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Introduction

In this Ph.D. thesis we characterize quasi-optimal nonconforming methods
for certain linear variational problems and investigate their structure. The
abstract analysis is complemented by various applications and numerical
tests in the finite element framework. In order to provide an easily accessible
and self-contained illustration of the subject, we shall restrict our attention
to the symmetric elliptic case, although various generalizations are possible.
The material collected here substantially results from [63, 64, 65, 62].

A symmetric elliptic linear variational problem can be written as

(0.1) given ` ∈ V ′, find u ∈ V such that ∀v ∈ V a(u, v) = 〈`, v〉

where V is a Hilbert space, a is a scalar product on V and 〈·, ·〉 denotes the
pairing of V and its dual V ′. Let S be a finite-dimensional linear space and
assume that ‖ · ‖ extends the energy norm

√
a(·, ·) to V + S. We say that

an approximation method u 7→ U ∈ S is quasi-optimal in the norm ‖ · ‖ if
there is Cqopt ≥ 1 such that

(0.2) ∀u ∈ V ‖u− U‖ ≤ Cqopt inf
s∈S
‖u− s‖.

Quasi-optimality in the norm ‖ · ‖ is a non-asymptotic notion and does not
require additional regularity beyond V . It is a necessary condition for a
near-best balance between quality and cost and, consequently, ensures the
effective use of all the degrees of freedom in S. It is also a convenient
departure point to derive sharp error estimates for regular solutions of the
model problem.

The conforming Galerkin method for (0.1)

(0.3) given ` ∈ V ′, find U ∈ S such that ∀σ ∈ S a(U, σ) = 〈`, σ〉

with discrete space S ⊆ V , is quasi-optimal in the energy norm induced by
a with Cqopt = 1, according to the classical Céa lemma [28]. More generally,
Babuška [6] established the quasi-optimality of (0.3) without assuming that
a is a scalar product and, in the same setting, Tantardini and Veeser [58]
have recently shown that the best constant is

(0.4) Cqopt = sup
σ∈S

sup‖v‖=1 a(v, σ)

sup‖s‖=1 a(s, σ)
,

1
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where v varies in V and s, σ vary in S.

This provides a rather general but still very strong result when the dis-
crete space S is conforming, i.e. it is a subspace of its continuous counterpart
V . However, methods with nonconforming discrete spaces are of interest be-
cause the ‘rigidity’ of their conforming counterparts may cause problems in
approximation, see, e.g., de Boor/DeVore [36] and Babuška/Suri [7], or in
stability, see Scott/Vogelius [55].

Popular nonconforming methods for (0.1) are classical nonconforming
finite element methods (NCFEM) like the Crouzeix-Raviart or the Morley
method and Discontinuous Galerkin (DG) methods. Here the so-called sec-
ond Strang lemma [10] or variants serve as a replacement for Céa’s lemma.
Such results are then used to derive error estimates which differ from (0.2),
in that they involve extra regularity,

• either of the solution u, which has to be taken from a strict compact
subset of V , see, e.g., Brenner/Scott [21] and Di Pietro/Ern [37],

• or, in the medius analysis initiated by Gudi [43], of the load term `, which
has to be taken from a strict compact subset of V ′; see also Brenner [16].

In both cases, the extra regularity involved then obstructs a further bound
by the best approximation error with respect to the norm ‖ · ‖ in order to
conclude quasi-optimality.

This simple observation suggests that nonconforming methods may not
be quasi-optimal if they are not carefully designed for this purpose. Nonethe-
less, it is our purpose to show that the possibility of designing quasi-optimal
and computationally feasible methods for (0.1) is not generally ruled out by
the nonconformity.

The material is organized within the thesis as follows. In Chapter 1,
we introduce a rather large class of methods, which mimic the variational
formulation of the model problem as follows:

(0.5) given ` ∈ D(L), find U ∈ S such that ∀σ ∈ S b(U, σ) = 〈L`, σ〉

where b is a nondegenerate bilinear form on S and L : D(L) ⊆ V ′ → S′ is
a densely-defined linear operator. We characterize the quasi-optimality of
such method in terms of suitable notions of stability and consistency. Then,
as a consequence, we show that the method (0.5) is quasi-optimal if and
only if it can be rewritten in the form

(0.6) given ` ∈ V ′, find U ∈ S such that ∀σ ∈ S b(U, σ) = 〈`, Eσ〉

for some linear smoothing operator E : S → V such that

(0.7) ∀u ∈ V ∩ S, σ ∈ S a(u,Eσ) = b(u, σ).



CONTENTS 3

Similarly to (0.4), we identify also the quasi-optimality constant of (0.6), i.e.
the best constant in (0.2), and observe its dependence on stability and con-
sistency. For this purpose and further convenience, we associate a stability
constant and two consistency measures with each method.

In the truly nonconforming case S * V , the use of a smoothing operator
E as in the right-hand side of (0.6) is uncommon but not new, see for
instance [4, 23]. Moreover, the validity of (0.7) is often not enforced or not
fully exploited, see e.g. [8], which contains also a partial quasi-optimality
result. For this reason, Chapters 3 and 4 are devoted to exemplify the
application of the above-mentioned results, while Chapter 2 collects some
necessary preliminaries and notations. We consider three prototypes for the
abstract problem (0.1) and propose various nonconforming finite element
methods. Each one of them

• seems to be new but differs from an existing (and non-quasi-optimal)
one only in the use of the smoothing operator E in the right-hand side
of (0.6);

• is quasi-optimal and its quasi-optimality constant is bounded in terms
of the shape parameter of the underlying mesh;

• is computationally feasible, in that O(dim(S)) operations are needed to
assemble a linear system from (0.6).

More specifically, in Chapter 3 we introduce a subclass of quasi-optimal
methods, relating S, b and E through a more restrictive counterpart of (0.7).
This provides an improved notion of consistency, called overconsistency, en-
tailing that the quasi-optimality constant coincides with the stability con-
stant of (0.6). We obtain overconsistency with

• the Crouzeix-Raviart element for the Poisson problem,

• Crouzeix-Raviart-like elements of arbitrary fixed order for the Poisson
problem,

• the Morley element for the biharmonic problem.

Furthermore, in Chapter 4 we design other quasi-optimal (but not over-
consistent) methods with

• discontinuous elements for the Poisson problem,

• the lowest-order Crouzeix-Raviart element for linear elasticity,

• a second-order continuous element for the biharmonic problem.

Finally, in Chapter 5 we restrict our attention to the two-dimensional
Poisson problem and observe the performance of some quasi-optimal, first-
order methods on various benchmarks. The purpose of these tests is the
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following. First, we aim at assessing the actual size of the constants in-
volved in our analysis. Second, we highlight the importance of full stability,
full algebraic consistency and quasi-optimality when rough loads come into
play. Third, we also compare different nonconforming methods with their
conforming counterpart. All the numerical experiments have been imple-
mented with the help of finite element toolbox ALBERTA [45, 54].
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Chapter 1

Abstract Theory

This chapter, which essentially results from [63], is devoted to the abstract
analysis of nonconforming methods for symmetric elliptic problems. Before
entering into the details, let us begin with a short overview of the main
notions and results.

1.1 Overview

We shall consider boundary value problems and nonconforming methods
which can be cast in the form (0.1) and (0.5), respectively.

Our first main result states that quasi-optimality in the norm ‖ · ‖ is
equivalent to full algebraic consistency and full stability. Full algebraic con-
sistency means that, whenever the exact solution happens to be in the dis-
crete space, it is also the discrete solution. Notice that this is a quite weak
property if the conforming part S ∩ V of the discrete space is small. Full
stability means that the discrete problem is ‖ · ‖-stable for all loads, irre-
spective of their regularity. Moreover, we show that full stability holds if
and only if the discrete problem can be rewritten as in (0.6). Notice that,
usually, nonconforming methods are not in this form.

As a second main result, we generalize (0.4) and determine the quasi-
optimality constant, i.e. the best constant in (0.2), for a quasi-optimal non-
conforming method:

Cqopt = sup
σ∈S

sup‖v+s‖=1 a(v,Eσ) + b(s, σ)

sup‖s‖=1 b(s, σ)

where v varies in V and s, σ belong to S. Notice that the numerator handles
the nonconformity by an extension interweaving data from the continuous
and the discrete problem.

These results reduce the construction of quasi-optimal nonconforming
methods for (0.1) to devising suitable operators E, mapping discrete func-

5



6 CHAPTER 1. ABSTRACT THEORY

tions into continuous ones and enjoying (0.7). This is established for various
nonconforming finite element spaces in Chapters 3 and 4.

The rest of this chapter is organized as follows. In §1.2 we set up the
notations and notions for our analysis, individuating the concepts of sta-
bility and consistency that are necessary for quasi-optimality. In §1.3 we
characterize quasi-optimality in terms of such concepts and determine the
size of the quasi-optimality constant, inspecting it also by means of suitable
consistency measures. Then, we apply these results in §1.4 to determine the
structure of quasi-optimal methods for (0.1).

1.2 Setting, Stability and Consistency

1.2.1 Symmetric Elliptic Problems and Nonconforming
Methods

We introduce the abstract boundary value problem and then a class of non-
conforming methods, sufficiently large to host our discussion.

Let V be an infinite-dimensional Hilbert space with scalar product a(·, ·)
and energy norm ‖ · ‖ =

√
a(·, ·). Moreover, let V ′ be the topological dual

space of V , denote by 〈·, ·〉 the pairing of V and V ′ and endow V ′ with the
dual energy norm ‖`‖V ′ := supv∈V,‖v‖=1〈`, v〉. We consider the following
‘continuous’ problem: given ` ∈ V ′, find u ∈ V such that

(1.2.1) ∀v ∈ V a(u, v) = 〈`, v〉.

In view of the Riesz representation theorem, this problem is well-posed in the
sense of Hadamard and well-conditioned. In fact, if A : V → V ′, v 7→ a(v, ·)
is the Riesz isometry of V , we have u = A−1` with

(1.2.2) ‖u‖ = ‖`‖V ′ .

Given a generic functional ` ∈ V ′, we are interested in ‘computable’ ap-
proximations of the solution u in (1.2.1). In other words, we are interested
in approximating the linear operator A−1 suitably. Since A−1 is bounded,
one may want to approximate it by linear operators that are bounded, too.
However, in order to embed also existing methods in our setting, we con-
sider more general linear operators M , possibly unbounded, with finite-
dimensional range R(M) and domain D(M) that is dense in V ′. We say
that M is entire whenever it can be directly applied to every instance of the
continuous problem: D(M) = V ′.

We shall analyze methods that build upon the variational structure of
(1.2.1) in the following manner. Let S be a nontrivial, finite-dimensional
linear space, which will play the role of V . We write 〈·, ·〉 also for the pairing
of S and S′. Notice that we do not require S ⊆ V . As a consequence, 〈`, σ〉
and a(s, σ) may be not defined for some ` ∈ V ′ and s, σ ∈ S. We therefore
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introduce an operator L : D(L) ⊆ V ′ → S′ and a counterpart b : S×S → R
of a and require:

• L is linear, (possibly) unbounded, and densely defined,

• b is bilinear and nondegenerate in that, for any s ∈ S, the property
b(s, σ) = 0 for all σ ∈ S entails s = 0.

A method M with domain D(M) = D(L) is then defined by the following
discrete problem: given ` ∈ D(M), find M` ∈ S such that

(1.2.3) ∀σ ∈ S b(M`, σ) = 〈L`, σ〉.

Remark 1.2.1 (Computing discrete solutions). If ϕ1, . . . , ϕn is some basis of
S, problem (1.2.3) can be reformulated as a uniquely solvable linear system
for the coefficients of M` with respect to ϕ1, . . . , ϕn. Consequently, M` is
computable whenever b(ϕj , ϕi) and 〈L`, ϕi〉 can be evaluated for all indices
i, j = 1, . . . , n. Of course, it is desirable that the number of operations to
compute M` is of optimal order O(n). A necessary condition for this is that
the total number of operations for the aforementioned evaluations is of order
O(n).

Methods M with the discrete problem (1.2.3) are given by the triplet
(S, b, L), whence we shall write also M = (S, b, L). They may be called non-
conforming linear variational methods or, shortly, nonconforming methods.
An important subclass are the conforming ones, where the discrete space
is contained in the continuous one: S ⊆ V . (As for the common usage of
‘unbounded’ and ‘bounded’ in operator theory, our usage of ‘nonconforming’
and ‘conforming’ is slightly inconsistent in that a conforming method is also
nonconforming.)

Conformity allows choosing b and L by means of simple restriction:

(1.2.4) b = a|S×S and ∀` ∈ V ′ L` = `|S .

In this case (1.2.3) is a (conforming) Galerkin method. Truly nonconforming
examples are DG methods and classical NCFEM.

Introducing the invertible map B : S → S′, s 7→ b(s, ·), the method M
is represented by the composition

(1.2.5) M = B−1L.

Although the target function u is usually unknown, the approximation op-
erator

(1.2.6) P := MA = B−1LA

with domain D(P ) := A−1D(M) in V will turn out to be a useful tool.
Figure 1.1 illustrates our setting in a commutative diagram for the special
case of an entire method.
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V ′

L

��

A−1
//

M

��

V

P

��

S′
B−1

// S

Figure 1.1: Commutative diagram with solution operator A−1, entire non-
conforming variational method M given by S, B and L, as well as induced
approximation operator P .

Remark 1.2.2 (S and surjectivity of L). If L is a linear, unbounded, densely
defined operator from V ′ to S′, we have R(M) ⊆ S, with equality if and only
if L is surjective. In addition, if R(M) is a proper subset of S, elementary
linear algebra allows to reformulate M as a method over R(M). Conse-
quently, there is some ambiguity in the choice of S if L is not surjective and
a slight abuse of notation in writing M = (S, b, L).

1.2.2 Defining Quasi-Optimality, Stability and Consistency

We now define the key notions of our analysis for nonconforming methods.
For each ` ∈ V ′, a nonconforming variational method M = (S, b, L)

chooses an element of S in order to approximate u = A−1`. To assess the
quality of this choice, we assume that a can be extended to a scalar product
ã on Ṽ := V + S and consider the extended energy norm

‖ · ‖ :=
√
ã(·, ·) on Ṽ ,

with the same notation as for the original one. Observe that V and S are
closed subspaces of Ṽ .

The best approximation error within S to some function v ∈ V is then
given by infs∈S ‖v−s‖. Of course, it is desirable that a method is uniformly
close to this benchmark, i.e. there holds an inequality essentially reversing

∀u ∈ D(P ) inf
s∈S
‖u− s‖ ≤ ‖u− Pu‖.

Definition 1.2.3 (Quasi-optimality). A nonconforming variational method
M with discrete space S and approximation operator P is quasi-optimal
whenever there exists a constant C ≥ 1 such that

∀u ∈ D(P ) ‖u− Pu‖ ≤ C inf
s∈S
‖u− s‖.

The quasi-optimality constant Cqopt of M is then the smallest constant with
this property.
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Céa’s lemma [28] shows that conforming Galerkin methods for (1.2.1) are
quasi-optimal with Cqopt = 1 and that the associated approximation opera-
tor P = MA is the bounded linear a-orthogonal projection (or idempotent)
onto S: in fact, we have the celebrated Galerkin orthogonality

(1.2.7) ∀u ∈ V, σ ∈ S ⊆ V a(u− Pu, σ) = 0.

Before analyzing which of these properties still hold in the general case, let
us discuss some necessary conditions for quasi-optimality and their conse-
quences.

Remark 1.2.4 (Quasi-optimal needs entire). Let P be the approximation
operator of a quasi-optimal method M . The application v 7→ infs∈S ‖v− s‖
is Lipschitz continuous on V . Therefore, quasi-optimality implies that also
IdV − P and P are Lipschitz continuous. Since D(P ) is dense in V and
S complete, the operator P thus extends to V in a continuous and unique
manner. As a consequence, M extends to V ′ in a continuous and unique
manner. In other words: ignoring the aspect of computability, only entire
methods can be quasi-optimal.

Notice that most classical NCFEM and DG methods are not defined
as entire. Consequently, the simple observation in Remark 1.2.4 questions
that these methods can be quasi-optimal. This doubt will be confirmed in
Remark 1.4.9 below. See also §5.3.2 for a concrete counter-example.

Generally speaking, stability is associated with the property that small
input perturbations result in small output perturbations. The form of the
discrete problem (1.2.3) suggests adopting the viewpoint that input is taken
from a subset of V ′. Since (1.2.3) is linear, stability then amounts to some
operator norm of M . Notice that this differs from the common viewpoint
that stability is connected solely with an operator norm of B−1, i.e. taking
input from S′. In the following definition, we consider perturbations and
measure them as suggested by the setting of the continuous problem.

Definition 1.2.5 (Full stability). We say that M is fully stable whenever
D(M) = V ′ and, for some constant C ≥ 0, we have

∀` ∈ V ′ ‖M`‖ ≤ C‖`‖V ′ .

The smallest such constant is the stability constant Cstab of M .

Full stability may go beyond the need for practical computations, but it
relates to the previous notions in the following manner.

Remark 1.2.6 (Fully stable, quasi-optimal and entire). The approximation
operator P of a quasi-optimal method satisfies

‖Pu‖ ≤ ‖u‖+ ‖Pu− u‖ ≤ (1 + Cqopt)‖u‖ = (1 + Cqopt)‖Au‖V ′



10 CHAPTER 1. ABSTRACT THEORY

for all u ∈ V , using 0 ∈ S, (1.2.2) and Remark 1.2.4. In view of (1.2.6), full
stability is thus necessary for quasi-optimality. Furthermore, full stability
itself requires that the method is entire in the vein of Remark 1.2.4.

Roughly speaking, consistency should measure to what extent the exact
solution verifies the discrete problem. To this end, one usually substitutes in
the discrete problem the discrete solution by the exact one and investigates a
possible defect. Here nonconformity entails that the forms b and L cannot be
defined by simple restriction and so creates the following issues concerning
trial and test space:

• In which sense can we plug the solution u of the continuous problem
into the discrete problem? Does this require an extension of b or a
representative of u in S?

• How do we relate the condition associated with a nonconforming test
function σ ∈ S \ V in (1.2.3) to the conditions given by the continuous
test functions in (1.2.1)?

These issues are usually tackled with the help of regularity assumptions
on the exact solution, see, e.g., Arnold et al. [5], or only on data, see
Gudi [43]. The following definition takes a different approach within our
non-asymptotic setting.

Definition 1.2.7 (Full algebraic consistency). The method M is fully alge-
braically consistent whenever D(M) = V ′ and

(1.2.8) ∀u ∈ V ∩ S, σ ∈ S b(u, σ) = 〈LAu, σ〉.

Conforming Galerkin (1.2.4) methods are fully algebraically consistent.
Let us discuss further aspects of this property.

Remark 1.2.8 (Full algebraic consistency and approximation operator). In
view of the discrete problem (1.2.3) and the definition (1.2.6) of the ap-
proximation operator, (1.2.8) is equivalent to b(u − Pu, σ) = 0 for all
u ∈ V ∩ S, σ ∈ S. Since b is nondegenerate, the consistency condition
(1.2.8) is therefore equivalent to

(1.2.9) ∀u ∈ V ∩ S Pu = u.

In other words: full algebraic consistency means that whenever the exact
solution is discrete, it is the discrete solution. The advantage of (1.2.8) is
that it is directly formulated in terms of the originally given data A, S, b
and L. In Lemma 1.2.10 and Theorem 1.4.14 below, we will present further
equivalent formulations.

Remark 1.2.9 (Quasi-optimal needs fully algebraically consistent). In light of
Remark 1.2.4, a quasi-optimal method M is entire and so its approximation
operator P is defined on all V . For any u ∈ V ∩ S, the best error in S
vanishes and so Pu = u. Consequently, M is fully algebraically consistent.
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Definition 1.2.7 involves only exact solutions from the discrete space
S, which may be a quite small set. Indeed, for example, when applying
the Morley method to the biharmonic problem, the intersection S ∩ V has
poor approximation properties for certain mesh families; see [36, Theorem 3]
and Remark 3.3.12. Other consistency notions of algebraic type involving
more exact solutions may thus appear stronger than Definition 1.2.7. The
following lemma sheds a different light on this.

Lemma 1.2.10 (Full algebraic consistency with extension). Let the method
M be fully algebraically consistent and set Ṽ := V + S. Then there exists a
unique bilinear form b̃ that extends b as well as 〈LA·, ·〉 on Ṽ × S.

Proof. Observe that the left-hand side of (1.2.8) is defined for all u ∈ S,
while its right-hand side is defined in particular for all u ∈ V . We exploit
this in order to extend b. Given ṽ ∈ Ṽ and σ ∈ S, we write ṽ = v + s with
v ∈ V and s ∈ S and set

(1.2.10) b̃(ṽ, σ) := 〈LAv, σ〉+ b(s, σ).

Thanks to (1.2.8), b̃ is well-defined. Indeed, if v1+s1 = v2+s2 with v1, v2 ∈ V
and s1, s2 ∈ S, we have v1−v2 = s2−s1 ∈ V ∩S and therefore (1.2.8) yields
〈LA(v1 − v2), σ〉 = −b(s1 − s2, σ), which in turn ensures

〈LAv1, σ〉+ b(s1, σ) = 〈LAv2, σ〉+ b(s2, σ).

To show uniqueness of the extension, let β̃ be another common extension of
b and 〈LA·, ·〉. Given ṽ ∈ Ṽ and σ ∈ S, we write ṽ = v + s with v ∈ V and
s ∈ S as before and infer

β̃(ṽ, σ) = β̃(v, σ) + β̃(s, σ) = 〈LAv, σ〉+ b(s, σ) = b̃(ṽ, σ)

and the proof is complete.

Notice that full algebraic consistency differs from the usual consistency,
as, e.g. in Arnold [3] also for the following aspects: on the one hand, it is
stronger in that it requires an algebraic identity instead of a limit. On the
other hand, it does not involve approximation properties of the underlying
discrete space. In fact, our purpose here is to identify the part of consistency
that is necessary for quasi-optimality. As a consequence, algebraic consis-
tency and stability alone are not sufficient for convergence, which hinges on
the approximation properties of the discrete space S.

Let us conclude this section by introducing a subclass of natural candi-
dates for fully algebraically consistent methods. A method M = (S, b, L) is
a nonconforming Galerkin method whenever

(1.2.11) b|SC×SC = a|SC×SC and ∀` ∈ D(L) L`|SC = `|SC ,
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where SC = S ∩ V is the conforming subspace of the discrete space S.
Thus, a nonconforming Galerkin method is constrained by restriction where
applicable. Notice that:

• In contrast to conforming Galerkin methods, nonconforming ones are
not completely determined by the continuous problem and the choice of
the discrete space.

• The condition (1.2.11) readily yields

∀u, σ ∈ S ∩ V b(u, σ) = 〈LAu, σ〉,

which is weaker than full algebraic consistency in that less test functions
are involved.

For example, classical NCFEM, DG and C0 interior penalty methods are
nonconforming Galerkin methods.

1.3 Characterizing Quasi-Optimality

The purpose of this section is twofold. First, we show that full algebraic
consistency and full stability are not only necessary but also sufficient for
quasi-optimality. Second, we assess the possible impact of nonconformity
on the quasi-optimality constant.

1.3.1 Quasi-Optimality and Extended Approximation
Operator

To show that the combination of full algebraic consistency and full stabil-
ity implies quasi-optimality, we start with the following short proof of a
‘partial’ quasi-optimality, which motivates a new tool for the analysis of
nonconforming methods.

Assume that P is the approximation operator of a fully algebraically
consistent and fully stable method. Rewriting (1.2.9) as

(1.3.1) ∀v ∈ V, s ∈ S ∩ V v − Pv = (IdV − P )(v − s)

and exploiting that full stability entails the boundedness of P , we can deduce
quasi-optimality with respect to the conforming part S ∩ V of the discrete
space S:

‖v − Pv‖ ≤ ‖IdV − P‖L(V,Ṽ )
inf

s∈S∩V
‖v − s‖.

Notice that we do not obtain quasi-optimality with respect to the whole
discrete space, just because Ps = s is not available for general s ∈ S. In
particular, Ps is not defined for general s ∈ S. We therefore explore an
appropriate extension of P .
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For this purpose, we use the following facts on linear projections; cf., e.g.,
Buckholtz [25]. Let K and R be subspaces of a Hilbert space H with scalar
product (·, ·)H and induced norm ‖·‖H . The spaces K and R provide a direct
decomposition of H, i.e. H = K ⊕ R, if and only if there exists a unique
linear projection Q on H with kernel N(Q) = K and range R(Q) = R.
Then IdH − Q is the linear projection with kernel R and range K. As a
consequence of the closed graph theorem, R and K are closed if and only if
Q is bounded if and only if IdH −Q is bounded.

Lemma 1.3.1 (Extended approximation operator). Assume that the ap-
proximation operator P verifies P |S∩V = IdS∩V and is bounded. Then
there exists a unique bounded linear projection P̃ from Ṽ onto S satisfy-
ing P̃|V = P .

Proof. First, we observe that P̃ has to satisfy

(1.3.2) P̃ : Ṽ → S linear, P̃|V = P and P̃|S = IdS .

Since Ṽ = V +S, linear extension entails that there is at most one operator
satisfying (1.3.2) and we are thus led to consider the following definition:
given ṽ ∈ Ṽ , choose v ∈ V and s ∈ S such that ṽ = v + s and set

(1.3.3) P̃ ṽ := Pv + s.

The assumption P|S∩V = IdS∩V means that the two identities in (1.3.2)

are compatible and so guarantees that P̃ is well-defined; compare with the
definition of b̃ in the proof of Lemma 1.2.10.

In order to show the boundedness of P̃ , we represent it in terms of P and
the following operators, corresponding to an appropriate choice of v and s
in (1.3.3). Let ΠY be the ã-orthogonal projection onto Y := (S ∩ V )⊥ and
let Q be the linear projection on Y with range V ∩ Y and kernel S ∩ Y . We
then have

P̃ = PQΠY + (IdY −Q)ΠY + (Id
Ṽ
−ΠY ) = PQΠY + Id

Ṽ
−QΠY .

Since the subspaces S, V , and Y are closed, the projections ΠY and Q are
bounded. Consequently, the boundedness of P implies the boundedness of
its extension P̃ .

Using the extended approximation operator P̃ , the proof of the an-
nounced characterization of quasi-optimality is quite simple. Notice also
that the quantitative aspect of our first main result highlights the impor-
tance of P̃ .

Theorem 1.3.2 (Characterization of quasi-optimality). A nonconforming
method is quasi-optimal if and only if it is fully algebraically consistent and
fully stable.
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Moreover, for any quasi-optimal method, we have

Cqopt = ‖P̃‖L(Ṽ )

where P̃ is the extended approximation operator from Lemma 1.3.1.

Proof. Remarks 1.2.6 and 1.2.9 show that quasi-optimality implies full al-
gebraic consistency and full stability.

To show the converse, consider any fully algebraically consistent and
fully stable nonconforming method. We simply follow the lines of the corre-
sponding part of the proof of Tantardini/Veeser [58, Theorem 2.1], replacing
P by P̃ and exploiting the following generalization of (1.3.1):

(1.3.4) ∀v ∈ V, s ∈ S (Id
Ṽ
− P̃ )(v − s) = (IdV − P )v.

Given arbitrary v ∈ V and s ∈ S, we thus derive

‖v − Pv‖ = ‖(v − s)− P̃ (v − s)‖ ≤ ‖Id
Ṽ
− P̃‖L(Ṽ )

‖v − s‖.

Taking the infimum over all s ∈ S and then the supremum over all v ∈ V ,
we obtain

(1.3.5) Cqopt ≤ ‖IdṼ − P̃‖L(Ṽ )

and see that M is quasi-optimal because P̃ is bounded.
To verify, the identity for Cqopt, let us first see that (1.3.5) is actually

an equality. In fact, for v ∈ V and s ∈ S, we derive

‖(Id
Ṽ
− P̃ )(v + s)‖ = ‖v − Pv‖ ≤ Cqopt inf

ŝ∈S
‖v − ŝ‖ ≤ Cqopt‖v + s‖

using (1.3.4) again. We thus obtain the converse to (1.3.5) by taking the
supremum over all v ∈ V and s ∈ S.

Moreover, since {0} ( S ( Ṽ , the extended approximation operator P̃
is a bounded linear idempotent with 0 6= P̃ = P̃ 2 6= Id

Ṽ
on the Hilbert

space Ṽ . We therefore apply Buckholtz [25, Theorem 2] or Xu/Zikatanov
[68, Lemma 5] and conclude

(1.3.6) Cqopt = ‖Id
Ṽ
− P̃‖L(Ṽ )

= ‖P̃‖L(Ṽ )
.

Formula (1.3.6) allows for the following geometric interpretation of the
quasi-optimality constant.

Remark 1.3.3 (Geometry of the quasi-optimality constant). Buckholtz [25]
shows that the operator norm of a bounded projection Q on a Hilbert space
H satisfies

‖Q‖L(H) =
1

sin θ
= ‖IdH −Q‖L(H),
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where θ is the angle between K = N(Q) and R = R(Q), that is, θ ∈ (0, π/2]
and its cosine equals sup{|〈k, r〉H | | k ∈ K, r ∈ R, ‖k‖H = 1, ‖r‖H = 1}.
Notice that N(P̃ ) = R(Id

Ṽ
− P̃ ) = R(IdV − P ), where the last identity

follows from (1.3.4). Combining these two facts, we deduce

(1.3.7) Cqopt = ‖P̃‖L(Ṽ )
=

1

sinα

where α is the angle between the discrete space S and the range R(IdV −P ).

Theorem 1.3.2 reveals that the possibly weak full algebraic consistency is
still enough consistency to ensure, together with stability, quasi-optimality.
However, it does not control the size of the quasi-optimality constant.

1.3.2 The Quasi-Optimality Constant and Two Consistency
Measures

Let P be the approximation operator of a quasi-optimal method. The fact
that P̃ is an extension of P readily yields

Cqopt = ‖P̃‖L(Ṽ )
≥ ‖P‖L(V,S) = Cstab,

where the last identity is due to isometry (1.2.2) of A. The possible enlarge-
ment of Cqopt with respect to Cstab is a new feature triggered by nonconfor-
mity. It is the purpose of the section to quantify this phenomenon.

Our key tool will be the following elementary lemma.

Lemma 1.3.4 (Operator norm and restrictions). Assume that T ∈ L(H)
is a bounded linear operator on a Hilbert space H with scalar product 〈·, ·〉H
and induced norm ‖ · ‖H . If Y is a linear closed subspace of H and Y ⊥ is
its orthogonal complement, we have

max{C, δ} ≤ ‖T‖L(H) ≤
√
C2 + δ2

with
C = ‖T|Y ‖L(Y,H) and δ = ‖T|Y ⊥‖L(Y ⊥,H).

Proof. The lower bound immediately follows from the definition of the op-
erator norm ‖T‖L(H) = sup‖x‖H=1 ‖Tx‖H . To verify the upper bound, let
x ∈ H be arbitrary and denote by πY the orthogonal projection onto Y . We
have

(1.3.8)
‖Tx‖2H = ‖TπY x‖2H + 2

〈
TπY x, T (x− πY x)

〉
H

+ ‖T (x− πY x)‖2H
≤ C2‖πY x‖2H + 2Cδ‖πY x‖H‖x− πY x‖H + δ2‖x− πY x‖2H

in view of the bilinearity of the scalar product, the Cauchy-Schwarz inequal-
ity and the definitions of C and δ. Notice that

‖πY x‖2H + ‖x− πY x‖2H = ‖x‖2H
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thanks to the orthogonality of πY . Thus, if we write α = ‖πY x‖, the bound
in (1.3.8) becomes

‖Tx‖2H ≤ h(α)2 with h(α) := Cα+ δ
√

1− α2,

which implies
‖T‖L(H) ≤ max

[0,1]
h.

