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We extensively describe our recently established “divide-and-conquer” semiclassical method [M.
Ceotto, G. Di Liberto, and R. Conte, Phys. Rev. Lett. 119, 010401 (2017)] and propose a new imple-
mentation of it to increase the accuracy of results. The technique permits us to perform spectroscopic
calculations of high-dimensional systems by dividing the full-dimensional problem into a set of
smaller dimensional ones. The partition procedure, originally based on a dynamical analysis of the
Hessian matrix, is here more rigorously achieved through a hierarchical subspace-separation criterion
based on Liouville’s theorem. Comparisons of calculated vibrational frequencies to exact quantum
ones for a set of molecules including benzene show that the new implementation performs better than
the original one and that, on average, the loss in accuracy with respect to full-dimensional semiclas-
sical calculations is reduced to only 10 wavenumbers. Furthermore, by investigating the challenging
Zundel cation, we also demonstrate that the “divide-and-conquer” approach allows us to deal with
complex strongly anharmonic molecular systems. Overall the method very much helps the assignment
and physical interpretation of experimental IR spectra by providing accurate vibrational fundamen-
tals and overtones decomposed into reduced dimensionality spectra. Published by AIP Publishing.
https://doi.org/10.1063/1.5010388

I. INTRODUCTION

The simulation of vibrational spectra of high-dimensional
systems is an important open issue in quantum mechanics.
The challenge is to beat the curse of dimensionality that
plagues any quantum method in both electronic and nuclear
spectroscopy simulations. In fact, the exact treatment of quan-
tum problems often implies the setup of a grid. As a con-
sequence, the computational cost scales exponentially with
dimensionality, and only simulations involving a few atoms
can be exactly performed.1–5 Alternatively, perturbative quan-
tum methods have also been successfully applied to many
systems, but they are intrinsically limited to a single reference
geometry.6–11 High-dimensional systems, such as peptides,
are instead usually simulated through ad hoc scaled harmonic
approaches or by means of classical mechanics, either using
force fields12–14 or employing ab initio molecular dynamics
(AIMD)15–21 approaches in which the nuclear forces are calcu-
lated using electronic structure codes. In classical simulations,
the curse of dimensionality is significantly tamed with respect
to quantum mechanical counterparts. However, a purely classi-
cal dynamics simulation is unable to describe tunneling effects,
zero point energies (ZPEs), overtones, and other important
spectroscopic quantum features.

Semiclassical dynamics employs classical trajectories
to reproduce quantum mechanical effects. In semiclassi-
cal methods, spectra are calculated in a time-dependent
way, i.e., by Fourier transforming the survival amplitude or

a)Author to whom correspondence should be addressed: michele.ceotto@
unimi.it

the autocorrelation function of some observables (such as
the dipole moment).22 Semiclassical methods based on the
coherent states Herman-Kluk propagator23–29 and the initial
value representation [semiclassical initial value representa-
tion (SCIVR)]30–32 are robust, have been proven to repro-
duce quantum effects quite quantitatively,22,33–56 and have
been shown to have an accuracy in spectra calculations often
within 1% of exact results.35,57 Recently, the multiple-coherent
(MC)-SCIVR technique has been developed. It allows us to
perform on-the-fly semiclassical molecular dynamics simu-
lations given a few input trajectories.58–65 The approach is
amenable to ab initio direct molecular dynamics, thus avoiding
the effort to construct an accurate analytical potential energy
surface (PES) which may be quite demanding especially for
large systems66–74 and permits to faithfully reproduce quan-
tum effects like quantum resonances,60 intra-molecular and
long-range dipole splittings, and the quantum resonant ammo-
nia umbrella inversion.62 Nevertheless, all SCIVR methods
run out of steam when straightforwardly applied to problems
involving large-sized systems.

Understanding the reasons of such a limitation is the
first step to do for dealing with the curse of dimensional-
ity and possibly overcoming it. The semiclassical wavepacket
for a system of N degrees of freedom (DOFs) consists in the
direct product of N monodimensional (Gaussian) wavefunc-
tions |Ψ (t)〉 = |ψ1 (t)〉 . . . |ψN (t)〉. When the time-dependent
overlap 〈Ψ (0) |Ψ (t)〉 is Fourier transformed to generate the
spectrum, the simulation time should have been long enough
to provide a significant overlap. In other words, if the trajec-
tory does not periodically return to the surroundings of the
phase-space region where it started, a noisy signal will be
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collected. If, instead, the multidimensional classical trajectory
is such that (p (t) , q (t)) approaches several times (p (0) , q (0)),
then the overlap 〈Ψ (0) |Ψ (t)〉 is sizable and the signal associ-
ated with the vibrational features will prevail on the noise.
The curse of dimensionality occurs because each monodi-
mensional coherent state overlap 〈ψi (0) |ψi (t)〉 should be
significant for all dimensions at the same time. Even for
uncoupled oscillators with non-commensurable frequencies,
the concomitant overlapping event is rarer and rarer as the
dimensionality increases, and the simulation time has to be
much prolonged.58 The present “divide et impera” idea starts
from the consideration that a full-dimensional classical tra-
jectory, once projected onto a sub-dimensional space, is more
likely to provide a useful spectroscopic signal and a clear spec-
troscopic signal can be obtained in a much shorter amount of
time with respect to the full-dimensional case, as we have
recently shown.75 Thus, according to this divide-and-conquer
strategy, after dividing the full-dimensional space into mutual
disjoint subspaces, a semiclassical spectroscopic calculation
is performed separately for each subspace. While the clas-
sical trajectories are full-dimensional, the semiclassical cal-
culations employ subspace information for calculating each
partial spectrum. Composition of the projected spectra pro-
vides the full-dimensional one. Considering that nuclear spec-
tra of high-dimensional systems are often too crowded for an
unambiguous interpretation, this “divide-and-conquer” strat-
egy will also allow us to better read and understand the physics
behind the spectra and help the interpretation of experimental
results.

In this paper, we introduce some new features that signif-
icantly enhance the accuracy of our divide-and-conquer semi-
classical initial value representation (DC-SCIVR) method.
Accuracy of results is estimated by comparison to exact values
for systems up to 30 degrees of freedom (DOFs). In Sec. II,
we first recall the basics of time averaged semiclassical spec-
tral density calculations,76,77 and then we describe in details
the DC-SCIVR approach and two new subspace-separation
criteria. In Sec. III, we test the performance of DC-SCIVR on
strongly coupled Morse oscillators, real molecular systems like
H2O, CH2O, CH4, and CH2D2, the very challenging Zundel
cation (H5O2

+), and, finally, the benzene molecule which is, at
the best of our knowledge, the highest dimensional molecular
system for which exact quantum vibrational calculations have
been performed.78 A summary and some conclusions end the
paper.

II. A DIVIDE-AND-CONQUER STRATEGY
FOR SEMICLASSICAL DYNAMICS

This section recalls the derivation of the DC-SCIVR
expression for spectroscopic calculations. We start from the

SCIVR power spectrum formulation and its multiple coherent
state time averaging implementation (MC-SCIVR) and then
move to the “divide-and-conquer” working formula. Finally,
we present three different techniques for partitioning the full-
dimensional vibrational space into suitable lower-dimensional
subspaces.75

A. The SCIVR time averaged spectral density

We start by writing the power spectrum I (E) of a molecu-
lar system, characterized by the Hamiltonian Ĥ, as the Fourier
transform of the survival amplitude22 of a given and arbitrary
reference state | χ〉,

I (E) ≡
1

2π~

∫ +∞

−∞

〈
χ

����e
−iĤt/~���� χ

〉
eiEt/~dt. (1)

In semiclassical (SC) molecular dynamics, the quantum time-
evolution operator e�iĤt /~ of Eq. (1) is substituted by the
stationary-phase approximation to its Feynman path integral
representation.79 In the position representation, the semiclas-
sical propagator is a matrix whose elements are obtained as
products of a complex action exponential and a stationary-
phase pre-exponential factor, summed over all classical tra-
jectories that connect the two endpoints.41,80–88 The search for
these trajectories is hampered by the rigid double-boundary
condition. In the SCIVR dynamics, introduced by Miller
and later also developed by Heller, Herman, Kluk, and
Kay,22,27,28,30,31,34,57,89 the propagator is instead formulated in
terms of classical trajectories determined by initial conditions
(p (0) , q (0)) so that Eq. (1) becomes

