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Università degli Studi di Milano, Dipartimento di Fisica, Milano, Italy



A Stefania,
”the brightest light source”

e il mio sogno più grande.
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Introduction

X-ray radiation from relativistic beams has nowadays achieved unprecedented high bril-
liance and high degree of coherence [1], thanks to the recent advances in third-generation
light sources [2] and Free-Electron Lasers (FELs) [3, 4].

The availability of high brilliance coherent photon beams has fostered the devel-
opment of many coherence-based techniques, e.g. coherent diffractive imaging, pho-
ton correlation spectroscopy and phase contrast imaging [5], routinely implemented at
large-scale facilities to investigate physical systems from the micrometer down to the
subnanometer scale. In this framework, accurate characterization of spatial and tempo-
ral coherence properties of the radiation at the specimen position is fundamental both
for proper planning of the experiments and for unbiased data reduction.

Knowledge of the evolution of the spatial coherence properties along the beamline
also paves the way to non-invasive diagnostics techniques aimed at measuring the trans-
verse emittance of the particle beam itself [6, 7, 8, 9], a fundamental quantity to charac-
terize the performances of accelerators and colliders [10]. At the same time, effects from
limited temporal coherence are envisioned to be a peculiar feature of the broad-spectrum
betatron radiation emitted by relativistic electrons in laser-plasma accelerators [11]. In
this respect, X-ray and gamma-ray betatron radiation has been recently studied both
theoretically and experimentally [12, 13, 14, 15] to diagnose the particle beam inside the
plasma through the emitted spectral density [15] and related temporal coherence prop-
erties [16].

Finally, an upgrade of large-scale facilities is expected to occur in the forthcoming
years to reduce the beam emittance and to increase the coherence properties of the pho-
ton beam. This has renewed the interest of the scientific community towards coher-
ence diagnostics techniques. Consequently, the characterization and control of spatial
and temporal coherence properties of the radiation emitted by relativistic beams rep-
resents an increasingly challenging demand in modern synchrotron and laser-plasma-
based light sources.

The most widespread techniques for the characterization of spatial coherence of syn-
chrotron radiation at optical wavelengths are based on interference from a double aper-
ture (Young’s interferometer) or on Fresnel diffraction by a slit [17, 18, 19], while tem-
poral coherence measurements are usually performed with amplitude-division inter-
ferometers based on the Michelson’s scheme [20, 21]. For a complete characterization
of spatial and temporal coherence, users have to continuously change the setup to ad-
just the apertures separation or the optical path differences. Furthermore, despite such
measurements are well established in the visible range, they are more challenging at
shorter wavelengths. Many solutions have been adopted to extend such techniques to

xv
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X-rays [22, 23, 24, 25, 26], requiring specially manufactured and engineered devices, se-
vere alignment constraints and implementation of dedicated X-ray optics.

In this thesis we describe a novel diagnostics technique based on Fourier analysis of
Heterodyne Near Field Speckles (HNFS) [27, 28] which overcomes the aforementioned
limitations. It exploits the staggered interference between the weak spherical waves
scattered by nanoparticles in a colloidal suspension and the strong transmitted partially-
coherent beam to probe the spatial and temporal coherence properties of the impinging
radiation, without any a priori assumption [29, 30, 31, 32, 33]. A criterion based on master
curves of data acquired at different sample-detector distances is introduced, allowing to
gauge spatial and temporal coherence properties separately by means of two different
scaling laws. A single measurement is in principle enough, thus making the technique
suitable for single-shot coherence measurements, but nevertheless scanning different
sample-detector distances proves self-consistency of the results, besides increasing the
finesse of data. The experimental setup is minimal and easy to implement, almost free of
any alignment requirement. Finally, the fundamentals of the technique are wavelength
independent and scalability to X-rays is straightforward, remarkably without any dedi-
cated X-ray optics [34, 30, 35].

Outline

The thesis is organized as follows:

• Part I deals with the description of partially coherent Synchrotron Radition (SR)
within the framework of Statistical Optics:

– Chap. 1 provides an intoduction to Statistical Optics (Sect. 1.1 and Sect. 1.2)
and to the theory of coherence of light waves (Sect. 1.3). Most of the material
is based on the widespread reference textbooks by Goodman [36] and Mandel
and Wolf [37];

– Chap. 2 describes SR emission from ultrarelativistic charged particles with
the classical electrodynamics approach (Sect. 2.1), focusing on the emission
from bending magnets (Sect. 2.2) and from undulators (Sect. 2.3). Top-
ics are discussed following the standard and widespread reference books by
Hofmann [38] and Clarke [39]. Finally, in Sect. 2.4 we describe a newly-
introduced formalism to SR based on the recent works by Geloni et al. [40, 41],
providing analytic expressions for the electric field in the near zone as well as
in the far zone and for electrons moving with offset and deflection;

– in Chap. 3 we mix Statistical Optics and the theory of SR emission together
with the description of partially coherent radiation from relativistic particle
beams (Sect. 3.1). Temporal coherence of SR beams is dealt with in Sect. 3.2,
while spatial coherence is addressed in Sect. 3.3. Here we review the main
results according to the refurbished theory by Geloni et al. based on dimen-
sionless quantities [42]. In particular, the applicability of the Van Cittert -
Zernike theorem to third-generation light sources is discussed;

• in Part II we describe the Heterodyne Near Field Speckle technique:

– Chap. 4, after an overview of speckle patterns under coherent illumination
(Sect. 4.1), provides a simplified description of the HNFS technique for par-
tially coherent radiation in terms of Fourier Optics (Sect. 4.2). We also re-
port, for the first time to our knowledge, experimental results validating the



Introduction xvii

theory. Finally, the underlying physical principles of the technique are intro-
duced and discussed, namely the inteference pattern from a single colloidal
particle (Sect. 4.3) and the Fourier analysis of heterodyne speckle fields from
colloidal suspensions (Sect. 4.4);

– in Chap. 5 we provide a theoretical description of the technique (Sect. 5.1),
dealing with spatial and temporal coherence separately in Sect. 5.2 and 5.3,
respectively. Two different scaling laws and the concept of master curves are
therein introduced;

– Chap. 6 is dedicated to the description of the data reduction algorithm;

• in Part III we show experimental results obtained with table-top optical sources:

– Chap. 7 reports the first experimental results regarding the sensitivity of the
technique to very short longitudinal coherence lengths by characterizing dif-
ferent thermal broadband sources [43, 32, 44]. The temporal scaling law yield-
ing to a single temporal master curve has been tested for the relatively sim-
ple case of thermal radiation since the classical Van Cittert-Zernike’s theo-
rem and Wiener-Khinchine’s theorem certainly hold, thus providing a robust
benchmark to validate the theory developed in Part II. We also provide the
reader with an introduction to the concept of Analogical Optical Modeling,
a fashinating aspect of the technique allowing to mimic the main features of
X-ray beams with table-top optical sources;

– in Chap. 8 we show results about coherence properties of the pulsed second-
harmonic of a High Harmonic Generation (HHG) laser at the Laser Labo-
ratory of the ELETTRA synchrotron, Trieste (Italy). Although partial spa-
tial and temporal coherence concurrently contribute to shape the envelope of
two-dimensional power spectra, the two different scaling laws allow to gauge
the spatial and temporal coherence of the radiation separately. The full two-
dimensional spatio-temporal coherence function of the HHG pulses is then
retrieved;

• in Part IV we discuss the results obtained at the ALBA Synchrotron Light Source,
Barcelona (Spain):

– Chap. 9 briefly describes the ALBA facility;

– in Chap. 10 we report the results about the measurements of temporal coher-
ence properties of visible SR from a bending magnet at the Xanadu beamline
(FE01), both for narrow-band and white radiation beams, also providing reli-
able and independent measurements of the radiation power spectral density
by virtue of the Wiener-Khinchine’s theorem. This represents, to our knowl-
edge, the first time that the HNFS technique is applied to characterize tem-
poral coherence properties of SR beams [45, 33]. Moreover, we investigate
the possibility of measuring the wavefront curvature by scanning different
sample-detector distances;

– Chap. 11 contains preliminary results of the measurements of the transverse
electron beam size through spatial coherence properties of X-ray undulator
radiation at the NCD beamline (BL11). A free-propagation geometry is used,
but many experimental limitations prevented to access the vertical coherence.
Opposite to this case, the horizontal coherence at the usage point is gauged.
Despite transverse coherence measurements with the HNFS technique have
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been reported, this is the first time to our knowledge that the method is ap-
plied to access the transverse emittance of the particle beam. In this view,
we have developed a GPU-accelerated C/C + + code to simulate the spa-
tial coherence properties of undulator radiation. Theoretical expectations are
consistent with experimental results;

• finally, we collect our conclusion and we summarize the future perspectives.



Part I

Partially Coherent Synchrotron
Radiation





CHAPTER 1

Theory of coherence

1.1 Statistical Optics: electromagnetic fields meet stochastic processes

Optics ultimately inquires about the phenomena of generation and propagation of elec-
tromagnetic waves. Among the infinite varieties of optical disturbances, plane waves
and spherical waves are of outermost importance owing to their simplicity and to their
ubiquity in any branch of optics. Referring to the reference frame adopted in Fig. 1.1 and
restricting our attention to propagation along the z direction, plane waves and spherical
waves can be expressed respectively as

~E(~x, t) = ~E0e
i(kz−ωt+φ) ~E(~x, t) = ~E0

ei(kr−ωt+φ)

r
, (1.1)

where k = 2π/λ is the radiation wavenumber, λ is the radiation wavelength, ω = ck =
2πν being ν = c/λ the radiation frequency and c is the speed of light.

Figure 1.1: Reference frame adopted throughout the thesis. The z direction determines the optical
axis of the system and the (x-y) planes are perpendicular to it. A point P of coordinates (x, y, z)
subtends the angles θx = atan(x/z) and θy = atan(y/z) to the origin O. When θx ≪ 1 and
θy ≪ 1, paraxial conditions are fulfilled and the distance r of the point P from the originO can be
expressed as r ≈ z + (x2 + y2)/(2z).

The vector ~x = (x, y, z) denotes spatial coordinates while t stands for the temporal
one. The z direction determines the optical axis of the system and the (x-y) planes are
perpendicular to it. Finally, r is the distance between the generic point P of coordinates
(x, y, z) and the origin O of the adopted reference frame. The reader should start to

3
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familiarize with the complex phasor representation of optical fields adopted in Eq. 1.1.
The argument of the complex exponential is known as the phase of the wave while the
other terms constitute the amplitude of the electric field. The initial phase φ determines
the value of the field at the origin O at time t = 0. An example of the phase distributions
of plane waves and spherical waves is reported in Fig. 1.2.

Figure 1.2: (a) Representation of a plane wave: from Eq. 1.1, the wavefronts are planes perpendic-
ular to the optical axis. (b) Representation of a spherical wave: from Eq. 1.1, the wavefronts are
spherical surfaces centered at the origin. The phase projected onto a plane perpendicular to the
optical axis varies quadratically along the radial direction.

Free-space propagation and diffraction from an aperture or an opaque obstacle can
be equivalently formulated in terms of the superposition of secondary spherical waves
generated at each point of the incident field (Huygens-Fresnel’s integral) [46] or in terms
of the superposition of the propagated plane waves in which the incoming optical dis-
turbance can be decomposed into (Fourier Optics) [47]. Optics phenomena are thus de-
scribed in an entirely deterministic framework where light disturbances have an analytic
representation in terms of plane waves or spherical waves which are subjected to per-
fectly predictable transformations upon propagation as in Eq. 1.1.

While plane waves and spherical waves provide simple expressions for the optical
fields useful for a mathematical treatment of light phenomena, they unavoidably pose
some problems from a physical viewpoint when we attempt to describe real light sources
and emission processes. In fact, by definition, plane waves and spherical waves should
have an infinite extent on any plane perpendicular to the propagation direction and they
should exist from t = −∞ to t = +∞. Therefore they are only approximations to actual
radiation fields valid within some degree of accuracy.

In real light sources radiation is generated by accelerated charges behaving as oscil-

lating electric dipoles. The emitted field ~Er is known as the radiant field, it is polarized in
the direction of the charge acceleration ~a and its amplitude resembles that of a spherical
wave:

~Er ∝
1

r
~a. (1.2)

The corresponding intensity I = | ~E|2 has the characteristic sin2 θ directivity diagram
of the radiation pattern from an oscillating dipole, as shown in Fig. 1.3. The total radi-
ated power, i.e. the total radiated intensity per unit of time, integrated over a spherical
surface of radius R centered on the emitting dipole is constant regardless of the value of
R. This must imply an energy transfer from an external source to the charge. As a conse-
quence, the radiative process eventually vanishes as soon as the excitation is turned off.
Furthermore, the emission of the radiant field itself has a finite temporal duration: the
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energy transferred to the electric charge is radiated in the form of optical pulses with a
characteristic temporal scale ranging between 10−15 s and 10−12 s.

Figure 1.3: Directivity diagram of the radiation emitted by an oscillating dipole. It shows the
characteristic sin2 θ behavior, where the angle θ refers to the direction of the charge acceleration
~a. The emitted radiation is polarized parallel to ~a and it is not emitted along the direction of the
dipole oscillations.

When many independent emitters are considered, the total radiation results from the
superposition of a number of emission processes by accelerated electric charges behav-
ing as oscillating electric dipoles, for which each radiant field is emitted at a different
time. The number of emitters and of the parameters involved is so large that it results in
a complete lack of knowledge on the exact state of the system. From the point of view
of an observer, this implies that the total electric field randomly fluctuates in time both
in amplitude and phase on temporal scales comparable to the characteristic time of the
emission processes. A statistical treatment is thus needed in order to gauge the prop-
erties of the radiation. Statistical Optics [37, 36] affords a convenient tool to deal with
randomly fluctuating fields in the appropriate way.

1.2 Basic concepts of Statistical Optics

1.2.1 Ensamble averages

The branch of mathematics which deals with the analysis of random phenomena is
known as the theory of stochastic processes. Introducing the concept of random vari-
ables as quantities for which the outcomes of an experiment cannot be predicted in ad-
vance, a stochastic process U(A) is defined by assigning a function u(A, t) of the inde-
pendent variable t to each possible realization of the random variable A, together with a
measure of their associated probabilities. The result of a measurement on the stochastic
process U(A) is not determined a priori due to the unpredictable structure of the func-
tion u(A, t) inherited from the random variableA. Such functions play an important role
in optics. As we have seen in Sect. 1.1, the field emitted by any real source undergoes
random fluctuations in time and consequently it can be properly described within the
framework of stochastic processes: the optical disturbance is modeled as a random vari-
able A and u(A, t) represents the set of all possible configurations of the corresponding
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electric field as a function of time1.
Suppose that many u(t) are measured in similar experiments performed under the

same conditions, producing the outcomes u1(t), u2(t), ... , uN(t), where the dependence
on A has been dropped for the sake of simplicity. In the limit N → +∞, such a collec-
tion is called the ensamble of the stochastic process U(A) and each individual ui(t) is
called an ensamble realization. For each ensamble realization ui(t) and for any function
F [ui(t)] of the ensamble realization ui(t) we define the temporal average 〈·〉t as

〈ui(t)〉t = lim
T→+∞

1

2T

∫ +T/2

−T/2

ui(t) dt 〈F [ui(t)]〉t = lim
T→+∞

1

2T

∫ +T/2

−T/2

F [ui(t)] dt.

(1.3)

Within the framework of stochastic processes, we can also define the ensamble aver-
age 〈·〉 as the average over all the possible realizations:

〈u(t)〉 = lim
N→+∞

N∑

k=1

uk(t) 〈F [u(t)]〉 = lim
N→+∞

N∑

k=1

F [uk(t)]. (1.4)

Ensamble averages can be expressed in terms of the probability density function
p(u, t) associated to the stochastic process by recalling that p(u, t) du represents by defi-
nition the probability that the stochastic process U(A) will take on a value in the range
(u, u+ du) at time t. Equations 1.4 can then be rephrased as

〈u(t)〉 =
∫ +∞

−∞

u(t) p(u, t) du 〈F [u(t)]〉 =
∫ +∞

−∞

F [u(t)] p(u, t) du. (1.5)

The probability density function p(u, t) provides a description of the statistical behav-
ior of a random variable at a single instant of time. In order to completely characterize
the stochastic process U(A), knowledge of the joint behavior of the underlying random
variable at different instants of time t1, t2, ... , tn is also required. This leads to the intro-
duction of the n-th order joint probability density pn(u1, u2, ... , un, t1, t2, ... , tn) with the
following meaning: the quantity pn(u1, u2, ... , un, t1, t2, ... , tn) du1 du2 ... dun represents
the joint probability that the stochastic process U(A) will take on values in (u1, u1+du1)
at time t1, (u2, u2 + du2) at time t2, ... , (un, un + dun) at time tn. The associated n-
point ensamble average is known as the n-th order correlation function or the n-th order
moment of the stochastic process:

〈u1(t1)u2(t2) ... un(tn)〉 =
+∞∫

−∞

+∞∫

−∞

· · ·
+∞∫

−∞
︸ ︷︷ ︸

n−times

u1(t1)u2(t2) ... un(tn) pn(u1, u2, ..., un, t1, t2, ..., tn) du1 du2 ... dun.

(1.6)

1Although t reminds of the temporal coordinate, all the discussion and the derivations can be easily ex-
tended to the case of spatial coordinates. The notation and the terminology adopted here conform with those
of the reference textbook on Statistical Optics by Goodman [36].
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1.2.2 Stationarity

A random process is called strictly stationary when all the n-th order ensamble averages
are independent on the origin of time2. Stated analitically, for all n and T we require that

〈u1(t1)u2(t2) ... un(tn)〉 = 〈u1(t1 − T )u2(t2 − T ) ... un(tn − T )〉 . (1.7)

It is worth noting that for strictly stationary processes the first-order moment, i.e. the
ensamble average, is independent on time and the second-order moment depends only
on the time difference τ = t2 − t1.

The concept of wide-sense stationarity is more general than strict stationarity since it
involves only the first- and the second-order moments: a stochastic process is wide-sense
stationary if the ensamble average is independent on time and the second-order moment
depends only on the time difference τ = t2 − t1. Every strictly stationary process is also
wide-sense stationary, but the converse is not true.

As a consequence of the definition of stationarity, whether strict or wide-sense, a
necessary condition for a stochastic process to be stationary is that the signal lasts forever.

1.2.3 Ergodicity

Ergodicity is a subtle concept dealing with the comparison of the statistical properties of
an individual ensamble realization (temporal averages) with the properties of the entire
ensamble (ensamble averages). A stochastic process is called ergodic if every sample
function takes on values along the time axis with the same probability observed across
the entire ensamble for any fixed instant of time. Heuristically, ergodicity implies that the
n-th order temporal averages performed on every single ensamble realization are equal
to the n-th order ensamble average over the entire collection of realizations. The statisti-
cal information about the ensamble is then already conveyed by each single realization:
dividing a single sample function into many parts provides a collection of realizations
which is representative of the entire ensamble. For ergodic processes temporal averages
and ensamble averages are equal and they can thus be interchanged.

A necessary condition for ergodicity is strict stationarity. Figure 1.4 shows an ex-
ample of non-ergodic stochastic process due to non-stationarity. The sample functions
of such a process have the same relative frequency distribution along the time axis but
they exhibit larger fluctuations at t2 ∼ 250 than at t1 ∼ 200. This implies that the sta-
tistical properties of each ensamble realization depend on time and the process is non-
stationary. Furthermore, the relative frequencies observed across the ensamble at times
t1 and t2 separately are not the same and they are not equal to the relative frequency
observed along each single ensamble realization. Hence the stochastic process cannot be
ergodic.

We stress that not every strictly stationary random process is ergodic. A trivial ex-
ample is provided by the constant stochastic process where the functions ui(t) simply
assume random constant values according to a given probability density function. En-
samble averages are independent on the origin of time and the process is strictly station-
ary. Nevertheless, a single sample function is not representative of the entire ensamble
since the value assumed by a single realization does not reflect the occurence of the other
random numbers.

2Within Statistical Optics, the concept of stationarity pertains to the time domain. The spatial analogue of
stationarity is referred to as homogeneity. It implies that all the n-th order ensamble averages are invariant
upon spatial translations.
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Figure 1.4: Example of a non-ergodic stochastic process due to non-stationarity. All the ensamble
realizations have the same relative frequency distributions along the time axis and their random
fluctuations are larger at t2 ∼ 250 than at t1 ∼ 200. The statistical properties across the entire en-
samble are thus time-dependent and the process is non-stationary. As a consequence, the relative
frequencies observed across the ensamble at a fixed instant of time are not equal to the relative fre-
quencies observed along the time axis for each single sample function: the process is non-ergodic.

For convenience of the reader, we summarize in Fig. 1.5 the main classes of stochastic
processes introduced, together with their hierarchical structure.

Figure 1.5: Hierarchy of stochastic processes.

1.2.4 Gaussian processes

A random processU(A) is said to be a Gaussian random process if the associated random
variable A has a Gaussian probability density function

pA(u) =
1√
2πσ

e
(u−ū)2

2σ2 , (1.8)

where ū = 〈u〉 is the ensamble average of the random variable A and σ =
〈
(u− ū)2

〉
is

the second-order central moment.

Gaussian processes have many useful properties [37, 36]:
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• linearly filtered Gaussian random processes are also Gaussian random processes:
despite the linear filter may alter the values of the n-th order moments of the pro-
cess, the Gaussian statistics is retained;

• wide-sense stationarity implies strict stationarity;

• n-th order moments with n > 2 can be expressed in terms of first- and second-
order moments (Gaussian Moment Theorem): only first- and second-order corre-
lation functions are needed in order to characterize the statistical properties of the
process.

1.2.5 An example from optics: thermal light

Thermal radiation results from the superposition of many contributions, each with a ran-
dom amplitude and phase, emitted by a large number of independent radiating atoms.
A large class of optical sources emits thermal light, as for example the Sun, the other stars
or an incandescent lamp. By virtue of the Central Limit Theorem, the real and imagi-
nary part of the total electric field are endowed with random fluctuations described by a
Gaussian probability density function: thermal light is a Gaussian stochastic process.

The stochastic process associated to the emission of thermal light has (virtually) an
infinite duration, at least on the characteristic time-scales of experiments, and its statis-
tical properties are independent on time: thermal light is a stationary process.

Furthermore, it is straightforward to realize that the values of each single sample
function occur with the same probability with which they appear across the ensamble
realizations at any fixed instant of time. Thermal light is an ergodic process and tem-
poral averages are equivalent to ensamble averages. Therefore, different measurements
performed on the same (ideally infinite) sample function actually correspond to probing
many ensamble realization.

Finally, the presence of a monochromator or of a band-pass filter, as well as of a
spatial filter or a polarizer, does not change the Gaussian statistics of thermal light.

1.3 Coherence of light waves

1.3.1 What is coherence?

The theory of coherence of light deals with the correlations between the random fluctu-
ations of the electromagnetic fields emitted by real sources. The amplitude and phase of
the optical disturbances fluctuate in an unpredictable way due to the stochastic nature
of the underlying emission processes. The random fluctuations of the fields occur over
temporal scales comparable to those of the emission processes, ranging between 10−15

s and − 10−12 s. None of the currently available detectors can achieve such a high tem-
poral resolution and we can only access a statistical, time-integrated information. The
stochastic fluctuations of the field and the correlations among them can thus be properly
described with the formalism of correlation functions of Statistical Optics developed in
the previous Sect. 1.2. Since for a large class of light sources the emitted radiation results
from a number of independent contributions from many emitters, the field fluctuations
are described by a Gaussian statistics. By means of the Gaussian Moment Theorem, first-
and second-order moments suffice to provide a full statistical description of the stochas-
tic process and we need need to investigate only the two-point correlation functions of
the radiation.
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Spatial coherence is concerned with the correlations of the field fluctuations at the
same instant of time but at two different point on the same (x-y) plane perpendicular to
the propagation direction. In general, spatial coherence properties depend on the posi-
tion on the (x-y) plane. However, for homogeneous radiation the second-order spatial
correlation function does not depend on the absolute position of the two points but only
on their relative displacement. The second-order correlation function is invariant upon
translations on the (x-y) plane and the coherence properties do not change across the
beam.

Temporal coherence provides the information on the correlations of the field fluctu-
ations at the same spatial point but at two different instants of time. The radiation is
said to be stationary if the second-order temporal correlation function depends only on
the relative delay between the two instants of time. In this case the temporal coherence
properties of light are invariant upon temporal shifts.

1.3.2 Probing coherence

The simplest manifestation of coherence is provided by the phenomenon of interfer-
ence [46, 37, 36]. The instantaneous intensity distribution It arising from the superposi-
tion of two different optical disturbances E1 = |E1| exp(φ1) and E2 = |E2| exp(φ2) can
be expressed as3

It = |E1 + E2|2 = I1 + I2 + 2ℜe{E1E
∗
2} = I1 + I2 + 2 |E1| · |E2| cos (∆φ) , (1.9)

where we have adopted the phasor representation for the electric fields E1 and E2, I1 =
E1E

∗
1 , I2 = E2E

∗
2 and ∆φ = φ2 − φ1. The first two terms represent the light intensity

that would be generated independently by E1 and E2, as shown in Fig. 1.6(a) and Fig.
1.6(b). The last term describes an oscillatory intensity modulation responsible for the
appearence of the interference fringes, as shown in Fig. 1.6(c).

Equation 1.9 describes the time-resolved intensity pattern that would be measured
with a detector achieving a high temporal resolution. However, due to the stochastic
processes associated to the emission of the radiation, the two interfering fields E1 and
E2 fluctuate in an unpredictable way on temporal scales much shorter than the response
time of any detection system and many interferograms contribute to the detected inten-
sity pattern. The random fluctuations of the field amplitudes just induce variations in the
overall background illumination (given by the sum I1+ I2 in Eq. 1.9) and in the absolute
envelope of the interference fringes (|E1| · |E2| in Eq. 1.9). More importantly, the fluctua-
tions of the relative phase ∆φ are responsible for a lateral shift on the interference fringes.
If the fluctuations of the two optical disturbances are correlated, the instantaneous inter-
ferograms of Eq. 1.10 are all similar and the detected intensity exhibits sharp interference
fringes, as shown in Fig. 1.7(a),(d). Opposite to this case, when the random fluctuations
of the two fields are uncorrelated, the superposition of many randomly laterally-shifted
interferograms leads to a partial or to an almost complete cancellation of the interference
fringes, as reported on Fig. 1.7(b),(e) and in Fig. 1.7(c),(f), respectively.

While the superposition of two electromagnetic fields always generates instanta-
neous interference fringes, the random fluctuations in the phases of the two optical

3Here we intentionally drop the dependence on spatial and temporal coordinates in order to keep the dis-
cussion on a general level. Detailed analysis of temporal coherence and spatial coherence will be properly
addressed in the following Subsect. 1.3.3 and Subsect. 1.3.4, respectively.
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(a) (b) (c)

Figure 1.6: Simulated instantaneous interference between two optical beams. (a) Intensity distri-
bution I1 generated by the first beam. (b) Intensity distribution I2 generated by the second beam.
Without loss of generality, I1 and I2 have been described with the same two-dimensional Gaussian
function. (c) The phase difference between the two optical disturbances has been assumed to vary
only along the horizontal direction. The superposition of the two beams thus generates vertical
interference fringes.
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Figure 1.7: Simulated time-integrated interference between two partially coherent optical beams
resulting from the superposition of 104 different instantaneous interferograms. The intensity dis-
tributions associated toE1 andE2 have been described with the same Gaussian functions as in Fig.
1.6. (a) Stable interference fringes arising from the superposition of two coherent beams. (b) The
contrast of the interference fringes is reduced when the two beams are partially coherent. (c) In the
case of incoherent beams, interference fringes are hardly visible and only the featureless intensity
distribution I1 + I2 is left. Plots (d), (e) and (f) show the intensity profiles along the horizontal
cuts indicated by the yellow lines. It is worth noting how zeros of intensity are reached only in the
fully coherent case.
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disturbances may prevent to measure such intensity modulation over a finite acquisi-
tion time. Analytically, the average over many ensamble realization gives the following
expression for the detected intensity I :

I = 〈It〉 = 〈I1〉+ 〈I2〉+ 2ℜe {〈E1E
∗
2 〉} . (1.10)

Comparing Eq. 1.9 and Eq. 1.10, it can be seen that despite interference always occurs
instantaneously, stable interference depends on the second-order correlation function of
the optical field, namely on coherence properties of the radiation. The superposition
of two fully coherent fieds generates interference fringes endowed with a high contrast.
Conversely, stable interference does not occur with incoherent radiation and interference
fringes do not appear due to the lack of any fixed phase relation between the two elec-
tromagnetic waves. We can thus restate coherence as the ability of the radiation to write
stable interference fringes.

Owing to the relation between interference and coherence properties of the radiation,
we can now reinterpret temporal coherence as the ability of the light to interfere with
a delayed, but not spatially shifted, version of itself (amplitude splitting). Similarly,
spatial coherence is the ability of the radiation to interfere with a spatially shifted, but not
delayed, version of itself (wavefront splitting). In both cases the fundamental fact holds
that the appearence of interference fringes and the degree of coherence of the radiation
are intimately related. In fact, assuming 〈I1〉 = 〈I2〉 = I0 for simplicity, we can define the
visibility of the interference fringes as follows

V =
Imax − Imin

Imax + Imin
= |µ| , (1.11)

where

Imax = 2I0 + 2 |〈E1E
∗
2 〉| (1.12)

and
Imin = 2I0 − 2 |〈E1E

∗
2 〉| (1.13)

represent the intensity of the interferogram near a maximum of interference and near the
corresponding minimum, respectively. The function µ = 〈E1E

∗
2 〉 /I0 is the normalized

coherence function of the radiation whose modulus varies between 0 and 1. Interference
fringes thus have maximum visibility when |µ| = 1, corresponding to the case of fully
coherent radiation. Interference fringes have null visibility when the radiation is inco-
herent, in which case |µ| = 0. The concept of fringe visibility thus quantitatively relates
the features of the interferograms to the coherence properties of the radiation.

1.3.3 Temporal coherence

The Michelson’s interferometer is an amplitude-division interferometer aimed at mea-
suring the temporal coherence properties of the radiation [36, 37]. The scheme of the
interferometer is depicted in Fig. 1.8. The light emerging from a localized source S is
collimated by a converging lens and it is sent onto a beam splitter. Light is then divided
into two beams following different paths. The transmitted radiation propagates along
the horizontal arm of the interferometer and it is reflected back by the fixed mirror M1.
The second beam propagates along the vertical arm of the interferometer and it impinges
onto the movable mirror M2. Its position can be varied in order to tune the optical path
difference 2h with respect to the fixed pathlength of the horizontal arm of the interfer-
ometer. The second beam then acquires a temporal delay 2h/c due to the propagation
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along the extra path. After being reflected by M1 and M2, the two delayed beams are
then recombined by the beam splitter and their interference pattern is measured with a
detector.

Figure 1.8: Scheme of the Michelson’s interferometer including the light source S, the collimating
lens, the beam splitter BS, the fixed mirror M1, the movable mirror M2 and the detector. In the
configuration indicated by the dashed line, the lengths of the two arms of the interferometer l1
and l2 are equal. When M2 is moved by the amount h, the pathlength l′2 of the vertical arm of
the interferometer differs from the horizontal one by 2h. Therefore the two beams interfere on the
plane of the detector with a relative delay τ = 2h/c.

Let u(t) be the electric field of the light emitted by the source S. The intensity I on
the detector as a function of the optical path difference h can be written as

I(h) =

〈∣
∣
∣
∣
u(t) + u

(

t− 2h

c

)∣
∣
∣
∣

2
〉

=

=
〈

|u(t)|2
〉

+

〈∣
∣
∣
∣
u

(

t− 2h

c

)∣
∣
∣
∣

2
〉

+ 2ℜe
〈

u(t)u∗
(

t− 2h

c

)〉

, (1.14)

where 2h/c takes into account the relative time delay induced by the movable mirror.

