retention Time: 5.15 min 

Bacteria 

Bacterial isolates were from patients hospitalized at the Medical School of the University of Naples 

“Federico II” and at the “Villa Betania” hospital (Naples, Italy). Species identification was carried 

out by PCR.[17-21] Bacteria were grown at 37°C in TSB or LB medium, harvested in the exponential 

phase (OD 600 nm 0.6-0.8), centrifuged (10 min at 8x103 g) and resuspended in Muller Hinton 

broth at the concentration of ~105 CFU/ml. The resistance/susceptibility of the different strains 

used in this study to conventional antibiotics were also determined using the disk diffusion 

method on Mueller-Hinton agar according to the NCCLS guidelines 2002 (data not shown) 

 

Antibacterial and haemolytic activity 

Bacteria were distributed in triplicate into plates (60 µl/well), mixed with dilutions of the peptides 

(5 – 100 µg/ml; 40 µl/well) and incubated at 37°C for 20 h. The minimal concentration of peptides 

causing 100% growth inhibition (MIC100), was determined by measuring the absorbance at 600 

nm (Biorad microplate reader model 680, CA).[22] The test was performed in triplicate. The 

haemolytic activity of the peptides was tested using mouse red blood cells.   The haemolytic 

activity was measured according to the formula OD peptide - OD negative control/OD positive 

control - OD negative control x 100 where the negative control (0% haemolysis) was represented 

by erythrocytes suspended in saline and the positive control (100% haemolysis) was represented 

by the erythrocytes lysed with 1% triton X100 .[22] 

The LC50 value relative to the SolyC was calculated as described.[23]   



 

Circular dichroism 

Circular dichroism (CD) spectra were recorded at 25° C using a 1 cm quartz cell with the Jasco-810 

spectropolarimeter using a 260 – 200 nm measurement range, 100 nm/min scanning speed, 1nm 

bandwidth, 4 sec response time, 0.5 nm data pitch. 

Peptides concentration for CD measurement was 25 μM. CD spectra were registered in 10 mM 

sodium phosphate buffer, pH 7 and in 10 mM  sodium phosphate,  20 mM SDS buffer, pH 7.  

 

 Results  

Peptide design and synthesis 

The SolyC peptide (Table 1) contains the core sequence of the tomato defensin Solyc07g007760 

and shows strong similarity in the primary sequence with the levomeric form of porcine protegrin 

PG-1. In PG-1 four cysteines form two disulfide bonds, one involving C6 and C15 and the other C8 

and C13, which force the peptide to fold into two antiparallel beta sheets; the oxidation of 

cysteines induces the formation of a turn characterized by a strong concentration of positive 

charges.[24, 25] 

SolyC contains only three cysteines, therefore, in order to induce the peptide to assume a PG-1 

like structure, only one disulfide bond can be formed. We designed two peptides with a different 

disulfide pattern, with the aim to explore the effect of cyclization on the antimicrobial activity of 

the peptide, to understand whether there is a preference for the formation of one of the two 

disulfides and also whether there is a difference in the activity of the peptides with cycles of 

different size (Table 1). Since in  cores cysteines contained in sequences CXC are rarely connected 



by disulfide bonds[26], we explored only two of the possible combinations of disulfides, namely 

C6-C13 (SolyC1) and C6-C15 (SolyC2) and mutated the cysteine not involved in the disulfide into a 

serine. In order to investigate the effect of reducing the hydrophobicity of the peptide, we also 

obtained truncated peptides, lacking three amino acids at the N-terminus. In the truncated  

peptides the residues which characterize the  core motif GXC were conserved (Table 1). HPLC 

retention times for truncated peptides are similar or lower as compared to those of the full length 

peptides, as expected comparing the mean hydrophobicity calculated for each peptide (Table 

1).[27] 

All peptides were obtained in the linear and oxidized form. Oxidation was carried out incubating 

linear peptides with DMSO (10%) at pH 6.0. LC-MS analysis of the peptides, showing for the 

majority of the peptides a decrease of the retention time and a reduction of 2 units in the mass, 

confirmed that the reaction occurred (Figure 2). 

Secondary structure studies 

Linear and oxidized peptides were analyzed by Circular Dichroism at a 50M concentration in 

Phosphate buffer, pH7. Peptides are mostly in an unordered form; spectra for the linear peptides, 

in fact, show one minimum around 204 nm and a very shallow minimum around 230 nm; upon 

oxidation the minimum shifts toward 207 nm. Spectra recorded in the presence of SDS 30 mM are 

in most cases very similar to those recorded in buffer, but more intense (Figure 3).  