〈
χ

����e
−iĤt/~���� χ

〉
≈

(
1

2π~

)F ∫∫
dp (0) dq (0)

Ct (p (0) , q (0)) e
i
~ St (p(0),q(0))

〈χ |p (t) q (t) 〉 〈p (0) q (0)| χ〉 ,

(2)

where F is the number of degrees of freedom, St (p (0) , q (0))
is the classical action, and Ct (p (0) , q (0)) indicates the pre-
exponential stationary-phase factor. If |p (t) , q (t)〉 is repre-
sented as a coherent state22,89–91 of the type

〈x|p (t) , q (t)〉=

(
det (Γ)

πF

)1/4

e−(x−q(t))T Γ(x−q(t))/2+ipT (t)(x−q(t))/~,

(3)
where Γ is a diagonal width matrix with coefficients usu-
ally equal to the square root of the vibrational frequencies
for bound states calculations, then the pre-exponential factor
becomes

Ct (p (0) , q (0)) =

√
det

�����
1
2

(
∂q (t)
∂q (0)

+
∂p (t)
∂p (0)

− i~Γ
∂q (t)
∂p (0)

+
i
Γ~

∂p (t)
∂q (0)

) �����
, (4)

and Eq. (2) is commonly known as the Herman-Kluk survival amplitude of the Hamiltonian Ĥ. However, for complex systems,
the phase-space integration of Eq. (2) requires too many trajectories to be feasible. To overcome this limitation, Miller and
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Kaledin introduced a time averaged version of the semiclassical propagator (TA-SCIVR),76,77 which significantly reduces the
computational overhead

I (E) =
1

(2π~)F

∫∫
dq (0) dp (0)

Re
π~T

∫ T

0
dt1

∫ +∞

t1

dt2ei(St2 (p(0),q(0))+Et2)/~〈χ |p(t2), q(t2)〉e−i(St1 (p(0),q(0))+Et1)/~

× 〈p(t1), q(t1)| χ〉Ct2 (p(t1), q(t1)), (5)

where t1 is the additional time averaging variable and t2 is
the original Fourier transform variable. In Eq. (5), the inte-
grand is time averaged by taking into account different por-
tions of time length t2 � t1 of the same trajectory started in
(p (0) , q (0)). Considering that the pre-exponential factor is
of the type eiωt for a harmonic ω-frequency system, Eq. (4)
can be reasonably approximated as Ct (p (0) , q (0)) = eiφt ,
where φt = phase

[
Ct (p (0) , q (0))

]
, leading to the computa-

tionally more convenient separable approximation version of
TA-SCIVR,76,77

I (E) =

(
1

2π~

)F ∫∫
dp (0) dq (0)

1
2π~T

×

��������

T∫
0

e
i
~ [St (p(0),q(0))+Et+φt]〈χ |p (t) , q (t)〉dt

��������

2

. (6)

Equation (6) is more amenable than (5) to the phase-space
Monte Carlo integration, given the positive-definite inte-
grand, and it has been tested with excellent results on sev-
eral molecular systems. However, TA-SCIVR still requires
thousands of trajectories per degree of freedom to reach con-
vergence.76,77,92,93 To further reduce the computational effort,
the multiple-coherent time averaged SCIVR (MC-SCIVR) has
been introduced.58–62,94 In the MC-SCIVR formulation, the
reference state | χ〉 is written as a combination of coherent
states placed at the classical phase-space points

(
pi

eq, qi
eq

)
,

i.e., | χ〉 =
∑Nstates

i=1
���p

i
eq, qi

eq

〉
. qi

eq is an equilibrium position,

while pi
eq is obtained in a harmonic fashion as

(
pi

j,eq

)2
/2m

= ~ωj (n + 1/2), where j is a generic normal mode, ωj is the
associated harmonic frequency, and m is unitary in mass-scaled
normal mode coordinates. Equation (6) has been shown to be
quite accurate with respect to exact quantum mechanical sim-
ulations for the several molecules tested, even when applied
to systems as complex as glycine.62,63,92,93

B. The “divide-and-conquer” strategy applied
to semiclassical dynamics

In this section, we provide a more detailed explana-
tion of the “divide-and-conquer” strategy previously intro-
duced elsewhere.75 The idea is to calculate the power
spectrum I (E) of Eq. (1) as composition of partial spec-
tra Ĩ (E) each one calculated in a reduced M-dimensional
phase space (p̃, q̃) of the full Nvib-dimensional space (p, q)
≡

(
p1, q1, . . . , p̃i+1, q̃i+1, . . . , p̃i+M , q̃i+M , . . . , pNvib , qNvib

)
. In

quantum mechanics, where operators can be represented by
matrices, the projection of an operator onto a sub-space is

obtained by a preliminary suitable singular-value decomposi-
tion (SVD),95 followed by a subsequent matrix multiplication
between the full-dimensional operator and the projector. Semi-
classically operators are represented in phase-space coordi-
nates and a suitable SVD is the one involving the displacement
matrix D for the M-dimensional subspace.95,96 In our case,
D is a Nvib × M dimensional matrix and a singular-value
decomposition is obtained when D = UΣV, where U is a Nvib

× M matrix, Σ is a M × M one, and V is a M × M one. The
matrix ∆ = UUT is the projector onto the M-dimensional sub-
space. Eventually, any matrix A is projected onto the reduced
M-dimensional subspace by taking Ã = ∆A∆ and retain-
ing the M × M sub-block of non-zero elements. Similarly,
any vector q is projected by taking q̃ = ∆q. Given these
considerations, the projected power spectrum can be written
as

Ĩ (E) =

(
1

2π~

)M ∫∫
dp̃ (0) dq̃ (0)

1
2π~T

×
�����

∫ T

0
e

i
~ [S̃t (p̃(0),q̃(0))+Et+φ̃t]〈χ̃ |p̃ (t) , q̃ (t)〉dt

�����

2

, (7)

where the M-dimensional coherent state in the M-dimensional
sub-space is

〈x̃|p̃ (t) , q̃ (t)〉 =
(

det(Γ̃)
πM

) 1
4

e−(x̃−q̃(t))T Γ̃(x̃−q̃(t))/2+ip̃T (t)(x̃−q̃(t))/~,

(8)
where the matrix Γ̃ = UUTΓUT U is the projected Gaussian
width matrix. 〈x̃| χ̃〉 is obtained in a similar way. The phase-
space integration is now limited to ∫ ∫ dp̃ (0) dq̃ (0), i.e., a
2M-dimensional space. This greatly reduces the computational
cost and the number of trajectories necessary to converge the
Monte Carlo integration. Furthermore, the sampling of the ini-
tial conditions of the full-dimensional trajectories can be done
according to a Husimi distribution in the subspace with the
external degrees of freedom at equilibrium. The representation
of the phase φ̃t in reduced dimensionality is approximated as
φ̃t = phase

[
C̃t (p̃ (0) , q̃ (0))

]
, where the pre-exponential fac-

tor is calculated according to Eq. (4) and each matrix block is
of the type ∂q̃ (t) /∂q̃ (0), and so on. The only component of
Eq. (7) that cannot be projected onto the sub-space using the
SVD is the classical action

S̃t (p̃ (0) , q̃ (0)) =
∫ T

0

[
1
2

m ˙̃q2 (t) + VS (q̃ (t))

]
dt (9)

since the expression of the “projected” potential VS (q̃ (t))
cannot be directly obtained. More specifically, the projected
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potential VS (q̃ (t)) should be the potential such that an
M-dimensional trajectory starting with initial conditions
(p̃ (0) , q̃ (0)) visits at all times t the same phase-space points
(p̃ (t) , q̃ (t)) obtained upon projection of the full-dimensional
trajectory. However, the potential VS (q̃ (t)) is known only for
systems characterized by a separable potential. In an effort
to find a general and suitable expression for VS (q̃ (t)), we
notice that the full-dimensional trajectory is continuous with
continuous first derivatives for the full-dimensional molecu-
lar potential V (q (t)), and we deduce that the M-dimensional
trajectory and VS (q̃ (t)) have the same features. In a straight-
forward way, we initially define the sub-dimensional potential
as