Under the assumption of stationarity, 〈|u(t)|2〉 = 〈|u(t− 2h/c)|2〉 = I0 and the second-
order correlation function depends only on the time difference τ = 2h/c. We can there-
fore introduce the Self Coherence Function

Γ(τ) = 〈u(t)u∗(t− τ)〉 . (1.15)

and the Complex Degree of self Coherence (CDC)

γ(τ) =
Γ(τ)

Γ(0)
, (1.16)
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where Γ(0) = I0 from Eq. 1.15. The normalization in Eq. 1.16 and the Schwarz’s inequal-
ity imply γ(0) = 1 and |γ(τ)| ≤ 1 for τ ≥ 0, respectively. Substituting Eq. 1.16 into Eq.
1.14 yield to

I(h) = 2I0

{

1 + ℜe
[

γ

(
2h

c

)]}

. (1.17)

The radiation CDC can be factorized in the following general form

γ(τ) = |γ(τ)| exp {−i [2πντ − α(τ)]} , (1.18)

where ν = c/λ is the mean frequency of the radiation and α(τ) = Arg{γ(τ)}+2πντ . The
detected intensity then takes the final form

I(h) = 2I0

[

1 +

∣
∣
∣
∣
γ

(
2h

c

)∣
∣
∣
∣
cos

{

2π

(
2h

λ

)

− α(τ)

}]

. (1.19)

In the vicinity of zero pathlength difference γ(2h/c) ≈ 1 and α(2h/c) ≈ 0. The in-
terferogram developes as a fully modulated cosine with intensity varying from 0 to 4I0
with an average value of 2I0. As the relative pathlength difference h is increased, the
depth of the interference modulation |γ(2h/c)| decreases and fringes may suffer a phase
shift induced by the term α(2h/c).

The visibility of the interference fringes at a fixed pathlength difference h allows to
access the modulus of the radiation CDC:

V =
Imax − Imin

Imax + Imin
=

∣
∣
∣
∣
γ

(
2h

c

)∣
∣
∣
∣
, (1.20)

where Imax and Imin are the maximum and minimum value of the interference fringes in
the vicinity of the pathlength difference h.

The reduction in fringe visibility as the pathlength difference is increased is caused
by the finite bandwidth ∆ν of the source. In the ideal case of a monochromatic compo-
nent described by a time-varying complex phasor of the formA exp(iωt), where ω = 2πν
is the radiation angular frequency, the complex envelope of the electric field A would be
constant over time and the corresponding signal would have an infinite duration. Oppo-
site to this case, the presence of many independent monochromatic components induces
a dependence on time in the complex envelope A(t) of the emitted electric field. In-
creasing the bandwidth ∆ν of the source makes the variations of A(t) occur over shorter
temporal scales. Owing to this relation between variables forming a Fourier couple, the
electric field emitted by each atom has a pulsed structure with a characteristic duration
∆t ≈ 1/∆ν. The total electric field is the result of the superposition of many randomly
delayed pulses and the corresponding intensity exhibits stochastic fluctuations in time,
as depicted in Fig. 1.9. Intensity spikes arise from the constructive interference among
the emitted elementary fields. Their temporal duration thus sets the characteristic tem-
poral scale over which the electric field is perfectly correlated, namely the coherence
time of the radiation. By means of Fourier analysis on the complex envelope of the to-
tal electric field, the emitted radiation is expected to be correlated on a temporal scale
smaller than or comparable to 1/∆ν. The drop of fringe visibility as the pathlength dif-
ference h increases is then a consequence of the superposition of many interferograms
generated by two different uncorrelated pulses propagating along the two arms of the
interferometer.

The dependence of the temporal coherence properties of the radiation on the emitted
power spectral density of the source is quantitatively described by the Wiener-Khinchin’s
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Figure 1.9: Simulated intensity of partially temporally coherent radiation with a finite bandwidth
∆ν = 60 THz, corresponding to ∆λ = 60 nm at an average wavelength λ̄ = 550 nm. Intensity
spikes arise from the coherent superposition of many light pulses of finite duration ∆t emitted be
the atoms at random times. The width of the intensity spikes determines the coherence time of
the radiation and it is in agreement with the expected value ∆t = 1/∆ν = 16.7 fs from Fourier
transform arguments (see inset).

theorem of stationary stochastic processes [36, 37]. It relates the temporal autocorrela-
tion function of the process, i.e. the radiation CDC γ(τ), to the Fourier transform of the
power spectral density G(ν) of the source:

γ(τ) =

∫ +∞

0

G(ν)ei2πντ dν. (1.21)

The characteristic time over which the optical disturbance is highly correlated is
known as the coherence time of the radiation and it is related to the inverse bandwidth of
the source spectrum by virtue of the Wiener-Khinchine’s theorem. The calculation of the
coherence time from the radiation CDC involses the introduction of a certain algorithm
in order to extract a single number from the entire function. Among all the possible
algorithms that can be implemented in order to reduce the radiation CDC into a single
number, we follow Mandel and we define the coherence time τc of the radiation as [36, ?]

τc =

∫ +∞

−∞

|γ(τ)|2 dτ. (1.22)

The coherence time just defined is of the same order of magnitude as 1/∆ν, as expected
from simple Fourier transform arguments. The radiation is temporally coherent or par-
tially temporally coherent depending on whether the coherence time is comparable to or
smaller than the characteristic duration of the process, while temporally incoherent radi-
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ation describes light whose phase fluctuations are complitely random and uncorrelated
from instant to instant.

1.3.4 Spatial coherence

The Young’s interferometer is a wavefront-division interferometer aimed at probing the
spatial coherence properties of the radiation [36, 37]. The setup of the interferometer
is depicted in Fig. 1.10. The light emerging from a localized source S is collimated by
a converging lens and it is sent onto the (ξ-η) plane where two apertures are present
at positions P1 = (ξ1, η1) and P2 = (ξ2, η2), respectively. The interference of the two
diffracted beams is then observed across the (x-y) plane at a distance z downstream the
opaque screen. The generic point Q = (x, y) on the detection plane lies at a distance r1
from P1 and at a distance r2 from P2.

Figure 1.10: Scheme of the Young’s interferometer including the light source S, the collimating
lens and the opaque screen with the two apertures at positions P1 = (ξ1, η1) and P2 = (ξ2, η2).
The detetction plane is located at a distance z downstream the plane of the apertures. The generic
point Q = (x, y) on the detection plane lies at a distance r1 from P1 and at a distance r2 from P2.

The optical disturbance at a point Q at time t is generated by the superposition of
the light waves emerging from the two pinholes located at P1 and P2 at the earlier times
t− r1/c and t− r2/c, respectively:

u(Q, t) = K1u
(

P1, t−
r1

c

)

+K2u
(

P2, t−
r2

c

)

. (1.23)

Here K1 and K2 are purely imaginary numbers taking into account the shape and the
finite size of the apertures [36, ?]. The time-integrated intensity is then

I(Q) = |K1|2
〈∣
∣
∣u
(

P1, t−
r1

c

)∣
∣
∣

2
〉

+ |K2|2
〈∣
∣
∣u
(

P2, t−
r2

c

)∣
∣
∣

2
〉

+

+ 2|K1||K2|ℜe
〈

u
(

P1, t−
r1

c

)

u∗
(

P2, t−
r2

c

)〉

, (1.24)
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where we have noticed that K1K
∗
2 = K∗

1K2 = |K1||K2|. The first two terms represent

the intensity distibutions I(1)(Q) and I(2)(Q) that would be generated at point Q by the
pinhole P1 and P2 alone, respectively. We introduce the Mutual Coherence Function
(MCF)

Γ12(τ) = 〈u(P1, t)u
∗(P2, t− τ)〉 (1.25)

and we rewrite Eq. 1.24 as

I(Q) = I(1)(Q) + I(2)(Q) + 2 |K1| |K2| ℜe
[

Γ12

(
r2 − r1

c

)]

. (1.26)

From Schwarz’s inequality, |Γ12(τ)| ≤ (Γ11(0)Γ22(0))
1/2 where by definition Γ11(0)

and Γ22(0) represent the intensities of the light incident on the two pinholes. The nor-
malized Mutual Coherence Function, also known as the Complex Degree of Coherence,
is then obtained as

γ12(τ) =
Γ12(τ)

|Γ11(0)Γ22(0)|1/2
. (1.27)

It describes the cross-correlation function of the radiation field taking into account
spatial and temporal coherence effects and it plays a fundamental role in the theory of
partial coherence. Finally, by exploiting the relation

I(i)(Q) = |Ki|Γii(0) (1.28)

for i = (1, 2), Eq. 1.26 takes the form

I(Q) = I(1)(Q) + I(2)(Q)+

+ 2
√

I(1)(Q)I(2)(Q)

∣
∣
∣
∣
γ12

(
r2 − r1

c

)∣
∣
∣
∣
cos

[

2πν

(
r2 − r1

c

)

+ α12

(
r2 − r1

c

)]

,

(1.29)

where α12(τ) = Arg[γ12(τ)] − 2πντ .
Equation 1.29 describes the interference of partially coherent light. Fringes are mod-

ulated in amplitude and phase by the complex degree of coherence of the radiation,
which accounts for spatial coherence effects at the pinhole locations and temporal coher-
ence effects related to the pathlength difference induced by the propagation fron the two
apertures to the detection point Q.

When the coherence length of the radiation is much larger than the maximum path-
length difference encountered in the experimental setup, the radiation is said to be quasi-
monochromatic and only spatial coherence effects are relevant. Under quasi-monochromatic
conditions, the Mutual Coherence Function and the complex degree of coherence take
the simplified forms [36, ?]

Γ12(τ) = J12e
−i2πντ

γ12(τ) = µ12e
−i2πντ (1.30)

where

J12 = Γ12(0) = 〈u(P1, t)u
∗(P2, t)〉 (1.31)
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is called the Mutual Intensity of the radiation at points P1 and P2 and

µ12 = γ12(0) =
J12

[I(P1)I(P2)]
1/2

(1.32)

is known as the Complex Coherence Factor (CCF) of the radiation.

If the two pinholes are tiny enough in order to diffract light on a large angle, I(1)(Q) =

I(1) and I(2)(Q) = I(2) are both constant over the region of interest on the detection
plane. The interference pattern can then be expressed as

I(x, y) = I(1) + I(2) + 2
√

I(1)I(2) |µ12| cos
[
2π

λz
(∆ξ · x+∆η · y) + φ12

]

, (1.33)

where (∆ξ,∆η) denote the horizontal and vertical displacements of the two pinholes
and φ12 = Arg(µ12)− [2π/(λz)](∆ξ · x+∆η · y).

Equation 1.33 describes interference fringes developing perpendicularly to the line
joining P1 and P2. Their visibility is constant over the detected region and conveys the
information on the modulus of the radiation CCF

V =
2
√
I(1)I(2)

I(1) + I(2)
|µ12| (1.34)

while the information on the phase of the radiation CCF can be recovered by the po-

sition of the interference fringes. If I(1) = I(2), the fringe visibility provides a direct
measurement of |µ12|.

Similarly to the case of temporal coherence treated in Subsect.1.3.3, where we con-
sidered deviations from an ideal monochromatic field and the finite bandwidth of the
radiation was taken into account, spatial coherence is a consequence of the finite extent
of real light sources. A point-like source S1 emits a perfect spherical wave and fully
developed interference fringes are observed regardless on the separation between the
two apertures. In fact, the phase relations over the spherical wavefront are fixed for any
possible positions of the two pinholes, as it can be inferred from Eq. 1.1.

For a continuum of point-like sources spreading over a finite domain of linear ex-
tension D, the electric field across the plane of the two apertures is composed of many
adjacent coherence patches (or coherence areas) within which the phase of the electric
field is roughly constant, as depicted in Fig. 1.11. They are subjected to random changes
in shape and position over temporal scales comparable to those of the emission pro-
cesses. Fourier optics allows to decomposed the instantaneous electric field into the
sum of many sinusoidal patterns generated by the interference between two tilted plane
waves. The periodicity Λ of the sinusoidal modulation is related to the tilt angle θ by
Λ = λ/θ, while the absolute position of the pattern is determined by the phase differ-
ence between the two plane waves. The stochastic fluctuations of the coherence patches
are thus interpreted in terms of the random fluctuations of the relative phase between
the interfering plane waves, inducing random lateral shifts on the corresponding sinu-
soidal patterns. On average, the smallest region over which the phase of the field can
be perfectly correlated is dictated by the angle θs = D/zs subtended by the source at
a distance zs from the apertures plane. Radiation is thus regarded as spatially coherent
over a length scale smaller than or comparable to

Λ =
λ

θs
=
λzs

D
. (1.35)
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Equation 1.35 defines the linear extension of the coherence areas or the transverse coher-
ence length of the radiation.

-1.560
-1.498
-1.435
-1.373
-1.310
-1.248
-1.186
-1.123
-1.061
-0.9984
-0.9360
-0.8736
-0.8112
-0.7488
-0.6864
-0.6240
-0.5616
-0.4992
-0.4368
-0.3744
-0.3120
-0.2496
-0.1872
-0.1248
-0.06240
0.000
0.06240
0.1248
0.1872
0.2496
0.3120
0.3744
0.4368
0.4992
0.5616
0.6240
0.6864
0.7488
0.8112
0.8736
0.9360
0.9984
1.061
1.123
1.186
1.248
1.310
1.373

0

2

Figure 1.11: Instantaneous phase distribution of partially coherent radiation. It is composed of
many adjacent patches within which the phase of the electric field is roughly constant. These co-
herence patches or coherence areas undergo random fluctuations over temporal scales comparable
to those of the emission processes.

The dependence of the transverse coherence length of the radiation on the inverse
of the angle subtended by the source suggests that the radiation CCF µ(~x1, ~x2) and the
source intensity distribution I(ξ, η) form a Fourier couple. This relation is known in
Statistical Optics as the Van Cittert-Zernike’s theorem [36, ?] and it constitutes the spatial
analogue of the Wiener-Khinchine’s theorem of Eq.1.21 in time domain:

µ(x1, x2, y1, y2) =
e−iψ

∫∫ +∞

−∞
I(ξ, η)ei

2π
λz

(∆x·ξ+∆y·η) dξ dη
∫∫ +∞

−∞
I(ξ, η) dξ dη

, (1.36)

where ψ = π(ρ22 − ρ21)/(λz) being ρ21 = x21 + y21 and ρ22 = x22 + y22 , ∆x = x2 − x1 and
∆y = y2 − y1.

An example of the experimental verification of the Van Cittert-Zernike’s theorem is
illustrated in Fig. 1.12 and Fig. 1.13. The radiation coming from a white Light Emitting
Diode (LED) is filtered with a narrow band-pass filter by Thorlabs (average wavelength
λ̄ = 660 nm, FWHM bandwidth ∆λ = 10 nm) in order to increase the temporal co-
herence. A circular pinhole with diameter D = 100 µm determines the effective source
size. The radiation is finally collimated by a converging lens with focal length f = 7 cm
placed immediately upstream the Young’s interferometer. According to the Van Cittert-
Zernike’s theorem expressed by Eq. 1.35, the transverse coherence length at the plane of
the aperture is σcoh = 1.22λf/D ≈ 500 µm, where the multiplicative factor 1.22 comes
from the circular shape of the source. A pair of rectangular slits is implemented in the
Young’s interferometer in place of the tiny pinholes to enhance the detected signal. The
radiation CCF is probed at four points by increasing the slit separation, as shown in Fig.
1.12.

The measured values of the visibility have then been used to fit the expected radiation
CCF according to the Van Cittert-Zernike’s theorem stated in Eq. 1.36. The only free
parameter was the radius of the pinhole used to limit the source size. The result of the
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Figure 1.12: Horizontal profiles of the interferograms corresponding to four different pairs of rect-
angular slits with increasing separation: (a) 250 µm, (b) 500 µm, (c) 750 µm and (d) 1000 µm. The
fringe visibility decreases as the slit separation is increased due to the limited transverse coher-
ence of the incoming radiation. The modulation of the recorded interferograms is dictated by the
diffraction patterns of the vertical slits.

fit is shown in Fig. 1.13. The fitted value rfit = (50.7± 1.6) µm is in good agreement with
the nominal one (rth = 50.0 µm).

The radiation CCF in Eq. 1.36 generally depends on the absolute positions of the two
pinholes through the phase factor exp(−iψ). Nonetheless, its modulus is invariant upon
lateral translations and it depends only on the pinhole separation. Similarly to the in-
troduction of the coherence time, this allows to follow Mandel and define the coherence
area as [36, ?]

Ac =

+∞∫

−∞

|µ(∆x,∆y)|2 d∆xd∆y. (1.37)

Apart from inessential numerical constants depending on the particular shape of the
source intensity profile, it can be proven to show the same dependences as in Eq. 1.35,
obtained by means of Fourier Optics arguments. When the transverse coherence length
of the radiation is comparable to the beam size, the field fluctuations are highly cor-
related and the beam is said to be spatially coherent. Conversely, incoherent radiation
refers to the case in which the field fluctuations are completely random and uncorrelated
from point to point.
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Figure 1.13: The visibilities of the interference fringes from Fig. 1.12 are used to fit the expected
radiation CCF determined by the circular source, according to the Van Cittert-Zernike’s theorem.
The experimental value for the radius of the pinhole rfit = (50.7 ± 1.6) µm is in good agreement
with the nominal value of rth = 50.0 µm. This proves how spatial coherence measurements can
be exploited to retrieve the size of the radiation source.

In Tab. 1.1 we summarize the names and the definitions of the quantities introduced
in this chapter and that are commonly used in characterizing coherence properties of the
radiation.
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Spatial and temporal coherence

Mutual Coherence Function MCF Γ12(τ) 〈u(P1, t)u
∗(P2, t− τ)〉

Complex Degree of Coherence - γ12(τ)
Γ12(τ)

[Γ11(0)Γ22(0)]1/2

Temporal coherence

Self Coherence Function - Γ(τ) 〈u(t)u∗(t− τ)〉

Complex Degree of self Coherence CDC γ(τ) Γ(τ)
Γ(0)

Spatial coherence

Mutual Intensity - J12 〈u(P1, t)u
∗(P2, t)〉

Complex Coherence Factor CCF µ12
J12

[I(P1)I(P2)]1/2

Table 1.1: Names and mathematical definition of the functions used to characterize the coherence
properties of the radiation. We also report some acronyms which will be used throughout the
thesis.



CHAPTER 2

Synchrotron radiation from relativistic charges

2.1 Synchrotron Radiation: the classical electrodynamics approach

Synchrotron radiation (SR) is emitted by accelerated charged particles moving at rela-
tivistic velocities [38, 39]. It is endowed with peculiar features arising from the relativis-
tic motion of the charge towards the observer:

• a strong beaming with respect to the direction of the instantaneous motion of the
particle;

• a time compression of the radiation received by the observer: the particle and the
emitted radiation travel with comparable velocities, hence the electric field gener-
ated over a relatively long period of time by the particle reaches the detection point
within a much shorter period.

Due to the strong time compression, the spectrum of the SR short pulses is broad and
it extends up to hundreds or thousands times the characteristic frequency of the particle
motion.

As it will be seen, the angular width of the emission cone and the characteristic fre-
quency of the emitted radiation can be described in term of the Lorentz factor

γ =
1

√

1− β2
, (2.1)

where β = v/c is the particle velocity v normalized to the speed of light. The Lorentz
factor γ gives the ratio between the particle kinetic energyE and the particle rest energy:

E = γm0c
2, (2.2)

being m0 the rest mass of the particle.
In this thesis we will restrict our attention to the radiation emitted by relativistic

electrons (rest energy m0c
2 = 0.5 GeV), for which the Lorentz factor assumes values

much greater than one. This condition allows great simplifications in the development
of the theory of SR by means of the ultrarelativistic approximation:

γ ≫ 1 β ≈ 1. (2.3)

Finally, we would like to point out that the term Synchrotron Radiation is used in
the currently adopted terminology to refer only to the radiation generated by a bending
magnet, while throughout the rest of the thesis it also refers to emission processes by rel-
ativistic and ultrarelativistic charged particles in general. In this case, the reader should
be able to extrapolate the proper meaning from the context.

23
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2.1.1 The particle motion

The peculiar features of the electromagnetic fields emitted by an accelerated charge mov-
ing at relativistic or ultrarelativistic velocities have their basis in the finite propagation
velocity c of light. Referring to Fig. 2.1, the radiation received by a stationary observer
at P at time t was emitted by the particle at an earlier time t′ when it was at position P ′.

Figure 2.1: Geometry relating the detection time t to the emission time t′.

We indicate with ~R(t′) the trajectory of the particle, with ~rp the fixed position of
observation and with ~r(t′) the relative position of the observer with respect to the charge
at the time t′ when the radiation was emitted. The relation between the observation time
t and the time t′ at which the radiation was generated is given by

t = t′ +
r(t′)

c
, (2.4)

where r(t′) = |~r(t′)|. Since

~R(t′) + ~r(t′) = ~rp, (2.5)

we obtain for the change of the vector ~r(t′)

d~r(t′)

dt′
= −d~R(t′)

dt′
= −c~β(t′) (2.6)

and for the corresponding change of its absolute value

r(t′)
dr(t′)

dt′
=

1

2

d (~r(t′) · ~r(t′))
dt′

= ~r(t′) · d~r(t
′)

dt′
= −~r(t′) · ~β(t′)c. (2.7)

Introducing the unit vector n̂(t′) pointing from the charge to the observer at the time
t′ of emission

n̂(t′) =
~r(t′)

r(t′)
, (2.8)

we obtain the differentail relation between t and t′ corresponding Eq. 2.4:

dt =

(

1 +
1

c

dr(t′)

dt′

)

dt′ =
(

1− n̂(t′) · ~β(t′)
)

dt′. (2.9)
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2.1.2 The Liènard-Wiechert fields

Owing to the finite propagation velocity of light, the solutions of the Maxwell’s equa-

tions for the electromagnetic fields ~E(~rp, t) and ~B(~rp, t) are determined by the character-
istics of the charge motion at an earlier time t′, with the retardation effect given by Eq.

2.4. Defining ~β(t′) and ~̇β as the instantaneous velocity and acceleration of the particle,
respectively, the expressions for the retarded fields of a moving charge, or the Liènard-
Wiechert fields, take the form [38, 39]

~E(~rp, t) =
e

4πǫ0

{

(1− β2)(n̂− ~β)

r2(1 − n̂ · ~β)3
+
n̂× [(n̂− ~β)× ~̇β]

cr(1 − n̂ · ~β)3

}

ret

~B(~rp, t) =
n̂ret × ~E

c
, (2.10)

where the subscript ret indicates that the expressions between curly brackets have to be
evaluated at the earlier time t′.

The electric and magnetic fields are composed of two terms showing a different de-
pendence on the distance r between the source and the point of observation:

• the first term decreasing as r−2 does not depend on the charge acceleration but
only on its velocity and position. It is therefore called the velocity field or the near
field;

• the second term decreasing as r−1 is proportional to the particle acceleration and
it is thus called the acceleration field or the radiation field.

The acceleration field is the only component of the Liènard-Wiechert fields which
implies an energy transfer from the charge to the outside. In fact, the energy flow per

unit of time is quantified by the Poynting vector ~S

~S(~rp, t) =
~E(~rp, t)× ~B(~rp, t)

µ0
=

1

cµ0

[∣
∣
∣ ~E(~rp, t)

∣
∣
∣

2

n̂ret −
(

n̂ret · ~E(~rp, t)
)

~E(~rp, t)

]

, (2.11)

whose modulus is proportional to | ~E(~rp, t)|2. It has three main contribution with a dif-
ferent dependence on the distance r between the source and the observer: the term from
the square of the velocity field decreases with distance as r−4, the term from the square
of the acceleration field decreases as r−2 and term from the cross products decreases as
r−3. The total power radiated by the charge is obtained by integrating Eq. 2.11 through
a sphere of radius r around the source. Only the term from the acceleration field gives
a non-vanishing contribution at large distances, thus implying an actual energy trans-
fer to the outside. This explains why the acceleration field is also called the radiation
field: only this term of the Liènard-Wiechert fields corresponds to energy being radiated
at large distances. We also notice that the result of the integral is independent on the
distance r, similarly to the case of the radiant field treated in Chap. 1.

2.1.3 The electric field in the frequency domain

The relation between the observation time t and the emission time t′ may be very compli-
cated for a general charge motion. It is sometimes more convenient to compute directly
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the fields in the frequency domain:

~̃
E(~rp, ω) =

1√
2π

∫ +∞

−∞

~E(~rp, t)e
−iωt dt. (2.12)

The integration involves the observation time as we are interested in the spectrum of
the radiation as seen by the observer. From the discussion of the previous Subsect. 2.1.2,
we are allowed to retain only the contribution from the radiation field:

~̃
E(~r, ω) =

e

4πǫ0c

1√
2π

∫ +∞

−∞

{

n̂× [(n̂− ~β)× ~̇β]

r(1 − n̂ · ~β)3

}

ret

e−iωt dt. (2.13)

A formal change of integration variable from t to t′ leads to

~̃
E(~rp, ω) =

e

4πǫ0c

1√
2π

∫ +∞

−∞

n̂× (n̂− ~β)× ~̇β

r(1 − n̂ · ~β)2
e
−iω

(

t′+ r(t′)
c

)

dt′, (2.14)

where the subscript ret has been omitted since the integration variable is now t′. Notice

the presence at the denominator of the factor (1 − n̂ · ~β)2 instead of (1 − n̂ · ~β)3: this is a
consequence of the differential relation of Eq. 2.9 between the two time scales t and t′.

As long as the radiation is observed from large distances, we may consider ~r and
n̂ in the large fraction inside the integral in Eq. 2.14 as constants. Integrating by parts
and neglecting the edge terms (the times t′ = ±∞ have no influence on the radiation ob-
served at time t), we obtain the following expression for the electric field in the frequency
domain [38, 39]

~̃
E(~rp, ω) =

iωe

4π
√
2πǫ0crp

∫ +∞

−∞

[n̂× (n̂× ~β)] e
−iω

(

t′+ r(t′)
c

)

dt′. (2.15)

2.2 Synchrotron Radiation

2.2.1 The opening angle

Let F be the reference frame of a fixed observer and let e be a charged particle moving
along a curved trajectory inside a bending magnet. The trajectory is characterized by the
radius of curvature ρ and the constant magnetic field is assumed to point outward from
the plane of the page, as depicted in Fig. 2.2(a). The modulus of the particle velocity is
constant and it is equal to βc. The reference frame F is chosen with its origin O corre-
sponding to the half point of the particle trajectory, with the z-axis pointing along the
line tangent to the orbit at the originO and with the x-axis lying on the orbit plane along
the radial direction at O. Without loss of generality, we will focus on the properties of
the radiation emitted as the particle passes through the origin.

Referring to Fig. 2.2(a) and calling ~v = βcêz the instantaneous velocity of the partice
at the origin O, we can introduce a reference frame F ′ moving with constant velocity ~v,
having the x′-, y′- and z′-axes parallel to those of the fixed reference frame F and such
that its originO′ corresponds to the origin O of F at a certain instant of time t0. Since the
velocity of the moving frame F ′ is always greater than the z-component of the particle
velocity, F ′ lags behind the particle for t < t0, while the reverse happens for t > t0.
Moreover, by construction, the x′-coordinate of the particle in the moving frame F ′ is
always negative, increasing for t < t0 and decreasing for t > t0. The situation is depicted
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Figure 2.2: Geometric approach to the relativistic beaming effect. (a) A relativistic particle moving
inside a bending magnet in the fixed laboratory frame. Radiation is beamed in the forward direc-
tion. (b) Particle motion in a co-moving frame. The trajectory resambles a cycloid and the particle
emits isotropically. The beaming effect is a consequence of the Lorentz transformation back to the
laboratory frame.

in Fig. 2.2(b), where it is shown how the trajectory of the charge in the moving frame F ′

thus resembles a portion of a cycloid with a cusp in the origin. When the particle is inO′,
it is momentarily at rest but it suffers an acceleration towards the negative x′-direction.
This acceleration causes the charge to emit radiation with a dipole-like intensity pattern.

Going back to the reference frame F with a Lorentz transformation, the emitted ra-
diation becomes beamed in the forward direction. In fact, a photon emitted along the
x′-axis in the moving frame F ′ (θ′ = π/2) appears in the reference frame F of the sta-
tionary observer at an angle θ with respect to the z-direction given by [38]

tan θ =
sin θ′

γ (cos θ′ + β)
≈ 1

γ
θ ≈ 1

γ
. (2.16)

The typical opening angle of the emitted SR is thus of the order of 1/γ and the ra-
diation is confined within a narrow cone in the forward direction (with respect to the
instantaneous particle velocity), as shown in Fig. 2.3

2.2.2 The spectrum in a long magnet

Owing to the small opening angle θ ≈ 1/γ, an observer at a point P along the z−direction
receives the radiation as a short pulse generated only from a small portion of the particle
trajectory. Referring to Fig. 2.4, the portion of the trajectory from A to A′contributing to
the field at P is determined by the condition that the instantaneous particle velocity is
deflected by a maximum angle ±1/γ with respect to the z−axis.

The particle takes approximately

te =
2ρ

γβc
(2.17)

to go fromA toA′. The radiation emitted by the charge atA′ is thus delayed with respect
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Figure 2.3: Radiation pattern from a relativistic charged particle accelerated perpendicularly to
the instantaneous velocity. (a) In the reference frame K’ of the particle, the angular distribution of
the emitted radiation resembles that from an oscillating dipole. (b) Moving back to the reference
frame of the stationary observer, a beaming effect in the forward direction is observed: the rear
lobe of the dipole-like intensity pattern vanishes and the emitted radiation is confined within a
narrow cone of aperture 1/γ. The case β = 0.9 is reported. Drawings are not on scale for mere
illustrative purposes.

to the field radiated at A by the amount

∆t =
2ρ

γβc
−

2ρ sin
(

1
γ

)

c
. (2.18)

In the ultrarelativistic approximation this delay gives the following expression for the
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Figure 2.4: The ralativistic beaming affects the detected spectrum. An observer receives the radi-
ation from a small portion of the particle orbit. Furthermore, due to the relativistic velocities, the
electric field has a pulsed structure corresponding to a broad spectrum.

temporal duration of the radiation pulse:

∆t ≈ 2ρ

γβc
− 2ρ

c

(
1

γ
− 1

6γ3

)

=
2ρ

γβc

(

1− β +
β

6γ2

)

=
4

3

ρ

c

1

γ3
, (2.19)

where in the last equality we have used the ultrarelativistic relation

1− β =
1− β2

1 + β
≈ 1

2γ2
. (2.20)

From the radiation pulse duration ∆t we obtain the typical frequency ωtyp of the
spectrum by exploiting the relation between variables forming a Fourier couple:

ωtyp =
1

∆t
=

3

4

c

ρ
γ3, (2.21)

where we recognize c/ρ as the fundamental cyclotron frequency ωcycl = βc/ρ in the
ultrarelativistic case β ≈ 1.

It is thus seen that for ultrarelativistic particles the radiation pulse becomes very short
due to the small differences in travel times between the charge and the radiation. Fur-
thermore, the emitted spectrum is broad, with frequences up to γ3 times the fundamental
frequency.

2.2.3 The angular-spectral power distribution

We choose a reference frame as depicted in Fig. 2.5, with the particle passing through
the origin O at the time t′ = 0. The described configuration evidences a cylindrical
symmetry with respect to the axis passing through the center of the particle trajectory
and perpendicular to the orbit plane. It is sufficient to compute the radiation received
by an observer located on a plane tangent to the charge orbit at the origin. In fact, any
observer P ′ on a vertical plane tangent to the particle orbit at a different point will receive
the same electric field as the observer at P , apart from a finite temporal delay.

