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Prof. Mario Trigiante (Politecnico di Torino)

Final examination:

January, 26, 2018
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Abstract

The main goal of this work is to explore the role and the power of the Hamilton-Jacobi
approach and solutions generating techniques to search black hole solutions in abelian
gauged supergravity theories. After a brief introduction explaining how supergravity
arises as effective theory of superstrings, a chapter is devoted to the detailed description
of N = 2 abelian gauged supergravity in d = 4 and d = 5.
The study of the equations of motion with general matter coupling for static black hole
solutions is developed with Hamilton-Jacobi approach and new first order sets of equa-
tions are presented [1, 2] extending well-known BPS sets [3, 4]. In d = 5 the equations
are completely solved for the STU model with constant hypermultiplets and a solution
generalizing Maldacena-Nunez black string [4] is found [5].
Then the attention is focused on some integrability properties of minimal gauged super-
gravity in d = 4 [6] and Einstein-Maxwell-Lambda system in d dimensions [7]. Always
with Hamilton-Jacobi technique, studying the symmetries of the systems the dynamics
is solved algebraically for some sets of solutions.
For holographic calculations the attractor points deserve particular attention and there-
fore I explain their definition for the cases AdS2 ×Σ2 and AdS3 ×Σ2 and the calculation
of the entropy and the central charge in general matter coupled supergravities. More-
over, Freudenthal duality is extended to the abelian gauged case and general matter
coupling [8].
The last part is dedicated to the introduction of a solution generating technique based on
group theory in FI d = 4 supergravity. Many examples with the simplest prepotentials
are shown [9]. With the help of dimensional reduction this solution generating technique
is used to produce a rotating black string in d = 5 [5].
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Introduction

Probably the biggest unsolved problem in theoretical physics is to reconcile the descrip-
tion of the four fundamental forces. Gravity is described by curved spacetime, while the
strong, weak and electromagnetic interactions with consistent quantum field theories.
On one hand, we have General Relativity and on the other hand the Standard Model.
They provide an accurate description of two different sides of nature under suitable lim-
its. The gravitational interaction and the behaviour of spacetime in presence of classical
matter are correctly reproduced by Einstein’s theory. On the other hand, the Standard
Model predictions fit in an extremely precise way the world of particle physics, when
one can neglect the gravitational force. Both are field theories but their applicability
is set on two different scales. The metric, the dynamical variable of General Relativity,
paints the picture of the spacetime as a classical field theory, while in the Standard Model
quantum fields control the behaviour of the single quanta.

However certain physical objects as black holes and events like the big bang display
a singular behaviour in General Relativity. As always in theoretical physics the pres-
ence of infinity means something that requires a deeper understanding, the theory has
reached its limit of applicability. In this case, we need a description that takes into ac-
count quantum gravitational effects.
The lack of a microscopic description of gravity is due to the high nonlinearity of Gen-
eral Relativity. The kinetic term of the gravitational force, the curvature scalar, contains
second order derivatives and the inverse of the metric field. On the other hand, General
Relativity is a field theory and one could expect that, expanding the theory on a fixed
background, it can be promoted to a quantum field theory with the canonical quantiza-
tion procedure. In fact, this is possible, but the theory results to be nonrenormalizable,
i.e., one needs an infinite number of couterterms and thus of free parameters. The theory
loses its predictive power. It can be thought as an effective field theory in a reduced scale
of validity, but it cannot be considered as a quantum theory of gravity at the fundamental
level.

This suggests that one could think that in some sense gravity must be more pro-
found, not only the fourth force but the key for a theory of everything. M-theory and
superstring theory attempt to answer in this sense to the request of a theory of quan-
tum gravity, with the unification of all the forces [10–12]. A picture at the Planck length,
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lP , substitutes particles for strings living in a ten-dimensional spacetime self-generated
from their interaction. The oscillation modes of the string produce the features of what
we call particles at a lower energy scale.

By the late 1970s, a big and rich apparatus was built following the idea that the fun-
damental objects underlying particles are strings. Even if the predictive power of these
theories is very reduced by the lack of experiments that can test them, their study is it-
self interesting from the mathematical and theoretical physics point of view. In algebraic
geometry the discovery of mirror symmetry [13] has come from a physical conjecture
born for understanding certain string models. The AdS/CFT correspondence [14] can
perhaps be considered as one of the most important developments of theoretical physics
of the last two decades, since it provides for the first time an explicit realization of the
holographic principle [15].
The five superstring theories are supersymmetric and ten-dimensional, as required by
the consistency of the theories themselves. They are linked to each other and with an
underling eleven-dimensional theory, called M-theory, by a web of dualities. Each of
these six theories describes a different corner of the same picture 1. Moreover, string
theories contain not only open and closed strings, but also branes, which are extended
objects in more than one dimension. However, we are able to describe the interactions
of these object only when particular expansions in the couplings, α′, the tension of the
string, and gs, the quantum coupling constant, are considered; the complete description
is not known.

As an ordinary field theory, superstrings can be quantized in a pertubative regime.
For each mass level the spectrum contains a supersymmetric multiplet of fields, called
supermultiplet. Starting from the ground state an infinite tower of supermultiplets is
created. Particular attention deserves the massless supermultiplet from which one ob-
tains a low energy effective action called supergravity. It is a supersymmetric classical
field theory and it contains General Relativity as its fundamental subsector. For each
superstring theory, one can write down the corresponding supergravity.

To make contact with the lower dimensional physics and to simplify the study of
the solutions one can dimensionally reduce the ten- or eleven-dimensional theories by
compactification mechanisms, such as the Kaluza-Klein mechanism. Some dimensions
describe a compact manifold with a resulting lower dimensional effective supergravity,
in which the fields parametrize the moduli of deformations of the compactification man-
ifold M . The compactification leads to consistent truncations only when M has peculiar
properties, many families are known but an exhaustive classification is still missing. The
number of the dimensions d and the supersymmetries N of the reduced theory depend
on M .
The different types of compactifications are distinguished by the presence of fluxes or
not. When some fluxes are switched on, the resulting supergravity is deformed by
a gauging of some isometries of the scalar manifold and certain scalar fields may be
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Figure 1: M-theory contains all know superstrings in different corners.

charged under these symmetries. Moreover, a scalar potential appears [16]. In this
case, the equations are much more complicated and only a few solutions to them are
known. In four- and five-dimensional N = 2 gauged supergravity the geometric struc-
tures of the vector multiplets and hypermultiplets are very rich and not uniquely fixed
as it happens for a higher amount of supersymmetry. They are obtained by compacti-
fyng eleven-dimensional supergravity respectively on Calabi–Yau threefolds [17] and on
SU(3)- structures [18] or type II supergravity on Calabi-Yau threefolds [19].

The bosonic field content of supergravity is General Relativity coupled to gauge
fields and scalars. A solution of its equations of motion represents, not only a super-
gravity background, but from a higher-dimensional point of view can be considered as
the effective description of a system of interacting strings and branes in particular lim-
its. Constructing solutions in supergravity is an active technical sector in theoretical
physics. The equations to solve are a complicated system of partial differential equa-
tions and therefore it is impossible to write down the general solution. Nevertheless,
some interesting and useful solutions can be found in situations with a high degree of
symmetry.

Typically at least stationarity and axial symmetry are taken as a starting point for
defining the ansatz. For static configurations even spherical and hyperbolic symmetry
are considered and constrain very much the analytical form of the configuration. How-
ever, the presence of many fields leads to complicated second order equations of motion.
To simplify the problem, a first path is to search first order equations. For example, this is
possible when some degree of supersymmetry is taken into account. In this case one can
pose to zero the supersymmetric variations of the fermionic fields and try to solve the
Killing spinor equations for a particular configuration and a certain Killing spinor. A so-
lution to them often, considering on-shell supersymmetry, is guaranteed to be a solution
also of the equations of motion. To go beyond the BPS class a more general approach
is needed. Often, starting from the original higher dimensional theory specified for a
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particular ansatz fields, one can discover an underlying finite dimensional dynamical
system. Applying the Hamilton-Jacobi technique to this theory, one can find more gen-
eral first order equations, that includes also the non-BPS class of configurations, or even
solve the system algebraically.
Another powerful way to construct new solutions, when some are known, is to exploit
the group of symmetries of the theory and to take advantage of some solution generat-
ing techniques. Starting from an already known solution, called seed, and applying on
it a symmetry transformation, that keeps unchanged the equations of motion, one finds
a final configurations will be possibly more complicated.

Moreover, symmetry is a driving tool also in the interpretation of some of these com-
plicated configurations arising in supergravity, characterized by an AdS factor. The
AdS/CFT dictionary says that for an asymptotically AdS solution one can find a CFT
living on its boundary. The first way to identify the holographic dual of a certain solu-
tion is the group of symmetry defining them. Internal symmetries on the boundary must
conicide with gauge symmetries in the bulk [20]. As always in physics, the presence of
symmetry increases the possibility of classification.

The thesis is organized as follows. In chapter 1 a brief introduction on superstrings,
highest dimensional supergravities and AdS/CFT correspondence is given. In 2 we ex-
plain in detail the structure of the N = 2 supergravity Lagrangian in four- and five-
dimensions and in 3 the effective one-dimensional field theory for a certain static ansatz
is studied, first order flow equations are obtained from a Hamilton-Jacobi formalism,
and some solutions are constructed. Having in mind the AdS/CFT correspondence as a
main motivation, we analyze in 4 the attractor point configurations, and extract the black
hole entropy and the values of the central charges. Chapter 5 is dedicated to explaining
a solution generating technique of d = 4 supergravity.



CHAPTER 1

Superstrings and Supergravity

Inspired by [10,12] and also by the review [21], we give some basics on superstrings and
ten-dimensional supergravities. After this, we introduce the idea of compactifications,
dimensional reductions, and consistent truncations to explain the origin of gauged su-
pergravities in d = 4 and d = 5 [16]. At the end of the section, to motivate the search
for solutions to the equations of motion of these theories, the fundamental principles of
AdS/CFT correspondence are tackled [22].

1.1 Polyakov Action and Bosonic String

In 1968, G. Veneziano [23], introduced the concept of extended objects moving in space-
time to study the strong interaction amplitudes. This idea was not fruitful for the de-
scription of the strong force, but it inspired theoretical physicists that tried to solve the
unification problem of the forces. The dynamical action for a string is

S =
T

2

∫
dτdσ

√
−hhαβgµν(X)∂αX

µ∂βX
ν , (1.1)

used by Polyakov to create the theory of the quantum bosonic string [24]. The metric
of the spacetime is gµν and (1.1) describes the dynamical behaviour of a string Xµ. It is
parametrized by (τ, σ) generating the worldsheet whose metric is hab. This is an exam-
ple of non-linear sigma model, namely a set of d+ 1 scalar fields self-interacting via the
metric dependence gµν = gµν(X). Moreover, it is invariant under reparametrizations
of the worldsheet and target space and under global Weyl rescalings of the worldsheet
metric.
The first case to study is the classical free field theory gµν = ηµν . Exploiting the invari-
ance under worldsheet diffeomorphisms, without further restrictions we can gauge-fix

hαβdxαdxβ = eρ(τ,σ)ηαβdxαdxβ = eρ(τ,σ)(−dτ2 + dσ2) . (1.2)

The action (1.1) boils down to

S =
T

2

∫
dτdσηαβ∂αX

µ∂βXµ (1.3)

1



2 1.1 Polyakov Action and Bosonic String

for which the Euler-Lagrange equation reads

∂α∂αX
µ = 0 , (1.4)

where 0 ≤ σ ≤ π. The equation (1.4) automatically implies the stationarity of the action
for closed strings, Xµ(τ, σ) = Xµ(τ, σ+π), while for open strings Dirichlet or Neumann
boundary conditions must be imposed

δXµ|(0,π) = 0 , or ∂σX
µ|(0,π) = 0 . (1.5)

Moreover the constraint

δI

δhαβ
= Tαβ = ∂αX

µ∂βXµ −
1

2
ηαβη

σδ∂δX
µ∂σXµ = 0 , (1.6)

must hold. It guarantees the local Weyl rescaling invariance. The solution to the wave
equation (1.4) is easly written in terms of the light-cone coordinates σ± = τ ± σ, Xµ =

Xµ
R +Xµ

L. For example, for closed string it reads

Xµ
R =

1

2
xµ +

1

2
l2sp

µ(τ − σ) + ls
i

2

∑
n 6=0

1

n
αµne

−2i(τ−σ) ,

Xµ
L =

1

2
xµ +

1

2
l2sp

µ(τ + σ) + ls
i

2

∑
n 6=0

1

n
α̃µne

−2i(τ+σ) ,

(1.7)

where ls is the fundamental string length and the αµn and α̃µn are the Fourier modes
expansion of the right and left movers. The reality of the solution is guarateed by the
conditions

αµn = (αµ−n)∗ , α̃µn = (α̃µ−n)∗ , (1.8)

and taking xµ and pµ as the position and the momentum of the center of the mass.
As usual for a classical scalar field one can impose the canonical Poisson Brackets

beetween the Xµ and the conjugate variables ending with the poisson bracket for the
Fourier modes

[αµm, α
ν
n] = imηµνδm+n,0 ,

[α̃µm, α̃
ν
n] = −imηµνδm+n,0 ,

[αµm, α̃
ν
n] = 0 .

(1.9)

Moreover, the conformal invariance becomes evident once one studies the Fourier com-
ponents of the stress energy tensor Tαβ . Taking αµ0 = α̃µ0 = 1

2p
µ

Lm =
1

2

∑
n∈Z

αµm−nαµn , L̃m =
1

2

∑
n∈Z

α̃µm−nα̃µn , (1.10)

that span the direct sum of two Virasoro algebras

[Lm, Ln] = i(m− n)Lm+n , [Lm, L̃n] = 0 , [L̃m, L̃n] = i(m− n)Lm+n . (1.11)
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Following different paths now one can quantize the theory [10]. Promoting the Pois-
son Brackets to commutators one discovers that the Fourier modes become creator and
annihilator operators from which to construct the space of physical states. The quanti-
zation procedure imposes a central extension of the Virasoro algebra because of normal
ordered operators and requires d = 26 to have a spectrum of states without ghosts.
The first excited state is the massless spectrum and is composed by a metric, a 2-form
and a scalar, the dilaton, a sector always present in a string theory. However the main
problem is the fundamental state, that is a tachyon, a scalar particle with negative M2.
This instability in the spectrum and the impossibility of the description of fermions were
the main motivations for the failure of bosonic string and the introduction of supersym-
metry.

1.2 Superstring theories

The fundamental bricks of a field theory are fields that are the representations of the
Poincaré group. However often they transform not only under spacetime symmetries,
but also under a group of transformations that characterizes the specific theory, that is
called internal symmetry group. The two algebras are in direct sum.
In the 1967, the Coleman-Mandula no-go theorem [25] stated, under certain physically
relevant hypotesis, that it is not possibile to extend nontrivially the Lorentz algebra in-
cluding the internal symmetries in a unique Lie algebra that is not a direct sum of the
two factor. The idea of extending the symmetries of a theory often brings to the dis-
covery of new physics. To overcome the obstacle underlined by the Coleman-Mandula
no-go theorem was introduced the concept of Lie superalgebra as extension of a classical
Lie algebra. In the 1975, the Haag–Łopuszański–Sohnius theorem [26] stated that non-
trivial extensions of four-dimensional Poincaré algebra containing internal symmetries
in the bosonic part can be found including fermionic generators. The introduction of
supersymmetry opened a new branch of study of field theories.
The presence of fermionic generators links bosonic and fermionic degrees of freedom
putting them on the same footing. A good reason to introduce supersymmetric string
theory. Modifying the original Polyakov action (1.1), adding to the worldsheet certain
ferionic degrees of freedom ψµ, the theory is described by

S =
1

2πα′

∫
dτdσ

√
−h
(
hαβ∂αX

µ∂βXµ − iψ̄µρα∂αψµ + ...
)
, (1.12)

where ρα are a two-dimensional Clifford algebra representation. The action (1.12) is
supersymmetric adding two particular terms which however are zero if the gauge sym-
metries are fixed properly. Therefore the Euler Lagrange equation are

∂α∂αX
µ = 0 , ρα∂αψ = 0 . (1.13)

They are easly solved in the coordinate σ±. For the boson fields the expantion is (1.7)
while, for closed string, the fermionic degrees of freedom



4 1.2 Superstring theories

ψµ(σ) = ψµR(σ+) + ψµL(σ−) (1.14)

two different expansion holds, one with periodic boundary conditions, the Ramond sec-
tor,

ψµR =
1√
2

∑
n∈Z

dµne
−in(τ−σ) ,

ψµL =
1√
2

∑
n∈Z

d̃µne
−in(τ+σ) ,

(1.15)

and one with antiperiodic boundary conditions, the Neveu-Schwartz sector,

ψµR =
1√
2

∑
n∈(Z+ 1

2 )

bµne
−in(τ−σ) ,

ψµL =
1√
2

∑
n∈(Z+ 1

2 )

b̃µne
−in(τ+σ) .

(1.16)

With same method of the bosonic string, imposing canonical Poisson Bracket and quan-
tizing the theory one obtains that the critical dimension must be ten and the SuperVira-
soro algebras need central extensions [10]. Moreover armed of the mass formula one can
find that the vacuum for the NS sector is in the vector representation of the little group
in ten dimension, SO(8), while the vacuum in the R sector has a spinor representation.
To preserve supersymmetry and maintain the same number of degrees of freedom be-
tween bosons and fermions for each mass level the Gliozzi-Scherk-Olive (GSO) projec-
tion is performed [10]. Two different theories of closed string are generated modifying
the boundary conditions for two inequivalent choice of the zero mass state in the spec-
trum of the superstring.
The Lie group SO(8) has two spinorial representation 8 and 8′, other than the vector
one 8v. The choice of the chirality generates two inequivalent theories. The non chiral
theory is called IIA and the vacuum is

(8v ⊕ 8)⊗ (8v ⊕ 8′) = (35⊕ 28⊕ 1)⊕ (56′ ⊕ 8)⊕ (56⊕ 8′)⊕ (56⊕ 8v) , (1.17)

that in terms of fields are described as

(gµν +Bµν + φ) + (ψµ′α + λβ) + (ψµα + λ′β) + (C(3)
µνρ + C(1)

µ ) , (1.18)

The chiral one is called IIB and the vacuum is

(8v ⊕ 8)⊗ (8v ⊕ 8) = (35⊕ 28⊕ 1)⊕ (56⊕ 8′)⊕ (56⊕ 8′)⊕ (35⊕ 28⊕ 1) , (1.19)

that in terms of fields are described as

(gµν +Bµν + φ) + (ψµα + λ′β) + (ψµα + λ′β) + (C(4)
µνρσ + C(2)

µν + C(0)) . (1.20)
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The presence of two gravitinos implies there is maximal supersymmetry.

However, three others type of superstring can be built. One is called type I and the
other two are Heterotic strings, SO(32) and E8 × E8 [10]. The first can be obtained by a
particular projection of type IIB spectrum and contains unoriented strings that may be
open or closed. The vacuum is composed of IIA NS-NS and R-NS sector plus a Yang-
Mills supermultiplet SO(32).
The last possibility is obtained by exploiting the complete decoupling of left movers and
right movers. Choosing left movers of the bosonic string theory and right movers of
the supersymmetric one, it is again possible to preserve supersymmetry obtaining the
Heterotic superstrings. There are two of them distinguished by the internal symmetries
gauge group SO(32) or E8×E8. They share the same amount of supersymmetry of type
I.

All the five superstring theories are themselves consistent, however a deeper knowl-
edge of their relations underlines a unifing picture. They describe different expansions
of the same general theory. In this analysis another corner of this picture arises, called M-
theory. This is an eleven-dimensional theory supposed to not have a coupling constant
and with eleven-dimensional supergravity as low energy effective action.