VS (q̃ (t)) ≡ V
(
q̃ (t) ; qNvib−M (t)

)
, (10)

where the positions qNvib−M (t) belonging to the other sub-
spaces have been downgraded to parameters. Then, we intro-
duce a time-dependent field such that

VS (q̃ (t)) = V
(
q̃ (t) ; qeq

Nvib−M

)
+ λ (t) (11)

since it is more intuitive and convenient to represent the
reduced dimensionality potential in terms of the conditioned
full-dimensional one (with the parametric coordinates in their
equilibrium positions) plus an external time-dependent field.
In agreement with our previous work,75 we take the following
expression for λ (t):

λ (t) = V
(
q̃ (t) ; qNvib−M (t)

)
−

[
V

(
q̃ (t) ; qeq

Nvib−M

)
+ V

(
qeq

M ; qNvib−M (t)
)]

(12)

which is exact in the separable limit. To verify this, we con-
sider for simplicity a two-dimensional separable potential of
the type V (q1 (t) , q2 (t)) = V1 (q1 (t)) + V2 (q2 (t)) but the pro-
cedure is readily generalizable to separable potentials of any
dimensionality. In the 2D case, using Eqs. (11) and (12), we
obtain VS (q1 (t)) = V1 (q1 (t)) − V1

(
qeq

1

)
which is exact. We

also notice that in Eq. (12) an additional last term (the value
of the instantaneous full-dimensional potential with the sub-
space coordinates at equilibrium) has been introduced with
respect to Eq. (10). It provides a linear term in the action

and consequently shifts the spectrum by a constant, allow-
ing us to match on the same scale each partial spectrum
Ĩ (E) and to obtain the full-dimensional spectrum I (E) as a
composition of the several Ĩ (E). In this last aspect, the DC-
SCIVR procedure is somewhat similar to the one employed
by Wehrle, Šulc, and Vanı́ček in their reduced-dimensionality
emission spectra simulations.97 There, they exploited con-
servation of energy to derive a projected Lagrangian whose
potential energy was made only of a constant term that had the
effect to shift the total spectra. Finally, the full-dimensional
DC-SCIVR zero point energy (ZPE) can simply be regained
by summing up the partial ZPE contributions of each
subspace.

To test the effectiveness of our scheme for VS (q̃ (t)), we
consider two strongly coupled monodimensional Morse oscil-
lators, whose analytical potential will be explicitly reported
in Sec. III A. Figure 1 reports in the left panel the phase-
space plots for a classical trajectory with energy equal to
that of the ground state. The black continuous line is for the
(p̃ (t) , q̃ (t)) values obtained from the full-dimensional vector
which becomes (p (t) , q (t)) ≡ (p1 (t) , q1 (t) , p2 (t) , q2 (t)) in
this specific case, evolved according to the full-dimensional
potential V (q (t)). The green dashed line is for the classical
trajectory starting at (p̃ (0) , q̃ (0)) and evolved according to
the approximate potential VS (q̃ (t)) = V

(
q̃ (t) ; qeq

Nvib−M

)
, i.e.,

without any λ (t) correction. Such a potential is really unfit
to describe the projected trajectory motion, since the green
curve diverges after a few time steps, as it were describing
an unbound system. Two different phase-space plots for the
same Morse oscillators appear on the right panel of Fig. 1.
Again, the black continuous line is for the exact projected
trajectory, while the red dashed line is for the classical tra-
jectory starting at (p̃ (0) , q̃ (0)) and evolved according to the
approximate potential VS (q̃ (t)) of Eq. (11). In this case, the tra-
jectory phase-space plot is typical of a bound system. For one
of the two dimensions, the phase-space exact and approximate
trajectories can be hardly distinguished. For the other degree
of freedom, despite a phase accumulation, the frequency of
the approximate trajectory motion is very similar to the exact
one.

FIG. 1. Mass-scaled phase space plot
for the two strongly coupled Morse
oscillators of Eq. (18). Left panel:
Black continuous lines for the exact
and green dashed lines for the potential

VS (q̃ (t)) = V
(
q̃ (t) ; qeq

Nvib−M

)
. Right

panel: Black continuous lines for the
exact and red dashed line for the poten-
tial of Eq. (11).
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C. Vibrational space decomposition into mutually
disjoint subspaces

It is now important to define an appropriate strategy for
the decomposition of the full-dimensional space into mutually
disjoint and convenient subspaces. The identification of rele-
vant DOFs for spectroscopic calculations is a long-standing
issue in spectroscopy, and several techniques to determine
the “effective modes” have been proposed.98,99 We present
here three possible strategies: one is based on the time evo-
lution of the Hessian matrix and the other two on the evo-
lution of the monodromy matrix. In all cases, a preliminary
test trajectory is classically evolved starting from the atomic
equilibrium positions and with initial kinetic energy equal
to the harmonic zero point energy (ZPE) and distributed
among the vibrational modes proportionally to their harmonic
frequencies.

1. The Hessian space-decomposition method

We recall a decomposition strategy that has been recently
presented75 for the computation of molecular vibrational spec-
tra. The full mass-scaled Hessian matrix is calculated at each
time step and the time averaged value of each Hessian matrix
element is obtained, i.e., H̄ij =

∑N
k=1 Hij (tk) /N , with N the

number of time steps. If ¯|H ij | ≥ ε , where ε is an arbitrar-
ily fixed threshold parameter, then the degrees of freedom i
and j are considered as belonging to the same subspace. If
|H̄ij | < ε , then i and j can still belong to the same subspace
if there exists a third degree of freedom k such that H̄ik and
H̄jk are bigger than ε . In that case, i and j (and also k) are
collected into the same subspace. In Fig. 2, we report how
the division into subspaces is affected by the chosen value of
ε . Clearly for ε = 0, all degrees of freedom are on the same
full-dimensional space as shown in Fig. 2(a). By gradually
increasing the value of ε , the subspaces become more and
more fragmented as illustrated in Figs. 2(b) and 2(c). Finally,
for ε bigger than a certain value, the full-dimensional space
is broken down into a direct sum of mono-dimensional sub-
spaces, as in Fig. 2(d). In our simulations we usually choose
a value of ε such that it maximizes the dimensionality of the
biggest subspace provided that a spectroscopic signal can be
collected and the curse of dimensionality does not kick in. This
strategy is very advantageous in terms of computational effort,
since the partition of the degrees of freedom into subspaces is
instantaneous after the classical trajectory is run and the Hes-
sian matrices calculated. However, there is no evidence that
this strategy makes the partial spectra Ĩ (E) of Eq. (7) the most
accurate with respect to the full-dimensional spectrum I (E) of
Eq. (6).

2. Wehrle-Šulc-Vanı́ček (WSV) space-decomposition
method

An alternative decomposition approach (still based on
dynamically averaged quantities and an arbitrary threshold)
has been recently introduced by Vanı́ček and co-workers.97 In
fact, to quantify the coupling between various DOFs still in a
dynamical way, one can utilize the stability matrix. This is a
2Nvib dimensional matrix also known as monodromy matrix
and defined as

FIG. 2. Hessian matrix elements for a system of 30 degrees of freedom
(benzene) greater than a given threshold value ε . The greater the value of
ε , the less dense is the matrix. Diagonal elements are out of scale and are
reported as white pixels. Panel (a) shows as pixels only the coupling elements
that are greater than ε = 0 a.u. Panels (b)–(d) are similar, respectively, for
ε = 4.5·10�7a.u., ε = 9·10�7a.u., and ε = 6·10�6a.u. In (b) and (c), the
matrix elements have been conveniently arranged after permutations (P̂) into
sub-blocks. Each sub-block determines a subspace.

M (t) ≡ *
,

∂p (t) /∂p (0) ∂p (t) /∂q (0)

∂q (t) /∂p (0) ∂q (t) /∂q (0)
+
-
= *

,

Mpp Mpq

Mqp Mqq

+
-

.