We refer the interested reader to standard textbooks dealing with Synchrotron Radia-
tion in a classical electrodynamics framework for a detailed derivation of the properties
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Figure 2.5: The ralativistic beaming affects the detected spectrum. An observer receives the radi-
ation from a small portion of the particle orbit. Furthermore, due to the relativistic velocities, the
electric field has a pulsed structure corresponding to a broad spectrum.

of SR (e.g. [38]). Here we just mention and exploit the general condition ρ/(rpγ) ≪ 1,
which is fulfilled in most practical cases for ultrarelativistic particles, in order to reduce
the expression of the radiation field in the frequency domain given by Eq.2.15 to

Ẽx(~rp, ω) =
−
√
3eγ

(2π)3/2ǫ0crp

( |ω|
2ωc

)

(1 + γ2ψ2)K2/3

{
ω

2ωc
(1 + γ2ψ2)3/2

}

Ẽy(~rp, ω) =
i
√
3eγ

(2π)3/2ǫ0crp

(
ω

2ωc

)

γψ
√

1 + γ2ψ2K1/3

{
ω

2ωc
(1 + γ2ψ2)3/2

}

, (2.22)

where we have introduced the critical frequency ωc = 3cγ2/2 and K2/3 and K1/3 are the
modified Bessel functions of order 2/3 and 1/3.

Equation 2.22 describes the two modes of linear polarization with the electric field
parallel and perpendicular to the plane of the orbit. They are called the σ-mode and the
π-mode, respectively. From the properties of the modified Bessel function, the electric
field generated by the ultrarelativistic charge becomes negligible for ξ ≫ 1, being ξ =

(ω/(2ωc)) · (1 + γ2ψ2)3/2 the argument of the Bessel functions. This implies that at large
angles only long wavelengths are radiated. Furthermore, if the frequency is too high,
ξ is large at any angle and negligible radiation is generated at very short wavelengths.
The cutoff frequency beyond which the radiated electric field becomes negligible for any
value of the angle ψ may be identified by imposing ξ = 0.5 at ψ = 0, in which case it
turns equal to the critical frequency ωc.

We can now express the angular spectral power distribution radiated by the charged
particle as the sum of the contributions from each of the two modes:
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d2Pσ
dΩdω

=
Psγ

ωc

(
3

2π

)3(
ω

2ωc

)2

(1 + γ2ψ2)2K2
2/3

{
ω

2ωc
(1 + γ2ψ2)3/2

}

d2Pσ
dΩdω

=
Psγ

ωc

(
3

2π

)3(
ω

2ωc

)2

γ2ψ2(1 + γ2ψ2)K2
1/3

{
ω

2ωc
(1 + γ2ψ2)3/2

}

, (2.23)

where Ps collects multiplicative factors together. It can be shown to represent the total
power radiated by the relativistic charge. The two distribution are shown in Fig. 2.6.
They are both symmetric with respect to the vertical angle ψ, being narrow at high fre-
quencies and wide at low frequencies.
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Figure 2.6: Angular-spectral power distribution for the π-mode and σ-mode of single-particle
Synchrotron Radiation.

The σ-mode is large in the median plane while the π-mode is not radiated in the
median plane.This is evident from the expression of the angular power distribution, ob-
tained by integrating Eq. 2.23 over frequencies:

dPσ
dΩ

=

∫
d2Pσ
dΩdω

dω =
Psγ

2π

21

32

1

(1 + γ2ψ2)5/2

dPπ
dΩ

=

∫
d2Pπ
dΩdω

dω =
Psγ

2π

15

32

γ2ψ2

(1 + γ2ψ2)7/2
. (2.24)
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The angular power distribution of the σ-mode and of the π-mode are shown in Fig.
2.7, together with the total one.
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Figure 2.7: Angular power distribution for the π-mode and σ-mode of single-particle Synchrotron
Radiation.

Integration of the angular spectral power distribution over the solid angle gives the
spectral power distribution of the emitted SR:

dP

dω
=

∫
d2P

dΩdω
dΩ =

Ps

ωc
Ss

(
ω

ωc

)

=
Ps

ωc

[

Ssσ

(
ω

ωc

)

+ Ssπ

(
ω

ωc

)]

, (2.25)

where the universal functions Ssσ , Ssπ, characterizing the properties of synchrotron ra-
diation, are given by

Ssσ

(
ω

ωc

)

=
9
√
3

16π

ω

ωc

{∫ +∞

ω/ωc

K5/3(z
′) dz′ +K2/3

(
ω

ωc

)}

Ssπ

(
ω

ωc

)

=
9
√
3

16π

ω

ωc

{∫ +∞

ω/ωc

K5/3(z
′) dz′ −K2/3

(
ω

ωc

)}

(2.26)

and clearly

Ss

(
ω

ωc

)

=
9
√
3

8π

ω

ωc

∫ +∞

ω/ωc

K5/3(z
′) dz′. (2.27)

They are shown in Fig. 2.8 on a double logarithmic scale and in Fig. 2.9 on a double
linear scale.

The maxima of the universal functions occur below the critical frequency and the
radiated spectrum is smooth and broad. Integration over all frequencies shows that the
emitted SR is highly polarized, the total contribution from the σ-mode being seven times
higher than that of the π-mode. Finally, integration up to the critical frequency gives half
the total value. The critical frequency thus divides the spectrum into two parts having
the same total power content.
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Figure 2.8: Spectral power distribution for the π-mode and σ-mode of single-particle Synchrotron
Radiation on a double logarithmic scale.
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Figure 2.9: Spectral power distribution for the π-mode and σ-mode of single-particle Synchrotron
Radiation on a double linear scale. They are obtained by integrating the angular-spectral power
density shown in Fig. 2.6 over angles.

2.3 Undulator Radiation

2.3.1 Weak undulators and strong undulators

An undulator is a spatially periodic magnetic structure designed to produce high-brilliance
quasi-monochromatic radiation from relativistic charged particles [38, 39]. A series of
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Nw magnetic dipoles with alternating polarity generates a magnetic field of the form

~B(z) = B0 cos

(
2π

λw
z

)

ǫ̂y = B0 cos(kwz) ǫ̂y, (2.28)

where λw is the period of the magnetic structure, also known as the wiggler wavelength,
and Nw is the number of wigglers.

The magnetic field of Eq. 2.28 causes the electrons entering the magnetic structure
to wiggle horizontally around the ideal rectilinear trajectory along the z-direction. At
the exit of the undulator, the position and momentum of the particles are not signifi-
cantly modified with respect to the entrance. For this reason, undulators are also called
insertion devices.

The trajectory of an ultrarelativistic electron is characterized by the (maximum) de-
flection angle ψ0 with respect to the z-axis. The properties of the Undulator Radiation
(UR) strongly depend on the magnitude of the deflection angle with respect to the nat-
ural opening angle of the order of 1/γ of the emitted radiation. Their ratio defines a
fundamental quantity known as the undulator parameter or the deflection parameter
K :

K = γψ0. (2.29)

The two conditions K < 1 and K > 1 correspond to the so-called weak undulators
and strong undulators, respectively [38]

• if K < 1, the observer sees a smoothly modulated field with a simple pattern and
with quasi-monochromatic properties. This configuration identifies weak undula-
tors;

• if K > 1, the observer sees a strongly modulated field composed of a train of
short pulses, thus containing many harmonics. This configuration identifies strong
undulators.

We will consider only the radiation from a strong undulator, for which the average
drift velocity of the particle in the z-direction β∗c is less than the instantaneous parti-
cle velocity βc due to the large deflection angle ψ0. The non-uniform drift velocity has
important consequences on the kinematics of an electron in an undulator and on the
detailed angular and spectral distribution of the emitted radiation. We temporarily ne-
glect the difference with respect to the instantaneous particle velocity βc without loss of
generality in order to obtain the main features of UR by means of simple interference
arguments.

2.3.2 The fundamental frequency and its harmonics

The fundamental frequency is obtained from the condition of constructive interference
between the radiation emitted at successive periods [38, 39]. The charge takes the time
te = λw/(βc) to move forward by one period. During the same time interval, the wave-
front of the radiation emitted at the earlier period has advanced by λw/β. An observer
along the z-direction (θ = 0) receives a periodic field of wavelength

λ = λw

(
1

β
− 1

)

= λw

(
1− β

β

)

= λw

[
1− β2

β(1 + β)

]

≈ λw

2γ2
. (2.30)
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It can be seen that radiation with short wavelength in the UV and X-ray range can be
obtained with wigglers with a period of the order of 10−2-10−3 m.

The resonant frequency given by Eq. 2.30 can be generalized for the case of an ob-
server located off-axis at an angle θ 6= 0. While the wavefront emitted at the earlier
period still advances by λw/β, the projection of the electron orbit along the θ-direction
induces a further delay λw cos θ on the wavefront emitted one period downstream. The
wavelength of the radiation is then given by

λ =
λw

β
(1− β cos θ) ≈ λw

β

(

1− β +
βθ2

2

)

≈ λw

(
1

2γ2
+
θ2

2

)

=
λw

2γ2
(1 + γ2θ2). (2.31)

While the radiation wavelength changes with the observation position according to
Eq. 2.31, at a fixed angle an ideally infinite undulator would generate a spectrum with
sharp monochromatic lines at harmonics of the fundamental frequency given by the
same Eq. 2.31. The effect of a finite number Nw of undulator periods is to broaden the
frequency distribution at the fixed angle θ for each harmonic, with a frequency spread
becoming narrower as the number of periods increases. For each harmonic number n,
this can be seen by comparing the condition for constructive interference at the angle θ
over Nw periods

Nwnλ =
Nwλw

β
−Nwλw cos θ (2.32)

with the condition for destructive interference

Nwnλ
′ + λ′ =

Nwλw

β
−Nwλw cos θ. (2.33)

These two interference conditions give a relative bandwidth of the emitted radiation
of the form

∆λ

λ
=
λ− λ′

λ
=

1

1 +Nn
≈ 1

Nn
. (2.34)

Typically, N ∼ 100 hence the relative bandwidth is of the order of 1% for the first
harmonic and even lower for higher harmonic numbers.

2.3.3 The central cone

Similar arguments allow to obtain the angular spread over which a particular wave-
length is radiated. The condition for constructive interference is still given by

Nwnλ =
Nwλw

β
−Nwλw cos θ. (2.35)

Since we are interested in the angular spread of a fixed harmonic, it has to be com-
pared with the condition for destructive interference given by

Nwnλ+ λ =
Nwλw

β
−Nwλw cos θ′, (2.36)

yielding under the small angle approximation to

θ′2 − θ2 =
2λ

Nwλw
. (2.37)
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For the radiation emitted on-axis (θ = 0), the angle beyond which the intensity falls
to zero is given by

θ′ =
1

γ
√
Nwn

. (2.38)

For the first harmonic, Eq. 2.38 gives the angular width of the so-called central cone.
It is modified as follows in order to take into account the average drift velocity of the
particle β∗c < βc:

θ′ =
1

γ∗
√
Nwn

, (2.39)

where γ∗ = 1/
√

1− (β∗)2.

2.3.4 Even and odd harmonics

A deeper insight into the angular and spectral distribution of the emitted UR can be
obtained by considering a frame moving with the average drift velocity of the particle
β∗c. In such reference frame, the period of the undulator moving towards the parti-
cle is Lorentz-contracted to λ∗w = λw/γ. Since β∗ < β, the particle follows a periodic
figure-eight trajectory. It can be decomposed into an oscillation along the x′-axis occur-
ring at odd harmonics of ωwγ (here ωw = 2πc/λw) and an oscillation along the z′-axis at
even harmonics of ωwγ. Both components of the charge trajectory are responsible for the
emission of dipole radiation, though with a different angular orientation as depicted in
Fig. 2.10(a) and in Fig. 2.10(c), respectively. In the laboratory frame, this results in the
characteristic radiation beaming in the forward direction, with odd harmonics emitted
on axis and even harmonics distributed in rings around them, as in Fig. 2.10(b) and in
Fig. 2.10(d), respectively. The fundamental frequency of emission in the moving frame
ωwγ is Doppler-shifted by γ upon transformation back into the laboratory frame, result-
ing in the emitted resonant frequency ω0 = ωwγ

2. The overall spectrum containes many
wavelengths, but at a fixed angle it consists of sharp lines at frequencies nω0 multiple of
the fundamental. In the forward direction, only odd harmonics are radiated.

2.3.5 The angular-spectral power distribution

In the case of strong undulators, the particle velocity along the z-direction consists of a
constant drift at the average velocity

〈ż〉 = βc

(

1− K2

4β2γ2

)

= β∗c (2.40)

superimposed to an oscillatory modulation with frequency 2Ωw = 2kwβ
∗c.

We restrict our attention to the far field, assuming that the radiation is observed from
a distance rp much larger than the undulator length Lw = Nwλw. Restricting our atten-
tion to the generic h-th harmonic and introducing ∆ωk = ω − kω1, the angular spectral
power distribution of the k-th harmonic is given by [38, 39]
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Figure 2.10: Undulator radiation pattern for even and odd harmonics. (a) Odd harmonics are
due to the oscillatory motion in the horizontal direction suffered by the particle in its reference
frame. (b) Moving back to the observer frame, the dipoel-like radiation is beamed in the forward
direction. (c) Even harmonics arise from the longitudal oscillatory motion of the particle in its
reference frame. It results in a dipole pattern with null emitted intensity along the z’-direction. (d)
The Lorentz transformation to the reference frame of the observer shaped the emitted radiation
in a narow cone in the forward direction. The resulting intensity distribution appears as a ring
around the z-axis. Drawings are not on scale for mere illustrative purposes.

d2Wk

dΩdω
= Pu

[
sin(πNw∆ωk/ω1)

πNw∆ωk/ω1

]2

·
∣
∣
∣
∣
∣
ǫ̂x

[

θ cosφ

+∞∑

m=−∞

Jm(u)Jk−2m(v)ei
π
2 (k−2m) +

+
iK

2γ

(
+∞∑

m=−∞

Jm(u)Jk−2m+1(v)e
i π2 (k−2m+1) −

+∞∑

m=−∞

Jm(u)Jk−2m−1(v)e
i π2 (k−2m−1)

)]

+

+ ǫ̂y θ sinφ

+∞∑

m=−∞

Jm(u)Jk−sm(v)ei
π
2 (k−2m)

∣
∣
∣
∣
∣

2

, (2.41)

where Pu = rem0cN
2
wω

2/(γ2Ω2
w), u = (ω/ω1)C, v = (ω/ω1)S, Jn(·) is the Bessel function
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of order n and we have introduced the following reduced parameters

γ∗ =
γ√

1 +K2/2
K∗ =

K√
1 +K2/2

C =
2K∗β∗γ∗θ cosφ

1 + γ∗2θ2
S =

K∗2β∗

1 + γ∗2θ2
.

(2.42)
In most circumstances one does not have to compute the infinite sums with many

terms. The first 10 or 20 terms about zero are enough to give adequate results, as reported
in Fig. 2.11 for the horizontal profiles of the first four harmonics.

0.0 0.5 1.0 1.5 2.0
1

5

10

15

20

Te
rm

s 
in

 s
er

ie
s

(a)

0.0 0.5 1.0 1.5 2.0
1

5

10

15

20

Te
rm

s 
in

 s
um

s

(b)

0.0 0.5 1.0 1.5 2.0
1

5

10

15

20

Te
rm

s 
in

 s
um

s

(c)

0.0 0.5 1.0 1.5 2.0
1

5

10

15

20

Te
rm

s 
in

 s
um

s

(d)

Figure 2.11: Convergence of the undulator sum in Eq. 2.41 for a finite number of terms for the first
four harmonics. It can be seen that a number of ≈ 20 terms around zero in Eq. 2.41 ensures the
convergence of the series.

Finally, Fig. 2.12 shows the 2-D angular power density of the first four harmonics.
It is worth noting that such plots are not at a fixed wavelength: they show how the
flux density of each harmonic varies with the observation position but the photon wave-
length itself is changing with the angle.

One of the key features of wigglers and undulators is the narrow frequency distribu-
tion around the resonant frequency at a fixed angle. The bandwidth of the radiation at
the observation angle θ is determined by ∆ωk through the resonant factor sin(·)/(·):

sin(πNw∆ωk/ω1)

πNw∆ωk/ω1
= 0 −→ πNw∆ωk

ω1
= π −→ ∆ωk

ωk
=

1

kNw
. (2.43)

In a similar way we can also determine the angular width of the peak of the k-th
harmonic at an angle θ. We observe the radiation tuned at the resonant frequency kω1(θ)
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Figure 2.12: Undulator angular power distribution for the first four harmonics. It is worth re-
membering that such plots are not at a fixed wavelength due to the angle-dependent doppler shift
λn = [λw/(2γ2n)](1 +K2/2 + γ2θ2).

and then move to the angular position θ′. From the resonant factor, the angular width of
the peak is given by

π =
πNw∆ωk(θ

′)

ω1(θ′)
= πNw

kω1(θ)− kω1(θ
′)

ω1(θ′)
= πNwkγ

2 θ′2 − θ2

1 +K2/2 + γ2θ2
. (2.44)

The angular width of the peak around θ = 0 (central cone of radiation) for the k-th
harmonic is then

θ′ =
1

γ∗
√
kNw

. (2.45)

2.4 Solution based on Paraxial Green’s function

The properties of Synchrotron Radiation and of Undulator Radiation have been obtained
so far in a classical electrodynamics framework, based on the far field expressions of the
Liènard-Wiechert fields [38, 39]. They are derived by solving the Maxwell’s equations in
the space-time domain and by Fourier-transforming the acceleration term to shift to the
frequency representation of the electric field.
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Recently [40, 41], a new formalism has been developed based on the solution of the
paraxial Maxwell’s equation in the space-frequency domain for a given harmonic of the
electric field with the use of an appropriate Green’s function. A general expression for

the slowly-varying complex envelope ~̃
E⊥(zo, ~r⊥o, ω) of the Fourier component of the

electric field is derived, remarkably valid in the near field as well as in the far field.
Furthermore, it can be easily adapted to particles with offset and deflection with respect
to the nominal trajectory, paving the way for an analytical or numerical investigation of
finite emittance effects and of transverse coherence properties of the radiation beam.

Denoting with ~r⊥o = (xo, yo) the transverse coordinates of an observer at the longi-
tudinal position zo and referring to the position and to the velocity of the particle with
(~r ′

⊥, z
′) = (x′, y′, z′) and ~v = (vx, vy), respectively, in the ultrarelativistic approximation

(1/γ2 ≪ 1) the slowly-varying envelope of the field in the space-frequency representa-
tion is expressed by the following general relation [40, 41]:

~̃
E⊥(zo, ~r⊥, ω) = − iωe

c2

∫ +∞

−∞

dz′
eiΦT

zo − z′
×

×
[(

vx(z
′)

c
− xo − x′(z′)

zo − z′

)

x̂+

(
vy(z

′)

c
− yo − y′(z′)

zo − z′

)

ŷ

]

,

(2.46)

where the total phase ΦT is given by

ΦT = ω

[
s(z′)

v
− z′

c

]

+ ω

[
(xo − x′(z′))2 + (yo − y′(z′))2

2c(zo − z)

]

. (2.47)

The full derivation of Eq. 2.46 is reported in Appendix A for the convenience of the
reader.

2.4.1 Bending magnet radiation

We consider a particle moving at constant velocity v along a circular trajectory with
radius of curvatureR inside a bending magnet. Under paraxial conditions, the following
expressions for the particle trajectory and curvilinear abscissa hold:

s(z′) = Rarcsin

(
z′

R

)

≈ z′ +
z′3

6R2
~r′⊥ = − z′2

2R
x̂. (2.48)

The slowly-varying evelope of the electric field in the space-frequency domain and
in far field conditions is obtained by expanding (zo − z′)−1 around zo. We keep terms
up to the third power in the expression for the phase, while for the other factors it is
sufficient to retain only first-order terms [40, 41]. We introduce the angles θx = xo/zo
and θy = yo/zo, yielding to the final result

~̃
E⊥(zo, θx, θy, ω) =

iωe

c2zo
eiΦseiΦ0×

×
∫ +∞

−∞

dz′
(
z′

R
x̂+ θy ŷ

)

exp

{

iω

[
z′

2γ2c
(1 + γ2θ2y) +

z′3

6R2c

]}

, (2.49)
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where

Φs =
ωzo

2c
(θ2x + θ2y) Φ0 = −ωRθx

2c

(
1

γ2
+
θ2x
3

+ θ2y

)

. (2.50)

In order to compare the expression for the field just derived and the results of classical
electrodynamics, we must put θx = 0 and we set z′ = vt′, since classical electrodynamics
results are expressed in terms of integration over the retarded time t′ of the particle. We
thus obtain

~̃
E⊥(zo, θx, θy, ω) =

iωe

czo
eiΦs

∫ +∞

−∞

dt′
(
ct′

R
x̂+ θy ŷ

)

exp

{

iω

[
t′

2γ2
(1 + γ2θ2y) +

t′3c2

6R2

]}

=

= −
√
3e

czo

2Rω

3γ3c
eiΦsγ(1 + γ2θ2y)

[

K2/3(ξ)x̂ − i
γθy

(1 + γ2θ2y)
1/2

K1/3(ξ)

]

,

(2.51)

where K2/3 and K1/3 are the modified Bessel function of second kind of fractional order
2/2 and 1/3, respectively, and ξ = (Rω/3γ3c)(1 + γ2θ2y)

3/2.

The phase term Φs = ωzoθ
2
y/(2c), usually neglected in the standard electrodynamics

derivation, represents the wavefront of a spherical wave propagating outward from the
origin of the reference system. Nonetheless, the wavefront of the radiation emitted by
a single particle does not resemble a spherical wave for nonzero values of θx due to the
term Φ0, as shown in Fig. 2.13. This term has no equivalent in the usual derivation with
classical electrodynamics techniques and it describes in an analytical way the results of
thorough simulations on single particle effects [48].
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Figure 2.13: Non-spherical wavefront of single-particle Synchrotron Radiation.

The expression for the field can be easily generalized to the case of an electron with

offset ~l = (lx, ly) and deflection ~η = (ηx, ηy). The offset ~l induces an overall transverse
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shift of the detected electric field, while the particle deflection ~η causes a tilt in the ra-
diation beam. Moreover, we notice that the phase profile of a spherical wave is not
influenced by any angular tilt, as long as the observation plane is perpendicular to the
z-axis. The generalized form of the electric field for a single particle with offset and de-
flection can thus be obtained by simply substituting θx with θx − lx/zo − ηx and θy with
θy − ly/zo − ηy everywhere except in the spherical wave term, where they are replaced
by θx − lx/zo and θy − ly/zo, respectively:

~̃
E⊥(~l, ~η, zo, θx, θy, ω) =

iωe

c2zo
eiΦseiΦ0

∫ +∞

−∞

dz′
[
z′

R
x̂+

(

θy −
ly

zo
− ηy

)

ŷ

]

×

× exp

{

iω

[

z′

2γ2c

(

1 + γ2
(

θy −
ly

zo
− ηy

)2
)

+
z′3

6R2c

]}

, (2.52)

where the phase factors Φs and Φ0 are now given by

Φs =
ωzo

2c

[(

θx −
lx

zo

)2

+

(

θy −
ly

zo

)2
]

Φ0 = −ωR(θx − lx/zo − ηx)

2c

[

1

γ2
+

(

θy −
ly

zo
− ηy

)2

+
(θx − lx/zo − ηx)

2

3

]

. (2.53)

2.4.2 Undulator radiation

We consider a planar undulator composed of Nw periods. The transverse position and
velocity of the particle are given by

~r ′
⊥(z

′) =
K

γkw
cos(kwz

′)x̂ ~v⊥(z
′) = −cK

γ
sin(kwz

′)x̂, (2.54)

where K is the deflection parameter and kw = 2π/λw, being λw the undulator period.
The curvilinear abscissa is given in terms of the longitudinal particle coordinate as

s(z′) =
β

βav
z′ − K2

8γ2kw
sin(2kwz

′), (2.55)

where βav = β[1 − K2/(4γ2)] is the average velocity along the z-direction. In the limit
for zo ≫ Lw, where Lw = Nwλw is the undulator total length, the electric field has max-
ima at the resonant harmonics ωh = hω1 of the fundamental frequency ω1, the resonant
terms being described by a sin(·)/(·) function. Once the observation angle θ is fixed, the
corresponding resonant frequency ωh(θ) is defined. At an angular displacement ∆θ the
resonant frequency ωh(θ +∆θ) may lie outside the radiation bandwidth determined by
the width of the resonant term sin(·)/(·). For the case θ = 0,this leads naturally to the
definition of the central cone

θc =
1

γz
√
Nwh

, (2.56)
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where γz = γ/
√
1 +K2/2. Under the resonant approximation (Nw ≫ 1) and within the

central cone (θ < θc), we obtain the following simple expression for the first harmonic of
the electric field:

~̃
E⊥,1(zo, ~r⊥o, ω) = −KωeNwλwe

iΦs

c2zoγ

sin(πNw∆ω1/ω1)

πNw∆ω1/ω1
AJJ

(
K2

4 + 2K2

)

x̂, (2.57)

where ∆ω1 = ω − ω1, AJJ(·) = J0(·) − J1(·), Jp denotes the Bessel function of the first
kind of order p and Φs = [ωzo/(2c)]θ2 describes the phase front of a diverging spherical
wave. Here

ω−1
1 =

1

2ckwγ2

(

1 +
K2

2
+ γ2θ2

)

. (2.58)

Under the resonant approximation, the electric field is polarized in the horizontal

direction and we can therefore refer to it with the scalar notation Ẽ⊥,1. The argument in
the resonant term can be rewritten as

πNw
∆ω1

ω1
= πNw

[
ω − ω1(0)

ω1(0)
+

ωθ2

2kwc

]

=

[
LwC

2
+
ωLwθ

2

4c

]

, (2.59)

where C = ω/(2γ2zc)− kw is known as the detuning parameter. In the following, we will
call ω1(0) = ω0. We also introduce the following dimensionless quantities

Ê⊥,1 = − c2zoγ

KωeLwAJJ
Ẽ⊥,1 Ĉ = LwC = 2πNw∆ω1/ω1

θ̂ = θ

√

ωLw

c
~̂r⊥ = ~r⊥

√
ω

cLw
ẑ =

z

Lw
(2.60)

to cast the expression for the electric field in the more compact form

Ê⊥,1(zo, ~r⊥o, ω) = eiΦs
sin[Ĉ/2 + θ̂2/4]

Ĉ/2 + θ̂2/4
. (2.61)

The intensity profiles for the first harmonic and for different values of the detuning

parameter Ĉ are reported in Fig. 2.14(a) and Fig. 2.14(b).
The introduction of dimensionless quantities, besides simplifying the expression for

the electric field, provides a similarity technique to determine small and large parame-
ters. In particular, from the dimensional analysis just introduced, it follows that angular
and transverse coordinates (and quantities) are to be compared with the natural angle
and with the natural transverse size of the single-particle undulator radiation, expressed
respectively by [c/(ωLw)]

1/2 and [cLw/ω]1/2, while the natural longitudinal distance is
simply set by the undulator length Lw.

Similarly to the case of bending magnet radiation treated in Subsect. 2.4.1, we can
easily generalize the expression of the electric field to the case of an electron with offset
and deflection:

Ê
⊥,1,~l,~η(zo, ~r⊥o, ω) = eiΦU

sin(ζ)

ζ
, (2.62)

where
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Figure 2.14: Effect of positive and negative detuning on the profile of undulator intensity. The

symbol C in the legend should be read as Ĉ.

ΦU =





(

θ̂x −
l̂x

ẑo

)2

+

(

θ̂x −
l̂x

ẑo

)2



ẑo

2

ζ =
Ĉ

2
+

1

4

(

θ̂x −
l̂x

ẑo
− η̂x

)2

+
1

4

(

θ̂y −
l̂y

ẑo
− η̂y

)2

(2.63)

and the offset ~l and the deflection ~η of the electron have been normalized according to
the natural scalings of Eq. 2.60:

~̂
l = ~l

√
ω

cLw
~̂η = ~η

√

Lwω

c
. (2.64)

2.4.3 Undulator radiation as a laser-like beam

Synchrotron radiation can be described with the formalism of laser beam optics [41].
This parallelism stems from the fact that both the radiation from an ultrarelativistic elec-
tron and laser beams satisfy the paraxial wave equation. In particular, the Undulator
Radiation from an ultrarelativistic particle appears as a laser-like beam generated by a
virtual source with a plane wavefront, similarly to the case of the waist of a laser beam.

Remarkably, the electric field distribution Ẽ⊥(0, ~r⊥) of this virtual waist is related to the
Fourier transform of the far-field angular distribution of the emitted SR:

Ẽ⊥(0, ~r⊥) = i
Kωe

c2γ
AJJ

[

π − 2Si

(
ωr2⊥
cLw

)]

, (2.65)

where ~r⊥ den otes transverse coordinates across the virtual source plane and r⊥ = |~r⊥|.
We refer the interested reader to Appendix B for further details. It can be seen that:

• the virtual waist is located in the center of the undulator, similarly to the waist of
a laser beam located at the center of the optical cavity;
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• both the UR virtual source and the waist of a laser beam have a plane wavefront;

• the UR virtual waist has a characteristic transverse extension w0 = [cLw/ω]1/2;

• the characteristic divergence of the UR beam is c/(ωw0) = [c/(ωLw)]
1/2;

• the UR Rayleigh range zR = (ω/c)w2
0 = Lw is related to the undulator geometrical

factor.

We now have a deeper understanding regarding the scalings and dimensionless quan-
tities of Eq. 2.60, having provided a physical meaning to the characteristic quantities
therein introduced. Finally, the field at any longitudinal position zo downstream the
magnetic setup can then be obtained by means of the Fresnel propagation formula from
the electric field of the virtual source:

Ẽ⊥(zo, ~r⊥) =
Kωe

c2γ
AJJ

[

Ei

(
iωr2⊥

2zoc− Lwc

)

− Ei

(
iωr2⊥

2zoc+ Lwc

)]

, (2.66)

being Ei(·) the exponential integral function and r⊥ = |~r⊥|, where ~r⊥ now indicates
transverse coordinates across the observation plane at the longitudinal position zo.





CHAPTER 3

Partially coherent synchrotron radiation from relativistic
beams

3.1 Synchrotron Radiation as a stochastic process

Realistic electron beams have finite cross section and divergence. The electrons are ran-
domly distributed within the beam and at a fixed position along the trajectory they travel
with random deflection angles. Moreover, the shot noise in the electron beam induces
fluctuations in the beam distribution which are random in time and space from bunch
to bunch. As a consequence, the emitted Synchrotron Radiation has random amplitudes
and phases and it is properly described as a stochastic process [42].

3.1.1 Synchrotron Radiation: a non-stationary process

Synchrotron Radiation is intrinsically a non-stationary process, being emitted in the form
of short pulses: average over many ensamble realizations unavoidably yields to a time-
varying intensity on a temporal scale comparable to the pulse duration. For this reason,
averaging brackets 〈·〉 will denote ensamble average over many electron bunches.