What makes all this machinery possible are S, T and U dualities, that go beyond the
ordinary symmetries because they link different theories.
S-duality in type IIB is Z2 transformation that exchanges the 2-forms of the theory up to
a sign and takes gs → 1

gs
. It is a subgroup of a bigger SL(2,Z) duality interchanging the

role of perturbative objects and solitons. As we will see, a link can be easily found be-
tween zero mass level for the case of the two SO(32) theories sharing the same effective
low energy description.
T-duality in type II interchanges the role of momentum and winding modes in the spec-
trum and is intrinsically perturbative. Reducing type II on T d one obtains SO(d, d,Z) as
the simmetry group. A similar connection exists between the two Heterotic superstrings.
U-duality in type II arises from the reduction on T d, as the internal symmetry group of
the nonlinear sigma model of scalars generated upon the dimensional reduction. These
groups are called Ed+1(d+1)(Z) in literature.

In type II superstrings the spectrum of some solitonic objects goes beyond the excita-
tion modes of the fundamental string. Other objects are present and the most important
are called Dp-branes and can be detected by the presence of the p-forms in the spectrum.
A Dp-brane is an extended object like the string but with a worldvolume that spans p+1

dimension. The action is a generalization of the (1.1) to which one can add the coupling
with potential p-form. In the NS-NS sector, the only p-form is the Kalb-Ramond 2-form
Bµν that can be coupled electrically to strings NS1 or magnetically NS5-branes and this
can be understood by Hodge duality. Similarly, in the R-R sector, the possible Dp-brane
sources depend on the p-forms allowed. A Dp-brane is an electrical source for theC(p+1)

potential and a magnetical source for the C(7−p) potential. Summarizing the idea is that
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Figure 1.1: S,T and U dualities links together the five superstrings and M-theory.

in type IIA there are D0, D2, D4 and D6 branes1 and in type IIB we have D(-1), D1, D3,
D5 and D7 branes. In a democratic formulation of the p-forms, considering on the same
foot a potential and its Hodge dual, each of these objects can be dyonically charged.

The dynamics of a Dp-brane is given by open strings ending on them. The letter D
stands for Dirichlet, the boundary condition imposed on some of the worldsheet scalar
excitations of this open strings. Their quantization introduces additional degrees of free-
dom. At low energy, they can be described by a p+1-dimensional field theory living on
the subspace wrapped by Dp-branes.

The presence of these solitonic objects linked by dualities and the infinite towers
of massive states are not the only reasons for which superstrings are very hard to be
treated in a nonperturbative regime. The presence of two different coupling constants gs,
regulating the quantum behaviour, and even more α′, inverse proportionally to the mass
of the states, makes theory something different from an ordinary quantum field theory.
Even if gs is similar to the usual coupling of a quantum field theory, on the other hand, α′

switches on and off massive states of superstring and their inclusion change drastically
the theory. What is much more understood and studied is the low energy description.
The field theory that governs the dynamical behaviour of the massless particles in the
spectrum that is called Supergravity. It is natural to consider it as a classical field theory,
in fact it contains General Relativity and thus it is not renormalizable.

1.3 Supergravity as Effective Superstring

Supergravity was found before the advent of the superstrings because it is itself con-
sistent as classical field theory. It can be formulated in different d dimensions starting
from the representation of the supersymmetry algebra with certain numbersN of super-
charges. Its peculiarity is to contain always gravity in terms of a spin 2 field and have a
local supersymmetry invariance thanks to the presence of the fermionic partners of the

1At level of supergravity, in massive IIA there is also the D8-brane and in type IIB the D9-brane can be
added with a coupling with ten dimensional not propagating RR form.
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metric, the gravitinos. A systematic study of these theories shows that these features
constraint very much the Lagrangian, such that going up with the dimensions the pos-
sibilities become much more restricted until d = 11 where exists only one supergravity
theory 2.

The eleven-dimensional supergravity is composed only by the gravity multiplet (gµν , ψ
µ
α, A

(3)
µνρ)

and the bosonic Lagrangian reads

I11 =

∫ (
R ∗ 1− 1

2
F (4) ∧ ∗F (4) +

1

6
F (4) ∧ F (4) ∧A(3)

)
. (1.21)

The antisymmetric 3-form is a gauge potential for the field strenght that is F (4) = dA(3).
The gauge transformation δA(3) = dΛ(2) leveas (1.21) invariant up to total derivatives.
The Chern-Simons term is required to have local supersymmetry invariance of the full
action, with also the gravitino terms.
The Lagrangian (1.21) can be regarded as the low energy description of the massless
modes of M-theory. From the presence of a 3-form potential, following the previous
discussion on Dp-branes and sources, we understand that in M-theory must be present
M2 and M5 brane sources.

Even more, as shown in figure (1.1), this theory is linked to type IIA supergravity
with a Kaluza-Klein (KK) reduction on S1. This means that compactifing on one of the
eleven coordinates,

11d SUGRA g
(11)
µν + A

(3)
µνρ

↓ ↓ ↓
Type IIA (g

(10)
µν + C

(1)
µ + φ) + (C

(3)
µνρ +Bµν)

we can obtain the Lagrangian of type IIA supergravity from (1.21). The explict reduction
of the action (1.21) in terms of d = 10 fields is

ds2
11 = e−

1
6φds2

10 + e
4
3φ(dy − C(1))2 , A(3) = C(3) +B ∧ dy , (1.22)

A straightforward calculation shows the final result

IIIA =

∫ (
R ∗ 1− 1

2
dφ ∧ ∗dφ− 1

2
e−φH(3) ∧ ∗H(3) − 1

2
e

3
2φF (2) ∧ ∗F (2)

− 1

2
e

1
2φF̃ (4) ∧ ∗F̃ (4) − 1

2
F (4) ∧ F (4) ∧B

)
,

(1.23)

where we have defined

F (2) = dC(1) , F (4) = dC(3) , H(3) = dB , F̃ (4) = F (4) + C(1) ∧H(3) . (1.24)

This theory admits a not trivial deformation called the Romans mass [27]. This is the dual
of a ten-dimensional field strenght associated to the D8-branes presence. The theory is

2Over d = 11 representation of supersymmetry show that is necessary to add a field with irreducible spin
bigger that 2.
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called massive IIA and its higher dimensional origin is not known. The Lagrangian reads

IIIAm =

∫ (
R ∗ 1− 1

2
dφ ∧ ∗dφ− 1

2
e−φH(3) ∧ ∗H(3) − 1

2
e

3
2φF (2) ∧ ∗F (2)

− 1

2
e

1
2φF̃ (4) ∧ ∗F̃ (4) − 1

2
F (4) ∧ F (4) ∧B − 1

6
mF (4) ∧B ∧B ∧B

+
1

40
m2B ∧B ∧B ∧B ∧B − 1

2
m2e

5
2φ ∗ 1

)
.

(1.25)

where we have defined

F (2) =dC(1) +mB , F (4) = dC(3) , H(3) = dB ,

F̃ (4) = F (4) + C(1) ∧H(3) +
1

2
B ∧B .

(1.26)

This theory shares many features with gauged supergravity in less dimensions. Its equa-
tion of motion are complicated by the runaway potential of the dilaton and different new
gauge terms.

For the chiral theory, type IIB, exists only a pseudo Lagrangian

IIIB =

∫ (
R ∗ 1− 1

2
dφ ∧ ∗dφ− 1

2
e−φH(3) ∧ ∗H(3) − 1

2
e2φF (1) ∧ ∗F (1)

− 1

2
eφF̃ (3) ∧ ∗F̃ (3) − 1

2
F̃ (5) ∧ ∗F̃ (5) − 1

2
C(4) ∧ F (3) ∧B

)
,

(1.27)

that must be supplemented by the self duality condition F (5) = ∗F (5), imposed after the
variation of (1.27). Here we have defined

F (1) =dC(0) , F (3) = dC(2) , F̃ (3) = dC(2) + C(0) ∧H(3) ,

H(3) = dB , F̃ (5) = dC(4) + C(2) ∧H(3) .
(1.28)

This theory enjoys an SL(2,R) that is the continuos version of SL(2,Z) containing S-
duality in string theory. This symmetry acts on the bosonic sector as

τ → aτ + b

cτ + d
, Bα = (Λ−1) α

β Bβ , F (5) → F (5) , (1.29)

where the parametrization of the SL(2,R) group is

Λαβ =

(
a b

c d

)
, with ad− cb = 1 , (1.30)

and the complex scalar field is defined as

τ = C(0) + ie−φ , Bα = (−B,C(2))t . (1.31)

The element b = c = 1 and a = d = 0 is exactly the Z2 ∈ SL(2,R) representing S-duality
in type IIB.
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The Heterotic supergravity are half maximal supergravities and the Lagrangian reads

IH =

∫ (
R ∗ 1− 1

2
dφ ∧ ∗dφ− 1

2
e−φH̃(3) ∧ ∗H̃(3) − 1

2
e−

1
2φα′tr(F (2) ∧ ∗F (2)) , (1.32)

where
H̃(3) = dB + α′ω , ω =

1

4
(A ∧ dA+

2

3
A ∧A ∧A) , (1.33)

where A = AaTa is a Yang Mills field in the adjoint representation. This Lagrangian is
free of anomalies for the choice of the gauge group SO(32), E8 × E8 and U(1)496. The
last one does not have an origin from superstrings.
Chosing Ta as the generators of the algebra of SO(32), the action (1.32) describes SO(32)
Heterotic supergravity. However, from this action is possible to recover also the type I
supergravity action using the S-duality transformation φ→ −φ.

This concludes the exposition on the highest dimensional supergravities. In lower di-
mension more possibilities are presents, a larger class of theories exhibit local supersym-
metry. They are linked each other in many cases. The dimensional reduction through a
compactification manifold results to be a great instrument to study this network.

1.4 Compactifications

The need of a compactification arises from the necessity of linking the ten-dimensional
world of superstrings with the low energy four-dimensional physics that we experiment
everyday. The idea is to suppose that six dimensions are curled up into a compact space
and that the remaining four span the extended spacetime. The idea is to study what
happens to the theory living in four dimensions, what is the effect of the six compact
ones.

We expand the higher dimensional fields in terms of fields living on the compact
background. The result is an infinite tower of states with increasing masses. However,
the analysis of higher dimensional equations of motion for these states can show the pos-
sibility to truncate this tower consistently to a finite set of massless fields that describes
correctly the higher dimensional theory. This means that solutions of the lower dimen-
sional theory can always be uplifted to solutions of the higher dimensional one. In this
case, the compactification is promoted to a consistent truncation.

The basic example is to consider the theory of a (d + 1)-dimensional massless scalar
φ on Rd × S1 with radius l [28]

φ(x1, . . . , xd, y) =
∑
n

φn(x1, . . . , xd)e
2πin
l y . (1.34)

The wave equation reads

�d+1φ =
∑
n

(
�d −m2

n

)
φne

imny = 0 , (1.35)
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d G H
9 R+ × SL(2) SO(2)

8 SL(2)× SL(3) SO(2)× SO(3)

7 SL(5) SO(5)

6 SO(5, 5) SO(5)× SO(5)

5 E6(6) Usp(8)

4 E7(7) SU(8)

3 E8(8) SO(16)

Table 1.1: G is the group of the hidden symmetries in d dimensions and H is its maximal compact
subgroup arising upon the compactification of T 10−d and dualization of (d−2)-forms. The scalar
fields set in the coset space G/H.

therefore one finds n separate Klein Gordon equations with masses mn = 2πn
l . Setting

to zero the massive modes one ends with the wave equation of a massless scalar in d di-
mension, which clearly statisfied also the wave equation in d+1 dimensions. This means
that the d dimensional theory is a consistent truncation of the original one. Moreover,
this truncation can be physically understood supposing the radius l to be very small and
therefore very high masses of the other modes and thus a natural decoupling.
What must be underlined in the example is that all works well because the massive
modes do not mix in the equations of motion and they can be set to zero separately
without affecting the others. In more complicated reductions this does not happen.

The compactification on S1 of eleven-dimensional supergravity to ten-dimensional
type IIA supergravity, shown in the previous section, is a consistent truncation. There
we have supposed tacitly ∂y to be Killing vector to set to zero all massive modes of all
fields. Consistent truncations construct a web between supergravities and their defor-
mations in different dimensions. It results very powerful to study solutions. A first
example is the reduction of ten-dimensional type IIA on T 10−d = S1 × · · · × S1. Starting
from IIA supergravity and rolling up one dimension on a circle and dualizing (d − 2)-
forms one can see the rising of a always bigger coset space G/H of scalars coupled to
gravity and gauge fields.

The reduction on S1 does not break any supersymmetries, therefore this results in
a chain between the maximal supersymmetric ungauged supergravities in different di-
mensions. The group G is the continuous version of the U-duality group of superstrings
and it is obtained dualizing d− 2-forms of the reduced theory. Because of this fact, they
are called hidden symmetries. Moreover, with a further reduction to two dimensions
and a particular gauge choice for the two dimensional metric one can show the com-
plete integrability of the theory [29].

More complicated cases are those leading to deformed supergravities. The deforma-
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d G Origin
8 SO(3) IIA on S2

7 SU(2) IIAm on S3

7 SO(5) 11d on S4

6 SU(2) IIAm on S4

6 SO(5) IIA on S4

5 SO(6) IIB on S5

4 ISO(7) IIAm on S6

4 SO(8) 11d on S7

Table 1.2: All the known consistent truncations of type II or eleven-dimensional supergravity on
the spheres. G is the gauge group that appears in the reduced d-dimensional theory.

tion consist in a gauging of a subgroup of the internal symmetries of the undeformed the-
ory via the lower dimensional 2-forms field strengths. This produces covariant deriva-
tives, in the kinetic terms of the scalars, and a scalar potential. The latter stabilizes the
scalars fields in the low energy description.
All these possible self-consistent deformations are been studied in different dimensions
independently. Often they are linked to each other by compactifications provided that
some fluxes are switched on and these are called compactifications with geometrical
fluxes. They are distinguished in metric fluxes when we consider a curved compactifica-
tion manifold, and gauge fluxes, when certain charges of the higher dimensional p-forms
are non zero. However sometimes a higher dimensional origin of some gaugings is not
known and these are considered as non-geometrical fluxes 3.

Already in presence of metric and gauge fluxes, the consistency holds in a few cases.
The nonlinear reduction with the highest amount of symmetry are coset space and inter-
esting examples are the truncations on the spheres of eleven and ten-dimensional super-
gravity [30–39].

Apart from the case of massive IIA, these are maximal supersymmetric supergravi-
ties with the bigger semisimple compact gauge group. This can be understood from the
rich symmetry structure of the reduction manifold. The connection between the group
of the isometries of the compactification manifold and the gaugings of the lower dimen-
sional supergravity is a general feature.

To obtain less supersymmetric effective supergravity one needs more general classes
of manifolds. Calabi-Yau threefolds CY3 are the classical example. They are manifold
for which we have a solution of the equation

∇µε = 0 , (1.36)

3The highest dimensional example can be seen in massive type IIA.
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where ε is a Majorana spinor with a defined chirality and ∇µ is the covariant deriva-
tive with the CY3 metric. It easily proved that the supersymmetry equations in ten-
dimensional type II with zero fluxes admit spontaneous compactifications of the type

Mink4 × CY3 , (1.37)

a vacuum configuration that preserves eight supersymmetries, exactly thanks to (1.36).
A more careful analysis shows that N = 2, d = 4 supergravity can be constructed as
effective field theory of type II superstring compactified on CY3 and it admits Mink4

as a maximally supersymmetric vacuum. The property (1.36) is linked to many others
nice features of CY3 as to have SU(3) holonomy group, first Chern class c1(CY3) = 0

and to be Ricci flat. They are complex manifolds characterized by a complex structure
(3,0)-form Ω and a complex Kähler (1,1)-form J . Their Hodge diamond reads

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

The deformations of the complex structure are δΩ ∈ H1,1(CY3) and the ones for the
Kähler structure δJ ∈ H2,1(CY3), therefore the precise content of the d = 4 theory, that
means the number of hypermultiplets and vectormultiplets, is linked to specific num-
bers h1,1 and h2,1. In particular for type IIA one has h1,1 vectormultiplets and h2,1 + 1

hypermultiplets, while in type IIB there are h2,1 vectormultiplets and h1,1 + 1 hyper-
multiplets. This mutation of roles is what has generated mirror symmetry. A couple
of mirror CY3 have h1,1 and h2,1 exchanged, therefore the compactifications of the two
type IIB on this couple enjoys the same moduli space. Infact the moduli space of CY3 is
a product manifold that in supergravity arises as

M =MSK ×Q , (1.38)

the product of a spiecial Kähler manifold for the vector multiplets and a quaternionic
one for the hypermultiplets.
In presence of fluxes the equations (1.36) is more refined, but one can generate super-
symmetric effective theory on CY3 obtaining the reduced gauged supergravity [40–42].
In this sense, a similar story holds for Sasaki-Einstein manifolds SEd. They are Kähler
cone over odd dimensional Einstein manifold [43].
In this thesis we are mainly interested on N = 2 in d = 4 and d = 5 gauged super-
gravities. The first comes from the reductions not only of type II on CY3 [17, 19] but also
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from M-theory on SE7 [18], the other one from type II on SE5 [44] and from M-theory
on CY3 [45].

1.5 AdS/CFT Correspondence

The AdS/CFT correspondence [20, 22] is surely one of the most intriguing result arisen
from superstrings. This duality relates d + 1 dimensional gravitational theories in anti
de Sitter (AdS) [46] spacetime to conformal field theories (CFT) [47] in d dimensions. It
is a successful realization of the holographic principle [15], asserting that the description
of the bulk AdS spacetime is encoded on its boundary on which the CFT lives.
The key symmetry of gauge/gravity duality is the d dimensional conformal group SO(2, d),
the maximal semisimple extension of the Lorentz group in d dimensions SO(1, d − 1),
and characterizing the spacetime symmetry group a CFT. On the other hand AdS in d+1

dimensions is a maximally symmetric space and it has SO(2, d) as isometry group. This
correspondence is a weak/strong coupling duality, the behaviour of strongly coupled
CFT is described by classical gravity theory.

The way in which the correspondence arises in string theory is a decoupling limit of
certain branes configurations in type II and in M-theory. The couples of theories linked
by the duality are descriptions of different aspects of the same physical system of branes.
The father example is the stack of N coincident D3-branes as sources for the 5-form in
type IIB string. The presence of branes curves the spacetime and the effective picture in
type IIB supergravity is the configuration [14]

ds2 =H−
1
2 (−dt2 + dx2

1 + dx2
2 + dx2

3) +H
1
2 (dr2 + r2dΩ2

5) ,

F (5) = (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dH−1 ,

H = 1 +

(
R

r

)4

, R = 4πgsα
′2N .

(1.39)

In the limit gs → 0 and α′ → 0 for large N , the interaction between branes and the
bulk gravity is small and can be negleted. The bulk system boils down to AdS5 × S5

background with 5-form fluxes in a supergravity description and on the brane world-
worlume lives N = 4, d = 4 SU(N) Super Yang-Mills (SYM), both theories preserve 32
supercharges. The R symmetry of SYM is SU(4) ∼ SO(6) the isometry group of the S5,
in total on both sides there is the superconformal group SU(2, 2|4).
Another example, nowadays well-known, is the configuartion of N M2 branes in M-
theory that gives rise to the AdS4 × S7 supergravity description, dual of a N = 6, d = 3

Chern-Simons theory SU(N)× SU(N) called ABJM.
The basic elements in CFT are operatorsO(x) and in supergravity fields φ = φ(x, z). The
dictionary of the duality is made by the usual pairing between sources and operators in
QFT

< e
∫

d4xφ0(x)O(x) > , (1.40)
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where φ0(x) is the boundary value of the supergravity field φ.
The main statement of the correspondence is the identification

ZCFT [φ0] = e−SAdS(φ(x,z))|φ0 , (1.41)

the generating functional of the connected graphs equals the classical supergravity ac-
tion evaluted on the boundary value of the fields.