(13)
It may be employed to measure how the classical energy
is exchanged in time between the DOFs and, by virtue of
Liouville’s theorem, its determinant is always equal to 1.

In their paper, Vanı́ček and co-workers define the follow-
ing quantity B to measure the amount of coupling between the
vibrational degrees of freedom in a dynamical fashion,

Bij =
�����
βij

βii

�����
,

βij =
1
T

∫ T

0
dt

(
|Mqiqj (t)| + |Mqipj (t)| + |Mpiqj (t)| + |Mpipj (t)|

)
,

(14)
where ���Mij (t)��� are the absolute values of the monodromy matrix
elements of Eq. (13). After an arbitrary parameter εB is cho-
sen, if the test max

{
Bij, Bji

}
≥ εB is passed, then modes i and

j go into the same subspace, following a procedure very sim-
ilar to the one employed for our Hessian criterion but with
the difference that more than a single threshold is used. In
our calculations with the WSV method, given an Nvib vibra-
tional space, the bigger M-dimensional subspace is determined
through a fixed value of εB. For the remaining Nvib �M DOFs,
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a different value of εB is chosen to obtain the biggest subspace
between the remaining DOFs and so on and so forth until all
DOFs are grouped.

One might wonder if other dynamical quantities fit in the
same general scheme made of a trajectory average followed by
a comparison versus a threshold value. In this regard, the inter-
ested reader may find tests and a thorough discussion of several
ways to define B on the basis of alternative averaged quantities
(like, for instance, the correlation matrix of the wavepacket)
in Wehrle’s doctoral thesis.100

3. Jacobi space-decomposition method

We here introduce a new approach to determine a subspace
partition which leads to a more accurate calculation of Ĩ (E).
Since in DC-SCIVR the coherent state overlap 〈χ |p (t) , q (t)〉
is already written in terms of direct mono-dimensional over-
laps and the action S̃t (p̃ (0) , q̃ (0)) is approximated accord-
ing to Eqs. (9), (11), and (12), the best strategy is one that
minimizes the error in decomposing the full-dimensional pre-
exponential factor into a direct product of lower-dimensional
ones so that Ct (p (0) , q (0)) ≈

∏Nsub
i C̃t,i (p̃ (0) , q̃ (0)), where

N sub is the number of subspaces. To understand how to bet-
ter proceed, we take a two-dimensional separable system. The
pre-exponential factor (4), using Eq. (13), can be written as

Ct (p (0) , q (0)) =

√
det

�����
1
2

(
Mqq + Mpp − i~ΓMqp +

i
Γ~

Mpq

) �����
.

(15)
In the case of a two-dimensional separable system, the matrix
components of Eq. (13) are diagonal matrices,

Mpp = *
,

Mp1p1 0

0 Mp2p2

+
-

, Mpq =

(
Mp1q1 0

0 Mp2q2

)
, . . . , etc.

(16)
Since the determinant of a block diagonal matrix is equal to the
product of the block determinants, in the case of a separable
system, the pre-exponential factor of Eq. (15) is given by the
product of the pre-exponential factors of each dimension. This
consideration suggests that the best sub-space division is the
one that minimizes the off-diagonal terms of the monodromy
components in Eq. (16). The elements of the monodromy
matrix can be rearranged into the Jacobian matrix

J (t) = *
,

∂qt/∂q0 ∂qt/∂p0

∂pt/∂q0 ∂pt/∂p0

+
-

(17)

and, in the case of a separable system, the determinant
of the full-dimensional Jacobian, J (t), is given by the
product of the determinants of each sub-space Jacobian
J̃i (t), i.e., det (J (t)) =

∏Nsub
i det

(̃
Ji (t)

)
. By virtue of

Liouville’s theorem, det (J (t)) = 1 at anytime, i.e., dp (t) dq (t)
= dp (0) dq (0), and, for a separable system, det

(̃
Ji (t)

)
= 1 for

the generic ith subspace so that dp̃i
tdq̃i

t = dp̃i
0dq̃i

0. However,
in general, dp̃tdq̃t , dp̃0dq̃0 and we need to look for the sub-
space partition which provides subspace Jacobians J̃i (t) with
the closest determinants to one. Since the Jacobian is time
dependent, the search for the more suitable subspace division
and for the best grouping of the vibrational modes within the
different subspaces also depends on time. The chosen set of M
vibrational modes for a M-dimensional subspace is the one that

makes the J̃M (t) determinant the closest to unity more often
during the time evolution of the test trajectory, and we will refer
to this procedure as the “Jacobi criterion” from now on. The
selection of the best subspace dimensionality is instead per-
formed in a hierarchical way starting from the full-dimensional
space and then proceeding through the remaining degrees
of freedom. More specifically, once the best M-dimensional
grouping has been determined for each subspace of dimen-
sionality M ≤ Nvib, among these best subspaces of different
dimensionality we choose the one for which the determinant
of J̃M (t) (averaged over the trajectory) is the closest to unity.
Clearly, M is acceptable if it permits to achieve Monte Carlo
convergence in TA-SCIVR calculations in the subspace, so
it cannot be too big, otherwise the curse of dimensionality
still kicks in. The same procedure is then iteratively applied
for the remaining degrees of freedom until all of them have
been grouped in various subspaces. The final result is a sepa-
ration of the full-dimensional space into subspaces, where each
subspace preserves Liouville’s theorem with the best possible
accuracy. The main drawback of the method is that it comes at
a higher computational cost than the two previously described
ones.

In Sec. III, we will apply Eqs. (11) and (7) to several
systems and compare our results with the available quantum
mechanical vibrational eigenvalues.

III. RESULTS AND DISCUSSION
A. A model system: Two strongly coupled
Morse oscillators

To test the accuracy of Eq. (7), we consider a coupled
system of the type

V (q1, q2) = D
2∑

i=1

[
1 − e−αi(qi−qeq

i )
]2

+

× c
(
q1 − qeq

1

)2 (
q2 − qeq

2

)2
, (18)

where the coupling is biquadratic, the dissociation energy D
= 0.2 a.u. is the same for each oscillator, αi = ωi

√
µ/2D,

c = 10�7µ2, and qeq
1 = qeq

2 = 0. The reduced mass µ is
that of the H2 molecule, i.e., µ = 918.975 a.u., and the har-
monic frequencies are 3000 and 1700 wavenumbers. The
oscillators are strongly coupled as shown by the deviation
of the vibrational eigenvalues from the uncoupled ones. In
this case, there are two monodimensional subspaces and, as
anticipated, we sample the initial phase-space conditions for
the (p̃ (t) , q̃ (t)) trajectories according to a Husimi distribu-
tion for the internal degree of freedom using a Box-Muller
sampling centered at p̃eq

1 =
√
ω1, q̃eq

1 or p̃eq
2 =

√
ω2, q̃eq

2 , with
the other (external) degree of freedom initially set at equilib-
rium. The projection of the reference state on the subspaces
is | χ̃〉 = ���

√
ωi, qeq

i

〉
, i = {1, 2}. The potential of Eq. (18)

provides quite a stringent test for the DC-SCIVR approach
because of the artificial strong coupling. We simulate the full-
dimensional and the partial-dimensional spectra both with sin-
gle trajectories using the MC-SCIVR approach and with many
trajectories by means of Husimi-sampled TA-SCIVR calcula-
tions. In this latter instance, we perform 10 000 trajectories
50 000 a.u. long per subspace.
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FIG. 3. DC-SCIVR spectra for the Morse oscillators of Eq. (18). Dashed
lines are for the MC-SCIVR simulations and continuous ones are for 10 000-
trajectory simulations. (a) The black line for the full-dimensional TA-SCIVR
spectrum; (b) the red line for the DC-SCIVR spectrum of mode 1; (c) the
green line, the same of (b) for mode 2. Vertical blue dashed blue lines indi-
cate the exact values calculated by a Discrete Variable Representation (DVR)
approach.101

The MC-SCIVR spectrum is losing accuracy only at high
energies, since such energy range is not well sampled by MC-
SCIVR. In the partial spectra Ĩ (E) in Fig. 3, the overtones
generated by the quantum contribution from the other subspace
are much less intense and barely detectable. Nevertheless, the
main spectroscopic features, i.e., fundamentals and most of
the overtones, are faithfully reproduced.