Antimicrobial activity test 

The antimicrobial activity of the peptides was tested against the Gram positive bacteria S. aureus, 

S. epidermidis, L. monocytogenes and against the Gram negative bacteria H.pylori and S. enterica. 

(Table 2) For the standard peptide SolyC, truncation results in loss of activity against the Gram 

positive Staphilococci, while no difference was found when the peptides SolyC and SolyC-t were 



tested against Gram negative bacteria. When tested against Gram positive bacteria, the analogues 

containing two cysteines (SolyC1 and SolyC2) show a reduced antimicrobial ability as compared to 

the reference peptide SolyC; MIC values are in all cases higher than that of SolyC and there is no 

large difference between the activity of linear and oxidized peptides. Peptides are in general more 

active against Gram negative bacteria; linear peptides show lower MIC in the full length version as 

compared to the truncated form. Noteworthy SolyC2, the peptide having the disulfide between C6 

and C15, shows activity identical to that of the reference peptide. Oxidation results in an increase 

of the antimicrobial activity of the modified peptides against Gram negative bacteria, either in the 

extended or in the truncated form: all oxidized peptides exhibit activity identical or comparable to 

that of the reference peptide. 

The hemolytic activity of the peptides was tested for all peptides at several concentrations (Figure 

4). Up to 90g/mL all peptides have hemolytic activity below 30%. At low concentrations all long 

linear peptides and the oxidized form of SolyC1 show hemolytic activity comparable to that of 

truncated peptides. Interestingly SolyC2 has in the long oxidized form (SolyC2-ox) very low 

hemolytic activity, comparable to that of the standard peptide. 

LC50 measured for all peptides was found lower for the peptides containing only two cysteines as 

compared to SolyC (Table 3). The lowest LC50 value was observed for SolyC2 in the oxidized form 

(SolyC2-ox). 

 

Discussion 

Peptides containing a  core motif and in particular analogues of protegrins have widely been 

studied as they are capable to exert antimicrobial activity even at high salt concentrations, unlike 

other antimicrobial peptides which form sheets such as  defensins.[28, 29] Interestingly, the PG-1 



analogue IB-367 has been tested in phase II clinical trials for the treatment of oral mucositis and 

PG-1 based peptidomimetics were found to be active at nanomolar concentrations against 

Pseudomonas aeruginosa.[30, 31] It has been reported that the stabilization of the hairpin is 

necessary for the activity: PG-1 analogues lacking cysteines, in which the hairpin is stabilized by a 

tryptophan zipper motif, possess antimicrobial activity comparable to PG-1.[32] In PG-1 the 

number of disulfide bonds and their position affect the activity; analogues of PG-1 with a single 

disulfide bond possess antimicrobial activity comparable to PG-1 in the linear form. 

The  core of the tomato defensin family, to which SolyC peptides belong, has a strong similarity in 

the amino acid sequence with the core of other plant defensins as the Medicago sativa defensin 

4 (MtDef4), and also with the levomeric form of PG-1.[9, 33] The three-dimensional structures of 

plant defensins, which are composed of about 50-60 amino acids, are very complex and cysteines 

belonging to the  core form disulfide bonds with cysteines located outside of the  core.[34-36] In 

self-consistent  cores as PG-1 and RTD-1, instead, the beta-hairpin structure is stabilized by two 

disulfide bonds between cysteines inside the  core. SolyC is a fragment of a tomato defensin and, 

as most of the plant defensins, has a very conserved GXCRG motif within the  core with three 

cysteins. It is reasonable to think that SolyC has a structural organization similar to that of plant 

defensin in which cysteines in the  core are not connected between them. As we have 

demonstrated in a previous paper that the linear fragment SolyC possess high antimicrobial 

activity, we now explored the possibility of stabilizing the peptide structure introducing in a 

controlled fashion one disulfide bond, and evaluated the effects of cyclization on the peptide 

antimicrobial activity and secondary structure. Furthermore similar studies were carried out on 

truncated peptides. 

In SolyC cysteins are located in position i, i+7 and i+9; peptides with disulfide bonds between Cys i 

–i+7 (SolyC1) and i-i+9 (SolyC2) were obtained.  The secondary structure of all peptides was 



analyzed by CD in phosphate buffer and in phosphate buffer containing SDS: both linear and 

oxidized peptides seems to be in an unordered form (Figure 3). All the analogues are more active 

against Gram negative than against Gram positive bacteria; these results are in line to what 

reported for PG-1 and PG-1 analogues with a single disulfide bond.[28] Interestingly, cyclic 

peptides are generally more active than linear ones against Gram negative bacteria. Cyclization 

induce a strong polarization of the peptides, confining the positive charge in the turn and the 

hydrophobic residues on the “tails”, and reasonably allows the peptide to interact with the 

bacterial LPS, neutralizing and permeating it. (Figure 5) Recent studies aimed to characterize the 

interaction of rationally designed peptides with the LPS demonstrate that amphipatic peptides are 

active antimicrobials as they assume the structure of a boomerang upon interaction with LPS, 

exerting their activity by disgregating it.[37] These peptides are mimics of the outer membrane, as 

they possess a polar head and hydrophobic tails and easily intercalate into LPS. The SolyC cyclic 

analogues are already in the active conformation with the segregation of charges and therefore it 

is likely that they exert their activity as the  boomerang peptides do. 