3.1.2 Synchrotron Radiation: a Gaussian process

We consider a fixed polarization component at the frequency ω of the Fourier transform
of the electric field emitted by the electron bunch. At position (zo, ~r⊥o) it is indicated
as Ē⊥(zo, ~r⊥o, ω). We will refer to it as the electric field for notational simplicity. The
contribution to the total electric field from the k-th electron depends on the transverse

offset ~lk and on the deflection angle ~ηk. Furthermore, the electric field in time domain is
delayed by the time tk with respect to some reference temporal instant. The arrival time
tk induces a phase shift exp(iωtk) in the electric field in the frequency domain. The total
eetric field can then be written as

Ē⊥(zo, ~r⊥o, ω) =

N∑

k=1

Ē⊥(~lk, ~ηk, zo, ~r⊥o, ω)e
iωtk , (3.1)

where N is the number of electrons in the bunch. We make the three following assump-
tions on the complex phasors composing the sum in Eq. 3.1, which are generally satisfied
in Synchrotron Radiation from relativistic beams [42]

• the random variables tk are independent of each other and of the random vari-

ables ~lk and ~ηk. This requirement is always fulfilled as the arrival times are due to
the shot noise in the electron bunches and they do not depend on the offset and
deflection of the electron;

47
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• the random variables |Ē⊥(~lk, ~ηk, zo, ~r⊥o, ω)| are identically distributed for all k,
with finite average and second-order moment. Also this requirement is fulfilled
due to the properties of shotnoise in storage rings;

• the electron bunch duration σT is large enough in order to have ωσT ≫ 1. Under
this assumption, generally fulfilled because ω refers is high enough in practical
cases, the random phases ωtk are uniformly distributed in the range (0, 2π).

Under these three hypotheses, we can exploit the Central Limit Theorem to state that
the real and imaginary part of Ē⊥(zo, ~r⊥o, ω) follow a Gaussian statistics. As a result,
Synchrotron Radiation is a non-stationary Gaussian stochastic process and its statistical
characterization requires only the second-order field correlation function in frequency
domain:

Γω(zo, ~r⊥o1, ~r⊥o2, ω1, ω2) =
〈
Ē⊥(zo, ~r⊥o1, ω1)Ē

∗
⊥(zo, ~r⊥o2, ω2)

〉
. (3.2)

3.2 Theory of second-order field correlation function in space-frequency
domain

Our starting point is the expression for the second-order correlation function given in
Eq. 3.2. The ensamble average is given in temrs of the probability density distribution

P (~lk, ~ηk, tk) of the joint random variables~lk, ~ηk and tk. Since the random variables tk are

independent on ~lk and ~ηk, P can be factorized as

P (~lk, ~ηk, tk) = Flx,ηx(lx,k, ηx,k)Fly ,ηy (ly,k, ηy,k)Ft(tk), (3.3)

where we have also assumed that the horizontal and vertical distributions are not corre-
lated.

Substitution of Eq. 3.1 into Eq. 3.2 and expansion of the resulting expression give

Γω(zo, ~r⊥o1, ~r⊥o2, ω1, ω2) =

=

N∑

m=1

〈

Ē⊥(~lm, ~ηl, zo, ~r⊥o1, ω1)Ē
∗
⊥(
~lm, ~ηl, zo, ~r⊥o2, ω2)e

i(ω1−ω2)tm
〉

+

+
∑

m 6=n

〈

Ē⊥(~lm, ~ηm, zo, ~r⊥o1, ω1)e
iω1tm

〉〈

Ē∗
⊥(
~ln, ~ηn, zo, ~r⊥o2, ω2)e

−iω2tn
〉

. (3.4)

The ensamble average 〈exp(iωtk)〉 can be rephrased in terms of the Fourier transform
on the bunch longitudinal profile Ft(tk):

〈
eiωtk

〉
=

∫ +∞

−∞

dtk Ft(tk)e
iωtk = Fω(ω), (3.5)

so that
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Γω(zo, ~r⊥o1, ~r⊥o2, ω1, ω2) =

=

N∑

m=1

Fω(ω1 − ω2)
〈

Ē⊥(~lm, ~ηm, zo, ~r⊥o1, ω1)Ē
∗
⊥(
~lm, ~ηm, zo, ~r⊥o2, ω2)

〉

+

+
∑

m 6=n

Fω(ω1)Fω(−ω2)
〈

Ē⊥(~lm, ~ηm, zo, ~r⊥o1, ω1)
〉〈

Ē∗
⊥(
~ln, ~ηn, zo, ~r⊥o2, ω2)

〉

. (3.6)

For radiation wavelengths much shorter than the bunch length we can neglect the
second term, since the product Fω(ω1)Fω(ω2) goes to zero for frequencies larger than the
inverse bunch duration. Conversely, the first term Fω(ω1−ω2) cannot be neglected since
it depends on the difference between ω1 and ω2. We therefore arrive at

Γω(zo, ~r⊥o1, ~r⊥o2, ω1, ω2) =

=
N∑

m=1

Fω(ω1 − ω2)
〈

Ē⊥(~lm, ~ηm, zo, ~r⊥o1, ω1)Ē
∗
⊥(
~lm, ~ηm, zo, ~r⊥o2, ω2)

〉

=

= NFω(ω1 − ω2)
〈

Ē⊥(~l, ~η, zo, ~r⊥o1, ω1)Ē
∗
⊥(
~l, ~η, zo, ~r⊥o2, ω2)

〉

. (3.7)

Each electron is correlated only with itself. Correlations between different electrons
are described by the second term in Eq. 3.6, which has been neglected. Finally, if the

dependence of Ē⊥(~l, ~η, zo, ~r⊥, ω) on the frequency is slow enough on the characteristic

scale of Fω(ω), we can replace Ē⊥(~l, ~η, zo, ~r⊥o2, ω2) = Ē⊥(~l, ~η, zo, ~r⊥o2, ω1)
1. We can thus

separate the correlation in frequency from the spatial correlation

Γω(zo, ~r⊥o1, ~r⊥o2, ω1, ω2) = NFω(ω1 − ω2)
〈

Ē⊥(~l, ~η, zo, ~r⊥o1, ω1)Ē
∗
⊥(
~l, ~η, zo, ~r⊥o2, ω1)

〉

.

(3.8)
In particular, spatial coherence is described by the cross-spectral density function

Gω(zo, ~r⊥o1, ~r⊥o2, ω) defined by

Gω(zo, ~r⊥o1, ~r⊥o2, ω) =
〈

Ē⊥(~l, ~η, zo, ~r⊥o1, ω)Ē
∗
⊥(
~l, ~η, zo, ~r⊥o2, ω)

〉

, (3.9)

or equivalently by the spectral degree of coherence g(zo, ~r⊥o1, ~r⊥o2, ω):

g(zo, ~r⊥o1, ~r⊥o2, ω) =
Gω(zo, ~r⊥o1, ~r⊥o2, ω)

√
〈∣
∣
∣Ē⊥(~l, ~η, zo, ~r⊥o1, ω)

∣
∣
∣

2
〉
√
〈∣
∣
∣Ē⊥(~l, ~η, zo, ~r⊥o1, ω)

∣
∣
∣

2
〉 . (3.10)

Angular brackets 〈·〉 denote averages over electron bunches. They are equivalent in
form to integrals over the transverse phase space distribution of the particle beam, given
in normalized units by

1We consider here the relevant case of undulator radiation. The characteristic scale of Fω(ω) is determined
by the inverse bunch duration 1/σT . The on-axis bandwidth of the single particle radiation (filament beam) at
resonance with the frequency ω0 is given by ω0/Nw . For the case of an electron beam with finite emittance, the
spectrum exhibits longer tails [40, 41] which ensures that ω0/Nw is a minimum for the radiation bandwidth.
Comparison with 1/σT for realistic cases (e.g. λ = 1 Å, Nw ≈ 102, σT ≈ 10-100 ps) shows that the introduced
approximation is valid.
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Fη̂x(η̂x) =
1

√

2πD̂x

exp

(

− η̂2x

2D̂x

)

Fη̂y (η̂y) =
1

√

2πD̂y

exp

(

−
η̂2y

2D̂y

)

Fl̂x(l̂x) =
1

√

2πN̂x
exp

(

− l̂2x

2N̂x

)

Fl̂y (l̂y) =
1

√

2πN̂y

exp

(

−
l̂2y

2N̂y

)

, (3.11)

where N̂x,y and D̂x,y represent the normalized rms transverse dimension and angular
spread of the electron bunch:

N̂x,y = σ2
x,y

ω

Lwc

D̂x,y = σ′2
x,y

ωLw

c
. (3.12)

We recall that σdiffr = (cLw/ω)1/2 represents the transverse size of the virtual waist
generating the laser-like single-particle undulator radiation and that σ′

diffr = [c/(ωLw)]
1/2

is the associated photon beam divergence. Therefore, when σx,y ≪ σdiffr and σ′
x,y ≪

σ′
diffr, corresponding to N̂x,y ≪ 1 and D̂x,y ≪ 1, radiation is diffraction-limited and it is

endowed with full coherence. The opposite case N̂x,y ≫ 1 and D̂x,y ≫ 1 is equivalent
to an homogeneous source within the framework of Statistical Optics. Hence the Van
Cittert-Zernike’s theorem can be applied to predict the transverse coherence properties
of the undulator radiation provided that the observer is sufficiently far from the source.
In particular, the coherence patches of the radiation beam at a distance z are determined
by the angular size σx,y/z of the source as long as σx,y/z ≪ σ′

diffr. In dimensionless
units, this is equivalent to state that the Van Cittert-Zernike’s theorem is valid for ob-

servation distances ẑo ≫ (N̂x,y/D̂x,y)
1/2. Performing the full calculation (reported in

Appendix C for the interested reader), the transverse coherence length ξ̂c normalized to
the diffraction length (cLw/ω)1/2 is given by [42]

ξ̂c(ẑo) =
√
π

(

1

Âx,y

+
1

D̂x,y

)1/2

, (3.13)

where Âx,y = N̂x,y/ẑ2o represents the squared angular size of the source in dimensionless

units at the observer position. Results for the case N̂ = 1000 and D̂ = 100 are reported
in Fig 3.1.
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Figure 3.1: Evolution of the reduced coherence length downstream the undulator exit. The case

N̂ = 1000 and D̂ = 100 is reported, as well as the asymptotic behaviors corresponding to the
undulator exit limit and to the far field limit.
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The Heterodyne Near Field
Speckle Technique





CHAPTER 4

The Heterodyne Near Field Speckle technique

4.1 Overview of speckle patterns with fully coherent radiation

Whenever a coherent wavefront impinges onto a rough surface, a stochastic intensity
distribution known as speckle pattern is observed [49, 50], as shown in Fig. 4.1. It arises
from the interference among the randomly dephased contributions generated by and
propagating from each point of the surface. Perhaps the most common case is that of a
ground glass enlightened by a coherent laser beam.

Figure 4.1: Speckle field arising from scattering of a laser beam by a ground glass.

The total electric field E downstream the random surface is given by the sum of the
individual scattered waves Es,i generated by each point i of the scattering surface:

E =

N∑

i=1

Es,i, (4.1)

where N denotes the number of scattering elements on the surface contributing to the
propagated field. Since there is no contribution from the transmitted incident field, Eq.
4.1 describes the so-called homodyne speckles. Owing to the stochastic nature of the
scattering surface inducing random phase shifts to each elementary contribution Es,i,
the field and the intensity distributions of speckle patterns can be properly described as
random variables within the framework of Statistical Optics.

55
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The total electric field arising from the sum of Eq. 4.1 shows a random, non-uniform
distribution composed by many adjacent patches of constant amplitude and phase. The
problem arises of determining the average area over which the electric field is constant
hence highly correlated, namely the average speckle size. The analogy with the task
of finding the transverse coherence length of partially coherent radiation composed by
many adjacent coherence areas1 suggests that the speckle size can be inferred from the
width of the field spatial autocorrelation function ΓE [49, 50]

ΓE(∆x) = 〈E(x)E∗(x +∆x)〉 . (4.2)

Due to the homodyne conditions, we can only access the intensity autocorrelation
function

ΓI(∆x) = 〈I(x)I∗(x+∆x)〉 (4.3)

However, assuming that a large number of scattering elements contributes to the to-
tal electric field (N → +∞ in Eq. 4.1) and that the random phases of the elementary
contributions Es,i are uniformly distributed between 0 and 2π (the optical path differ-
ences introduced by the rough surface are larger then the radiation wavelength), the
Central Limit Theorem can be applied and the sum in Eq. 4.1 describes a random walk
endowed with Gaussian statistics. Therefore, the modulus of ΓE(∆x) can be retrieved
from the measured autocorrelation function of the intensity by means of the Siegert re-
lation [49, 50]

ΓI = 〈I〉2 + |ΓE |2 , (4.4)

where 〈I〉 is the average value of the intensity across the detection plane.

4.1.1 Diffraction-limited speckles

In addition to the formalism introduced by Eq. 4.1, homodyne speckles can be described
within the framework of Fourier Optics [47] as the superposition of a number of si-
nusoidal fringes with different orientations and different periodicities Λ. The inverse
period q = 2π/Λ detrmines the spatial frequency of the sinusoidal intensity modula-
tion. Each of these modulations is equivalent to the interference pattern generated by
two plane waves superimposing at an angle θ = λ/Λ. For an incident beam of linear
extension D, it follows that the maximum spatial frequency is determined by the an-
gle θs = D/z subtended by the source at a distance z downstream the scattering plane,
where z lies in the far field of the source. The corresponding interference fringes have a
minimum periodicity

Λ =
λ

θs
(4.5)

which therefore sets the spatial scale of the finest intensity modulation appearing in the
speckle field. The average speckle size dsp is then given by

dsp =
λz

D
. (4.6)

1The analogy stems from the same physical phenomenology shared by homodyne speckles and partially
coherent radiation beams. In both cases, the stochastic process arises from the superposition of many randomly
dephased contributions from a number of independent emitters. However, opposite to the case of speckle
fields arising from the scattering of coherent radiation from a static rough surface, the coherence patches of
partially coherent radiation fluctuate from instant to instant.
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This relation is analogous to the Van Cittert-Zernike’s theorem and it states the well-
known fact that the autocorrelation function of speckle patterns is given by the Fourier
transform of the intensity distribution of the source [49, 50]. Far field speckles are diffraction-
limited and they do not provide any quantitative characterization of the random sys-
tem of scatterers: their behavior resembles that of the diffraction spot by an aperture,
with the speckle size increasing linearly with the distance z and scaling as the inverse
of the source size D. Figure 4.2 reports the experimental verification of the Van Cittert-
Zernike’s theorem for the case of homodyne speckles generated by a ground glass en-
lightened with a Gaussian laser beam. For a Gaussian intensity profile of the form
I(r) = I0 exp(−r2/σ2

I ), the speckle size is given by dsp = λz/(πσI). The fitted value
σI = 1227 µm is in good agreement with independent measurements performed with
the edge scan technique2 and giving a value of 1142 µ.
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Figure 4.2: Measurements of the speckle size at different distances z from a ground glass enlight-
ened with a Gaussian laser beam (λ = 632.8 nm). The good linearity allows to fit the experimental
data (square black dots) with the theoretical curve dsp = λz/(πσI) predicted by the Van Cittert-
Zernike’s theorem (VCZ, dashed blue line). The fitted value σI = 1227 µm is in agreement with
independent beam size measurements performed with the edge scan technique (inset).

2The edge scan technique works by gradually inserting a razor blade along the horizontal direction to
intercept an ever-increasing portion of the laser beam. The trasmitted intensity is then measured by scanning
different edge positions. The normalized transmitted intensity is given by

fσI ,X0
(η) = 1−

1

πσ2
I

∫ η

−∞

dx

∫ +∞

−∞

dy e
−

(x−X0)2+y2

σ2
I = 1−

1 + erf
(

η−X0
σI

)

2
,

where η and X0 represent the absolute position of the edge and of the center of the laser beam, respectively. By
fitting the experimental data through the erf function, the transverse size σI of the laser beam can be measured
with high accuracy since it represents the only free parameter involved.
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4.1.2 Homodyne Near Field Speckles (ONFS)

The Van Cittert-Zernike’s theorem is strictly valid under the assumption of point-like
emitters scattering light isotropically [36, 37]. However, real scatterers have a finite lin-
ear size d and the radiation is confined within the scattering angle θsc = λ/d. As long as
θsc > θs, each point on the detector receives light from the entire source and the theory
developed in the previous Subsect. 4.1.1 is valid. The Van Cittert-Zernike’s theorem can
be applied to predict the size of the speckle and the field autocorrelation function. Mov-
ing the detector closer to the scattering surface causes the angle subtended by the source
to increase. Below a certain distance zFF that will be determined shortly, the limiting
viewing angle is represented by θsc and each point on the detector receives radiation
only from a region D∗ = θscz < D, as depicted in Fig. 4.3 [51, 52]. The resulting speckle
size is

dsp =
λz

D∗
=

λ

θsc
=

λ

λ/d
= d (4.7)

and it does not change with distance, being equal to the size of the scatterers. This
regime has been named the deep Near Field or the deep Fresnel regime [51, 52], hence
the name Homodyne Near Field Speckle (ONFS) of the technique. It occurs as long as
the following near field condition is fulfilled:

θsc < θs −→ zFF <
Dd

λ
. (4.8)

In the Near Field regime there is a deep connection between the emission cone of the
radiating sources and the size of the speckles. The comparison between the characteristic
emission cone of the scatterers and the angle subtended by the radiating system allows
to define three regions of space downstream the random emitters:

• deep Near Field region (or deep Fresnel region), where θsc < θs, corresponding
to distances from the scattering plane z < Dd/λ. The speckle size is equal to the
size of the scatterers and it does not change with the distance. Near Field speckles
convey the information on the system of scatterers;

• near field region (or Fresnel region), corresponding to distances Dd/λ < z < D2/λ.
The speckle size increases as a function of the distance from the scattering plane,
generally following non-trivial laws;

• far field region, where θs < θsc, corresponding to z > D2/λ. Speckles are diffraction-
limited and the Van Cittert-Zernike’s theorem holds, implying dsp = λz/D. The
speckle pattern is determined by the intensity distribution of the source and it does
not convey the information on the system of scatterers.

Figure 4.4 shows experimental results regarding the transition from near field speck-
les to diffraction-limited speckles. The same experimental setup as in Fig. 4.2 was
adopted, but the detector was allowed to move closer to the scattering plane. Experi-
mental data have been fitted with the following relation

dsp = σ0

√

1 +

(
zλ

πσIσ0

)2

, (4.9)

in order to extract the speckle size σ0 in the deep Fresnel regime, i.e. the average size
of the scatterers. It is worth noticing how the correct laser beam size is retrieved from



The Heterodyne Near Field Speckle technique 59

Figure 4.3: (a) A laser beam with transverse dimensionD impinges onto the ensamble of scatterers
with diameter d. As long as the emission cone of the scatterers θsc = λ/d is larger than the angle
subtended by the source θs = D/z, where z is the distance between the scattering surface and
the detector, each point s on the detector receives light from the entire beam and speckles are
diffraction-limited. (b) When the detector is moved close to the scattering system, the limiting
viewing angle is represented by the emission cone of the radiators. Each point s on the detector
is illuminated by the light coming from a region D∗ < D and the speckle size is equal to the
dimension of the scatterers.

the asymptotic diffraction-limited speckle, providing an internal check of consistency for
the experiment. Furthermore, the transition from the deep Fresnel region to the far field
occurs at zFF ∼ 10 cm, in good agreement with Eq. 4.8 for scatterers of linear dimension
d = 17 µm (a multiplicative factor π must be taken into account due to the Gaussian
beam profile, as it can be notice from Eq. 4.9).

4.1.3 Heterodyne Near Field Speckles (HNFS)

Near field speckles can be also operated in the so-called heterodyne conditions. In this
case the technique is named Heterodyne Near Field Scattering (HNFS) [53, 54, 55]. Op-
posite to the case of homodyne speckles, the incident field E0 is let propagate beyond
the scattering plane and it interferes with the scattered radiation Es. The total electric
field is then given by

Et = E0 + Es, (4.10)

and the corresponding intensity distribution is

I = |E0|2 + 2ℜe{E0E
∗
s}+ |Es|2 . (4.11)

Assuming |Es| ≪ |E0| (heterodyne conditions), the last term can be neglected. The
resulting faint speckle field arise from the interference between the weak scattered waves
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Figure 4.4: Speckles below z ≈ 20 cm show deviations from the prediction of the Van Cittert-
Zernike’s theorem (dashed blue line). The asymptotically constant speckle size σ0 (dash-dotted
orange line) is equal to the transverse dimension of the emitters. Data (square black dots) have
been fitted with Eq. 4.9 (solid red line) and a value σ0 = 17 µm is found for the deep Near Field
speckles. The distance zFF ∼ 10 cm marks the transition from the Near Field to the Far Field. It is
agreement with the expression given in Eq. 4.8, apart from a factor π due to the Gaussian intensity
profile of the laser.

and the strong transmitted field (the term 2ℜe{E0E
∗
s} in Eq. 4.11), without any signifi-

cant contribution from the interference among different scatterers (the term |Es|2 in Eq.
4.11).

The paradigmatic layout to generate heterodyne speckles is composed by a diluted
suspension of monodispersed spherical nanoparticles scattering many almost perfect
spherical waves3.

One may ask whether the speckle size given in Eq. 4.7 is altered by the interfer-
ence between the weak spherical waves scattered by the colloidal suspension and the
strong transmitted field, assumed to be a fully coherent plane wave for the time being.
From Fourier Optics arguments, the stochastic heterodyne speckle field is the result of
the superposition of many sinusoidal patterns with periodicity Λ = λ/θ arising from the
interference of the transmitted plane wave with the plane waves scattered by the parti-
cles at the angle θ. Since the scattered radiation is confined within the scattering angle

3The amount of light removed from the incident beam by the nanoparticles is quantified by the extinction
cross section σ. For spherical nanoparticles, it can be computed by means of the exact Mie theory of scattering.
The transmitted intensity I is then given by the Lambert-Beer’s law:

I = I0e
−nσ∆z , (4.12)

where ∆z denotes the thickness of the sample and n is the particle number density to be found. At visible
wavelengths, volume fraction of the order of 10−5 w/w ensure a transmissivity I/I0 ranging between 80%
and 90%.
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θsc, the finest sinusoidal modulation determining the speckle size has a periodicity given
by Λ = λ/θsc = d. HNFS with fully coherent radiation provides the information on the
scattering system and it can be exploited for particle sizing [53, 54, 55]. This shows that
HNFS and ONFS are equivalent, despite the interference phenomena determining the
speckle fields are different.

4.2 Heterodyne Near Field Speckles with partially coherent light

One of the major advantages of the HNFS technique is the ability to probe the coherence
properties of the incoming radiation, since heterodyne speckles arise from the interfer-
ence of the scattered spherical waves with the transmitted incident field.

In fact, the speckle size dsp is determined by the minimum periodicity Λ = λ/θmax

associated to the sinusoidal intensity modulation arising from the stable interference
between the transmitted radiation beam and the plane waves scattered at θmax. Since
partial coherence reduces the ability of the system of writing high-frequency fringes, it
must be effective in reducing the viewing angle θmax. Furthermore, since high-frequency
fringes generate small-scale intensity modulation, the size of heterodyne speckles under
partially coherent radiation increases with respect to the fully coherent case.

We can quantitatively relate the size dsp of heterodyne speckles to the coherence
properties of the radiation by a Fourier Optics approach. For the case of spatial co-
herence, stable interference occurs on a spatial region whose extension is comparable
to the transverse coherence length σcoh of the radiation. It follows that θmax = σcoh/z,
corresponding to the angle subtended by the coherence areas at a distance z from the
scattering plane. The situation is depicted in Fig. 4.5(a). The speckle size is then given
by dsp = λ/θmax = λz/σcoh. This relation is valid as long as the transverse coherence
length of the radiation is unchanged upon propagation from the scattering plane to the
detector, thus limiting the distance z to the near field of the coherence areas (z < σ2

coh/λ).
Regarding temporal coherence, stable interference requires that the optical path dif-

ferences ∆l between the scattered spherical wave and the transmitted plane wave are
shorter than the longitudinal coherence length lcoh of the radiation. Referring to Fig.
4.5(b) and adopting paraxial conditions, a given angle θ corresponds to an optical path
difference ∆l = zθ2/2, where z is the distance between the scatterer and the detection
plane. Therefore, stable interference occurs as long as θ <

√
2lcoh/z. The transverse size

of the speckles is then determined by dsp = λ/θmax =
√

λ2z/(2lcoh). This relation holds
as long as spatial coherence effects can be neglected. This requirement is fulfilled for
coherence areas larger than the n-th Fresnel zone, where n = lc/λ:

σcoh > (nλz)1/2. (4.13)

Either for limited spatial or temporal coherence, the size of heterodyne speckles
changes as a function of the sample-detector distance, opposite to the case of Near Field
speckles under fully coherent illumination treated in Subsect. 4.1.3. Furthermore, two
different laws are found allowing to distinguish spatial coherence and temporal coher-
ence effects.

Figure 4.6 and Fig. 4.7 show for the first time the experimental results regarding a
systematic study of the effects of limited spatial and temporal coherence on the speckle
size. Referring to Fig. 4.6, the light from a halogen lamp has been used, coupled to
a circular pinhole 250 µm in diameter to increase the transverse coherence length of
the emitted thermal radiation. A converging lens with a focal length f = 75 mm sets
the size of the coherence areas: σcoh = 1.22λf/dph = 200 µm, being dph the pinhole
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Figure 4.5: Fourier Optics approach to partially coherent Heterodyne Near Field Speckle. Par-
tial coherence (either spatial or temporal) prevents the formation of high-frequency interference
fringes thus being effective in limiting the viewing angle θmax of the system. (a) Case of limited
spatial coherence. The limiting angle is given by θmax = σcoh/z, where σcoh denotes the transverse
coherence length of the radiation and z is the sample-detector distance. (b) Case of limited spa-
tial coherence. The limiting angle is given by θmax =

√
2lc/z, where lc denotes the longitudinal

coherence length of the radiation and z is the sample-detector distance.

diameter. Light has been filtered by means of a narrow band pass filter by Thorlabs
with a FWHM bandwidth ∆λFWHM = 10 nm at a central wavelength λ = 550 nm.
The longitudinal coherence length lc = λ2/∆λFWHM = 30 µm corresponds to the n-th
Fresnel zone with n = λ/∆λFWHM = 55, allowing to probe spatial coherence as long as
z > σ2

coh/(nλ) = 13 µm which is always fulfilled in practice. Different sample-detector
distances have been probed, ranging between 1 mm and 25 mm. For each distance,
a set of 100 images is acquired and the speckle size is evaluated from the FWHM of
the autocorrelation function od single frames. Averages and standard deviations are
then computed and three different experimental runs are performed in order to increase
statistics. The linear behaviour as a function of z is observed and the experimental value
for the transverse coherence length σcoh = (200 ± 5) µm is in good agreement with
expectations.

Temporal coherence effects have been evidenced by removing the band pass filter
and by spatially filtering the halogen lamp with a pinhole 80 µm in diameter. Coher-
ence areas are now as large as σcoh = 630 µm. By exploiting a grating spectrometer, the
measured FWHM of the halogen broad spectrum is ∆λFWHM = 280 nm corresponds to
a longitudinal coherence length lc = 1.1 µm, i.e. n = 2 wavelengths. Spatial coherence
effects can then be neglected as long as z < σ2

coh/(2λ) = 36 cm. We performed measure-
ments at sample-detector distances ranging between 1 mm and 50 mm and results are
shown in Fig. 4.7. The power law dsp ∝ z1/2 is observed and the fitted value of the lon-
gitudinal coherence length lc = (1.3± 0.1) µm is compatible with the inverse bandwidth
predicted by the Wiener-Khinchine’s theorem.

Finally, it is worth anticipating that the presence of a cutoff spatial frequency qcutoff =
2π/Λ = kθmax allows to advantageously characterize coherence properties of the radia-
tion by means of Fourier analysis of heterodyne speckle field. This can be seen as a direct
application of the Wiener-Khinchine’s theorem of homogeneous stochastic processes to
heterodyne speckles, relating the field autocorrelation function to the Fourier transform
of the spatial power spectrum. As a consequence, the latter extends up to a characteristic
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Figure 4.6: Size of heterodyne speckle with partially spatially coherent light. The expected linear
behavior as a function of the sample-detector distance is observed. The fitted value for the coher-
ence area σcoh = (200 ± 5) µm is in agreement with theoretical expectations by virtue of the Van
Cittert-Zernike’s theorem. See text for details.

Fourier wavevector qcutoff = kσcoh/z for the case of partial spatial coherence and up to
qcutoff = k(2cτc/z)

1/2 for the case of limited temporal coherence. The reader should start
to familiarize with these relations as they will be fundamental in the following.

4.3 Scattering from single particle

Referring to Fig. 4.8, we consider a spherical nanoparticle with diameter d enlightened
with partially coherent radiation. We denote with (ξ-η) the plane perpendicular to the
optical axis z at the position of the particle. Without loss of generality, we assume the
scattering particle to be located at the origin of the (ξ-η)-plane. Assuming that the coher-
ence areas are much larger than the particle, the latter scatters an almost perfect spherical
wave [56] which interferes with the propagated incident field on the (x-y)-plane at a dis-
tance z downstream the particle.

The total electric field ET on the (x-y)-plane at a time t is given by the superposition
between the strong transmitted field E0 and the weak scattered spherical wave Es, each
properly delayed owing to the finite propagation velocity of optical disturbances:

E0(x, y, z, t) = E0

(

x, y, z = 0, t− z

c

)

eikz

Es(x, y, z, t) = E0

(

0, 0, z = 0, t− ρ

c

)

S(θ)
eikρ

ρ
≈ E0

(

0, 0, z = 0, t− ρ

c

)

S(θ)
eikz+ik

x2+y2

2z

z
,

(4.14)
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Figure 4.7: Size of heterodyne speckle with partially temporally coherent light. The expected

power law behavior dsp ∝ z1/2 is observed. The fitted value for the longitudinal coherence
length lc = (1.3 ± 0.1) µm is in agreement with theoretical expectations by virtue of the Wiener-
Khinchine’s theorem. See text for details.

where we have applied the paraxial approximation to the phase of the scattered spher-
ical wave. Here S(θ) is a complex function describing the angular distribution of the
radiation scattered by the particle and it is known in the theory of light scattering as the

particle form factor [56]. Finally, the angle θ is given by θ = (
√

x2 + y2)/z in paraxial ap-
proximation. As a rule of thumb, the scattering amplitude S(θ) for a particle of diameter
d takes non-negligible values up to the scattering angle θs = λ/d. In the following we
will understand the longitudinal position z = 0 of the scattering particle for notational
simplicity.

The instantaneous intensity I insttot is given by

I insttot (x, y, z, t) = |E0(x, y, t)|2 + 2ℜe {E0(x, y, t)E
∗
s (x, y, t)}+ |Es(x, y, t)|2

≈ I0

(

x, y, t− z

c

)

+
2|S(θ)|
z

×

×ℜe

{

E0

(

x, y, t− z

c

)

E∗
0

(

0, 0, t− r

c

)

e−ik
x2+y2

2z −iσ

}

, (4.15)

being I0(x, y, t− z/c) = |E0(x, y, t − z/c)|2 and having factorized the complex scattering
amplitude of the particle as S(θ) = |S(θ)| exp(iσ). The last term in the first row has been
neglected assuming |Es| ≪ |E0| (heterodyne condition).

Equation 4.15 describes the time-resolved single-particle interferogram. Apart from
the background contribution of the transmitted incoming beam I0(x, y, t− z/c), it shows
instantaneous interference fringes whose amplitude and position depend on the modu-
lus and on the phase of the complex field product E0(x, y, t − z/c)E∗

0 (0, 0, t − r/c), re-
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Figure 4.8: Typical HNFS experimental setup. A SR wavefront impinges onto a quartz cuvette
containing many scattering particles suspended in a liquid at random positions (xi, yi). The in-
terference between the scattered spherical waves and the transmitted radiation is observed at the
detection plane (x-y) at a distance z downstream the scattering plane (η-ξ) by means of a CCD
camera. Magnifying optics may be used, depending on the spatial resolution to be achieved.

spectively. Therefore, detection of the instantaneous single-particle interferogram would
probe the phase distribution of the incoming electric field by means of the features of the
distorted fringes, as depicted in Fig. 4.9.