B. Small molecules: H2O, CH2O, CH4, and CH2D2

We choose H2O, CH2O, CH4, and CH2D2 as test cases
for DC-SCIVR, since these are molecular systems accessible

to full-dimensional SCIVR calculations, as it has been
shown in the past.76,77,92,93 We perform full-dimensional
TA-SCIVR and DC-SCIVR calculations using 30 000 a.u. long
classical trajectories, which is a typical dynamics length for
semiclassical calculations on molecules.60,63,92

For H2O, which is the smallest of these systems, we gen-
erate 12 000 classical trajectories on the potential energy sur-
face from Partridge and Schwenke102 for the full-dimensional
TA-SCIVR calculations, and 4000 trajectories per degree of
freedom in the case of DC-SCIVR spectra. As in the case of the
Morse oscillators, the reference state of each M-dimensional
subspace is | χ〉 =

∏M
i

���
√
ωi, qeq

i

〉
, where ωi is the harmonic

frequency of the i-th normal mode of vibration included in
the subspace. Harmonic frequencies are listed in the “HO”
column of Table I. By employing the three different sub-
space partition criteria previously illustrated, we find that
the three vibrational degrees of freedom of water should
always be grouped into two different subspaces. However,
in the case of the Hessian approach, modes 1 and 2 (the
bending and symmetric stretch, respectively) are separated
from mode 3 (the asymmetric stretch), while the Jacobi and
WSV methods suggest to collect together modes 2 and 3,
leaving mode 1 alone. In Fig. 4, the DC-SCIVR spectra of
water obtained with the Jacobi criterion are presented, while
Table I reports the detailed computed energy levels and com-
pares them with full-dimensional SCIVR estimates and exact
values.

First of all we observe that DC-SCIVR estimates gener-
ally account pretty well for the anharmonicity of water. This
can be appreciated by comparing the mean absolute devia-
tions from quantum exact values of the DC-SCIVR estimates
(∼20 cm�1) to the mean deviation of the harmonic frequen-
cies (∼140 cm�1). In spite of the anharmonicity and intermode
coupling of water, all separation criteria offer rather accurate
estimates. Only in the case of the asymmetric stretch funda-
mental frequency the partition procedure overestimates the
quantum value, which is anyway very accurately regained by
the full-dimensional semiclassical approximation.

Moving to CH2O, we sample 24 000 classical trajectories
to have the full-dimensional SCIVR calculation converged on

TABLE I. Vibrational energy levels of water. The first and second columns show the vibrational state label and
the exact results, respectively; the third column reports the full-dimensional TA-SCIVR eigenvalues. Column
four shows the DC-SCIVR results with the Jacobi subspace criterion (DC SCIVRJacobian); column five refers to
frequencies based on the WSV method (DC SCIVRWSV); in column six results obtained by employing the Hessian
matrix criterion (DC SCIVRHess) are listed. The last column reports the harmonic estimates HO. All values are
in cm�1. MAE stands for mean absolute error and it is calculated with respect to the exact values102 and for
DC-SCIVR simulations also with respect to the full-dimensional TA-SCIVR values. Values for DC SCIVRJacobi
and DC SCIVRWSV are exactly the same because they are based on exactly the same partition of the vibrational
modes into the two work subspaces.

Mode Exact102 TA SCIVR DC SCIVRJacobi DC SCIVRWSV DC SCIVRHess HO

11 1595 1580 1584 1584 1581 1649
12 3152 3136 3164 3164 3154 3298
21 3657 3664 3668 3668 3656 3833
31 3756 3760 3802 3802 3824 3944

MAE exact 11 20 20 21 141

MAE SCIVR 20 20 23
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FIG. 4. DC-SCIVR vibrational spectra of H2O. The black line in panel (a)
reports the two-dimensional subspace spectrum and the red line in panel (b)
reports the monodimensional one. Vertical blue dashed lines are the full-
dimensional TA-SCIVR values.

the potential energy surface constructed by Martin et al.103 To
keep the same overall computational cost, we take 4000 tra-
jectories per degree of freedom when calculating the partial
spectra. The dimensionality of each subspace for the DC-
SCIVR calculations is chosen by employing the three crite-
ria introduced in Sec. II. In the case of the Hessian matrix
criterion, we find that for a value of ε = 3.0·10�7, the full
six-dimensional vibrational space is partitioned into a three-
dimensional, a bi-dimensional, and a mono-dimensional sub-
space. When using the WSV approach, the biggest subspace
dimensionality is four for a threshold value of εB = 120. When
employing the Jacobi criterion, the division turns out to be
different. Figure 5 shows the displacement of the determinant
of the reduced-dimensional Jacobian matrix, i.e., det

(
J̃i (t)

)
calculated on the basis of the projected trajectories p̃ (t) , q̃ (t),
from unity for different choices of the subspace dimension-
ality M in the case of CH2O, CH4, and CH2D2. Clearly,
there is no approximation for the full-dimensional analyses.
For the CH2O molecule, the smallest deviation is obtained
for a maximum subspace dimensionality equal to 4, which

FIG. 5. Average values of ���1 − det
(
J̃M (t)

) ��� for the best grouping for different
subspace dimensionalities M. Black filled circles for CH2O, red filled squares
for CH4, and green filled triangles for CH2D2.

FIG. 6. DC-SCIVR vibrational spectra of CH2O. The black line in panel
(a) reports the four-dimensional subspace spectrum and the red line in panel
(b) reports the bi-dimensional one. Vertical blue dashed lines are the full-
dimensional TA-SCIVR values.

is slightly better than a bi-dimensional choice. After setting
these four normal modes into the same subspace, the other
two left modes are taken in the same subspace. Eventually
the initial full-dimensional space is divided into 4- and 2-
dimensional ones. The corresponding spectra are reported in
Fig. 6. As a comparison, the full-dimensional TA-SCIVR val-
ues are reported as vertical blue dashed lines. All vibrational
features are faithfully reproduced, including overtones. It may
be noticed that the signals of the fifth and sixth fundamentals
sum up to a broader peak in the 4-dimensional spectrum. They
can be separated by inserting the parity symmetry into the ref-
erence state when performing the 4-dimensional simulation.
This common practice in semiclassical calculations permits
us to enhance the signal of one vibration at a time.58,77 To
have a more detailed comparison, Table II shows DC-SCIVR
results, the exact ones,104 and the full-dimensional SCIVR
frequencies.

To help the reader to better appreciate the level of accu-
racy for each semiclassical approximation, we report in the last
lines the Mean Absolute Error (MAE). The DC-SCIVR devi-
ation with respect to the exact value is 12 cm�1 for the Jacobi
and WSV approaches and 25 cm�1 for the Hessian one. These
values are comparable with the full-dimensional TA-SCIVR
one of 9 cm�1. Conversely, a harmonic estimate is almost three
times less accurate than the DC-SCIVR ones. When compar-
ing the approximate DC-SCIVR results with the TA-SCIVR
ones, the deviation is on average really small, respectively,
6 cm�1, 6 cm�1, and 19 cm�1 for the Jacobi, WSV, and Hessian
criteria.

In the case of the CH4 molecule, we employ the potential
energy surface (PES) by Lee et al.105 Given the highly chaotic
regime for the classical trajectories of this PES, about 95% of
the trajectories have been rejected due to the deviation of the
full-dimensional monodromy matrix determinant from unity.
By employing an amount of 180 000 trajectories, we still have
enough trajectories left for TA-SCIVR Monte Carlo conver-
gence. When dividing the space into subspaces, we keep the
number of trajectories per degree of freedom equal to 20 000,
in order to have for the overall DC-SCIVR calculation the
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TABLE II. The same as in Table I this time for the vibrational energy levels of CH2O.