A straight-forward discussion of the function h yields max[0,1] h =
√
C2 + δ2

and the upper bound is established, too.

Remark 1.3.5 (Sharpness of bounds via restrictions). Since

max{C, δ} ≤
√
C2 + δ2 ≤

√
2 max{C, δ},

the bounds in Lemma 1.3.4 miss an equality at most by the factor
√

2. Let
us see with two simple examples that, without additional information on T
and Y , we cannot improve on this.

First, consider H = R2, T1 = IdR2 and let Y be any 1-dimensional
subspace of R2. We have ‖T1‖L(H) = ‖T1|Y ‖L(Y,H) = ‖T1|Y ⊥‖L(Y ⊥,H) = 1
and so the lower bound becomes an equality, while the upper bound is strict.

Second, consider H = R2 and let T2 be the linear operator which is repre-
sented in the canonical basis of R2 by the Matlab matrix 1/2*ones(2). The
operator T2 is the orthogonal projection onto the diagonal {(t, t) | t ∈ R},
whence ‖T2‖L(H) = 1. Finally, let Y = {(0, t) | t ∈ R} be the ordinate.

Then the operator norms of T2 restricted to Y and Y ⊥ correspond to the Eu-
clidean norms of the columns of the aforementioned matrix: ‖T2|Y ‖L(Y,H) =

‖T2|Y ⊥‖L(Y ⊥,H) = 1/
√

2. Consequently, here the upper bound is an equality,
while the lower bound is strict.

The fact that the extended approximation operator P̃ is given on S
by the identity and on V by P suggests to apply Lemma 1.3.4 with either
Y = S or Y = V . We start with the first option, which leads to a consistency
measure in the spirit of the second Strang lemma.

Proposition 1.3.6 (Consistency mixed with stability). Let ΠS denote the
ã-orthogonal projection onto S and δV ≥ 0 be the smallest constant such
that

∀v ∈ V ‖ΠSv − Pv‖ ≤ δV ‖v −ΠSv‖.

Then the quasi-optimality constant is given by Cqopt =
√

1 + δ2
V .

Proof. Owing to Theorem 1.3.2, we may show the claimed identity by veri-

fying ‖P̃‖L(Ṽ )
=
√

1 + δ2
V . Applying Lemma 1.3.4 with H = Ṽ , T = P̃ and

Y = S, we obtain

‖P̃‖L(Ṽ )
≤
√

1 + δ2
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with δ = ‖P̃‖L(S⊥,Ṽ )
. Given s⊥ ∈ S⊥, we write s⊥ = v + s with v ∈ V and

s ∈ S and observe that

s⊥ = s⊥ −ΠSs
⊥ = v −ΠSv and P̃ s⊥ = Pv −ΠSv.

Hence δ = δV and

(1.3.9) ‖P̃‖L(Ṽ )
≤
√

1 + δ2
V .

To show that this is actually an equality, note that, for any v ∈ V ,

(1.3.10) ‖v −ΠSv‖2 + ‖ΠSv − Pv‖2 = ‖v − Pv‖2 ≤ ‖P̃‖2L(Ṽ )
‖v −ΠSv‖2,

where we first combined the orthogonality of ΠS with ΠSv − Pv ∈ S and
then used Theorem 1.3.2. Rearranging terms, we see that δ2

V ≤ ‖P̃‖2L(Ṽ )
−1,

yielding the desired inequality
√

1 + δ2
V ≤ ‖P̃‖L(Ṽ )

.

The following two remarks discuss the nature of δV .

Remark 1.3.7 (δV and (non)conforming consistency). In the conforming case
S ⊆ V , without assuming the quasi-optimality of the underlying method,
the existence of δV is equivalent to full algebraic consistency. Therefore,
δV can be seen as a quantitative generalization of full algebraic consistency
to the nonconforming case. It measures, in relative manner, how much the
method deviates from the best approximation ΠS . Thus, Proposition 1.3.6
is a specification of the second Strang lemma, where the exploitation of the
nonconforming direction is compared with the best approximation error. Let
us illustrate this in the purely nonconforming case V ∩ S = {0}. The best
case corresponds to P = ΠS , yielding δV = 0 and Cqopt = 1. Instead, P = 0
is quasi-optimal with δV = (inf‖s‖=1 infΠSv=s ‖s − v‖)−1, which becomes
infinity as the distance between S and V tends to 0.

Remark 1.3.8 (δV and stability). The size of δV is in general affected by
stability. Indeed, using (1.3.9), we readily derive

δV ≥
√
‖P̃‖2

L(Ṽ )
− 1 ≥

√
‖P‖2L(V,S) − 1 =

√
C2

stab − 1

and notice in particular that, if a sequence of methods becomes unstable,
the corresponding δV ’s become unbounded.

We now turn to the second option of applying Lemma 1.3.4. Interest-
ingly, this provides an alternative consistency measure which is essentially
independent of stability.

Proposition 1.3.9 (Consistency without stability). Let us denote by ΠV

the ã-orthogonal projection onto V and let δS ≥ 0 be the smallest constant
such that

∀s ∈ S ‖s− PΠV s‖ ≤ δS‖s−ΠV s‖.
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Then the quasi-optimality constant satisfies

(1.3.11) max{Cstab, δS} ≤ Cqopt ≤
√
C2

stab + δ2
S .

Proof. Thanks to Theorem 1.3.2, it is sufficient to apply Lemma 1.3.4 with
H = Ṽ , T = P̃ and Y = V and to observe the following identities: given
v⊥ ∈ V ⊥, v ∈ V , s ∈ S such that v⊥ = v + s, we have

v⊥ = v⊥ −ΠV v
⊥ = s−ΠV s and P̃ v⊥ = s− PΠV s.

We now discuss also the nature of δS , elaborating its differences from
the first consistency measure δV .

Remark 1.3.10 (δS and (non)conforming consistency). As for δV , the ex-
istence of δS is equivalent to full algebraic consistency in the conforming
case S ⊆ V . Correspondingly, it can be seen as an alternative, quantitative
generalization of full algebraic consistency to the nonconforming case. The
alternative δS is however not comparing with the best approximation ΠS .
In particular, we have that δS = 0 implies

Cqopt = ‖P̃‖L(Ṽ )
= ‖P‖L(V,S) = Cstab,

which is an interesting property not involving the best approximation ΠS .
Let us illustrate how the difference is expressed in measuring the exploitation
of the nonconforming directions by considering, as in Remark 1.3.7, the
purely nonconforming case V ∩S = {0}. Here the best choice P = ΠS leads
to δS < 1, while P = 0 gives δS = (inf‖s‖=1 ‖s − ΠV s‖)−1. In the latter
case, δS like δV becomes infinity as the distance between S and V tends to
0, although in a (possibly) other manner.

Remark 1.3.11 (δS and stability). We illustrate that the quantities δS and
Cstab are essentially independent. In order to make sure that this is not
affected by a possible lack of approximability, we consider the following
setting with a sequence of discrete spaces:

Ṽ = `2(R) with canonical basis (ei)
∞
i=0, ã(v, w) =

∞∑
i=0

viwi,

where we identify v =
∑∞

i=0 viei with (vi)
∞
i=0, etc., and

V = span {ei | i ≥ 1},
Sn = span {ei | i = 1, . . . , n− 1}+ span {αne0 + en},

where n ≥ 1 and (αn)n ⊆ R+ is some sequence of positive reals. Here
only αne0 + en is nonconforming and thus not involved in full algebraic
consistency. If limn→∞ αn = 0, this direction becomes a new conforming
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direction, while for limn→∞ αn = ∞, it gets orthogonal to V . In any case,
we have

Sn ∩ V = span {ei | i = 1, . . . , n− 1} and V =
⋃
n≥1

Sn.

Moreover, straight-forward computations reveal that the orthogonal projec-
tions onto Sn and V are given by

ΠSnv =

n−1∑
i=1

viei +
vn

1 + α2
n

(αne0 + en) for v ∈ V

ΠV s =
n∑
i=1

siei for s ∈ S.

One possibility to deal with the nonconforming direction αne0 + en is to
ignore it, e.g., by choosing methods with the approximation operators

P1,nv =
n−1∑
i=1

viei for v ∈ V.

Each approximation operator P1,n is fully algebraically consistent and fully
stable with ‖P1,n‖L(V,S) = 1. Moreover, ΠV (αne0 + en) = en and P1,nen = 0
yield

δSn ≥
‖sn − P1,nΠV sn‖
‖sn −ΠV sn‖

=
‖sn‖
αn‖e0‖

=

√
1 + α2

n

αn
≥ 1

αn
.

with sn := αne0 + en. Consequently, letting αn → 0 shows that δS can
become arbitrarily large, while the stability constant attains its minimal
value for the case Sn ∩ V 6= {0}.

Given a sequence (βn)n ⊆ R+ of positive reals, the approximation oper-
ators

P2,nv :=
n−1∑
i=1

viei +

(
vn +

βn
1 + α2

n

vn+1

)
(αne0 + en) for v ∈ V

exploit the nonconforming direction αne0 + en. Again, each P2,n is fully
algebraically consistent and fully stable. Here, since P2,nΠV s = s for all
s ∈ S, we have that δS = 0, while

‖P2,n‖L(V,S) ≥
‖P2,nen+1‖
‖en+1‖

≥ βn√
1 + α2

n

.

Thus, βn/
√

1 + α2
n → ∞ shows that the stability constant can become ar-

bitrarily large, while δS attains its minimal value 0.
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Remark 1.3.12 (Asymptotic consistency). The preceding remark exemplifies
that the exploitation of the nonconforming direction measured by δV and
δS is relevant also ‘in the limit’ for sequences of discrete spaces and can be
controlled via the uniform boundedness of the consistency measures.

We conclude this section with slight generalizations of Propositions 1.3.6
and 1.3.9.

Remark 1.3.13 (Consistency measures and non-quasi-optimality). Whenever
the method underlying P is not quasi-optimal, we may set Cqopt = ∞.
Similarly, if δV (or δS) does not exist, we set δV =∞ (or δS =∞). Then

δV =∞ ⇐⇒ Cqopt =∞ and δS =∞ =⇒ Cqopt =∞

and, using standard conventions for ∞, the formulas in Propositions 1.3.6
and 1.3.9 hold irrespective of quasi-optimality.

1.4 The Structure of Quasi-Optimal Methods

The task of this section is to determine the structure of nonconforming
methods that are quasi-optimal. In light of Theorem 1.3.2, this reduces to
determine the structure of full stability and full algebraic consistency.

1.4.1 Extended Approximation Operator and Extended
Bilinear Form

Our analysis of quasi-optimality in the previous section has been centered
around the extended approximation operator P̃ . In this subsection we relate
this key tool to the extended bilinear form b̃ from Lemma 1.2.10 and, thus,
more closely to the data a and (S, b, L) defining problem and method.

Lemma 1.4.1 (Extensions of approximation operator and bilinear forms).
The approximation operator P extends to a bounded linear projection P̃ from
Ṽ onto S if and only if there exists a bounded common extension b̃ of b and
〈LA·, ·〉 to Ṽ × S.

If one of the two extensions exists, we have the following generalization
of the Galerkin orthogonality:

∀ṽ ∈ Ṽ , σ ∈ S b̃(ṽ − P̃ ṽ, σ) = 0.

Proof. Assume P̃ is a bounded linear projection from Ṽ onto S extending
P . Then

(1.4.1) b̃(ṽ, σ) := b(P̃ ṽ, σ)

defines a bounded bilinear form on Ṽ ×S. Since P̃ is a projection onto S, b̃
is an extension of b. Furthermore, if v ∈ V and σ ∈ S, then P̃|V = P yields

b̃(v, σ) = b(Pv, σ) = 〈LAv, σ〉. Consequently, b̃ extends also 〈LA·, ·〉.
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Conversely, assume that b̃ is a bounded common extension of b and
〈LA·, ·〉 on Ṽ × S. Given ṽ ∈ Ṽ , define P̃ ṽ by

(1.4.2) P̃ ṽ ∈ S such that ∀σ ∈ S b(P̃ ṽ, σ) = b̃(ṽ, σ).

Since b is a nondegenerate bilinear form on S × S, the element P̃ ṽ exists,
is unique and depends on ṽ linearly. The uniqueness and b̃ = b on S × S
give P̃|S = IdS . Using b̃ = 〈LA·, ·〉 = b(P ·, ·) on V × S, we obtain P̃|V = P .

Finally, the boundedness of b̃ entails the boundedness of P̃ and the claimed
equivalence is verified.

It remains to verify the generalized Galerkin orthogonality. If one of the
two extensions exists, then the other one is given either by (1.4.1) or by
(1.4.2), which both just restate the claimed generalization.

The close relationship between the two extensions P̃ and b̃ suggests that
the operator norm ‖P̃‖L(Ṽ )

can be reformulated in terms of b̃. To this end,

the following lemma will be very useful, which in turn exploits the following
fact from linear functional analysis; see, e.g., Brezis [24]. If X and Y are
normed linear spaces, T : X → Y is a linear operator and T ? stands for its
adjoint, then

(1.4.3) T is bounded =⇒ D(T ?) = Y ′ with ‖T ?‖L(Y ′,X′) = ‖T‖L(X,Y ).

Lemma 1.4.2 (b-duality for energy norm on S). The nondegenerate bilinear
form b induces a norm on S by

‖σ‖b := ‖b(·, σ)‖S′ = sup
s∈S,‖s‖=1

b(s, σ), σ ∈ S,

satisfying

‖s‖ = sup
σ∈S

b(s, σ)

‖σ‖b
.

Proof. Obviously, ‖ · ‖b is a seminorm and definite thanks to the nondegen-
eracy of b. To verify the claimed identity, we observe

(1.4.4) sup
s∈S

sup
σ∈S

b(s, σ)

‖s‖‖σ‖b
= sup

σ∈S
sup
s∈S

b(s, σ)

‖s‖‖σ‖b
= 1

and

(1.4.5) inf
s∈S

sup
σ∈S

b(s, σ)

‖s‖‖σ‖b
= inf

σ∈S
sup
s∈S

b(s, σ)

‖s‖‖σ‖b
= 1,

where the rightmost identities follow from the definition of ‖ · ‖b and the
first equality in (1.4.5) follows from (1.4.3) applied to the inverse of B, the
linear operator representing b. Combining (1.4.4) and (1.4.5), we see that

sup
σ∈S

b(s, σ)

‖s‖‖σ‖b
= 1

for all s ∈ S and the claimed identity is verified.
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Lemma 1.4.3 (Norms of extensions). If one of the extensions in Lemma
1.4.1 exists, we have

‖P̃‖L(Ṽ )
= sup

σ∈S

‖b̃(·, σ)‖
Ṽ ′

‖b(·, σ)‖S′

with the ‘extended’ dual norm ‖`‖
Ṽ ′ := sup

ṽ∈Ṽ ,‖ṽ‖=1
〈`, ṽ〉.

Proof. Applying Lemma 1.4.2, the generalized Galerkin orthogonality of
Lemma 1.4.1 and the definition of the extended dual norm, we infer

‖P̃‖L(Ṽ )
= sup

ṽ∈Ṽ

‖P̃ ṽ‖
‖ṽ‖

= sup
ṽ∈Ṽ ,σ∈S

b(P̃ ṽ, σ)

‖ṽ‖‖σ‖b
= sup

ṽ∈Ṽ ,σ∈S

b̃(ṽ, σ)

‖ṽ‖‖σ‖b

= sup
σ∈S

‖b̃(·, σ)‖
Ṽ ′

‖σ‖b
= sup

σ∈S

‖b̃(·, σ)‖
Ṽ ′

‖b(·, σ)‖S′
.

Before closing this subsection, two remarks are in order.

Remark 1.4.4 (Alternative proof and formula). The proof of Lemma 1.4.3
may be alternatively based on a continuous counterpart of the norm ‖ · ‖b
from Lemma 1.4.2; see Tantardini and Veeser [58, Theorem 2.1]. Using that
approach, one derives also

‖P̃‖L(Ṽ )
= sup

s∈S,‖s‖=1
inf
σ∈S

‖b̃(·, σ)‖
Ṽ ′

|b(s, σ)|
.

by duality.

Remark 1.4.5 (Reformulations of quasi-optimality). A suitable combination
of Remarks 1.2.6 and 1.2.9, Lemmas 1.3.1 and 1.4.1 as well as Theorem 1.3.2
shows that the following statements are equivalent reformulations of quasi-
optimality for a nonconforming method M = (S, b, L) with approximation
operator P :

M is fully algebraically consistent and fully stable.(1.4.6a)

Ps = s for all s ∈ S ∩ V and P is bounded.(1.4.6b)

P extends to a linear projection P̃ from Ṽ onto S(1.4.6c)

that is bounded.

b and 〈LA·, ·〉 have a common extension b̃ that is bounded.(1.4.6d)

P is bounded and b, P have extensions b̃, P̃ such that(1.4.6e)

b̃(ṽ − P̃ ṽ, σ) = 0 for all ṽ ∈ Ṽ and σ ∈ S.

It is worth observing that no additional regularity beyond the natural one
in (1.2.1) is involved. All this illustrates that extensions, as developed in
our approach, are a well-tuned tool in the analysis of the quasi-optimality
of nonconforming methods.
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1.4.2 The Structure of Full Stability

In this subsection we determine the structure of nonconforming methods
that are fully stable.

To this end, (1.4.3) and the following facts of linear functional analysis
will be basic: if X and Y are normed linear spaces and T : X → Y linear,
then

dimX <∞ ⇐⇒ all linear operators X → Y are bounded,(1.4.7)

if dimX <∞, then T ? surjective ⇐⇒ T injective,(1.4.8)

see, e.g., [24] and [25, p. 1418].

Let M = (S, b, L) be a nonconforming method and recall that M is fully
stable if and only if the operator M : V ′ → S is bounded, where V ′ and S
are equipped, respectively, with the dual and extended energy norm.

We claim that the full stability of M hinges on the boundedness of
L. In light of Remark 1.2.6, we may assume that D(M) = D(L) = V ′.
The equivalence (1.4.7) yields the following two consequences. First, the
boundedness of M : V ′ → S is a true requirement, because its domain
V ′ has infinite dimension. Second, the critical operator in the composition
M = B−1L from (1.2.5) is L. In fact, its domain V ′ has infinite dimension,
while the domain S′ of B−1 has finite dimension. Consequently, a method
M is fully stable if and only if it is entire and the operator L : V ′ → S′ is
bounded.

Next, we characterize the class of bounded linear operators from V ′ to
S′ and derive first a necessary condition. Let L : V ′ → S′ be linear and
bounded. Owing to (1.4.3), its adjoint L? is a bounded linear operator
from S′′ to V ′′. Since the spaces S and V are reflexive, we thus deduce the
existence of a linear operator E : S → V such that

(1.4.9) ∀` ∈ V ′, σ ∈ S 〈L`, σ〉 = 〈`, Eσ〉 .

Conversely, if E : S → V is a linear operator satisfying (1.4.9), then L is
bounded on V ′ with ‖L‖L(V ′,S′) = ‖E‖L(S,V ) by (1.4.3) and (1.4.7).

Remark 1.4.6 (Smoothing of E). Usually, the nonconformity S 6⊆ V arises
from a lack of smoothness, e.g., across interelement boundaries in the case
of finite element methods. The operator E : S → V may then be viewed as
a smoothing operator.

The above observations prepare the following result, which is our first
step towards the structure of quasi-optimal methods.

Theorem 1.4.7 (Full stability and smoothing). A nonconforming method
M = (S, b, L) for (1.2.1) is fully stable if and only if L is the adjoint of a
linear smoothing operator E : S → V .
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The discrete problem for ` ∈ V ′ then reads

(1.4.10) ∀σ ∈ S b(M`, σ) = 〈`, Eσ〉

and the stability constant satisfies

(1.4.11) Cstab = ‖M‖L(V ′,S) = sup
σ∈S

‖Eσ‖
‖b(·, σ)‖S′

.

Moreover, the range of M is S if and only if E is injective.

Proof. The observations preceding Theorem 1.4.7 show thatM is fully stable
if and only if L is the adjoint of a linear smoothing operator E : S → V .
Moreover, they provide the claimed form of the discrete problem via (1.4.9).
The second equivalence readily follows from (1.4.8) and Remark 1.2.2.

To verify (1.4.11), we combine Lemma 1.4.2 with the following identity
‖v‖ = sup`∈V ′,‖`‖V ′=1〈`, v〉, see, e.g., Brezis [24, Corollary 1.4]:

Cstab = ‖M‖L(V ′,S) = sup
`∈V ′

‖M`‖
‖`‖V ′

= sup
`∈V ′,σ∈S

b(M`, σ)

‖`‖V ′‖σ‖b

= sup
σ∈S,`∈V ′

〈`, Eσ〉
‖`‖V ′‖σ‖b

= sup
σ∈S

‖Eσ‖
‖σ‖b

= sup
σ∈S

‖Eσ‖
‖b(·, σ)‖S′

.

Let us start the discussion of this result by considering a canonical choice
for the smoother E.

Remark 1.4.8 (Trivial smoothing for conforming methods). Assume that
the discrete space S ⊆ V is conforming and consider the simplest choice
E = IdS . For this classical case, (1.4.11) reduces to the well-known identity

Cstab = sup
σ∈S

‖σ‖
‖b(·, σ)‖S′

=

(
inf
σ∈S

sup
s∈S

b(s, σ)

‖s‖‖σ‖

)−1

=

(
inf
s∈S

sup
σ∈S

b(s, σ)

‖s‖‖σ‖

)−1

.

Remark 1.4.9 (Failure of IdS). Let S be a nonconforming discrete space with
S 6⊆ V . Then the choice E = IdS is not compatible with full stability and so,
in view of Theorem 1.3.2, not with quasi-optimality. Indeed, Theorem 1.4.7
shows that E(S) ⊆ V is necessary for full stability. Consequently, the
condition Es = s entails s ∈ S ∩ V and thus produces a contradiction for
any s ∈ S \ V . We therefore need to define Es for s ∈ S \ V differently,
which, in view of the nature of S and V in applications, typically amounts
to some kind of smoothing.

Most of the classical NCFEM and DG methods rely on the simple choice
E = IdS , requiring that the load term ` in (1.2.1) has some additional
regularity. Remark 1.4.9 implies that these methods are not fully stable and
so, in view of Theorem 1.3.2, not quasi-optimal. This provides an alternative
to falsify quasi-optimality with Remark 1.2.4.

We end this subsection by considering first alternatives to E = IdS and
illustrating that the choice of E is in general a delicate matter.
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Remark 1.4.10 (Previous uses of smoothing). Advantages offered by suit-
able smoothing have been previously observed. An obvious one is that the
method can be made entire and this has been pointed out, e.g., in the DG
context by Di Pietro and Ern [37].

While comparing the Hellan-Hermann-Johnson method with the Morley
method, Arnold and Brezzi [4] showed that a particular smoothing in the
Morley method leads to an a priori error estimate requiring less regularity of
the underlying load term. This corresponds to an increased stability thanks
to the employed smoothing.

Also in the context of fourth order problems, Brenner and Sung [23]
proposed C0 interior penalty methods and proved a priori error estimates
also for nonsmooth loads. Furthermore, the involved regularity is minimal
from the viewpoint of approximation.

Finally, Badia et al. [8] used a rather involved smoother, which is related
to our construction in Chapters 3 and 4, to show a partial quasi-optimality
result for the Stokes problem.

Remark 1.4.11 (Smoothers into S∩V ). It may look natural to use smoothers
E that map into the conforming part S ∩ V of the discrete space. In view
of Remark 1.2.2, the range R(M) of the corresponding method is a proper
subspace of S, whenever S \ V 6= ∅. Quasi-optimality is then not ruled out,
but it hinges on the validity of results like [60, Corollary 3.1] by Veeser and
requires in particular that S ∩ V is not small.

Remark 1.4.12 (Optimal smoothing). The structure of full stability does
not principally exclude methods that are optimal from the viewpoint of
approximation. Consequently, the variational crime of nonconformity does
not necessarily result in some consistency error. To see this, consider the
discrete bilinear form b = ã|S×S . Since

∀v ∈ V, σ ∈ S ã(Pv − v, σ) = ã(v,Eσ − σ),

we have
P = ΠS ⇐⇒ E = ΠV .

In other words: a nonconforming method (S, ãS×S , E
?) provides the best

approximation if and only if the smoother E is the ã-orthogonal projection
onto V . However, this smoother is likely not feasible in the sense of the
following remark.

Remark 1.4.13 (Feasible smoothing). Adopt the notation of Remark 1.2.1
and let ϕ1, . . . , ϕn be a computionally convenient basis for the discrete bi-
linear form b. In order to compute M` by (1.4.10) with optimal complexity,
the total number of operations for evaluating 〈`, Eϕi〉 for all i = 1, . . . , n
has to be of order O(n). A sufficient condition for this is that, for each
i = 1, . . . , n, the function Eϕi is locally supported so that 〈`, Eϕi〉 can be
evaluated at cost O(1).
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1.4.3 The Structure of Quasi-Optimality

We are finally ready for the main results of our abstract analysis about the
quasi-optimality of nonconforming methods.

Theorem 1.4.14 (Quasi-optimality and smoothing). A nonconforming me-
thod M = (S, b, L) for (1.2.1) is quasi-optimal if and only if there exists a
linear smoothing operator E : S → V such that the discrete problem reads

∀σ ∈ S b(M`, σ) = 〈`, Eσ〉

for any ` ∈ V ′ and

(1.4.12) ∀u ∈ S ∩ V, σ ∈ S b(u, σ) = a(u,Eσ).

Its quasi-optimality constant is given by

(1.4.13) Cqopt = sup
σ∈S

sup‖v+s‖=1 a(v,Eσ) + b(s, σ)

sup‖s‖=1 b(s, σ)
,

where v varies in V and s in S.

Proof. We first check the claimed equivalence. The form of the discrete
problem means that L is the adjoint of E and, in view of Theorem 1.4.7,
that M is fully stable. Moreover, since

(1.4.14) 〈LAu, σ〉 = 〈Au,Eσ〉 = a(u,Eσ)

for all u ∈ V and σ ∈ S, (1.4.12) is equivalent to (1.2.8), i.e. full al-
gebraic consistency. Consequently, the claimed equivalence follows from
Theorem 1.3.2.

To show the identity for the quasi-optimality constant, we observe that
the extension b̃ exists and satisfies, for ṽ ∈ Ṽ , v ∈ V , s, σ ∈ S such that
ṽ = v + s,

b̃(ṽ, σ) = 〈LAv, σ〉+ b(s, σ) = a(v,Eσ) + b(s, σ)

thanks to (1.4.14). Therefore, formula (1.4.13) for Cqopt follows from Theo-
rem 1.3.2 and Lemma 1.4.3.

We start the discussion about Theorem 1.4.14 by a remark about the
notion of Galerkin methods.

Remark 1.4.15 (Galerkin methods). Assume first that the discrete space
S ⊆ V is conforming. Then trivial smoothing E = IdS in (1.4.12) yields
b = a|S×S . In other words: conforming Galerkin methods are the only
quasi-optimal methods with the simplest choice E = IdS for smoothing.

Next, consider a general nonconforming discrete space S, together with
the simplest choice for smoothing in the conforming part S ∩ V , i.e. with
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E|S∩V = IdS∩V . Here (1.4.12) yields b|SC×SC = a|SC×SC where SC is an
abbreviation for S∩V . Thus, nonconforming Galerkin methods are the only
candidates for quasi-optimal methods with E|S∩V = IdS∩V . In this context,
the following observation is useful in constructing E with E|S∩V = IdS∩V .
If E maps some s ∈ S \ V in S ∩ V , then the injectivity of E is broken and,
in view of Theorem 1.4.7, the range of the method is a strict subspace of S.

Remark 1.4.16 (Comparison with second Strang lemma). For conforming
Galerkin methods, Theorem 1.4.14 reduces to the well-known Céa lemma,
with Cqopt = 1. Céa’s lemma is a basic building block in the analysis of the
energy norm error for conforming methods. In the context of nonconforming
methods, the second Strang lemma is often used as a replacement. Theo-
rem 1.4.14 provides a specialization revealing the structure of quasi-optimal
methods and so lays the groundwork for their design.

Remark 1.4.17 (Comparison with conforming Petrov-Galerkin methods).
Our setting of §1.2.1 includes the application of Petrov-Galerkin methods
to (1.2.1). It is therefore of interest to compare formula (1.4.13) with its
conforming counterpart in [58, Theorem 2.1] by Tantardini and Veeser:

Cqopt = sup
σ∈S

sup‖v‖=1 b(v, σ)

sup‖s‖=1 b(s, σ)
,

where here b stands for the continuous (and discrete) bilinear form, v, s,
and σ vary, respectively, in the continuous trial space, in the discrete trial
space and in the discrete test space. We see that (1.4.13) generalizes this
formula, replacing the continuous bilinear form by the extended one, which
interweaves discrete and continuous problems.

Remark 1.4.18 (‘Classical’ bound for quasi-optimality constant). A conse-
quence of the formula for the quasi-optimality constant in Theorem 1.4.14
and (1.4.3) is the following upper bound:

(1.4.15) Cqopt ≤
C
b̃

β

with the continuity and inf-sup constants

C
b̃

:= sup
‖v+s‖=1,‖σ‖=1

a(v,Eσ) + b(s, σ), β := inf
‖s‖=1

sup
‖σ‖=1

b(s, σ),

where v varies in V and s and σ in S. This upper bound has the classi-
cal form of constants appearing in quasi-optimality results, apart from the
slight difference that the continuity constant of the numerator involves the
extended bilinear form; see also Remark 1.4.17.

It is worth mentioning that the right-hand side of (1.4.15) can become
arbitrarily large, while its left-hand side remains bounded, as we point out
in Remark 3.2.7.
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Let us now assess what determines the size of the quasi-optimality con-
stant.

Theorem 1.4.19 (Size of quasi-optimality constant). Assume M = (S, b, L)
is a quasi-optimal nonconforming method with linear smoother E : S →
V and stability constant Cstab. The consistency measure δV introduced in
Proposition 1.3.6 is finite and is

(1.4.16) δV = sup
v∈V, ΠSv 6=v

sup
σ∈S

b(ΠSv, σ)− a(v,Eσ)

‖ΠSv − v‖‖b(·, σ)‖S′
.

Similarly, the consistency measure δS introduced in Proposition 1.3.9 is finite
and the smallest positive constant such that

∀s ∈ S sup
σ∈S

b(s, σ)− a(ΠV s, Eσ)

‖b(·, σ)‖S′
≤ δS‖s−ΠV s‖.

Then the quasi-optimality constant of M satisfies

max{Cstab, δS} ≤ Cqopt =
√

1 + δ2
V ≤

√
C2

stab + δ2
S .

Proof. Lemma 1.4.2 readily yields the identities

‖ΠSv − Pv‖ = sup
σ∈S

b(ΠSv − Pv, σ)

‖σ‖b

‖s− PΠV s‖ = sup
σ∈S

b(s− PΠV s, σ)

‖σ‖b
.

We have also the identities b(Pv, σ) = b(MAv, σ) = 〈LAv, σ〉 = a(v,Eσ)
and ‖σ‖b = ‖b(·, σ)‖S′ for v ∈ V and σ ∈ S as well as V \ S 6= ∅. Therefore,
δV and δS coincide with the corresponding quantities in Propositions 1.3.6
and 1.3.9 and Theorem 1.4.19 just restates their conclusions.