The duality works well when a high amount of symmetry is present. With less sym-
metry, some calculations become harder and the correspondence is not again completely
understood. The idea is to consider more complicated compactification than the sphere
reductions, that, at the level of strings or M-theory, resides to consider more elaborate
branes configurations and study supergravity solutions that are not only vacuums. With
symmetry as the guide one can identify the corresponding CFT and proceed to the cal-
culation of certain physical quantities on both side that are belived to be dual, checking
the correspondence.
Supergravity solutions that represent black objects are fruitful arenas for this analy-
sis. For example asymptotically AdS4 black holes typically have an horizon geometry
AdS2×Σ2, where Σ2 is two dimensional Riemann surface. Solutions as static black holes
with running scalars have the interpretation of a renormalization group flow across di-
mensions between quantum field theories. In the specific example, some recent precision
tests have proved that the entropy of a certain class of AdS4 black holes in N = 2 super-
gravity have an entropy coinciding with the value of the partition function of ABJM [48]
posed on S1 × Σ2 [49]. Both arise from a well-defined minimization process.
A similar story holds for AdS5 static black strings that flow in AdS3×Σ2 IR geometry. In
this case, the calculation concerns the anomaly coefficients of the 2d and 4d SCFT [4,50].
These are surely the main motivation to start a deeper understanding of supergravity
solutions. We will focus on these two case for the rest of the thesis.



CHAPTER 2

Abelian Gauged N = 2 Supergravity

The supergravity theory with 8 supercharges can be formulated starting from d = 6, but
the richest geometrical structure emerges in d = 4 and d = 5, where the moduli target
space is a product manifold. Many symmetries are encoded in this theory and determine
the various couplings between the fields. Only theories with an abelian gauge group are
considered. We will describe their structure and write down the equations of motion for
the truncation to the bosonic sector, our subject of study. Furthermore, we specialize the
equations respectively for a static black hole and static black string studying the one-
dimensional effective actions arising from the higher ones.
The new result of this chapter is the one-dimensional symplectically covariant effective
Lagrangian for a four-dimensional static black hole with running hypermultiplets [1].

2.1 General matter coupled d = 4 supergravity

The supergravity multiplet of N = 2, d = 4 supergravity can be coupled to a number
nV of vector multiplets and to nH hypermultiplets. The bosonic sector then includes the
vierbein eaµ, nV + 1 vector fields AΛ

µ with Λ = 0, . . . nV (the graviphoton plus nV other
fields from the vector multiplets), nV complex scalar fields zi (i = 1, . . . , nV ), and 4nH

real hyperscalars qu (u = 1, . . . , 4nH ).
The complex scalars zi of the vector multiplets parametrize an nV -dimensional spe-

cial Kähler manifold, i.e., a Kähler-Hodge manifold, with Kähler metric gi̄(z, z̄), which
is the base of a symplectic bundle with the covariantly holomorphic sections1

V =

(
LΛ

MΛ

)
, Dı̄V ≡ ∂ı̄V −

1

2
(∂ı̄K)V = 0 , (2.1)

obeying the constraint 〈
V|V̄

〉
≡ L̄ΛMΛ − LΛM̄Λ = −i , (2.2)

where K is the Kähler potential. Alternatively one can introduce the explicitly holomor-
phic sections of a different symplectic bundle,

1We use the conventions of [51].

15
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v ≡ e−K/2V ≡

(
XΛ

FΛ

)
. (2.3)

In appropriate symplectic frames it is possible to choose a homogeneous function of
second degree F (X), called prepotential, such that FΛ = ∂ΛF . In terms of the sections v
the constraint (2.2) becomes

〈v|v̄〉 ≡ X̄ΛFΛ −XΛF̄Λ = −ie−K. (2.4)

The couplings of the vector fields to the scalars are determined by the (nV +1)×(nV +1)

period matrix N , defined by the relations

MΛ = NΛΣ L
Σ , Dı̄M̄Λ = NΛΣDı̄L̄

Σ . (2.5)

If the theory is defined in a frame in which a prepotential exists,N can be obtained from

NΛΣ = F̄ΛΣ + 2i
(NΛΓX

Γ)(NΣ∆X
∆)

XΩNΩΨXΨ
, (2.6)

where FΛΣ = ∂Λ∂ΣF and NΛΣ ≡ Im(FΛΣ). Introducing the matrix2

M =

(
I +RI−1R −RI−1

−I−1R I−1

)
, (2.7)

we have the important relation between the symplectic sections and their derivatives,

1

2
(M− iΩ) = ΩV̄VΩ + ΩDiVgi̄D̄V̄Ω , (2.8)

where

Ω =

(
0 −1

1 0

)
. (2.9)

The equation (2.8) underlines the symplectic structure of the special Kähler manifold es-
sential for its definition. The nonlinear sigma model of the scalars gi̄ has a nontrivial
isometry group, called U-duality. Moreover, (2.7) is the scalar dependent matrix of the
coupling with the gauge fields. The last ones with their duals build a symplectic sec-
tion (2.23) and U-duality is a symmetry in the ungauged supergravity, so one needs that
also the gauge symplectic section transforms under this symmetry. The complete char-
acterization of the theory is reached only when a particular embedding of U-duality in
Sp(2nv + 2,R) is chosen, typically fixed by supersymmetry [51–53]. The action of this
on-shell symmetry is often called electromagnetic duality [54].

The 4nH real hyperscalars qu parametrize a quaternionic Kähler manifold with metric
huv(q). A quaternionic Kähler manifold is a 4n-dimensional Riemannian manifold ad-
mitting a locally defined triplet ~K v

u of almost complex structures satisfying the quater-
nion relation

2We use the notation R = ReN and I = ImN .
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hstKx
usK

y
tw = −δxyhuw + εxyzKz

uw , (2.10)

and whose Levi-Civita connection preserves ~K up to a rotation,

∇w ~K v
u + ~ωw × ~K v

u = 0 , (2.11)

where ~ω ≡ ~ωu(q) dqu is the connection of the SU(2)-bundle for which the quaternionic
manifold is the base. An important property is that the SU(2) curvature is proportional
to the complex structures,

Ωx ≡ dωx +
1

2
εxyzωy ∧ ωz = −Kx . (2.12)

As far as the gaugings are concerned, we shall consider only abelian symmetries of the
action. Under abelian symmetries, the complex scalars zi transform trivially, so that
we will be effectively gauging abelian isometries of the quaternionic-Kähler metric huv .
These are generated by commuting Killing vectors kuΛ(q), i.e., [kΛ, kΣ] = 0.
This way of writing the Killing vectors kuΛ = −Θa

Λk
u
a , implies a coupling between the

two manifolds of the scalars, where a is an index that runs along the isometries of the
quaternionic one. Encoded in the embedding tensor Θa

Λ there is the physical connection
between gauge fields and gauged isometries. Before having chosen a particular embed-
ding tensor the symplectic covariance is preserved including magnetic gaugings, as we
will see.
The requirement that the quaternionic Kähler structure be preserved implies the exis-
tence, for each Killing vector, of a triplet of Killing potentials, or moment maps, P xΛ , such
that

DuP
x
Λ ≡ ∂uP xΛ + εxyzωyuP

z
Λ = −2Ωxuvk

v
Λ . (2.13)

One of the most important relations satisfied by the moment maps is the so-called equiv-
ariance relation. For abelian gaugings it has the form

1

2
εxyzP xΛP

y
Σ − Ωxuvk

u
Λk

v
Σ = 0 . (2.14)

The bosonic Lagrangian reads

√
−g−1

L =
R

2
− gi̄ ∂µzi∂µz̄̄ − huv∂̂µqu∂̂µqv

+
1

4
IΛΣF

ΛµνFΣ
µν +

1

4
RΛΣF

Λµν ?FΣ
µν − g2Vg(z, z̄, q) ,

(2.15)

where the scalar potential has the form

Vg = 4huvk
u
Λk

v
ΣL

ΛL̄Σ + (gi̄DiL
ΛD̄L̄

Σ − 3LΛL̄Σ)P xΛP
x
Σ , (2.16)

the covariant derivatives acting on the hyperscalars are

∂̂µq
u = ∂µq

u + gAΛ
µk

u
Λ , (2.17)
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and

IΛΣ ≡ ImNΛΣ , RΛΣ ≡ ReNΛΣ , IΛΣIΣΓ = δΛ
Γ . (2.18)

If we introduce the quantity

Wx = 〈Px,V〉 = LΛP xΛ , (2.19)

with

Px =

(
0

P xΛ

)
, (2.20)

and use the quaternionic relations (2.37), (2.39), (2.40), the scalar potential (2.16) can be
rewritten in the form

Vg = G̃ABDAWxDBW̄x − 3|Wx|2 , (2.21)

where we defined

G̃AB =

(
gi̄ 0

0 1
3h

uv

)
, DA =

(
Di

Du

)
. (2.22)

As underlined by the formalism yet introduced, a natural generalization of the the-
ory, due to the electric-magnetic duality of the d = 4, is to consider also the dual gauge
fields AΛµ, called magnetic gauge fields. This implies the inclusion of magnetic Killing
vectors kΛu and magnetic moment maps P xΛ, referred to the gauged isometries. This
formulation of gauged supergravity is typically expressed in terms of the embedding
tensor Θa

M = (Θa
Λ,Θ

aΛ)T 3, and the main consequence is the restoration of symplectic
covariance of the theory [55, 56].

In this context, one introduces the symplectic vectors

Aµ =

(
AΛ
µ

AΛµ

)
, Ku =

(
kΛu

kuΛ

)
, Px =

(
P xΛ

P xΛ

)
, (2.23)

where the magnetic quantities kΛu and P xΛ obey to analogous relations (2.41) and (2.40),
satisfied by the electric part. As was shown in [57], the locality constraint 〈Θa,Θb〉 = 0,
namely the possibility to rotate any gauging to a frame with a purely electric one, implies
also

〈Ku,Px〉 = 0 . (2.24)

In presence of magnetic gaugings, the general action (2.15) is modified in a nontrivial
way by some topological terms [55]. The consistency of the theory requires the introduc-
tion of the auxiliary 2-forms Ba = 1

2Baµνdxµ ∧ dxν that do not change the number of
degrees of freedom. The action has the form [55, 56]

3In this section we explicitly introduce the indices (M,N, . . .) in the fundamental representation of
Sp(2nV + 2,R) for clarity [55, 56].



Abelian Gauged N = 2 Supergravity 19

√
−g−1

L =
R

2
− gi̄ ∂µzi∂µz̄̄ − huv∂̂µqu∂̂µqv +

1

4
IΛΣH

ΛµνHΣ
µν+

1

4
RΛΣH

Λµν ?HΣ
µν −

εµνρσ

4
√
−g

ΘaΛBaµν∂ρAΛσ+

1

32
√
−g

ΘΛaΘb
Λε
µνρσBaµνBbρσ − g2Vg ,

(2.25)

where the modified field strengthHΛ
µν = FΛ

µν+ 1
2ΘΛaBaµν was introduced. The covar-

iant derivatives of the hyperscalars and the scalar potential read respectively [40, 55, 56]

∂̂µq
u = ∂µq

u − gAΛ
µΘa

Λk
u
a − gAΛµΘΛakua ≡ ∂µqu − g〈Aµ,Ku〉 , (2.26)

Vg = 4huv〈Ku,V〉〈Kv, V̄〉+ gi̄〈Px, DiV〉〈Px, D̄̄V̄〉 − 3〈Px,V〉〈Px, V̄〉 . (2.27)

Note that it is also possible to generate (2.27) from (2.21) by a symplectic rotation.
A really important truncation of this theory is when the hypermultiplets are set to be

constant. In this case, even if none abelian isometries of the scalar manifold is gauged,
one finds a non trivial potential arising from the gauging of a U(1) ⊂ SU(2) of the R
symmetry group and is called FI gauged supergravity

√
−g−1

LFI =
R

2
− gi̄ ∂µzi∂µz̄̄ +

1

4
IΛΣF

ΛµνFΣ
µν +

1

4
RΛΣF

Λµν ?FΣ
µν

−
(
gi̄〈G, DiV〉〈G, D̄̄V̄〉 − 3〈G,V〉〈G, V̄〉

)
.

(2.28)

The symplectic vector
G = (gΛ, gΛ)t , (2.29)

collects the coupling constants of the theory. Restoring the symplectic covariance at level
of the gauged theory is important to treat models that have stringly origin [58].

2.2 General matter coupled d = 5 supergravity

The supergravity multiplet of N = 2, d = 5 supergravity can be coupled to a number
nV of vector multiplets and to nH hypermultiplets. It is possible also to introduce tensor
multiplets, but they can always be dualized to vector multiplets [59] in FI case.

Firstly considering only the coupling to nv vector multiplets [60, 61], we have the
bosonic Lagrangian of N = 2, d = 5 FI-gauged supergravity is4

e−1L =
1

2
R−1

2
Gij∂µφi∂µφj−

1

4
GIJF

I
µνF

Jµν+
e−1

48
CIJKε

µνρσλF IµνF
J
ρσA

K
λ −g2V5 , (2.30)

where the scalar potential reads

V = VIVJ

(
9

2
Gij∂ihI∂jhJ − 6hIhJ

)
. (2.31)

4The indices I, J, . . . range from 1 to nv + 1, while i, j, . . . = 1, ..., nv.
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The potential comes from a gauging of a U(1) ⊂ SU(2) R symmetry group, as in the four
dimensional case. Here, VI are FI constants, ∂i denotes a partial derivative with respect
to the real scalar field φi, and hI = hI(φi) satisfy the condition

V ≡ 1

6
CIJKh

IhJhK = 1 . (2.32)

Moreover, GIJ and Gij can be expressed in terms of the homogeneous cubic polynomial
V which defines a ‘very special geometry’ [62],

GIJ = −1

2

∂

∂hI
∂

∂hJ
logV|V=1 , Gij = ∂ih

I∂jh
J GIJ |V=1 . (2.33)

Further useful relations are

∂ihI = −2

3
GIJ∂ih

J , hI =
2

3
GIJh

J , GIJ =
9

2
hIhJ −

1

2
CIJKh

K ,

Gij∂ihI∂jhJ = GIJ − 2

3
hIhJ , Gij∂ihI∂jhJ =

4

9
GIJ −

2

3
hIhJ ,

Gij∂ihI∂jhJ = −2

3
δIJ +

2

3
hIhJ .

(2.34)

In the special case where the tensor Tijk that determines the Riemann tensor of the vector
multiplet scalar manifoldM (cf. [60] for details) is covariantly constant5, one has also

CIJKCJ′(LM CPQ)K′δ
JJ ′δKK

′
=

4

3
δI(LCMPQ) , (2.35)

which is the adjoint identity of the associated Jordan algebra [60]. Using (2.35) and defin-
ing CIJK ≡ δII′δJJ ′δKK′CI′J′K′ , one can show that

GIJ = −6CIJKhK + 2hIhJ . (2.36)

Moreover we note that if the five-dimensional theory is obtained by gauging a super-
gravity theory coming from a Calabi-Yau compactification of M-theory, then V is the
intersection form, hI and hI ≡ 1

6CIJKh
JhK correspond to the size of the two- and

four-cycles and the constants CIJK are the intersection numbers of the Calabi-Yau three-
fold [17].

We now generalize our analysis to include also the coupling to nH hypermultiplets.
The charged hyperscalars qu (u = 1, · · · , 4nH) parametrize, as above in the d = 4 case,
a quaternionic Kähler manifold with metric huv(q), i.e., a 4nH-dimensional Riemannian
manifold admitting a locally defined triplet ~K v

u of almost complex structures satisfying
the quaternion relation

hstKx
usK

y
tw = −δxyhuw + εxyzKz

uw , (2.37)

and whose Levi-Civita connection preserves ~K up to a rotation,

5This implies thatM is a locally symmetric space.
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∇w ~K v
u + ~ωw × ~K v

u = 0 , (2.38)

where ~ω ≡ ~ωu(q) dqu is the connection of the SU(2)-bundle for which the quaternionic
manifold is the base. The SU(2) curvature is proportional to the complex structures,

Ωx ≡ dωx +
1

2
εxyzωy ∧ ωz = −Kx . (2.39)

Here we shall consider only gaugings of abelian isometries of the quaternionic Kähler
metric huv . These are generated by commuting Killing vectors kuI (q). In d = 5 the dual of
a 2-form is a 3-form and this breaks the Sp(2nv + 2,R) covariance that naturally arises in
d = 4 to an SL(nv + 1,R) covariance. This 3-form is linked to the possibility of add also
tensor multiplets [59]. However also in this case kuI hides the choice of the gauge fields
that effectively gauged the isometries, creating a coupling between special Kähler and
quaternionic manifold. For each Killing vector one can introduce a triplet of moment
maps, P xI , such that

DuP
x
I ≡ ∂uP xI + εxyzωyuP

z
I = −2Ωxuvk

v
I . (2.40)

One of the most important relations satisfied by the moment maps is the so-called equiv-
ariance relation. For abelian gaugings it has the form

1

2
εxyzP yI P

z
J − Ωxuvk

u
I k

v
J = 0 . (2.41)

The bosonic Lagrangian is now given by6

e−1L =
1

2
R− 1

2
Gij∂µφi∂µφj − huv∂̂µqu∂̂µqv −

1

4
GIJF

I
µνF

Jµν

+
e−1

48
CIJKε

µνρσλF IµνF
J
ρσA

K
λ − g2V5 , (2.42)

with the covariant derivative

∂̂µq
u = ∂µq

u + 3gAIµk
u
I , (2.43)

and the scalar potential

V = P xI P
x
J

(
9

2
Gij∂ihI∂jhJ − 6hIhJ

)
+ 9huvk

u
I k

v
Jh

IhJ . (2.44)

The FI case is the truncation obtained posing constant the hypermultiplets.

2.3 Construction of the r-map

The theories constructed in (2.1) and (2.2) can be related by a Kaluza-Klein compactifi-
cation on S1. The link is a standard tool in the ungauged theories [64] but is much less

6(2.42) can be obtained from the Lagrangian in [63] by rescaling aIJ → 2
3
GIJ ,CIJK → 1

6
CIJK , kI → 2kI ,

AI →
√

3
2
AI , g →

√
3
2
g.
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explored [65,66] in presence of gaugings. Reviewing the original formulation we extend
it to the general gauged case.

The first step is a Kaluza-Klein reduction along the z-direction (i.e., along the string),
by using the ansatz7

ds2
5 = e

φ√
3 ds2

4 + e
− 2√

3
φ
(dz +Kµdxµ)2 , AI = BIdz + CIµdxµ +BIKµdxµ . (2.45)

DefiningKµν = ∂µKν−∂νKµ and CIµν = ∂µC
I
ν −∂νCIµ, the five-dimensional Lagrangian

(2.42) reduces to8

e−1
4 L (4) =

R(4)

2
− 1

8
e−
√

3φKµνKµν −
1

4
GIJe

− φ√
3 (CIµν +BIKµν)(CJµν +BJKµν)

− 1

2
e

2φ√
3GIJ∂µB

I∂µBJ − 1

2
GIJ∂µh

I∂µhJ − 1

4
∂µφ∂

µφ− huv∂̂µqu∂̂µqv

− e−1
4

16
εµνρσCIJK

(
CIµνC

J
ρσB

K +
1

3
KµνKρσB

IBJBK + CIµνKρσB
JBK

)
− e
√

3φg2BIkuIB
JkvJhuv − g2e

φ√
3V5 .

(2.46)

Now we want to rewrite L (4) in the language ofN = 2, d = 4 supergravity, by using the
identifications of the ungauged case [64]. The coordinates of the special Kähler manifold,
Kähler potential, Kähler metric and electromagnetic field strengths are given in terms of
five-dimensional data respectively by

zI = BI + ie
− φ√

3hI , eK =
1

8
e
√

3φ ,

gIJ̄ =
1

2
e

2φ√
3GIJ , FΛ

µν =
1√
2

(Kµν , C
I
µν) ,

(2.47)

where capital greek indices Λ,Σ, . . . range from 0 to nv + 1. If we introduce the matrices

RΛΣ = −

(
1
3B

1
2BJ

1
2BI BIJ

)
, IΛΣ = −e−

√
3φ

(
1 + 4g 4gJ̄

4gI 4gIJ̄

)
, (2.48)

where we defined

BIJ =CIJKB
K , BI = CIJKB

JBK , B = CIJKB
IBJBK ,

g = gIJ̄B
IBJ , gIJ̄B

J = gI = gĪ = gĪJB
J ,

(2.49)

the Lagrangian (2.46) can be cast into the form

e−1
4 L (4) =

R

2
− gIJ̄∂µzI∂µz̄J̄ − huv∂̂µqu∂̂µqv

+
1

4
IΛΣF

ΛµνFΣ
µν +

1

8
e−1

4 εµνρσRΛΣF
Λ
µνF

Σ
ρσ − Ṽ ,

(2.50)

7In this subsection µ, ν, . . . are curved indices for the four-dimensional theory. Further details on the nota-
tion and the theory in d = 4 can be found in (2.1) and (2.2).