Mode Exact104 TA SCIVR DC SCIVRJacobi DC SCIVRWSV DC SCIVRHess HO

11 1171 1162 1154 1154 1192 1192
21 1253 1245 1246 1246 1244 1275
31 1509 1509 1508 1508 1508 1544
41 1750 1747 1746 1746 1755 1780
12 2333 2310 2288 2288 2286 2384
22 2502 2497 2490 2490 2423 2550
51 2783 2810 2816 2816 2836 2930
61 2842 2850 2845 2845 2864 2996
32 3016 3018 3016 3016 3024 3088
42 3480 3476 3478 3478 3486 3560

MAE exact 9 12 12 25 66

MAE SCIVR 6 6 19

same total amount of trajectories. We have recently shown75

that when a value of ε = 4.8·10�7 is employed for the Hessian
criterion, the nine-dimensional vibrational space of methane is
decomposed into six-dimensional and three-dimensional ones.
When applying the WSV criterion with εB = 85, we also obtain
a six-dimensional and a three-dimensional subspace. Finally,
even on the basis of the Jacobi criterion, the better choice
for the maximum dimensional subspace is six, as shown in
Fig. 5. We then hierarchically apply the same criterion for the
remaining vibrational modes and find out that a division into a
bi-dimensional plus a mono-dimensional subspace is preferred
with respect to a single three-dimensional one. Eventually,
the nine-dimensional vibrational space is partitioned into six-,
two-, and mono-dimensional ones. Figure 7 reports the partial
spectra of the three subspaces. Given the degeneracy of some
of methane vibrations, the nine vibrational modes are labeled
in four groups. Since degenerate modes can be projected
onto different subspaces, spectral contributions to the same
peak may be observed in Fig. 7 from different spectra. The

FIG. 7. DC-SCIVR vibrational spectra of methane. Black line in panel (a)
reports the six-dimensional subspace partial spectrum, the red line in panel (b)
reports the bi-dimensional one, and the green line in panel (c) reports the mono-
dimensional one. Vertical blue dashed lines indicate the full-dimensional TA-
SCIVR values.

full-dimensional TA-SCIVR peaks are once again well repro-
duced, including overtones and combination of overtones.
Vibrations 41 and 22 have been separated by including the
parity symmetry into the reference state. For a detailed com-
parison, we report in Table III our vibrational eigenvalues
and compare them with the exact ones. On average, the full-
dimensional TA-SCIVR is quite accurate, i.e., there is only a
12 cm�1 difference from the exact frequency. The DC-SCIVR
accuracy using the Jacobi criterion is slightly worse (MAE
= 17 cm�1), and it is comparable when using either the WSV
or the Hessian criterion. These deviations are about six times
more accurate than a crude harmonic approximation. Finally,
a comparison among the different semiclassical approaches
shows that in this case the Hessian criterion provides slightly
more accurate results than the Jacobi ones. However, it is the
overtone excitation 12 which is responsible for the slightly
worse accuracy of the Jacobi criterion with respect to the
Hessian one. If one did not consider this term on the MAE
calculation, the Jacobi DC-SCIVR estimate would be on aver-
age within 9 cm�1 of the exact one and only 6 cm�1 away from
the TA-SCIVR value.

Finally, we look at the lower symmetry molecule CH2D2,
where some of the typical degenerations of methane have
been removed. We employ the same PES as in the case of
CH4 and experience a comparable percentage of trajectory
rejection for the monodromy matrix evolution in a chaotic
potential. As above, we choose to employ 180 000 trajecto-
ries. Using the Hessian matrix criterion at a value ε = 2·10�7,
we obtain a decomposition of the full nine-dimensional space
into a six-dimensional and a three-dimensional one. Accord-
ing to the WSV criterion, at a value εB = 180, we obtain a
decomposition of the full nine-dimensional space into a four-
dimensional, a three-dimensional, and a bi-dimensional one.
In the Jacobi approach reported in Fig. 5, we look at the green
triangle profile and conclude that a four-dimensional subspace
is the first step in the hierarchical determination of the sub-
spaces. Then, among the remaining five-dimensional modes,
the Jacobi analysis leads to a partition into a three- and a
two-dimensional subspace. Eventually, the nine-dimensional
space is divided into four-, three-, and two-dimensional
subspaces.
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TABLE III. The same as in Table I but for the vibrational energy levels of CH4.

Mode Exact106 TA SCIVR DC SCIVRJacobi DC SCIVRWSV DC SCIVRHess
75 HO

11 1313 1300 1296 1308 1300 1345
21 1535 1529 1530 1530 1532 1570
12 2624 2594 2556 2588 2606 2690
1121 2836 2825 2830 2832 2834 2915
31 2949 2948 2960 2933 2964 3036
22 3067 3048 3060 3044 3050 3140
41 3053 3048 3056 3038 3044 3157

MAE exact 12 17 15 11 68

MAE SCIVR 11 7 7

Figure 8 reports the partial spectra for the four-
dimensional (a), the three-dimensional (b), and the two-
dimensional (c) subspaces. By comparison with the dashed
vertical lines representing the full-dimensional semiclassical
results, we can observe that some accuracy is lost for the com-
bined overtones (see the 1121 peak) with respect to the typical
accuracy of the fundamental peaks, as it was noticed for the
strongly coupled Morse oscillators.

Table IV shows the computed DC-SCIVR energy levels
which are compared with both the exact values106 and the
full-dimensional TA-SCIVR ones. For this system, the MAEs
relative to the exact values are more accurate for the TA-
SCIVR and the Jacobian DC-SCIVR than for the standard
Hessian criterion. When comparing the different semiclassi-
cal approaches the expected order is found, i.e., from the more
accurate TA-SCIVR to the less accurate DC-SCIVR.

C. A complex and strongly anharmonic molecular
system: H5O+

2

We keep proceeding in the application of DC-SCIVR to
larger and larger molecules and face the challenge represented
by the Zundel cation. H5O2

+ with its 15 vibrational degrees
of freedom has attracted the interest of many, mainly due to

FIG. 8. DC-SCIVR vibrational spectra of the CH2D2 molecule. The black
line in panel (a) reports the partial spectrum for the 4-dimensional subspace,
the red line in panel (b) reports the three-dimensional one, and the green line
in panel (c) reports the bi-dimensional one. Vertical blue dashed lines are the
full-dimensional TA-SCIVR values.

the vibrational features related to the motion of the shared
proton. Specifically, a doublet is found in the vibrational pre-
dissociation spectra of Zundel ions in the region of the O–H–O
stretch associated with the proton transfer (∼1000 cm�1). Fur-
thermore, two neatly separated bending signals are present
owing to the water bending-proton transfer interaction.107,108

Consequently in our investigation we focus our attention
on the proton transfer doublet, the water bendings, and, in
addition, the four high-frequency free OH stretchings which
are well detected by experimental spectra.109 We benchmark
our DC-SCIVR simulations against the Multi Configuration
Time Dependent Hartree (MCTDH) calculations of Meyer
et al.107,110–115 and also compare them with the Vibrational
Configuration Interaction (VCI) estimates of Bowman and
collaborators.116

We propagate the test classical trajectory on an accu-
rate H5O2

+ PES.117 The trajectory is characterized by a
strongly roto-vibrationally coupled motion leading to mon-
odromy matrix instability and to a couple of hindrances to the
application of our semiclassical techniques. For this reason,
a Jacobi-based subspace partition is not feasible and we have
to rely on the Hessian method to determine our work sub-
spaces. Also, the coupling is responsible for an exaggerated
broadening of the spectral features. This latter drawback can be
overcome by removing the Cartesian angular momentum every
few steps along the dynamics of the trajectories employed in
our calculations. The associated loss in energy may partially
affect the frequency accuracy (an artificial shift towards their
harmonic counterparts is anticipated for the high frequencies)
but it is compensated by the Husimi distribution of energies
around the harmonic zero-point one employed for the initial
conditions. Finally, due to the monodromy matrix instability,
the original Herman-Kluk prefactor cannot be employed, so
we approximate it by means of a reliable second-order itera-
tive approximation that depends only on the Hessian matrix.93

As expected, peaks in the spectra still not only have good
accuracy but they are also much narrower thus decreasing the
uncertainty of our results.

The Hessian criterion suggests us to enroll the normal
modes associated with the free OH stretchings of the two water
molecules into a four-dimensional subspace, while all the other
degrees of freedom are grouped into mono-dimensional sub-
spaces. For this reason, we assign the two water bendings to
two separate mono-dimensional subspaces, and the same fate
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TABLE IV. The same as in Table I but for the vibrational energy levels of CH2D2.