(a) (b) (c)

Figure 4.9: (a) Amplitude and (b) phase of a partially coherent wavefront impinging onto the
scattering sample. (c) Simulated time-resolved single-particle interferogram. Information on the
amplitude and phase of the coherence patches of the radiation can be retrieved from the features
of the distorted fringes.

However, the incoming SR beams are composed by many adjacent coherence patches
randomly changing in amplitude and phase over temporal scales comparable to the
characteristic emission time of the electrons ranging between 10−15 s and 10−12 s [42, 36],
thus inducing random fluctuations in the complex field product. Such short exposure
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times are not achievable by any currently available detector and the time-resolved in-
terference fringes described by Eq. 4.15 cannot be detected. We can only access the
time-integrated information obtained by averaging a number of ensamble realizations
of the partially coherent incident field. The ensamble average of Eq. 4.15 yields to the
following expression for the detected intensity I(x, y):

I(x, y) = 〈I0
(

x, y, t− z

c

)

〉+ 2|S(θ)|
z

×

×ℜe

{〈

E0

(

x, y, t− z

c

)

E∗
0

(

0, 0, t− ρ

c

)〉

e−iσe−ik
x2+y2

2z

}

. (4.16)

By calling I0(x, y) = 〈I0
(
x, y, t− z

c

)
〉 and by introducing the Mutual Coherence Func-

tion

Γ(x, y, τ) = |Γ(x, y, τ)|eiφ(x,y,τ) = 〈E0 (x, y, t)E
∗
0 (0, 0, t− τ)〉 , (4.17)

where τ = (ρ − z)/c ≈ (x2 + y2)/(2zc) = zθ2/(2c), we finally arrive at the following
expression for the detected intensity:

I(x, y) = I0(x, y) +
2|S(θ)|
z

|Γ(x, y, τ)| cos
[

k
(
x2 + y2

)

2z
+ σ + φ(x, y, τ)

]

. (4.18)

The time-integrated interferogram of Eq. 4.18 describes perfect circular interference
fringes modulated by the modulus of the Mutual Coherence Function of the incoming SR
beam. This is shown in Fig. 4.10, where we report the results of a thorough simulation of
time-integrated single-particle interference patterns. Stable circular interference fringes
arise from the superposition of a number of ensamble realizations and their visibility
allows to gauge the spatio-temporal coherence properties of the radiation.

(a) (b) (c) (d)

Figure 4.10: Simulated time-integrated single-particle interferogram for different ensamble real-
izations N of the incident partially coherent field: (a) N = 1, (b) N = 10, (c) N = 100 and (d)
N = 1000. It can be noticed how uneven distorted fringes for a single realization of the radiation
beam progressively become circularly symmetric as more ensable realizations are added. Fur-
thermore, instantaneous high-frequency interference fringes disappear as a clear manifestation of
partial coherence.

4.4 Scattering from colloidal suspension

Implementation of the HNFS technique with a single particle is neither efficient nor fea-
sible. Even if it were possible to isolate and control a single spherical nanoparticle, the
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associated interference pattern would be hardly detectable due to the extremely weak
scattered radiation [56]. Conversely, the method is advantageously operated by using
an ensamble of spherical nanoparticles suspended in a liquid, namely a colloidal sus-
pension since the huge number N of colloidal particles results in a signal enhancement.
Furthermore, the continuous Brownian motion of the particles guarantees a complete
statistical renewal of the sample on temporal scales that can be easily set larger in order
to not affect each single measurement, but shorter with respect to subsequent acquisi-
tions [55].

The particles have random positions (xi, yi) inside the suspension and the scattered
field Es can be written as

Es(x, y, z, t) =

N∑

i=1

Es,i(x, y, z, t), (4.19)

whereEs,i(x, y, z, t) represents the contribution to the scattered field at the position (x, y, z)
and at time t generated by the i-th particle. The detected intensity distribution is thus
given by

I(x, y, z) = 〈I(x, y, z, t)〉 =
〈

|E0(x, y, z, t) + Es(x, y, z, t)|2
〉

=

=

〈

I0(x, y, z, t) + 2Re
N∑

i=1

E0(x, y, z, t)E
∗
s,i(x, y, z, t) +

∣
∣
∣
∣
∣

N∑

i=1

Es,i(x, y, z, t)

∣
∣
∣
∣
∣

2〉

.

(4.20)

The first term describes the contribution of the transmitted incident field to the total
intensity. The second term is known as the heterodyne term and it is given by the in-
terference between the weak scattered spherical waves and the strong transmitted field.
The last term is known as the homodyne term and it describes the interference among
the weak scattered spherical waves. It is usually neglected under the assumption that
the scattered field is much weaker than the transmitted one (heterodyne conditions). In
practice, at visible wavelengths this condition is fulfilled if the colloidal suspension is
diluted enough in order to prevent multiple scattering. Opposite to this case, multiple
scattering at X-ray wavelengths does not occur owing to the much lower scattering ef-
ficiencies of the particles. Remarkably, the ensamble average of the homodyne term of
Eq. 4.20 is exactly null at X-ray wavelengths due to the small coherence areas involved,
preventing the formation of stable interference fringes between the spherical waves scat-
tered by different particles.

Neglecting the homodyne term, the detected intensity can be written as

I(x, y, z) =

〈

I0(x, y, z, t) + 2Re

N∑

i=1

E0(x, y, z, t)Es,i(x, y, z, t)

〉

= I0(x, y, z) + 2Re

N∑

i=1

〈E0(x, y, z, t)Es,i(x, y, z, t)〉 , (4.21)

where I0(x, y, z) = 〈I0(x, y, z, t)〉. Equation 4.21 describes the superposition of many
single-particle interferograms generated by the interference of the scattered spherical
waves with the transmitted incident beam. Comparing Fig. 4.11(a) to Fig. 4.11(b), a
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small number of colloidal particles allows to probe coherence properties of the incom-
ing radiation from the visibility and position of the single-particle circular interference
fringes. The more realistic case of a colloidal suspension composed of many spherical
nanoparticles is shown in Fig. 4.11(c): the random superposition of a number of single-
particle interferograms results in a stochastic heterodyne speckle field and information
on circular fringes is lost.

(a) (b) (c)

Figure 4.11: Fundamentals of the Heterodyne Near Field Speckle technique. (a) The superposition
of the spherical wave scattered by a colloidal particle with the transmitted partially coherent ra-
diation generates time-integrated circular interference fringes modulated by the Mutual Intensity
of the radiation. (b) Simulation of the intensity resulting from the sum of N = 100 heterodyne
interferograms: interference fringes are still visible and coherence properties of the radiation can
be probed by means of visibility measurements. (c) Simulated speckle field from N = 10000 col-
loidal partiles: despite interference fringes are no more visible, the information of coherence can
be gauged by moving to the reciprocal space to perform spatial power spectra analysis.

Nonetheless, the information on coherence properties of the radiation can be re-
trieved by moving to the reciprocal Fourier space:

• in direct space, the heterodyne speckle field is the result of N identical circular
interfrence fringe systems, randomly displaced one with respect to the other; in
Fourier space, each corresponding contribution acquires a random phase factor
which however can be compensated by computating the power spectrum; the com-
pensation of the phase factors in the power spectrum of heterodyne speckle fields is
equivalent in direct space to superimposing all the single-particle interferograms,
thus retrieving the interferometric information on coherence;

• in direct space, each single-particle interferogram exhibits circular fringes whose
spatial frequency increases along the radial direction due to the quadratic phase
term in Eq. 4.18; in Fourier space, this implies that maxima appear in the power
spectrum at the corresponding spatial frequencies (actually, the number of max-
ima in Fourier space is doubled to account for the increasing spatial frequency of
interference minima as well); power spectra of heterodyne speckles show a charac-
teristic oscillatory behavior which is reminescent of the single-particle interference
fringes. The appearence of these power spectrum oscillations (known as the Talbot
oscillations) stems for the heterodyne term and it is a signature of coherence;

• in direct space, the intensity of higher-order interference maxima is lowered by
the loss of coherence; in Fourier space, this implies that the Talbot oscillations are
modulated according to the coherence function of the radiation.
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The previous discussion shows that a statistical approach to heterodyne speckles
based on power spectra analysis yields the mean square value of the fluctuations around
any spatial frequency ~q, while the information about the fringe centers is lost. Owing to
the heterodyne conditions, the mean square fluctuations are a signature of the interfer-
ence between the scattered spherical waves and the transmitted radiation and are thus
proportional to the visibility of fringes. As it will be shortly proven here below [33] and
more rigorously in the next section, the power spectrum of heterodyne speckle fields is
proportional to the squared value of the radiation coherence function. In fact, recalling
that

E0(x, y, z, t) = E0

(

x, y, t− z

c

)

eikz

Es,i(x, y, z, t) = E0

(

xi, yi, t−
ρi

c

)

S(θi)
eikzeik

(x−xi)
2+(y−yi)

2

2z

z
, (4.22)

the heterodyne term of Eq. 4.21 (we will call it from now on s(x, y, z, t)) can be rewritten
as

s(x, y, z, , t) =

N∑

i=1

2

z

〈

E0

(

x, y, t− z

c

)

E∗
0

(

xi, yi, t−
ρi

c

)〉

S∗(θi)e
−ik

(x−xi)
2+(y−yi)

2

2z + c.c,

(4.23)
where ρi =

√

(x− xi)2 + (y − yi)2 + z2, θi =
√

(x− xi)2 + (y − yi)2/z and c.c denotes
complex conjugate.

Under the assumptions of spatial homogeneity and of temporal stationarity, the cor-
relation function can be expressed in terms of the difference between spatial coordinates
and in term of the relative time delay τ , yielding to

s(x, y, z, τ) =
N∑

i=1

2

z

〈

E0

(

x− xi, y − yi, τ =
ρi − z

c

)

E∗
0 (0, 0, 0)

〉

S∗(θi)e
−ik

(x−xi)
2+(y−yi)

2

2z +c.c,

(4.24)
which can be rephrased in a more convenient way by means of Dirac δ-functions:

s(x, y, z, τ) =

=
2

z

[〈

E0

(

x, y, τ =
x2 + y2

2zc

)

E0(0, 0, 0)

〉

S∗(θ)e−ik
x2+y2

2z

]

⊗
[
N∑

i=1

δ(x− xi, y − yi)

]

+ c.c. =

=
2

z
I

(

x, y, τ =
x2 + y2

2zc

)

⊗
[
N∑

i=1

δ(x − xi, y − yi)

]

+ c.c.. (4.25)

We now take the Fourier transfrom of the heterodyne signal and we apply the con-
volution theorem:

F [s(x, y, z)] (~q) = F

[

I

(

x, y, τ =
x2 + y2

2zc

)]

(~q) · F
[
N∑

i=1

δ(x− xi, y − yi)

]

(~q) + c.c.,

(4.26)
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where I(x, y, τ = (x2 + y2)/(2zc)) represents the single-particle interferogram of Eq.
4.18.

The second term of the product is easy to compute:

F

[
N∑

i=1

δ(x− xi, y − yi)

]

(~q) =

N∑

i=1

ei~q·~xi . (4.27)

The computation of the first term instead requires a deeper investigation,. In direct
space, it is given by the product of three terms (the mutual intensity of the radiation,
the particle form factor and the complex exponential), as it can be seen from Eq. 4.18.
This results in a three-fold convolution in the reciprocal space. For small particles, the
angular distribution of the scattered radiation is roughly uniform on the detection re-
gion and the Fourier transform of the scattering amplitude can be brougth out of the
convolution integral as S(~q). Under certain assumption that will be discussed in the
next section, the same arguments hold for the mutual intensity of the radiation, which
therefore acts multiplicatively on the Fourier transform of the intensity distribution of
heterodyne speckles. Finally, the complex exponential and its complex conjugate de-
scribe the Talbot oscillations in the power spectrum previously discussed. The power
spectrum of the heterodyne term can thus be expressed as

I(~q, z) = |F [s(x, y, z)](~q, z)|2 =

=
4

z2

∣
∣
∣
∣
∣
F

{

I (x, y, τ(x, y)) ⊗
[
N∑

i=1

δ(∆xi,∆yi)

]}

(~q, z)

∣
∣
∣
∣
∣

2

=

=
4

z2
|F {I(x, y, τ(x, y))} (~q, z)|2 ×

∣
∣
∣
∣
∣
F

{
N∑

i=1

δ(∆xi,∆yi)

}

(~q, z)

∣
∣
∣
∣
∣

2

=

= S(~q)C(~q, z)T (~q, z), (4.28)

where C(~q, z) = |J(~q, z)|2 is the squared modulus of the Mutual Intensity of the incom-
ing radiation. Remarkably, the squared modulus of the Mutual Intensity is measured
from the envelope of the Talbot oscillations appearing in the power spectrum of hetero-
dyne near field speckles, as shown in Fig. 4.12. Talbot oscillations are described by the
function T (~q, z) (the Talbot transfer function) given by

T (~q, z) = sin2
[
q2z

2k
+ σ + φ(~q)

]

. (4.29)

Here q = |~q|, σ denotes the phase of the complex scattering amplitude and φ is the phase
of the Mutual Intensity.

The dependence on the distance z from the colloidal suspension of the Talbot func-
tion comes from the quadratic phase term of the scattered spherical wave appearing in
the convolution integral. The dependence on z of the squared modulus of the coher-
ence function is more subtle. Partial coherence, either spatial or temporal, affects the
single-particle interferogram by preventing the formation of higher-order interference
fringes. The power spectrum thus vanishes beyond a certain ~qmax, implying that the
curve C(~q) enveloping the Talbot oscillations extends up to such value. The maximum
Fourier wavevector ~qmax depends on the coherence area or on the coherence time, as
well as on the sample-detector distance, as it was proven in Subsect. 4.2 by means of
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Figure 4.12: (a) Simulated 2-D power spectrum I(~q, z) of heterodyne speckle and (b) radial pro-
files along the horizontal and vertical direction. Without loss of generality, the case of quasi-
monochromatic radiation has been simulated, hence the Mutual Intensity reduces to the radiation
CCF. The horizontal and vertical profiles show the characteristic Talbot oscillations enveloped
by the squared modulus of the radiation CCF. A 2-D Gaussian coherence factor of the form
exp(−x2/σ2

coh,x) exp(−y2/σ2
coh,y) has been used, with σcoh,x = 30 µm and σcoh,y = 90 µm. The

other relevant parameters are λ = 440 nm and z = 2 mm. A flat particle form factor s(~q) has been
assumed for simplicity.

Fourier Optics arguments. Therefore power spectra corresponding to heterodyne speck-
les at different z vanish at different Fourier wavevector, with ~qmax decreasing as the
sample-detector distance z increases. However, the function C(~q, z) describes the coher-
ence properties of the radiation at the sample position. Hence, it must reduce to a unique
function independent on z when it is expressed in terms of transverse displacements ∆~r
(spatial coherence) or in terms of temporal delays τ (temporal coherence). This implies
the possibility of introducing scaling laws that brings all the curves obtained at different
distances onto the same master curve [30, 31, 29, 32, 33]. The scaling laws can be obtained
by means of Fourier Optics treatment of heterodyne speckle fields. In fact, the contribu-
tion to the power spectrum at the Fourier wavevector ~q is generated by the interference

between two plane waves superimposing at an angle ~θ given by the relation ~q = k~θ.
The angle θ is then related to trasverse displacements (of interest for the case of spatial
coherence) by θ = ∆~r/z and to temporal delays (for the case of temporal coherence) by

θ =
√
2τc/z.For the case of spatial coherence, the scaling is [30, 31, 29]

∆~r = ~q
z

k
(4.30)

and it causes the envelope of the Talbot oscillations to generate the master curve C(∆r)
describing the squared modulus of the radiation CCF, as shown in Fig. 4.13(a),(b). It
is also worth noting that since ~qmax depends on the transverse coherence length of the
radiation, it may take on different value depending on the particular direction in the
(x-y) plane. Consequently, power spectra may show azymuthal asymmetry, as depicted
in Fig. 4.13(c) for the case of a vertically-elongated CCF.

For temporal coherence the scaling is [32, 33]

τ =
zq2

2k2c
. (4.31)
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Figure 4.13: (a) Simulated horizontal profiles of power spectra of heterodyne speckles for differ-
ent sample-detector distances z. It can be noticed how they progressively shrink as z increases.
(b) Master curve C(∆r) for spatial coherence obtained through the scaling of Eq. 4.30. The
common envelope of the Talbot oscillations fits the theoretical squared modulus of the radia-
tion CCF of the form exp(−∆x2)/σ2

coh. The parameters of the simulation are λ = 440 nm and
σcoh = 50 µm. (c) Simulated 2-D power spectrum corresponding to a 2-D Gaussian CCF of the
form exp(−x2/σ2

coh,x) exp(−y2/σ2
coh,y), where σcoh,x = 50 µm and σcoh,y = 150 µm. The resulting

envelope of the Talbot oscillation is elongated in the vertical direction as expected.

Under this scaling, the curves C(~q, z) measured at different distances generate the mas-
ter curve C(τ) describing the radiation CDC. Opposite to the case of spatial coherence,
Talbot oscillations superimpose, as shown in Fig. 4.14(a),(b). Finally, since ~qmax depends
only on the scalar quantity τcoh, it is independent on the orientation in the (x-y) plane
and power spectra, as well as the Talbot oscillation, are endowed with circular symmetry,
as depicted in Fig. 4.14(c). It is worth noting how this property of the temporal master
curve is due to the circularly symmetric spherical wavefronts scattered by the particles
and probing the transmitted incident field.
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Figure 4.14: (a) Simulated radial profiles of power spectra of heterodyne speckles for different
sample-detector distances z. It can be noticed how they progressively shrink as z increases. (b)
Master curve C(τ ) for temporal coherence obtained through the scaling of Eq. 4.31. The common
envelope of the Talbot oscillations fits the theoretical squared modulus of the radiation CDC of the
form exp(−t2)/τ 2coh. The parameters of the simulation are λ = 440 nm and τcoh = 2 fs. Opposite
to the case of spatial coherence reported in Fig. 4.13, Talbot oscillation superimpose. (c) Simulated
2-D power spectrum corresponding to a Gaussian CDC of the form exp(−t2/τ 2coh), where τcoh = 2
fs as before. Due to the spherical wavefront scattered by the particles, temporal delays are the same
regardless of the azymuthal angle and the power spectrum exhibit a peculiar circular symmetry.

We would like to remark that the possibility of introducing scaling laws for the spatial
and temporal coherence and hence the possibility to generate the master curves C(∆r)
and C(τ) from power spectra of heterodyne speckle fields is intimately related to the
spherical nature of the scattered wavefront. In fact, despite the squared modulus of
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the Fourier transform does not preserve the information on spatial localization of the
interference fringes, the quadratic term in the phase of the scattered waves causes the
spatial frequency of the interference fringes to increase as a function of the distance from
the scattering center. This implies that spatial frequencies can be mapped into transverse
displacements (for the case of spatial coherence) or into into temporal delays (for the case
of temporal coherence).





CHAPTER 5

Theoretical basis of the HNFS technique

5.1 Mathematical description

The intensity distribution of heterodyne speckle fields generated by an ensamble of N
scattering particles is given by

I(x, y, z) = I0(x, y, z) + 2Re〈E0(x, y, z, t)E
∗
s (x, y, z, t)〉, (5.1)

where (x, y) denote transverse coordinates across the detection plane at a distanze z
downstream the colloidal suspension. E0 denotes the incoming radiation, I0 is the cor-
responding intensity distribution and Es is the field scattered by the spherical nanopar-
ticles.

The two terms in Eq. 5.1 have substantially different temporal behaviors. The first
term is time-independent, being related to the detected intensity distribution of the in-
coming radiation. The second term instead represents a time-varying contribution, ow-
ing to the Brownian motion of the particles inside the suspension. The static component
I0(x, y, z) can thus be removed by acquiring and comparing different frames1, yielding
the heterodyne signal

i(x, y, z) = 2Re〈E0(x, y, z, t)E
∗
s (x, y, z, t)〉. (5.2)

5.1.1 Plane-wave approximation

Inspection of Eq. 5.2 reveals that the transmitted incoming field, which is the object of
our study, is evaluated at a distance z from the sample. Since we want to investigate the
coherence properties of the radiation at the scattering plane, this in general introduces
undesired variation of the field phases. However, assuming z < σ2

coh/λwith σcoh indicat-
ing the transverse coherence length, diffraction effects can be neglected. This condition
is equivalent to the requirement that the coherence areas of the radiation beam subtend
an angle much larger than their natural diffraction angle θdiffr = λ/σcoh. The transmitted
field at the sensor plane is thus related to the field at the scattering plane by a simple
phase shift given by the following plane-wave relation:

E0(x, y, z, t) = E0

(

x, y, z = 0, t− z

c

)

eikz , (5.3)

where we have also taken into account that the field at the detection plane at time t is
determined by the incoming field at the earlier time t− z/c due to the finite propagation
velocity of optical signals.

1We will see in the next chapter how to properly reduce HNFS data by means of two different proce-
dures [54] exploting the computation of the mean frame (Single-Frame Analysis, SFA) or of image differences
(Double-Frame Analysis, DFA), respectively.

75
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5.1.2 Paraxial approximation

Exploting the Huygens-Fresnel’s principle [46], the scattered field from all scatterers at
positions (xi, yi) can be written as

Es(x, y, z, t) =

N∑

i=1

Es,i(x, y, z, t) =

N∑

i=1

E0

(

xi, yi, z = 0, t− ρi

c

)

S(θi)
eikρi

ρi
, (5.4)

where ρi is the distance between the i-th particle and the detection point, θi is the cor-
responding angle and S(θi) is the particle form factor of scattering theory [56]. Under
paraxial conditions,

ρi = z +
(x− xi)

2 + (y − yi)
2

2z
θi =

√

(x− xi)2 + (y − yi)2

z
, (5.5)

and the field scattered by the i-th particle can be written as

Es,i = E0

(

xi, yi, z = 0, t− ρi

c

)

S (θi)
eikz

z
eik

(x−xi)
2+(y−yi)

2

2z . (5.6)

In the following, we will omit the dependence on the longitudinal coordinate z = 0
for the fields evaluated at the scatering plane for notational simplicity.

Substituing Eq. 5.3 and Eq. 5.4 into Eq. 5.2, the heterodyne signal takes the form

i(x, y, z) = 2Re

〈

E0(x, y, z, t)

N∑

i=1

E∗
s,i(x, y, z, t)

〉

=

= 2Re

N∑

i=1

〈
E0(x, y, z, t)E

∗
s,i(x, y, z, t)

〉
=

=
2

z
Re

N∑

i=1

〈

E0

(

x, y, t− z

c

)

E∗
0

(

xi, yi, t−
ρi

c

)〉

S(θi)e
−ik

(x−xi)
2+(y−yi)

2

2z =

=
1

z

N∑

i=1

〈

E0

(

x, y, t− z

c

)

E∗
0

(

xi, yi, t−
ρi

c

)〉

S(θi)e
−ik

(x−xi)
2+(y−yi)

2

2z + c.c.,

(5.7)

where c.c. denotes complex conjugate. Taking the spatial Fourier transform of Eq. 5.7
we obtain

i(~q, z) =
1

z

N∑

i=1

∫

d~r ei~q·~r
〈

E0

(

x, y, t− z

c

)

E∗
0

(

xi, yi, t−
ρi

c

)〉

S(θi)e
−ik

(x−xi)
2+(y−yi)

2

2z +

+
1

z

N∑

i=1

∫

d~r ei~q·~r
〈

E∗
0

(

x, y, t− z

c

)

E0

(

xi, yi, t−
ρi

c

)〉

S∗(θi)e
ik

(x−xi)
2+(y−yi)

2

2z ,

(5.8)

where ~q = (qx, qy) and ~r = (x, y).
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The x-component of the complex exponential in the first row of Eq. 5.8 (and similarly
for the y-component) can be rewritten as

iqxx− ik
(x− xi)

2

2z
= iqxx− ik

2z
x2 +

ik

z
xxi −

ik

2z
x2i =

= − ik

2z

[

x2 − 2x
(

xi +
qxz

k

)

+ x2i

]

=

= − ik

2z

(

x− xi −
qxz

k

)2

+ i
q2xz

2k
+ iqxxi. (5.9)

A similar procedure can be applied to the x-component of the complex exponential
in the second row of Eq. 5.8 (and similarly for the y-component):

iqxx+ ik
(x− xi)

2

2z
= iqxx+

ik

2z
x2 − ik

z
xxi +

ik

2z
x2i =

=
ik

2z

[

x2 − 2x
(

xi −
qxz

k

)

+ x2i

]

=

=
ik

2z

(

x− xi +
qxz

k

)2

− i
q2xz

2k
+ iqxxi. (5.10)

Introducing the squared modulus of the Fourier wavevector q2 = q2x + q2y , we can
rewrite Eq. 5.8 in the following form:

i(~q, z) =
1

z
ei

q2z
2k

N∑

i=1

eiqxxi+iqyyi×

×
∫

d~r e−
ik
2z (x−xi−

qxz
k )2e−

ik
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qyz

k )2×
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〈

E0
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c

)

E∗
0

(

xi, yi, t−
ρi

c

)〉

S(θi)+

+
1

z
e−i

q2z
2k

N∑

i=1

eiqxxi+iqyyi×

×
∫

d~r e
ik
2z (x−xi+

qxz
k )

2

e
ik
2z (y−yi+

qyz

k )
2

×

×
〈

E∗
0

(

x, y, t− z

c

)

E0

(

xi, yi, t−
ρi

c

)〉

S∗(θi) =

= i1(~q, z) + i2(~q, z). (5.11)

In the first and second integral we perform the following changes of integration vari-
able:

ξx = x− xi −
qxz

k
ξy = y − yi −

qyz

k
in i1(~q, z)

ξx = x− xi +
qxz

k
ξy = y − yi +

qyz

k
in i2(~q, z) (5.12)

thus obtaining
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i1(~q, z) =
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i2(~q, z) =
1

z
e−i
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5.1.3 Stationary phase approximation

The field correlation function conveying the information on spatial and temporalcoher-
ence properties of the radiation appear under an integral sign which convolves the in-
formation over many transverse displacements and temporal delays. We notice that the

complex exponential in ξ2 makes the integrand fastly oscillating over scales ξ ≫
√
λz.

Therefore the integrand gives non-negligible contribution up to values of ξ of the order

of
√
λz. If the field correlation function does not vary appreciably for ξ of the order of√

λz, it can be brought out of the integral, thus acting as a multiplicative factor on the
power spectrum.

5.1.4 The particle form factor

The dependence on ξ in the particle form factor can be neglected if ξ < (≪)qz/k. Since

in the stationary phase approximation the integration is carried up to ξ ≃
√
λz, the

dependence on ξ can be neglected for reduced spatial frequencies satisfying

1

q
< (≪)

√
λz. (5.15)

In practice, we require the colloidal particles to be small enough in order to scatter
light roughly isotropically over the range of angles θ ∼ q/k of interest, in order to have
S(~q) ≈ 1. Under these assumptions, often fulfilled in practice, the particle form factor
can be brought out of the integral (and also out of the sum) simply as simply S(~q).



Theoretical basis of the HNFS technique 79

5.2 Spatial coherence

We now assume the incident radiation to be fully temporally coherent: the field at time
t − z/c and the field at time t − ρi/c are exact replica one of the other. This allows us to
drop the dependence on temporal coordinates in both i1(~q, z) and i2(~q, z):

i1(~q, z) =
1

z
S(~q)ei

q2z
2k

N∑

i=1

ei~q·~xi

∫

d~ξ e−
ik
2z ξ

2

〈
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(

~ξ + ~xi +
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k

)

E∗
0 (~xi)

〉
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1

z
S∗(~q)e−i

q2z
2k

N∑

i=1

ei~q·~xi

∫

d~ξ e
ik
2z
ξ2
〈

E∗
0

(

~ξ + ~xi −
~qz

k

)

E0(~xi)

〉

. (5.16)

It is seen from Eq. 5.16 that the field correlation function 〈E0(~ξ + ~xi + ~qz/k)E∗
0 (~xi)〉,

conveying the information on the spatial coherence properties of the radiation at points

~xi and ~xi + ~xi + ~qz/k, is convolved all over the ~ξ-space. However, due to the stationary

phase approximation, integration over ~ξ is limited to values less than or of the order of√
λz. The near field condition for the coherence areas stated via the plane-wave approxi-

mation of Eq. 5.3 requires z < σ2
coh/λ, therefore implying ξ < (≪)σcoh. Since the width of

the field correlation function is of the order of σcoh, the stationary phase approximation
and the near field condition for the coherence areas allows to neglect the dependence

on ~ξ inside the spatial coherence function of the radiation which can then be taken out
of the convolution integral. Obviously, the same reasoning applies to field correlation

function 〈E∗
0 (
~ξ + ~xi − ~qz/k)E0(~xi)〉 in the second integral, thus yielding to

i1(~q, z) =
1

z
S(~q)ei

q2z
2k
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〈

E0

(

~xi +
~qz

k

)

E∗
0 (~xi)

〉∫
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ik
2z ξ

2

. (5.17)

The integrals appearing in Eq. 5.17 are recognized to be Fresnel integrals, thus giving
a contribution

∫

d~ξ e±i(
k
2z )ξ

2

=

∫

dξx e
±i( k

2z )ξ
2
x

∫

dξy e
±i( k

2z )ξ
2
y = ±2iπz

k
. (5.18)

Substituting this result into Eq. 5.17 yields to

i1(~q, z) =
2iπ

k
S(~q)ei

q2z
2k

N∑

i=1

ei~q·~xi

〈
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(
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E∗
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〉
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2iπ

k
S∗(~q)e−i

q2z
2k

N∑
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ei~q·~xi

〈

E∗
0
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~xi −
~qz

k

)

E0(~xi)

〉

. (5.19)

We recall the definition of the Complex Coherence Factor (CCF):

µ(~x1, ~x2) =
〈E0(~x1)E

∗
0 (~x2)〉

√

〈|E0(~x1)|2〉
√

〈|E0(~x2)|2〉
. (5.20)
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It can be conveniently rephrased in terms of the average position ~̄x = (~x1 + ~x2)/2 and
of the relative displacement ∆~x = ~x2 − ~x2:

µ(~̄x,∆~x) =
〈E0(~̄x−∆~x/2)E∗

0 (~̄x+∆~x/2)〉
√

〈|E0(~̄x−∆~x/2)|2〉
√

〈|E0(~̄x+∆~x/2)|2〉
. (5.21)

We now make the following assumptions on the spectral degree of coherence:

• polar symmetry with respect to ∆~x: µ(~̄x,∆~x) = µ(~̄x,−∆~x);

• homogeneity: µ(~̄x,∆~x) = µ(∆~x) and 〈|E0(~̄x−∆~x/2)|2〉 = 〈|E0(~̄x+∆~x/2)|2〉 = I0.

Under these assumptions, and considering S(~q) real (which is the case of spherical
particles), we have

s(~q, z) =
4π

k
µ

(
~qz

k

)

sin

(
q2z

2k

)

F (~q), (5.22)

where

F (~q) = S(~q)
N∑

i=1

ei~q·~xi . (5.23)

Taking the square modulus of Eq. 5.22 yields to the following expression for the
power spectrum I(~q, z) of speckle fields:

I(~q, z) = S(~q)T (~q, z)C(~q, z), (5.24)

where

• C(~q, z) = |µ(~qz/k)|2 is the squared modulus of the radiation CCF;

• T (~q, z) = sin2(q2z/(2k)) is the Talbot transfer function;

• S(~q) is the squared modulus of the ensamble-averaged particle form factor given
in Eq. 5.23.

In order to account for instrumental effects, we introduce the two following contri-
butions:

• the instrumental transfer function H(~q): it arises from the convolution of Eq. 5.2
with the Point Spread Function of the detection system and it determines the maxi-
mum spatial frequency (i.e. the smallest intensity modulation) that can be detected;

• the power spectrum of the image shotnoise and of the readout noise P (~q).