8We choose εµνρσz5 = −εµνρσ4 .



Abelian Gauged N = 2 Supergravity 23

with the four-dimensional potential given by

Ṽ = g2e
φ√
3V5 + e

√
3φg2huvk

u
I k

v
JB

IBJ . (2.51)

The underlying prepotential of the special Kähler manifold turns out to be

F =
1

6

CIJKX
IXJXK

X0
, (2.52)

chosen the parametrization XI/X0 = zI = BI + ie−φ/
√

3hI [64].
The actual novelties with respect to the ungauged case are the potential and the co-

variant derivative acting on the hyperscalars. The former reads

Ṽ

g2
= −9e

φ√
3P xI P

x
J

(
hIhJ − 1

2
GIJ

)
+ 9e

φ√
3huvk

u
I k

v
Jh

IhJ + 9e
√

3φhuvk
u
I k

v
JB

IBJ

= 18P xI P
x
J

(
1

4
e
φ√
3GIJ +

1

2
e
√

3φBIBJ − 4
e
√

3φ

8
(e
− φ√

3hI)(e
− φ√

3hJ)− 1

2
e
√

3φBIBJ

)

+72
e
√

3φ

8
huvk

u
I k

v
J(e
− 2φ√

3hIhJ +BIBJ) . (2.53)

Now the first two terms in the second line of (2.53) combine to give − 1
2I

ΛΣ (the inverse
of IΛΣ defined above), while the last two terms yield −4XIX̄J . Fixing furthermore g4 =

3
√

2g, one has thus

Ṽ =g2
4

[
P xΛP

x
Σ

(
−1

2
IΛΣ − 4XΛX̄Σ

)
+ 4huvk

u
Λk

v
ΣX

ΛX̄Σ

] ∣∣∣
Px0 =0,ku0 =0

=g2
4V4

∣∣∣
Px0 =0,ku0 =0

,

(2.54)

which is precisely the truncated potential of the four-dimensional theory.
The final point to take care of is the covariant derivative of the hyperscalars,

∂̂µq
u = ∂µq

u + 3gCIµk
u
I = ∂µq

u + g4A
I
4µk

u
I . (2.55)

We have therefore shown that the r-map can be extended to the case of gauged super-
gravity, where the scalar fields have a potential.

2.4 Equations of motion and effective theories

The main aim of our research is to find classical solutions to the equations of motion of
the theories previously described. The most interesting configurations are respectively
black holes or black strings with running scalars. We will focus on static solutions and
the technique that we shall adopt is to plug an ansatz on the fields into the equations
of motion of the supergravity theory to obtain a set of second order differential equa-
tions plus certain algebraic constraints that can be read as equations of motions of a
one-dimensional effective theory. The problem is so reduced to find solutions to a finite
dimensional dynamical system.
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Static black hole in d=4

A straightforward application of the Euler-Lagrange operator to 2.25 extracts the equa-
tions of motion of the theory.
The Einstein’s equations can be divided in tracless and trace part

Rµν − 2gi̄∂µz
i∂ν z̄

̄ − 2huv∂̂µq
u∂̂νq

v − IΛΣ

(
HΛ

µρH
Σ ρ
ν −

1

4
gµνH

Λ
σρH

Σσρ

)
− gµνVg = 0 ,

R− 2huv∂̂µq
u∂̂µqv − 2gi̄∂µz

i∂µz̄ − 4Vg = 0 .

(2.56)

The equations of motion for AΛµ, AΛ
µ and Baµν following from (2.25) are

1

4
εµνρσ∂µBaνρΘ

Λa = −2
√
−ghuvΘΛakua ∂̂

σqv ,

GΛµνΘΛa = ΘΛa(FΛµν −
1

2
Θb

ΛBbµν) ,

∂µ

(√
−gIΛΣH

Σµν +
1

2
εµνρσRΛΣH

Σ
ρσ

)
= 2
√
−ghuvΘa

Λk
u
a ∂̂

νqv ,

(2.57)

where GΛµν is defined by

GΛ = − 2√
−g

?
δL

δFΛ
. (2.58)

The scalars must satisfy

∇µ(gi̄∂
µz̄̄)− ∂gk̄

∂zi
∂µz

k∂µz̄̄ +
1

4

∂IΛΣ

∂zi
HΛµνHΣ

µν +
1

4

∂RΛΣ

∂zi
HΛµν ?HΣ

µν −
∂Vg
∂zi

= 0 ,

2∇µ(hsv∂̂
µqv)− 2huv〈

∂Ku

∂qs
,Aµ〉∂̂µqv −

∂huv
∂qs

∂̂µq
u∂̂µqv − ∂Vg

∂qs
= 0 .

(2.59)

Now the point is to choose a good ansatz from the point of view of the physics and
a well-defined truncation about the equations of motion. At this aim symmetry can be
the guide for this selection and the most general static metric with spherical/hyperbolic
symmetry has the form

ds2 = −e2U(r)dt2 + e−2U(r)dr2 + e2(ψ(r)−U(r))dΩ2
κ , (2.60)

where dΩ2
κ = dθ2 +f2

κ(θ)dϕ2 is the metric on the two-dimensional surfaces Σ = {S2,H2}
of constant scalar curvature R = 2κ, with κ ∈ {1,−1}, and

fκ(θ) =
1√
κ

sin(
√
κθ) =

{
sin θ κ = 1 ,

sinh θ κ = −1 .
(2.61)

The scalar fields are assumed to depend only on the radial coordinate,

zi = zi(r) , qu = qu(r) , (2.62)
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while the abelian gauge fields and the 2-forms are,

AΛ = AΛ
t dt− κpΛf ′κ(θ)dφ , AΛ = AΛtdt− κeΛf

′
κ(θ)dφ ,

BΛ = 2κp′Λf ′κ(θ)dr ∧ dφ , BΛ = −2κe′Λf
′
κ(θ)dr ∧ dφ ,

(2.63)

where the magnetic and electric charges (pΛ, eΛ) are defined as

pΛ(r) =
1

vol(Σκ)

∫
Σκ

HΛ , eΛ(r) =
1

vol(Σκ)

∫
Σκ

GΛ , vol(Σκ) =

∫
fκ(θ)dθ ∧ dφ .

(2.64)
These imply a structure of the field strengths

HΛ
tr = e2(U−ψ)IΛΣ(RΣΓp

Γ − eΣ) , HΛ
θφ = pΛfκ(θ) ,

GΛtr = e2(U−ψ)
(
IΛΣp

Σ +RΛΓI
ΓΩRΩΣp

Σ −RΛΓI
ΓΩeΩ

)
, GΛθφ = eΛfκ(θ) .

(2.65)

Introducing the symplectic matrix

H = (Ku)ThuvKv , (2.66)

and plugging the above ansatz into (2.57), one obtains

A′t = −e2(U−ψ)ΩMQ , Q′ = −2e2ψ−4UHΩAt , (2.67)

where the constraints
HΩQ = 0 , Kuq′u = 0 (2.68)

have to be imposed to have spherical/hyperbolic.
Putting the ansatz just described in to the equations of motion plus the constraints

(2.68) one finds certain second order ODEs. All the content of these equations can be
derived as equations of motion of the effective action

S =

∫
dr

[
e2ψ(U ′ 2 − ψ′ 2 + huvq

′uq′ v + gi̄ z
′ iz̄′ ̄ +

1

4
e4(U−ψ)Q′TH−1Q′)− Ṽ

]
,

Ṽ = −e2(U−ψ)VBH + κ− e2(ψ−U)Vg ,

(2.69)

plus a constraint that in terms of this dynamical system reads zero value of the Hamilto-
nian associated, H = 0. It’s been introduced the black hole potential

VBH = −1

2
QTMQ , Q ≡

(
pΛ

eΛ

)
, (2.70)

with the symplectic matrix defined in (2.7). Moreover note that H is not invetible, but it
is symmetric

H = OtDO , (2.71)

where O is orthogonal and D is diagonal. Therefore defining H−1 = OtD−1O 9, the
following property holds

9Here D−1 denotes the inverse of the diagonal matrix in the non degenere subspace, leaving zero for the
zero eigeinvalues.
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HH−1H = H . (2.72)

In a slight abuse of notation, H−1 denotes a weaker notion of the inverse matrix. This
property will be enough for the next manipulations.

Static black string in d=5

Analogously to the previuos subsection, one can find the equations of motion of the
theory 2.42.
The Einstein’s equations can be divided in tracless and trace part

Rµν − Gij∂µφi∂νφj − 2huv∂̂µq
u∂̂νq

v −GIJ
(
F IµσF

J
ν
σ − 1

6
gµνF

I
σρF

Jσρ

)
+

2

3
g2gµνV5 = 0 ,

R− Gij∂µφi∂µφj − 2huv∂̂µq
u∂̂µqv − 1

6
GIJF

I
µνF

Jµν +
10

3
g2V5 = 0 ,

(2.73)

The Maxwell equations are

∇µ(GIKF
Iµν) +

1

4
CIJKF

I
µσF

J
ρλε

µσρλν = 6gkuKhuv∂̂
νqv , (2.74)

and the scalars must satisfy

∇µ(Gij∂µφj)−
1

2

∂Gkj
∂φi

∂µφ
k∂µφj − 1

4

∂GIJ
∂φi

F IµνF Jµν − g2 ∂V5

∂φi
= 0 ,

2∇µ(hsv∂̂
µqv)− 2huv

∂kuI
∂qs

AIµ∂̂
µqv − ∂huv

∂qs
∂̂µq

u∂̂µqv − g2 ∂V5

∂qs
= 0 .

(2.75)

Very special real Kähler manifolds can be viewed as the pre-image of the supergravity
r-map [65, 67]. This suggests to consider the five-dimensional spacetime as a Kaluza-
Klein uplift of the usual static black holes in four dimensions 2.310. Moreover, a pure
string solution in d = 5 supports only magnetic charges, thus the field configuration
reads

ds2 = e2T (r)dz2 + e−T (r)
(
−e2U(r)dt2 + e−2U(r)dr2 + e2ψ(r)−2U(r)dσ2

κ

)
,

F I = pIfκ(θ)dθ ∧ dφ , φi = φi(r) , qu = qu(r) ,
(2.76)

where dσ2
κ = dθ2 + f2

κ(θ)dϕ2 is the metric on the two-dimensional surfaces Σ = {S2,H2}
of constant scalar curvature R = 2κ, with κ ∈ {1,−1}, and

fκ(θ) =
1√
κ

sin(
√
κθ) =

{
sin θ κ = 1 ,

sinh θ κ = −1 .
(2.77)

Plugging the ansatz (2.76) into the equations of motion following from (2.30), imposing
the constraints

10The identification is T = −φ/
√

3.
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huvk
u
I q
′ v = 0 , kuI p

I = 0 . (2.78)

yields a set of ordinary differential equations that can be derived from the one-dimensional
effective action

Seff =

∫
dr

[
e2ψ

(
U ′2 +

3

4
T ′2 − ψ′2 +

1

2
Gijφ′ iφ′ j + huvq

′uq′ v
)
− Veff

]
,

Veff = κ− e2ψ−2U−T g2V5 −
1

2
e2U+T−2ψGIJp

IpJ ,

(2.79)

supplemented by the Hamiltonian constraint Heff = 0.





CHAPTER 3

First Order Flow and Solutions

In the previous section, the problem of finding a supergravity solution is reduced to that
of solving a dynamical system of a finite number of degrees of freedom. However, this
involves the resolution of a complicated system of second order ordinary differential
equations, but some techniques to simplify the problem again are known. They con-
sist in finding first order ordinary differential equations systems for which the solutions
are also configurations that satisfy the equations of motion. A well-known example in
analytic mechanics is the Hamilton-Jacobi technique that allows to find the system of
first-order equations equivalent, in the better case in which one can solve the first order
Hamilton-Jacobi partial differential equation, to that of the equations of motion. Another
more technical but formally clear way to obtain a similar result in a supersymmetric the-
ory is posing to zero the supersymmetric variations of the fermionic fields, obtaining the
Killing spinor equations. Handling these expressions leads to certain first order equa-
tions that define the supersymmetric solutions of the theory. However, helped by the
symmetries, we will focus on the HJ approach that in certain cases is exactly equivalent.
The new results of this chapter are the integration of the Hamilton-Jacobi equation for
electric Reissner-Nordström-Einstein-(A)dS black hole in d-dimensions [7], the complete
integrability of the effective theory for dyonic Reissner-Nordström Taub-NUT (A)dS
black hole in d = 4 [6], a symplectically covariant first order system for d = 4 black
hole with running hypermultiplets [1], a first order system for d = 5 black string with
running hypermultiplets [2] and, with the integration of the latter, an explicit general-
ization of the Maldacena-Nunez black string [5].

3.1 Hamilton-Jacobi to square the action

In complete generality, we start from a system of n degrees of freedom like

I =

∫
drL(q̇Λ, qΛ) =

∫
dr

[
1

2
GΛΣq̇

Λq̇Σ − U(qΛ)

]
, (3.1)

where r is a radial variable (the ‘flow’ direction), the qΛ(r) denote collectively the dy-
namical variables, U(qΛ) is the potential and GΛΣ(qΓ) the metric on the target space

29
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parametrized by the qΛ, with inverse G ΛΣ.
A possibile way to solve a system like (3.1) is to use Hamilton-Jacobi technique. It con-
sists in finding a canonical transformation for which the conjugate momenta pΛ are con-
stant. This can be achieved solving the non-linear partial differential equation for the
Hamilton-Jacobi’s principal function S(qΛ, r) [68]

∂S

∂r
+H

(
∂S

∂qΛ
, qΛ

)
= 0 , (3.2)

where H(pΛ, q
Λ) is the Hamiltonian relative to Lagrangian L(q̇Λ, qΛ). Moreover for (3.1)

the Hamiltionian is a first integral of motion and without loss of generality the energy
can be posed constant H = E. In this case the principal Hamilton-Jacobi function is
S = W (qΛ)− Er and (3.2) boils down to

U(qΛ) = E − 1

2
G ΛΣ ∂W

∂qΛ

∂W

∂qΣ
. (3.3)

This is a first order partial differential equation whose complete solution W (qΛ, aΛ, E) is
a function of the n degrees of freedom qΛ and of the n+ 1 arbitrary constants aΛ and E.
Having found this complete integral, one can proceed to the algebraic resolution of the
dynamics in terms of the equations

∂S

∂E
= B ,

∂S

∂aΛ
= cΛ , (3.4)

where B and cΛ are n + 1 arbitrary constants. Often it is impossible to write down the
complete integral. However, even only knowing a particular solution to (3.3), the action
(3.1) can be rewritten as

I =

∫
dr

[
1

2
GΛΣ

(
q̇Λ − G ΛΩ ∂W

∂qΩ

)(
q̇Σ − G Σ∆ ∂W

∂q∆

)
+

d

dr
(W − Er)

]
, (3.5)

which is up to a total derivative equal to

I =

∫
dr

1

2
GΛΣ

(
q̇Λ − G ΛΩ ∂W

∂qΩ

)(
q̇Σ − G Σ∆ ∂W

∂q∆

)
. (3.6)

A sufficient condition for the stationarity of the latter is that

q̇Λ = G ΛΩ ∂W

∂qΩ
(3.7)

hold. These equations (3.7) represent the expression for the conjugate momenta pΛ =

∂L /∂q̇Λ = GΛΣq̇
Σ in the Hamilton-Jacobi theory1.

Hamilton-Jacobi approach is not an essential tool to solve the dynamics of (3.1). One
could try to integrate the second order equations of motion derived from the Lagrangian

1For further discussions of the relationship between the Hamilton-Jacobi formalism and the first-order
equations derived from a (fake) superpotential cf. [69, 70].



First Order Flow and Solutions 31

as usual. However we find that Hamilton-Jacobi approach is particularly interesting
because recollect all the knowledge about the dynamics in a sigle equation (3.2), that
even if it is a partial differential equation, in general, it is more tractable than the system
of the equations of motion.

3.2 General first order flow

An example in which the integration of the Hamilton-Jacobi equation can be carried
out is the d-dimensional Einstein-Maxwell-Lambda system. In this section we show the
integration procedure for this system, commenting on more complicated cases, at the
end.

Static black holes in Einstein-Maxwell-Lambda gravity

We consider d-dimensional Einstein-Maxwell-Lambda gravity, whose action is given by

S =
1

16πGd

∫
ddx
√
−g (R− FµνFµν − 2Λ) , (3.8)

with d > 3. This is the simplest model that can be embedded (at least for some d) in
N = 2 gauged supergravity. The equations of motion following from (3.73) are

Rµν −
1

2
Rgµν + Λgµν = 2

(
FµσFν

σ − 1

4
gµνFσρF

σρ

)
, ∇µFµν = 0 , (3.9)

where F = dA. For future convenience we report the trace and the traceless part of the
Einstein equations that respectively read

R− 2d

d− 2
Λ− d− 4

d− 2
FµνFµν = 0 ,

Rµν − 2Fµ
σFνσ −

2

d− 2
Λgµν +

1

d− 2
gµνF

σρFσρ = 0 .

(3.10)

We shall consider electrically charged static black holes whose horizon is a (d − 2)-
dimensional Einstein space2. The metric and the gauge field have the form

ds2
d = −e−2(d−3)Udt2 + e2U−2(d−4)ψdr2 + e2(U+ψ)dΩ2

κ,d−2 , A = Atdt , (3.11)

where the functions U , ψ and At depend only on the coordinate r. The metric in (3.11)
has the warped product structure

ds2
d = g̃abdx

adxb + f2(x)ĝijdy
idyj , (3.12)

where the (d−2)-dimensional fiber with metric ĝijdyidyj = dΩ2
κ,d−2 is a generic Einstein

space, i.e., R̂ij = (d − 3)κĝij . The nonvanishing components of the Ricci tensor in d

dimensions are thus given by [71]

2For d > 5 this does not necessarily imply that the horizon has constant curvature.
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Rab = R̃ab −
dF
f
∇̃a∇̃bf ,

Rij = R̂ij − ĝij
(
f∇̃a∇̃af + (dF − 1)g̃ab∂af∂bf

)
,

(3.13)

where dF > 1 is the dimension of the fiber and ∇̃a denotes the covariant derivative
constructed with the Levi-Civita connection for g̃ab.

The Maxwell equations for the ansatz (3.11) are solved by

F = −Qe−2(d−3)(U+ψ)dt ∧ dr , (3.14)

where Q is an integration constant corresponding to the electric charge. Using (3.13) it
is straightforward to show that the Einstein equations (3.10) boil down to three ordinary
differential equations that can be derived form the one-dimensional effective action

Seff =

∫
drL =

∫
dr
(
e2(d−3)ψ(U ′2 − ψ′2)− Veff

)
, (3.15)

with the potential

Veff = κ− 2Q2

(d− 3)(d− 2)
e−2(d−3)(U+ψ) − 2Λ

(d− 3)(d− 2)
e2(U+ψ) , (3.16)

if we impose in addition the zero energy condition

e2(d−3)ψ(U ′2 − ψ′2) + Veff = 0 . (3.17)

To be concrete, the equation of motion for U is proportional to the tt-component of (3.10),
while the one for ψ is a linear combination of the tt- and rr-components. Moreover, from
the first of (3.10) and the tt-component one gets (3.17). The Einstein equations along the
fiber are automatically satisfied.
The conjugate momenta and Hamiltonian of the dynamical system (3.15) are respectively
given by

pU =
∂L

∂U ′
= 2e2(d−3)ψU ′ , pψ =

∂L

∂ψ′
= −2e2(d−3)ψψ′ ,

Heff(pU , pψ, U, ψ) =
1

4
e−2(d−3)ψ(p2

U − p2
ψ) + Veff .