Mode Exact106 TA SCIVR DC SCIVRJacobi DC SCIVRWSV DC SCIVRHess HO

11 1034 1026 1028 1020 1038 1053
21 1093 1084 1072 1098 1086 1116
31 1238 1230 1234 1212 1230 1266
41 1332 1329 1320 1326 1316 1360
51 1436 1430 1430 1420 1434 1471
1121 2128 2110 2089 2080 2114 2169
61 2211 2199 2195 2192 2137 2236
1131 2242 2236 2250 2231 2210 2319
71 2294 2268 2274 2250 2274 2336
1141 2368 2356 / / 2400 2413
1151 2474 2456 2485 2436 2484 2524
2151 2519 2504 2516 2494 2510 2587
3151 2674 2660 2661 2672 2627 2737
4151 2769 2756 2754 2734 / 2831
81 3008 3050 3000 3012 3026 3103

MAE exact 14 13 21 21 47

MAE SCIVR 12 15 19

applies to the mode associated with the shared proton motion.
The only exception concerns the O–O stretching mode which is
collected with a wagging state into a bi-dimensional subspace.
This choice is driven by previous studies that have provided
evidence of the occurrence of a combined state interacting with
the shared proton motion.107,111 We run 2000 full-dimensional
classical trajectories per degree of freedom, i.e., 2000 for
the mono-dimensional subspaces, 4000 for the bi-dimensional
one, and 8000 for the four-dimensional subspace. For each sub-
space, the initial kinetic energy is given in the usual harmonic
fashion to the four OH stretches and to the modes enrolled in
the subspace under investigation. No energy is instead given
to the other modes.

FIG. 9. Vibrational spectra of the Zundel cation. Starting from the top, orange,
magenta, and blue lines report the spectra of the mono-dimensional subspaces
associated with the (bu), (bg), and (1z) excitations; the green and red lines
build up together the bi-dimensional subspace. The zero point energy value
has been shifted to the origin in each subspace to help the reader in compar-
ing the different frequencies. The vertical dashed lines indicate the MCTDH
reference.107

Figure 9 reports the main excitations below 2000
wavenumbers. To remove any spurious noise effect, we add
a Gaussian filter of type e−αt2

in the Fourier transform, with
α = 3·10�8 a.u. The orange and magenta lines refer to the two
water bendings (bu) and (bg); the blue line shows the signal of
the shared proton motion (1z) and a mixed excitation (1z, 1R).
Finally, on the bottom of the figure are the spectra associ-
ated with the bi-dimensional subspace. The usual procedure
based on selecting the parity of the semiclassical reference
state permits us to separate the overlapping features of this
bidimensional subspace. Specifically, in green the fundamen-
tal for the O–O stretch (1R) and its overtone (2R) are detected,
while in red the excitation ω3 of the wagging state (assigned
on the basis of the MCTDH benchmark) and the combined
excitation (1R,ω3) stand out. In Fig. 10 are instead illustrated

FIG. 10. Vibrational spectra of the Zundel cation in the free OH stretching
region. Starting from the bottom, panel (a) reports the spectrum of (sg) and
(su), and panel (b) refers to (sa) excitations. The zero point energy value has
been shifted to the origin to help the reader in evaluating the frequencies of
the peaks. The vertical dashed lines indicate the MCTDH estimates.107
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TABLE V. Vibrational energy levels of the Zundel cation reported in cm�1. The first column presents the label of
the excitation according to Ref. 107. The second column contains the experimental values, the third and fourth ones
show the MCTDH results from two different studies,107,111 while in the fifth column, our DC-SCIVR estimates are
reported. Column six contains the VCI energy levels116 and, finally, in the last column are the harmonic estimates
of the fundamental excitations. The last row reports the mean absolute error of the DC-SCIVR estimates with
respect to the benchmark MCTDH values of Ref. 107.

Label Expt.109 MCTDH107 MCTDH111 DC SCIVR VCI116 HO

(ω3)a 374 386 452
(1R) 550 532 630
(1R,ω3) 928 918 913 920
(1z) 1047 1033 1050 952 1070 861
(2R) 1069 1008
(1z, 1R) 1470 1411 1392 1520 1600
bg 1606 1668 1604 1720
bu 1763 1756 1756 1768 1781 1770
sg 3607 3650 3610 3744
su 3603 3614 3618 3650 3625 3750
sa 3683 3689 3680 3720 3698 3832

MAE 46

aThis assignment of the ω3 wagging excitation is done upon comparison to the benchmark MCTDH values.

the DC-SCIVR spectra of the free OH stretchings. In panel (a)
the spectra of the (sg) and (su) excitations are reported, while
panel (b) shows the signal of the two remaining OH stretchings
labeled as (sa).

Table V shows our computed energy levels, labeled with
the usual nomenclature for the Zundel cation reported in the
literature.107,111 Our DC-SCIVR estimates are pretty accurate
with the exception of the combined excitation (1z, 1R) which
is rather off-the-mark, but anyway better than the VCI value.
A certain degree of inaccuracy arises also for the (1z) signal.
As anticipated, the high frequency estimates are blue shifted
with respect to the benchmark values, an effect the instanta-
neous removal of the Cartesian angular momentum may have
largely contributed to. Overall, the average deviation from
MCTDH results is 46 wavenumbers that decreases to 38 if
(1z, 1R) is not considered. These values are not far from those
found for smaller molecules and are satisfactory given the high
complexity of the Zundel cation.

D. “Divide-and-conquer” semiclassical dynamics
for a high dimensional molecule: Vibrational
power spectrum of benzene

Halverson and Poirier have recently calculated the vibra-
tional frequencies of benzene using a discrete variable repre-
sentation (DVR) approach. They pushed the limits of “exact”
vibrational state calculations up to thirty dimensions.78 In their
method, the DVR basis set and grid has been conveniently
selected using phase-space localized basis (PSLB) sets and
truncated Harmonic Oscillator Basis (HOB) functions.3,4,118

They were able to obtain all the relevant (about a million)
vibrational energy levels of benzene within a given energy
threshold. They employed a quartic force field modeling for
the PES.119

We employ the same surface for a direct comparison
between the present DC-SCIVR method and the exact DVR
one. First we study how to best partition the 30-dimensional
space. Using the Hessian-based approach and ε = 9·10�7, the

full-dimensional space is separated into one eight-dimensional
subspace, eight bi-dimensional subspaces, and six mono-
dimensional subspaces. When employing the WSV criterion
and εB = 5.6·103, the full-dimensional space is partitioned into
one ten-dimensional subspace, two seven-dimensional sub-
spaces, and one six-dimensional subspace. When using the
Jacobian-based criterion, the computational search for space
decomposition is much more computationally expensive since
all possible combinations of the 30 vibrational modes into
groups of M should be tested. We restrict instead our search
to 6 ≤ M ≤ 10 since the Hessian criterion shows that when
the biggest subspace is eight-dimensional then the results are
quite accurate. We cannot rule out that there may be a better
choice for M > 10. However, the potential little improvement
in the accuracy of the results does not justify the additional
huge computational overhead.

Figure 11 shows the result of this search and points to a
seven-dimensional subspace for the first partition. The same
procedure is repeated and involves the remaining 23 modes.

FIG. 11. Values of ���1 − det
(
J̃M (t)

) ��� for different choices of the subspace
dimensionality M for the C6H6 molecule.
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TABLE VI. Benzene DC-SCIVR vibrational frequencies compared with available quantum results (EQD). Degenerate frequencies are not replicated. Values
are given in cm�1.