We refer to §1.3.2 for a discussion of the relationship between Cqopt and
Cstab and in particular the consistency measures δV and δS . Let us further
connect the expression of δV in this theorem with classical consistency.

Remark 1.4.20 (δV and classical consistency error). It is worth noticing that
the numerator of (1.4.16) represents the action of a linear functional on S,

b(ΠSv, σ)− a(v,Eσ) = 〈BΠSv − LAv, σ〉 =: 〈ρ, σ〉 .

Let us recall that LAv is the discrete load associated with v in problem
(1.2.3) and BΠSv is the linear functional obtained from the representative
ΠSv of v in S, through the isomorphism B. Introducing the norm ‖ ·‖S′,b :=
sup‖b(·,σ)‖S′=1 〈·, σ〉, the quantity ‖ρ‖S′,b is a consistency error in the sense
of Arnold [3]. The measure δV compares this quantity with the natural
benchmark in the context of quasi-optimality, i.e. the best error ‖v−ΠSv‖.



Chapter 2

Some Preliminaries to Finite
Elements

The goal of this chapter is to provide the necessary preliminaries to the
application of the abstract results from §1 to the design and analysis of non-
conforming finite element methods. For this purpose, we devote the first
part of Section 2.1 to fix our assumptions and notations concerning the spa-
tial domain and the mesh. Then, we introduce spaces of piecewise regular
and piecewise polynomial functions and recall some of their basic proper-
ties. In Section 2.2 we propose nodal averaging operators for discontinuous
piecewise polynomials.

2.1 Simplicial Meshes and (Broken) Spaces

We indicate Lebesgue and Sobolev spaces as usual, see, e.g., [21], and adopt
the following notations.

For n ∈ {0, . . . , d}, an n-simplex C ⊆ Rd is the convex hull of n+1 points
z1, . . . , zn+1 ∈ Rd spanning an n-dimensional affine space. The uniquely
determined points z1, . . . , zn+1 are the vertices of C and form the set L1(C).
If n ≥ 1, we let FC denote the (n− 1)-dimensional faces of C, which are the
(n − 1)-simplices arising by picking n distinct vertices from L1(C). Given
a vertex z ∈ L1(C), its barycentric coordinate λCz is the unique first order
polynomial on C such that λCz (y) = δzy for all y ∈ L1(C). Then 0 ≤ λCz ≤ 1
and

∑
z∈L1(C) λ

C
z = 1 in C and, if α = (αz)z∈L1(C) ∈ Nn+1

0 is multi-index,

(2.1.1)

ˆ
C

∏
z∈L1(C)

(λCz )αz =
n!α!

(n+ |α|)!
|C| ,

where |C| stands also for the n-dimensional Hausdorff measure in Rd. We
write hC := diam(C) for the diameter of C, ρC for the diameter of its largest
inscribed n-dimensional ball, and γC for its shape coefficient γC := hC/ρC .

29
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Let M be a simplicial, face-to-face mesh of some open, bounded, con-
nected and polyhedral set Ω ⊂ Rd with Lipschitz boundary ∂Ω. More pre-
cisely, M is a finite collection of d-simplices in Rd such that Ω =

⋃
K∈MK

and the intersection of two arbitrary elements K1,K2 ∈ M is either empty
or an n-simplex with n ∈ {0 . . . , d} and L1(K1 ∩K2) = L1(K1) ∩ L1(K2).
We let F :=

⋃
K∈MFK denote the (d− 1)-dimensional faces of M and dis-

tinguish between boundary faces Fb := {F ∈ F | F ⊆ ∂Ω} and interior faces
F i := F \ Fb. Moreover, let Σ := ∪F∈FF be the skeleton of M and, fixing
a unit normal nF for each interior face F ∈ F i, extend the outer normal n
of ∂Ω to Σ by n|F = nF for F ∈ F i. The ambiguity in the orientation of nF
is insignificant to our discussion. The meshsize h on Σ is given by h|F = hF
for all F ∈ F and the shape coefficient of M is

γM := max
K∈M

γK .

For k ∈ N, the broken Sobolev space of order k is

Hk(M) := {v ∈ L2(Ω) | ∀K ∈M v|K ∈ Hk(K)}.

If v ∈ Hk(M), we use the subscript M to indicate the piecewise variant of
a differential operator. For instance, ∇M v is given by (∇M v)|K := ∇(v|K)
for all K ∈M. Jumps and averages are defined as follows. Given an interior
face F ∈ F i, let K1,K2 ∈ M be the two elements such that F = K1 ∩K2

and the outer normal of K1 coincides with n. Set

(2.1.2a) JvK := v|K1
− v|K2

, {{v}} :=
1

2

(
v|K1

+ v|K2

)
on F.

Again, the fact that the signs of JvK depends on the ordering of K1 and
K2 will be insignificant to our discussion. Instead, it will be convenient to
extend these definitions on ∂Ω. Given F ∈ F b, let K ∈ M be the element
such that F = K ∩ ∂Ω and set

(2.1.2b) JvK := {{v}} := v|K on F.

In this notation, piecewise integration by parts reads as follows: if we have
v, w ∈ H1(M) and j ∈ {1, . . . , d}, then

(2.1.3)

ˆ
Ω

(∂j,Mv)w −
ˆ

Σ\∂Ω
JvK {{w}}n · ej =

= −
ˆ

Ω
v(∂j,Mw) +

ˆ
Σ\∂Ω

{{v}} JwKn · ej +

ˆ
∂Ω
vw n · ej .

Notice that the surface integrals are independent of the orientation of n and
that, e.g., the singular part of the distributional derivative ∂jv is represented
by means of the negative jumps − JvK, F ∈ F i.
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Given p ∈ N0, we write Pp(C) for the linear space of polynomials on the
n-simplex C with (total) degree ≤ p. Consider p ∈ N, excluding the trivial
case p = 0. A polynomial in Pp(C) is determined by its point values at the
Lagrange nodes Lp(C) of order p, which, for p ≥ 2, are given by

Lp(C) :=
{
x ∈ C | ∀z ∈ L1(C) pλCz (x) ∈ N0

}
We let Ψp

C,z, z ∈ Lp(C), denote the associated nodal basis in Pp(C) given

by Ψp
C,z(y) = δzy for all y, z ∈ Lp(C). The Lagrange nodes are nested in

that Lp(F ) = Lp(C) ∩ F for any face F ∈ FC . Thus, the restriction P|F
of P ∈ Pp(C) is determined by the ‘restriction’ Lp(C) ∩ F of the Lagrange
nodes and we have Ψp

C,z |F = Ψp
F,z for all z ∈ Lp(F ).

Given k, p ∈ N0, the space of functions that are piecewise polynomial
with degree ≤ p and are in Hk

0 (Ω) is

(2.1.4) Skp :=
{
s ∈ Hk

0 (Ω) | ∀K ∈M s|K ∈ Pp(K)
}
.

The cases p ∈ N with k ∈ {0, 1} are of particular interest.

Consider first S0
p with p ∈ N and extend each Ψp

K,z outside of K ∈M by

0. The functions {Ψp
K,z}K∈M,z∈Lp(K) form a basis of S0

p with ΨK,z |K′(z
′) =

δK,K′δz,z′ for K,K ′ ∈ M and z ∈ Lp(K), z′ ∈ Lp(K ′), which amounts to
distinguishing Lagrange nodes from different elements.

The construction of a basis of S1
p is a little more involved. Here, iden-

tifying coinciding Lagrange nodes, we set Lp := ∪K∈MLp(K) as well as
Lip := Lp \ ∂Ω, and write Φp

z, z ∈ Lp, for the function given piecewise by
Φp
z |K := Ψp

K,z if z ∈ K and Φp
z |K := 0 otherwise. Then the nestedness of

Lagrange nodes implies: {Φp
z}z∈Lip is a basis of S1

p satisfying Φp
z(y) = δzy

for all y, z ∈ Lip. In connection with these basis functions, the following
subdomains are useful. Let ωz :=

⋃
K′3zK

′ be the star around z ∈ Lp and
let ωK :=

⋃
K′∩K 6=∅K

′ be the patch around K ∈M. Since ∂Ω is Lipschitz,
stars are face-connected in the sense of [60]: given z ∈ Lp and any pair
K,K ′ ∈ M with z ∈ K ∩K ′, there exists a path {Ki}ni=1 ⊂M of elements
containing z such that K1 = K, Kn = K ′, and each Ki ∩Ki+1 ∈ F i.

If not specified differently, C∗ stands for a function which is not neces-
sarily the same at each occurrence and depends on a subset ∗ of {d, γM, p},
increasing in γM and p if present. For instance, we have, for K,K ′ ∈M,

(2.1.5) K ∩K ′ 6= ∅ =⇒ |K| ≤ CγM
∣∣K ′∣∣ and hK ≤ CγMρK′

and, for p ∈ N, K ∈M, and z ∈ Lp(K),

(2.1.6) cd,p|K|
1
2h−1

K ≤ ‖∇Ψp
K,z‖L2(K) ≤ Cd,p|K|

1
2 ρ−1
K .

If there is no danger of confusion, A ≤ C∗B may be abbreviated as A . B.
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2.2 Averaging Operators

Let Ω ⊆ Rd and M be as in the previous section. For all p ≥ 1, the
spaces S0

p and S1
p are connected by the following simplified averaging operator

Ap : S0
p → S1

p , based upon evaluating at Lagrange nodes. For every interior
node z ∈ Lip, fix some element Kz ∈M containing z and set

(2.2.1) Apσ :=
∑

z∈Lip σ|Kz(z)Φ
p
z, σ ∈ S0

p .

Clearly, Apσ(z) = σ(z) whenever σ is continuous at z ∈ Lip and so Ap is
a projection onto S1

p . On the one hand, the operator Ap is a restriction
of Scott-Zhang interpolation [56] defined for broken H1-functions and, on
the other hand, it is a simplified variant of the standard nodal averaging in
(2.2.8) below, in that it requires only one evaluation per degree of freedom.
Standard nodal averaging has been used in various nonconforming contexts,
see, e.g., Brenner [13], Karakashian/Pascal [46], Oswald [51]. Our interest
in the operator Ap is motivated by the application of Theorems 1.4.7 and
1.4.14 to second-order elliptic problems. Indeed, we have Apσ ∈ H1

0 (Ω)
for all σ ∈ S0

p , in view of (2.1.4), as well as the stability bounds below.
All results in this section are tailored to our subsequent use and essentially
known in the literature, so that proofs are only intended for completeness.
More details about averaging operators can be found, for instance, in [26],
[39] and references therein.

Lemma 2.2.1 (Simplified nodal averaging and L2-norms of jumps). Let
p ≥ 1, σ ∈ S0

p piecewise polynomial, K ∈ M, and z ∈ Lp(K) be a Lagrange
node. If z 6∈ ∂K, then Apσ(z) = σ|K(z), else

(2.2.2)
∣∣σ|K(z)−Apσ(z)

∣∣ ≤ Cd,p ∑
F∈F:F3z

1

|F |
1
2

‖ JσK ‖L2(F ).

Proof. The ‘then’-part of the claim readily follows from the non-overlapping
of elements in M. In order to show the ‘else’-part, we start by claiming
that, for any z ∈ ∂K,

(2.2.3)
∣∣σ|K(z)−Apσ(z)

∣∣ ≤∑
F3z
|JσK (z)|

where F varies in F. To verify this, we shall exploit that M has face-
connected stars in the sense of [60], distinguishing the cases z ∈ Ω and
z ∈ ∂Ω. If z ∈ Ω is an interior node, we choose a path (K ′j)

n
j=0 in ωz such

that K ′0 = K, K ′n = Kz and K ′j−1 ∩K ′j =: Fj ∈ F i for j = 1, . . . n. Then
we bound the telescopic sum σ|K(z) − Ap(z) =

∑n
j=1 σ|Kj−1

(z) − σ|Kj (z)
with the triangle inequality, independently of the choice of the path and
Kz and obtain (2.2.3). If z ∈ ∂Ω is a boundary node, we proceed similarly
but terminate the path with an element Kb ∈ M that has a boundary face
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F ∈ Fb and use the identity σ|Kb(z) − Ap(z) = σ|Kb(z) = JσK (z). Finally,

we apply the inverse inequality ‖ · ‖L∞(F ) ≤ Cd,p |F |−
1
2 ‖ · ‖L2(F ) in Pp(F ) to

(2.2.3) conclude the proof.

The estimate established in this lemma is particularly convenient for the
applications to interior penalty methods discussed in Chapter 4. Instead,
the definition of the nonconforming elements in Chapter 3, like e.g. the
Crouzeix-Raviart element, suggests to derive an alternative bound for the
left-hand side of (2.2.2), not involving the scaled L2−norms of jumps on
the mesh faces. To this end, let us preliminarily recall the following trace
identity, see e.g. [61, Proposition 4.2]. For all elements K ∈ M and faces
F ∈ FK , we have

(2.2.4) ∀v ∈ H1(K)
1

|F |

ˆ
F
v =

1

|K|

ˆ
K
v +

1

|K|

ˆ
K
∇v · ξF

where ξF (x) := (x − zF )/d and zF ∈ L1(K) denotes the vertex of K not
belonging to F .

Lemma 2.2.2 (Simplified nodal averaging and integrals of jumps). Let
p ≥ 1, σ ∈ S0

p piecewise polynomial, K ∈ M, and z ∈ Lp(K) a Lagrange
node. If z 6∈ ∂K, then Apσ(z) = σ|K(z), else

∣∣σ|K(z)−Apσ(z)
∣∣ ≤∑

F3z

1

|F |

∣∣∣∣ˆ
F

JσK
∣∣∣∣+ Cd,p

∑
K′3z

hK′

|K ′|
1
2

‖∇σ‖L2(K′),

where F and K ′ vary in F and M, respectively.

Proof. As before, the ‘then’-part of the claim readily follows from the non-
overlapping of elements in M. In order to show the ‘else’-part, we bound
each jump in (2.2.3) suitably. To this end, we consider two cases, F ∈ F i and
F ∈ Fb, and start with the first one. Let K1,K2 ∈ M be the two elements
such that F = K1 ∩ K2. We insert the face means fj := |F |−1

´
F σ|Kj as

well as the element means kj := |Kj |−1
´
Kj
σ, j = 1, 2. Using an inverse

estimate in Pp(F ), we deduce

(2.2.5) |JσK (z)| ≤ 1

|F |

∣∣∣∣ˆ
F

JσK
∣∣∣∣+ ∑

j=1,2

(
|fj − kj |+

Cd,p

|F |
1
2

‖σ|Kj − kj‖L2(F )

)
.

For j = 1, 2, the trace identity (2.2.4) gives

|fj − kj | ≤
hKj
d |Kj |

‖∇σ‖L1(Kj) ≤
hKj

d |Kj |
1
2

‖∇σ‖L2(Kj),
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while [60, Lemma 3], which is a combination of the trace identity and the
Poincaré inequality, provides

|F |−
1
2 ‖σ|Kj − kj‖L2(F ) ≤

√
1

π2
+

2

πd

hKj

|Kj |
1
2

‖∇σ‖L2(Kj).

Inserting the last two inequalities in (2.2.5), we arrive at

(2.2.6a) |JσK (z)| ≤ 1

|F |

∣∣∣∣ˆ
F

JσK
∣∣∣∣+ Cd,p

2∑
j=1

hKj

|Kj |
1
2

‖∇σ‖L2(Kj)

in this case. If, instead, F ∈ Fb, we denote by K ∈ M the element with
F = K ∩ ∂Ω and, using the means f := |F |−1

´
F σ|K and k := |K|−1

´
K σ

similarly as before, we obtain

(2.2.6b) |JσK (z)| ≤ 1

|F |

∣∣∣∣ˆ
F

JσK
∣∣∣∣+ Cd,p

hK

|K|
1
2

‖∇σ‖L2(K).

Inserting (2.2.6) into (2.2.3) then finishes the proof.

Assume that p ≥ 2. The first-order simplified nodal averaging A1 is
naturally defined also on S0

p and is cheaper to evaluate than Ap. Since
A1 is not a projection onto S1

p , it cannot fulfill an estimate like (2.2.2) in
Lemma 2.2.1. Nevertheless, the following counterpart of Lemma 2.2.2 holds.

Lemma 2.2.3 (First-order averaging on S0
p). Let p ≥ 2, σ ∈ S0

p piecewise
polynomial, K ∈ M, and F ∈ FK . For all Lagrange nodes z ∈ Lp(K) ∩ F
we have∣∣σ|K(z)−A1σ(z)

∣∣ ≤
≤ Cd,p

 ∑
F ′∩F 6=∅

1

|F ′|

∣∣∣∣ˆ
F ′

JσK
∣∣∣∣+

∑
K′∩F 6=∅

hK′

|K ′|
1
2

‖∇σ‖L2(K′)


where F ′ and K ′ vary in F and M, respectively.

Proof. We distinguish two cases, depending whether or not z is a vertex.
Case 1: z ∈ L1(K). Then we have A1σ(z) = Apσ(z) and the claimed

estimate follows from Lemma 2.2.2.
Case 2: z ∈ Lp(K)\L1(K). Since A1σ|F ∈ P1(F ) and

∑
y∈L1(F ) λ

K
y = 1,

we may write

(2.2.7) |σ|K(z)−A1σ(z)| ≤
∑

y∈L1(F )

∣∣σ|K(z)−A1σ(y)
∣∣λKy (z)

and, for any y ∈ L1(F ),∣∣σ|K(z)−A1σ(y)
∣∣ ≤ ∣∣σ|K(z)− σ|K(y)

∣∣+
∣∣σ|K(y)−A1σ(y)

∣∣ .
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As the second term of the right-hand side is already bounded in Case 1, it
remains to bound the first term. Writing c for the mean value of σ in K,
we deduce∣∣σ|K(z)− σ|K(y)

∣∣ ≤ ∣∣σ|K(z)− c
∣∣+
∣∣σ|K(y)− c

∣∣
. |F |−

1
2 ‖σ|K − c‖L2(F ) . hK |K|−

1
2 ‖∇σ‖L2(K)

with the help of an inverse estimate in Pp(F ) and [60, Lemma 3].

Remark 2.2.4 (Evaluation of nodal averaging operators). It is worth noticing
that the previous lemmas hold also if we replace Ap with the standard nodal

averaging operator Ãp : S0
p → S1

p given by

(2.2.8) Ãpσ :=
∑
z∈Lp

(
1

#ωz

∑
K3z

σ|K(z)

)
Φp
z, σ ∈ S0

p

where p ≥ 1, K varies inM and #ωz denotes the number of mesh elements
in the star ωz. Nonetheless, the fact that evaluating Apσ is cheaper that

Ãpσ may be attractive when the averaging is employed as building-block
in the construction of smoothing operators for quasi-optimal methods; see
Chapters 3 and 4 below. In this case, the use of Ap instead of Ãp makes
no difference in the abstract analysis but can save a considerable number
of operations when assembling the right-hand side of the discrete problem
(1.4.10). For the same reason, we may even consider the possibility of using
A1 in place of Ap for p ≥ 2. Possible effects of these variants are briefly
discussed in Remarks 3.3.6 and 3.3.11, Theorem 4.2.12 and §5.3.1.

Averaging operators into H2
0−conforming spaces are also of interest,

when dealing with fourth-order problems. Unlike the previous case, we do
not base our construction on the spaces H2(Ω) ∩ S0

p , due to their compli-
cated structure [49]. Also, we only consider piecewise quadratic polynomials
in the two-dimensional case d = 2. The Hsieh-Clough-Tocher (HCT) space
with boundary conditions is [33]

HCT := {s ∈ C1(Ω) | ∀K ∈M s|K ∈ C1(K) ∩ P3(MK),

s = ∂ns = 0 on ∂Ω },
(2.2.9)

where MK stands for the triangulation obtained by connecting each vertex
of the triangle K with its barycenter mK . Notice that HCT ⊆ H2

0 (Ω) and
every element s ∈ HCT is uniquely determined by the values s(z), ∇s(z)
at the Lagrange nodes z ∈ Li1 and ∇s(mF ) · nF at the midpoints mF of
the interior edges F ∈ F i; see [21]. Then, for each vertex z ∈ Li1 and edge
F ∈ F i, we pick elements Kz,KF ∈M containing z or F , respectively, and
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define AHCT : S0
2 → HCT as

AHCTσ :=
∑
z∈Li1

σ|Kz(z)Υ0
z +

2∑
j=1

∂j
(
σ|Kz

)
(z)Υj

z

+

+
∑
F∈Fi

∂
(
σ|KF

)
∂n

(mF )ΥF ,

(2.2.10)

where Υj
z with z ∈ Li1, j ∈ {0, 1, 2} and ΥF with F ∈ F i form the nodal

basis of HCT . In the next lemma, jumps of vector-valued maps are intended
componentwise. Consequently, if v ∈ H2(M), then J∇vK · n indicates the
jump of the normal derivative of v on the skeleton Σ.

Lemma 2.2.5 (Simplified nodal averaging into HCT). Let σ ∈ S0
2 be a

piecewise quadratic polynomial and K ∈M. For all vertices z ∈ L1(K) and
edges F ∈ FK , we have∣∣∇σ|K(z)−∇AHCTσ(z)

∣∣ ≤ C ∑
F ′3z

1

|F ′|
1
2

‖ J∇σK ‖L2(F ′)(2.2.11a)

∣∣∇σ|K(z)−∇AHCTσ(z)
∣∣ ≤

≤
∑
F ′3z

1

|F ′|

∣∣∣∣ˆ
F ′

J∇σK
∣∣∣∣+ C

∑
K′3z

hK′

|K ′|
1
2

‖D2 σ‖L2(K′)
(2.2.11b)

∣∣∇σ|K(mF ) · n−∇AHCTσ(mF ) · n
∣∣ ≤ 1

|F |

∣∣∣∣ˆ
F

J∇σK · n
∣∣∣∣(2.2.11c)

where F ′ and K ′ vary in F and M, respectively.

Proof. We have ∇M σ ∈ (S0
1)2 and ∇AHCTσ(z) = A1∇M σ(z) for all ver-

tices z ∈ L1(K). Hence (2.2.11a) and (2.2.11b) easily follow by applying
Lemmas 2.2.1 and 2.2.2 to ∇M σ.

Next, for all edges F ∈ F, we have∣∣∇σ|K(mF ) · n−∇AHCTσ(mF ) · n
∣∣ ≤ | J∇σ(z)K (mF ) · n | .

Indeed, the left-hand side either vanishes or coincides with the right-hand
side, because mF is shared by at most two triangles of M. Since ∇M σ is
piecewise affine on M, this inequality directly provides (2.2.11c).

Remark 2.2.6 (Alternative averaging operators into H2
0 (Ω)). Standard (not

simplified) nodal averaging into HCT is considered, for instance, in [17].
Nodal averaging operators into H2

0 -conforming could also be defined with
the help of the Argyris element, the reduced Argyris element or the reduced
HCT element [29], see also Remark 3.3.17.
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In view of the applications in the next chapters, it is useful to comple-
ment Lemma 2.2.5 with a counterpart of (2.1.6) for some of the HCT basis
functions. To this end, observe that (2.1.6) is derived by means of affine
equivalence, while HCT elements are not affine equivalent.

Lemma 2.2.7 (Scalings of averaged HCT basis functions). For any element
K ∈M, vertex z ∈ L1(K), edges F, F ′ ∈ FK and j ∈ {1, 2}, we have∣∣∣∣ˆ

F ′
∇ΥF · nF ′

∣∣∣∣ ≤ C ∣∣F ′∣∣ and

∣∣∣∣ˆ
F ′
∇Υj

z · nF ′
∣∣∣∣ ≤ C ∣∣F ′∣∣(2.2.12a)

‖D2 ΥF ‖L2(K) ≤ CγK
|K|

1
2

ρK
and ‖D2 Υj

z‖L2(K) ≤ CγK
|K|

1
2

ρK
.(2.2.12b)

Proof. We can compute the integrals in (2.2.12a) by the Simpson’s formula,
because both ∇ΥF · nF ′ and ∇Υj

z · nF ′ are in P2(F ′). Owing to the duality

(2.2.13) ΥF (y) = 0, ∇ΥF (y) = 0, ∇ΥF (mF ′) · nF ′ = δFF ′

for all y ∈ L1(K) and F ′ ∈ FK , we derive

ˆ
F ′
∇ΥF · nF ′ =

2

3

∣∣F ′∣∣ δFF ′ .
Similarly, the duality of Υj

z

(2.2.14) Υj
z(y) = 0, ∇Υj

z(y) = δyzej , ∇Υj
z(mF ′) · nF ′ = 0

reveals ∇Υj
z · nF ′ ≡ 0 on F ′ for z /∈ F ′ and

ˆ
F ′
∇Υj

z · nF ′ =
ej · nF ′

6

∣∣F ′∣∣
otherwise. Next, to check the validity of (2.2.12b), we argue as suggested
by Ciarlet [31, Theorem 46.2]. More precisely, we employ an auxiliary finite
element that is given by the following 12 functionals on C1(K) ∩ P3(MK):
P (z) for z ∈ L1(K) as well as ∇P (z) · (y − z) for y, z ∈ L1(K) with y 6= z
and ∇P (mF ) · (mK −mF ) for F ∈ FK . We denote the corresponding nodal
basis on K by Υ̃z, Υ̃y

z , z, y ∈ L1(K) with y 6= z, and Υ̃F , F ∈ F i. Since this
element is affine equivalent, a comparison with a reference element yields,
for every of its nodal basis function Υ̃ on K,

(2.2.15) ‖D2 Υ̃‖L2(K) ≤ Cρ−2
K |K|

1
2 .

In view of (2.2.13)-(2.2.14), we obtain the following representations in terms
of affine equivalent basis function:

ΥF = (mK −mF ) · nF Υ̃F
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and

Υj
z =

∑
y∈L1(K)\{z}

(y − z) · ejΥ̃y
z −

1

4

∑
F∈FK :F3z

tF · ej (mK −mF ) · tF Υ̃F .

Combining these identities with (2.2.15) completes the proof.



Chapter 3

Overconsistency and
Classical Nonconforming
Elements

This chapter collects the material from [64] and is devoted to exemplify the
abstract results from Chapter 1 by the construction of quasi-optimal meth-
ods with classical nonconforming elements. The Crouzeix-Raviart element
[35] approximating the Poisson problem may be viewed as a prototypical ex-
ample of such methods. Thus, we begin with an overview of our motivation
and main results in this case.

3.1 Overview

Let M be a simplicial mesh of a domain Ω ⊆ Rd, d ≥ 2, with faces F.
Furthermore, let CR be the discrete space of real-valued functions on Ω
that are piecewise affine, continuous in the midpoints of the internal faces
of M and vanish at the midpoints of boundary faces. Since such functions
can be discontinuous or nonzero in other points of the faces, CR is not
a subspace of the Sobolev space H1

0 (Ω). However, the Crouzeix-Raviart
interpolant ΠCR : H1

0 (Ω)→ CR , given by

(3.1.1) ∀F ∈ F
ˆ
F

ΠCRu =

ˆ
F
u,

reveals remarkable approximation properties: for any function u ∈ H1
0 (Ω),

we have

(3.1.2)

inf
s∈CR

‖∇M(u− s)‖L2(Ω) = ‖∇M(u−ΠCRu)‖L2(Ω)

=

( ∑
K∈M

inf
p∈P1(K)

‖∇(u− p)‖2L2(K)

) 1
2

.

39
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We see that, although the global best error of the Crouzeix-Raviart space is
coupled or constrained at the midpoints of the faces, it is locally computable
and exploits optimally the approximation capabilities of its shape functions.
The latter improves on the space of continuous piecewise affine functions,
which exploits the shape functions only in a quasi-optimal manner, depend-
ing on the shape coefficient of M; cf. Veeser [60].

The space CR is used in the homonymous method for the Poisson prob-
lem,

(3.1.3) U ∈ CR such that ∀σ ∈ CR

ˆ
Ω
∇M U · ∇M σ =

ˆ
Ω
fσ,

where we suppose f ∈ L2(Ω). This is a nonconforming Galerkin method
in the sense of (1.2.11), because the underlying bilinear and linear forms
on the conforming part CR ∩ H1

0 (Ω) of the discrete space arise by simple
restriction of their infinite-dimensional counterparts.

The question arises how much of the aforementioned remarkable approx-
imation properties of the Crouzeix-Raviart space CR are exploited in the
method (3.1.3). Remark 1.4.9 reveals that the error ‖∇M(u−U)‖L2(Ω) can-
not be bounded only in terms of the best error infs∈CR ‖∇M(u− s)‖L2(Ω).
The reason for this lies in the fact that (3.1.3) applies nonconforming func-
tions to the load f . Thus, the classical Crouzeix-Raviart method is not
quasi-optimal with respect to ‖∇M ·‖L2(Ω) and so does not always fully
exploit the approximation properties of its underlying space CR , see also
Proposition 5.3.2.

In order to remedy, we may exploit Theorem 1.4.14 and consider the
following two variants of the original Crouzeix-Raviart method:

UE ∈ CR such that ∀σ ∈ CR

ˆ
Ω
∇M UE · ∇M σ = 〈f,Eσ〉,(3.1.4a)

ŪE ∈ CR such that ∀σ ∈ CR

ˆ
Ω
∇M ŪE · ∇Eσ = 〈f,Eσ〉(3.1.4b)

for a bounded linear smoothing operator E : CR → H1
0 (Ω) to be specified.

Both variants are well-defined for arbitrary f ∈ H−1(Ω) = H1
0 (Ω)′ and

each one has attractive features: the bilinear form of (3.1.4a) is symmetric,
while the error of (3.1.4b) is orthogonal to the range of E. Analyzing an
abstract version of (3.1.4b) with the tools from Chapter 1, we find that its
quasi-optimality constant depends only on the range of E and that, for a
fixed range, the energy norm condition number of its bilinear form becomes
minimal, if E is a right inverse of the best approximation operator onto CR .
Notably, the two variants also coincide under this condition.

Combining (3.1.1) and (3.1.2), we see that E is a right-inverse of the
best approximation operator onto CR if and only if

(3.1.5) ∀σ ∈ CR , F ∈ F
ˆ
F
Eσ =

ˆ
F
σ.
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Exploiting this local characterization, we construct a computationally feasi-
ble operator E such that (3.1.4b), or equivalently (3.1.4a), is quasi-optimal.
More precisely, we have

‖∇M(u− UE)‖ ≤ ‖E‖L(S,V ) inf
s∈CR

‖∇M(u− s)‖L2(Ω),

where ‖E‖L(S,V ) is the best constant and equals the stability constant of
resulting method. The construction of E, which is inspired by the one in
Badia et al. [8], also ensures that ‖E‖L(S,V ) can be bounded in terms of
the shape coefficient of the mesh M. It is also instrumental for designing
quasi-optimal DG and other interior penalty methods in the next chapter.

The rest of this chapter is organized as follows. In §3.2 we analyze well-
posedness, conditioning and quasi-optimality of the abstract counterpart of
(3.1.4b). In §3.3 we then construct the aforementioned smoothing operator
E, as well as similar operators when approximating the Poisson problem with
Crouzeix-Raviart-like elements of arbitrary fixed order and the biharmonic
problem with the Morley element.

In the discussion of the examples, we restrict ourselves to polyhedral
Lipschitz domains and homogeneous essential boundary conditions. More
general settings will be discussed elsewhere.