(3.18)

Integration of the Hamilton-Jacobi equation

The Hamilton-Jacobi equation associated to (3.18) reads

Heff(∂US, ∂ψS,U, ψ) +
∂S

∂r
= 0 . (3.19)

Since Heff does not depend explicitely on r we set

S = 2W (U,ψ)− Er , (3.20)
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such that (3.19) reduces to

e−2(d−3)ψ(W 2
U −W 2

ψ) + Veff = E , (3.21)

where WU and Wψ are respectively the partial derivatives of W w.r.t. U and ψ. Inspired
by [6, 72], we define a new set of coordinates

X = e(d−3)(U+ψ) , Y = e−2(d−3)U , (3.22)

for which (3.21) becomes

4(d− 3)2

X2

(
YW 2

Y −XWXWY

)
− 2Q2

(d− 2)(d− 3)X2
− 2ΛX

2
d−3

(d− 2)(d− 3)
= Ê , (3.23)

where Ê = E − κ. To avoid loss of information E will be set to zero, as required by
(3.17), only at the end of the integration procedure. This because to solve the dynamics
algebraically one needs (3.27) and (3.37), therefore we set E = 0 only after these equa-
tions have been obtained. In the ungauged case, with a suitable change of coordinate the
value of E can be associated to the parameter of the non-extremality [69].

First solution Applying the method of characteristics yields

dWY

WY
=

dX

X
, (3.24)

and thus WY = aX , where a is an integration constant. The solution of this equation
boils down to W (X,Y ) = aY X + ω(X) that inserted into (3.23) leads to an ODE

−4a(d− 3)2ωX −
2Q2

(d− 2)(d− 3)X2
− 2ΛX

2
(d−3)

(d− 2)(d− 3)
= Ê , (3.25)

that can be easily integrated to give

S1 = 2aY X +
1

2a(d− 3)2

(
2Q2

(d− 2)(d− 3)X
− 2ΛX

d−1
d−3

(d− 1)(d− 2)
− ÊX

)
−Er+C . (3.26)

This contains three integration constants C,E and a, where the latter must be different
from zero. Using

∂S1

∂E

∣∣∣
E=0

= c1 ,
∂S1

∂a

∣∣∣
E=0

= c2 , (3.27)

where c1 and c2 denote arbitrary constants, the dynamics can be solved algebraically,
with the result

X = −2a(d− 3)2(r + c1) ,

Y =
c2
2X

+
Q2

2a2(d− 2)(d− 3)3X2
+

κ

4a2(d− 3)2
− ΛX

2
d−3

2a2(d− 1)(d− 2)(d− 3)2
.

(3.28)

In terms of Y and the new radial coordinate R = X
1
d−3 , the solution (3.11) becomes
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ds2
d = −Y dt2 +

dR2

Y
+R2dΩ2

κ,d−2 , F =
Q

Rd−2
dt ∧ dr ,

Y = κ− 2M

R
+

2Q2

(d− 2)(d− 3)R2(d−3)
− 2ΛR2

(d− 1)(d− 2)
.

(3.29)

Here we fixed a2 = 1
4(d−3)2 (which can always be achieved by rescaling the coordi-

nates appropriately) and defined c2 = −4M . (3.29) is the most general solution to
the equations of motion following from (3.15), and represents a generalization of the
d-dimensional Reissner-Nordström-(A)dS black hole to the case where the horizon is an
arbitrary Einstein space.
In the original coordinates, Hamilton’s characteristic function reads

W1(U,ψ) = ae(d−3)(ψ−U) +
Q2e−(d−3)(U+ψ)

2a(d− 2)(d− 3)3
− Λe(d−1)(U+ψ)

2a(d− 1)(d− 2)(d− 3)
+
κe(d−3)(U+ψ)

4a(d− 3)2
.

The expressions for the conjugate momenta

pU = 2
∂W1

∂U
, pψ = 2

∂W1

∂ψ
, (3.30)

together with (3.18), lead to the first order flow equations

U ′ = e−2(d−3)ψ∂UW1(U,ψ) , ψ′ = −e−2(d−3)ψ∂ψW1(U,ψ) , (3.31)

that are satisfied by the nonextremal black holes (3.29). Notice also that, using (3.31), the
action (3.15) can be written as a sum of squares. This clarifies also the reason for the very
existence of first order equations for nonextremal black holes, namely they are just the
expressions for the conjugate momenta in terms of derivatives of the principal function
in a Hamilton-Jacobi formalism.
In the BPS case for d = 4, one would expect to recover the supergravity BPS flow [73], in
absence of vector multiplets, that is driven by3

WBPS(U,ψ) = e−UQ+ e2ψ+Ug , (3.32)

where g is related to the cosmological constant by Λ = −3g2. However, it is easy to see
that there is no limit in which (3.32) can arise from W1. We shall come back to this issue
in the next subsection.

Second solution Similar to what was done in [70] for N = 2, d = 4 ungauged super-
gravity, we introduce the quantity

Q ≡ e2(d−3)ψU
′ + ψ′

d− 3
+W . (3.33)

3To derive (3.32) from the results of [73], take the prepotential F = −i(X0)2 and a purely magnetic gauging
with FI-parameter proportional to g.
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Using (3.31) and the equations of motion following from the action (3.15), one easily
shows that Q′ = 0, and thus Q is a constant of motion that can be used to simplify (3.23).
In phase space we have

Q =
WU −Wψ

d− 3
+W = −2YWY +W (3.34)

that implies W (X,Y ) = Q +
√
Y ω(X). Plugging this into (3.23) one gets the ODE

−4(d− 3)2 ∂

∂X

( ω
X

)
− 2Q2

(d− 2)(d− 3)X2
− 2ΛX

2
d−3

(d− 2)(d− 3)
= Ê . (3.35)

A final integration leads to the solution of the original differential equation (3.23) 4

S2 = 2Q− Er + 2

√
−4AXY +

2Q2Y

(d− 2)(d− 3)3
− ÊX2Y

(d− 3)2
− 2ΛX

2d−4
d−3 Y

(d− 1)(d− 2)(d− 3)2
,

(3.36)
which has three arbitrary integration constants Q, E,A, but in this case the parameter
domain is the whole R3. Using

∂S2

∂E

∣∣∣
E=0

= c3 ,
∂S2

∂A

∣∣∣
E=0

= c4 , (3.37)

gives back (3.28), where

a = − 2

c4
, c1 = c3 , c2 = −Ac

2
4

2
. (3.38)

To complete the comparison we evaluate

Q|W1 = −aXY +
κX

4a(d− 3)2
+

Q2

2a(d− 2)(d− 3)2X
− ΛX

d−1
d−3

2a(d− 1)(d− 2)(d− 3)2
.

Plugging the solution (3.28) into the rhs yields 2Q = C − ac2. In terms of U and ψ, W2

reads (setting E = 0)

W2(U,ψ) = Q

+

√
Ae(d−3)(ψ−U) +

2Q2e−2(d−3)U

(d− 2)(d− 3)3
+
κe2(d−3)ψ

(d− 3)2
− 2Λe2(U+(d−2)ψ)

(d− 1)(d− 2)(d− 3)2
,(3.39)

which leads to the first order flow equations

U ′ = e−2(d−3)ψ∂UW2(U,ψ) , ψ′ = −e−2(d−3)ψ∂ψW2(U,ψ) . (3.40)

(3.40) and (3.31) have different analytic forms, but share the same general class of phys-
ical solutions. Notice also that, contrary to W1, there is a well-defined limit in which
(3.39) reduces to the BPS superpotential (3.32) for d = 4, by setting A = 0, Λ = −3g2 and

4This solution was already found in [74] and for κ = 0 but with magnetic fluxes swithed on in [75].
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imposing the Dirac-type quantization condition 2gQ = κ.
The authors of [74] found that the potential (3.16) can be expressed in terms of a su-
perpotential. One easily verifies that their superpotential (2.5) coincides with (3.39) and
that eq. (2.4) of [74] is just the Hamilton-Jacobi equation for zero energy. The fact that
a nonextremal black hole solution arises from a first-order system via a superpotential
construction is thus not surprising at all [76], also in the gauged case.

Matter-coupled N = 2, d = 4 gauged supergravity

In this section, we shall discuss possible generalizations of our formalism to N = 2

supergravity in four dimensions coupled to vector multiplets and with Fayet-Iliopoulos
gauging. The analogue of the one-dimensional effective action (3.15) is then given by

Seff =

∫
dr
(
e2ψ(U ′2 − ψ′2 + gi̄z

i′z̄̄′)− Veff
)
, (3.41)

with the potential
Veff = κ− e−2(U+ψ)VBH − e2(U+ψ)Vg(z, z̄) , (3.42)

where [73]

VBH = gi̄DiZD̄̄Z̄ + |Z|2 = −1

2
QTMQ , Vg = gi̄DiLD̄̄L̄ − 3|L|2 (3.43)

denote respectively the black hole- and scalar potential. In (3.43), Di is the Kähler-
covariant derivative, Z = 〈Q,V〉, L = 〈G,V〉, with the symplectic section V and the
symplectic vectors of charges Q and gauge couplings G.M is the matrix defined in (2.7).
Moreover

〈A,B〉 ≡ ATΩB = AΛB
Λ −AΛBΛ . (3.44)

Note that the target space of the one-dimensional sigma model (3.41) is equipped with
the metric

dσ2 = e2ψ(−dψ2 + dU2 + gi̄dz
idz̄̄) , (3.45)

and is thus a Lorentzian cone over a special Kähler manifold times a line, as can be seen
by setting τ = eψ . The conjugate momenta and Hamiltonian read

pU = 2e2ψU ′ , pψ = −2e2ψψ′ , pi = e2ψgi̄z̄
̄′ , p̄̄ = e2ψgi̄z

i′ ,

Heff = e−2ψ

(
1

4
p2
U −

1

4
p2
ψ + gi̄pip̄

)
+ Veff .

(3.46)

If we set S = 2W − Er, the reduced Hamilton-Jacobi equation becomes

e−2ψ

(
W 2
U −W 2

ψ + 4gi̄
∂W

∂zi
∂W

∂z̄̄

)
+ Veff = E . (3.47)

As was shown for ungauged [70] and gauged supergravity [1], the quantity

Q ≡ e2ψ(U ′ + ψ′) +W , (3.48)
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is a first integral also in presence of the scalar fields zi. Q is the Noether charge related
to the symmetry

δU = Uε − U = ε , δψ = ψε − ψ = −ε , (3.49)

that leaves the potential (3.42) and the action (3.41) invariant (the latter up to boundary
terms). In fact, a function W , satisfying (3.47) with E = 0, drives a first order flow

U ′ = e−2ψWU , ψ′ = −e−2ψWψ , zi′ = 2e−2ψgi̄
∂W

∂z̄
, (3.50)

and therefore the variation of (3.41) for infinitesimal ε can be written as

δS = S(Uε, ψε)− S(U,ψ) =− 2ε

∫
dr
(
e2ψ(U ′2 − ψ′2 + 4gi̄z

i′z̄̄′)
)

=− 2ε

∫
dr

(
U ′WU + ψ′Wψ + zi′

∂W

∂zi
+ z̄̄′

∂W

∂z̄̄

)
=− 2ε

∫
dr
dW

dr
,

(3.51)

which vanishes if we choose appropriate boundary conditions. Note that the transfor-
mation (3.49) is generated by the vector field ∂U − ∂ψ = ∂U − τ∂τ , which is a conformal
Killing vector of the Lorentzian cone (3.45). The fact that Q is the Noether charge related
to (3.49) follows also from the inverse Noether theorem5: If Q is a conserved charge, then
the transformation

δqI = [qI , εQ] = ε
∂Q
∂pI

, δpI = [pI , εQ] = −ε ∂Q
∂qI

, (3.52)

where [ , ] denotes the Poisson bracket, is a symmetry of the action.
As before, we introduce the coordinates

X = eU+ψ , Y = e−2U . (3.53)

Then the first integral (3.48) becomes

Q = −2YWY +W , (3.54)

which can be easily integrated to give

W (X,Y, z, z̄) = Q +
√
Y ω(X, z, z̄) , (3.55)

where ω is an integration ‘constant’. Using (3.55), the Hamilton-Jacobi equation (3.47)
boils down to

−∂X
ω

X
+

1

ωX2
gi̄

∂ω

∂zi
∂ω

∂z̄̄
−X2Vg −

1

X2
VBH + κ = E . (3.56)

A particular solution to (3.56) is the one found in [73] by squaring the action for the BPS
case,

5See [77] for a nice review.
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ωBPS = (Z − iX2L)(Z̄ + iX2L̄) = |Z|2 +X4|L|2 − iX2(LZ̄ − L̄Z) . (3.57)

Imposing E = 0, as required by Einstein’s equations, and using

∂ω

∂zi
= (Z̄ + iX2L̄)(DiZ − iX2DiL) , (3.58)

as well as the special Kähler geometry identity

1

2
(M− iΩ) = ΩV̄VΩ + ΩDiVgi̄D̄V̄Ω , (3.59)

it is only matter of some algebra to show that (3.57) solves (3.56) if one imposes the Dirac
charge quantization condition

〈G,Q〉 = −κ . (3.60)

In the following subsection we shall consider a particular prepotential, for which the
effective action (3.41) has additional symmetries, that allow a further reduction of the
Hamilton-Jacobi equation (3.56).

Prepotential F = −iX0X1 This simple model has only one complex scalar field z

parametrizing the Poincaré half-plane, with Kähler metric

ds2 =
dzdz̄

(z + z̄)2
, (3.61)

which has the three Killing vectors

v1 = i(∂z − ∂z̄) , v2 = z∂z + z̄∂z̄ , v3 =
i

2
(z̄2∂z̄ − z2∂z) . (3.62)

These are all symmetries of the ungauged theory, but in presence of a potential for the
scalars only a linear combination of them survives, as is shown in 5 using the symplectic
representation.
If we consider a configuration with only magnetic charges and purely electric gaugings,
the HJ equation (3.56) becomes for this prepotential

−∂X
ω

X
+

1

ωX2
gzz̄

∂ω

∂z

∂ω

∂z̄
+X2 g

2
0 + g2

1zz̄ + 2g0g1(z + z̄)

z + z̄
− 1

X2

p12
+ p02

zz̄

z + z̄
+ κ = E .

(3.63)
The linear combination

v =
g2

0

2g2
1

v1 + v3 =
i

2

(
g2

0

g2
1

− z2

)
∂z −

i

2

(
g2

0

g2
1

− z̄2

)
∂z̄ (3.64)

generates a symmetry of (3.41) if one imposes the BPS condition [78] p0g0 = p1g1. It is
straightforward to verify that this implies the existence of a further conserved charge

C =
i

2

(
g2

0

g2
1

− z2

)
∂ω

∂z
− i

2

(
g2

0

g2
1

− z̄2

)
∂ω

∂z̄
. (3.65)
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By introducing the new variables

z =
g0

g1
tanh

(
g0

g1
(u+ iv)

)
, z̄ =

g0

g1
tanh

(
g0

g1
(u− iv)

)
, (3.66)

(3.65) can easily be integrated, with the result ω = 2Cv + α(u,X). Plugging this into
(3.63), the HJ equation assumes the form

−∂X
α

X
+

(
g1

g0

)2
sinh2(2g0u/g1)

4X2

α2
u + 4C2

α+ 2Cv
−X2Vg(u)− 1

X2
VBH(u) + κ = E , (3.67)

where

VBH(u) =
(p0)2g0

g1 tanh(2g0u/g1)
, Vg(u) = − g0g1

tanh(2g0u/g1)
− 2g0g1 . (3.68)

It is easy to see that (3.67) can be satisfied for all v only if C = 06, so that we have

−∂X
α

X
+

(
g1

g0

)2
sinh2(2g0u/g1)

4X2

α2
u

α
−X2Vg(u)− 1

X2
VBH(u) + κ = E . (3.69)

For the prepotential under consideration, the BPS solution (3.57) reads

ωBPS(X, z, z̄) =
(p1 + p0z −X2(g0 + g1z))(p

1 + p0z̄ −X2(g0 + g1z̄))

2(z + z̄)
. (3.70)

Imposing g0p
0 = g1p

1 and using the coordinates (3.66), this leads to

αBPS(X,u) =
p1(p0 − g1X

2)2e4p1u/p0

p0(e4p1u/p0 − 1)
. (3.71)

It is interesting to note that the variables X and u separate in (3.71). This suggests to use
a product ansatz α(X,u) = ξ(X)µ(u) in order to get something more general than (3.71).
Unfortunately, plugging this into (3.69) gives back precisely (3.71). Another possibility
is inspired by the comparison with (3.36) (for d = 4), which contains, in addition to
quartic, quadratic and X-independent terms that appear also in (3.71), a linear piece in
X proportional to the constant A that is essentially a nonextremality parameter (or black
hole mass). One may thus try

α(X,u) =

4∑
n=0

αn(u)Xn , (3.72)

where (to be still more general) we added a cubic term as well. However, one can check
that, using this ansatz in (3.69) leads to an overdetermined system that admits a solution
only for α1 = α3 = 0, namely (3.71).
It remains to be seen if there exist additional conserved charges associated to hidden

6This sort of ‘axion-free’ condition is probably related to the special choice of purely electric gaugings and
only magnetic charges, so we don’t expect that C vanishes in a more general setting.
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symmetries of the action (3.41), that would allow to completely separate the Hamilton-
Jacobi equation (3.47). Note in this context that the transformation (3.49) acts only on
U and ψ but not on the scalars zi, whereas (3.64) touches only the zi but not the metric
components U and ψ. There might thus exist (at least for some specific models) more
complicated symmetry transformations involving all the dynamical variables.

In this subsection we considered electrically charged static nonextremal black holes
in d-dimensional Einstein-Maxwell-(A)dS gravity, whose horizon is a generic Einstein
space in d − 2 dimensions. We have shown that for this system the Hamilton-Jacobi
equation is exactly integrable and admits two branches of solutions. One of them ex-
hibits a non-simply connected domain of integration constants and does not reduce to
the well-known solution for the d = 4 BPS case. The principal functions generate two
first order flows that are analytically different but support the same general solution.
One of the two sets of flow equations corresponds to those found in [74] and (for d = 4

and Λ = 0) in [79]. We clarified thus also the reason for the very existence of first-order
equations for nonextremal black holes, namely, they are just the expressions for the con-
jugate momenta in terms of derivatives of the principal function in a Hamilton-Jacobi
formalism.

In the last part of our paper, we also analyzed if these integrability properties con-
tinue to hold for matter-coupled N = 2, d = 4 gauged supergravity. Unfortunately,
it turned out that the principal function W for nonextremal black holes is not straight-
forwardly generalizable to this case. Still, we showed (for the example of a particu-
lar model) that there exist several conserved charges that allow a partial separation of
variables in the HJ equation. We pointed out the possible existence of additional hid-
den symmetries of the one-dimensional effective action (3.41) that involve simultaneous
transformations of the dynamical variables of both the metric and the scalar sector.

One might ask if there exist covariantly constant spinors related to the first order
equations. The authors of [79] have shown that the nonextremal Reissner-Nordström
solution cannot admit (generalized) Killing spinors in 3+1 dimensions, but it is super-
symmetric in a lower-dimensional effective theory. It might be, however, that the nonex-
tremal black holes considered in this paper possess so-called conformal Killing spinors
(CKS, cf. e.g. [80] for a review of this topic). Note in this context that both the (nonex-
tremal) Kerr metric and all other type II-II vacuum spacetimes do admit a CKS [81]. We
hope to come back to this point in a future publication.

3.3 Hidden symmetries and 4d RN-TN-Λ

In this section, we specialize the theory studied in the previous subsection to d = 4 and
with a dimensional reduction to d = 3 and a dualization of the vectors into scalars we
show the appearing of hidden symmetries. With them, we proceed then to the integra-
tion of the HJ PDE similarly to the previous case, but with the inclusion of NUT charge.
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Four dimensional EMΛ system

In this section, we focus on 3 + 1-dimensional Einstein-Maxwell-Λ gravity, with action7

S =
1

16πG

∫
d4x
√
−g (R− FµνFµν − 2Λ) , (3.73)

and equations of motion

Rµν −
1

2
Rgµν + Λgµν = 2

(
FµσF

σ
ν −

1

4
gµνFσρF

σρ

)
, ∇µFµν = 0 . (3.74)

The Faraday tensor can be locally expressed in terms of a gauge potential as F = dA.
We shall investigate the integrability properties of the stationary Einstein-Maxwell-Λ

system, which is an extension of the work in [72].