Finally, the power spectrum of the heterodyne speckle field is

I(~q, z) = S(~q)T (~q, z)C(~q, z)H(~q) + P (~q). (5.25)
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5.3 Temporal coherence

We now assume the incident radiation to be fully spatially coherent in order to drop the
dependence on spatial coordinates in both i1(~q, z) and i2(~q, z):
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. (5.26)

The presence of ~ξ inside the field correlation function 〈E0(t− z/c)E∗
0 (t− z/c+ [(ξx +

qxz/k)2 + (ξy + qyz/k)2]/[2zc])〉 convolves the information on temporal coherence over

any temporal delay from the ~ξ-space to the detection plane. The points on the ξ-plane
contributing to the temporal coherence function of width lc = τcc are those lying within
an angle θc =

√
2lc/z corresponding to an area of linear extent ξc =

√
2lcz. Owing to

the stationary phase approximation, the dependence on ~ξ inside the temporal coherence

function can be neglected if
√
λz <

√
2lcz or equivalently lc > λ/2. This condition im-

plies that the radiation is able to write at least one interference fringes and is always
fulfilled for broadband light, for which interferogram display a few fringes. The same
reasoning applies to field correlation function 〈E∗

0 (t − z/c)E0(t − z/c − [(ξx − qxz/k)2 +
(ξy− qyz/k)2]/[2zc])〉 and allows to take the field correlation functions out of the integrals
in both i1(~q, z) and i2(~q, z):
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. (5.27)

We introduce the Complex Degree of self Coherence (CDC)

µ(t1, t2) =
〈E0(t1)E

∗
0 (t2)〉

√

〈|E0(t1)|2〉
√

〈|E0(t2)|2〉
(5.28)

and we make the following assumptions:

• symmetry with respect to τ = t2 − t1;
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• stazionarity: µ(t1, t2) = µ(τ) and 〈|E0(t1)|2〉 = 〈|E0(t2)|2〉 = I0.

Under these assumptions, and considering S(~q) real (which is the case of spherical
particles), we have

s(~q, z) =
4π

k
µ

(
q2z

2ck2

)

sin

(
q2z

2k

)

F (~q), (5.29)

where F (~q) has already been defined in Eq. 5.23. Accounting for the instrumental re-
sponse and for the shotnoise and readout noise contribution, the power spectrum I(~q, z)
of speckle fieldshas an identical expression cmpared to the case of spatial coherence

I(~q, z) = S(~q)T (~q, z)C(~q, z)H(~q) + P (~q), (5.30)

where now C(~q, z) = |µ(q2z/(2ck2))|2 is the squared modulus of the radiation CDC.



CHAPTER 6

Data reduction

6.1 Image pre-processing

For each distance z a stack of N = 100 images Ii separated by a time lag of 1 s is ac-
quired. A square area of 900× 900 pixels is selected from each frame and pre-processed
by subtracting the dark noise idark and by normalizing to the intensity average value
〈·〉pixel:

ii =
Ii − idark

〈Ii − idark〉pixels
. (6.1)

6.2 Static background subtraction

The use of a dynamical sample ensures a continual renewal of the speckle pattern owing
to the stochastic brownian motion of the particles. This allows to separate the static
background contribution from the time-varying heterodyne scattered signal.

6.2.1 Single-Frame Analysis (SFA)

In Single-Frame Analysis (SFA) [54] we exploit the fact that the average of the scattered
signal over N acquired images reduces to zero in the limit of large N . The static back-
ground contribution i0 is then computed as

i0 =
1

N

N∑

i=1

ii (6.2)

and the heterodyne signal is,j of the j-th image generated by the brownian nanoparticles
is obtained as

is,j = ij − i0. (6.3)

The power spectrum with SFA ISFA,j(~q) directly conveys the information on the fluc-
tuating part of the signal for each image:

ISFA,j(~q) = |F [is,j](~q)|2 . (6.4)
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6.2.2 Double-Frame Analysis

Under certain assumptions that will be discussed in the following, we may gauge the
information on coherence by subtracting two different images Ij1 and ij2 acquired at
different instants of time (Double-Frame Analysis, DFA [54]). This procedure allows to
exactly compensate for the static contribution, leaving the difference between the scat-
tered signals:

irms,j1,j2 = ij1 − ij2 . (6.5)

The power spectrum with DFA has a third term describing the correlation between
the two subtracted images:

IDFA,j1,j2(~q) = |F [ij1 ](~q)|2 + |F [ij2 ](~q)|2 + 2ℜeF [ij1 ](~q)F
∗[ij2 ](~q). (6.6)

This term can be neglected if the acquisition delay between the two images is large
enough to guarantee that the two speckle fields are completely uncorrelated one with
respect to the other. In our case, a total temporal separation of at least 50 s is sufficient.
The power spectrum with DFA is then twice the power spectrum with SFA:

IDFA,j1,j2(~q) = |F [ij1 ](~q)|2 + |F [ij2 ](~q)|2 = 2 |F [ij1 ](~q)|2 = 2ISFA,j1(~q). (6.7)

6.3 Normalization by local oscillator

In case of uneven illumination, the non-uniform intensity distribution can be (partially)
compensate by dividing the heterodyne signal by the average intenisty distribution prior
to power spectrum computation. For DFA this is equivalent to

is,DFA,j1,j2 =
ij1 − ij2
ij1 + ij2

, (6.8)

while for SFA this is done by computing

is,SFA,j =
ij − i0

i0
. (6.9)

6.4 Shotnoise

Shotnoise arises from the stochastic fluctuations in the photoelectron counts. Due to its
random nature, it can be removed in the reciprocal space. The shotnoise contribution
can be estimated by computing the power spectrum of a series of images corresponding
to the scattering cell filled with only water. In most circumstances, the shotnoise con-
tribution to power spectrum is almostconstnt over the range of Fourier wavevector of
interest.

6.5 The instrumental transfer function

The instrumental transfer function determines the response of the detection system to
interference fringes of a certain spatial frequencies. It arises from the finite Point Spread
Function of the detection device limiting the resolution of any imaging configuration.

At optical wavelengths, it is mainly dictated by the numerical aperture of the mi-
croscope objective employed as a magnifying optics. The finite acceptance angle of the
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objective determines a cutoff spatial frequency qmax beyond which the system response
drop to zero. The instrumental transfer function of such a detection system can be mea-
sured independently by using a coherent illumination (C(~q) = 1 by definition) and par-
ticle of known size. According to Eq. 5.25 and to Eq. 5.30, the envelope of the Talbot
oscillations of the resulting power spectrum reduces to the product S(~q)H(~q). Knowl-
edge of the partcle form factorS(~q) then allows to measure the spatialfrequency response
of the detection optics.

For X-ray wavelength, the instrumental transfer function is mainly determined by
the scintillator used to convert the incident X-ray photons into visible light [34, 29]. In
this case, the response function of the scintillator can be measured with the same HNFS
technique exploiting the scaling ∆r = qz/k. In fact, acquiring heterodyne speckle fields
sufficiently close to the sample allows to approximateC(∆r) ≈ C(0) = 1, thus providing
a direct measurement of H(~q) from the envelopeof the Talbot oscillations. Remarkably,
the hypothesis C(∆r) ≈ 1 can be checked by comparing the envelope of power spectra
acquired at different sample-detector distances [29] the curves should fit a single master
curve in q-coordinates, thus describing a single calibration function. Opposite to this
case, when coherence effects are not negligible the envelopes of the power spectra do
not superimpose anymore in q. Finally, despite in principle a single measurement at a
fixed distance is sufficient to obtain the scintillator calibration function, measurements
at many distances improve data quality and the accuracy of the calibration procedure by
means of the master curve arising in q-coordinates.





Part III

Results with Table-Top sources





CHAPTER 7

Temporal coherence characterization of visible thermal
radiation

7.1 Motivations and experimental layout

While spatial coherence measurements of SR beams with the HNFS technique have al-
ready been reported [30, 31, 29], this work constitute the first time that the method is
applied to the characterization of temporal coherence properties as well. In this view,
we have preliminary tested and validated the temporal scaling and the temporal master
curve criterion on a paradigmatic system in Statical Optics, namely thermal radiation
from halogen lamps and white Light Emitting Diodes (LEDs) [32, 44]. Thermal radiation
from such kind of sources represents a robust and reliable benchmark for the technique
since the underlying stochastic process is stationary and homogeneous. This implies that
the classical Van Cittert-Zernike’s theorem can be applied to infer transverse coherence
properties from the intensity profile of the source, while temporal coherence properties
are determined by the emitted spectrum by virtue of the Wiener-Khinchine’s theorem.
Remarkably, it also implies that spatial coherence can be controlled by properly shaping
the transverse profile of the source with suitable masks, while the coherence time of the
radiation can be increased with narrow band pass filters. Finally, the broad spectrum of
such sources allows to test the sensitiviy of the technique to extremely short longitudinal
coherence lengths of the order of a few wavelengths (equivalently, coherence times are
of the order of a few optical cycles).

The broadband source, either an halogen lamp or a white LED, is placed behind a
circular pinhole with a diameter d = 80 µm to increase the tranverse coherence length of
the emitted radiation. The pinhole lies in the rear focal plane of a converging lens having
a focal length f = 75 mm. This configuration results in coherence areas of transverse
size σcoh = 1.22λf/d = 630 µm at λ = 550 nm. Downstream the collimating lens,
they behave as laser beams with a Rayleigh range zff = σ2

coh/λ = 720 mm setting the
transition from the Near Field to the Far Field of the coherence areas. The scattering
cell is placed immediately after the lens and the resulting heterodyne speckle fields are
collected at a maximum sample-detector distance zmax = 70 mm lying in the Near Field
of the coherence areas. The colloidal suspension consists of polystyrene spheres 1 µm in
diameter suspended in water. Dilution down to a volume fraction of the order of 10−5

w/w ensures heterodyne conditions. Images are acquired with a PCO1600 CCD camera
with a resolution of 1600×1200 pixels and with a pixel size of 7.1 µm.

Within the range of distances probed, coherence areas induce optical path differences
between the transmitted radiation beam and the scattered spherical waves larger than
∆l = σ2

coh/(2zmax) = 3 µm. Temporal coherence of broadband white light source can
then be accessed, since typical longitudinal coherence lengths rarely exceed 2 µm. Equiv-

alently, the first Fresnel zone reaches its maximum transverse size
√
λz ∼ 200 µm at
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z = 70 mm. This value is smaller than the transverse coherence length of the radiation
by a factor 3, implying that n = 9 Fresnel zones lie within a coherence area (the squared
term 9 = 32 comes from the

√
n dependence for the n-th order Fresnel zone). Therefore

temporal coherence effects are dominant as long as the longitudinal coherence length of
the radiation is shorter than 9λ ∼ 5 µm .

7.2 Probing temporal coherence of thermal radiation: results

7.2.1 Results for broad-spectrum halogen lamps

An example of two-dimensional power spectrum of the acquired heterodyne speckle
fields for the case of a broad-spectrum halogen lamp is shown in Fig. 7.1. It exhibits
perfect circular symmetry and few Talbot oscillations, thus denoting an extremely short
longitudinal coherence length of the order of a few radiation wavelengths.

Figure 7.1: Two-dimensional power spectrum of broadband thermal radiation from an halogen
lamp. Perfect azymuthal symmetry is a signature of partial temporal coherence. The small number
of visible Talbot oscillations implies an extremely short longitudinal coherence length.

Power spectra at larger sample-detector distances gradually shrink towards lower q
as a consequence of the limited temporal coherence, as expected from the theory devel-
oped in Chap. 4 and Chap. 5. This is confirmed by Fig. 7.2, where angular averages at
different sample-detector distances are reported, and by Fig. 7.3, showing how Talbot
oscillations superimpose under the temporal scaling of Eq. 4.31.

Upon reduction for the particle form factor and for the instrumental transfer function
of the magnifying optics, average of the upper and lower envelopes of Talbot oscillations
finally provides a direct measurement of the squared modulus of the radiation CDC.
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Figure 7.2: Collection of angular averages of power spectra of broadband thermal radiation.
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Figure 7.3: Talbot oscillations of broadband thermal radiation superimpose under the temporal
scaling revealing partial temporal coherence of the emitted thermal radiation.

Results are reported in Fig. 7.4 and in Fig. 7.5, showing the upper and lower envelopes
of the Talbot oscillations and the temporal master curve C(τ), respectively.
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Figure 7.4: Superposition of the upper and lower envelopes of Talbot oscillations for thermal
radiation under the temporal scaling.
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Figure 7.5: Temporal master curve for broadband thermal radiation by an halogen lamp.

Following Mandel, the coherence time of the radiation is

τcoh =

∫ +∞

−∞

|γ(τ)|2 dτ = 2

∫ +∞

0

C(τ) dτ = 2.82 fs. (7.1)
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Results are in good agreement with independent measurements performed with a
grating spectrometer by Hamamatsu with a wavelength resolution of about 2 nm. From
the measured power spectral density reported in Fig. 7.6, the FWHM bandwidth corre-
sponds to a coherence time τc = 0.664λ2/(c∆λ) = 2.89 fs (the multiplicative factor 0.664
stems for the Gaussian-like shape of the emitted spectrum [36]), which compares to the
value from the HNFS temporal master curve.
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Figure 7.6: Power spectral density emitted by the halogen lamp measured with a grating spec-
trometer. The FWHM inverse bandwidth is in agreement with the coherence time measured with
the HNFS method.

7.2.2 Results for white Light Emitting Diodes

Interesting results regarding the degree of accuracy of the technique have been obtained
for the case of a white LED source. In fact, power spectra exhibit a peculiar renewal
of Talbot oscillations beyond the decay to shotnoise level, as shown in Fig. 7.7 where
data at different sample-detector distances superimpose under the temporal scaling. The
squared root of data is visualized to enhance the renewal of the temporal master curve
and to directly provide the modulus of the radiation CDC.

The echo in the temporal coherence function can be ascribed to the presence of two
sharp peaks in the LED spectrum. It is analogous to the beating effects between two
superimposing sound waves at slightly different frequencies. Therefore, from the po-
sition τ = 7 fs of the secondary maximum we can retrieve the wavelength separation
∆λ between the peaks as ∆λ = λ2/(cτ) = 119 nm at an average wavelength λ = 500
nm. Results are in agreement with the LED power spectral density measured with the
grating spectometer and reported in Fig. 7.8.
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Figure 7.7: Echoes in the Talbot oscillations for the thermal light coming from a LED. Beyond the
decay to shotnoie level at around τ = 4 fs, a renewal of Talbot oscillations is observed at τ ≈ 7
fs. The good fit to the temporal master curve proves that it is an intrinsic feature of the radiation
CDC.
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Figure 7.8: Power spectral density of the radiation emitted by the LED, showing a double peak
responsible for the echo of the radiation CDC visible in Fig. 7.7.

7.3 Analogical Optical Modeling

A fashinating outcome of the HNFS technique is the possiility of performing Analogical
Optical Modeling with visible table-top setups for a variety of cases, as for example for
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much complex and expensive X-ray radiation sources. In particular, as it will be dis-
cussed in details below, there is a strong similarity between our experiments with visible
light source and the broad-spectrum X-ray betatron radiation emitted in laser-driven ac-
celerators. Therefore, the parameters of our experimental setpu previously described
have been properly scaled to reproduce the main features of the X-ray betatron radiation
emitted in the laser-plasma accelerator under development at the SPARC LAB facility in
Frascati, Rome (Italy) [57, 14].

We notice that maxima of the Talbot transfer function (enveloped by the radiation
Mutual Coherence Function) appear at wavevector q related to the other experimental
parameters by zλq2/(4π) = const. Since the Fourier wavevector q are entirely deter-
mined by the detector, the distance z can be set according to the working wavelength
in order to keep Talbot maxima at the same position for both the experiments at X-ray
wavelengths and the experiments with table-top visible sources. Typically, z is of the or-
der of a few millimeters for visible radiation, while it ranges between a few centimeters
and a few meters at X-ray wavelengths.

The longitudinal coherence length of the broadband betatron radiation is envisioned
to be of the order of two or three wavelengths. The comparison between the n-th order
Fresnel zone for n = 3 and the transverse coherence length of the betatron radiation
then sets the working distance z to probe temporal coherence properties, according to
Eq. 4.13. It is then scaled to visible wavelengths as previously discussed. By filtering the
broad-spectrum thermal radiation from an halogen lamp or from a white LED with suit-
able band-pass filters, we set in a condition to have n = λ/∆λ ∼ 3. The corresponding
n-th order Fresnel zone determines the minimum transverse coherence length to probe
the radiation CDC by inverting Eq. 4.13. It can then be set by a proper combination of
apertures and converging lens, as discussed in Sect. 7.1.

This procedure ensures that in both cases Talbot oscillations are progressively de-
pressed by the limited coherence length of the radiation. Furthermore, the same number
of observable oscillations at the same positions can be used to retrieve temporal coher-
ence properties of the X-ray betatron radiation, as well as of thermal radiation.

Analogical Optical Modeling thus represents a powerful tool for reproducing the
experimental conditions of current and future X-ray sources. The behaviour of Talbot
oscillations can be accurately reproduced, in order to mimic the data and therefore the
analysis procedures to extract the coherence information. For the case of betatron radi-
ation, this has been demonstrated to be advantageous to characterize the acceleration
process inside the plasma [11, 12, 13, 14, 15, 16]





CHAPTER 8

Coherence properties of a VIS-UV High Harmonic
Generation (HHG) laser

We performed HNFS coherence measurements on the High Harmonic Generation (HHG)
laser at the Laser Laboratory of the ELETTRA Synchrotron Light Source, Trieste. The
laser light source exploits an Optical Parametric Amplifier (OPA) to generate radiation
with tunable wavelength in the visible and ultraviolet range. Characterization of the
transverse and temporal coherence properties of the photon beam is fundamental in
view of coherent non-linear pump-probe experiments on electronic and spin systems, as
well as for future four-wave mixing experiments with seeded Free-Electron Lasers. The
main parameters of the HHG laser are summarized in Tab. 8.1.

Pulse duration σT 300 fs
Energy per pulse - 400 µJ
Max rep. rate - 1 MHz
Min rep. rate - single shot
Operational rep. rate - 50 kHz
Beam size σ 5 mm

Table 8.1: Main parameters of the HHG pulsed laser at the ELETTRA synchrotron.

8.1 Results for the second harmonic at 630 nm

Visible radiation at λ = 630 nm is obtained directly from the OPA as the second harmonic
of the fundamental wavelength at 1260 nm (infrared region). The radiation beam directly
reaches the HNFS diagnostics without passing through any optical components. The
sample consisted of polystyrene spherical particles 1 µm in diameter suspended in water
and stored in a 1-mm-thick quartz cuvette. Dilution down to a volume fraction ∼ 10−5

w/w ensures heterodyne conditions (∼ 90-95 % transmitted intensity). Speckle fields
have been acquired with a PCO1600 CCD camera coupled to a 10X microscope objective
at distances downstream the sample ranging between 10 mm and 90 mm. For each
distance, a stack of 100 images with a temporal lag of 1 s is recorded and then processed
with DFA. Examples of speckle fields for the second harmonic of the HHG laser are
reported in Fig. 8.1. The increase in speckle size as the detection plane is farther from
the sample is a clear signature of partial coherence.
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(a) (b) (c) (d)

Figure 8.1: Raw images of heterodyne speckle fields generated by the HHG laser second harmonic
acquired at different sample-detector distances: (a) 7 mm, (b) 17 mm, (c) 27 mm and (d) 37 mm.
Operational wavelength is 630 nm. The increase in speckle size as a function of the sample-detector
distance is a signature of partial coherence. Each image shows a selected region of 100×100 pixels
of the entire 1024×1024 processed frame.

Two-dimensional power spectra have azymithal symmetry allowing to compute the
curves I(q) as angular averages over the whole range [0, 2π]. They exhibit tapered Talbot
oscillations at lower q due to the walkoff effect induced by the finite sensor size [58,
59, 60]. This prevents to generate the master curves upon the scalings described in Eq.
4.30 or in Eq. 4.31 unless the average of the upper and lower envelopes is computed.
However, the dacay of the power spectrum to shotnoise level is caused by the limited
coherence of the radiation since the curves I(q) do not superimpose in q. Results are
reported in Fig. 8.2.
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Figure 8.2: Angular averages of heterodyne speckle power spectra for the HHG laser second har-
monic. Tapered Talbot oscillations are clearly visible at lower q. Partial coherence prevents power
spectra to properly fit a single master curve. (inset) Enlarged view of the profile corresponding to
z = 1 mm to better evidence the effects of the Talbot transfer function.
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The inset in Fig. 8.2 shows an enlarged view of the curve I(q) for the sample-detector
distanze z = 1 cm to better evidence the tapered Talbot oscillations. The functions C(q)
at lower q are then retrieved by computing the average between the upper and the lower
envelopes of the Talbot oscillations. The resulting coherence functions C(q) are reported
in Fig. 8.3 under the spatial scaling and in Fig. 8.4 under the temporal scaling. In-
terestingly, data do not fit neither the spatial master curve nor the temporal one, thus
impliying both limited spatial and temporal coherence.
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Figure 8.3: Effects of the spatial scaling on power spectra profiles of the HHG laser second har-
monic. Data fail to fit a single master curve, denoting the presence of limited temporal coherence
effects (blue arrow). Curves are expected to better superimpose at ever larger z (black arrow),
since the optical path differences ∆l within a coherence area σcoh decrease as ∆l = σ2

coh/(2z).

With reference to Fig. 8.4, the only exception is represented by the two shortest
sample-detector distances z1 = 1 cm and z2 = 2 cm, which succeed in fitting the tem-
poral master curve. Results are reported in Fig. 8.5, together with the binned C(τ). In-
tegration of the measured squared modulus of the radiation CDC yields to a coherence
time of

τcoh =

∫ +∞

−∞

|γ(τ)|2 dτ = 2

∫ +∞

0

C(τ) dτ = 190 fs, (8.1)

roughly corresponding to half the pulse duration σT = 300 fs. This is compatible with
nearly Fourier-transform-limited radiation pulses and it provides evidence of two longi-
tudinal modes per pulse. Furthermore, temporal coherence effects can only be measured
under (nearly) full spatial coherence over the corresponding probed transverse displace-
ments ∆r, i.e. roughly 2 mm referring to the horizontal scale in Fig. 8.3 and considering
only the curves at z1 and z2. This value compares with the radiation beam size, thus
probing large coherence areas and a high degree of spatial coherence for the second har-
monic of the HHG laser.
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Figure 8.4: Effects of the temporal scaling on power spectra profiles of the HHG laser second har-
monic. Data fail to fit a single master curve thus implying partial spatial coherence (blue arrow).
Exception is represented by the two shortest sample-detector distances for which the curves C(τ )
effectively superimpose (black arrow).
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Figure 8.5: Temporal master curve of the HHG laser second harmonic generated by the two short-
est sample-detector distances. It is related to a coherence time τcoh = 190 fs, roughly half the pulse
duration σT = 300 fs. Each pulse carries two longitudinal modes.
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Knowledge of the laser beam CDC as in Fig. 8.5 allows to retrieve the radiation
CCF from the measured spatio-temporal coherence function. One has to firstly express
the temporal coherence function C(τ) in terms of Fourier wavevectors q by inverting
the temporal scaling law. Secondly, the power spectra envelopes C(q) are divided by
the squared modulus of the radiation CDC rescaled C(q = q(τ)). Finally, the reduced
envelope Cred(q) are rescaled according to the spatial scaling in order to fit the spatial
master curve. The results of this procedure are summarized in Fig. 8.6, where a fair
superposition of the reduced envelopes for the different sample-detector distances is
shown. The binned master curve C(∆r) is also reported, together with a Gaussian fit
to better estimate the transverse coherence length. Following Mandel, the transverse
coherence length is given by

σcoh =

∫ +∞

−∞

|µ(∆r)|2 d∆r = 2

∫ +∞

0

Cfit(∆r) d∆r = 3.83 mm, (8.2)

comparable to the transverse beam size. From the measured value of the transverse
coherence length we can thus estimate the degree of transverse coherence of the HHG
laser as

ζ =

∫ +∞

−∞
|µ(∆r)|2 d∆r

∫ +∞

−∞
I(x) dx

=
σcoh

σ
= 0.77. (8.3)
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Figure 8.6: Spatial master curve of the HHG laser second harmonic obtained by reducing data at
different distances by the measured temporal master curveC(τ ). The good fit to the spatial master
curve experimentally proves reducibility of the Mutual Coherence Function of the HHG laser sec-
ond harmonic. A Gaussian fit to the function exp(−∆r2/σ2

G) is also reported (solid red curve) to
better estimate the dimension of the transverse coherence areas. The transverse coherence length
σcoh = 3.83 mm, compared to the beam size σ = 5 mm, implies 1.3 transverse modes.
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Finally, we can reconstruct the full two-dimensional Mutual Coherence Function
(MCF) of HGG pulses by merging the measured CCF and CDC. In fact, the good fit of
the spatial master curve as in Fig. 8.6 upon reduction of power spectra for the temporal
master curve in Fig. 8.5 provides an experimental verification of MCF reducibility:

γ12(τ) = µ(∆r)γ(τ). (8.4)

The two-dimensional MCF can then be reconstructed from the product of the spatial and
temporal master curves. Results are shown in Fig. 8.7(a), where we have assumed sym-
metry properties µ(−∆r) = µ(∆r) and γ(−τ) = γ(τ)) for the radiation CCF and CDC,
respectively, while Fig. 8.7(b) shows a 3-D view of the HHG spatio-temporal coherence
function.
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Figure 8.7: (a) Two-dimensional Mutual Coherence Function γ12(τ ) of the HHG laser second har-
monic and (b) a 3-D view.

8.2 Results for the fourth harmonic at 248 nm

The fourth harmonic is obtained from the second harmonic generated by the OPA and
using a non-linear crystal (NL-XTAL) for an additional second harmonic generation.
A prism is placed downstream to separate the angularly separate the co-propagating
second and fourth harmonic. The radiation wavelength has been tuned to the value
λ = 248 nm (VIS-UV range) from the fundamental wavelength of 992 nm.

Opposite to the case described in the previous section, the HNFS diagnostics could
not be effectively operated due to an unexpected speckle-like distorsion in the laser
wavefront, as reported in Fig. 8.8. Such wavefront modulation is similar to homo-
dyne speckles arising from scattering of a highly coherent radiation from a rough sur-
face, whose roughness is comparable or larger than the incident wavelength. By defi-
nition, the transverse coherence length is determined by the transverse extent of such
diffraction-limited speckle patches, thus considerably lowering the spatial coherence
properties of the HHG fourth harmonic. In fact, an ideal lens without aberrations would
focus down to diffraction limit only an area of the order of the average speckle size.

The optical component affecting the transverse beam quality can be precisely deter-
mined by studying the transverse size of the speckle patches as a function of the dis-
tance. In fact, diffraction-limited speckles grow linearly in size as the distance z from
the scattering surface is increased, with ideally null size at z = 0 (Van Cittert - Zernike’s
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Figure 8.8: The wavefront of the HHG laser fourth harmonic tuned at 248 nm (VIS-UV wavelength
range) has a speckled appearance. Speckle patches are generated by a surface whose roughness is
comparable to, or larger than, the incident wavelength.

theorem). Three different optical elements may generate the observed speckled distor-
sion: the non-linear crystal, the prism or the mirror used to deflect light towards the
HNFS diagnostics. The one generating the speckle patches is recognized by the afore-
mentioned zero-offset criterion for the speckle size as a function of the distance from
each of the three elements. Results are shown in Fig. 8.9 and they identify the deflect-
ing mirror as the rough scattering surface. It shall be replaced by an optical component
with a higher flatness in order to restore the transverse coherence properties of the HHG
fourth harmonic.

Remarkably, coherence properties of the wavefront before impinging on the rough
mirror could be evaluated from the first-order statistics of the speckled wavefront. For
the case of scattering of fully coherent radiation, it would exhibit a negative exponential
distribution of the form

pI(I) =
1

〈I〉e
− I

〈I〉 , (8.5)

where 〈I〉 denotes the average intensity across the detection plane. The case of partially
coherent radiation is described by a Rician distribution where the only free parameter is
the number of independent transverse and longitudinal modes M :

pI(I) =
Γ(I +M)

Γ(M)Γ(I + 1)

(

1 +
M

〈I〉

)−I (

1 +
〈I〉
M

)−M

, (8.6)

being Γ(·) the Euler Gamma function. Figure 8.10 shows the fitted value for the total
number of modes at different observation distances, as well as the result obtained with
a standard HeNe laser for which full spatial and temporal coherence can be safely as-
sumed. As it can be seen, the total number of modes fluctuates between 4 and 5.

A deeper and profitable survey was not possible due to the lack of beamtime, but the
following explanations have been attempted:

• the second harmonic generation inside the NL-XTAL changes either the coherence
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Figure 8.9: Transverse size of the speckle patches as a function of the observation distance from
three different optical components: the non-linear crystal (NL-XTAL), the prism and the mirror.
The scattering element is identified as the mirror by a linear fit of data through the zero-offset
criterion following from the Van Cittert-Zernike’s theorem. The three fitted values of the offsets

are reported as σNL−XTAL
0 , σprism

0 and σmirror
0 . The slope of the linear fit also gives a transverse

beam size at the mirror position of 0.4 mm.

time of the radiation or the pulse duration, resulting in four purely longitudinal
modes;

• longitudinal coherence properties are not changed by the non-linear processes in-
side the NL-XTAL, but the fourth harmonic of the HHG laser has lowered spatial
coherence properties corresponding to 2 or 3 additional transverse modes;

• the non-linear process generates a transversally fully coherent beam, but either
the NL-XTAL or the prism induce random wavefront distortion due to the fi-
nite roughness of their optical surfaces: in this case, the divergence of the speckle
patched within the wavefront of the fourth harmonic laser beam is still determine
by scattering from the rough mirror, but the impinging distorted wavefront re-
duces the measured speckle contrast resulting in an increased number of modes.
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Figure 8.10: First-order statistics of the speckled intensity allows to retrieve information on the
coherence properties of the laser pulses before impinging onto the rough mirror. A total number
of modes fluctuating between 4 and 5 is found (see text for further details). We also reported
experimental results obtained with a standard HeNe laser for comparison.





Part IV

Results at the ALBA Synchrotron
Light Source





CHAPTER 9

The ALBA Synchrotron Light Source

9.1 Introduction on Synchrotron Light Sources

Synchrotron Light Sources (SLSs) are particle accelerators designed and optimized for
the production of brilliant X-ray radiation for scientific and industrial purposes.

The term Synchrotron Radiation (SR) is used to denote the radiation emitted by a rel-
ativistic charged particle undergoing a transverse acceleration. It was first observed at
the synchrotron accelerator of the General Electric in 1947. Since the emission of SR pho-
tons causes a loss of the particle beam energy, it was initially considered as a drawback
of electron accelerators.

Eventually, SR started to be exploited parasitically for mterial science experiments
in accelerators devoted to particle physics. These facilities are now referred to as the
first-generation SLSs.

The ever-increasing demand of SR for scinentific purposes required the design and
realization of specific accelerators to provide thescientific community with high-quality
radiation. These first SR-oriented facilities are called second-generation SLSs.

Third-generation light sources are the machine in operation nowadays. SR is pro-
duced by small-emittance electron beams and is endowed with a high-brilliance photon
flux. Third-generation SLSs are also equipped with straight section to locate Insertion
Devices, mainly undulators and wigglers. The radiation coming from IDs is highly co-
herent and quasi-monochromatic and it is exploited and chracterized in dedicated beam-
lines.

Finally, fourth-generation light sources are under development and optimization
nowadays. The term refers to Free-Electron Lasers (FELs), linear accelerators equipped
with long undulators capable of producing extremely short, highly coherent photon
pulses.