3.2 Overconsistency

In this chapter we shall look for quasi-optimal methods in a suitable subclass
of nonconforming linear variational methods (1.2.3). First of all, taking into
account Theorems 1.3.2 and 1.4.7 and the fact that we do not require the
inclusion S ⊆ V , we let E : S → V be a linear smoothing operator and
restrict our attention to methods M : V ′ → S given by the discrete problem

(3.2.1) ∀σ ∈ S b(M`, σ) = 〈`, Eσ〉,

corresponding to the triplet (S, b, E?). Then, for further convenience, let us
collect in the next theorem the other relevant results from §1 that will be
instrumental to our discussion.

Theorem 3.2.1 (Stability, consistency, and quasi-optimality). Any non-
conforming method M = (S, b, E?) for (1.2.1) satisfies:

(i) M is fully stable, with

Cstab := ‖M‖L(V ′,S) = sup
σ∈S

‖Eσ‖
sups∈S,‖s‖=1 b(s, σ)

.

(ii) M is quasi-optimal if and only if it is fully algebraically consistent

∀u ∈ S ∩ V, σ ∈ S b(u, σ) = a(u,Eσ).
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(iii) If M is quasi-optimal, then its quasi-optimality constant is

Cqopt = sup
σ∈S

supv∈V,s∈S,‖v+s‖=1 a(v,Eσ) + b(s, σ)

sups∈S,‖s‖=1 b(s, σ)

and satisfies

max{Cstab, δS} ≤ Cqopt ≤
√
C2

stab + δ2
S ,

where δS ∈ [0,∞) is the consistency measure given by the smallest con-
stant in

∀s, σ ∈ S |b(s, σ)− ã(s, Eσ)| ≤ δS sup
ŝ∈S,‖ŝ‖=1

b(ŝ, σ) inf
v∈V
‖s− v‖.

Proof. This is a partial restatement of Theorems 1.4.7, 1.4.14 and 1.4.19.

We say that a method M = (S, b, E?) is (algebraically) overconsistent
whenever its consistency measure δS vanishes. Hereby, we restrict our at-
tention to this subclass of quasi-optimal methods. According to item (iii)
of Theorem 3.2.1, the condition δS = 0 immediately yields the identity
Cqopt = Cstab. Also, notice that conforming Galerkin methods (1.2.4) are
always overconsistent.

While overconsistency somehow aims at minimizing the effect of (non-
conforming) consistency on the size of the quasi-optimality constant, it pre-
scribes also a certain rigidity in the structure of a method M . To see this,
assume that we are given V and a of the continuous problem (1.2.1) and
a discrete space S, along with an extended scalar product ã. Then, the
design of an overconsistent quasi-optimal method on S reduces to the task
of finding a smoothing operator E and a bilinear form b such that

(3.2.2) ∀s, σ ∈ S b(s, σ) = ã(s, Eσ).

It is worth mentioning that, in contrast to full algebraic consistency, over-
consistency hinges on the specific extension ã of a at hand.

Three possibilities to define the form b in terms of ã and a smoother E
are the following:

ã(·, ·), ã(·, E·), and ã(E·, E·).

Since the third option corresponds to a conforming Galerkin method on the
range T = R(E) of E also when S 6⊆ V , it is covered by standard theory. We
therefore do not consider it here. The first two, truly nonconforming options
separate the advantages of a conforming Galerkin method for (1.2.1): the
first one is a symmetric bilinear form, while the second one corresponds to
overconsistency in view of (3.2.2). Interestingly, the two options coincide
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and unify their advantages if and only if the smoothing operator E is a
right inverse for the ã-orthogonal projection Π from Ṽ onto S because of
the identity ã(s, Eσ) = ã(s,ΠEσ) for all s, σ ∈ S.

Here we investigate the second option, which shall partially bring us back
to the first one, and set

(3.2.3) bE(s, σ) := ã(s, Eσ), s, σ ∈ S,

WritingME as an abbreviation for (S, bE , E
?), the resulting discrete problem

reads as follows: given any ` ∈ V ′, find ME` ∈ S such that

(3.2.4) ∀σ ∈ S ã(ME`, Eσ) = 〈`, Eσ〉.

Since the test function σ enters only via Eσ, such a method can be
viewed as a Petrov-Galerkin method over S × T with the conforming test
space T := R(E). In other words, (3.2.4) is equivalent to

∀τ ∈ T ã(ME`, τ) = 〈`, τ〉.

Consequently, properties of the map ME depend on E only through its range
T = R(E). In what follows, we underline this aspect whenever applicable.
Let us start by examining the solvability and related properties of (3.2.4).

Remark 3.2.2 (Injectivity of smoothing). In view of ME = B−1E?, the
injectivity of the smoothing operator E is equivalent to the surjectivity of
ME . In connection with a bilinear form bE , it becomes also a necessary
condition for the well-posedness of (3.2.4).

Lemma 3.2.3 (Nondegeneracy of bE). For any injective linear operator
E : S → V with range T = R(E), the following statements are equivalent:

bE is nondegenerate on S × S,(3.2.5a)

ã(·, ·) is nondegenerate on S × T,(3.2.5b)

Π|T is invertible,(3.2.5c)

S ∩ T⊥ = {0},(3.2.5d)

where Π stands for the ã-orthogonal projection from Ṽ onto S. If bE is
nondegenerate, then its energy norm condition number is given by

(3.2.6) cond(bE) = ‖(ΠE)−1‖L(T )‖ΠE‖L(S) ≥ 1,

which is minimized by E = (Π|T )−1.

Proof. The claimed equivalences are essentially a special case of the inf-sup
theory; we provide the details of their proofs for the sake of completeness.

We first observe that E is a linear isomorphism from S to T , which
implies dimS = dimT as well as (3.2.5a) ⇐⇒ (3.2.5b).
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Next, we verify (3.2.5b) =⇒ (3.2.5c) and let τ ∈ T with Πτ = 0. This
yields 0 = ã(s,Πτ) = ã(s, τ) for all s ∈ S and so, using (3.2.5b), we see
that τ = 0. Consequently, the kernel of Π|T is trivial and the rank-nullity
theorem yields that Π|T is a linear isomorphism from T to S.

To show (3.2.5c) =⇒ (3.2.5d), consider any s ∈ S ∩ T⊥. Then
τ := (Π|T )−1s ∈ T thanks to (3.2.5c) and 0 = ã(s, τ) = ã(s, (Π|T )−1s) =

ã(s,Π(Π|T )−1s) = ã(s, s) gives s = 0. Hence we have S ∩ T⊥ = {0}.
We complete the proof of the claimed equivalences by showing that

(3.2.5d) =⇒ (3.2.5b). Since dimS = dimT , it suffices to check the nonde-
generacy for the first argument of ã, that is, given s ∈ S, ã(s, τ) = 0 for all
τ ∈ T implies s = 0. This condition is just a reformulation of (3.2.5d), so
that the desired implication is verified.

Finally, assuming that bE is nondegenerate, we turn to (3.2.6) and recall
that the energy norm condition number of bE is given by cond(bE) = CE/βE ,
where

CE := sup
s,σ∈S

bE(s, σ)

‖s‖‖σ‖
≥ inf

s∈S
sup
σ∈S

bE(s, σ)

‖s‖‖σ‖
= inf

σ∈S
sup
s∈S

bE(s, σ)

‖s‖‖σ‖
=: βE > 0.

We claim that, for any σ ∈ S,

(3.2.7) sup
s∈S

bE(s, σ)

‖s‖
= ‖ΠEσ‖.

Indeed, if s ∈ S, the properties of Π and the Cauchy-Schwarz inequality yield
bE(s, σ) = ã(s, Eσ) = ã(s,ΠEσ) ≤ ‖s‖‖ΠEσ‖, with equality for s = ΠEσ.
Exploiting (3.2.7) in the definition of CE and the second expression for βE ,
we conclude

cond(bE) =
supσ∈S,‖σ‖=1 ‖ΠEσ‖
infσ∈S,‖σ‖=1 ‖ΠEσ‖

= ‖(ΠE)−1‖L(S)‖ΠE‖L(S).

Next, ignoring computational feasibility, we characterize the existence of
at least one smoothing operator E giving rise to a nondegenerate bilinear
form bE . Condition (3.2.8c) below reveals that the search for right inverses
is not restrictive. Moreover, we shall use this characterization in Chapter 4
to observe that we cannot obtain overconsistency in certain settings.

Lemma 3.2.4 (Existence of nondegenerate bE). For any discrete space S
and extended scalar product ã, the following statements are equivalent:

there is an injective E : S → V such that bE is nondegenerate,(3.2.8a)

S ∩ V ⊥ = {0},(3.2.8b)

Π|V admits a right inverse.(3.2.8c)
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Proof. First, we verify (3.2.8a) =⇒ (3.2.8b). Assume E : S → V is injective
and such that bE is nondegenerate. Using the previous lemma, we infer
S ∩ T⊥ = {0} for T = R(E). Since T ⊆ V , we have V ⊥ ⊆ T⊥ and
S ∩ V ⊥ ⊆ S ∩ T⊥ = {0}, whence S ∩ V ⊥ = {0}.

To show the implication (3.2.8b) =⇒ (3.2.8c), we assume S ∩ V ⊥ = {0}
and observe s ∈ S ∩ V ⊥ ⇐⇒ s ∈ S ∩ Π(V )⊥ with the help of the identity
ã(v, s) = ã(Πv, s) for all v ∈ V and s ∈ S. We thus infer Π(V ) = S and
can apply [24, Theorem 2.12] to obtain: Π|V admits a right inverse if and
only if N(Π|V ) admits a complement in V . Since Π is ã-orthogonal, we have

N(Π|V ) = S⊥ ∩ V , which has the complement S ∩ V in V . Hence (3.2.8c)
holds.

The missing implication (3.2.8c) =⇒ (3.2.8a) is straight-forward. Let
E : S → V be a right inverse of Π|V and observe that E and Π|R(E) have to
be injective. Thus, Lemma 3.2.3 provides (3.2.8a).

Let us now turn to stability and quasi-optimality of overconsistent meth-
ods.

Theorem 3.2.5 (Overconsistent quasi-optimality). Let E : S → V be any
injective smoothing operator with range T = R(E). If S ∩ T⊥ = {0}, then
the method ME = (S, bE , E) is quasi-optimal with

Cqopt = ‖(Π|T )−1‖L(S,V ) = Cstab.

Proof. Since S ∩ T⊥ = {0}, Lemma 3.2.3 ensures that bE is nondegenerate.
Furthermore, ME is fully stable and overconsistent by construction and so
Theorem 3.2.1 shows that ME is quasi-optimal with Cqopt = Cstab. We
conclude by deriving

Cstab = sup
σ∈S

‖Eσ‖
‖ΠEσ‖

= sup
τ∈T

‖τ‖
‖Πτ‖

=

= sup
σ∈S

‖(Π|T )−1σ‖
‖σ‖

= ‖(Π|T )−1‖L(S,V )

(3.2.9)

which follows by inserting (3.2.7) into Theorem 3.2.1 (i) and exploiting that
E : S → T and Π|T are bijective.

Remark 3.2.6 (Overconsistency and increasing nonconformity). For over-
consistent methods, the constants Cqopt = Cstab grow with increasing non-
conformity. To see this, let σ ∈ S \ V with ‖σ‖ = 1 be a nonconforming
direction and recall that V is a closed subspace of Ṽ . The angle of σ and
V is then α ∈ [0, π/2), given by cosα = supv∈V,‖v‖=1 |ã(v, σ)| > 0. Since

T = R(E) ⊆ V , the angle between σ ∈ S and (Π|T )−1σ is bigger than α.
Hence ã(σ, (Π|T )−1σ) = ‖σ‖2 = 1 yields Cqopt ≥ ‖(Π|T )−1σ‖ ≥ (cosα)−1.
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Remark 3.2.7 (Possible overestimation by classical upper bounds). The first
identity in (3.2.9) and ‖E‖L(S,V ) = sup‖σ‖=1 sup‖ṽ‖=1 ã(ṽ, Eσ) =: C̃E yield

Cqopt ≤ ‖(ΠE)−1‖L(S)‖E‖L(S,V ) =
C̃E
βE

, losed

where the right-hand side admits the classical form of an upper bound for
the quasi-optimality constant. Notably, this bound depends on E not only
through its range T = R(E) and, closely related, may be pessimistic if E
has singular values of different size.

Neglecting the issue of computational feasibility, our analysis of overcon-
sistent methods does not reveal any disadvantage of restricting the search of
smoothing operators to right inverses for the ã-orthogonal projection Π. On
the contrary, the bilinear form is given by simple restriction of ã, thus sym-
metric, and minimizes its energy norm condition number within smoothing
operators of the same range. We therefore aim at invoking the following
special case of Theorem 3.2.5.

Corollary 3.2.8 (Smoothing with right inverses). Let E : S → V be a right
inverse for the ã-orthogonal projection Π from Ṽ onto S. Then, we have
ME = (S, ã|S×S , E

?) and this is a nonconforming Galerkin method if and
only if E|S∩V = IdS∩V . Moreover, ME is quasi-optimal with

Cqopt = Cstab = ‖E‖L(S,V ).

3.3 Applications to Classical Nonconforming
Methods

In light of Corollary 3.2.8, the key step for quasi-optimality is to find a
right inverse E for the projection Π that provides V -smoothing, is suitably
bounded and computationally feasible in the sense of Remark 1.4.13. In
the context of finite element methods, the latter is given if, for the finite
element basis ϕ1, . . . , ϕn at hand, the evaluations 〈`, Eϕi〉, i = 1, . . . , n, can
be implemented with O(n) operations. In this section, we construct such
right inverses not only for the setting considered in the introduction §3.1,
but also for nonconforming elements of arbitrary fixed order and for fourth
order problems.

3.3.1 A Quasi-Optimal Crouzeix-Raviart Method
for the Poisson Problem

In order to prove the results illustrated in the overview §3.1, we consider the
approximation with Crouzeix-Raviart elements of the Poisson problem

(3.3.1) −∆u = f in Ω, u = 0 on ∂Ω,
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where Ω and M are as in §2.1, with d ≥ 2 and #M > 1. Introducing the
bilinear form aM : H1(M)×H1(M)→ R by

(3.3.2) aM(w1, w2) :=

ˆ
Ω
∇Mw1 · ∇Mw2,

we want to apply Corollary 3.2.8 with the following setting:

(3.3.3)
V = H1

0 (Ω), S = CR =

{
s ∈ S0

1 | ∀F ∈ F
ˆ
F

JsK = 0

}
,

ã = aM|Ṽ×Ṽ with Ṽ = H1
0 (Ω) + CR ,

where ã|V×V provides a weak formulation of −∆. Before embarking on
the construction of the smoothing operator E, let us recall some relevant
properties of CR ; see, e.g., [21]. The characterization of CR in terms of
jumps is a consequence of the midpoint rule: whenever s ∈ CR and F ∈ FK ,
then

´
F s|K = s(mF ), where mF is the midpoint of F . Hence, for all s ∈ CR ,

the integral mean value
´
F s, F ∈ F, is well-defined and vanishes if F ∈ Fb.

The bilinear form aM is therefore a scalar product and induces the norm
‖ · ‖ = ‖∇M ·‖L2(Ω) on CR. Moreover, the functionals s 7→

´
F s, F ∈ F

i,

form a set of degrees of freedom for CR . We write ΨF , F ∈ F i, for the
associated nodal basis satisfying

´
F ′ ΨF = δF,F ′ for all F, F ′ ∈ F i. The

support of each basis function ΨF is the union ωF of the two elements
sharing F . Finally, we have CR ∩H1

0 (Ω) = S1
1 , which is a strict subspace of

CR as #M > 1.
The next lemma characterizes the right inverses of the Crouzeix-Raviart

projection ΠCR, i.e. the aM-orthogonal projection of Ṽ onto CR . It also mo-
tivates our use of the same notation as for the Crouzeix-Raviart interpolant
in (3.1.1).

Lemma 3.3.1 (Right inverses of CR projection). Let E : CR → H1
0 (Ω) be

a linear operator. Then we have

ΠCRE = IdCR ⇐⇒ ∀σ ∈ CR , F ∈ F i
ˆ
F
Eσ =

ˆ
F
σ.

Proof. For any v ∈ H1
0 (Ω) and s ∈ CR , the aM-orthogonality of ΠCR and

piecewise integration by parts yields

0 = aM(s, v −ΠCRv) =
∑
K∈M

ˆ
∂K

∂s

∂nK
(v −ΠCRv)

=
∑
F∈Fi

J∇sK · n
ˆ
F

(v −ΠCRv)

thanks to the fact that ∇M s is piecewise constant and
´
F v = 0 =

´
F ΠCRv

for every F ∈ Fb. Since the orthogonal projection ΠCRv is unique and the
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averages over interior faces are degrees of freedom for CR , we obtain that

(3.3.4) ∀F ∈ F i
ˆ
F

ΠCRv =

ˆ
F
v

uniquely determines ΠCRv. This characterization readily implies the claimed
equivalence.

Thus, we turn to the construction of a linear right inverse of ΠCR. The
normalized face bubbles

(3.3.5) Φ̄F :=
(2d)!

d! |F |
ΦF with ΦF :=

∏
z∈L1(F )

Φ1
z =

1

dd
Φd
mF
, F ∈ F i,

may be viewed as H1
0 (Ω)-counterparts of the basis functions ΨF , F ∈ F i.

Indeed, they satisfy Φ̄F ∈ H1
0 (Ω) and

´
F ′ Φ̄F = δF,F ′ for all F ′ ∈ F i due to

(2.1.1). We thus readily see that the bubble smoother B1 : CR → H1
0 (Ω)

given by

(3.3.6) B1σ :=
∑
F∈Fi

(ˆ
F
σ

)
Φ̄F

is well-defined and a right inverse of the Crouzeix-Raviart projection ΠCR.
Unfortunately, the operator B1 is not uniformly stable under refinement;
see Remark 3.3.4 below. We therefore introduce the following variant that
is stabilized with simplified nodal averaging.

Proposition 3.3.2 (Stable right inverse of CR projection). The linear op-
erator E1 : CR → H1

0 (Ω) given by

(3.3.7) E1σ := A1σ +B1(σ −A1σ),

is invariant on S1
1 , a right inverse of the Crouzeix-Raviart projection ΠCR,

and H1
0 (Ω)-stable with stability constant ≤ Cd,γM.

Proof. The linear operator E1 is well-defined owing to R(A1) = S1
1 ⊆ CR

and provides H1
0 (Ω)-smoothing, because Φ1

z ∈ H1
0 (Ω) for z ∈ Li1 and we

have ΦF ∈ H1
0 (Ω) for F ∈ F i. Owing to A1|S1

1
= IdS1

1
, it holds E1|S1

1
= IdS1

1

on the conforming part S1
1 = CR ∩ H1

0 (Ω) of the Crouzeix-Raviart space.
Furthermore, E1 is a right inverse of the Crouzeix-Raviart projection in view
of Lemma 3.3.1. Indeed, by rearranging terms and since B1 preserves face
means, we find

(3.3.8)

ˆ
F
E1σ =

ˆ
F
B1σ +

ˆ
F

(A1σ −B1A1σ)︸ ︷︷ ︸
=0

=

ˆ
F
σ.
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It remains to bound ‖E1‖L(CR ,H1
0 (Ω)). Given σ ∈ CR , we may write

‖∇E1σ‖L2(Ω) ≤ ‖∇M σ‖L2(Ω)+‖∇M(σ−A1σ)‖L2(Ω)+‖∇B1(σ−A1σ)‖L2(Ω)

so that we have to bound the second and third term of the right-hand side by
the first one. In both cases, we first establish a local bound for K ∈M. For
the second term, we combine (2.1.5) and (2.1.6) with Lemma 2.2.2, deriving

‖∇(σ −A1σ)‖L2(K) ≤
∑

z∈L1(K)

∣∣σ|K(z)−A1σ(z)
∣∣ ‖∇Φ1

z‖L2(K)

≤ Cd
∑

z∈L1(K)

∑
K′∈M,K′3z

hK′

ρK

|K|
1
2

|K ′|
1
2

‖∇σ‖L2(K′) . ‖∇M σ‖L2(ωK).

(3.3.9)

For the third term, inserting
´
F Φ1

z = d−1|F | and (3.3.5) into (3.3.6) yields

B1(σ −A1σ)|K =
(2d)!

d! dd+1

∑
F∈FK

∑
z∈L1(F )

[
σ|K(z)−A1σ(z)

]
Φd
mF
.

Hence, another combination of (2.1.5) and (2.1.6) with Lemma 2.2.2 leads
to

(3.3.10) ‖∇B1(σ −A1σ)‖L2(K) . ‖∇M σ‖L2(ωK).

We conclude by summing (3.3.9) and (3.3.10) over all elements K ∈ M,
observing that the number of elements in each star ωK is ≤ Cd,γM .

The technique used here to stabilize the bubble smoother B1 is not new.
For instance, it is applied to the construction of Fortin operators for the
Stokes problem in [11, Section 8.4.1].

Setting E = E1 in (3.1.4a), we obtain a new Crouzeix-Raviart method,
MCR = (CR , aM, E

?
CR). Notice that the assembling of its load vector is

computationally feasible in the following sense:

• it suffices to know the evaluations 〈f,Φ1
z〉, z ∈ Li1, and 〈f,ΦF 〉, F ∈ F i,

• it is local in that suppE1ΨF ⊆ ωK1 ∪ ωK2 , where K1,K2 ∈ M are the
two elements containing the interior face F ∈ F i.

The method MCR distinguishes from the classical Crouzeix-Raviart method
by the following property.

Theorem 3.3.3 (Quasi-optimality of MCR). The method MCR is a non-
conforming Galerkin method for (3.3.1) and it is ‖∇M ·‖-quasi-optimal with
Cqopt ≤ Cd,γM.

Proof. Notice that MCR = (CR , b, E?1), where b is the restriction of aM in
(3.3.3) to CR × CR . Thus, the claim follows by using Proposition 3.3.2 in
Corollary 3.2.8.
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The following two remarks clarify that the single ingredients for E1 are
not suitable smoothing operators for quasi-optimality, thereby underlining
their complementary roles.

Remark 3.3.4 (Instability of bubble smoothing). The right inverse B1 is not
uniformly H1

0 (Ω)-stable under refinement. To see this, let M be a mesh of
Ω = (0, 1)2 the elements of which have diameter h > 0 and consider the
function σ :=

∑
F∈Fi ΨF . Then σ = 1 in all elements except those touching

∂Ω, while B1σ oscillates between 0 and 1 in all elements. Accordingly,
Φ̄F = d−dΦd

mF
, (2.1.6), and h−1 & |∇ΨF | give

‖∇B1σ‖L2(Ω) & #M & h−1#{K ∈M | K ∩ ∂Ω 6= ∅} & h−1‖∇M σ‖L2(Ω).

Remark 3.3.5 (Inconsistency of (simplified) nodal averaging). The use of
smoothing operator A1|CR in (3.1.4a) does not lead to full algebraic consis-
tency and so in particular not to quasi-optimality. As dim CR > dimS1

1 , the
kernel N(A1|CR) is non-trivial. Moreover, since A1|CR is not aM-orthogonal,
N(A1|CR) and S1

1 are not ã-orthogonal. Consequently, we can find σ ∈ CR
which is ã-orthogonal to S1

1 and such that s := A1σ 6= 0. Then, we have
s ∈ S1

1 = CR ∩ H1
0 (Ω) and b(s, σ) = 0 6= a(s,A1σ), which contradicts full

algebraic consistency. We give also numerical evidence of this observation
in §5.3.3

We end the discussion on the method MCR with a comment on the use
of the operator A1.

Remark 3.3.6 (Standard and simplified nodal averaging). The simplified
nodal averaging operator A1 contributes to the proof of Proposition 3.3.2
via the estimate in Lemma 2.2.2. As already mentioned in Remark 2.2.4,
such lemma still holds if A1 is replaced with the averaging operator Ã1 from
(2.2.8). Thus, while the evaluation of A1σ, σ ∈ CR, is generally less expen-

sive than that one of Ã1σ, our analysis does not reveal any disadvantage of
employing A1 instead of Ã1 in the definition of the smoother E1. Further-
more, we propose a numerical comparison of the two options in §5.3.1.

3.3.2 Quasi-Optimal Crouzeix-Raviart Like Methods
of Arbitrary Order for the Poisson Problem

In this section we generalize the quasi-optimal Crouzeix-Raviart method
MCR of §3.3.1 to arbitrary fixed order p ≥ 2. To this end, let Ω and M
be as in §2.1, with d ≥ 2 and #M > 1. This time, we want to apply
Corollary 3.2.8 with

(3.3.11)

V = H1
0 (Ω),

S1
p ⊆ S ⊆ CRp :=

{
s ∈ S0

p | ∀F ∈ F, q ∈ Pp−1(F )

ˆ
F

JsK q = 0

}
,

ã = aM|Ṽ×Ṽ with Ṽ = V + S



3.3. APPLICATIONS 51

and aM as in (3.3.2). For any d ≥ 2, the space CR1 coincides with the
Crouzeix-Raviart space CR from §3.3.1. If d = 2, then CRp is the Fortin-
Soulie space [42] for p = 2, the Crouzeix-Falk space [34] for p = 3, and, in
general, the Gauss-Legendre space of Baran and Stoyan [57] of order p. The
last reference provides a finite element basis of the Gauss-Legendre spaces,
distinguishing odd and even polynomial degree p. For d = 3, Fortin [41]
for p = 2 and Ciarlet et al. [32] in general construct finite element bases
for nonconforming subspaces of CRp, strict in certain situations. In order
to cover also these Crouzeix-Raviart-like spaces, we require in (3.3.11) only
S ⊆ CRp.

Independently of the choice of S, we have that, for every s ∈ S, the
moment

´
F sq is well-defined for all F ∈ F and all q ∈ Pp−1(F ) and vanishes

whenever F ∈ Fb. As a consequence, ‖ · ‖ = ‖∇M ·‖L2(Ω), which is induced

by aM, is a norm on Ṽ .
Let ΠS denote the aM-orthogonal projection of Ṽ onto S ⊆ CRp. Some

right inverses thereof can be construct as follows.

Lemma 3.3.7 (Right inverses of CR-like projections). Let S ⊆ CRp with
p ≥ 2 and E : S → H1

0 (Ω) be a linear operator. If we have

(3.3.12)

ˆ
F

(Eσ)q =

ˆ
F
σq,

ˆ
K

(Eσ)r =

ˆ
K
σr

for all σ ∈ S, F ∈ F i, q ∈ Pp−1(F ) and K ∈ M, r ∈ Pp−2(K), then
ΠSE = IdS.

Proof. Given s, σ ∈ S ⊆ CRp, we integrate piecewise by parts and obtain

aM(s, σ − Eσ) =
∑
K∈M

(ˆ
∂K

∂s

∂nK
(σ − Eσ)−

ˆ
K
4s(σ − Eσ)

)
=
∑
F∈Fi

ˆ
F

J∇M s · nK (σ − Eσ)−
∑
K∈M

ˆ
K
4s(σ − Eσ) = 0

thanks to the hypotheses on E. Hence, 0 = ΠS(σ − Eσ) = σ −ΠSEσ.

Let us construct such a smoothing operator by following the lines of
the construction of E1 in §3.3.1. In order to define a higher order bubble
smoother, we employ local weighted L2-projections associated to faces and
elements. For every interior face F ∈ F i, let QF : L2(F ) → Pp−1(F ) be
given by

(3.3.13) ∀q ∈ Pp−1(F )

ˆ
F

(QF v)qΦF =

ˆ
F
vq,

where ΦF ∈ S1
d is the face bubble function of (3.3.5) with supp ΦF = ωF ,

and, for every mesh element K ∈ M, let QK : L2(K) → Pp−2(K) be given
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by

(3.3.14) ∀r ∈ Pp−2(K)

ˆ
K

(QKv)rΦK =

ˆ
K
vr,

where ΦK :=
∏
z∈L1(K) Φ1

z ∈ S1
d+1 is the element bubble function with

supp ΦK = K. This leads to the global bubble operators

BM,pv :=
∑
K∈M

(QKv)ΦK , BF,pv :=
∑
F∈F i

∑
z∈Lp−1(F )

(QF v)(z)Φp−1
z ΦF ,

where BF,p incorporates an extension by means of Lagrange basis functions,

since QF v =
∑

z∈Lp−1(F )(QF v)(z)Φp−1
z |F . The combination of BM,p and

BF,p provides a right inverse of ΠS .

Lemma 3.3.8 (Higher order bubble smoother). For any p ≥ 2, the linear
operator Bp : CRp → H1

0 (Ω) defined by

(3.3.15) Bpσ := BF,pσ +BM,p(σ −BF,pσ)

satisfies (3.3.12) and the local stability estimate

‖∇Bpσ‖L2(K) ≤
Cd,p
ρK

sup
r 6=0

´
K σr

‖r‖L2(K)
+
∑
F∈FK

|K|
1
2

|F |
1
2

sup
q 6=0

´
F σq

‖q‖L2(F )


where r and q vary in Pp−2(K) and Pp−1(F ), respectively.

Proof. The operator Bp is well-defined, because in particular the right-hand
sides of (3.3.13) are well-defined moments of any σ ∈ CRp. Moreover, it
maps into H1

0 (Ω), since ΦF ∈ H1
0 (Ω) for F ∈ F i and ΦK ∈ H1

0 (Ω) for
K ∈M.

In order to verify (3.3.12), let σ ∈ S and consider, first, an interior face
F ∈ F i and q ∈ Pp−1(F ). In view of ΦK′ |F = 0 for K ′ ∈ M and ΦF ′ |F = 0
for F ′ 6= F , (3.3.13) givesˆ

F
(Bpσ)q =

ˆ
F

(QFσ)ΦF q =

ˆ
F
σq.

Second, let K ∈ M and r ∈ Pp−2(K). Here, thanks to ΦK′ |K = 0 for
K ′ 6= K, (3.3.14) leads toˆ

K
(Bpσ)r =

ˆ
K

(BF,pσ)r +

ˆ
K
QK(σ −BF,pσ)ΦKr =

ˆ
K
σr.

Finally, let us verify the stability estimate. Employing inverse estimates
in Pp+d−1(K) and Pp−1(F ) as well as 0 ≤ ΦK ≤ 1 and (2.1.1), we derive

(3.3.16)

‖∇Bpσ‖L2(K) ≤ Cd,pρ−1
K ‖Bpσ‖L2(K)

≤ Cd,p
|K|

1
2

ρK |F |
1
2

‖QFσ‖L2(F ) +
Cd,p
ρK
‖QKσ‖L2(K).
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Moreover, another inverse estimate in every Pp−2(K) yields

‖QKσ‖2L2(K) ≤ Cd,p
ˆ
K
|QKσ|2ΦK = Cd,p

ˆ
K
σQKσ,

whence

(3.3.17) ‖QKσ‖L2(K) ≤ Cd,p sup
r∈Pp−2(K)

´
K σr

‖r‖L2(K)
.

A similar argument in every Pp−1(F ) gives

(3.3.18) ‖QFσ‖L2(F ) ≤ Cd,p sup
q∈Pp−1(F )

´
F σq

‖q‖L2(F )
.

We then obtain the stability estimate by inserting (3.3.17) and (3.3.18) into
(3.3.16).

Stabilizing the bubble smoother Bp with simplified nodal averaging Ap,
we obtain a smoothing operator with the desired properties.

Proposition 3.3.9 (Stable right inverses of CR-like projections). Let p ≥ 2
and S1

p ⊆ S ⊆ CRp. The linear operator Ep : S → H1
0 (Ω) given by

(3.3.19) Epσ := Apσ +Bp(σ −Apσ)

is invariant on S1
p , a right inverse of the Crouzeix-Raviart-like projection

ΠS, and H1
0 (Ω)-stable with stability constant ≤ Cd,p,γM.