Dimensional reduction

Let us consider stationary spacetimes admitting a Killing field which is timelike at infin-
ity. Applying the algorithm of Kaluza-Klein reduction along the timelike direction, the
metic and the gauge field can be decomposed as

ds2 = −e−φ(dt+Kαdxα)2 + eφhαβdxαdxβ , A = B(dt+Kαdxα) +Bαdxα , (3.75)

where early greek indices refer to three dimensions, and the fields hαβ , Kα, Bα, φ and B
are t-independent. Here and in what follows, the indices α, β, .. are raised and lowered
by hαβ and its inverse. Then the effective three-dimensional Lagrangian derived from
(3.73) becomes

L(3) =
√
h

[
R(3) − 1

2
∂αφ∂

αφ+
1

4
e−2φKαβK

αβ + 2eφ∂αB∂
αB

−e−φ(Gαβ +KαβB)(Gαβ +KαβB)− 2Λeφ
]
, (3.76)

whereGαβ ≡ ∂αBβ−∂βBα andKαβ ≡ ∂αKβ−∂βKα. It is convenient to dualize the two
vector fields to scalars, which can be implemented by adding to (3.76) a piece containing
two Lagrange multipliers C and ψ̃ that ensure the Bianchi identities,

L̃(3) = L(3) + 2Cεαβγ∂αGβγ + (ψ̃ + CB)εαβγ∂αKβγ . (3.77)

Variation of (3.77) w.r.t. Kαβ and Gαβ yields

Kαβ =
2√
h
e2φεαβγωγ , ωγ ≡ ∂γψ̃ + C∂γB −B∂γC , (3.78)

and
7We use the signature (−,+,+,+). The Ricci tensor is defined as Rµν = Rσµσν = ∂σΓσµν − ∂νΓσµσ +

ΓρµνΓσσρ − ΓρµσΓσνρ.
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Gαβ +KαβB = − 1√
h
eφεαβγ∂γC . (3.79)

These equations express the field strengths in terms of the twist potential ψ̃ and the
magnetic potential C. Plugging (3.78) and (3.79) back into (3.77) leads (after dropping a
tilde on L̃(3)) to

L(3) =
√
h
[
R(3) − 〈Jα, Jα〉 − 2Λeφ

]
, (3.80)

where we have introduced the notation

〈Jα, Jβ〉 ≡
1

2

[
∂αφ∂βφ+ 4e2φωαωβ − 4eφ (∂αB∂βB + ∂αC∂βC)

]
. (3.81)

The equations of motion following from the Lagrangian (3.80) are the three-dimensional
Einstein equations

G
(3)
αβ + Λeφhαβ = 〈Jα, Jβ〉 −

1

2
hαβ 〈Jγ , Jγ〉 , (3.82)

supplemented by the divergence-type equations of motion

∇α[∂αφ+ 2eφ(B∂αB + C∂αC)− 4e2φψ̃ωα] = 2Λeφ , ∇α(e2φωα) = 0 , (3.83)

∇α(eφ∂αB − 2e2φCωα) = 0 , ∇α(eφ∂αC + 2e2φBωα) = 0 . (3.84)

(3.80) describes a nonlinear σ-model with pseudo-Riemannian target space coupled to
Euclidean gravity in d = 3, with a potential. The latter breaks part of the target space
isometries.

Nonlinear σ-model and broken symmetries

The target space Φ of the scalars in (3.80) is a Bergmann space corresponding to a non-
compact version of CP2 [29,82,83], namely it describes a coset space SU(2, 1)/S(U(1, 1)×U(1)),
endowed with the metric

ds2
Φ = GIJ(ϕ)dϕIdϕJ = dφ2 + 4e2φ(dψ̃ + CdB −BdC)2 − 4eφ(dB2 + dC2) , (3.85)

where ϕI = (φ, ψ̃, B,C). One can easily verify that

RIJ = −3

2
GIJ , CIJKL = −1

2
εIJMNC

MN
KL , DIRJKLM = 0 . (3.86)

Here RIJKL and CIJKL are the Riemann and Weyl tensors constructed from the tar-
get space metric GIJ and the covariant derivative DI . The Bergmann space is a special
Kähler-Einstein manifold with negative curvature. The last equation of (3.86) is a differ-
ential characterization of a symmetric space, the second equation implies a quaternionic
structure [84].

The eight Killing vectors of Φ generating the isometry algebra su(2, 1) are given by
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ξ1 = ∂ψ̃ , ξ2 = C∂ψ̃ + ∂B , ξ3 = −B∂ψ̃ + ∂C ,

ξ4 = −C∂B +B∂C , ξ5 = −2∂φ + 2ψ̃∂ψ̃ +B∂B + C∂C ,

ξ6 = 4ψ̃∂φ +

[
1

2
(e−φ − (B2 + C2))2 − 2ψ̃2

]
∂ψ̃

+
[
C(e−φ − (B2 + C2))− 2ψ̃B

]
∂B −

[
B(e−φ − (B2 + C2)) + 2ψ̃C

]
∂C ,

ξ7 = −4B∂φ +
[
2ψ̃B − C(e−φ − (B2 + C2))

]
∂ψ̃

+(e−φ +B2 − 3C2)∂B + (4BC − 2ψ̃)∂C ,

ξ8 = −4C∂φ +
[
2ψ̃C +B(e−φ − (B2 + C2))

]
∂ψ̃

+(4BC + 2ψ̃)∂B + (e−φ + C2 − 3B2)∂C . (3.87)

The first five Killing vectors represent infinitesimal transformations that are linear in the
scalars and comprehend a twist transformation, two electromagnetic gauge transforma-
tions, an internal U(1) transformation and a scaling one. The remaining three are the
most interesting, due to the nonlinearity in the fields, and they are usually called gener-
alized Ehlers transformation (ξ6) [85] and two Harrison transformations (ξ7, ξ8) [86].

In order to see that these Killing vectors indeed generate the SU(2, 1) symmetry, let
us define

E2
1 = −1

4
[ξ7 + iξ8 + i(ξ3 − iξ2)] , E2

3 = −1

4
[−(ξ7 + iξ8) + i(ξ3 − iξ2)] ,

E1
3 =

1

4
(2ξ5 + iξ1 + 2iξ6) , E1

1 = H1 + E3
3 , E2

2 = H2 + E3
3 , (3.88)

E3
3 = −1

3
(H1 +H2) , E1

2 = −(E2
1)∗ , E3

1 = (E1
3)∗ , E3

2 = (E2
3)∗ ,

where H1, H2 are Cartan generators defined by

H1 =
i

2
ξ1 − iξ6 , H2 =

i

4
(ξ1 − 6ξ4 − 2ξ6) , [H1, H2] = 0 .

One can easily verify that these vectors Eij (i, j = 1, 2, 3) satisfy the su(2, 1) algebra

[Ei
j , Ek

l] = δk
jEi

l − δilEkj , Ei
i = 0 . (3.89)

Note that the dependence of the scalar potential

V (φ) = −2Λeφ (3.90)

on the dilaton φ breaks the invariance under nonlinear isometries and scalings. It is easy
to see that the latter is recovered if we admit a rescaling of Λ.

The five unbroken generators close themselves to form one-dimensional Heisenberg
subalgebra in semidirect sum with R2,

[ξ2, ξ3] = −2ξ1 , [ξ2, ξ1] = [ξ3, ξ1] = 0 ,
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[ξi, ξ4] = (σ4)
j
i ξj , [ξi, ξ5] = (σ5)

j
i ξj , (3.91)

where i, j = 1, 2, 3 and

σ4 =

 0 0 0

0 0 1

0 −1 0

 , σ5 =

 2 0 0

0 1 0

0 0 1

 .

We call the group generated by this algebra Gres. The Heisenberg algebra (3.91) realizes
the fact that the constant φ space constitutes a Nil manifold, viz, one can view the four-
dimensional metric (3.85) as a Wick-rotated Bianchi-II universe. The theory described by
(3.80) is thus invariant only under Gres.

The well-known solution-generating techniques [87–89] based on group theory can
thus not be applied in presence of a cosmological constant. Moreover, the broken sym-
metries are also a first sign of the loss of complete integrability, valid for Λ = 0 after
another dimensional reduction [90, 91]. This implies also the inapplicability of the in-
verse scattering method [89, 92]. In what follows, we shall perform an analysis of some
remaining integrability properties, extending the results of [72].

Hamiltonian formalism and first integrals

In the spacetime admitting a single Killing field, the sigma model still couples to the
base space hαβ represented by three-dimensional Einstein gravity according to (3.82).
Because of the intricacy of this system, we usually simplify the problem by assuming
further symmetries. In the absence of Λ, the base space is decoupled from the sigma
model by assuming an axial Killing field. More precisely, the metric without Λ can be
cast into the Weyl-Papapetrou form [93], and the base space part can be obtained by
quadrature once the sigma model on R2 is solved. Unfortunately, this decoupling does
not occur in the presence of Λ.

In this section, we follow a different path to arrive at an integrable system. Along
the lines of the argument in [72], we consider the case in which the base space admits
only a single degree of freedom. Now we suppose that hαβ describes a warped product
space R×Σ, with Σ a two-dimensional manifold. Moreover we assume that all the scalar
fields depend only on the coordinate representing R. To capture this more conveniently,
let us introduce another scalar field k that describes a rescaling of the three-dimensional
metric hαβ ,

hαβ = kĥαβ . (3.92)

Absorbing the warp factor into k, ĥαβ can be taken to be an unwarped product,

ĥαβdxαdxβ = dσ2 + dΩ2 , (3.93)

where dΩ2 is the line element on Σ. Under these settings, every quantity depends only
on a single valuable σ. In this case the trace and the σσ-component of the Einstein equa-
tions (3.82) become respectively
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R̂(3) =
1

2k2

(
dk

dσ

)2

− 〈Jσ, Jσ〉+ 2Λkeφ , (3.94)

1

k

(
d2k

dσ2

)
=

1

k2

(
dk

dσ

)2

− 〈Jσ, Jσ〉 − 2Λkeφ . (3.95)

It is clear that the scalar curvature R̂(3) must be constant as a consequence of the fact that
the r.h.s. of (3.94) depends only on σ and the l.h.s. is independent of σ. Without further
resrictions we can thus take R̂(3) = 2l with l = 0,±1, so that Σ must be a maximally
symmetric space, dΩ2

l = dθ2 + f2
l (θ)dϕ2, where

fl(θ) =
1√
l

sin(
√
lθ) =


sin θ , l = 1 ,

θ , l = 0 ,

sinh θ , l = −1 .

(3.96)

One obtains then a classical dynamical system with five degrees of freedom, with action

S =

∫
dσk

1
2

[
1

2k2

(
dk

dσ

)2

− 〈Jσ, Jσ〉+ 2l − 2Λkeφ

]
. (3.97)

For future convenience we introduce a new evolution parameter τ defined by

k
3
2 eφdσ = dτ .

With the new potential V̂ = 2Λ − 2l
k e
−φ and ω ≡ ωτ , the action (3.97) can be expressed

as S =
∫
Ldτ with a Lagrangian

L =
1

2

[
eφk′

2 − k2eφφ′
2 − 4k2e3φω2 + 4e2φk2(B′

2
+ C ′

2
)
]
− V̂ , (3.98)

where a prime denotes a derivative w.r.t. τ . It is easy to see that (3.94) is the constraint
H ≡ L+2V̂ = 0. It then turns out more convenient to pass to a Hamiltonian formulation
rather than working in a Lagrangian description. After a Legendre transformation one
gets

H =
1

2

[
e−φp2

k −
e−φ

k2
p2
φ −

e−3φ

4k2
p2
ψ̃

(3.99)

+
e−2φ

4k2

(
p2
B + p2

C − 2CpBpψ̃ + 2BpCpψ̃ + (B2 + C2)p2
ψ̃

)]
+ V̂ .

The solution of this dynamical system is highly linked to the existence of commuting
constants of motion. The Killing vector fields of su(2, 1) can be promoted to functions in
phase space, realizing a Lie algebra isomorphism, by means of the substitutions8

∂ϕI 7→ pϕI , [·, ·] 7→ {·, ·}PB , ξi 7→ −Ci , (3.100)

8Our convention for the Poisson bracket is {A,B} ≡ ΩMN∂MA∂NB =
∑
I

(
∂A
∂qI

∂B
∂pI
− ∂A
∂pI

∂B
∂qI

)
, where

Ω = iσ2 is the symplectic form.
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where {ϕI} = {φ, ψ̃, B,C} and i = 1, . . . , 8. The minus sign in front of Ci reflects the
fact that the infinitesimal generators and the corresponding charges obey the same alge-
bra up to the sign of the structure constants9. The only nonvanishing Poisson brackets
between the Ci and the Hamiltonian are given by

{H,C5} = −2H + 4Λ , {H,C6} = 4Hψ̃ − 8Λψ̃ ,

{H,C7} = −4BH + 8ΛB , {H,C8} = −4HC + 8ΛC . (3.101)

Since the Ci do not depend explicitely on τ , we find immediately that C1, C2, C3, C4

are four constants of motion besides H . Moreover if we define the modified function
C̃5 ≡ C5 − 4Λτ and use the constraint H = 0, we recover the constant of motion linked
to a scale trasformation ξ5,

dC̃5

dτ
= −2H = 0 . (3.102)

The modification of C5 to C̃5 is a consequence of the necessity to rescale also Λ in order
to maintain invariance under scale transformations.

The only nonvanishing Poisson brackets between the constants of motion read

{C2, C3} = −2C1 , {C2, C4} = C3 , {C3, C4} = −C2 , (3.103)

{C̃5, C1} = −2C1 , {C̃5, C2} = −C2 , {C̃5, C3} = −C3 . (3.104)

Among C1, C2, C3, C4, C̃5 and the operators composed of them, the maximal set of com-
muting first integrals is given by H,C1, C4, C

2
2 + C2

3 , and we fix the values of these first
integrals with four constants E, v,K1,K2,

H = E , pψ̃ = 4v , BpC − CpB = K1 , (pB + Cpψ̃)2 + (pC −Bpψ̃)2 = K2 . (3.105)

We want to use these equations to solve the system, so we shall set E = 0 only at the end
of the integration procedure.

Integrability: RN-TN-Λ solution

Using (3.105), the Hamiltonian can be rewritten as

H =
e−φ

2
p2
k −

e−φ

2k2
p2
φ −

e−3φ

8k2
(4v)

2
+
e−2φ

8k2
(K2 + 16vK1) + V̂ , (3.106)

and thus the electromagnetic and twist part has decoupled from the other fields. In order
to solve the Hamilton-Jacobi equation

9This can be shown as follows. Let Qi = Qi(q
I , pI) be first integrals obeying the Lie algebra {Qi, Qj} =

fkijQk and let us denote the corresponding Hamiltonian vector fields by VMi = ΩMN∂NQi. For any func-
tion F = F (qI , pI) in phase space, we have a formula VMi ∂MF = −{Qi, F}. It follows that for the vector
field VMij = ΩMN∂N{Qi, Qj} = fkijV

M
k , we obtain VMij ∂MF = −{{Qi, Qj}, F} = −{Qi, {Qj , F}} +

{Qj , {Qi, F}} = −[Vi, Vj ]
M∂MF , where at the second equality we used the Jacobi identity. This establishes

[Vi, Vj ] = −fkijVk , as desired.
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H

(
k, φ,

∂S

∂k
,
∂S

∂φ

)
+
∂S

∂τ
= 0 , (3.107)

we use the separation ansatz
S = W (k, φ)− Eτ , (3.108)

which leads to

e−φ

2

(
∂W

∂k

)2

− e−φ

2k2

(
∂W

∂φ

)2

− e−3φ

8k2
(4v)2 +

e−2φ

8k2
(K2 + 16vK1) + V̂ = E . (3.109)

(3.109) can be solved by defining the new variables x = keφ, y = e−φ and applying the
Charpit-Lagrange method. The result is

W (x, y) =
1

6a2

√
2ax− v2

(
Ẽ(v2 + ax)− 6al − 12a2y

)
+

1

8v
(K2 + 16vK1)arccot

(
v√

2ax− v2

)
, (3.110)

where Ẽ ≡ 2Λ − E and a is an integration constant. Following the Hamilton-Jacobi
technique we can introduce two other constants β1, β2 according to

β1 =
∂S

∂Ẽ
, β2 =

∂S

∂a
. (3.111)

Using the dynamical constraint H = 0, they are given by

β1 =
1

6a2

√
2ax− v2(v2 + ax) + τ , (3.112)

β2 =
Λ(2v4 − 2av2x− a2x2)

3a3
√

2ax− v2
+

K2 + 16vK1

16a
√

2ax− v2
− lv2 − lax+ 2a2xy

a2
√

2ax− v2
. (3.113)

To simplify the solution, it is convenient to define a new evolution parameter r by

τ =
1√
2a

(
r3

3
+ r

v2

2a

)
. (3.114)

To solve the two algebraic equations (3.112) and (3.113), we note that it is possible to set
β1 = 0 without loss of generality by shifting τ . Then (3.112) gives

x = r2 +
v2

2a
. (3.115)

Plugging this into (3.113) yields

y =
1

2a
(
r2 + v2

2a

) [K2 + 16vK1

16
−
√

2β2a
3/2r + lr2 − lv2

2a
− Λ

3

(
r4 +

3r2v2

a
− 3v4

4a2

)]
.

Using the original expression for H (3.99), the Hamilton equations for the electromag-
netic part become
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dpB
dr

= − v√
2a
(
r2 + v2

2a

) (pC + 4vB) ,
dpC
dr

= − v√
2a
(
r2 + v2

2a

) (−pB + 4vC) , (3.116)

dB

dr
=

1

4
√

2a
(
r2 + v2

2a

) (pB − 4vC) ,
dC

dr
=

1

4
√

2a
(
r2 + v2

2a

) (pC + 4vB) . (3.117)

Using the gauge freedom generated by ξ1 and ξ2, we can implement a boundary condi-
tion in such a way that B and C vanish at infinity [29]. This eliminates two integration
constants and the solutions are given by

B =
β3 + rβ4

r2 + v2

2a

, C =

√
2a

v

rβ3 − v2β4

2a2

r2 + v2

2a

. (3.118)

Finally, the twist potential ψ̃ can be found by inverting the equation pψ̃ = 4v, which
leads to

ψ̃ =

∫
dr

(
− v√

2a

e−φ(
r2 + v2

2a

) − C dB

dr
+B

dC

dr

)
. (3.119)

The integration procedure is now complete. Since the constants defining the solution are
not very illuminating, we define the new constants

m =
β2a

3/2

√
2

, n =
v√
2a

, Q =
√

2aβ4 , P = −
√

2aβ3

n
, 2a = m2 + l2n2 , (3.120)

which give K1 = 0 and K2 = 16(P 2 +Q2). It turns out that the four-dimensional metric
and U(1) gauge field take the form of the RN-TN-(A)dS solution [94],

ds2 = −e−φ(dt+Kϕdϕ)2 + keφ
(

dr2

∆
+ dθ2 + f2

l (θ)dϕ2

)
, (3.121)

Aµdxµ = Bdt+Aϕdϕ , (3.122)

where

∆ = l(r2 − n2)− 2mr − Λ

3
(r4 + 6r2n2 − 3n4) + P 2 +Q2 ,

k =
∆

m2 + l2n2
, e−φ =

k

r2 + n2
, Kϕ = −4n

√
m2 + l2n2f2

l (θ/2) , (3.123)

B =
Qr − nP√

m2 + l2n2(r2 + n2)
, Aϕ =

2f2
l (θ/2)

(
P (n2 − r2)− 2nQr

)
n2 + r2

.

Note that the fields Kϕ and Aϕ are obtained from the dualization (3.78) and (3.79), that
involves

ψ̃ =
n

3(m2 + l2n2)

(
Λr +

3lr − 3m− 4Λn2r

r2 + n2

)
, C = − nQ+ rP√

m2 + l2n2(r2 + n2)
.