SolyC2 in the full length and truncated version shows antimicrobial activity identical to that of the 

reference peptide SolyC. These result may be interpreted hypothesizing that, in the experimental 

conditions employed for the activity test, SolyC spontaneously oxidizes and the formation of the 

disulfide bond between Cys in position i and i+9 is favored. As in SolyC2 only the disulfide bridge 

between Cys i and i+9 can be formed, it is reasonable to think that the linear peptide 

spontaneously converts into the oxidized form which corresponds also to the active form. This 

hypothesis is consistent with the observation that full length SolyC2 in the linear and oxidized form 

has the same antimicrobial activity as the reference SolyC. Interestingly in SolyC2 the cysteines 

involved in the disulfide bond are located in positions identical to external cysteines of PG-1, 

reproducing the cyclization pattern of the highly active “bullet” peptide proposed by Harwig.[28] 



The observation that there is no difference in the activity against Gram negative bacteria of cyclic 

SolyC1 and SolyC2 derivatives, which differ in the number of amino acids included in the cycle, 

suggests that the charge segregation and not the dimension of the cycle is crucial for activity. 

All peptides at concentrations up to threefold that of MIC show very low hemolytic activity, 

indicating that these peptides are selective for bacterial outer membrane. The lowest percentage 

of hemolytic activity was found for the oxidized SolyC2. LC50 calculated for all peptides on murine 

red blood cells is lower for SolyC2, confirming the selectivity for negatively charged membrane (as 

the bacterial LPS) versus  zwitterioninc membranes (as the erythrocytes). 

In conclusion, we have demonstrated that isolated  cores of plant defensins possess strong 

antimicrobial activity against Gram negative bacteria; formation of an intramolecular disulfide 

bond stabilizes the peptides in the “active” conformation. We found that the peptide SolyC2, 

which reproduces the disulfide bond pattern observed in PG-1, shows an high selectivity towards 

bacterial outer membrane, showing very low hemolytic activity at concentrations which are 

threefold the MIC.  These results encourage future studies on the antimicrobial activity of isolated 

 cores peptides from plants, due to their strength and specificity of action. 
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Figure  

Figure 1: Schematic representation of the gamma core isoforms. 

 

Figure 2: Comparison of the LC profiles for SolyC2 in the linear (A) and oxidized form (B). Zoom 

between 4 and 6 minutes of the LC run. 

 

 



Figure 3: CD spectra of SolyC2 (Blue) and SolyC2-ox (red)  (50M) recorded in 10mM Phosphate 

buffer pH7 (continuous line) and in 10mM Phosphate buffer, 30mM SDS pH7 (dotted lines). 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 4: Hemolytic activity of the peptides measured at different concentrations. 

 



Figure 5:  Schematic representation of the peptide SolyC2-ox; in red the positively charged amino 

acids in the turn, in yellow the cysteines involved in the disulfide bond and in green the cysteine 

residue mutated into serine. 

 

  



Table1: Peptide sequences, names, reference number and mean hydrophobicity 

Peptide sequence Name Number Mean 

Hydrophobicity 

FSGGNCRGFRRRCFCTK SolyC 1 -0.71 

GNCRGFRRRCFCTK SolyC -t 2 -0.98 

FSGGNCRGFRRRCFSTK SolyC1 3 -0.91 

GNCRGFRRRCFSTK SolyC1-t 4 -1.22 

FSGGNCRGFRRRSFCTK SolyC2 5 -0.91 

GNCRGFRRRSFCTK SolyC2-t 6 -1.22 

 

FSGGNCRGFRRRCFSTK 
SolyC1-ox 

7 --0.91 

 

GNCRGFRRRCFSTK 
SolyC1-t-ox 

8 -1.22 

 

FSGGNCRGFRRRSFCTK 
SolyC2-ox 

9 -0.91 

 

GNCRGFRRRSFCTK 
SolyC2-t-ox 

10 -1.22 

 

  



Table2: Antimicrobial activity of the peptides against Gram positive and Gram negative bacteria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

STRAINS MIC100 (g/ml) 

 Peptide number 

 1 2 3 4 5 6 7 8 9 10 

Staphylococcus aureus 40  50  50  50  80  80  80  50  100  80  

Staphylococcus epidermidis 40  80  100  100  100  100  100  100  100  100  

Listeria monocytogenes 80  80  80  80  80  80  80  80  80  80  

Salmonella serovar paratyphi B 15  15  40  80  15  40  15  15  15  20  

Helicobacter pylori 15  15  15  15  15  20  15  15  20  20  



 

 

 

Table3: LC50 for the SolyC and SolyC analogues 

 Peptide number 

 1 2 3 4 5 6 7 8 9 10 

LC 50 (µg/ml) 275.2 266.7 212.3 228.5 226.5 213.0 229.6 231.0 197.4 235.1 

 