Proof. We follow the lines of the proof of Proposition 3.3.2 and easily check
that Ep is well-defined, provides H1

0 (Ω)-smoothing and is invariant on S1
p .

Arguing as in (3.3.8) for any F ∈ F i and any q ∈ Pp−1(F ) as well as for
mesh element K ∈ M and r ∈ Pp−2(K), we find that that Ep is a right
inverse of ΠS onto S.

It remains to bound ‖Ep‖L(S,H1
0 (Ω)) appropriately. We let σ ∈ S and

write

‖∇Epσ‖L2(Ω) ≤ ‖∇M σ‖L2(Ω) + ‖∇M(σ −Apσ)‖L2(Ω)+

+ ‖∇Bp(σ −Apσ)‖L2(Ω).

To bound the second and third term, fix a mesh element K ∈ M. For the
second term, we argue as in (3.3.9), with the polynomial degree 1 replaced
by p, and obtain

(3.3.20) ‖∇(σ −Apσ)‖L2(K) ≤ Cd,p,γM‖∇M σ‖L2(ωK).
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Regarding the third term, (2.1.1) gives

sup
r∈Pp−2(K)

´
K(σ −Apσ)r

‖r‖L2(K)
≤ Cd,p |K|

1
2

∑
z∈Lp(∂K)

∣∣σ|K(z)−Apσ(z)
∣∣

and, for every F ∈ FK ,

sup
q∈Pp−1(F )

´
F (σ −Apσ)q

‖q‖L2(F )
≤ Cd,p |F |

1
2

∑
z∈Lp(F )

∣∣σ|K(z)−Apσ(z)
∣∣ .

Employing the stability estimate of Lemma 3.3.8, the last two inequalities
and then Lemma 2.2.2, we derive

(3.3.21) ‖∇B1(σ −Apσ)‖L2(K) . ‖∇M σ‖L2(ωK).

Then summing (3.3.20) and (3.3.21) over all mesh elements K ∈M finishes
the proof, as for Proposition 3.3.2.

We let MS denote the new Crouzeix-Raviart-like method of arbitrary
fixed order combining the setting (3.3.11) with the smoothing operator Ep
in Proposition 3.3.9. We have MS = (S, aM, E

?
p) and its discrete problem

with load f ∈ H−1(Ω) reads:

(3.3.22) US ∈ S such that ∀σ ∈ S
ˆ

Ω
∇M US · ∇M σ = 〈f,Epσ〉.

Concerning the computational feasibility of Ep, notice that

• it suffices to know the values 〈f,Φp
z〉 for z ∈ Lip as well as 〈f,Φp−1

z ΦF 〉
for F ∈ F i, z ∈ Lp−1(F ), and 〈f,Φp−2

z ΦK〉 for K ∈M, z ∈ Lp−2(K),

• Ep is local in that, if ω is the support of a basis function Φ from references
[32, 41, 57], then ω is a mesh element, a pair or a star of elements and
suppEΦ ⊂ ∪K⊂ωωK ,

• the operators QF and QK in (3.3.13) and (3.3.14) can be implemented
by means of matrices which are precalculated on a reference element
and, for d = 2 and QF , can be diagonalized with the help of Legendre
polynomials.

In contrast to the methods in [32, 41, 57], method MS enjoys the following
property.

Theorem 3.3.10 (Quasi-optimality of MS). For any p ≥ 2 and any sub-
space S with S1

p ⊆ S ⊆ CRp, the method MS is a ‖∇M ·‖-quasi-optimal
nonconforming Galerkin method for the Poisson problem (3.3.1) with quasi-
optimality constant ≤ Cd,p,γM.



3.3. APPLICATIONS 55

Proof. Use Proposition 3.3.9 in Corollary 3.2.8.

Remark 3.3.11 (Alternative smoothing operator). The evaluation of the
right-hand side of problem (3.3.22) is less expensive if we replace the smooth-
ing operator Ep with Ẽp : S → H1

0 (Ω) defined as

Ẽpσ := A1σ +Bp(σ −A1σ).

Indeed, the lowest-order averaging A1 is also defined on S and less expen-
sive to evaluate than Ap. According to Lemmas 3.3.8 and 2.2.3, Ẽp is also
a right inverse of the orthogonal projection ΠS and H1

0 (Ω)−stable with sta-
bility constant ≤ Cd,p,γM . On the other hand, unlike Ep, it is not invariant
on the conforming subspace S1

p of S. Thus, from the viewpoint of the ab-

stract theory, (S, aM, Ẽ
?
p) differs from (S, aM, E

?
p) only in that it is not a

nonconforming Galerkin method. We consider the possibility of stabilizing
higher-order elements with the lowest-order averaging also for DG methods
in Proposition 4.2.11. Remarkably, in that context, the fact that we cannot
obtain nonconforming Galerkin methods by means of A1 results in a more
pessimistic bound for the quasi-optimality constant.

3.3.3 A Quasi-Optimal Morley Method for the Biharmonic
Problem

This section constructs a quasi-optimal Morley method for the ‘biharmonic
equation’ with clamped boundary conditions,

(3.3.23) ∆2u = f in Ω, u = 0 and ∂nu = 0 on ∂Ω,

where Ω and M are as in §2.1, d = 2, and #M > 1. We set

aM(w1, w2) :=

ˆ
Ω

D2
Mw1 : D2

Mw2, w1, w2 ∈ H2(M),

and aim at applying Corollary 3.2.8 with the following setting:

V = H2
0 (Ω) and S = MR ,

MR :=

{
s ∈ S0

2 | s is cont. in L1, s|Lb1
= 0, ∀F ∈ F

ˆ
F

J∇sK · n = 0

}
,

ã = aM|Ṽ×Ṽ with Ṽ := H2
0 (Ω) + MR ,

where aM|V×V provides a weak formulation of ∆2 and MR is the Morley
space [50] over M. In order to recall some useful properties of MR , let
nF and tF be normal and tangent unit vectors for every edge F ∈ F, with
arbitrary but fixed orientation. The functionals s 7→ s(z), z ∈ Li1, and
s 7→

´
F ∇s · nF , F ∈ F i, are well-defined for any s ∈ MR and determine it.

Furthermore, the integrals
´
F ∇s · tF and so also

´
F ∇s = |F |∇s(mF ) are

well-defined for all F and vanish if F ∈ Fb. Hence, aM induces the norm
‖D2
M ·‖L2(Ω) on Ṽ .
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Remark 3.3.12 (Poor conforming part). The conforming part MR ∩H2
0 (Ω)

of the Morley space can be quite small, thereby providing only poor approx-
imation properties; cf. de Boor and DeVore [36, Theorem 3]. We illustrate
this with an extreme example. Given any n ∈ N, subdivide Ω = (0, 1)2

into n2 squares of equal size and obtain M by inserting in each square the
diagonal parallel to the line {(x, x) | x ∈ R}. Then MR ∩H2

0 (Ω) = {0}.

We refer to the aM-orthogonal projection of Ṽ onto MR as the Morley
projection ΠMR. As before, the first step is to describe right inverses thereof.

Lemma 3.3.13 (Right inverses of Morley projection). Given any linear
operator E : MR → H2

0 (Ω), we have ΠMRE = IdMR if and only if, for all
σ ∈ MR,

(3.3.24) ∀z ∈ Li1 Eσ(z) = σ(z) and ∀F ∈ F i
ˆ
F
∇Eσ·nF =

ˆ
F
∇σ·nF .

Proof. Let us first characterize ΠMRv for any v ∈ H2
0 (Ω). Defining σ ∈ MR

by

(3.3.25) ∀z ∈ Li1 σ(z) = v(z) and ∀F ∈ F i
ˆ
F
∇σ · nF =

ˆ
F
∇v · nF ,

we have
´
F ∇v =

´
F ∇σ. Thus, integrating piecewise by parts, we infer

∀s ∈ MR aM(s, σ − v) =
∑
K∈M

∑
F∈FK

ˆ
F

D2(s|K)nK · ∇(σ − v) = 0

because D2
M s is piecewise constant onM. Since the Morley projection of v

is unique, we derive that σ = ΠMRv and (3.3.25) characterizes ΠMRv. This
characterization readily yields the claimed equivalence.

In order to construct a right inverse of ΠMR that is stable under mesh
refinement, we again mimic the approach of §3.3.1. Technical difficulties
arise from the stronger regularity requirement Eσ ∈ H2

0 (Ω); in particular,
neither A2 nor B2 fulfill such condition. In order to replace the former, we
employ the HCT space (2.2.9) and restrict to MR the simplified averaging
operator AHCT : S0

2 → HCT defined in (2.2.10).

The operator AHCT incidentally fulfills the first part of (3.3.24). Aiming
at a right inverse of the form AHCT + B∂n(IdMR − AHCT ), we thus only
need to adjust the means of the normal derivative across interior faces by
a suitable H2

0 (Ω)-bubble smoother B∂n . To this end, we replace the face
bubbles in the bubble smoother B1 of §3.3.1 by the following ones inspired
by Verfürth [66]. Given any interior edge F ∈ F i, let K1,K2 ∈M be the two
elements such that F = K1 ∩K2 and consider their barycentric coordinates
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(λKiz )z∈L1(Ki), i = 1, 2, as first-order polynomials on R2. Then

φ̄F :=
30

|F |
φF with φF :=


∏

z∈L1(F )

(
λK1
z λK2

z

)2
in K1 ∪K2,

0 in Ω \ (K1 ∪K2)

is an H2
0 (Ω)-counterpart of the normalized face bubble Φ̄F from (3.3.5) and

(3.3.26) Φ̄nF := ζF φ̄F with ζF (x) := (x−mF ) · nF , x ∈ R2,

is in H2
0 (Ω) and satisfies

´
F ′ ∇Φ̄nF · nF ′ =

´
F ′ nF · nF ′ φ̄F = δF,F ′ for all

F ′ ∈ F i thanks to (2.1.1). Hence, the operator B∂n : MR + HCT → H2
0 (Ω)

given by

B∂nσ :=
∑
F∈Fi

(ˆ
F
∇σ · nF

)
Φ̄nF

provides H2
0 (Ω)-smoothing with

(3.3.27) ∀F ∈ F i
ˆ
F
∇(B∂nσ) · nF =

ˆ
F
∇σ · nF .

We have the following scaling of the bubbles Φ̄nF .

Lemma 3.3.14 (Scaling of H2 face bubbles). If K,K ′ ∈ M are the two
elements containing the interior edge F ∈ F i, we have

‖D2 Φ̄nF ‖L2(K) ≤ Cγ3
Kγ

2
K′
|K|

1
2

ρK |F |
.

Proof. If we use an inverse inequality in P9(K) and |ζF | ≤ hK on K, we
obtain

‖D2 Φ̄nF ‖L2(K) ≤ Cρ−2
K ‖Φ̄nF ‖L2(K) ≤ Cρ−2

K hK |F |−1‖φF ‖L2(K).

Moreover, we have |λK′z | ≤ hK |∇λK
′

z | ≤ γK |F | ρ−1
K′ ≤ γKγK′ in K, for any

z ∈ L1(F ). Using this and (2.1.1), we finish the proof with

‖φF ‖L2(K) ≤ γ2
Kγ

2
K′ ‖

∏
z∈L1(F )

(λKz )2‖L2(K) = γ2
Kγ

2
K′
|K|

1
2

√
180

.

Owing to this auxiliary result and the scaling of the HCT basis functions
in Lemma 2.2.7, we obtain a stable right inverse of ΠMR, combining AHCT

and B∂n as before.

Proposition 3.3.15 (Stable right inverse of Morley projection). The linear
operator EMR : MR → H2

0 (Ω) given by

EMRσ := AHCTσ +B∂n(σ −AHCTσ)

is invariant on MR ∩H2
0 (Ω), a right inverse of the Morley projection ΠMR,

and H2
0 (Ω)-stable with stability constant ≤ CγM.
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Proof. The operator EMR is invariant on MR ∩ H2
0 (Ω), because AHCT is

invariant on MR ∩HCT = MR ∩H2
0 (Ω). In order to check that EMR is a

right inverse of ΠMR, we verify condition (3.3.24) in Lemma 3.3.13 and let
σ ∈ MR . First, given a Lagrange node z ∈ Li1, we have AHCTσ(z) = σ(z)
and so EMRσ(z) = σ(z), because each bubble Φ̄nF , F ∈ F i, vanishes in L1.
Second, given an interior edge F ∈ F i, we derive

´
F ∇EMRσ·nF =

´
F ∇σ·nF

as in (3.3.8) by means of (3.3.27).

We may finish the proof by bounding ‖IdMR −EMR‖L(MR ,H2
0 (Ω)) appro-

priately. To this end, let σ ∈ MR , fix a mesh element K ∈M, and write

‖D2(EMRσ − σ)‖L2(K) ≤‖D2(σ −AHCTσ)‖L2(K)+

+ ‖D2B∂n(σ −AHCTσ)‖L2(K).

For the first term on the right-hand side, we proceed as in (3.3.9). Combining
inequality (2.2.11b) from Lemma 2.2.5 with the scaling of the HCT basis
functions (2.2.12b) in Lemma 2.2.7, we obtain

‖D2(σ −AHCTσ)‖L2(K) ≤

≤
∑

z∈L1(K)

2∑
j=1

∣∣∂j(σ|K)(z)− (∂jAHCTσ)(z)
∣∣ ‖D2 Υj

z‖L2(K)

≤ C
∑

z∈L1(K)

∑
K′∈M,K′3z

hK′

ρK

|K|
1
2

|K ′|
1
2

‖D2 σ‖L2(K′)

≤ CγM‖D2
M σ‖L2(ωK).

(3.3.28)

For the second term, we expand again (σ −AHCTσ)|K and obtain

B∂n(σ −AHCTσ) =∑
F∈FK∩Fi

∑
z∈L1(F )

2∑
j=1

[
∂j(σ|K)(z)− (∂jAHCTσ)(z)

](ˆ
F
∇Υj

z · nF
)

Φ̄nF

in K. Consequently, we may argue as for the previous term, with the help
of (2.2.11b), (2.2.12a) and Lemma 3.3.14

‖D2B∂n(σ −AHCTσ)‖L2(K) . ‖D2
M σ‖L2(ωK).

We can finish the proof as for Proposition 3.3.2, by summing over all mesh
elements K ∈ M, and observing that the number of elements in each star
ωK is ≤ CγM .

Let MMR denote the new Morley method for the biharmonic problem
(3.3.23), with the setting of this section and the smoothing operator EMR
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from Proposition 3.3.15. Then MMR = (MR , aM, E
?
MR) and its discrete

problem for f ∈ H−2(Ω) reads

UMR ∈ MR such that ∀σ ∈ MR

ˆ
Ω

D2
M UMR : D2

M σ = 〈f,EMRσ〉.

The smoother EMR is computationally feasible in that

• it suffices to know the evaluations 〈f,Υj
z〉 for z ∈ Li1, j ∈ {0, 1, 2}, and

〈f,ΥF 〉 for F ∈ F i, as well as 〈f, Φ̄nF 〉 for F ∈ F i,

• EMR is local: if ω is the support of a Morley basis function, then ω is a
pair or a star of elements and suppEMRΦ ⊂ ∪K⊂ωωK .

The approximation properties of MMR are superior to the original Morley
method in the following sense.

Theorem 3.3.16 (Quasi-optimality of MMR). We have that the method
MMR is a ‖D2

M ·‖-quasi-optimal nonconforming Galerkin method for the
biharmonic problem (3.3.23) with quasi-optimality constant ≤ CγM.

Proof. Use Proposition 3.3.15 in Corollary 3.2.8.

Remark 3.3.17 (Alternative simplified nodal averaging into rHCT). One
obtains a variant of MMR by replacing in EMR the simplified nodal averaging
AHCT from (2.2.10) by

ArHCTσ :=
∑
z∈Li1

σ(z)Θ0
z +

2∑
j=1

∂j(σ|Kz)(z)Θ
j
z

 ,

where Θj
z, z ∈ Li1, j ∈ {0, 1, 2}, are the nodal basis functions of the reduced

HCT space from Ciarlet [30]. As Lemmas 2.2.5 and 2.2.7 carry over to the
new basis and the reduced HCT space contains MR ∩ H2

0 (Ω), this modifi-
cation of MMR is also a quasi-optimal nonconforming Galerkin method for
(3.3.23) with quasi-optimality constant ≤ CγM .
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Chapter 4

DG and Other Interior
Penalty Methods

This chapter follows the same line as [65]. We apply the framework de-
veloped in Chapter 1 to design and analyze quasi-optimal finite element
methods with interior penalty. In contrast to the previous examples, over-
consistency cannot be achieved in the applications proposed here and, con-
sequently, it cannot be the guiding principle of our construction. To give
an overview, let us illustrate the setting and main results in the case of ap-
proximating the Poisson problem with discontinuous linear elements via the
symmetric interior penalty (SIP) method. Interior penalty methods were
first studied by Baker [9], Wheeler [67] and Arnold [1].

4.1 Overview

Let u ∈ H1
0 (Ω) be the weak solution of the Poisson problem (3.3.1) and let

M be a mesh of the domain Ω ⊆ Rd, d ∈ N. In the notation of §2.1, the
SIP approximation U ∈ S0

1 solves the discrete problem

(4.1.1) ∀σ ∈ S0
1 b(U, σ) =

ˆ
Ω
fσ

where f ∈ L2(Ω), the bilinear form b := b1 + b2 is given by

b1(s, σ) :=

ˆ
Ω
∇M s · ∇M σ −

ˆ
Σ
{{∇s}} · n JσK ,

b2(s, σ) :=

ˆ
Σ

η

h
JsK JσK−

ˆ
Σ

JsK {{∇σ}} · n,

61



62 CHAPTER 4. INTERIOR PENALTY METHODS

and the penalty parameter η > 0 is so large that b is coercive. Replacing s
by u ∈ H1

0 (Ω), we see that

u ∈ H2(Ω) =⇒ ∀σ ∈ S0
1 b1(u, σ) =

ˆ
Ω
fσ,(4.1.2a)

∀σ ∈ S0
1 b2(u, σ) = 0.(4.1.2b)

Hence, b2 establishes symmetry and coercivity, without impairing the con-
sistency provided by b1. These properties can be used to derive convergence
up to optimal order in the norm

|v|21;η :=

ˆ
Ω
| ∇M v|2 +

ˆ
Σ

η

h
| JvK |2, v ∈ H1

0 (Ω) + S0
1 ,

cf. Di Pietro and Ern [37, Theorem 4.17] and Gudi [43, §3.2]. However, the
extension of b1 underlying (4.1.2a) and the right-hand side in the discrete
problem (4.1.1) are not defined for general f ∈ H−1(Ω). This observation
and the abstract argument in Remark 1.4.9 entail that the SIP method
(4.1.1) is not |·|1;η-quasi-optimal and so does not always fully exploit the

approximation potential offered by its discrete space S0
1 .

In order to achieve quasi-optimality, Theorem 1.4.14 suggests to consider
the following variant of the discrete problem (4.1.1): find UE ∈ S0

1 such that

(4.1.3) ∀σ ∈ S0
1 b(UE , σ) = 〈f,Eσ〉,

where the smoother E : S0
1 → H1

0 (Ω), to be specified, enables f ∈ H−1(Ω).
If we extend (3.1.5) and require that the means on internal faces are con-
served, as in Badia et al. [8],

(4.1.4) ∀σ ∈ S0
1 , F ∈ F i

ˆ
F
Eσ =

ˆ
F
{{σ}} ,

then piecewise integrating by parts with (2.1.3) shows

∀s, σ ∈ S0
1 b1(s, σ) =

ˆ
Σ

J∇sK · n {{σ}} =

ˆ
Ω
∇Ms · ∇(Eσ).

Interestingly, the right-hand side provides a new extension b̃1 of b1 onto
H1

0 (Ω) which improves upon (4.1.2a) in that

∀u ∈ H1
0 (Ω), σ ∈ S0

1 b̃1(u, σ) = 〈f,Eσ〉.

In order to define a smoothing operator E that satisfies (4.1.4) and is com-
putionally feasible, we simply extend the construction proposed in §3.3.1
and ensure that the operator norm ‖E‖L(S0

1 ,H
1
0 (Ω)) is bounded in terms of

the shape coefficient γM of M and the space dimension d.
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Exploiting the full stability and full algebraic consistency delivered by
(4.1.3) and (4.1.4), the abstract theory of Chapter 1 then yields

|u− UE |1;η ≤
(
1 + Cη−1

) 1
2 inf
s∈S0

1

|u− s|1;η ,

where C depends on d and γM and η is sufficiently large. Notably, as η →∞,
the discontinuous space S0

1 is replaced by S1
1 and we end up exactly in Céa’s

lemma for the conforming Galerkin method with S1
1 .

The rest of this chapter is organized as follows. We first summarize in a
convenient form the relevant result from Chapter 1 to be used here. Then, we
introduce new variants of various interior penalty methods and prove their
quasi-optimality. Firstly, we design quasi-optimal DG methods of arbitrary
fixed order for the Poisson problem, covering also the setting illustrated
in this introduction. Secondly, we devise a quasi-optimal Crouzeix-Raviart
method with jump penalty for linear elasticity and establish a robust bound
for its error in the nearly-incompressible regime. Lastly, we conclude with
a quasi-optimal variant of the quadratic C0-interior penalty method for the
biharmonic problem.

As before, we consider polyhedral domains with Lipschitz boundaries
and homogeneous essential boundary conditions.

4.2 Applications to Interior Penalty Methods

As in the previous chapter, we design nonconforming methods M with dis-
crete problem

(4.2.1) ∀σ ∈ S b(M`, σ) = 〈`, Eσ〉,

corresponding to the triplet (S, b, E?), where E : S → V is a linear smooth-
ing operator. For each example we shall refer to the following result, which
differ from Theorem 3.2.1 only in that we exploit the consistency measure
δV from Proposition 1.3.6 instead of δS . According to Remark 1.4.20, this
approach to nonconforming consistency is closely related to the so-called
second Strang lemma [10].

Theorem 4.2.1 (Stability, consistency, and quasi-optimality). Given a non-
conforming method M = (S, b, E?) for (1.2.1) and an extended scalar product
ã on Ṽ = V + S, introduce the bilinear form d : Ṽ × S → R by

d(ṽ, σ) := b(ΠS ṽ, σ)− ã(ṽ, Eσ),

where ΠS denotes the ã-orthogonal projection onto S. Then:

(i) M is fully stable, with

Cstab := ‖M‖L(V ′,S) = sup
σ∈S

‖Eσ‖
sups∈S,‖s‖=1 b(s, σ)

.
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(ii) M is quasi-optimal if and only if it is fully algebraically consistent, in
that

∀u ∈ S ∩ V, σ ∈ S 0 = d(u, σ) = b(u, σ)− a(u,Eσ).

(iii) If M is quasi-optimal, then its quasi-optimality constant satisfies

Cstab ≤ Cqopt =
√

1 + δ2
V ,

where δV ∈ [0,∞) is the consistency measure given by the smallest con-
stant in

∀v ∈ V, σ ∈ S |d(v, σ)| ≤ δV sup
ŝ∈S,‖ŝ‖=1

b(ŝ, σ) inf
s∈S
‖v − s‖.

Proof. Item (i) follows from Theorem 1.4.7, while (ii) is a consequence of
Theorem 1.4.14 and (i). Finally, the first part of Theorem 1.4.19 guarantees
the validity of item (iii).

This theorem is formulated with the following viewpoint. The discrete
bilinear form decomposes as b = ã(·, E·) + d(·, ·) on S and d(·, ·) = 0 corre-
sponds to an overconsistent method, in the vein of §3.2. According to item
(ii) of Theorem 4.2.1, we can achieve quasi-optimality also if b 6= ã(·, E·),
provided the perturbation introduced by d(·, ·) is compatible with full alge-
braic consistency. As we pointed out in Lemma 3.2.4, setting d(·, ·) 6= 0 is
sometimes necessary to enforce the nondegeneracy of b.

The effect of the perturbation induced by d(·, ·) on the size of the quasi-
optimality constant could be quantified by both the consistency measures
devised in §1.3.2. More specifically, the size of the constant δS would some-
how quantify the distance of the method (S, b, E?) from overconsistency,
which indeed corresponds to δS = 0. However, we shall proceed here as
suggested by item (iii) of Theorem 4.2.1 and access the quasi-optimality
constant through the other consistency measure δV . In fact, this approach
seems to provide slightly better estimates, in particular for large values of
the penalty parameters used in this chapter to enforce the coercivity of the
discrete bilinear forms; cf. Remark 4.2.8.

It is therefore of interest to bound the stability constant Cstab and δV ,
connecting them to another well-known and important, but not yet men-
tioned constant.

Remark 4.2.2 (Stability, consistency and inf-sup constants). Consider any
nonconforming method M = (S, b, E?). As S is finite-dimensional, the non-
degeneracy of b entails that the corresponding inf-sup constant is positive:

α := inf
σ∈S,‖σ‖=1

sup
s∈S,‖s‖=1

b(s, σ) > 0.
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Then the definitions of Cstab and δV readily yield

(4.2.2) Cstab ≤
‖E‖L(S,V )

α
and δV ≤

γ

α

where γ ≥ 0 verifies |d(v, σ)| ≤ γ infs∈S ‖v − s‖‖σ‖ for all v ∈ V and σ ∈ S.
Hence, up to the inverse of the inf-sup constant α, the constants Cstab and
δV depend, respectively, only on the smoothing operator E and the bilinear
form d. It is worth noting that these bounds may be pessimistic, as it is
pointed out in Remark 3.2.7 for Cstab.

In view of Theorem 4.2.1, we may achieve quasi-optimality by the fol-
lowing steps: given a continuous problem in the form of (1.2.1) and a non-
conforming finite element space S,

• extend the scalar product a to the sum Ṽ = V + S,

• find a computationally feasible smoothing operator E : S → V , possibly
with E|V ∩S = IdV ∩S ,

• if necessary, use the bilinear form d to arrange that b = ã(·, E·) + d is
nondegenerate and has other optional properties like symmetry.

Recall also that the condition E|V ∩S = IdV ∩S is not necessary for quasi-
optimality but characterizes the subclass of nonconforming Galerkin meth-
ods from (1.2.11). In this chapter, we shall propose methods with and
without this property.

We shall carry out the aforementioned steps for three different settings,
involving vector and fourth order problems as well as various couplings be-
tween elements (completely discontinuous, Crouzeix-Raviart, continuous).
In each case the nondegeneracy of b will be obtained by means of interior
penalties.

4.2.1 Quasi-Optimal Discontinuous Galerkin Methods
for the Poisson Problem

In this subsection we devise quasi-optimal DG methods for the Poisson prob-
lem, covering the results illustrated in the overview §4.1.

Let Ω and M be as in §2.1 and, with η ≥ 0, define

(v, w)1;η :=

ˆ
Ω
∇M v · ∇Mw +

∑
F∈F

η

hF

ˆ
F

JvK JwK , |v|1;η := (v, v)
1
2
1;η

on H1(M) and abbreviate (·, ·)1;0 to (·, ·)1. We consider the following setting

(4.2.3) V = H1
0 (Ω), S = S0

p , ã = (·, ·)1;η on Ṽ = H1
0 (Ω) + S0

p

for any fixed p ∈ N. Then ã is a scalar product for η > 0, with induced
norm |·|1,η, and the abstract variational problem (1.2.1) provides a weak
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formulation of the Poisson problem (3.3.1). Our setting has two parameters:
the polynomial degree p and the scaling factor η of the jumps; the latter will
be also the penalty parameter. In order to keep notation simple, we shall
sometimes suppress the dependencies on p and η. The conforming part of
S0
p is the strict subspace S0

p ∩H1
0 (Ω) = S1

p . Moreover, we easily see that

(4.2.4) ∅ 6= S0
0 ⊆ S0

p ∩ V ⊥,

which precludes overconsistency in light of Lemma 3.2.4.
In order to obtain hints for a suitable choice of the smoothing operator,

we invoke integration by parts element by element and the structure of S0
p .

Let s, σ ∈ S0
p be arbitrary. On the one hand, the integration by parts formula

(2.1.3) yields

(s, Eσ)1;η =
∑
K∈M

ˆ
K

(−∆s)Eσ +
∑
F∈Fi

ˆ
F

J∇sK · nEσ

due to Eσ ∈ H1
0 (Ω). On the other hand, we want

´
Ω∇M s · ∇M σ = (s, σ)1

to appear in the discrete bilinear form. For this term, (2.1.2b) and (2.1.3)
give

(s, σ)1 =
∑
K∈M

ˆ
K

(−∆s)σ +
∑
F∈Fi

ˆ
F

J∇sK · n {{σ}} +
∑
F∈F

ˆ
F
{{∇s}} · n JσK .

A comparison of these two identities suggests that the smoothing opera-
tor E should conserve certain moments on faces and elements and proves
the following lemma. Such moment conservation was already used in Badia
et al. [8, §6] to design a DG method for the Stokes problem with a par-
tial quasi-optimality result for the velocity field. It is also an extension of
the sufficient condition devised in Lemma 3.3.7 to construct overconsistent
Crouzeix-Raviart-like methods of arbitrary fixed order.

Lemma 4.2.3 (Conservation of moments). Let p ∈ N and, for notational
convenience, set P−1(K) = ∅ for all K ∈ M. If a smoothing operator
E : S0

p → H1
0 (Ω) satisfies

(4.2.5)

ˆ
F
q(Eσ) =

ˆ
F
q {{σ}} and

ˆ
K
r(Eσ) =

ˆ
K
rσ

for all F ∈ F i, q ∈ Pp−1(F ), K ∈M, r ∈ Pp−2(K) and σ ∈ S0
p , then

(4.2.6) (s, Eσ)1;η =

ˆ
Ω
∇M s · ∇M σ −

∑
F∈F

ˆ
F
{{∇s}} · n JσK

for all s, σ ∈ S0
p .
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The analogy with Lemma 3.3.7 suggests to adapt the construction of
the smoothing operators in §3.3.2 to the current setting. Since only minor
modifications are needed, we do not change the notation. We begin with an
extension of the so-called bubble smoother in (3.3.15), with the help of the
same weighted L2-projections introduced before.

For every interior face F ∈ F i, let us recall the face bubble function
ΦF =

∏
z∈L1(F ) Φ1

z ∈ S1
d , which is supported in the two elements containing

F . Then, let the operator QF : L2(F )→ Pp−1(F ) be given by (3.3.13) and
define BF,p : H1(M)→ H1

0 (Ω) by

BF,pv :=
∑
F∈Fi

∑
z∈Lp−1(F )

(
QF {{v}}

)
(z)Φp−1

z ΦF .

As before, we incorporate an extension by means of Lagrange basis functions,
in view of the partition of unity

∑
z∈Lp−1(F ) Φp−1

z = 1.
Next, for every mesh element K ∈ M, set QK = 0 if p = 1, otherwise

let the operator QK : L2(K) → Pp−2(K) be given by (3.3.14). We define
BM,p : H1(M)→ H1

0 (Ω)

BM,pσ :=
∑
K∈M

(QKv)ΦK ,

where ΦK :=
∏
z∈L1(K) Φ1

z ∈ S1
d+1 is the element bubble function with

support K.
A suitable combination of BF,p and BM,p provides the desired property

and an extension of the operator in (3.3.15).

Lemma 4.2.4 (Bubble smoother). For all p ∈ N, the smoothing operator
Bp : S0

p → H1
0 (Ω) defined by

Bpσ := BF,pσ +BM,p(σ −BF,pσ)

satisfies (4.2.5) and the local stability estimate

‖∇Bpσ‖L2(K) ≤
Cd,p
ρK

sup
r 6=0

´
K σr

‖r‖L2(K)
+
∑
F∈FK

|K|
1
2

|F |
1
2

sup
q 6=0

´
F {{σ}} q
‖q‖L2(F )


where r and q vary in Pp−2(K) and Pp−1(F ), respectively.