For P = Q = 0 we recover the results of [72], and thus the integrability properties de-
scribed in [72] are still valid in the case of nonvanishing electromagnetic charges. We
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saw that, even if the cosmological constant reduces the internal symmetry group from
SU(2, 1) toGres, it hasn’t spoiled integrability once we restrict to the subspace (3.93). This
condition reduces the infinite number of degrees of freedom to effectively five. Only the
three nonlinear generators of su(2, 1) are broken and the remaining commuting first in-
tegrals are enough to decouple the electromagnetic and twist potentials and to integrate
the system in three steps. The general case remains unsolved and is highly linked to
the broken affine Kac-Moody algebra arising after another dimensional reduction [91].
The action of Gres on the fields generates a transformation on the parameter space, and
in particular, a scale transformation requires a rescaling also of Λ. Unfortunately, these
surviving symmetries alone are useless to produce new interesting solutions.

3.4 Supersymmetry equation and BPS first order flow

In presence of many fields, as we have shown at the end of the subsection 3.2, the reso-
lution of the Hamilton-Jacobi equation is an insuperable technical obstacle. On the other
hand in supersymmetric field theory, the infinitesimal action of supersymmetry on the
fermionic fields typically can be used to find a supersymmetric first order flow. This
system selects a subclass of the general solution that preserves some of the supersym-
metry of the theory and it is called BPS system [95,96]. The same set of equations can be
found using the HJ technique, without solving directly the partial differential equation,
but through an ansatz on the principal function [97]. This implies that we lose the de-
pendence from the arbitrary integration constants and therefore the algebraic resolution
of the dynamics, however, a first order flow is achieved. In this subsection, we will show
this way of proceeding in matter coupled gauged supergravity for a black hole in d = 4

and for a black string in d = 5.

BPS first order flow for d=4 black hole

The Hamilton-Jacobi equation for the action (2.69) reads

e−2ψ
(

(∂UW )2 − (∂ψW )2 + 4gi̄∂iW∂̄W + huv∂uW∂vW + 4e4(ψ−U)(∂QW )TH∂QW
)

−e2(ψ−U)Vg − e2(U−ψ)VBH + κ = 0 . (3.124)

Inspired by [97] one can introduce the function

W = eU |Z + iκe2ψ−2UL| = eURe(e−iαZ)− κe2ψ−U Im(e−iαL) , (3.125)

where the phase α is

e2iα =
Z + iκe2(ψ−U)L
Z̄ − iκe2(ψ−U)L̄

, or Im(e−iαZ) = −κe2(ψ−U)Re(e−iαL) , (3.126)

whereZ = 〈Q,V〉 is the central charge of the supersymmetry algebra andL = Qx〈Px,V〉,
with Qx = 〈Px,Q〉.
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A straightforward calculation, allowing for the rules of special Kähler and quaternionic
geometry, imposing the quantization condition

QxQx = 1, (3.127)

the HJ equation (3.124) is satisfied. Through (3.165) and discarding total derivatives, the
action (2.69) can be cast into the form

S =

∫
dr
[
e2ψ
(
U ′ + e−2ψ∂UW

)2−e2ψ
(
ψ′ − e−2ψ∂ψW

)2
+

e2ψgi̄
(
z′ i + 2e−2ψgik̄∂k̄W

)(
z̄′ ̄ + 2e−2ψg̄l∂lW

)
+

e2ψhuv
(
q′u + e−2ψhus∂sW

)(
q′ v + e−2ψhvt∂tW

)
+

1

4
e4U−2ψ

(
Q′ + 4e2ψ−4UH∂QW

)TH−1
(
Q′ + 4e2ψ−4UH∂QW

)]
.

(3.128)

All first-order equations following from (3.128) except the one for zi are symplectically
covariant. Computing explicitely ∂k̄W , the latter reads

z′ i = −eiαgi̄
(
eU−2ψD̄Z̄ − iκe−UD̄L̄

)
. (3.129)

Contracting this with DiV and using (2.8), one obtains a symplectically covariant equa-
tion for the section V ,

V ′ + iArV = eiαeU−2ψ

(
−1

2
ΩMQ− i

2
Q+ V̄Z

)
−iκeiαe−U

(
−1

2
ΩMPxQx − i

2
PxQx + V̄L

)
, (3.130)

whereAr = Im(z′ i∂iK) is the U(1) Kähler connection. Calculating the remaining deriva-
tives of W , the first-order flow equations become

U ′ = −eU−2ψReZ̃ − κe−U ImL̃ ,

ψ′ = −2κe−U ImL̃ ,

q′u = κe−UhuvIm(e−iα∂vL) ,

Q′ = −4e2ψ−3UHΩReṼ ,

V ′ = eiαeU−2ψ

(
−1

2
ΩMQ− i

2
Q+ V̄Z

)
− iκeiαe−U

(
−1

2
ΩMPxQx − i

2
PxQx + V̄L

)
− iArV .

(3.131)

These equations have a more useful form if one consider the phase α as a dynamical
variable. Introducing the quantity S = Z + iκe2(ψ−U)L, the relations (3.126) and (3.125)
can be rewritten as

e2iα =
S
S̄
, Im(e−iαS) = 0 , W = eURe(e−iαS) , W 2 = e2USS̄ . (3.132)
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One has thus

α′ =
Im(e−iαS ′)
e−UW

, S ′ = U ′∂US + ψ′∂ψS + V ′∂VS + q′u∂uS +Q′T∂QS . (3.133)

Inserting (3.131) and the derivatives of S in this last expression, one gets

α′ +Ar = 2κe−URe(e−iαL) . (3.134)

Finally, plugging the equation for U into the expression of ImṼ ′, one can write the first-
order flow equations in the form

2e2ψ
(
e−U Im(e−iαV)

)′ − κe2(ψ−U)ΩMQxPx + 4e2ψ−U (α′ +Ar)Re(e−iαV) +Q = 0 ,

ψ′ = −2κe−U Im(e−iαL) ,

α′ +Ar = 2κe−URe(e−iαL) ,

q′u = κe−UhuvIm(e−iα∂vL) ,

Q′ = −4e2ψ−3UHΩReṼ , (3.135)

where also (2.68) and (3.127) must hold together with

2eUHΩReṼ = HΩAt , (3.136)

since the last equ. of (3.135) has to coincide with (2.67).
With the Hamilton-Jacobi formalism we obtain a system of first order flow that is

symplectic covariant that it was not known using Killing spinor equations. Moreover
one can show that the scalar potential (2.21), can be expressed in terms of the superpo-
tential L as

Vg = GABDALDBL̄ − 3|L|2 , (3.137)

where

GAB =

(
gi̄ 0

0 huv

)
, DA =

(
Di

Du

)
, (3.138)

provided that the quantization condiction (3.127) holds.

BPS first order flow for d=5 black string

The Hamilton-Jacobi equation for the effective action (2.79) reads

e−2ψ

(
(∂UW )2 − (∂ψW )2 +

4

3
(∂TW )2 + 2Gij∂iW∂jW + huv∂uW∂vW

)
+ Veff = 0 .

(3.139)
Guided by the previous four dimensional case, we use the ansatz for the principal HJ
function

W = ceU+T
2 Z + de2ψ−U−T2 L , (3.140)

where
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Z = pIhI , L = QxWx , Qx = pIP xI , Wx = hJP xJ . (3.141)

Throughout some relations of very special geometry (2.34) as well as (2.37), (2.39) and
(2.41), one can show that (3.140) solves indeed (3.139) provided that

c = −3

4
, d = −9

2
κg2 , QxQx =

1

9g2
. (3.142)

The solution (3.140) leads then to the first-order flow equations

U ′ = −3

4
eU+T

2 −2ψZ +
9

2
κg2e−U−

T
2 L , T ′ =

2

3
U ′ ,

ψ′ = 9κg2e−U−
T
2 L ,

φ′ i = Gij
(
−3

2
eU+T

2 −2ψ∂jZ − 9κg2e−U−
T
2 ∂jL

)
,

q′u = −9

2
κg2e−U−

T
2 huv∂vL .

(3.143)

One can recast (3.143) into a form very similar to that of the first-order flow in four
dimensions (3.135). Integrating T ′ = 2

3U
′ and plugging this into the remaining equations

of (3.143), one gets

T ′ = −1

2
e2T−2ψZ + 3κg2e−2TL ,

ψ′ = 9κg2e−2TL ,

φ′ i = Gij
(
−3

2
e2T−2ψ∂jZ − 9κg2e−2T∂jL

)
,

q′u = −9

2
κg2e−2Thuv∂vL .

(3.144)

Using the equation for φ′ i together with (hI)′ = φ′ i∂ih
I and (2.34), the equations for T

and φi can be rewritten as

e2ψ
(
e−2ThI

)′
+ 9g2κe2ψ−4TQxP xJGIJ − pI = 0 . (3.145)

Note that the FI case can be recovered imposing P 1
I = P 2

I = 0 and P 3
I = VI . Then the

charge quantization conditionQxQx = 1/(9g2) boils down toQ3 = pIVI = ±κ/(3g) (use
κ2 = 1), while L in (3.141) becomes L = ± κ

3gh
JVJ . The two signs correspond to the two

equivalent BPS branches.

3.5 Example of solution: generalizing Maldacena-Nunez

The of BPS equations (3.144) can be simplified to a system of the number of equations
equal to the number of the scalar fields in the model. The idea is substantially the same
of [96]. Introducing a new radial coordinate and rescaled scalars

dR = e−ψdu , yI = eψ−2ThI , (3.146)
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the system boils down to

ψ =

∫
9κg2LydR , e3ψ−6T =

1

6
CIJKy

IyJyK ,

(yI)′ − 9g2κ(LyyI −QxP xJGIJy )− pI = 0 ,

q′u = −9

2
κg2huv∂vLy ,

(3.147)

where are been defined

Ly = QxP xI yI , GIJy = −CIJKCKLMyLyM + 2yIyJ . (3.148)

Even if the complete integration of these equations in a particular model remains an
hard task, this partial integration can be considered as a step towards the resolution.
Numerical and asymptotic analysis of this type of models can be found in [98], where a
particular truncation of N = 8, d = 5 gauged supergravity is studied.

However, truncating the hypermultiplet sector a set of a simple ODEs is found. For
example, for the STU model, described by the symmetric tensor with only nontrivial
component C123 = 1, up to permutations, if we pose

Qx =
κ

3g
, P xI =

g

3g
, pI = κqI ,

V = T , W = −2T − ψ ,
(3.149)

following the appendix of [96] the problem of finding 1
4 -BPS solution with running

scalars for this model is reduced to solve a system of three first order differential equa-
tion. The configuration is defined by the metric

ds2 = e2V (−dt2 + dz2) + e2W (du2 + dΩ2
κ) , (3.150)

and the fluxes are purely magnetic

F Iθφ = κqIFκ(θ) , Fκ(θ) =

{
sin θ , κ = 1

sinh θ , κ = −1
(3.151)

The warp factors are defined as

e2V = (x1x2x3)−
1
3 e−g

∫
(x1+x2+x3)du , e2W = (x1x2x3)

2
3 . (3.152)

and the scalar fields are hI = xI/(x1x2x3)
1
3 and the linear combinations

y1 = x1 + x2 − x3 , y2 = x1 − x2 − x3 , y3 = x1 − x2 + x3 , (3.153)

satisfy a non-homogeneous version of the Nahm system

y1′ = gy2y3 +Q1 ,

y2′ = gy1y3 +Q2 ,

y3′ = gy1y2 +Q3 .

(3.154)
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where the parameters QI are related to the physical fluxes with

Q1 = −κ(q1 + q2 − q3) ,

Q2 = −κ(q1 − q2 − q3) ,

Q3 = −κ(q1 − q2 + q3) ,

(3.155)

and the quantization condiction g(q1 + q2 + q3) = 1 must hold. The functions hI =

hI(φ1, φ2) are

h1 = e
− φ1√

6
− φ2√

2 , h2 = e
2φ1√

6 h3 = e
− φ1√

6
+ φ2√

2 , (3.156)

and therefore the constraint h1h2h3 = 1 is satisfied and moreover, the expressions of the
physical fields are

2φ1√
6

= log

(
x2

(x1x2x3)
1
3

)
,
√

2φ2 = log

(
x3

x1

)
. (3.157)

Imposing Q1 = Q2 = 0, that means q2 = 0 and q1 = q3, one of the two configurations
studied in [4]. Defining y+ = y1 + y2 and y− = y1 − y2, one finds that

y+ = k+e
g
∫
y3du , y− = k−e

g
∫
y3du ,

y3′ =
g

4

(
k2

+e
2g

∫
y3du − k2

−e
−2g

∫
y3du

)
+Q ,

(3.158)

where Q = Q3 = −2κq1. Now we can introduce a new coordinate y =
∫
y3du so that the

last equation becomes
y′′ =

g

4

(
k2

+e
2gy − k2

−e
−2gy

)
+Q , (3.159)

and can be integrated to

1

2
y′2 =

1

8

(
k2

+e
2gy + k2

−e
−2gy

)
+Qy +A , (3.160)

therefore we obtain 10

y′ =
dy

du
= y3 =

√
1

4

(
k2

+e
2gy + k2

−e
−2gy

)
+ 2Qy + 2A . (3.161)

The integration constant A can be set to zero by a shift of the y coordinate and the three
functions xI read

x1 =
1

4

(
k+e

gy + k−e
−gy +

√
k2

+e
2gy + k2

−e
−2gy + 8Qy

)
,

x2 =
1

2
k−e

−gy ,

x3 =
1

4

(
−k+e

gy + k−e
−gy +

√
k2

+e
2gy + k2

−e
−2gy + 8Qy

)
,

(3.162)

10The minus sign corresponds to an unphysical solution with negative defined scalrs hI .
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where the algebraic restriction 2gq1 = 1 must hold. Applying the inversion y → −y the
configuration becomes

ds2 = (x1x2x3)−
1
3 e
g
∫
x1+x2+x3

y3
dy

(−dt2 + dz2) + (x1x2x3)
2
3

(
1

(y3)2
dy2 + dΩ2

κ

)
,

x1 =
1

4

(
k+e

−gy + k−e
gy +

√
k2

+e
−2gy + k2

−e
2gy +

8κy

g

)
,

x2 =
1

2
k−e

gy ,

x3 =
1

4

(
−k+e

−gy + k−e
gy +

√
k2

+e
−2gy + k2

−e
2gy +

8κy

g

)
.

(3.163)

and supposing the necessary regularity condition k− > 0 one can show that the asymp-
totic behaviour y →∞ of the metric is AdS5

ds2 =
2e2gy

k−
(−dt2 + dz2) + dy2 +

k2
−e

2gy

4
dΩ2

κ . (3.164)

For arbitrary integration constants the metric blows up at a certain point and the solution
does not have an horizon, but choosing properly the values of k+ and k− for κ = −111

k− = e−ag
√

2

g2
(2ag + 1) , k+ = −eag

√
2

g2
(2ag − 1) , (3.165)

the metric has an horizon for y = a and the geometry is AdS3 ×H2 12.
If we take g > 0, (3.165) are well defined for a ≥ 1

2g . We note that for these values of
k+ and k−

y3(y) =
1

g

√
2ag cosh(2g(a− y))− sinh(2g(a− y))− 2gy , (3.166)

and therefore

d(y3)2

dy
=

2

g
cosh(2g(a− y))− 4a sinh(2g(a− y))− 2

g
≥ 2

g
(e2g(y−a) − 1) ≥ 0 . (3.167)

Joint to extremal value y3(a) = 0, one has that y3 is always well defined for y ≥ a and the
scalar fields (3.163) are positive. The parameter a is linked to the scaling transformation

g → g

a
, y → ay , κ→ κ

a2
, (3.168)

but the value a = 1
2g is special because it corresponds to the limit in which x1 = x3 that

means φ2 = 0. This truncation corresponds to the solution of [4] with two nonzero and
equal fluxes, infact the equation

e
2W+

φ1√
6 = e

2W− 2φ1√
6 +

√
6W + 2φ1

2
√

6g2
+

1

4
, (3.169)

11The case in which k− = e−ag
√

2
g2

(2ag + 1) and k+ = eag
√

2
g2

(2ag − 1) is linked to the Z2 symmetry

x1 → x3 and corresponds to the case of negative hI .
12For κ = 1, 0 this cannot be done.
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holds and it becomes exactly eq. (17) of pg. 13 of [4] for g = 1. The metric in the limit
y → a can be studied from the asymptotic behaviours of

x1 + x2 + x3

y3
=

√
1 + 2ag

2ag3

1

y − a
+O((y − a)0) ,

(y3)3

x1x2x3
= 32

√
2a3g9

1 + 2ag
(y − a)3 +O((y − a)4) ,

x1x2x3 =

√
1 + 2ag

32g6
+O((y − a)1) .

(3.170)

Introducing the new radial coordinate

(y − a)

√
1+2ag

2ag3 =
1

u2
, (3.171)

for y → a (5.110) boils down to

ds2 =
1

u2
(−dt2 + dz2) +

1

2
2
3 (1 + 2ag)

2
3

du2

u2
+

(
1 + 2ag

32g6

) 1
3

dΩ2
−1 , (3.172)

that is AdS3 ×H2.
The central charge of the two dimensional SCFT dual to the horizon cofiguration

AdS3 ×H2 is (4.20)

c =
3RAdS3

2G3
=

6π(g− 1)RAdS3
R2
H2

G5
, (3.173)

with g = 2, 3, . . ., the genus of the Riemann surface H2. In particular the values of the
radii are

RAdS3 =
1

2
1
3 (1 + 2ag)

1
3

, R2
H2 =

Q(1 + 2ag)
1
3

2
5
3 g

, (3.174)

where the dependence from the scalars is expressed by

2ag =

√
1 +

(
g2k+k−

2

)2

. (3.175)

For the truncation φ2 = 0, that means k+ = 0, RAdS3
= 2−

2
3 that is exactly the value

found in [4]. However the central charge is independent from φ2

c =
6π(g− 1)

G5

Q

4g
, (3.176)

Moreover near the conformal boundary the scalar fields (3.157) behave like

2φ1√
6
∼ 2Qye−2gy ,

√
2φ2 ∼ −

k+

k−
e−2gy , (3.177)

therefore, in the dual SCFT, are red respectively as an insertion and an expectation value
of an operator of scaling dimension ∆ = 2.
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The relevant deformation of the dual superpotential relative to φ1 is described in [4],
while φ2 is a marginal deformation of the two-dimensionalN = (4, 4) SYM and does not
describe the gravity dual of two-dimensionalN = (2, 2)∗ SYM theory [99]. The constant
a represent the physical scale of the energy in the renormalization group flow at which
the IR fixed point appears, but being a CFT, the details of the theory are independent of
the energy scale.





CHAPTER 4

Attractor Points, Entropy and Central Charge

Particular solutions to supergravity theories are the attractor points configurations. These
are solutions for which the metric assumes the simple form of a product space between a
two dimensional Riemann surface and an AdS factor. They are fixed points for the scalar
flow. Here we show their form and behaviuor for the solutions treated in this thesis, a
static black string in d = 5 and a static black hole in d = 4. They are especially important
for testing AdS/CFT correspondence. We will briefly comment about the index calcula-
tion and the value of the central charge in the dual CFT. Moreover, we elucidate on the
role of a nonlinear symmetry of four-dimensional static black hole Freudenthal duality
to generate new attractor points with the same value of the entropy.
The new results of this chapter are the formula for the central charge inAdS3 in presence
of a generic coupling to hypermultiplets [2] and the exstension of Freudenthal duality in
gauged supergravity [8].

4.1 AdS3 × Σ2 attractor points

In this section, we want to investigate the near-horizon configurations of a static black
string 3.4. To keep things simple, we shall first concentrate on the hyperless FI-gauged
case and set g = 1. The geometry is of the type AdS3 × Σ2 with Σ2 = {S2,H2}, and we
assume that the scalars stabilize regularly at the horizon, i.e., φ′ i = 0. Note that a similar
problem was solved in four dimensions in [100] for the case of symmetric special Kähler
manifolds with cubic prepotential. Supersymmetric Bianchi attractors in N = 2, d = 5

gauged supergravity coupled to vector- and hypermultiplets were analyzed recently in
[101].