State HO DC SCIVRWSV DC SCIVRJacobi EQD State HO DC SCIVRWSV DC SCIVRJacobi EQD

11 407 432 399 399.4554 111 1167 1150 1144 1147.751
21 613 610 606 611.4227 121 1192 1189 1175 1180.374
31 686 610 696 666.9294 22 1226 1223 1228 1221.27
41 718 742 719 710.7318 131 1295 1330 1314 1315.612
51 866 865 869 868.9106 141 1390 1375 1352 1352.563
61 989 990 997 964.0127 42 1436 1410 1437 1418.58
71 1011 1038 1020 985.8294 151 1512 1464 1492 1496.231
81 1008 1002 990 997.6235 161 1639 1614 1602 1614.455
91 1024 1014 1014 1015.64 52 1732 / 1752 1737.51
101 1058 1042 1042 1040.98 MAE 15 9

The second subspace found is a six-dimensional one. The
third search (among the remaining 17 modes) leads to a ten-
dimensional subspace. The remaining seven modes are col-
lected together within the same subspace. Eventually, the full
thirty-dimensional vibrational space has been partitioned into a
ten-dimensional subspace, two seven-dimensional subspaces,
and one six-dimensional subspace. Whatever the method
employed for partitioning the space, we run 1000 trajec-
tories per degree of freedom to calculate the frequencies.
Each trajectory is 30 000 a.u. long. To remove any spuri-
ous noise effect, in the Fourier transform, we add the same
Gaussian filter used for the Zundel cation. As usual, the ref-
erence state of each M-dimensional subspace is written as
| χ〉 =

∏M
i

���
√
ωi, qeq

i

〉
, where ωi are the harmonic frequencies

that we report under the columns “HO” in Table VI. For the
evolution of the pre-exponential factor (4) and its phase cal-
culation, we use a recently introduced iterative second-order
approximation.93 This approximation allows for the calcula-
tion of the pre-exponential factor without explicitly calculating

FIG. 12. Vibrational spectra of C6H6 as obtained upon partition of the full-
dimensional space according to the Jacobian criterion. Panel (a) reports the
features of the six-dimensional subspace. Panels (b) and (c) contain the spectra
of the two seven-dimensional subspaces, while panel (d) refers to the 10-
dimensional subspace. The zero point energy value has been shifted to the
origin to help the reader in evaluating the frequencies of the other peaks. The
vertical lines indicate the exact levels from Poirier’s EQD calculations.78

the monodromy matrix elements, and it can be safely employed
for strongly chaotic and high-dimensional systems, as in the
case of the benzene molecule. Figure 12 shows our computed
spectra. Panel (a) reports the six-dimensional subspace, panels
(b) and (c) report the seven-dimensional ones, and panel (d)
reports the 10-dimensional subspace.

We follow Halverson and Poirier in their labeling of vibra-
tional states. Table VI reports our computed energy levels
compared with the available exact ones. We find an excellent
agreement with a MAE of only 9 wavenumbers when adopting
Jacobi’s criterion. With the WSV approach, the MAE increases
to 15 cm�1. As we have recently reported,75 the Hessian cri-
terion leads to still acceptable but less accurate results, with a
MAE of 19 wavenumbers.

Despite the increase in dimensionality, we conclude that
moving from the four smaller molecular systems of Sec. III B
to benzene, the MAE referred to the exact results is anyway
limited to 10-20 cm�1, a proof of the reliability of DC-SCIVR
and of the accuracy of the new Jacobian criterion.

IV. SUMMARY AND CONCLUSIONS

All quantum mechanical methods suffer from the curse
of dimensionality. In this paper, we have illustrated a method
to deal with it and to obtain vibrational frequencies almost as
accurate as in standard SCIVR simulations, i.e., just a few
wavenumbers away from the exact quantum values. More
specifically, a “divide et impera” strategy has been adopted,
in which spectra are calculated in partial dimensionality even
if they are still based on full-dimensional classical trajectories.
The method does not take advantage in any way of molecular
symmetry.

We have shown how crucial the choice of the criterium for
the decomposition of the full-dimensional space into mutually
disjoint subspaces can be. In particular, the partition proce-
dure based on the Jacobian matrix is the one that usually
minimizes the error in approximating the full-dimensional pre-
exponential factor as the direct product of several reduced
dimensionality ones. This is evident from Fig. 13 where DC-
SCIVRJacobi is clearly the overall more accurate way to decom-
pose the vibrational space. The exception of CH4 is due to
a not very accurate estimate of a single overtone which we
have anyway included in the MAE calculation, while the
Jacobian-based partition strategy remains the most accurate
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FIG. 13. Trend of the mean absolute error (MAE) with respect to exact results
for the different molecules investigated. Results refer to full-dimensional
SCIVR calculations (blue), DC-SCIVR with Hessian matrix criterion (black),
DC-SCIVR with Jacobian matrix criterion (green), and DC-SCIVR with WSV
subspace partition (magenta).

even for CH4 as far as fundamental frequencies are con-
cerned. The apparent better accuracy of DC-SCIVRJacobi with
respect to the full-dimensional calculation for CH2D2 is to
be ascribed instead to an accidental compensation of errors
between the semiclassical and subspace-partition approxima-
tions. Another key advantage of the Jacobian-based approach
lies on its less noisy spectra with better resolved peaks,
which is going to be more and more evident and helpful as
the dimensionality of the system increases. Remarkably, the
Jacobi criterion provides an internally consistent method to
check the reliability of the subspace partition. In fact, not
always an increase in the subspace dimensionality leads to
more accurate vibrational frequencies. On the contrary, spec-
tra can be noisier or it could be even impossible to collect a
sensible spectral signal. The partitioning schemes here devel-
oped can be also adopted for on-the-fly DC-SCIVR calcu-
lations. In fact, upon calculation of the test trajectory and
of the associated Hessians and monodromy matrix elements
by means of ab initio molecular dynamics, it is possible to
determine the best subspace partition by following exactly
the same procedures and at no additional cost with respect to
DC-SCIVR simulations based on analytical potential energy
surfaces.

DC-SCIVR, like other semiclassical and classical meth-
ods, is based on the Fourier transform of a survival amplitude.
According to Nyquist’s theorem, for a total evolution time
T, a peak width equal to 2π/T should be expected. In our
simulations, though, other factors contribute to increase the
width of the spectral features. The ro-vibrational coupling
generates a vibrational angular momentum which perturbs the
pure vibrational motion. Furthermore, when a Gaussian filter
is employed, peaks may be substantially enlarged (as in the
case of H5O2

+ and benzene). The full width at half maximum
(FWHM) of the peaks provides a measure of the uncertainty
of our results and benchmark values are always within this
uncertainty bar. A potential drawback related to the width of
the peaks is that it may hinder the resolution of spectral fea-
tures very close to each other. A practical way to overcome
this issue, which is largely adopted in semiclassical dynam-
ics, consists in employing a proper combination of coherent

states able to introduce a parity symmetry77,92 which permits
to distinguish among spectral features belonging to different
vibrational modes.

A known issue of semiclassical spectra is represented by
the so-called “ghost” peaks. These are unphysical features that
can be generally distinguished from the true fundamental tran-
sitions because of their much lower intensity. As shown in
Fig. 3, this is not a specific drawback of DC-SCIVR simu-
lations since full-dimensional calculations present the same
issue. The adoption of a combination of coherent states able
to account for the parity symmetry further enhances this dis-
crepancy in the intensities making the identification of the true
vibrational features even more favored.

DC-SCIVR can be employed to simulate all kinds of spec-
troscopies relative to the nuclear motion, such as IR, Raman,
absorption/emission dipole, vibro-electronic, and photode-
tachment spectra. It will allow us to read each part of the
spectra in a wider molecular context up to the nanoscale, with
inclusion of non-trivial long-range quantum interactions. The
calculation of partial spectra representations has not only the
advantage to accelerate the Monte Carlo integration by virtue
of the reduced dimensionality of each subspace and to get
better resolved spectra but also simplifies the identification of
each peak. Another potential application of DC-SCIVR is in
the field of mixed (hybrid) semiclassical methods87,120,121 due
to the possibility to assign different degrees of freedom to the
different semiclassical techniques employed.

In conclusion, we think that semiclassical molecular
dynamics is a very convenient approach for quantum mechan-
ical simulations of nuclear vibrational spectroscopy. Future
challenges, concerning the study of vibrational features of
large molecules involved in biological mechanisms and tech-
nological processes, will be tackled in a novel quantum-
mechanical fashion thanks to DC-SCIVR and the implemen-
tation of the newly proposed subspace-separation criterion.
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