Proof. Proceed as in the proof of Lemma 3.3.8.

The argument in Remark 3.3.4 confirms that Bp is not uniformly stable
under refinement for the current setting, as one may suspect in view of the
factor ρ−1

K in the stability estimate. However, since our bound involves lower
order norms, we have the possibility to stabilize. This can be done with the
help of the simplified nodal averaging operator Ap : S0

p → S1
p introduced in
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(2.2.1) or the (standard) averaging Ãp : S0
p → S1

p from (2.2.8). In analogy
with Chapter 3, here we consider only the first option, cf. Remarks 2.2.4
and 3.3.6.

Stabilizing the bubble smoother Bp with the simplified nodal averag-
ing Ap, we obtain a smoothing operator with the desired properties, which
extends the one introduced in (3.3.19)

Proposition 4.2.5 (Stable smoothing with moment conservation). The
smoothing operator Ep : S0

p → H1
0 (Ω) given by

Epσ := Apσ +Bp(σ −Apσ)

is invariant on S1
p , satisfies (4.2.5) and, for all σ ∈ S0

p ,

‖∇M(σ − Epσ)‖L2(Ω) ≤ Cd,γM,p‖h−
1
2 JσK ‖L2(Σ).

Proof. We adapt the proof of Propositions 3.3.9 to the current setting with
jumps in the extended energy norm. Clearly, the operator Ep is well-defined
and maps into H1

0 (Ω). With Ap, also Ep is a projection onto S1
p . Arguing

as in (3.3.8), it is also immediate to check that Ep conserves the moments
in (4.2.5), with the help of Lemma 4.2.4.

Finally, we turn to the claimed stability bound. Let σ ∈ S0
p and write

‖∇M(σ − Epσ)‖L2(Ω) ≤ ‖∇M(σ −Apσ)‖L2(Ω) + ‖∇Bp(σ −Apσ)‖L2(Ω).

In order to bound the right-hand side, we fix a mesh element K ∈ M and
consider the first term. Employing Φp

z |K = Ψp
K,z, the scaling (2.1.6) and

then Lemma 2.2.1, we obtain

‖∇(σ −Apσ)‖L2(K) ≤
∑

z∈Lp(K)

∣∣σ|K(z)−Apσ(z)
∣∣ ‖∇Φp

z‖L2(K)

≤ Cd,γM,p

∑
z∈Lp(K)

∣∣σ|K(z)−Apσ(z)
∣∣ |K| 12
ρK

≤ Cd,γM,p

∑
z∈Lp(K)

∑
F ′∈F,F ′3z

|K|
1
2

ρK |F ′|
1
2

‖ JσK ‖L2(F ′)

(4.2.7)

If K ′ ∈M contains a face F ′ of the sum, then (2.1.5) implies

|K|
1
2

ρK |F ′|
1
2

≤ hK
ρK

(
hd−2
K

ρd−1
K′

) 1
2

. ρ
− 1

2
K′ . h

− 1
2

F ′ .

Consequently, with the help of #{K ′ ∈M | K ′ ⊆ ωK} ≤ Cd,γM , we obtain

(4.2.8) ‖∇(σ −Apσ)‖L2(K) .

 ∑
F∈F,F∩K 6=∅

h−1
F ‖ JσK ‖2L2(F )

 1
2

.
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Next, consider the second term and observe that (2.1.1) gives

sup
r∈Pp−2(K)

´
K(σ −Apσ)r

‖r‖L2(K)
≤ Cd,p |K|

1
2

∑
z∈Lp(∂K)

∣∣σ|K(z)−Apσ(z)
∣∣

and, for every F ∈ FK ,

sup
q∈Pp−1(F )

´
F ({{σ}} −Apσ)q

‖q‖L2(F )
≤ Cd,p |F |

1
2

∑
K′⊃F

∑
z∈Lp(F )

∣∣σ|K′(z)−Apσ(z)
∣∣ .

Inserting these two bounds in the stability estimate of Lemma 4.2.4, we find
essentially the bound after the second inequality in (4.2.7) and, proceeding
as before, it follows

(4.2.9) ‖∇Bp(σ −Apσ)‖L2(K) .

 ∑
F∈F,F∩K 6=∅

h−1
F ‖ JσK ‖2L2(F )

 1
2

.

We arrive at the claimed inequality by summing (4.2.8) and (4.2.9) over all
K ∈ M, observing that the number of elements touching a given face is
≤ Cd,γM .

The smoothing operator Ep in Proposition 4.2.5 is computationally fea-
sible in the sense of Remark 1.4.13. In fact, it enjoys all the properties of
its counterpart in (3.3.19) listed before Theorem 3.3.10.

After having found a suitable smoothing operator, we now choose the
bilinear form d(·, ·). For this purpose, recall that, due to (4.2.4), the form
(·, Ep·)1;η is degenerate and so d(·, ·) needs to be nontrivial. Several choices
are possible; see, e.g., Arnold et al. [5]. Here we shall discuss the interplay
between Ep and some of them.

A quasi-optimal NIP method

One possibility to achieve nondegeneracy is to employ the jump penalization
in (·, ·)1;η. Owing to Lemma 4.2.3, we may also neutralize the possible
downgrading of coercivity in (·, Ep·)1;η, due to the term −

´
Σ {{∇s}} · n JqK.

This suggests to define bnip : S0
p × S0

p → R

(4.2.10) bnip(s, σ) := (s, Epσ)1;η +

ˆ
Σ

(
JsK {{∇σ}} · n+

η

hF
JsK JσK

)
.

which just reestablish the bilinear form of the nonsymmetric interior penalty
(NIP) method introduced in [53].

The next lemma recalls well-known properties of bnip that are instru-
mental to our analysis, in connection with Remark 4.2.2. We also provide a
proof for the sake of completeness.
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Lemma 4.2.6 (bnip and extended energy norm). For any penalty parameter
η > 0, we have

∀s, σ ∈ S bnip(s, s) ≥ |s|21;η and bnip(s, σ) ≤
(

1 +
√
η−1η∗

)
|s|1;η |σ|1;η ,

where η∗ > 0 depends on d, p, and γM.

Proof. The coercivity bound holds by construction. For the continuity
bound, we observe that, if F ∈ FK is a face of any K ∈ M, we have

the inverse estimate ‖ · ‖L2(F ) ≤ Cd,γM,ph
− 1

2
F ‖ · ‖L2(K) in Pp−1(K) and set

η∗ := (d+ 1)C2
d,γM,p. Then

(4.2.11) ‖h
1
2 {{∇σ}} ‖2L2(Σ) ≤ η∗‖∇M σ‖2L2(Ω)

and the claimed continuity bound follows by standard steps.

According to this lemma, if the penalty parameter η is not too small, we
may consider |·|1;η with the same η to be the discrete energy norm associated
with bnip. Remarkably, as η → ∞, the coercivity and continuity constants
tend to their respective counterparts of the limiting conforming Galerkin
method in S1

p .

We thus arrive at Mnip = (S0
p , bnip, E

?
p), a new variant of the NIP method

of order p with the discrete problem

(4.2.12) U ∈ S0
p such that ∀σ ∈ S0

p bnip(U, σ) = 〈f,Epσ〉.

Since bnip = (·, ·)1 and E = Id on S1
p , this is a nonconforming Galerkin

method. In contrast to the original NIP method, it applies to any load
f ∈ H−1(Ω) and has the following property.

Theorem 4.2.7 (Quasi-optimality of Mnip). For any η > 0, the method
Mnip is |·|1;η-quasi-optimal for the Poisson problem (3.3.1) with constant

≤
√

1 + Cd,γM,pη−1.

Proof. The quasi-optimality of Mnip follows from Lemma 4.2.3, Proposi-
tion 4.2.5 and item (ii) in Theorem 4.2.1. The subsequent item (iii) entails
also

Cqopt =

√
1 +

(
δH1

0 (Ω)

)2

so that it only remains to bound the consistency measure in the right-hand
side. To this end, let Πη,p denote the (·, ·)1;η-orthogonal projection ofH1(M)
onto the space S0

p . Following the notation of Theorem 4.2.1, we introduce
the bilinear form dnip : H1(M)× S0

p → R

dnip(ṽ, σ) := bnip(Πη,pṽ, σ)− (ṽ, Epσ)1,η.
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For all v ∈ H1
0 (Ω) and σ ∈ S0

p , Lemma 4.2.3, Proposition 4.2.5, the identities
JvK = 0 = JEpσK and the (·, ·)1,η-orthogonality of Πη,p imply

dnip(v, σ) = (Πη,pv − v,Epσ)1 +

ˆ
Σ

JΠη,pvK {{∇σ}} · n+

ˆ
Σ

η

h
JΠη,pvK JσK

= (Πη,pv − v,Epσ − σ)1 +

ˆ
Σ

JΠη,pv − vK {{∇σ}} · n.

Combining this identity with the upper bound in Proposition 4.2.5 and a
standard argument, it follows

(4.2.13) |dnip(v, σ)| ≤ Cd,γM,pη
− 1

2 |σ|1;η |Πη,pv − v|1;η .

We thus derive δH1
0 (Ω) ≤ Cd,γM,pη

− 1
2 with the help of Remark 4.2.2 and the

coercivity bound in Lemma 4.2.6.

The following remarks complement Theorem 4.2.7. The first one un-
derlines the importance of Theorem 4.2.1 to obtain a sharp bound of the
quasi-optimality constant of Mnip. The second one improves on the obser-
vation that we recover Cea’s lemma in the limit η → +∞.

Remark 4.2.8 (Overestimation of Cqopt by Theorem 3.2.1). Denote by δS0
p

the consistency measure from Proposition 1.3.9, associated with the method
Mnip. The orthogonality (4.2.4) readily yields δS0

p
≥ 1. Moreover, for all

σ ∈ S1
p , item (i) of Theorem 4.2.1, Lemma 4.2.6 and Epσ = σ reveal

Cstab ≥
|σ|1,η

sups∈S0
p ,|s|1,η=1 bnip(s, σ)

≥
(

1 +
√
η−1η∗

)−1
.

Thus, the upper bound in item (iii) of Theorem 3.2.1 (slightly) overestimates
the quasi-optimality constant of Mnip in the limit η → +∞.

Remark 4.2.9 (Pointwise convergence of Mnip for η → +∞). Let u ∈ H1
0 (Ω)

be the weak solution of the Poisson problem with load f ∈ H−1(Ω) and
denote by Uη ∈ S0

p the quasi-optimal approximation of u by the method Mnip

with parameter η > 0, i.e. Uη = Mnipf . Theorem 4.2.7 and Cstab ≤ Cqopt

entail

(4.2.14) |Uη|1,η̄ ≤ |Uη|1,η ≤ Cd,p,γM‖f‖H−1(Ω)

for all η ≥ η̄ > 0. Since S0
p is finite-dimensional, we have

Uη → U∞ ∈ S0
p as η →∞

up to a subsequence, where the convergence is intended in the η-independent
norm |·|1,η̄. The second inequality in (4.2.14) reveals

(4.2.15)

(∑
F∈F

η

hF
‖ JUηK ‖2L2(F )

) 1
2

≤ Cd,p,γM‖f‖H−1(Ω),
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which yields U∞ ∈ S1
p by continuity. Then, testing with σ ∈ S1

p in the
discrete problem (4.2.12) for Uη and taking the limit η → +∞, we infer

∀σ ∈ S1
p (U∞, σ)1 = 〈f, σ〉

in view of (4.2.11), (4.2.15) and Epσ = σ. Since this problem is uniquely
solvable, we conclude that U∞ = McGf , where McG := (S1

p , (·, ·)1, Id
?
S1
p
) is

the conforming Galerkin method in S1
p .

A quasi-optimal SIP method

The NIP bilinear form bnip arises in particular by enforcing coercivity. As
an alternative, one can achieve symmetry by changing the sign of the first
term in dnip. This leads to the SIP bilinear form bsip; cf. (4.1.1). While
bsip verifies the same continuity bound as bnip, the coercivity bound can be
replaced as follows. Inequality (4.2.11) implies∣∣∣∣ˆ

Σ
JsK {{∇σ}} · n

∣∣∣∣ ≤ 1

2

√
η∗η−1

(
η‖h−

1
2 JsK ‖2L2(Σ) + ‖∇M σ‖2L2(Ω)

)
,

from which we get

(4.2.16) ∀s ∈ S0
p bsip(s, s) ≥ α(η∗η

−1) |s|21;η with α(t) = 1−
√
t.

Hence, if η > η∗, then the discrete problem

(4.2.17) U ∈ S0
p such that ∀σ ∈ S0

p bsip(U, σ) = 〈f,Epσ〉

is well-posed and gives rise to a new variant of the SIP method, which is
a nonconforming Galerkin method and denoted by Msip. The following
theorem covers the results illustrated in the introduction §4.1 and is proven
like Theorem 4.2.7.

Theorem 4.2.10 (Quasi-optimality of Msip). For any η > η∗, the method
Msip is |·|1,η-quasi-optimal for the Poisson problem (3.3.1) with constant

≤
√

1 + Cd,γM,p

(
α(η∗/η)η

)−1
.

For η →∞, we again end up in Céa’s lemma for the limiting conforming
Galerkin method in S1

p . Moreover, the observations in Remarks 4.2.8 and
4.2.9 applies also to Msip.

High-order smoothing with first-order averaging

Assume that p ≥ 2. As pointed out in §2.2, the simplified averaging operator
A1 is defined also on S0

p and so we may consider

(4.2.18) Ẽpσ := A1σ +Bp(σ −A1σ), σ ∈ S0
p ,

which is cheaper to evaluate than Ep, cf. Remark 3.3.11. Using Lemma 2.2.3

in the proof of Proposition 4.2.5, we obtain the following properties of Ẽp.
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Proposition 4.2.11 (Moment conservation with first-order averaging). The
linear operator Ẽp from (4.2.18) is invariant on S1

1 , satisfies (4.2.5) and, for
all σ ∈ S0

p ,

‖∇M(σ − Ẽpσ)‖L2(Ω) ≤ Cd,γM,p

(∑
F∈F

h−dF

∣∣∣∣ˆ
F

JσK
∣∣∣∣2 + ‖∇M σ‖2L2(Ω)

) 1
2

.

Notice that a bound solely in terms of jumps is not possible, because Ẽp
is not invariant on S1

p .

Combining the new smoothing operator Ẽp with one of the previous

bilinear forms bvar, var ∈ {nip, sip}, leads to a nonconforming method M̃var

with discrete problem

(4.2.19) U ∈ S0
p such that ∀σ ∈ S0

p bvar(U, σ) = 〈f, Ẽpσ〉,

which is well-posed for all η > ηvar. Hereafter

ηvar :=

{
0, if var = nip,

η∗, if var = sip,
and αvar(t) :=

{
1, if var = nip,

1−
√
t, if var = sip.

As Ẽp is only invariant on the strict subset S1
1 of H1

0 (Ω) ∩ S0
p for p ≥ 2, the

method M̃var is not a nonconforming Galerkin method. Nevertheless:

Theorem 4.2.12 (Quasi-optimality of M̃var). Let var ∈ {nip, sip} and as-

sume η > ηvar. Then, the method M̃var is |·|1;η-quasi-optimal for the Poisson

problem (3.3.1) with constant ≤ Cd,γM,p

√
1 +

(
αvar(η∗/η)η

)−1
.

Proof. Proceed as in the proof of Theorem 4.2.7 or as indicated for Theo-
rem 4.2.10, replacing Ep by Ẽp. The only difference is that, in the derivation
of the counterpart of (4.2.13), we use∑

F∈F
h−dF

∣∣∣∣ˆ
F

JσK
∣∣∣∣2 .

∑
F∈F

h−1
F

ˆ
F
|JσK|2

and obtain only

|bvar(Πη,pv, σ)− (v, Ẽpσ)1| ≤

≤ Cd,γM,p

√
1 +

(
αvar(η∗/η)η

)−1 |σ|1;η |Πη,pv − v|1;η

because the stability bound in Proposition 4.2.11 involves gradient terms.

Here, due to the use of a smoothing operator which is not invariant
on the conforming part of S0

p , we do not recover Cea’s lemma in the limit
η → +∞. Nevertheless, we have the following counterpart of Remark 4.2.9.
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Remark 4.2.13 (Pointwise convergence of M̃var for η → +∞). Let u denote
the weak solution of of the Poisson problem with load f ∈ H−1(Ω) and set

Ũη := M̃varf . Arguing as in Remark 4.2.9, we derive that Ũη converges to

the solution Ũ∞ ∈ S1
p of

∀σ ∈ S1
p (Ũ∞, σ)1 = 〈f, Ẽpσ〉

in the norm |·|1,η̄, η̄ > 0, as η → +∞. Notice that this is the discrete problem

of the quasi-optimal conforming method M̃ := (S1
p , (·, ·)1, Ẽ

?
p). Since the

smoother Ẽp does not reduce to the identity on S1
p , M̃ differs from the

conforming Galerkin method in S1
p and its quasi-optimality constant is > 1.

This observation agrees with the fact that we do not recover Cea’s lemma
in the limit η → +∞ for the method M̃var.

Quasi-optimal methods with weak interior penalty

The idea of Weak Interior Penalty (WIP) methods and variants, see e.g.
[18, 19, 20], is to penalize some projection of the jump JvK instead of the jump
itself. For instance, if S = S0

p , one could replace the term
´

Σ ηh
−1 Jṽ1K Jṽ1K

with
´

Σ ηh
−1Πp−1 Jṽ1K Πp−1 Jṽ1K both in the extended scalar product and the

discrete bilinear form, where Πp−1 denotes the L2-orthogonal projection onto
discontinuous piecewise polynomials of degree p− 1 on Σ. Not surprisingly,
the procedure illustrated in the previous examples applies to this case as
well. In particular, the lowest-order case p = 1 is quite instructive, although
rather specific. In fact, it is possible to establish counterparts of Theorems
4.2.7-4.2.10 where the quasi-optimality constant does not depend on the
employed penalty parameter, cf. Remark 4.2.16.

To illustrate this observation, let µ > 0 be a penalty parameter and
assume d = 2 for simplicity. We introduce the scalar product

(v, w)1,µ =

ˆ
Ω
∇M v · ∇Mw + µ

∑
F∈F

( 
F

JvK
)( 

F
JwK
)
,

on H1(M), denoting by |·|1,µ the induced norm. As before, we abbreviate
(·, ·)1,0 by (·, ·)1. We consider the following variant of the setting (4.2.3)

(4.2.20) V = H1
0 (Ω), S = S0

1 , ã = (·, ·)1;µ on Ṽ = H1
0 (Ω) + S0

1 .

As before, we have
∅ 6= S0

0 ⊆ S0
1 ∩ V ⊥,

which precludes overconsistency in light of Lemma 3.2.4. However, the
smoothing operator E1 : S0

1 → H1
0 (Ω) from Proposition 4.2.5 readily satisfies

the following counterpart of (4.2.6) in Lemma 4.2.3

(4.2.21) (s, E1σ)1;µ =

ˆ
Ω
∇M s · ∇M σ −

∑
F∈F

ˆ
F
{{∇s}} · n JσK
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for all s, σ ∈ S0
1 , irrespective of µ. This suggests that we may mimic the

definitions of the SIP and NIP forms, introducing

bwsip(s, σ) := (s, E1σ)1;µ −
ˆ

Σ
JsK {{∇σ}} · n+ µ

∑
F∈F

( 
F

JvK
)( 

F
JwK
)

bwnip(s, σ) := (s, E1σ)1;µ +

ˆ
Σ

JsK {{∇σ}} · n+ µ
∑
F∈F

( 
F

JvK
)( 

F
JwK
)

on S0
1 . These forms are closely related to those ones in [18, 20].

The nondegeneracy of bwnip is clear, in view of

∀s ∈ S0
1 bwnip(s, s) = |s|21,µ .

To check that also bwsip is |·|1,µ-coercive, we observe that (4.2.11) entails

∀σ ∈ S0
1 ‖ {{∇σ}} ‖2L1(Σ) ≤ ‖h

1
2 {{∇σ}} ‖2L2(Σ) ≤ µ∗‖∇M σ‖2L2(Ω),

for some constant µ∗ > 0 depending only on d and γM. This yields∣∣∣∣ˆ
Σ

JsK {{∇σ}} · n
∣∣∣∣ ≤ 1

2

√
µ∗µ−1

(
µ
∑
F∈F

( 
F

JsK
)2

+ ‖∇M σ‖2L2(Ω)

)

for all s, σ ∈ S0
1 , because ∇M σ is piecewise constant on M. Consequently,

if the penalty parameter satisfies µ > µ∗, the form bwsip is |·|1,µ-coercive

with constant 1−
√
µ∗µ−1.

It is worth noticing that the current setting can be viewed as an extension
of the one in §3.3.1 with S = S0

1 . In fact, E1 reduces to the smoothing
operator in Proposition 3.3.2 on the Crouzeix-Raviart space CR and we
have bwsip(s, σ) = bwnip(s, σ) = (s, σ)1 for s, σ ∈ CR. Thus, introducing
the nonconforming method Mwip := (S0

1 , bwip, E1) for wip ∈ {wsip,wnip},
we expect that Mwip is |·|1,µ-quasi-optimal and its quasi-optimality constant
is closely related to the one of MCR. The following theorem confirms this
claim.

Theorem 4.2.14 (Quasi-optimality of Mwip). For wip ∈ {wsip,wnip}, as-
sume that µ > µ∗ if wip = wsip and µ > 0 if wip = wnip. Then, the
method Mwip is |·|1;µ-quasi-optimal for the Poisson problem (3.3.1) with
quasi-optimality constant Cqopt = ‖E1‖L(CR,H1

0 (Ω)).

Thus, the quasi-optimality constant of Mwip equals the one of MCR.

Proof. The quasi-optimality of Mwip is a consequence of item (ii) in Theo-
rem 4.2.1 and the identity

∀u ∈ S0
1 ∩H1

0 (Ω), σ ∈ S0
1 bwip(u, σ) = (u,E1σ)1,µ
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which easily follows from the definition of bwip.
Let us now turn to the claimed identity for the quasi-optimality constant.

For notational convenience we denote by δCR := δCR
H1

0 (Ω)
the consistency

measure associated with MCR in item (iii) of Theorem 4.2.1. Since the aM-
orthogonal projection ΠCR of H1

0 (Ω) onto CR is given by (3.3.4) and E1 is
a right inverse of ΠCR, we have

(4.2.22) (s, σ)1 = (s, E1σ)1 = (s,ΠCRE1σ)1,

for all s, σ ∈ CR. Given u ∈ H1
0 (Ω) and σ ∈ CR and using the previous

identity, we further deduce

(4.2.23)

dCR(u, σ) := (u,E1σ)1 − (ΠCRu, σ)1

= (u−ΠCRu,E1σ)1

= (u−ΠCRu,E1σ −ΠCRE1σ)1.

Hence, setting u = E1σ, we infer

(4.2.24) δCR = ‖E1 −ΠCRE1‖L(CR ,H1
0 (Ω)) = ‖E1 − IdCR‖L(CR ,H1

0 (Ω)).

Next, we observe that ΠCR is also the (·, ·)1,µ-orthogonal projection of
H1

0 (Ω) onto S0
1 , for all µ > 0. To see this, we let v ∈ H1

0 (Ω) and σ ∈ S0
1 and

integrate by parts with the help of (2.1.3). We obtain

(v −ΠCRv, σ)1,µ =

ˆ
Σ

(v −ΠCRv) J∇σK · n = 0

because ∇M σ is piecewise constant on M.
After this preparation, we turn to the WIP methods and denote by

δwip := δwip
H1

0 (Ω)
the consistency measure from item (iii) of Theorem 4.2.1.

Considering again generic u ∈ H1
0 (Ω) and σ ∈ S0

1 , we proceed as for (4.2.23)
and obtain

dwip(u, σ) := (u,E1σ)1,µ− bwip(ΠCRu, σ) = aM(u−ΠCRu,E1σ−ΠCRE1σ).

Choosing again u = E1σ, this identity yields

δwip = sup
σ∈S0

1

|E1σ −ΠCRE1σ|1,µ
sup

ŝ∈S0
1 ,|ŝ|1,µ=1

bwip(ŝ, σ)
.

We now aim at showing the identity δwip = δCR. For this purpose, we
extend ΠCR to S0

1 by requiring ΠCRσ ∈ CR and
´
F ΠCRσ =

´
F {{σ}} for all

σ ∈ S0
1 and F ∈ F i. Clearly, we have ΠCRE1σ = ΠCRσ. We combine this

commuting property with (4.2.21) and the (·, ·)1,µ-orthogonality of ΠCR

(4.2.25) ∀ŝ ∈ CR bwip(ŝ, σ) = (ŝ, E1σ)1,µ = (ŝ,ΠCRσ)1,µ.
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Since the norm |·|1,µ reduces to ‖∇M ·‖L2(Ω) on CR, we obtain

sup
ŝ∈CR ,|ŝ|1,µ=1

bwip(ŝ, σ) = ‖∇MΠCRσ‖L2(Ω)

which provides the upper bound

(4.2.26a) δwip ≤ sup
σ∈S0

1

‖∇M(E1σ −ΠCRE1σ)‖L2(Ω)

‖∇MΠCRσ‖L2(Ω)
= δCR.

in view of E1σ = E1ΠCRσ.

To reverse this bound, let σ ∈ CR and assume first wip = wsip. Then,
proceeding as in (4.2.25) leads to

(4.2.26b) sup
ŝ∈S0

1 ,|ŝ|1,µ=1

bwsip(ŝ, σ) = |ΠCRσ|1,µ = ‖∇M σ‖L2(Ω)

and, thus,

(4.2.26c) δCR = sup
σ∈CR

‖∇M(E1σ −ΠCRE1σ)‖L2(Ω)

sup
ŝ∈S0

1 ,|ŝ|1,µ=1

bwsip(ŝ, σ)
≤ δwsip.

Next, assume wip = wnip. In the light of

∀ŝ ∈ S0
1 , σ ∈ CR bwnip(ŝ, σ) = 2

ˆ
Ω
∇M ŝ · ∇M σ − bwsip(ŝ, σ),

and (4.2.25), we obtain

(4.2.26d) sup
ŝ∈S0

1 ,|ŝ|1,µ=1

bwnip(ŝ, σ) = |2σ −ΠCRσ|1,µ = ‖∇M σ‖L2(Ω)

and therefore

(4.2.26e) δCR = sup
σ∈CR

‖∇M(E1σ −ΠCRE1σ)‖L2(Ω)

sup
ŝ∈S0

1 ,|ŝ|1,µ=1

bwnip(ŝ, σ)
≤ δwnip.

Combining inequalities (4.2.26), it follows δCR = δwsip = δwnip. Invoking
Corollary 3.2.8, Proposition 3.3.2 and item (iii) in Theorem 4.2.1, we con-
clude that the quasi-optimality constant Cqopt of Mwip is given by

C2
qopt = 1 + (δwip)2 = 1 + (δCR)2 = ‖E1‖2L(CR,H1

0 (Ω))

for wip ∈ {wsip,wnip}.
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Remark 4.2.15 (Stability and quasi-optimality constants of Mwip). Combin-
ing item (i) of Theorems 4.2.1 and 4.2.14 with (4.2.26b) and (4.2.26d), we
derive the following inequalities, involving the stability and quasi-optimality
constants of Mwip

Cstab ≥ sup
σ∈CR

‖E1σ‖1
sup

ŝ∈S0
1 ,|ŝ|1,µ=1

bwip(ŝ, σ)
= ‖E1‖L(CR,H1

0 (Ω)) = Cqopt.

Hence, for the WIP methods, stability and quasi-optimality constants coin-
cide without overconsistency and the upper bound in item (iii) of Theorem
3.2.1 is an overestimation.

Remark 4.2.16 (Cqopt and discrete coercivity). The fact that Cqopt does not
depend on the penalty µ is somehow surprising, because the bilinear form
bwip is degenerate, at least, for µ = 0 and certain choices of M, see [47,
Section 3.3]. This indicates that the quasi-optimality constant of a noncon-
forming method can be of moderate size, even if the coercivity constant of
the underlying bilinear form is not. Thus, in particular, the upper bounds
in Theorems 4.2.7-4.2.10 possibly provide a pessimistic overestimation.

Remark 4.2.17 (Pointwise convergence of Mwip for µ→ +∞). The technique
illustrated in Remark 4.2.9 can be used to check that Mwipf converges to
MCRf in the norm |·|1,µ̄, µ̄ > 0, for µ→ +∞ and for all f ∈ H−1(Ω).

4.2.2 A Quasi-Optimal and Locking-Free Crouzeix-Raviart
Method for Linear Elasticity

The goal of this section is to conceive a quasi-optimal and locking-free
method for linear elasticity.

Given Ω ⊆ Rd as in §2.1, we consider the displacement formulation of
the linear elasticity problem with pure displacement boundary conditions:
find u ∈ H1

0 (Ω)d such that

(4.2.27) −div
(
2µ ε(u) + λ div(u)

)
= f in Ω, u = 0 on ∂Ω.

Hereafter ε(v) := (∇v+∇vT )/2 is the symmetric gradient and µ, λ > 0 are
the Lamé coefficients. We shall mostly suppress the dependencies on µ in
the notation, while we trace the ones on λ.

Let M be a mesh of Ω as in §2.1 and, for η ≥ 0, define

aλ;η(v, w) :=

ˆ
Ω

(2µ εM(v) : εM(w) + λ divM v divMw) +

ˆ
Σ

µη

h
JvK JwK ,

‖v‖λ;η =
√
aλ;η(v, v)

for v, w ∈ H1(M)d and abbreviate aλ;0 to aλ. We aim at applying Theo-
rem 4.2.1 with the following setting:

(4.2.28) V = H1
0 (Ω)d, S ⊆ S0

1 , ã = aλ;η on Ṽ = H1
0 (Ω) + S,
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where S will be specified below, η > 0, and the colon indicates the matrix
scalar product G : H =

∑d
j,`=1Gj`Hj`. Notice that aλ;η is then a scalar

product and the abstract variational problem (1.2.1) provides a weak for-
mulation of (4.2.27).

We readily deduce the following counterpart of Lemma 4.2.3.

Lemma 4.2.18 (Moment conservation). If we are given a linear smoothing
operator E : (S0

1)d → H1
0 (Ω)d which satisfies

(4.2.29) ∀σ ∈ (S0
1)d, F ∈ F i

ˆ
F
Eσ =

ˆ
F
{{σ}} ,

then, for all s, σ ∈ (S0
1)d,

aλ;η(s, Eσ) = aλ(s, σ)−
ˆ

Σ

(
{{2µ εM(s) + λdivM(s)I}}

)
n · JσK .

In the previous section, the impact on coercivity or symmetry of the
counterpart of the term

´
Σ({{2µ εM(s) + λ divM(s)I}})n · JσK was compen-

sated by adding suitable terms to the discrete bilinear form. Here we shall
handle it with the choice of the discrete space S. More precisely, we choose
S = CRd, i.e. the Crouzeix-Raviart space from (3.3.3) on each component.
Then this term vanishes, because the average ({{2µ εM(s) + λ divM(s)I}})n
is a constant on each face F ∈ F. Furthermore,

´
F σ, F ∈ F, is well-defined

and equals the right-hand side of (4.2.29).
An important difference between the current setting and the one pro-

posed in §3.3.1 for the Poisson problem is the following. Arnold [2] shows
that, for certain choices of Ω and M, there is a nonzero function

(4.2.30) s0 ∈ CR2 \ {0} with εM(s0) = 0 and divM s0 = 0,

entailing that
0 6= s0 ∈ CR2 ∩ (H1

0 (Ω)2)⊥.