9.2 The ALBA facility

The ALBA facility is a high flux, high brightness third-generation SLS located in Cer-
danyola del Vallès, near Barcelona (Spain). It consists of a 100 MeV Linac followed by a
Booster that accelerates electrons up to their final energy of 3 GeV before they are trans-
ferred to the Storage Ring. The low emittance of the Booster (10 nm·rad) ensures a high
transmission efficiency to the Storage Ring, were electrons are kept circulating to pro-
duce hard X-ray SR through bending dipoles and insertion devices. ALBA is design to
have a small emittance of 4.6 nm·rad and a maximum beam current of 250 mA. During
normal operations, the stored current amounts to 130 mA. The main parameters of the
machine are reported in Tab. 9.1.
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Linac

Extraction energy 110 MeV
Emittance 150 nm·rad
Energy spread 0.20%

Booster

Circumference 249.6 m
Emittance at 3 GeV 9 nm·rad
Energy spread at 3 GeV 0.10%
Maximum horizontal β-function 11.2 m
Maximum vertical β-function 11.7 m
Maximum dispersion 0.47 m
Reptition rate 3.125 Hz

Storage Ring

Circumference 268.8 m
Maximum current 250 mA
Electron energy 3 GeV
Emittance 4.6 nm·rad
Energy spread 0.105%
Maximum horizontal β-function 17.89 m
Maximum vertical β-function 24.93 m
Maximum dispersion 0.247 m
Minimum bunch length 16 ps

Table 9.1: Main parameters of the ALBA Synchrotron Light Source.

The Storage Ring is divided into four quadrants and it thus has a 4-fold symmetry.
It has 24 straight sections to locate Insertion Devices. Three sections are dedicated to the
RF cavities, two sections are used to locate the diagnostics and one long sections hosts
the Booster-to-Ring transfer line. A technical drawing of the facility is reported in Fig.
9.1.
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Figure 9.1: Technical drawing of the ALBA Synchrotron Light Source. The Linac, the Booster
(interior ring), the Storage Ring (external ring), the Booster-to-Storage Ring transfer line and six
RF cavities can be easily recognized.





CHAPTER 10

Probing temporal coherence of Synchrotron Radation

10.1 The Xanadu beamline (FE01)

Temporal coherence measurements with the HNFS technique have been performed at
the Xanadu diagnostics beamline, located downstream the Front-End 01 (FE01). The
aim of the beamline is to provide reliable measurements of the transverse electron beam
size by means of the Synchrotron Radiation Interferometry (SRI) exploiting the classical
Young’s scheme to perform spatial coherence measurements on the visible part of the
emitted SR [7].

Synchrotron radiation is generated by a bending magnet (BM01) and it is selected by
a photon shutter at 1.684 m downstream the source point. The angular acceptance of the
photon shutter is ±1.84mrad in the horizontal plane and ±3.2 mrad in the vertical plane.
The main parameters of the electron beam at the source point BM01 are summarized in
Tab. 10.1.

Magnetic field B 1.42 T
Hor. beam size σx 54 µm
Ver. beam size σy 23 µm
Hor. divergence σ′

x 136 µrad
Ver. divergence σ′

y 0.37 µrad
Hor. β-function βx 0.249 m
Ver. β-function βy 24.741 m
Hor. emittance ǫx 4.6 nm·rad
Ver. emittance ǫy 0.023 nm·rad
Coupling 0.5%
Hor. dispersion Dx 0.04 m
Ver. dispersion Dy 0.0
Energy spread ∆E/E 0.00105
Tilt angle -0.26 rad

Table 10.1: Main parameters of the ALBA electron beam at the source point BM01.

The visible part of the emitted SR spectrum is selected by a motorized in-vacuum
mirror located inside the tunnel at a distance of 8.635 m from the source point. The
mirror is controlled with a motor which allows to insert it from 25 mm down to 7 mm
above the orbit plane. In addition to selecting the visible wavelengths of the emitted
spectrum, it is designed to reflect only the upper lobe of the SR beam hence the setup is

113



114 10.2 Results and discussion

usually referred to as ”half-mirror”. The vertical position of the in-vacuum mirror also
avoids the interaction with the hard X-ray components thus preventing the device to
suffer from overheating and contaminations due to long exposure to ionizing radiation.
Visible SR is then extracted out of the vacuum chamber through a dedicated extraction
window and it is guided through a hole drilled in the shielding wall onto the optical
table by a system of seven flat mirrors.

The HNFS diagnostics has been installed at a distance from the source point of 15
m. It consists of a quartz cuvette storing a colloidal suspension of polystyrene spherical
nanoparticles with diameter of 1 µm. Dilution down to a volume fraction of approxi-
mately 10−5 w/w guarantees heterodyne conditions. The speckle fields are collected by
a 4X magnifying microscope objective and imaged onto the sensor of a Basler sc1300-
32cm/gc camera. The CCD camera has 1296 × 966 pixels and the pixel size is 3.75 µm.
The sample detector distance z can be changed through a micrometer translational stage
and it ranges between 1 mm and 30 mm. The experimental setup is sketched in Fig. 10.1.

Figure 10.1: HNFS experimental setup at ALBA: SR is emitted at Bending Magnet 1 (BM1) and
visible light is selected by an extraction mirror Mextr that can be inserted from 25 mm to 7 mm
from the orbit plane (∆h). A system of flat mirrors Mi delivers the radiation (E0) to the scattering
cell SC and the interference with the scattered field Es is imaged by the microscope objective O
onto the CCD. A micrometric translation stage allows to scan the distance z from the particle plane
(xi,yi) to the image plane (x,y). Whether the monochromator M is used defines narrow-band or
broad-band conditions, respectively. The dashed red lines allow to relate the parameter ∆x of the
radiation CCF and the parameter τ of the radiation CDC to the geometry of the HNFS setup.

10.2 Results and discussion

Coherence areas at zs = 15 m from the source point are of the order of a few centime-
ters at visible wavelengths according to the Van Cittert-Zernike’s theorem (e.g. σcoh,x =
λzs/(πσx) = 4 cm and σcoh,y = λzs/(πσy) = 9 cm at λ = 440 nm). This implies that
fully spatially coherent radiation impinges onto the colloidal suspension, the scattering
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cell having a transverse extension of less than 2 cm. Moreover, the transverse coherence
length exceeds by more than an order of magnitude the accessible range of transverse
displacements ∆rmax = 2 mm given by the spatial scaling of Eq. 4.30 for a typical value
of qmax = 1 µm−1 at the maximum sample-detector distance zmax = 3 cm. The Mutual
Coherence Function Γ(∆x,∆y, τ) describing the simultaneous effects of partial spatial
and temporal coherence can then be reduced to the Self Coherence Function Γ(τ) con-
veying the information on temporal coherence only.

A subtlety is involved in the definition of the Self Coherence Function for SR from
electron bunches as we must ensure that the underlying stochastic process is station-
ary. This in turn requires the comparison between the inverse bandwidth of the emitted
single-particle SR and the electron bunch duration [42]. We have computed the single-
particle SR spectrum from the well-known expression of the angular-spectral power
density [38] for a point-like aperture positioned at the average vertical angle ψ0 = (16
mm)/(8.635 m) = 1.853 mrad of the in-vacuum mirror. The result is reported in Fig. 10.2.
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Figure 10.2: Computed single-electron spectrum for the ALBA case (radius of curvature ρ = 7.05
m and Lorentz factor γ = 6000) at the vertical angle ψ0 = 1.835 mrad corresponding to the
average vertical position of the in-vacuum extraction mirror. The inverse bandwidth 1/∆νFWHM =
λ̄2/(c∆λFWHM) = 0.33 fs is much shorter than the bunch duration τbunch = 16 ps. This ensures the
validity of the Wiener-Khinchine theorem and temporal coherence properties are thus determined
by the incident SR spectrum.

The single-particle spectrum is peaked at λ̄ = 300 nm and it has a FWHM bandwidth
of ∆λFWHM ≈ 1100 nm. The inverse bandwidth of the radiation is thus 1/∆νFWHM =

λ̄th
2
/(c∆λFWHM ) = 0.27 fs, much shorter than the electron bunch duration τbunch = 15.8

ps. The stochastic process associated to the SR emission from the electrons inside the
bunch is stationary and temporal coherence can be properly investigated through the
Self Coherence Function.

The actual SR spectrum reaching the Xanadu experimental optical table differs from
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the one reported in Fig. 10.2. Since the synchrotron spectrum emitted by a single electron
is angle-dependent, this is due to the finite angular acceptance of the in-vacuum mirror
and of extraction line, as well as to finite emittance effects. The presence of the extraction
line itself contributes to shaping the actual SR spectrum, as the reflectivity of the mirrors
is optimized for visible wavelengths. Mirrors are also out of plane and oriented at dif-
ferent angles one with respect to the other, thus affecting the power spectral density of
the extracted SR since the reflectivity of each mirror at a fixed wavelength depends on
the state of polarization of the corresponding incident component. Finally, the extraction
windows generally acts as a spectral filter.

10.2.1 Temporal coherence of narrowband SR beams

Narrowband SR beams are obtained by inserting a band pass filter by Thorlabs with
FWHM bandwidth ∆λ = 10 nm centered at the mean wavelength λ̄ = 440 nm upstream
the HNFS setup. The expected coherence time and longitudinal coherence length are
then τcoh = 0.664 λ̄2/(c∆λ) = 43 fs and lcoh = cτcoh = 12.9 µm, respectively. The multi-
plicative factor 0.664 takes into account the Gaussian-like shape of the spectral response
of the filter [36]. The requirements for the stationarity of the stochastic process and for
the validity of the stationary phase approximation are fulfilled. This ensures that the
envelope of the power spectra of heterodyne speckle fields conveys the information on
the Complex Degree of Coherence of the impinging SR beam.

Two-dimensional power spectra exhibit perfect azymuthal symmetry, allowing to
compute angular averages of power spectra as

I(q, z) =
1

2π

∫ 2π

0

I(q, θ, z) dθ, (10.1)

where the Fourier wavevector ~q = (qx, qy) has been expressed in polar coordinates:

~q = (qx, qy) = (q cos θ, q sin θ). (10.2)

The power spectra profiles are plotted in Fig. 10.3. It can be noticed how the en-
velopes shrink as the distance z is increased. This is due to the partial coherence of the
impinging radiation, in agreement with the theory developed in Chap. 4 and in Chap.
5. Profiles have already been reduced for the shotnoise term P (q), for the instrumental
transfer function H(q) and for the particle form factor S(q).

Perfect azymuthal symmetry of the power spectra is the signature of limiting tem-
poral coherence of the incident radiation. This is confirmed in Fig. 10.4 and Fig. 10.5,
which show the different power spectra under the spatial scaling of Eq. 4.30 and the
temporal scaling of Eq. 4.31, respectively. If we attempt to reduce the power spectra
by means of the spatial scaling, angular averages at different distances z fail to generate
the master curve C(∆r) = C(zq/k). Opposite to this case, power spectra at different
sample-detector distances build the master curve C(τ) = C(zq2/(2ck2)). Notice how
the Talbot oscillations superimpose, as predicted by the theory developed in Chap. 4
and in Chap 5. The good fit to the temporal master curve indirectly proves full spatial
coherence over the accessible transverse displacements of roughly 1 mm, referring to the
baseline of Fig. 10.4.

The Talbot oscillations reported in Fig. 10.5 display an evident tapering for τ < 10
fs. Such an effect is induced by the finite thickness of the sample holder, making the
scatterers arrangement a 3-D system, and by the walkoff effect related to the limited sen-
sor size [58, 59, 60]. These effects prevent to obtain the radiation CDC properly from
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Figure 10.3: Raw power spectra for narrowband SR beams at the ALBA facility.
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Figure 10.4: Power spectra fail to fit the master curve under the spatial scaling of Eq. 4.30.

the envelope of the master curve C(τ)T (τ), unless the average of the upper and lower
envelopes is computed. This procedure allows to exactly compensate for the Talbot ta-
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pering, as reported in Fig. 10.6 which shows the squared modulus of the radiation CDC
obtained from the experimental curves by averaging the upper and lower envelopes of
the curves C(τ)T (τ) displayed in the inset for completeness.
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Figure 10.5: Power spectra fit the master curve under the scaling of Eq. 4.31. Inset shows the
enlarged region corresponding to τ < 5 fs to evidence the fine superposition of Talbot oscillations.

Following the definition given by Mandel, the measured squared modulus of the
radiation CDC is related to a coherence time

τcoh =

∫ +∞

−∞

|γ(τ)|2 dτ = 2

∫ +∞

0

C(τ) dτ = 40± 10 fs, (10.3)

in good agreement with the value of 43 fs given by the filter inverse bandwidth. The
error bar stems from the dispersion of data around the binned curve.

Despite a full measurement of SR spatial coherence is not feasible with the HNFS
technique at visible wavelengths, useful information on the coherence area can be ob-
tained by analyzing narrowband Talbot oscillations. In fact, the Talbot transfer function
bears the information on the phase of the Mutual Coherence Function. Owing to the
Wiener-Khinchine theorem, the Gaussian-like linewidth of the band pass filter should
result in a purely real temporal coherence function [36, 37]. Any phase term in the Talbot
transfer function can then be ascribed to a complex spatial coherence function. The phase
distribution of the coherence areas can then be retrieved from the position of Talbot extre-
mants. In particular, Fourier Optics predicts that far field coherence areas should carry
the information on the local wavefront curvature [61]. In fact, far field coherence patches
are homothetic and their divergence is comparable to that of the wavefront. Contrarily,
near field coherence areas behave as diffraction-limited Gaussian laser beams with a
plane wavefront and a large Rayleigh range, thus carrying no information on the wave-
front curvature. For a source of linear size D, the transition from the near field to the far
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Figure 10.6: Squared modulus of the radiation CDC as measured with the HNFS technique. Data
from the different 9 sample-detector distances shown in Fig. 10.3 have been merged through Eq.
4.31 and binned. Inset shows the corresponding upper and lower envelopes. The tapering effect
on Talbot oscillations is clearly visible for τ < 10 fs.

field occurs at zFF ≈ D2/λ. In our case zFF = 7 mm and the scattering sample lies in the
Fraunhofer zone of the source, hence it is enlightened by SR whose coherent patches are
endowed with a phase distribution reflecting the curvature of the wavefront. It is worth
noting that for X-ray wavelengths the situation would be reversed as zFF would be of
the order of tens or hundreds of meters: the sample would be located within the Fresnel
zone of the source and coherence areas would carry a vanishing curvature.

The effects on the Talbot oscillations of heterodying the scattered spherical waves
with a wavefront endowed with a non-vanishing curvature can be easily described in
the single-particle regime. Assuming that the incident wavefront has a radius of curva-
tureR at the sample position and neglecting inessential amplitude constant without loss
of generality, the superposition of the scattered spherical wave and of the transmitted
incident wave at a distance z downstream the sample results in

Etot(x, y, z) ∝ eik
√

(R+z)2+x2+y2 + eikReik
√
x2+y2+z2 ≈

≈ eik(R+z)e
ik x2+y2

2(R+z) + eik(R+z)eik
x2+y2

2z . (10.4)

The heterodyne part Ihet of the single-particle interferogram is then

Ihet ∝ cos

[
k(x2 + y2)

2

(
1

z +R
− 1

z

)]

. (10.5)

For SR wavefronts with radius of curvature R at the sample position, the Talbot os-
cillations at a distance z downstream the colloid are described in term of the effective
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distance

zeff =
1

z +R
− 1

z
≈ 1

R
− 1

z
, (10.6)

where in the last passage we have reasonably assumed R ≫ z.
Since this relation is non-linear, the wavefront curvature can be measured by compar-

ing zeff (fitted from the position of Talbot maxima and minima) to the nominal z (known
by the position of the translation stage). Results are reported in Fig. 10.7 and the fitted
value for the radius of curvature according to Eq. 10.6 is R ≈ 15 m, corresponding to
the nominal distance of the scattering cell from the center of the bending dipole. How-
ever, due to the low signal caused by the monochromator, data are widely scattered and
affected by large uncertainties. As a result, we can only conservatively provide a lower
limit of 5 m to the value of the radius of curvature.
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Figure 10.7: The periodicity of the Talbot oscillations is affected by a non-vanishing curvature of
the coherence areas. Since for visible wavelength the coherence areas at the sample position be-
have as far field speckles, they carry the same curvature as the SR wavefront. Data are compatible
with a radius of curvature larger than 5 m.

10.2.2 Temporal coherence of white SR beams

Temporal coherence of white SR beams is probed with the same experimental setup upon
removal of the bandpass filter. Compared to the case of narrowband SR beams, power
spectra exhibit less Talbot oscillations, thus implying a shorter longitudinal coherence
length. The temporal master curve obtained by means of the scaling of Eq. 4.31 is re-
ported in Fig. 10.8. The good superposition of the power spectra and the matching of
the Talbot oscillations is a clear signature of limited temporal coherence.

Figure 10.9 shows the measured squared modulus of the radiation CDC obtained by
averaging the upper and lower envelopes of the Talbot oscillations, reported in the inset
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Figure 10.8: Broadband power spectra fit the master curve under the scaling of Eq. 4.31. The 9
probed distance are indicated in the figure legend and range between 3 mm and 19 mm.

from completeness. Data are much less scattered compared to the narrowband case of
Fig. 10.6 due to the enhanced signal on the CCD camera without any monochromator.
The decay of Talbot oscillations is entirely due to the limited temporal coherence, since
the tapering effect observed for narrowband SR is absent. In fact, it can be noticed how
the lower envelope (minima of Talbot oscillations) lies at almost zero level and it merges
the upper envelope (maxima of Talbot oscillations) when power spectra decay to zero.

Integration of the master curve as yields a coherence time of 1.7± 0.4 fs, correspond-
ing to a FWHM bandwidth of the incident SR power spectral density ∆λ = 240 nm at
an average wavelength λ̄ = 350 nm (fitted through the periodicity of the Talbot trasfer
function by knowing the sample detector distance z from the position of the micrometer
translational stage).

We can now verify a posteriori the validity of the stationary phase approximation,
which allows to measure the coherence properties of the incoming SR directly from the
decay of the power spectra. In fact the longitudinal coherence length lc = cτcoh = 0.51
µm is larger than λ̄/2 = 0.175 µm and the requirements for the stationary phase approx-
imation are then fulfilled. Furthermore, the measured coherence time is much shorter
than the bunch duration, implying that temporal coherence properties of the emitted
radiation are determined by the SR spectrum. Since we can only access the modulus of
the radiation CDC, we cannot directly apply the Wiener-Kintchine theorem to retrieve
the SR spectrum at the sample position. However, assuming that the SR spectrum is
roughly symmetric around the peak wavelength, we can factorize the radiation CDC in
the simple form [36]

γ(τ) = |γ(τ)|eiν̄τ , (10.7)

where ν̄ = c/λ̄ is the average frequency. The Wiener-Khinchine theorem takes the modi-
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Figure 10.9: Squared modulus of the radiation CDC as measured with the HNFS technique. Data
from the 9 different sample-detector distances have been merged through Eq. 4.31 and binned.
Inset shows the corresponding upper and lower envelopes. By contrast with Fig. 10.6, the short
coherence time of the radiation makes any tapering effect negligible, as the loss of Talbot visibility
and the decay of power spectra to shot noise level are entirely due to the radiation CDC.

fied form [62]

S(ν) =

∫ +∞

0

2|γ(τ)| cos [(ν − ν̄)τ ] dτ =

∫ +∞

0

2
√

C(τ) cos [(ν − ν̄)τ ] dτ. (10.8)

Figure 10.10 shows the power spectral density (PSD) obtained by applying Eq. 10.8
to the measured curve C(τ) of Fig. 10.9. Comparison with independent measurements
(red line in Fig. 10.10) performed with a standard spectrometer shows how the overall
shape of the SR spectrum at the detection position is satisfactorily reproduced. Further-
more, the measured coherence time is compatible within the experimental error with the
value of 1.4 fs obtained from the inverse bandwidth (at FWHM) of the SR spectrum as
measured with the spectrometer. The three narrow peaks are missing in the retrieved
spectrum mainly due to shotnoise limitations. In fact, since their width is less than one
half of the spectrum FWHM, they are expected to contribute the modulus of the radi-
ation CDC with some echoes at temporal delays larger than τ ≈ 2τcoh = 3.4 fs, where
the decay of Talbot oscillations has already reached the shotnoise level, as can be seen in
Fig. 10.8, and where sampling is not properly done due to the quadratic relation of Eq.
4.31. Moreover, we also stress that C(τ) is computed by interpolation on a small number
of Talbot maxima and minima and that we assumed specific symmetry properties for
the SR spectrum in order to write Eq. 10.8. Although this approach allows to correctly
retrieve larger structures of the SR power spectral density, it is currently a limiting factor
for the detection of finer details. Nonetheless, the measured FWHM spectral bandwidth,



Probing temporal coherence of Synchrotron Radation 123

conveying the information on the SR coherence time, is correctly retrieved (250 nm to be
compared with ∼ 300 nm from spectrometry measurements).
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Figure 10.10: Synchrotron power spectral density PSD retrieved with the HNFS technique
(squares) and measured with a spectrometer (red solid curve). The overall shape of the spec-
trum has been satisfactorily reproduced, despite the three narrow peaks have not been retrieved
(see text for details).

A closing remark is worth mentioning regarding the SR power spectral density at
the detection plane reported in Fig. 10.9 as a red line. Comparison with Fig. 10.11(b)
representing the measured SR spectrum upstream the HNFS setup evidences how the
two spectra are slightly different. This is due to the presence of the scattering cuvette,
of the scattering sample, of the magnifying optics and of the CCD sensor altering the
spectral density of the incoming radiation. Dealing with polychromatic light, we need
to account the effects of the system transmission. Since the system will generally act
as a band-pass filter, these effects can be modeled as the multiplication of the radiation
spectrum by a Spectral Calibration Function (SCF). In the HNFS technique, for each
wavelength it is given by the product of the scattering amplitude, the transmissivity of
the liquid of the suspension and the walls of the cuvette and the spectral response of the
CCD, as shown in Fig. 10.11(a) (each curve has been normalized to a maximum value
1). The term |S(0)| can be computed from the exact Mie theory of light scattering, since
spherical nanoparticles are used [56]. Transmission of the liquid and the scattering cell
can be measured by means of a standard spectrometer, while the quantum efficiency of
the sensor is provided by the CCD constructor.

Due to the relation between temporal coherence properties and power spectral den-
sity of the radiation, the shape of the measured CDC is influenced by the SCF of the
experimental setup. The impact of a finite spectral bandwidth on different coherence-
based experiments with SR is a very important topic that has to be treated at the appro-
priate accuracy level in each particular case. However, in many of such experiments one
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Figure 10.11: (a) Spectral calibration function SCF (solid cyan curve) taking into account the de-
pendence of the forward scattering amplitude |S(0)| on wavelength (dashed blue curve) and the
quantum efficiency of the CCD sensor (dash-dot orange curve). The measured transmissivity of
the liquid in the cuvette and of the cell walls is almost constant over the wavelength range indi-
cated and it is not displayed. (b) Comparison between the incoming power spectral density of SR
radiation measured with a spectrometer (PSD, solid black curve) and the detected spectrum (PSD’,
dash-dot cyan curve) obtained by means of multiplication for the SCF. Its effects on the radiation
bandwidth are negligible, since the two spectra have full width at half maximum FWHM = 310
nm and FWHM ′ = 290 nm, respectively.

is interested in the coherence time of the SR rather than in the exact shape of the tempo-
ral coherence function. Since the coherence time is of the order of the inverse bandwidth
of the radiation spectrum [36, 37], referring to Fig. 10.11 we can conclude that for the
experiments at the ALBA bending dipole the effects of the SCF on the coherence time
of the radiation are negligible and that the decay of the Talbot oscillations provides a
significant measure of the temporal coherence of the incoming SR.

Following the same reasoning, the presence of the optical components of the extrac-
tion line prior to the scattering sample might introduce some changes in the SR spectrum
and related coherence properties. This certainly occurs for the ALBA case, as it can be
seen by comparing the theoretical spectrum plotted in Fig. 10.2 with the spectral density
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measured with the spectrometer upstream the HNFS setup and reported in Fig. 10.11.
For coherence-based experiment the presence of the extraction line is of no concern as the
coherence properties of the SR beam at the sample position are of interest, regardless of
the previous optical components. Opposite to this case, the reader should be aware that
for coherence-based electron beam diagnostics it is mandatory that the extraction line be
absent or at least its spectral response be characterized, in order to retrieve properties of
the electron bunch from the measured coherence functions.





CHAPTER 11

Probing spatial coherence of Undulator Radiation

11.1 The NCD beamline (BL11)

Preliminary spatial coherence measurements with the HNFS technique have been per-
formed at the Non-Crystalline Diffraction beamline at ALBA (NCD beamline or BL11)
with the aim of retrieving the transverse size of the electron beam. The beamline is ded-
icated to Small Angle X-ray Scattering (SAXS) and Wide Angle X-ray Scattering (WAXS)
experiments to provide structural and dynamic information of proteins, polymers and
colloids.

Undulator radiation is generated by an in-vacuum undulator and a narrow photon
energy range is selected with a double crystal Si-111 monochromator. The radiation
wavelength can be tuned over the range 0.9 Å- 1.9 Åby adjusting the gap of the insertion
device, variable between 5 mm and 30 mm. The optical layout is designed to deliver
a high-photon flux onto the sample located in the experimental hutch at 34 m from the
undulator center. A safety shutter placed 30 m downstream the insertion device in the
separated optical hutch blocks the X-ray radiation, allowing direct operations on the
sample.The schematic of the beamline is reported in Fig. 11.1, while the main parameters
are summarized in Tab. 11.1. During operations, the undulator gap was tuned at its
minimum value and the Si-111 monochromator selected a photon energy of 12 keV (λ =
1 Å).

Figure 11.1: Schematic of the NCD beamline at ALBA.

127
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Beamline specification

Wavelength range λ 0.9 Å- 1.9 Å
Energy range - 6.5 keV - 13 keV
Flux at sample position - 2 · 1012 ph/s
Monochromator relative bandpass ∆E/E < 10−4

Undulator source

Wiggler wavelength λw 21.3 mm
Number of wigglers Nw 92
K at minimum gap Kmin 1.6
Hor. beam size (FWHM) σx 309 µm
Ver. beam size (FWHM) σy 18 µm
Hor. divergence (FWHM) σ′

x 112 µrad
Ver. divergence (FWHM) σ′

y 28-22 µrad

Table 11.1: Main parameters specifying the NCD beamline and the in-vacuum plane undulator.
The flux at the sample position refers to a photon energy of 10 keV and to a beam current of 100
mA.

The HNFS diagnostics has been installed in the experimental hutch at 34 m from the
undulator center. It consists of a scattering cell made of mica storing silica nanospheres
with a diameter of 500 nm. With respect to the measurements at the Xanadu beamline,
both the mica cuvette and the silica sample are effective in enhancing the detected sig-
nal. The volume fraction of the sample was 10% w/w and the sample was periodically
shaked in order to resuspend the scattering particles. X-ray heterodyne speckle fields
are acquired and converted to visible wavelengths by a YAG phosphor 100 µm in thick-
ness. The rear surface is imaged onto a Basler sc1300-32cm/gc CCD camera by means of
a 20X magnifying microscope objective. To avoid direct exposure of the camera sensor
to the residual X-ray beam, a mirror is inserted at 45 degrees in order to deflect the vis-
ible radiation perpendicularly with respect to the direction of propagation of the X-ray
photons.

11.2 Preliminary results and discussion

11.2.1 Power spectra instability and treatment in data analysis

Preliminary measurement at the NCD beamline were aimed at validating the technique
as a beam size monitoring method for the particle beams. We performed measurements
in free propagation conditions at three different distances, namely 15.5 cm, 35.5 cm and
55.5 cm, in order to check the Talbot master curve for spatial coherence.

Opposite to the case of visible SR treated in the previous Chap. 10, images have been
processed with the SFA data reduction algorithm in order to properly deal with the issue
of power spectra instabilities. With this expression we mean the empirical observation
that power spectra within the same sequence of acquired frames exhibit shot-to-shot
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variations1. An example of the phenomenon is reported in the instability map of Fig.
11.2(a), where a collection of vertical profiles of power spectra corresponding to different
single frames is shown. It can be compared in Fig. 11.2(b) with a similar map obtained
for the case of the narrowband SR beam probed at the Xanadu beamline, showing stable
and reproducible working conditions.

1 2 30

20

40

60

80

100

0

q [ m-1]

Po
w

er
 s

pe
ct

ru
m

 re
al

iz
at

io
n

(a)

0.1 0.2 0.3 0.40

20

40

60

80

100

0

q [ m-1]

Po
w

er
 s

pe
ct

ru
m

 re
al

iz
at

io
n

(b)

Figure 11.2: (a) Instability map of power spectra at the NCD beamline. A set of N = 100 single-
frame vertical profiles from the same image sequence is plotted. The vertical axis labels each
profile of the collection, while the horizontal scale refers to the wavevector coordinates. Shot-to-
shot fluctuations can be clearly recognized from the varying number and features of the visible
Talbot oscillations. (b) Instability map for the narrowband SR beam probed at the Xanadu beam-
line. Features of single-shot power spectra are homogeneous across the collection, thus indicating
stable operating conditions.

Instabilities may be caused by the source or by the experimental apparatus(the beam-
line optics or the HNFS setup). In the former case, it would correspond to fluctuations in
the transverse coherence properties of the undulator radiation hence the phenomenon
would exhibit some dependence on the sample-detector distance (i.e. the instabilities
would pertain to the real space). In the latter case, instabilities would arise in the Fourier
space and the phenomenon would not exhibit any z-dependent feature. This would be
the case for example of some mechanical vibrations causing a relative shift of the camera
with respect to the radiation beam. A deeper survey of the phenomenon was not possi-
ble due to the lack of beamtime. However, the fundamental fact holds that the presence
of such instabilities prevents data at different distances to properly fit the master curve
for the spatial coherence scaling by naively averaging the power spectra of each collec-
tion. This issue can be circumvented by processing a strict selection of power spectra,
namely the ones with the highest average values over a wavevector range (qmin, qmax).
In particular, we sort power spectra corresponding to each single image by this crite-
rion and we then average only the ones whose average values in the chosen wavevector
range lie within 10% of the highest value. This corresponds to averaging a few number
of power spectra, typically 2 or 3.

1Power spectra instabilities also affected previous HNFS spatial coherence measurements at the ESRF un-
dulator [30], as extensively reported by Manfredda [29].
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11.2.2 Spatial coherence measurements

Vertical profiles are reported in Fig. 11.3 for the three different sample-detector distances.
By comparing Fig. 11.3(a) and Fig. 11.3(b), we can appreciate the accuracy of the power
spectra selection in superimposing the upper and lower envelopes of Talbot oscillations.
This allows to build the master curve in q-space corresponding to the instrumental trans-
fer function of the phosphor screen, as shown in 11.4. Furthermore, data have been fitted
with a negative exponential transfer function [] from which we can infer the characteris-
tic wavevector of the YAG screen q∗ = 0.83 µm−1 limiting power spectra in the vertical
direction. Incidentally, the good fit to the q-vector master curve implies that the large
vertical coherence areas could not be probed with the current configuration. With refer-
ence to Fig. 11.4, since the phosphor master curve is fitted up to roughly qmax = 2 µm−1

and it causes the decay of Talbot oscillations to shotnoise level, we can conclude that the
vertical coherence length is larger than σmax

coh,v = qmaxz/k = 17.7 µm (the largest distance
z = 55 cm has been used for the calculation).
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Figure 11.3: Vertical profiles of HNFS power spectra for the three probed sample-detector dis-
tances. (a) Upper and lower envelopes of Talbot oscillations fail to superimpose in q-space due to
power spectra instabilities unless (b) only the best power spectra are selected.
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Figure 11.4: Averages of the upper and lower envelopes in Fig. 11.3 effectively build the master
curve for the instrumental transfer function. A negative exponential fit is also reported, yielding
the characteristic phosphor wavevector q∗ = (0.73± 0.03) µm−1.