This observation generally rules out the possibility of designing overconsis-
tent methods with S = CRd, in view of Lemma 3.2.4.

As (4.2.29) reduces on CRd to the vector version of the condition devised
in Lemma 3.3.1, we can take the computionally feasible smoothing operator
E1 from Proposition 3.3.2 componentwise. We denote this vector version
again by E1. Let us recall that E1 can alternatively be seen as the restric-
tion to the Crouzeix-Raviart space of the smoothing operator introduced in
Proposition 4.2.5 for p = 1. This allows to apply here useful results from
both §3.3.1 and §4.2.1.

Since aλ;η(·, E1·) may be degenerate in view of (4.2.30), we enforce pos-
itive definiteness by the same jump penalization as in the definition of aλ;η.
We obtain bHL : CRd × CRd → R

(4.2.31) bHL(s, σ) := aη,λ(s, σ) +

ˆ
Σ

µη

h
JsK JσK , η > 0
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which coincides with the discrete bilinear form proposed by Hansbo and
Larson [44, eq. (26)]. We thus introduce a new penalized Crouzeix-Raviart
method MHL = (CRd, bHL, E

?
1) given by the following discrete problem: find

U ∈ CRd such that

(4.2.32) ∀σ ∈ CRd bHL(U, σ) = 〈f,E1σ〉.

The method MHL is a nonconforming Galerkin method. The modification
of the right-hand side with respect to [44] allows to apply H−1(Ω)-volume
forces with the following property.

Theorem 4.2.19 (Quasi-optimality of MHL). For all η > 0, the method
MHL is ‖·‖λ;η-quasi-optimal for (4.2.27) with quasi-optimality constant con-
stant ≤

√
1 + Cd,γM(2µ+ λ)η−1.

Proof. We proceed as in the proof of Theorem 4.2.7. First, we derive the
quasi-optimality of MHL from item (ii) of Theorem 4.2.1, combined with
Proposition 3.3.2 and Lemma 4.2.18. Then, it only remains to bound the
consistency measure in the identity

Cqopt =

√
1 +

(
δH1

0 (Ω)d

)2

provided by item (iii) of Theorem 4.2.1. Let v ∈ H1
0 (Ω)d, σ ∈ CRd, and

denote by Πλ;η the aλ;η-orthogonal projection onto CRd. Lemma 4.2.18, the
definition of CR , JvK = 0 = JE1σK, and the definition of Πλ;η imply

bHL(Πλ;ηv, σ)− aλ(v,E1σ) = aλ(Πλ;ηv − v,E1σ − σ).

for all v in H1
0 (Ω)d and σ in CRd. Following the notation of Theorem 4.2.1,

we introduce the bilinear form dHL : H1(M)× S0
p → R

dHL(ṽ, σ) := bHL(Πλ,ηṽ, σ)− aλ(ṽ, E1σ)

and observe that the previous identity, combined with Proposition 4.2.5,
yields

|dHL(v, σ)| ≤ Cd,γM (µη)−1/2
√

2µ+ λ ‖Πλ;ηv − v‖λ;η‖σ‖λ;η.

Hence, we have δH1
0 (Ω)d . η−

1
2
√

2µ+ λ and the proof is finished.

Thus, we recover Cea’s lemma in the conforming limit η → +∞, as it is
proved for the quasi-optimal NIP and SIP methods in the previous section.
The following remarks show that the upper bound of the quasi-optimality
constant in Theorem 4.2.19 captures the correct asymptotic behavior also
for η → 0 and λ → +∞. It is worth mentioning that the second remark is
closely connected with the observations in [48] by Linke, about poor mass
conservation in the approximation of incompressible flows.
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Remark 4.2.20 (Cqopt as η → 0). The degeneracy of the bilinear form

aλ;η(·, E1·) entails Cqopt ≥ Cλη
− 1

2 . To see this, suppose that s0 satisfies
(4.2.30) and notice that Lemma 3.3.1 guarantees that E1 is injective. We

then have that Cλ = ‖E1s0‖λ;η 6= 0 and ‖s0‖λ;η = Cη
1
2 . Hence, items (i) and

(iii) of Theorem 4.2.1 yield Cqopt ≥ Cstab = ‖E1‖L(CRd,H1
0 (Ω)d) ≥ Cλη

− 1
2 .

Remark 4.2.21 (Cqopt as λ→ +∞). The property

(4.2.33) E1

(
{s ∈ CRd | divM s = 0}

)
6⊆ {v ∈ H1

0 (Ω)d | div v = 0}

results in Cqopt ≥ Cηλ
1
2 . Indeed, if s ∈ CRd is such that divM s = 0 and

div(E1s) 6= 0, we have Cη = ‖s‖λ;η 6= 0 and ‖E1s‖λ;η ≈ Cλ
1
2 as λ→∞ and

so Theorem 4.2.1 implies Cqopt ≥ Cstab ≥ Cηλ
1
2 .

In order to verify (4.2.33), fix any face F ∈ F i of a given mesh M. Let
ΨF the associated basis function in CR . Since ΨF |K = 0 whenever F 6∈ FK ,
we can appropriately pick the elements Kz in the definition (2.2.1) of A1

and arrange A1ΨF = 0. This entails E1ΨF = βΦF with some β > 0 and
ΦF as in (3.3.5). Consider ΨF tF ∈ CRd, where tF is a unit tangent vector
of F . On the one hand, we have divM(tFΨF ) = tF · ∇MΨF = 0 and, on
the other hand, divE1(tFΨF ) = β div(tFΦF ) = βtF · ∇ΦF 6= 0.

It is instructive to shed additional light on the performance of MHL for
nearly incompressible materials. One may note that the choice η ≈ λ makes
the quasi-optimality constant of MHL independent of λ. However, this will
not result in a robust approximation for the nearly incompressible limit
λ→ +∞. In fact, the argument in Remark 4.2.9 can be used to check that
the solution U of (4.2.32) approaches the space S1

1 as η → +∞. Moreover,
it is known that S1

1 shows locking on a wide family of meshes, due to the
poor approximation properties of {s ∈ S1

1 | div s = 0}; see [21].
In contrast, the use of a fixed penalty parameter cannot guarantee a

uniform control of the quasi-optimality constant as λ → +∞, but provides
robust approximation under standard assumptions. To see this, the follow-
ing lemma, which is also of interest by its own, will be useful. It quantifies
the difference between the original method M̂HL of Hansbo and Larson,
and its new variant MHL. Recall that, if f ∈ L2(Ω)d, the discrete solution
Û ∈ CRd of Hansbo and Larson [44] is given by

(4.2.34) ∀σ ∈ CRd bHL(Û , σ) =

ˆ
Ω
f · σ.

Lemma 4.2.22 (MHL and M̂HL). Assume f ∈ L2(Ω)d and let U, Û ∈ CRd

solve (4.2.32) and (4.2.34), respectively. Then

(4.2.35) ‖U − Û‖λ;η ≤ Cd,γM min
{

1, η−
1
2

}( ∑
K∈M

h2
K‖f‖2L2(K)d

) 1
2

.
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Proof. The definition of U and Û immediately gives

‖U − Û‖λ;η = sup
‖σ‖λ;η=1

∣∣∣bHL(U − Û , σ)
∣∣∣ = sup

‖σ‖λ;η=1

∣∣∣∣ˆ
Ω
f · (E1σ − σ)

∣∣∣∣ ,
where σ varies in CRd. For any element K ∈M, we have

´
∂K E1σ − σ = 0

implying the Poincaré inequality ‖E1σ−σ‖L2(K)d . hK‖∇(E1σ−σ)‖L2(K)d .
Therefore,

∣∣∣∣ˆ
Ω
f · (E1σ − σ)

∣∣∣∣ .
( ∑
K∈M

h2
K‖f‖2L2(K)d

) 1
2

‖∇M(E1σ − σ)‖L2(Ω)d .

Hence, an application of Proposition 4.2.5 shows that the best constant in
(4.2.35) is ≤ Cd,γM(µη)−

1
2 . To check also the inequality ≤ Cd,γM , it is

sufficient to apply Proposition 3.3.2 and combine it with the piecewise Korn
inequality [15, Theorem 3.1] by Brenner.

We readily see from this proof that the asymptotic closeness of U and
Û could be increased, for regular loads, by requiring that the smoothing
operator conserves also element moments. We shall use a similar argument
in Lemma 5.3.1 to compare different nonconforming methods for the two-
dimensional Poisson problem.

A consequence of Lemma 4.2.22 is the following equivalence concerning
the asymptotic error bounds

‖u− U‖λ;η ≤ Ch‖f‖L2(Ω)d , ‖u− Û‖λ;η ≤ Ĉh‖f‖L2(Ω)d

with best constants C and Ĉ for all h := maxK∈M hK and f ∈ L2(Ω)d:

(4.2.36) C is independent of λ ⇐⇒ Ĉ is independent of λ.

Therefore, the robustness result [44, Theorem 3.1] for M̂HL, which ensures
that Ĉ is independent of λ for polygons Ω ⊆ R2, carries over to MHL. In
summary, for smooth volume forces, the method MHL is locking-free. The
non-robustness of the quasi-optimality constant is thus due to rough volume
forces, including forces for which the locking-free nonconforming methods
in Falk [40], Brenner and Sung [22], and Hansbo and Larson [44] are not
defined.

Let us conclude this section with few comments on the generalization to
order p ≥ 2, where CR is replaced by its higher order counterpart from CRp

from Baran and Stoyan [57]. This case is of different nature. In fact, the
Korn inequalities of Brenner [15] ensure that ‖ · ‖λ;η is a norm on H1

0 (Ω)d +
CRd

p even for η = 0. This allows to construct overconsistent methods with
the help of the smoother Ep from Proposition 4.2.5.
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4.2.3 A Quasi-Optimal C0 Interior Penalty Method
for the Biharmonic Problem

In this subsection, we introduce a new C0 interior penalty method for the
biharmonic problem with clamped boundary conditions (3.3.23) and prove
its quasi-optimality. We let Ω and M be as in §2.1 and fix d = 2. Given
η ≥ 0, we set

(4.2.37)

(v, w)2;η :=

ˆ
Ω

D2
M v : D2

Mw +

ˆ
Σ

η

hF
(J∇vK · n) (J∇wK · n) ,

|v|2;η :=
√

(v, v)2;η

for v, w ∈ H2(M) and abbreviate (·, ·)2;0 to (·, ·)2. We consider the following
setting for Theorem 4.2.1:

(4.2.38) V = H2
0 (Ω), S = S1

2 , ã = (·, ·)2;η on Ṽ = H2
0 (Ω) + S1

2 .

For all η > 0, the bilinear form (·, ·)2;η is a scalar product on

(4.2.39) H2
0 (Ω) + S1

2 ⊆ {v ∈ H2(M) | ∀F ∈ F J∇vK|F · tF = 0}

where tF is a tangent unit vector to the edge F . The abstract problem
(1.2.1) with (4.2.38) provides a weak formulation of the biharmonic problem
(3.3.23). The conforming part of S1

2 is the strict subspace

(4.2.40) S1
2 ∩H2

0 (Ω) = {s ∈ S1
2 | J∇sK · n = 0},

which may be even trivial; cf. Remark 3.3.12. Finally, as for the other
examples of this chapter, overconsistency is ruled out by the inclusion

(4.2.41) {0} 6= S1
1 ⊆ S1

2 ∩H2
0 (Ω)⊥

as it is shown in Lemma 3.2.4.

Let us turn to the choice of the smoothing operator. Interestingly, Bren-
ner and Sung [23] propose a C0 interior penalty method MBS involving
a smoothing operator based upon nodal averaging. In contrast to similar
methods, MBS is well-defined for general loads ` ∈ H−2(Ω), fully stable ac-
cording to Theorem 4.2.1 (i), and, for any α > 0 and all ` ∈ H−2+α(Ω), its
error in |·|2;η, with a suitable η, decays at the optimal rate α. Nevertheless,
MBS is not guaranteed to be quasi-optimal with respect to |·|2;η, because it
is not designed to be fully algebraically consistent. The discussion in §5.3.3,
although in a simplified setting, is intended to clarify this point.

To devise a method ensuring full algebraic consistency, we proceed as
before and derive the following counterpart of Lemma 4.2.3 with the help of
the integration by parts (2.1.3).
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Lemma 4.2.23 (Moment conservation). If we are given a smoothing oper-
ator E : S1

2 → H2
0 (Ω) satisfying

(4.2.42) ∀σ ∈ S1
2 , F ∈ F i

ˆ
F
∇Eσ =

ˆ
F
{{∇σ}} ,

then

∀s, σ ∈ S1
2 (s, Eσ)2;η =

ˆ
Ω

D2
M s : D2

M σ −
ˆ

Σ

{{
∂2s

∂n2

}}
J∇σK · n.

Thanks to S1
2+H2

0 (Ω) ⊆ C0(Ω) and the fundamental theorem of calculus,
we may ensure the conservation (4.2.42) of the mean gradients on faces by
the conditions

∀z ∈ Li1 Eσ(z) = σ(z)

∀F ∈ F i
ˆ
F
∇Eσ · n =

ˆ
F
{{∇σ}} · n.

(4.2.43)

The smoothing operator for Morley functions in §3.3.3 verifies similar re-
quirements. We adapt its construction to the current setting, focusing on
the modifications only.

For all F ∈ F i, recall the face bubble Φ̄nF ∈ H2
0 (Ω) introduced in

(3.3.26). On the one hand, the bubble smoother B∂n : H2(M)→ H2
0 (Ω)

B∂nσ :=
∑
F∈Fi

(ˆ
F
{{∇σ}} · n

)
Φ̄nF

verifies B∂nσ(z) = 0 for all z ∈ Li1 and the second part of (4.2.43). On
the other hand, the simpified averaging operator AHCT into the HCT space
(2.2.10) can be used to stabilize B∂n and incidentally fulfills the first part of
(4.2.43). The combination of bubble smoother and averaging thus provides,
as usual, the desired moment conservation in a stable manner.

Proposition 4.2.24 (Stable smoothing with moment conservation). The
linear operator EC0 : S1

2 → H2
0 (Ω) given by

EC0σ := AHCTσ +B∂n(σ −AHCTσ)

is invariant on S1
2 ∩H2

0 (Ω), verifies (4.2.42) and, for all σ ∈ S1
2 ,

‖D2
M(σ − EC0σ)‖L2(Ω) ≤ CγM

(∑
F∈F

h−1
F ‖ J∇σK · n‖2L2(F )

) 1
2

.

Proof. By construction, the operator AHCT is invariant on the conforming
part of S1

2 , entailing that EC0σ = AHCTσ = σ for all σ ∈ S1
2 ∩H2

0 (Ω). The
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fact that EC0 verifies (4.2.43) follows from the properties of B∂n and AHCT

mentioned above and can be checked as in the proof of Proposition 3.3.15.
This entails that EC0 fulfills also (4.2.42).

In order to prove the claimed stability bound, we proceed by standard
steps. Let σ ∈ S1

2 and K ∈M. The triangle inequality yields

‖D2(EC0σ − σ)‖L2(K) ≤‖D2(σ −AHCTσ)‖L2(K)+

+ ‖D2B∂n(σ −AHCTσ)‖L2(K).

Expanding the first term on the right-hand side, we find

(σ−AHCTσ)|K =
∑

z∈L1(K)

2∑
j=1

[
∂j(σ|K)(z)− ∂j(AHCTσ)(z)

]
Υj
z+

+
∑
F∈FK

[
∇(σ|K)(mF ) · nF −∇(AHCTσ)(mF ) · nF

]
ΥF .

We thus derive

‖D2(σ −AHCTσ)‖L2(K) ≤ CγM
∑

F∈F,F∩K 6=∅

h
− 1

2
F ‖ J∇σK · n‖L2(F )

with the help of the triangle inequality, Lemmas 2.2.5-2.2.7 and (4.2.40).
Similarly, we expand the second term

B∂n(σ −AHCTσ)|K =
∑

F∈FK∩Fi

(
αF

ˆ
F
∇Υj

z · nF + βF

ˆ
F
∇ΥF · nF

)
Φ̄nF

with

αF =
∑

z∈L1(F )

2∑
j=1

[
∂j(σ|K)(z)− (∂jAHCTσ)(z)

]
βF =

[
∇(σ|K)(mF ) · nF −∇(AHCTσ)(mF ) · nF

]
The same ingredients used above and Lemma 3.3.14 then yield

‖D2B∂n(σ −AHCTσ)‖L2(K) ≤ CγM
∑

F∈F,F∩K 6=∅

h
− 1

2
F ‖ J∇σK · n‖L2(F )

We conclude by summing this estimate and the previous one over all trian-
gles in M and recalling that the maximum number of edges touching each
triangle is ≤ CγM .

It remains to choose the discrete bilinear form b. In view of (4.2.41),
we need to establish nondegeneracy, for example in the vein of the extended
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energy norm |·|2;η. Requiring also symmetry then leads to the bilinear form
of Brenner and Sung [23]:

bBS(s, σ) = (s, σ)2;η −
ˆ

Σ

({{
∂2s

∂n2

}}
J∇σK · n+ J∇sK · n

{{
∂2σ

∂n2

}})
.

Similarly to the SIP bilinear form, there is η∗ > 0, depending on γM, such
that

(4.2.44) ‖h−
1
2
{{
∂2σ/∂2n

}}
‖L2(Σ) ≤ η∗‖D2

M σ‖L2(Ω)

and therefore bBS is |·|2,η-coercive with constant
√
α(η∗/η) whenever η > η∗;

cf. (4.2.16) and [23, Lemma 7]. Under this assumption, the discrete problem

(4.2.45) U ∈ S1
2 such that ∀σ ∈ S1

2 bBS(U, σ) = 〈f,EC0σ〉

is well-posed and introduces a new C0 interior penalty method MC0 for the
biharmonic problem (3.3.23). Inspecting bBS, EC0 and recalling Proposi-
tion 4.2.24, we see that MC0 = (S1

2 , bBS, E
?
C0) is a nonconforming Galerkin

method with a computationally feasible smoothing operator. It differs from
the original method of Brenner and Sung [23] in the choice of the smoother
and the following property.

Theorem 4.2.25 (Quasi-optimality of MC0). For any penalty parameter
η > η∗, the method MC0 is |·|2;η-quasi-optimal for the biharmonic problem

(3.3.23) with constant ≤
√

1 + CγM
(
α(η∗/η)η

)−1
.

Proof. Since η > η∗, the form bBS is coercive and MC0 is well-defined. After
making use of Lemma 4.2.23, Proposition 4.2.24 and (4.2.40), items (ii) and
(iii) of Theorem 4.2.1 reveal that MC0 is quasi-optimal with

Cqopt =

√
1 +

(
δH2

0 (Ω)

)2
.

To bound the constant δH2
0 (Ω), we denote by Πη the (·, ·)2;η-orthogonal pro-

jection onto S1
2 . For all v ∈ H2

0 (Ω) and σ ∈ S1
2 , we derive

bBS(Πηv, σ)− (v,EC0σ)2 = (Πηv−v,EC0σ−σ)2−
ˆ

Σ
JΠηv − vK ·n

{{
∂2σ

∂n

}}
with the help of J∇EC0σK = 0 = J∇vK, Lemma 4.2.23 and the orthogonality
of Πη. Introducing the bilinear form dC0 : H2(M)× S1

2 → R

dC0(ṽ, σ) := bBS(Πηṽ, σ)− (ṽ, EC0σ)2

we infer
|dBS(v, σ)| ≤ CγMη

− 1
2 |Πηv − v|2;η |σ|2;η

according to the previous identity, Proposition 4.2.24 and (4.2.44). The

coercivity of bBS thus implies δH2
0 (Ω) ≤ CγM

(
α(η∗/η)η

)−1/2
and the proof is

finished.
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The presented approach can be extended to design quasi-optimal C0

interior penalty methods of order p ≥ 3. Perhaps the simplest manner is
to keep the HCT averaging AHCT and to construct a higher order version
of the bubble smoother similar to Bp in §4.2.1. This does not result in a
nonconforming Galerkin method, but achieves quasi-optimality.

Remark 4.2.26 (Locking effect for η → +∞). The argument in Remark 4.2.9
can be used to check that the solution U ∈ S1

2 of (4.2.45) approaches the
conforming subspace S1

2∩H2
0 (Ω) in the norm |·|2,η̄, η̄ > 0, for η → +∞. Since

such subspace has poor approximation properties for certain combinations
of Ω andM, cf. Remark 3.3.12, the method MC0 may be affected by locking
in the sense of [7] for η → +∞.
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Chapter 5

Numerical Investigations for
the Poisson Problem

In this chapter, which essentially results from [62], we want to investigate
numerically some of the new nonconforming methods that have been pro-
posed and proven to be quasi-optimal in the previous Chapters 3 and 4.
In this way we confirm and complement the theoretical results therein and
substantiate their practical relevance. As usual, we begin with an overview
of the main issues that will be discussed here.

5.1 Overview

Let u ∈ H1
0 (Ω) be the weak solution of the Poisson problem (3.3.1) and let

M be a triangulation of a planar domain Ω ⊆ R2. Our numerical tests and
comparisons address methods that can be expressed in the form

(5.1.1) find U ∈ S such that ∀σ ∈ S b(U, σ) = 〈f,Eσ〉,

where S ⊆ S0
1 is a subspace of the piecewise affine functions, b is the bilinear

form on S × S of

• the Crouzeix-Raviart method (CR),

• the (non)symmetric interior penalty method (NIP, SIP) or

• the (non)symmetric weak interior penalty method (WNIP, WSIP) pe-
nalizing with jump means over edges,

and E : S → H1
0 (Ω) is the linear smoothing operator from Proposition 4.2.5.

These methods are variants of the original ones with the respective bilinear
forms, because E reduces to the identity only on the conforming subspace
S1

1 = H1
0 (Ω) ∩ S0

1 .

89
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In order to assess the approximation properties of these methods in uni-
fied manner, we employ the following extension of the energy norm associ-
ated with the Laplacian:

(5.1.2) ‖v‖ :=

(ˆ
Ω
|∇M v|2 +

ˆ
Σ

µ

h
|Q0 JvK |2

) 1
2

where µ > 0 is a parameter and Q0 is the L2(Σ)-orthogonal projection
onto the piecewise constant function on Σ. With this error notion, it can
be checked that all methods have comparable approximation properties (cf.
Corollary 5.4.2 below). In fact, each one of them is quasi-optimal with respect
to its shape functions, meaning that

(5.1.3) inf
v∈S0

1

‖u− v‖ ≤ ‖u− U‖ ≤ D inf
v∈S0

1

‖u− v‖.

for some constant D ≥ 1. Hereafter we assume that D always indicates
the best constant in the rightmost inequality. Since S ⊆ S0

1 , this notion of
quasi-optimality slightly improves on that one previously considered.

Our numerical investigations have been conducted in ALBERTA 3.0 (see
[45, 54]) and split into two groups. The first group in §5.3 aims at clarifying
the role of the smoothing operator E and the structural conditions on it. For
this purpose, we carry out several numerical tests with the penalization-free
CR bilinear form. The results

• illustrate the enhanced stability and consistency due to suitable smooth-
ing and

• show that, for reasonable meshes, the stability constant associated with
E is only slightly bigger than 1, the stability constant for the weak
formulation of the Poisson problem.

The second group of numerical investigations in §5.4 conducts a com-
parison of the aforementioned nonconforming methods and the continuous
Galerkin (cG) method. Here we obtain numerical evidence of the following
statements:

• the quasi-optimality constants of all involved methods are rather similar,

• the trade-off between error and number of degree of freedom only slightly
favors the cG method over the considered nonconforming methods.

This suggests that nonconforming methods are a valid alternative to con-
forming methods in that their greater flexibility and the associated advan-
tages in more involved situations come at a relatively low price.
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5.2 A Pool of Quasi-Optimal Nonconforming
Methods

Let Ω be a planar polygonal domain, i.e. Ω ⊂ R2 is nonempty, open, con-
nected, bounded and ∂Ω is polygon. We also assume that ∂Ω is locally
represented by a Lipschitz graph. Although this assumption could be re-
laxed, it will cover all the examples in this chapter.

Two possible extensions of the norm ‖∇·‖L2(Ω) to H1(M) ⊇ H1
0 (Ω)+S0

1

have been proposed in §4.2.1. The first one, which is used to measure errors
for the SIP and NIP methods is

(5.2.1) |v|η =

(ˆ
Ω
| ∇M v|2 +

ˆ
Σ

η

h
| JvK |2

) 1
2

, v ∈ H1(M).

where η > 0 is a penalty parameter. The second one is the norm used with
the WSIP and WNIP methods, namely

(5.2.2) ‖v‖µ =

(ˆ
Ω
|∇M v|2 + µ

∑
F∈F

( 
F

JvK
)2
) 1

2

,

where µ > 0 is also a penalty parameter. Notice the notations |·|1,η and |·|1,µ
from §4.2.1 are replaced here, respectively, by |·|η and ‖ · ‖µ for convenience.
In the following lemma, we clarify the relationship between the two options.

Lemma 5.2.1 (Equivalence of extended energy norms). For any µ > 0 and
v ∈ H1(M), we have

(5.2.3) ‖v‖µ ≤ |v|µ ≤ CγMmax{1, µ}
1
2 ‖v‖µ

Proof. For any v ∈ H1(M) and F ∈ F, the Cauchy-Schwarz inequality
yields

(5.2.4)

( 
F

JvK
)2

≤ |F |−1
ˆ
F
| JvK |2 =

ˆ
F
h−1| JvK |2,

whence ‖ · ‖µ ≤ |·|µ.
In order to show the converse inequality, let F ∈ F. Since the mean

value is the best constant when approximating in L2, we have

(5.2.5) |F |−1 ‖ JvK ‖2L2(F ) =

( 
F

JvK
)2

+ |F |−1 ‖ JvK−
 
F

JvK ‖2L2(F )

and it remains to bound the second term on the right-hand side suitably.
To this end, we proceed as in the proof of Lemma 2.2.2 and consider two
cases, F ∈ F i and F ∈ Fb, and start with the first case. Let K1,K2 ∈ M
be the two elements such that F = K1 ∩ K2. Inserting the face means
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fj := |F |−1
´
F v|Kj as well as the element means kj := |Kj |−1

´
Kj
v, we

obtain

|F |−
1
2 ‖ JvK−

 
F

JvK ‖L2(F ) ≤

≤
∑
j=1,2

(
|fj − kj |+ |F |−

1
2 ‖v|Kj − kj‖L2(F )

)
.

(5.2.6)

Then, the same argument used to derive the first part of (2.2.6) from (2.2.5)
applies and we infer

(5.2.7a) |F |−
1
2 ‖ JvK−

 
F

JvK ‖L2(F ) ≤ CγM
2∑
j=1

‖∇σ‖L2(Kj)

in this case. If, instead, F ∈ Fb, we denote by K ∈ M the element with
F = K ∩ ∂Ω and, similarly, using the means f := |F |−1

´
F σ|K and k :=

|K|−1
´
K σ, we obtain

(5.2.7b) |F |−
1
2 ‖ JvK−

 
F

JvK ‖L2(F ) ≤ CγM‖∇σ‖L2(K).

Inserting (5.2.7) into (5.2.5) the proof is finished.

In view of this lemma, we shall refer hereafter only to the norm ‖ · ‖µ.
To motivate this choice, we observe that ‖ · ‖µ reduces to ‖∇M ·‖L2(Ω) on
the sum H1

0 (Ω)+CR , irrespective to the parameter µ. An interesting conse-
quence of this is that its corresponding best error in S0

1 is locally computable
and the best approximation does not depend on µ. To see this, let K ∈ M
and recall that P1(K) is determined by the three functionals v 7→

ffl
F v,

F ∈ FK . Writing ΨK,F , F ∈ FK , for the associated nodal basis satisfyingffl
F ′ ΨK,F = δF,F ′ for all F, F ′ ∈ FK , we define

(5.2.8) Πv :=
∑
K∈M

∑
F∈FK

(ˆ
F
v|K

)
ΨK,F , v ∈ H1(M),

which is an extension of Crouzeix-Raviart interpolation (3.1.1).

Lemma 5.2.2 (Best approximant). The operator Π is the (·, ·)µ-orthogonal
projection onto S0

1 and, for any v ∈ H1(M), we have

inf
s∈S0

1

‖v − s‖µ = ‖v −Πv‖µ.

Proof. As ‖ · ‖µ is induced by the scalar product

(v, w)µ :=

ˆ
Ω
∇M v · ∇Mw + µ

∑
F∈F

( 
F

JvK
)( 

F
JwK
)
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on H1(M), the function Πv is the best approximant for any v ∈ H1(M) if
and only if Π is the (·, ·)µ-orthogonal projection onto S0

1 . In order to verify
the latter, we observe that the definition of Π implies

(5.2.9) ∀K ∈M, F ∈ FK
ˆ
F

(Πv)|K =

ˆ
F
v|K ,

whence, with the help of integration by parts (2.1.3),

ˆ
K
∂i(Πv) =

ˆ
∂K

(Πv)|Kni =

ˆ
∂K

v|Kni =

ˆ
K
∂iv, i = 1, 2.

In other words: for any element K ∈ M and edge F ∈ F, the function
Πv is a local best approximation in P1(K) with respect to ‖∇ · ‖L2(K) and
in P0(F ) with respect to ‖ · ‖L2(F ). We thus conclude the orthogonality
(v −Πv, σ)µ = 0 for all σ ∈ S0

1 .

Remark 5.2.3 (Motivating the Crouzeix-Raviart space). Motivated by the
weak formulation of the Poisson problem, we restrict to target functions
u ∈ H1

0 (Ω). Then we have
ffl
F JΠuK = 0 for all F ∈ F, so that Πu ∈ CR and

(5.2.10) inf
s∈S0

1

‖u− s‖µ = inf
s∈CR

‖u− s‖µ

In other words, the approximability offered by S0
1 in the norm ‖ · ‖µ is the

same one provided by the subspace CR $ S0
1 .

Combining the proof of Lemma 5.2.2 with the Poincaré inequality of
Payne and Weinberger [52], we immediately obtain the following bound in
terms of the seminorm∣∣hD2v

∣∣2
0;Ω

:=
∑
K∈M

h2
K

∑
|α|=2

‖∂αv‖2L2(K), v ∈ H2(M).

Lemma 5.2.4 (Error bound). For any v ∈ H2(M), we have

‖v −Πv‖µ ≤ π−1
∣∣hD2v

∣∣
0;Ω

This bound is optimal in that the induced convergence rate is the max-
imal one and the employed regularity is the minimal one (within Hilbert
spaces).

We shall compare the quasi-optimal first order methods introduced in
§3.3.1 and §4.2.1. In order to handle them in a unified fashion, let us define

bε,µ,η(s, σ) :=

ˆ
Ω
∇M s · ∇M σ −

ˆ
Σ
{{∇s}} · n JσK

+ ε

ˆ
Σ

JsK {{∇σ}} · n+ µ
∑
F∈F

( 
F

JsK
)( 

F
JσK
)

+

ˆ
Σ

η

h
JsK JσK
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for s, σ ∈ S0
1 . The discrete bilinear form of each method can be recovered

from bε,µ,η by a suitable combination of ε, µ and η. For instance, penalizing
the jumps, i.e. η > 0 and µ = 0, we obtain the bilinear forms bsip,η := b−1,0,η

and bnip,η := b1,0,η of the SIP and NIP methods. If, instead, we penalize with
the jump means, i.e. η = 0 and µ > 0, we find the counterparts bwsip,µ :=
b−1,µ,0 and bwnip,µ := b1,µ,0 of the previous forms with weak interior penalty.
Finally, the restriction of bε,µ,0 to the Crouzeix-Raviart space reduces to

bCR(s, σ) :=

ˆ
Ω
∇M s · ∇M σ, s, σ ∈ CR .

We shall employ the bilinear forms bop with op ∈ {sip,nip,wsip,wnip,CR}.
The respective discrete space is Sop = S0

1 for op ∈ {sip,nip,wsip,wnip}
and SCR = CR otherwise. In any case, its conforming subspace is given
by Sop ∩ H1

0 (Ω) = S1
1 , which only sees the following common part of the

aforementioned bilinear forms:

(5.2.11) b0(s, σ) :=

ˆ
Ω
∇M s · ∇M σ −

ˆ
Σ
{{∇s}} · n JσK , s, σ ∈ S0

1 ;

note that b0 simplifies to bCR on CR because {{∇s}} is piecewise constant.
While b0 is symmetric and ‖ · ‖µ-coercive on CR , it is degenerate on S0

1 , see
also (4.2.4). Thus, for the bilinear form bop, with op 6= CR, the terms in
addition to b0 arrange ‖ · ‖µ-coercivity and, in some cases, also symmetry.

We also propose two options for the smoothing operator to be employed
in the discretization of the right-hand side. Such options differ only in the
choice of the averaging operator A : S0

1 → S1
1 used to stabilize the bubble

smoother B := B1 : S0
1 → H1

0 (Ω) from Lemma 4.2.4. Indeed, according
to Remarks 2.2.4 and 3.3.6, as well as the discussion immediately before
Proposition 4.2.5, we may employ either the standard averaging operator
from (2.2.8) or the simplified averaging in (2.2.1). Having fixed p = 1,
we modify the previous notation and write, for further convenience, A :=
Aav and A = Asz, respectively. The subscript sz aims at remarking the
close relationship between the latter averaging operator and the Scott-Zhang
interpolation [56].

According to Propositions 3.3.2 and 4.2.5, we define

(5.2.12) Esmtσ := Asmtσ +B(σ −Asmtσ)

for smt ∈ {av, sz}. Thus, we have five options op ∈ {sip,nip,wsip,wnip,CR}
to discretize the Laplacian and two options smt ∈ {av, sz} to discretize the
right-hand side in the discrete problem

find Uop
smt ∈ Sop such that ∀σ ∈ Sop bop(Uop

smt, σ) = 〈f,Esmtσ〉

with f ∈ H−1(Ω). Irrespective of the combination, the corresponding
method Mop

smt is a nonconforming Galerkin method in the sense of (1.2.11),
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because of Esmt|S1
1

= IdS1
1

and the identity

∀s, σ ∈ S1
1 bop(s, σ) = b0(s, σ) =

ˆ
Ω
∇s · ∇σ.

Every method Mop
smt has been implemented with the help of the finite

element library ALBERTA 3.0 of [45]. The implementation is standard, ex-
cept for the assembly of the load vector (〈f,EsmtΨi〉)i∈I where {Ψi}i∈I is
the nodal basis of Sop. For this purpose, we first assemble a vector with
coefficients 〈f,Φz

1〉, z ∈ Li1, and 〈f, Φ̄F 〉, F ∈ F i, and then obtain the de-
sired load vector by multiplication with RTsmt, where Rsmt is a rectangular
matrix arising from Esmt. For both options smt ∈ {av, sz}, the matrix Rsmt

is sparse and does not need to be explicitly stored, because it is involved
only in one matrix-vector product. Moreover, the sparsity of Rav depends
on maxz∈Li1

Nz and, in any case, Rav has more nonzero entries as Rsz. Con-
sequently, the use of Esz is convenient from the viewpoint of costs.

5.3 Mean-Preserving Smoothing in Action

The smoothing operator distinguishes the methods in §5.2 from most non-
conforming methods for the Poisson problem. The goal of this section is
to discuss the main features related to the choice of the smoother, to high-
light possible advantages of its use, and to clarify the role of the structural
conditions on it.

For the sake of simplicity, we restrict to the space CR and the bilinear
form bCR. This has also the advantage that we do not need to probe for
a possible dependence of the numerical data on the choice of the penalty
parameter µ in the method and in the error measure. In fact, the corre-
sponding errors will be then in H1

0 (Ω) + CR and the value of µ > 0 in the
error norm ‖ · ‖µ is insignificant.

In order to analyze numerical data, we shall use in particular the so-called
experimental order of convergence (EOC) with respect to the number of
degree of freedoms (#DOFs). Given two approximations with Ni DOFs and
errors ei, i = 1, 2, the corresponding EOC ‘estimates’ the rate of convergence
by the ratio

(5.3.1) EOC :=
log(e1/e2)

log(N1/N2)
.

5.3.1 Regular Forces

Assume that the ‘force’ in the Poisson problem (3.3.1) verifies

f ∈ L2(Ω).
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Then the classical Crouzeix-Raviart approximation UCR ∈ CR is well-
defined and given by

(5.3.2) ∀σ ∈ CR

ˆ
Ω
∇M UCR · ∇M σ =

ˆ
Ω
fσ.

Thus, the question arises about the relationship between UCR and the quasi-
optimal approximations UCR

smt, smt ∈ {av, sz}, obtained with smoothing.
First, if we assume for the moment that Ω is convex, then the elliptic regular-
ity, [21, (10.3.11)] and the combination of Theorem 3.3.3 with Lemma 5.2.2
and Lemma 5.2.4 yield

‖u− UCR‖µ ≤ CγM |hD
2u|0;Ω and ‖u− UCR

smt‖µ ≤ CγM |hD
2u|0;Ω.

Thus, the triangle inequality yields the same estimate for the difference
‖UCR − UCR

smt‖µ. Next, the following counterpart of Lemma 4.2.22 slightly
improves on the previous assumptions.

Lemma 5.3.1 (Difference due to smoothing). If f ∈ L2(Ω), µ > 0 and
smt ∈ {av, sz}, then

‖UCR − UCR
smt‖µ ≤ CγM

( ∑
K∈M

h2
K‖f‖2L2(K)

) 1
2

.

Proof. The proof is almost the same as for Lemma 4.2.22, despite the dif-
ferent error notion and discrete bilinear form involved. The definitions of
UCR and UCR

smt immediately give

‖UCR − UCR
smt‖µ = sup

‖σ‖µ=1

∣∣∣∣ˆ
Ω
∇M(UCR − UCR

smt) · ∇M σ)

∣∣∣∣
= sup
‖σ‖µ=1

∣∣∣∣ˆ
Ω
f(σ − Esmtσ)

∣∣∣∣ ,
where σ varies in CR . For all K ∈ M, we have

´
∂K E1σ − σ = 0 imply-

ing the Poincaré-type inequality ‖E1σ − σ‖L2(K) . hK‖∇(E1σ − σ)‖L2(K).
Therefore,∣∣∣∣ˆ

Ω
f(Esmtσ − σ)

∣∣∣∣ ≤ CγM
( ∑
K∈M

h2
K‖f‖2L2(K)

) 1
2

‖∇M(σ − Esmtσ)‖L2(Ω)

and the H1-stability of Esmt from Proposition 3.3.2 finishes the proof.

We complement Lemma 5.3.1 with numerical experiments when the so-
lution of the (inhomogeneous) Poisson problem is

(5.3.3) ursym
ρ (x) := |x|ρ, x ∈ Ω = (−1, 1)2,
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for some ρ > 0. Note that −∆uρ ∈ L2(Ω) if and only if ρ > 1 and that, for
ρ 6∈ N, we have uρ ∈ Hs(Ω) if and only if s < ρ.

We shall observe several convergence histories. The initial triangulation
for (5.3.3) is always given by drawing the diagonals of Ω. Let us first con-
sider uniform refinement, i.e., for each new mesh, two bisections are applied
to every triangle. Figures 5.1-5.2 and Tables 5.1-5.2 display data corre-
sponding to the case ρ = 1.1. We notice that the errors with smoothing are
slightly bigger than without smoothing, more emphasized when using the
simplified averaging Asz to define Esz. The respective EOCs are consistent
with Lemma 5.3.1 and the preceding bounds. For stabilization by standard
averaging Aav, the EOCs associated with the difference ‖UCR − UCR

av ‖µ are
even slightly better than predicted by Lemma 5.3.1.

Figure 5.1: Example ursym
1.1 : Convergence histories of Crouzeix-Raviart error

without smoothing (◦), with smoothing Eav(∗), and difference of respective
approximations (M) for uniform refinement. Plain line indicates decay rate
#DOFs−0.5.

In order to clarify this observation, we consider the case ρ = 1.9. Here,
Figure 5.3 suggests that, for uniform refinement, the difference between UCR

and UCR
av superconverges with maximal rate 0.75, which corresponds to an

improved bound with power 3
2 for h when compared with Lemma 5.3.1. How-

ever, this is a delicate effect that seems to hinge on mesh symmetries: the
EOCs drop back to 0.5 for random refinement, where triangles are marked
for a double bisection with probability 1

3 , see Figure 5.4. In fact, in this case,
we do not observe numerical evidence for some superconvergence of the dif-
ference between UCR and UCR

av . The results of one such test are displayed
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Figure 5.2: Example ursym
1.1 : Convergence histories of Crouzeix-Raviart error

without smoothing Esz(◦), with smoothing (∗), and difference of respective
approximations (M) for uniform refinement. Plain line indicates decay rate
#DOFs−0.5.

#DOFs ‖u− UCR‖µ EOC

24 704 3.026507e-02
98 560 1.585021e-02

0.47

393 728 8.224799e-03
0.47

1 573 888 4.238544e-03
0.48

Table 5.1: Example ursym
1.1 : Crouzeix-Raviart error ‖u − UCR‖µ without

smoothing and its EOCs for the last four triangulations in Figures 5.1-5.2.

#DOFs ‖UCR − UCR
av ‖µ EOC ‖UCR − UCR

sz ‖µ EOC

24 704 3.249767e-03 3.754355e-02
98 560 1.485089e-03

0.57
1.944739e-02

0.48

393 728 6.844091e-04
0.56

1.000615e-02
0.48

1 573 888 3.170169e-04
0.56

5.122284e-03
0.48

Table 5.2: Example ursym
1.1 : differences ‖UCR − UCR

av ‖µ and ‖UCR − UCR
sz ‖µ

and their respective EOCs for the last four triangulations in Figures 5.1-5.2.
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Figure 5.3: Example ursym
1.9 : Convergence histories of the difference between

UCR and UCR
av for uniform (◦) and random (∗) refinement. Plain and dash-

dot lines indicate, respectively, decay rate #DOFs−0.75 and #DOFs−0.5.

in Figure 5.3, while Figure 5.4 shows a triangulation obtained by random
refinements.

5.3.2 A Numerical Illustration of Full Stability

The weak formulation of the Poisson problem enjoys the following stability
property. For any f ∈ H−1(Ω), the corresponding solution u verifies

(5.3.4) ‖u‖µ = ‖f‖H−1(Ω).

This section investigates up to which degree various methods mimic this
property.

In the notation of Chapter 1, the classical Crouzeix-Raviart method
(5.3.2) is represented by the triplet (CR, bCR, LCR). Identifying L2(Ω) with
its dual space, the linear operator LS : L2(Ω)→ CR′ is given by

〈LCRf, σ〉 :=

ˆ
Ω
fσ, σ ∈ CR.

Owing to the piecewise Poincaré-Friedrichs inequality [21, (10.6.12)], we
then infer stability with respect to L2-forces

‖UCR‖µ ≤ C‖f‖L2(Ω).
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Figure 5.4: A triangulation generated by random refinement.

However, as most nonconforming methods for the Poisson problem, the ap-
proximation UCR is not defined for general f ∈ H−1(Ω); consequently, and
according to Remark 1.4.9, the classical Crouzeix-Raviart method is not
fully stable. The following proposition confirms this observation and pro-
vides a model argument to check that LCR does not extend to a bounded
operator on H−1(Ω).

Proposition 5.3.2 (No H−1-extension of LCR). The linear operator LCR

cannot be boundedly extended to H−1(Ω).

Proof. First of all, we observe that Ṽ := H1
0 (Ω) + CR is dense in L2(Ω) and

thus Ṽ ⊆ L2(Ω) ⊆ Ṽ ′ is a Hilbert triplet. Exploiting the nonconformity, we
pick some s ∈ CR \H1

0 (Ω). Then the Hahn-Banach theorem guarantees the
existence of a linear functional ` ∈ Ṽ ′ such that

〈`, s〉 = 1 and H1
0 (Ω) ⊆ ker(`).

Next, we choose a sequence (fk)k∈N ⊆ L2(Ω) such that

sup
w∈Ṽ ,‖w‖µ≤1

∣∣∣∣〈`, w〉 − ˆ
Ω
fkw

∣∣∣∣→ 0 as k →∞
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and identify each fk with the functional H1
0 (Ω) 3 w 7→

´
Ω fkw ∈ R. Com-

bining the properties of ` with the convergence of the sequence (fk)k, we
derive

〈LCRfk, s〉 =

ˆ
Ω
fks→ 1 and ‖fk‖H−1(Ω) → 0 as k →∞,

which yields

‖LCRfk‖CR′

‖fk‖H−1(Ω)
≥ 〈LCRfk, s〉
‖fk‖H−1(Ω)‖s‖µ

→ +∞ as k → +∞.

Proposition 5.3.2 entails that the classical Crouzeix-Raviart method may
be affected by undesired numerical artifacts. To illustrate this, we approxi-
mate the solution ulheat

ξ of the Poisson problem, where domain and force are
given by

(5.3.5) Ω = (0, 1)2, 〈fξ, ϕ〉 = 100

ˆ 1

0
yϕ(ξ, y) dy with ξ ∈ (0, 1).

Functionals like fξ appear, for example, in the modeling of the production
of latent heat by moving phase boundaries. Notice that fξ ∈ CR′ and
UCR is well-defined for ξ 6= 0.5, although fξ cannot be identified with the
action of a L2(Ω)-force. However, the low regularity of fξ is insignificant to
this experiment and serves only to keep the setting in (5.3.5) as simple as
possible. Indeed, arguing by density, we could approximate this functional
by more regular ones.

In view of

10−2〈fξ − fν , ϕ〉 ≤
ˆ 1

0
|ϕ(ξ, ·)− ϕ(ν, ·)|

≤
ˆ

(ξ,ν)×(0,1)
|∇ϕ| ≤ |ξ − ν|

1
2 ‖∇ϕ‖L2(Ω)

for 0 ≤ ξ ≤ ν ≤ 1, the map

(5.3.6) (0, 1) 3 ξ 7→ fξ ∈ H−1(Ω)

is continuous. Figure 5.6 shows that the classical Crouzeix-Raviart approx-
imation UCR in the point (0.375, 0.375) suffers from a jump when passing
ξ = 1

2 , where it is not defined, cf. Figure 5.5. Since the point evaluation is
a bounded linear operator on the finite-dimensional space CR , this means
that UCR does not depend on ξ in a continuous manner. In view of (5.3.4)
and (5.3.6), this is a numerical artifact.

Notice that, neglecting the requirement of L2(Ω)-forces, we obtain a
concrete example for the sequence in the proof of Proposition 5.3.2 simply
by defining gξ := fξ − f1−ξ for ξ ∈ (0, 1).
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Figure 5.5: Example ulheat
ξ : Mesh with support of f0.52 (dashed line) and

point of evaluation (•) in (0.375, 0.375).

Figure 5.6: Example ulheat
ξ : Behavior of UCR (∗) and UCR

av (◦) in the indi-
cated point for 0.48 ≤ ξ ≤ 0.52.
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Figure 5.6 also confirms that UCR
av (and, similarly, UCR

sz ) depends con-
tinuously on ξ. Such continuity hinges on the full stability of the methods
MCR

smt := (CR, bCR, E
?
smt), smt ∈ {av, sz}, which provides the following dis-

crete counterpart of (5.3.4)

∀f ∈ H−1(Ω) ‖MCR
smtf‖µ ≤ Cstab‖f‖H−1(Ω)

with

Cstab = sup
σ∈CR

‖Esmtσ‖µ
‖σ‖µ

= ‖Esmt‖L(CR ,H1
0 (Ω)),

in view of Corollary 3.2.8 and Proposition 3.3.2.
The last identity entails that we can compute the stability constant

of MCR
smt by maximizing a generalized Rayleigh quotient. To see this, let

{ΨF }F∈Fi and {Φ2
z}z∈Li2 denote the nodal bases of the spaces CR and

S1
2 = EsmtCR, respectively. Introducing the stiffness matrices

AFF ′ :=

ˆ
Ω
∇MΨF · ∇MΨF ′ and Bzz′ :=

ˆ
Ω
∇MΦz · ∇MΦz′

for F, F ′ ∈ F i and z, z′ ∈ Li2, and denoting by Rsmt the matrix representing
the smoother Esmt with respect to these bases, we have

Cstab = sup
x∈RdimCR

xT (RsmtBRTsmt)x

xTAx
.

This formula is particularly attractive, because the quasi-optimality con-
stant of MCR

smt coincides with its stability constant, according to Corol-
lary 3.2.8.

With the help of MATLAB command eigs, we computed the stability
constant of MCR

smt on meshes that are generated by uniform and random re-
finement of Ω = (−1, 1)2 as in §5.3.1. We also considered graded meshes of Ω,
obtained by approximating the exact solution ursym

0.25 from (5.3.3) by Dörfler’s
strategy with parameter 0.9 on the local best errors ‖∇(u − Πu)‖L2(K),
K ∈M. For all meshes, the number of nonzero entries of the matrix Rav as-
sociated with Eav is about 3-4 times the corresponding number of Rsz. This
saving is typically confronted by a 1.75 times greater stability constant. This
hold for uniform and adaptive meshes. Only for randomly refined meshes,
there are ‘outliers’ suggesting that also here local mesh symmetry plays a
role. In any case, the observed values of the stability constants are shown
in Figure 5.7. All values are quite moderate in size: the maximum for both
stabilizations is around 4.5.

5.3.3 A Numerical Illustration of Full Algebraic Consistency

This section is intended to illustrate the importance of full algebraic consis-
tency for quasi-optimality. To this end, let us compare the two Crouzeix-
Raviart methods (CR, bCR, E

?), where E = Eav or E = Aav. Both methods
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(a) Standard averaging

(b) Simplified averaging

Figure 5.7: Stability constants for stabilization by nodal averaging and
meshes generated by uniform (◦), adaptive (+), and random (∗) refinement.
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#DOFs #nonzeros in Rav #nonzeros in Rsz

400 7664 2162
1568 33920 9298
6208 142496 38546

24704 583904 156946

Table 5.3: Nonzero elements in the matrices Rav and Rsz with uniform
refinements.

are entire and fully stable. However, the former leads to full algebraic con-
sistency, while the latter does not, as we observed in Remark 3.3.5.

To access the difference between the two methods, we first exploit again
Lemma 5.2.2. According to Theorem 3.3.3, the smoothing operator E = Eav

(or, equivalently, E = Esz) yields quasi-optimality and we have

(5.3.7) ‖u− UCR
av ‖µ ≤ CγM

( ∑
K∈M

inf
p∈P1(K)

‖∇(u− p)‖2L2(K)

) 1
2

where u denotes the weak solution of the Poisson problem and UCR
av is the

corresponding approximation.
In contrast, the averaging operator E = Aav (or, equivalently, E = Asz)

enjoys the following consistency property, where ωF denotes the union of
the two triangles containing the interior edge F ∈ F i.
Proposition 5.3.3 (Consistency with plain smoothing). The bilinear form
b0 from (5.2.11) and the averaging operator Aav verify

sup
σ∈S,‖σ‖µ=1

∣∣∣∣b0(Πu, σ)−
ˆ

Ω
∇u · ∇Aavσ

∣∣∣∣ ≤
≤ CγM

∑
F∈Fi

inf
p∈P1(ωF )

‖∇(u− p)‖2L2(ωF )

 1
2

.

for all u ∈ H1
0 (Ω).

Proof. Exploiting integration by parts (2.1.3), that ∇M(Πu) and ∇Aavσ are
piecewise constant, and the local best approximation properties of Πu, we
deduce

(5.3.8) b0(Πu, σ)−
ˆ

Ω
∇u · ∇Aavσ =

ˆ
Σ\∂Ω

J∇ΠuK · n ({{σ}} −Aavσ) .

Let F ∈ F i and denote ω̃F the union of all triangle touching F . Since
σ ∈ CR, Lemma 2.2.2 entails

‖ {{σ}} −Aavσ‖L2(F ) ≤ |F |
1
2 ‖∇M σ‖L∞(F ) . |F |

1
2 ‖∇M σ‖L2(ω̃F ).
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Moreover, given any polynomial p ∈ P1(ωF ), we derive

‖ J∇ΠuK ‖L2(F ) = ‖ J∇(Πu− p)K ‖L2(F ) .
(
γM|F |

)− 1
2 ‖∇(Πu− p)‖L2(ωF )

.
(
γM|F |

)− 1
2 ‖∇(u− p)‖L2(ωF ),

where we used ‖∇(Πu− p)‖2L2(ωF ) = ‖∇(u− p)‖2L2(ωF )−‖∇(Πu− u)‖2L2(ωF )

in the last step. Combining this inequalities with the identity (5.3.8) yields
then the desired bound.

Arguing as in the second Strang lemma [10] then leads to the following
regularity-free error localization to pairs of elements.

Theorem 5.3.4 (Error bound with plain smoothing). Let u be the weak
solution of the Poisson problem and denote by U the corresponding approx-
imation generated by the method (CR, bCR, A

?
av). We have

‖u− U‖µ ≤ CγM

∑
F∈Fi

inf
p∈P1(ωF )

‖∇(u− p)‖2L2(ωF )

 1
2

.

Proof. Thanks to the optimality of Πu, we can decompose the error as fol-
lows: ‖u − U‖2µ = ‖u − Πu‖2µ + ‖Πu − U‖2µ. Then, it is sufficient to note
‖Πu− U‖µ = supσ∈CR,‖σ‖µ=1 bCR(Πu− U, σ) and

bCR(Πu− U, σ) = b0(Πu, σ)−
ˆ

Ω
∇u · ∇Asmtσ.

and apply Proposition 5.3.3.

The difference between this upper bound and that one in (5.3.7) is subtle;
see [59, §6.1] for a theoretical discussion in as slightly different setting. Here
we illustrate it by approximating the exact solution

(5.3.9) ukink(x, y) := min{1− |x|, 1− |y|}, (x, y) ∈ Ω := (−1, 1)2

by the aforementioned Crouzeix-Raviart methods, where the initial trian-
gulation M0 is given by drawing the two diagonals of Ω and we perform
uniform refinements. In view of the kinks, we have ukink ∈ H2(M0) and
ukink /∈ H2(Ω). Hence, we expect that the error ‖u − UCR

av ‖µ decays at the
maximum rate, fully exploiting the piecewise regularity of ukink. Instead,
the rate of convergence of ‖u−U‖µ depends on the global regularity of ukink

on Ω and is not the maximum possible. Figure 5.8 corroborates this.

Notice also that the classical Crouzeix-Raviart method (5.3.2) could not
be applied in this case, because the weak Laplacian of ukink involves first-
order moments on the interior edges of M0.
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Figure 5.8: Example ukink: Convergence histories of Crouzeix-Raviart error
with moment-conserving smoothing Eav (◦) and bare averaging Aav (∗).
Plain and dashed lines indicate, respectively, decay rates #DOFs−0.5 and
#DOFs−0.25.

5.4 Combining Discrete Laplacians and Smooth-
ing

In §5.2 we have presented various options to discretize the Laplace op-
erator. The goal of this section is to illustrate their interplay with the
mean-preserving smoothing Esmt. Doing so, we consider also the conform-
ing Galerkin method M cG := (ScG, bcG, IdScG) with discrete problem

find U cG ∈ ScG such that ∀σ ∈ S1
1 bcG(U cG, σ) = 〈f, σ〉,

where ScG := S1
1 and bcG = b0. Furthermore, in the numerical experiments,

we restrict to the smoothing operator Eav with standard nodal averaging.

The next theorem states that all methods introduced in §5.2 and M cG

are quasi-optimal with respect to their shape functions and provides a quan-
titative control of the best constant D in (5.1.3).

Theorem 5.4.1 (Uniform S0
1 -quasi-optimality). Let

op ∈ {cG,CR,wnip,wsip,nip, sip} and smt ∈ {av, sz}

and assume that, for op ∈ {wsip, sip}, the penalty parameter µ is so large
that bop is ‖ · ‖µ-coercive. Then the quasi-optimality constant of the method
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Mop
smt with respect to its shape functions is bounded in terms of γM and the

penalty parameter µ, if present:

Dop
smt ≤ CγM,µ.

Proof. We start with the continuous Galerkin method op = cG, where the
choice of smt is irrelevant in view of Esmt|S1

1
= IdS1

1
. Cea’s lemma and

∀u ∈ H1
0 (Ω) inf

s∈S1
1

‖u− s‖µ ≤ CγM inf
s∈S0

1

‖u− s‖µ,

which follows from [60, Lemma 3.1], then readily yields DcG ≤ CγM . Next,
Theorems 3.3.3, 4.2.7, 4.2.10 and 4.2.14 entail that

∀u ∈ H1
0 (Ω) ‖u− Uop

smt‖µ ≤ CγM inf
s∈Sop

‖u− s‖µ

for op 6= cG and smt = sz. A similar estimate can be also obtained for
smt = sz in the vein of Remark 2.2.4. Since Sop = S0

1 or ScG = CR, we
conclude by invoking (5.2.10).

Let us take, numerically, a closer look at the relationship between the
error of the various approximate solutions and the best error in S0

1 , which
can be computed via Lemma 5.2.2. For this purpose, we fix

(5.4.1) µ = 12,

cf. [38, Remark 12], and introduce the ratio

(5.4.2) qop
smt(u) :=

‖u− Uop
smt‖µ

infs∈S0
1
‖u− s‖µ

≤ Dop
smt,

where u ∈ H1
0 (Ω) \ S1

1 is an exact solution of the Poisson problem (3.3.1).
Let us consider first the harmonic and regular solution

uhreg(x) := r2 sin(2ϕ), x = r(sinϕ, cosϕ) ∈ Ω := (0, 1)2.

Note that here the smoothing operator Eav is inactive. The ratios displayed
in Figure 5.9 favor the SIP and NIP methods. Furthermore, as the stability
constant in Figure 5.7, they are affected by local non-symmetries in the
mesh, although the size of this effect fades away asymptotically.

To investigate a case with active smoothing operator, we reconsider ursym
ρ

from (5.3.3) for the regular case ρ = 1.9 and the singular case ρ = 0.25; see
Figures 5.10-5.11. Here the slightly better exploitation of S0

1 by the SIP
and NIP methods is no longer present. The asymptotic exploitation of all
methods is similar, with a slight advantage for the nonconforming methods
in the singular case with adaptive refinement. In order to generate the
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(a) Uniform refinement

(b) Random refinement

Figure 5.9: Example uhreg: Ratios qop
av (uhreg) from (5.4.2) versus #DOFs for

op =cG (◦), CR (+), SIP (∗), NIP (2), WNIP (M), and WSIP (3). For
uniform refinement, the WIP and NIP methods are not displayed because
they graphically coincide with the CR and SIP methods, respectively.
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(a) Uniform refinement, ρ = 1.9

(b) Random refinement, ρ = 1.9

Figure 5.10: Example ursym
1.9 : Ratios qop

av (ursym
1.9 ) from (5.4.2) versus #DOFs

for op =cG (◦), CR (+), SIP (∗), NIP (2), WNIP (M), and WSIP (3) with
smoother Eav. For uniform refinement, the SIP method is representative for
the other interior penalty methods.
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(a) Uniform refinement, ρ = 0.25

(b) Adaptive refinement, ρ = 0.25

Figure 5.11: Example ursym
0.25 : Ratios qop

av (ursym
0.25 ) from (5.4.2) versus #DOFs

for op =cG (◦), CR (+), SIP (∗) with smoother Eav. The SIP method is
representative for the other interior penalty methods.
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adaptive meshes, we applied Dörfler’s strategy with parameter 0.9 on the
local best errors ‖∇(u−Πu)‖L2(K), K ∈M.

A consequence of Theorem 5.4.1 is the following comparison. This re-
sult is similar to those ones of Braess [12] and Carstensen et al. [27] for
nonconforming methods without smoothing. However, thanks to the use
of a smoothing operator in the methods under consideration, no oscillation
terms are involved.

Corollary 5.4.2 (Comparison). Let

op1, op2 ∈ {cG,CR,wnip,wsip,nip, sip} and smt1, smt2 ∈ {av, sz}

and assume that µ ≥ µ∗ for some parameter µ∗ > 0 so large that the forms
bop1 and bop2 are ‖ · ‖µ-coercive. Then

∀u ∈ H1
0 (Ω) ‖u− Uop1

smt1
‖µ ≈ ‖u− Uop2

smt2
‖µ,

where the hidden constants depend only on the shape coefficient γM of the
underlying mesh.

Of course, this result regards only the error of the considered methods,
and not the trade-off between error and cost for obtaining the approximate
solution. This trade-off is more important, but also more delicate. In par-
ticular, a realistic, implementation-independent measure of the cost is not
obvious, because it should take into account the cost for (efficiently) build-
ing and solving the corresponding linear systems. Here we shall use the
admittedly coarse measure #DOFs for this purpose.

Figures 5.12-5.13 provide the concrete trade-offs for the examples in
Figures 5.10-5.11. In the presented cases, increasing nonconformity worsens
the trade-off, but in a moderate amount. This indicates that the greater
flexibility of nonconforming methods, which is important in more complex
problems, comes with a comparable trade-off in terms of #DOFs.
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(a) Uniform refinement, ρ = 1.9

(b) Random refinement, ρ = 1.9

Figure 5.12: Example ursym
1.9 : Trade-off between error and #DOFs in log-log

scale for cG (◦), CR (+), and SIP (∗) with smoother Eav. The SIP method
with Eav is representative for the other interior penalty methods. Dashed
lines indicate the decay rate #DOFs−0.5.
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(a) Uniform refinement, ρ = 0.25

(b) Adaptive refinement, ρ = 0.25

Figure 5.13: Example ursym
0.25 : Trade-off between error and #DOFs in log-log

scale for cG (◦), CR (+), and SIP (∗) with smoother Eav. The SIP method
with Eav is representative for the other interior penalty methods. Plain and
dashed line indicate, respectively, decay rate #DOFs−0.125 and #DOFs−0.5.
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convex domains. Arch. Rational Mech. Anal., 5:286–292 (1960), 1960.

[53] B. Rivière, M. F. Wheeler, and V. Girault. A priori error estimates for
finite element methods based on discontinuous approximation spaces
for elliptic problems. SIAM J. Numer. Anal., 39(3):902–931, 2001.

[54] A. Schmidt and K. G. Siebert. Design of adaptive finite element soft-
ware, volume 42 of Lecture Notes in Computational Science and En-
gineering. Springer-Verlag, Berlin, 2005. The finite element toolbox
ALBERTA, With 1 CD-ROM (Unix/Linux).

[55] L. R. Scott and M. Vogelius. Conforming finite element methods for
incompressible and nearly incompressible continua. In Large-scale com-
putations in fluid mechanics, Part 2 (La Jolla, Calif., 1983), volume 22
of Lectures in Appl. Math., pages 221–244. Amer. Math. Soc., Provi-
dence, RI, 1985.

[56] L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth
functions satisfying boundary conditions. Math. Comp., 54(190):483–
493, 1990.
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