Figure 11.5 presents data regarding the horizontal profiles of power spectra. The in-
strumental transfer functionH(q) measured from the vertical profiles is used to properly
reduce the horizontal curves. From Fig. 11.5(a) and Fig. 11.5(b) it can be noticed how
the selection of power spectra ensures the good fit to the spatial master curve, as shown
in Fig. 11.6. From the measured squared modulus of the radiation CCF, we derive a
transverse coherence length equal to

σcoh,x = 2

∫ +∞

−∞

|µ(∆x)|2 d∆x = (6.94± 1.3) µm. (11.1)

Experiments were carried with an unexpected low signal, likely due to the detun-
ing of the monochromator central wavelength with respect the undulator resonant fre-
quency or to some absorption effects by the cuvette walls. Therefore, raw data are quite
noisy and this prevents to obtain a master curve as good as the temporal one for the
case of visible SR beams. However, the dispersion of data around the binned curve is
comparable to what has been reported elsewhere [29], thus validating our results.

11.2.3 Simulation of UR spatial coherence and discussion

Based on the theory of transverse coherence for third-generation light sources discussed
in Chap. 3, we developed a C/C + + code for the simulation of the spatial coherence
properties of undulator radiation. The software computes the ensamble average defin-
ing the spectral degree of coherence of the radiation as in Eq. 3.10 by adding the con-
tributions of the fields emitted by a user-defined number of electrons N without any
further assumption. We implemented the near field formula of the electric field for an
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Figure 11.5: Horizontal profiles of HNFS power spectra for the three probed sample-detector dis-
tances. (a) Upper and lower envelopes of Talbot oscillations fail to superimpose in ∆r-space due
to power spectra instabilities unless (b) only the best power spectra are selected.

electron with offset and deflection under the assumption of perfect resonance, general-
ized to the h-th odd harmonics:
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ẑo
− ~̂η

∣
∣
∣
∣
∣
∣



 , (11.2)

where we define

Ψh (ẑo, α) = e−i
ẑoα2

2

{

Ei

[
iẑ2oα

2

2ẑo − 1

]

− Ei

[
iẑ2oα

2

2ẑo + 1

]}

. (11.3)

As it can be seen, modifications are minimal for the odd harmonics and one only has

to remember the new normalization Êh = [−2c2γ/(KωeAJJ,h)]Ẽh in passing from di-
mensionless to dimensional units, which however give no effects on the field correlation
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Figure 11.6: Averages of the upper and lower envelopes in Fig. 11.5 effectively build the master
curve for the radiation CCF along the horizontal direction. The corresponding transverse coher-
ence length is σcoh,x = (6.94 ± 1.3) µm.

function. Here for completeness

AJJ,h = (−1)
h−1
2

[

Jh−1
2

(
hK2

4 + 2K2

)

− Jh+1
2

(
hK2

4 + 2K2

)]

. (11.4)

Based on the reduced parameters given as an input, the code samples the desired
transverse phase space of the electron beam by a Monte Carlo simulation coupled to
Sobol sequences in order to avoid the formation of particle clusters. The user can choose
between computing the two-dimensional transverse coherence function at a fixed dis-
tance or following the free propagation evolution of the transverse coherence length (in
both horizontal and vertical direction) from the undulator exit. The transverse coherence
length is computed in units of the diffraction length (cLw/ω)1/2, while the distance from
the undulator exit is normalized by the undulator length Lw.

The code has then been accelerated with CUDA in order to run on GPUs of commer-
cially available laptops. Parallel computation of the electric field from different particles
results in a speed-up of roughly 700X with respect to the serial implementation of the
same code. This drastically reduces the computation time of the spectral degree of co-
herence of undulator radiation. The current version of the code is able to deal with 106

particles in less than 300 s on a 128×128 grid.
Benchmark of the code is reported in Fig. 11.7, where we compare the results of our

simulation with the analytical results given in Eq. 3.13 and valid for N̂ ≫ 1 and D̂ ≫ 1.
The good agreement between analytic results and actual simulations proves the validity
of our code. We also report the asymptotic Van Cittert-Zernike’s theorem (ẑo → +∞)
and the Near Field limit at the undulator exit (ẑ → 1/2).

Finally, we computed the evolution of the transverse coherence properties of the un-
dulator radiation for the ALBA case. Results are shown in Fig. 11.8(a) and Fig. 11.8(b)
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Figure 11.7: Benchmark of the GPU-based simulation code of undulator transverse coherence in

the case N̂ ≫ 1, D̂ ≫ 1. Actual simulations (squared dots) and analytic expression (solid black

line) for the reduced transverse coherence length ξ̂ as a function of the normalized distance ẑo
are in good agreement. We also report the asymptotic Van Cittert-Zernike’s theorem (ẑo → +∞,
dashed red line) and the Near Field limit at the undulator exit (ẑ → 1/2, dash-dotted blue line).

for the horizontal and vertical transverse coherence length, respectively. At the position
of the HNFS diagnostics at ẑo ≈ 15, the expected reduced transverse coherence length

are ξ̂c,x = 1.1 and ξ̂c,y = 18.0. In normalized units ((cLw/ω)1/2 = 5.5 µm at λ = 1
Å), σsim

coh,x = 6.05 µm and σsim
coh,x = 100 µm. It can be seen how the horizontal coher-

ence properties measured with the HNFS technique are in agreement with theoretical
expectations (relative error (σcoh,x − σsim

coh,x)/σ
sim
coh,x is less than 15%). Regarding vertical

coherence properties, since the current setup is limited by the phosphor transfer function
up to qmax = 2 µm−1 at z = 55 cm, we could only measure transverse coherence length
smaller than 17.7 µm. By properly rescaling the dimensionless parameters used in the
simulation, this implies that the current setup could only probe electron beams with a
vertical size larger than 40 µm, roughly 6 times larger than the nominal beam at NCD.

Finally, we would like to remark that these preliminary measurements were strongly
affected by the low signal. A new experimental shift is scheduled to optimize the setup
in terms of light yield by implementing new optical components and by replacing the
scattering cuvette with much thinner capillaries. An enhanced detected signal might
give access to a wider range of wavevector q (hence to a wider range of transverse dis-
placements ∆r) despite the presence of the phosphor, which currently determines the
decay of power spectra to shotnoise level along the vertical direction. Furthermore, we
could adopt an imaging geometry by means e.g. of compound refractive lenses to probe
coherence properties of the X-ray radiation closer to the undulator exit where the trans-
verse coherence length is expected to be shorter.



Probing spatial coherence of Undulator Radiation 135

0 10 20 30
0.0

0.5

1.0

1.5

2.0
 Sim.
 Eq. 3.13
 VCZ
 Und. exit limit

 

 

oz

c

Nx = 583
Dx = 294

0 10 20 30
0

10

20

30

c

oz

 

 

 Sim.
 Eq. 3.13
 VCZ
 Und. exit limit

Ny = 1.98
Dy = 14.66

Figure 11.8: Simulated transverse coherence length as a function of the distance from the undula-

tor exit (square black dots). Dimensionless quantities ξ̂c and ẑo are reported. The vertical dash red
curve determines the position of the HNFS diagnostics. We also show for comparison the analytic
results of Eq. 3.10 (solid black line), the Van Cittert-Zernike prediction (dashed blue line) and the
undulator exit limit (dash-dotted orange line). It is worth noticing how the Van Cittert-Zernike’s
theorem yield incorrect result for the vertical transverse coherence length.





Conclusions and perspectives

In this thesis we have developed a diagnostics technique for partially coherent syn-
chrotron radiation beams based on the Heterodyne Near Field Speckle (HNFS) approach.
It relies on the Fourier analysis of the speckle fields generated by the staggered interfer-
ence between the strong transmitted incident beam and the weak spherical waves scat-
tered by nanoparticles suspended in a solution. Firstly introduced in 2009 by the Optics
Laboratory of the University of Milan, so far it has been concerned with the study of
spatial coherence. Here we show that the spatial power spectrum of near field speckle
fields provides a direct measurement of the squared-modulus of the spatio-temporal
coherence function of the incoming radiation, thus improving the existing theory and
providing a complete and unified theoretical background of the HNFS method as a co-
herence diagnostics. The conditions for quantitatively assessing spatial and temporal
coherence separately have been also discussed. In particular, a criterion based on master
curves of data under two different scaling laws for the spatial and the temporal coher-
ence has been introduced. Despite coherence properties can in principle be gauged with
a single acquisition at a fixed distance, measurements at different distances endow the
technique with robustness and versatility and they provide strong self-consistency to the
experimental results.

The technique is ultimately wavelength independent and the experimental setup is
minimal and free of any severe alignment requirement. Furthermore, the method can be
easily operated at X-ray wavelengths, remarkably without any ad hoc engineered device
or dedicated optics. Data processing is model independent and free from any external
parameter. Finally, one of the most fashinating aspects of the HNFS technique is the
possibility of directly measuring the two-dimensional spatial coherence function, as well
as the entire temporal coherence function.

The technique has been tested with broadband table-top sources (halogen lamps and
LEDs) to deduce temporal coherence properties in the simple case of visible thermal
light, a paradigmatic system within the framework of Statistical Optics providing a solid
benchmark for the technique. The measured coherence time of the white sources are in
good agreement with the inverse bandwidth of the radiation, according to the Wiener-
Khinchine’s theorem and to independent measurements with a grating spectrometer.
This proves the sensitivity of the technique to very short longitudinal coherence lengths
of the order of a few wavelengths. Interestingly, for the case of the radiation emitted
by the LEDs the measured temporal coherence function shows echoes at a characteristic
time of 7 fs, revealing the double-peak structure of the emitted power spectral density
with a wavelength separation of roughly 100 nm. Results are confirmed by independent

137
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measurements with a grating spectrometer. This shows how HNFS can be advanta-
geously implemented to characterize broadband sources.

We have also applied the technique to characterize the coherence properties of the
second harmonic of a pulsed High Harmonic Generation (HHG) laser at the Laser Lab-
oratory at the ELETTRA synchrotron, Trieste (Italy). We have proven that the laser
pulses are endowed with limited transverse and longitudinal coherence lengths, since
data failed to fit either the spatial or the temporal master curve. Close to the scattering
sample, data succeeded in effectively building the temporal master curve. The measured
coherence time τcoh = 190 fs is comparable to the pulse duration σT = 300 fs and it cor-
responds to the presence of two longitudinal modes per pulse. We have also experimen-
tally evidenced how the spatio-temporal coherence function of the laser pulses reduces
to the product of the measured temporal master curve and of a spatial master curve
describing transverse coherence properties. A transverse coherence length σcoh = 3.83
mm is found, comparable to the transverse beam size σbeam = 5 mm and corresponding
to a degree of transverse coherence ζ = 0.77. Finally, we have been able to reconstruct
the two-dimensional spatio-temporal coherence function of the pulses from the simul-
taneous knowledge of the spatial and temporal master curves. It is worth noticing that,
at variance with the case of classical thermal light, the system cannot be modelled as a
quasi-stationary stochastic process and the Wiener-Khinchine’s theorem does not hold
anymore. The temporal master curve is thus expected to convey the information on
both the temporal coherence of the radiation and the temporal intensity profile of the
laser pulses, but a deeper and more detailed study of the phenomenon was not possible
due to the lack of beamtime. Further analysis is currently ongoing.

In the last part of the thesis we have focused our attention to the meaningful scien-
tific case of coherence characterization of partially coherent synchrotron radiation at the
ALBA Synchrotron Light Source, Barcelona (Spain). We have performed for the first time
measurements of temporal coherence of synchrotron radiation from a bending dipole
(FE01 end station) with both narrowband and white beams. In the former case, a coher-
ence time of 40 ± 10 fs has been measured, compatible with the filter inverse linewidth
(expected value 43 fs). The high quality of the temporal master curve proves full spatial
coherence over the accessed transverse scale of 1 mm, in agreement with independent
Synchrotron Radiation Interferometry measurements. Since for visible wavelengths the
sample lies in the far field of the source, coherence patches are homotetic, meaning that
they propagate carring the information about the wavefront curvature. By studying the
periodicity of the Talbot oscillations as the sample-detector distance is varied, we have
estimated a wavefront radius of curvature larger than 5 m. Less conservatively, the fit-
ted value is compatible with the nominal distance of 15 m from the center of the bending
dipole. By contrast, it is worth noticing that for X-ray wavelengths the transition to the
far field of the electron beam occurs after tens or hundreds meters and the scattering
sample would always be in the Fresnel zone of the source. Coherence areas would then
behave as diffraction-limited wavefronts with a Rayleigh range of the order of some me-
ters, much larger than the sample-detector distances typically scanned during a HNFS
experiment. The scattered spherical waves would thus be heterodyned by a wavefront
carrying vanishing curvature. Regarding white beams, the decay of speckle power spec-
tra yields a coherence time of 1.6± 0.4 fs, related to a radiation bandwidth of 240 nm at
an average wavelength of 350 nm. From the measured squared modulus of the radiation
Complex Degree of Coherence, we have retrieved the synchrotron power spectral den-
sity by applying the modified Wiener-Kintchine theorem. Results are in good agreement
with independent measurements performed with a spectrometer, showing how HNFS
can be effectively implemented as a powerful diagnostics technique.



Finally, we have performed preliminary measurements of the spatial coherence of
an X-ray undulator beam at the BL11 beamline in free-propagation geometry, aimed
at retreiving the transverse emittance of the electron beam. From the measured hor-
izontal coherence length, a beam size σx = 270 µm has been obtained, with a good
agreement with the nominal value of 309 µm. Measurements of the spatial coherence in
the vertical directions have not been possible due to the unexpected low signal and to
the predominant transfer function of the phosphor screen dictating the decay of power
spectra to shotnoise level. While this is not the first application of HNFS for the analysis
of transverse coherence of undulator radiation, it represents the first time that a direct
measurement of the transverse beam size is attempted. In this view, since in many prac-
tical situations the conditions for the applicability of the Van Cittert-Zernike’s theorem
may not be satisfied, we have developed a simulation code based on the theory of trans-
verse coherence of third-generation light sources as recently refurbished by G. Geloni
et al. Given the four parameters σx, σy , σx

′ and σy
′ characterizing the electron beam

size and divergence, the code fills the transverse phase space via Monte Carlo sampling
for a given number N of particles. It then computes the propagated fields exploiting
analytic expressions valid for the near zone as well as for the far zone and accounting
for the correct phase terms for a particle with offset and deflection. The definition of
the field correlation function is then applied in order to compute the two-dimensional
spatial coherence function at a fixed distance or alternatively to follow the evolution of
the transverse coherence length (both in the horizontal and in the vertical direction) as
a function of the distance from the undulator exit. The code has been accelerated by
CUDA in order to run on commercially available GPUs, computing the electric field of
each particle concurrently and making such computing-demanding simualtions feasible
to be executed on personal computers. A laptop equipped with a NVIDIA GEFORCE
940MX graphic card can deal with N = 106 particles in less than 300 s at a spatial resolu-
tion of 128×128. A speedup of roughly 700X is observed compared to serial codes. The
simulation software has been benchmarked with known cases and it was able to pre-
dict the correct transverse coherence length measured in our experiments. Extensions to
include detuning and energy spread effects have already started.

As a closing remark, measurements have evidenced time-varying modulations of
single-shot power spectra likely caused by relative vibrations of the camera with respect
to the photon beam. Despite this issue has not been completely surveyed, it represents
another valuable outcome of the technique, i.e. the possibility to perform time-resolved
measurements. More generally, such characterization is expected to be of interest for
coherence-based X-ray technique, being suitable to study the dynamics of photon beams
as well as coherence fluctuations.
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APPENDIX A

Synchrotron Radiation: solution based on Paraxial Green’s
function

Let ~E⊥(zo, ~r⊥o, t) = ~̄E⊥(zo, ~r⊥o, ω)e
−iωt be the complex representation of a monochro-

matic wave of angular frequency ω. Here ~r⊥o = (xo, yo) denotes the transverse coordi-

nates of an observer at the longitudinal position zo and ~̄E⊥ describes the complex ampli-
tude of the wave. It satisfies the following differential equation in the space-frequency
domain:

c2∇2 ~̄E⊥ + ω2 ~̄E⊥ = 4πc2~∇ρ̄− i4π~̄j, (A.1)

where ρ̄(~r⊥, z, ω) and ~̄j(~r⊥, z, ω) are the Fourier transforms of the charge density ρ(~r⊥, z, t)

and of the current density ~j(~r⊥, z, t), respectively. Considering a single electron and in-
troducing the curvilinear abscissa s = vt, where v = |~v(t)| is assumed constant, the
charge density and the current density take the form

ρ(~r⊥, z, t) = −eδ[~r⊥ − ~r ′
⊥(t)]δ[z − z′(t)] =

= − e

vz(z)
δ[~r⊥ − ~r ′

⊥(z)]δ

[
s(z)

v
− t

]

~j(~r⊥, z, t) = −e~v(t)δ[~r⊥ − ~r ′
⊥(t)]δ[z − z′(t)] =

= − e

vz(z)
~v(z)δ[~r⊥ − ~r ′

⊥(z)]δ

[
s(z)

v
− t

]

, (A.2)

where (~r ′
⊥(t), z

′(t)) = (x′(t), y′(t), z′(t)) and ~v(t) are the position and the velocity of the
particle at a given time t, respectively. In the frequency domain the expressions for the
charge density and for the current density correspond to

ρ̄(~r⊥, z, ω) = − e

vz(z)
δ(~r⊥ − ~r ′

⊥(z)) exp

[

iω
s(z)

v

]

~̄j(~r⊥, z, ω) = − e

vz(z)
~v(z)δ(~r⊥ − ~r ′

⊥(z)) exp

[

iω
s(z)

v

]

. (A.3)

We introduce the slowly-varying envelope of the field

~̃
E⊥ = ~̄E⊥ exp

(

−iω z
c

)

, (A.4)

which satisfies the following general equation:
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(

∇2 +
2iω

c

∂
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)

~̃
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4πe
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. (A.5)

In the ultrarelativistic approximation (1/γ2z ≪ 1), the radiation formation length is

much longer than the wavelength and ~̃
E⊥ does not vary appreciable on a scale compa-

rable to the radiation wavelength λ: |∂z ~̃E⊥| ≪ (ω/c)| ~̃E⊥|. The second derivative with
respect to z in ∇2 can be neglected with respect to the first-order one and we can ap-
ply the paraxial approximation yielding to the following paraxial Maxwell’s equation in
space-frequency domain:

(
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c
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. (A.6)

The solution to this equation is found by introducing the Green’s function

G(zo − z′, ~r⊥o − ~r ′
⊥) = − 1

4π(zo − z′)
exp
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iω
|~r⊥o − ~r ′

⊥|2
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(A.7)

and it takes the form
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. (A.8)

The integration over the transverse coordinates can be performed straighforwardly,
leading to the final expression

~̃
E⊥(zo, ~r⊥, ω) = − iωe

c2
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(A.9)

where the total phase ΦT is given by

ΦT = ω
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s(z′)

v
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c

]

+ ω

[
(xo − x′(z′))2 + (yo − y′(z′))2
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. (A.10)



APPENDIX B

Fourier Optics approach to classical electrodynamics

We now couple the theory of Synchrotron Radiation with Fourier Optics, a branch of
physical optics suitable for the description of laser beams. This parallelism stems for the
fact that both the radiation from an ultrarelativistic electron in a magnetic configuration
and laser beams are solution of the wave equation under paraxial conditions. In partic-
ular, undulator radiation from an ultrarelativistic electron appears as a laser-like beam
generated by a virtual source endowed with a plane wavefront. Remarkably, the electric
field distribution of this virtual source is related to the Fourier transform of the far-field
angular pattern.

The free-space evolution of the slowly-varying envelope of a monochromatic electro-
magnetic field is determined by the following source-free paraxial Maxwell’s equation
in space-frequency domain:

(

∇2
⊥ +

2iω

c

∂

∂z

)

~̃
E⊥ = 0. (B.1)

It describes the propagation law for the complex envelope of the radiation field
~̃
E⊥(z, ~r

′
⊥, ω) from a plane z to the plane of observation at zo. The solution of this Cauchy-

like problem for a fixed polarization component is given by

Ẽ⊥(zo, ~r⊥o, ω) =
iω

2πc(zo − z)

∫

d~r ′
⊥Ẽ⊥(z, ~r

′
⊥, ω) exp

[
iω|~r⊥o − ~r ′

⊥|2
2c(zo − z)

]

. (B.2)

We now introduce the spatial Fourier transform of the electric field by means of the
following relations:

F (z, ~u) =

∫

d~r⊥ Ẽ⊥(z, ~r⊥, ω) exp [i~r⊥ · ~u]

Ẽ(z, ~r⊥, ω) =
1

4π2

∫

d~uF (z, ~u) exp [−i~r⊥ · ~u] . (B.3)

It satisfies the following differential equation

(

−|~u|2 + 2iω

c

∂

∂z

)

F (z, ~u) = 0 (B.4)

whose solution is given by

F (z, ~u) = F (0, ~u) exp

[

− ic|~u|
2z

2ω

]

. (B.5)
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The spatial Fourier transfomr of the electric field exhibits a trivial behavior during
free-space propagation along the z-direction, while the same arguments do not generally
hold for the electric field itself. This property is strictly related with the Fourier Optics
interpretation of the spatial Fourier transform of the electric field (also known as the
angular spectrum of the optical disturbance) as the superposition of many plane waves
propagating along different directions and thus suffering different phase shifts.

Considering the far field case, defined by zo → +∞ with a constant ratio ~r⊥/zo, and
expanding the exponential factor, we obtain

Ẽ⊥(zo, ~r⊥o, ω) =
iω

2πczo

∫

d~r ′
⊥ Ẽ⊥(z, ~r

′
⊥, ω) exp

[
iω

2czo

(

|~r⊥o|2 − 2~r⊥o · ~r ′
⊥ +

z

zo
|~r⊥o|2

)]

.

(B.6)
Exploiting the definition of the angular spectrum of the electric field and the propa-

gation law of Eq. B.4 and Eq. B.5 and letting ~θ = ~r⊥/zo, the far field expression of the
electric field is expressed as

Ẽ⊥(~θ) =
iω

2πczo
exp

[
iω|θ|2
2c

zo

]

F

(

0,−ω
~θ

c

)

. (B.7)

The far field expression of the electric field is given by the spatial Fourier transform of the
electric field at any position, apart for proportionality constants and phase factors. We
can always interpretF (0, ~u) as the spatial Fouier transform of a virtual source. Assuming
that it is placed at z = 0, the virtual source is defined by the fact that it produces the same
electric field distribution under study at any distance along the beamline.

We can also compute the electric field at the virtual source position by Fourier-inverting
the previous relation:

Ẽ⊥(0, ~r⊥, ω) =
iωzo

2πc

∫

d~θ exp

[

− iω|θ|
2

2c
zo

]

Ẽ⊥(~θ) exp

[
iω

c
~r⊥ · ~θ

]

. (B.8)

Remarkably, the field at the virtual source position is related to the inverse Fourier
trasform of the far field angle distribution. This allows to characterize the virtual source
from the far field expression of the electric field.



APPENDIX C

Free-space evolution of undulator transverse coherence in
the case N̂ ≫ 1 and D̂ ≫ 1

We now specialize the theory of the cross-spectral density of Synchrotron Radiation to
the case of an undulator source. Restricting our analysis to the case of the system tuned
at resoance with the first harmonic, we recall that under the resonant approximation

the following expression is valid for the undulator reduced field Ẽ⊥ emitted by a single
electron with offset and deflection:

Ê⊥(
~̂
l, ~̂η, ẑ, ~̂r⊥o, Ĉ) = ẑo

∫ +1/2

−1/2

dẑ′
1

ẑo − ẑ′
exp






i





(

Ĉ +
|~̂η|2
2

)

ẑ′ +
|~̂r⊥o − ~̂l − ~̂ηẑ′|2

2(ẑo − ẑ′)










,

(C.1)

where the normalized parameters are define as

Ê⊥ = − c2zoγ

KωeLwAJJ
Ẽ⊥

~̂η = ~η

√

ωLw

c

Ĉ = LwC = 2πNw
ω − ω0

ω0

~̂r⊥o = ~r⊥o

√
ω

cLw

~̂
l = ~l

√
ω

cLw

ẑ =
z

Lw
. (C.2)

It can be shown that the electric field can be rewritten in the following general form:
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Ê⊥



Ĉ, ẑo,
~̂
θ −

~̂
l

ẑo
− ~̂η



 =

∫ +1/2

−1/2

dẑ′
ẑo

ẑo − ẑ′
×

× exp







i




ΦU + Ĉẑ′ +

ẑoẑ
′

2(ẑo − ẑ′)



~̂θ −
~̂
l

ẑo
− ~̂η





2











=

= exp(iΦU )S




Ĉ, ẑo,



~̂θ −
~̂
l

ẑo
− ~̂η





2



 . (C.3)

We introduce a version of Gω defined as a function of normalized variables:

Ĝ(ẑo,
~̂
θ1,

~̂
θ2, Ĉ) =

〈

Ê⊥



Ĉ, ẑo,
~̂
θ1 −

~̂
l

ẑo
− ~̂η



 Ê∗
⊥



Ĉ, ẑo,
~̂
θ2 −

~̂
l

ẑo
− ~̂η





〉

=

=

(
c2zoγ

KωeLwAJJ

)2

Gω. (C.4)

We next substitute Eq. C.3 into Eq. C.4 and we expand thecomplex exponent. We
then rephrase the ensamble average in terms of integration over the beam distribution
functions, yielding to

Ĝ(ẑo,
~̂
θ1,

~̂
θ2, Ĉ) = exp

[

i
(
~̂
θ21 −

~̂
θ22

) ẑo

2

]∫

d
~̂
l d~̂η F~̂

l,~̂η
(
~̂
l, ~̂η) exp[i(

~̂
θ2 − ~̂

θ1) · ~̂l]×

× S




Ĉ, ẑo,



~̂θ1 −
~̂
l

ẑo
− ~̂η





2



S

∗




Ĉ, ẑo,



~̂θ2 −
~̂
l

ẑo
− ~̂η





2



 . (C.5)

The phase space distributions can be expressed in normalized units as

Fη̂x(η̂x) =
1

√

2πD̂x

exp

(

− η̂2x

2D̂x

)

Fη̂y (η̂y) =
1

√

2πD̂y

exp

(

−
η̂2y

2D̂y

)

Fl̂x(l̂x) =
1

√

2πN̂x
exp

(

− l̂2x

2N̂x

)

Fl̂y (l̂y) =
1

√

2πN̂y

exp

(

−
l̂2y

2N̂y

)

, (C.6)

where N̂x,y and D̂x,y represent the normalized rms transverse dimension and angular
spread of the electron bunch:
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N̂x,y = σ2
x,y

ω

Lwc
D̂x,y = σ′2

x,y

ωLw

c
. (C.7)

At perfect resonance (Ĉ = 0) we thus obtain the following general expression:

Ĝ(ẑo,
~̂
θ1,

~̂
θ2) =

exp
[

i
(
~̂
θ21 −

~̂
θ22

)
ẑo
2
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4π2

√
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×
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~̂
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ẑo
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 exp[i(

~̂
θ1 − ~̂

θ2) · ~̂l].

(C.8)

1-D model of undulator radiation

We now assume that the vertical emittance is much smaller than the horizontal one. This
implies that we can neglect the terms in η̂y and l̂y. We will also restrict our attention to

the correlation function in the horizontal plane, for which θ̂y1 = θ̂y2 . Introducing the
variables

∆θ̂ =
θ̂x1 − θ̂x2

2

θ̄ =
θ̂x1 + θ̂x2

2
(C.9)

and performing the following changes of variables

η̂x → η̂ + θ̄

l̂x

ẑo
→ φ̂− η̂ (C.10)

yields to

Ĝ(ẑo, θ̄,∆θ̂) =
exp(i2θ̄∆θ̂ẑo)

2π

√
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2D̂
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2N̂/ẑ2o

)

×

× exp(−2i∆θ̂ẑoφ)S
∗[ẑo, (φ̂−∆θ̂)2]S[ẑo, (φ̂+∆θ̂)2]×

×
∫ +∞

−∞

dη̂ exp
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2D̂N̂/ẑ2o
η̂2 +
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N̂/ẑ2o
− θ̄

D̂
η̂ + 2i∆θ̂ẑoη̂

)]

. (C.11)
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The integral in η̂ can be performed analytically leading to

Ĝ(ẑo, θ̄,∆θ̂) =
exp(i2θ̄∆θ̂ẑo)
√

2π(N̂/ẑ2o + D̂)
×

× exp

[

− θ̄
2 + 4N̂∆θ̂2D̂ + 4i(N̂/ẑ2o)θ̄∆θ̂

2(N̂/ẑ2o + D̂)

]

×

×
∫ +∞

−∞

dφ̂ exp

[

− φ̂
2 + 2φ̂(

¯
θ + 2i(N̂/ẑo)∆θ̂)

2(N̂/ẑo + D̂)

]

×

× S∗[ẑo, (φ̂−∆θ̂)2]S[ẑo, (φ̂+∆θ̂)]. (C.12)

We now make the non-restrictive assumptions N̂ ≫ 1 and D̂ ≫ 1 and define Â =

N̂/ẑ2o , which represent the angular size of the source at the observer position in dimen-

sionless units. Under the assumptions on N̂ and D̂, the term 2Âẑ2oD̂/(Â + D̂) is always
much greater than one. The exponential factor outside of the integral sign implies that

Ĝ(ẑo, θ̄,∆θ̂) is different from zero only for (very) small values of ∆θ̂. As a result,we can

neglet the terms ∆θ̂ inside S(·) and S∗(·). We can also neglect the exponential factor

exp[−(φ̂2 + 2φ̂θ̄)/(2Â + 2D̂)] since its argument takes values of order unity for φ̂ ≫ 1
where the function S(·) cuts off the integrand. The integral reduces to the Fourier trans-

form of f(φ̂) = |S(ẑo, φ̂2)|2 expressed as a function of the variable 2Âẑo∆θ̂/(Â+D̂). Since

f(φ̂) is non-negligible for φ̂ of order unity or smaller, the integral gives non-negligible

contributions only up to some maximum value of |∆θ̂|:

|∆θ̂|max ≈ 1

2ẑo

(

1 +
D̂

Â

)

. (C.13)

At the same time, the exponential factor outside the integral requires |∆θ̂| to take
values smaller than or of the same order as

|∆θ̂|max2 ≈ 1

2ẑo

(
1

D̂
+

1

Â

)1/2

. (C.14)

For any values of ẑo, |∆θ̂max| ≫ |∆θ̂max2| in the limit D̂ ≫ 1. The Fourier transform

is significant only for values of 2Âẑo∆θ̂/(Â + D̂) almost null and it thus contributes to

Ĝ(ẑo, θ̄,∆θ̂) with the inessential factor

∫ +∞

−∞

dφ̂|S[ẑo, φ̂2]|2 = const. (C.15)

We finally arrive to the following expression for the spectral degree of coherence of
undulator radiation:

g(ẑo, θ̄,∆θ̂) = exp(i2θ̄ẑo∆θ̂) exp

[

−2iÂθ̄ẑo∆θ̂

Â+ D̂

]

exp

[

−2ÂD̂ẑ2o∆θ̂

Â+ D̂

]

. (C.16)
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Following Mandel and defining the transverse coherence length ,normalized to the
diffraction length

√
Lwc/ω, as follows

ξ̂c(ẑo) = 2

∫ +∞

−∞

|g(∆θ̂)|2 d(ẑo∆θ̂), (C.17)

we obtain

ξ̂c(ẑo) =
√
π

(
1

Â
+

1

D̂

)1/2

. (C.18)
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