Starting from (2.76) and introducing the coordinates (t, R, z, θ, φ), where the new ra-
dial coordinate R and the warp factors f and ρ are such that

U =
3

2
f , ψ = 2f + ρ , T = f ,

dR

dr
= e−3f , (4.1)

now the metric (2.76) takes the form of

59
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ds2 = e2f (−dt2 + dR2 + dz2) + e2ρdσ2
κ . (4.2)

Taking the limit of constant hypermultiplets that means

P 3
I =

VI
g
, Q3 =

κ

3g
, (4.3)

the first-order flow equations (3.143) becomes

f ′ = −ef (hIVI +
1

2
e−2ρZ) ,

ρ′ = −ef (hIVI − e−2ρZ) ,

φ′ i = 3Gijef (∂jh
IVI −

1

2
e−2ρ∂jZ) ,

(4.4)

where the primes now denote derivatives w.r.t. R. For a product space AdS3 × Σ2 we
have

e2f =
R2

AdS3

R2
, e2ρ = R2

H . (4.5)

Plugging this together with φ′ i = 0 into (4.4), one obtains a system of algebraic equations
whose solution fixes the near-horizon values of the scalars in terms of the charges and
the FI parameters,

hIVI =
2

3RAdS3

, Z = R2
Hh

IVI , ∂iZ = 2R2
H∂ih

IVI . (4.6)

For the ansatz (4.5), the FI-version of (3.145) (obtained by taking QxP xJ = Q3P 3
J =

−κVJ/(3g)) reduces to

ef+2ρ(e−2fhI)′ − 3e2ρGIJVJ − pI = 0 . (4.7)

Using (4.5) and (4.6), this can be rewritten as

pI + 3R2
HG

IJVJ = 3ZhI . (4.8)

We want to solve the attractor equations (4.6) (or equivalently (4.8)) in order to express
RAdS3

, RH and hI in terms of pI and VI . To this end, contract the third relation of (2.34)
with VI to get

Gij∂ihIVI∂jhJ = −2

3
VJ +

2

3
hIVIhJ . (4.9)

With (4.6), this becomes

R2
HVJ = −3

4
Gij∂iZ∂jhJ + ZhJ . (4.10)

Using hI = 1
6CIJKh

JhK and (2.34), one obtains

R2
HVJ =

1

6
CJKLp

KhL . (4.11)
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Let us introduce the charge-dependent matrix

Cp IJ ≡ CIJKpK . (4.12)

Using the adjoint identity (2.35), one easily shows that Cp IJ is invertible, with inverse

CIJp = 3
CIJKCKMNp

MpN − pIpJ

Cp
, (4.13)

where Cp = CIJKp
IpJpK . (4.11) implies then

hI = 6R2
HC

IJ
p VJ . (4.14)

Plugging (4.14) into (5.108), one can derive a general expression for RH in terms of the
intersection numbers, the charges and the FI parameters,

R2
H = (36CIJKC

IM
p CJNp CKPp VMVNVP )−

1
3 . (4.15)

Using this in (4.14) gives the values of the scalars at the horizon,

hI =
6CIJp VJ

(36CKLMCKNp CLPp CMR
p VNVPVR)

1
3

. (4.16)

Contracting (4.14) with VI and using the first equation of (4.6) as well as (4.15), we obtain
an expression for the AdS3 curvature radius RAdS3

,

RAdS3
=

(36CIJKC
IM
p CJNp CKPp VMVNVP )

1
3

9CRSp VRVS
. (4.17)

Finally, one can plug (4.13) into (4.15), (4.16) and (4.17), and use (2.35) to write the solu-
tions of (4.6) and (4.8) as

R2
H = (C IJK(p)VIVJVK)−

1
3 ,

hI =
6κ

Cp

pI + 3κCIJKCKLMp
LpMVJ

(CNPR(p)VNVPVR)
1
3

,

RAdS3 =
Cp
27

(C IJK(p)VIVJVK)
1
3

CLMNCNRS pRpSVLVM − 1
9

,

(4.18)

where

C IJK(p) = −108

Cp

[
2CIJK − 9

Cp
p(ICJK)MCMNP p

NpP +
9

Cp
pIpJpK

]
. (4.19)

The central charge of the two-dimensional conformal field theory that describes the black
strings in the infrared [4, 50, 66], is given by [102]

c =
3RAdS3

2G3
, (4.20)
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where G3 denotes the effective Newton constant in three dimensions, related to G5 by

1

G3
=
R2

Hvol(Σ)

G5
. (4.21)

In what follows, we assume Σ2 to be compactified to a Riemann surface of genus g, with
g = 0, 2, 3, . . .. The unit Σ2 has Gaussian curvature K = κ, and thus the Gauss-Bonnet
theorem gives

vol(Σ) =
4π(1− g)

κ
. (4.22)

Using (4.21) and (4.22) in (4.20) yields for the central charge

c =
6π(1− g)RAdS3

R2
H

κG5
. (4.23)

The curvature radii RAdS3
and RH can be expressed in terms of the constants CIJK , the

magnetic charges pI and the FI parameters VI by means of (4.18). This leads to

c =
2π(1− g)Cp

κG5(9CIJKCKMNpMpNVIVJ − 1)
. (4.24)

If the hyperscalars are running, one has to consider also the near-horizon limit of the last
equation of (3.144). Assuming q′u = 0 at the horizon and using (2.40), one easily derives
the algebraic condition

kuI h
I = 0 . (4.25)

As far as the remaining equations of (3.144) are concerned, one can follow the same
steps as in this section, with the only difference that VI has to be replaced everywhere
by −3κQxP xI .
However, the result in presence of hypermultiplets is much more model dependent. A
specific and interesting case is the theory describing the compactification of ten-dimensional
IIB supergravity on the conifold T 1,1. This model is tackled in [103] finding perfect
agreement between the gravity side and the dual CFT not only in the IR, the horizon
configuration but also in UV, the asymptotics [104].

4.2 AdS2 × Σ2 attractor points

In ungauged supergravity, the attractor mechanism [105–109] essentially states that, at
the horizon of an extremal black hole, the scalar fields φ of the theory are always attracted
to the same values φh (fixed by the black hole charges Q), independently of their values
φ∞ at infinity. When the so-called black hole potential has flat directions, it may happen
that some moduli are not stabilized, i.e., their values at the horizon are not fixed in
terms of the black hole charges. Yet, the Bekenstein-Hawking entropy turns out to be
independent of these unstabilized moduli. Notice that this does not hold anymore for
nonextremal black holes, for which the horizon is not necessarily an attractor point. The
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φh are critical points of the black hole potential VBH(Q, zi), where in N = 2, d = 4

supergravity the zi denote only the scalars in the vector multiplets, since hypermultiplets
can be consistently decoupled. The horizon values zih(Q) are thus determined by the
criticality conditions

∂iVBH(Q, zi)|zih(Q) = 0 , (4.26)

and the Bekenstein-Hawking entropy is given by

SBH = πVBH(Q, zi)|zih(Q) . (4.27)

In gauged supergravity, the scalar fields generically have a potential V , which con-
tributes to the φh(Q) as well. Both for U(1) Fayet-Iliopoulos gauging [110] and for
abelian gauged hypermultiplets [111], the black hole potential in (4.26) has to be replaced
by the effective potential

Veff =
κ−
√
κ2 − 4VBHV

2V
, (4.28)

where κ = 0, 1,−1 corresponds to flat, spherical and hyperbolic horizons respectively.
The limit for V → 0 of Veff only exists for κ = 1, in which case Veff → VBH, so one recov-
ers correctly the black hole potential that governs the attractor mechanism in ungauged
supergravity. The fact that this limit does not exist for κ = 0,−1 is not surprising since
flat or hyperbolic horizon geometries are incompatible with vanishing scalar potential.
As before, the critical points of the effective potential determine the horizon values of
the moduli,

∂iVeff(Q, qu, zi)|zih, quh = 0 , ∂uVeff(Q, qu, zi)|zih, quh = 0 , (4.29)

(qu are the hyperscalars), and the entropy density reads

sBH ≡
SBH

vol(Σ2)
=
Veff(Q, qu, zi)|zih, quh

4
, (4.30)

where Σ2 denotes the unit E2, S2 or H2.
A particular class of attractors is the BPS one that can be studied starting from the

BPS equations (3.135). We make some assumptions on the behaviour of the fields in the
near-horizon limit, where we require all the fields and their derivatives to be regular. To
get the near-horizon geometry AdS2 × Σ2 with Σ2 = {S2,H2} 1, the warp factors must
have the form

U = log

(
r

rA

)
, ψ = log

(
rS
rA
r

)
, (4.31)

where rA and rS denote the curvature radii of AdS2 and Σ2 respectively. It is easy to
show that W = 0 at the horizon r = 0; in fact the flow equations for U and ψ can be
rewritten as

U ′ = −e−2(A+U)(W − ∂AW ) , A′ = e−2(A+U)W , (4.32)

1For semplicity we does not treat the case κ = 0.
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where A = ψ − U and A→ log(rS) for r → 0. W = 0 implies

Z = −iκr2
SL . (4.33)

Assuming z′ i = 0 and q′u = 0 at the horizon, it follows that

DiZ = −iκr2
SDiL , DuL = 0 , (4.34)

and α′ = 0. From DuL = 0 we get

〈Kv,V〉 = 0 , (4.35)

if we use also the algebraic relation (2.68) together with (2.37), (2.39) and (2.40). As
in [111], we can choose the gauge At = 0 at the horizon. Then, from (3.136) and the last
equation of (3.135), one obtains Q′ = 0.

With these assumptions, the BPS flow equations (3.135) become

4Im(Z̄V)− κr2
SΩMQxPx +Q = 0 ,

Z = − r2
S

2rA
eiα ,

〈Kv,V〉 = 0 ,

(4.36)

that must be supplemented by the constraintsQxQx = 1 andHΩQ = 0. If one rotates to
a frame with purely electric gauging, Qx boils down to pΛP xΛ , and the magnetic charges
pΛ become constant. One can then use a local (on the quaternionic Kähler manifold)
SU(2) transformation to set Q1 = Q2 = 0, and the equations (4.36) reduce to the ones
obtained in [57].

The solutions of (4.36) are the horizon values of the scalars in terms of the charges and
the gaugings. Furthermore, taking in consideration homogeneous models and solving
the attractor equations for r2

S , one can derive the Bekenstein-Hawking entropy written in
[57] with the substitution P3 → −κQxPx. The main difference w.r.t. the FI case consists
in the dependence of QxPx on the hypers, whose horizon values are fixed by (4.35) and
by the first of 2.68.
In the FI case, the value of the entropy of black holes in AdS4 finds a perfect agreement
with the topological twisted index [112] of ABJM [113] theories. These represent the first
microstates counting of a black hole in this dimension [49, 114, 115]. It’s again not clear
as the duality works in the more general case as for the quivers describe in [116].

4.3 Freudenthal duality

In this section we shall briefly review the Freudenthal duality in ungauged supergravity
[117–119], and subsequently generalize it to the abelian gauged case. It results to be a
nonlinear symmetry of the BH entropy highly linked to the properties of special Kähler
geometry of the vector multiplets coset.
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Ungauged supergravity

Following [118], we introduce the scalar field dependent Freudenthal duality operator
Fz by

Fz(Q) ≡ Q̂ = −ΩMQ , Fz(V) ≡ V , (4.37)

where Q denotes the symplectic vector of charges, while the covariantly holomorphic
symplectic section V and the matricesM, Ω were defined in (2.3), (2.7) and (2.9) respec-
tively. They satisfy the relations

Mt =M , MΩM = Ω , MV = iΩV , MDiV = −iΩDiV , (4.38)

with Di the Kähler-covariant derivative. Moreover, the black hole potential can be writ-
ten in terms of Q andM as

VBH = −1

2
QtMQ . (4.39)

As a consequence of (4.38), it follows that the action of Fz onQ is anti-involutive, F2
z(Q) =

−Q. Using again (4.38), one shows that

Fz(VBH(Q, zi)) = −1

2
Q̂tMQ̂ = VBH(Q, zi) , (4.40)

i.e., the black hole potential is invariant under Freudenthal duality. Moreover, the second
equation of (4.38) yields

∂iM =MΩ(∂iM)ΩM . (4.41)

The direct application of this identity implies that under Fz , ∂iVBH flips sign2,

Fz(∂iVBH(Q, zi)) = −1

2
Q̂t(∂iM)Q̂ = −∂iVBH(Q, zi) . (4.42)

Since the zih(Q) are the critical points of VBH, one has

0 = ∂iVBH|zih(Q) = −Fz(∂iVBH)|zih(Q) =
1

2
Q̂t(∂iM)Q̂|zih(Q) =

1

2
Q̂th∂iM(zih(Q))Q̂h , (4.43)

where we introduced Freudenthal duality F at the horizon as

F(Q) = Fz(Q)|zih(Q) = −ΩMhQ = Q̂h . (4.44)

On the other hand, applying (4.26) to the charge configuration Q̂h leads to

0 = −∂iVBH(Q̂h, z
i)|zih(Q̂h) =

1

2
Q̂th∂iM(zih(Q̂h))Q̂h . (4.45)

Comparing (4.43) and (4.45), one can conclude that the attractor configuration

zih(Q̂h) = zih(Q) , (4.46)

2Since the operator Fz does not commute with ∂i, it is important to specify that Fz acts always after the
action of ∂i. Notice that (4.42) corrects eq. (3.11) of [118].
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is a solution also for (4.45) [118]. Eq. (4.46) can be interpreted as the stabilization of the
near horizon configuration under Freudenthal duality, but an explicit verification of this
claim is possible only if all the charges are different from zero. In any case one can always
verify that zih is critical point for both VBH(Q, zi) and VBH(Q̂h, z

i).
This fact turns out to be crucial in order to extend (4.37) to a symmetry of the black

hole entropy SBH. In fact, using (4.27), (4.40) and (4.46), one obtains

1

π
F(SBH) = F

(
−1

2
QtM(zih(Q))Q

)
= −1

2
Q̂thM(zih(Q̂h))Q̂h

= −1

2
QtMhQ =

SBH

π
. (4.47)

Thus, the entropy pertaining to the charge configuration Q is the same as the one per-
taining to the Freudenthal dual configuration F(Q). Since F(Q) in (4.44) is homogeneous
of degree one (but generally nonlinear) in Q, (4.47) results in the quite remarkable fact
that the Bekenstein-Hawking entropy of a black hole in ungauged supergravity is in-
variant under an intrinsically nonlinear map acting on charge configurations. Note that
no assumption has been made on the underlying special Kähler geometry, nor did we
use supersymmetry.

U(1) FI-gauged N = 2, d = 4 supergravity

In U(1) FI-gauged N = 2, d = 4 supergravity, the parameters in terms of which the
scalars zi stabilize at the horizon, are doubled by the gauge couplings G. The entropy
density and the horizon values of the scalars are now determined by the effective poten-
tial (4.28), which contains both VBH and the scalar potential V .

As a first step, we extend the action of the field-dependent Freudenthal duality Fz by
acting on both Q and G according to

Fz(Q) = Q̂ = −ΩMQ , Fz(G) = Ĝ = −ΩMG , (4.48)

while, by definition, Fz leaves the symplectic section V (and its covariant derivatives)
invariant. Now use (4.38), (4.41), and the fact that the scalar potential can be written
as [73]

V = gi̄DiLD̄̄L̄ − 3|L|2 = −1

2
GtMG − 4|L|2 , (4.49)

where

L ≡ GtΩV = 〈G,V〉 , (4.50)

to obtain

Fz(V (G, zi)) = −1

2
ĜtMĜ − 4L̂ ˆ̄L = V (G, zi) ,

Fz(∂iV (G, zi)) = −1

2
Ĝt(∂iM)Ĝ − 4(DiL̂) ˆ̄L = −∂iV (G, zi) .

(4.51)
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Since Veff and ∂iVeff (cf. (2.26) of [110]) can be written as functions of VBH, V , ∂iVBH and
∂iV , (4.51), together with (4.40) and (4.42) implies

Fz(Veff(Q,G, zi)) = Veff(Q,G, zi) , Fz(∂iVeff(Q,G, zi)) = −∂iVeff(Q,G, zi) . (4.52)

Using the second relation of (4.52), one has then

0 = −∂iVeff|zih(Q,G) = Fz(∂iVeff)|zih(Q,G)

= ∂iVeff(Q̂, Ĝ, zi)|zih(Q,G) = ∂iVeff(Q̂h, Ĝh, z
i
h(Q,G)) . (4.53)

Let us define Freudenthal duality at the horizon by

F(Q) = Fz(Q)|zih(Q,G) = −ΩMhQ = Q̂h ,

F(G) = Fz(G)|zih(Q,G) = −ΩMhG = Ĝh . (4.54)

From the comparison of (4.53) with the definition

0 = ∂iVeff(Q̂h, Ĝh, z
i)|zih(Q̂h,Ĝh) = ∂iVeff(Q̂h, Ĝh, z

i
h(Q̂h, Ĝh)) , (4.55)

it follows that
zih(Q̂h, Ĝh) = zih(Q,G) (4.56)

is a solution also for (4.55), thus it is a critical point for both Veff and F(Veff).
Eqns. (4.30), (4.52) and (4.56) imply that sBH is invariant under Freudenthal duality,

4F(sBH) = Veff(Q̂h, Ĝh, z
i
h(Q̂h, Ĝh)) = Veff(Q̂h, Ĝh, z

i
h(Q,G))

= Veff(Q,G, zih(Q,G)) = 4sBH . (4.57)

It is immediate to see that in the limit G → 0, one recovers the results of the ungauged
case. Notice that the origin of Freudenthal duality is firmly rooted into the properties
(4.38). The action of F yields a new attractor-supporting configuration (Q̂h, Ĝh) that, in
general, belongs to a physically different theory, specified by a different choice of gauge
couplings.

It is worthwhile to note that no assumption has been made on the special Kähler
geometry of the scalars in the vector multiplets. The invariance (4.57) holds thus also
in models with non-homogeneous special Kähler manifolds, like e.g. the quantum STU
model recently treated in [120].

As an illustrative example, let us check the action of Freudenthal duality for the sim-
ple model with prepotential F = −iX0X1 and purely electric FI gauging, cf. [78] for
details3. To keep things simple, we assume that the electric charges vanish. One has
thus

3As discussed in sec. 10 of [121], the Freudenthal duality of N = 2, D = 4 supergravity minimally cou-
pled to a certain number of vector multiplets in the ungauged case is nothing but a particular anti-involutive
symplectic transformation of the U-duality.
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Q =


p0

p1

0

0

 , G =


0

0

g0

g1

 . (4.58)

This model has just one complex scalar z = x+ iy, and the matrixM is given by

M =


−x

2+y2

x 0 y
x 0

0 − 1
x 0 − yx

y
x 0 − 1

x 0

0 − yx 0 −x
2+y2

x

 . (4.59)

The black hole and scalar potential read respectively

VBH = −1

2
QtMQ =

x2 + y2

2x
(p0)2 +

(p1)2

2x
,

V = − 1

2x
(g2

0 + 4g0g1x+ g2
1(x2 + y2)) . (4.60)

Plugging this into the effective potential (4.28), one shows that the latter is extremized
for

x = xh =
ug0

g1
, y = yh = 0 , (4.61)

where u is a solution of the quartic equation[
(1− ν2)u+ 2(u2 − ν2)

]2
= k(1− u2)(ν2 − u2) , (4.62)

with

ν ≡ g1p
1

g0p0
, k ≡ κ2

(g0p0)2
. (4.63)

Note that positivity of the kinetic terms in the action requires x > 0. Depending on the
sign of g0/g1, this means that either only negative or only positive roots of (4.62) are
allowed, and such roots may not exist for all values of ν and k. Notice also that in the
special case where

(2g0p
0)2 = (2g1p

1)2 = κ2 , (4.64)

the effective potential (4.28) becomes completely flat,

Veff = − κ

2g0g1
, (4.65)

and the scalar z is thus not stabilized at the horizon, a fact first noted in [78]. (Nonethe-
less, the entropy is still independent of the arbitrary value zh, in agreement with the
attractor mechanism). (4.64) corresponds to the BPS conditions found in [78], or to a sign-
flipped modification of them4. It would be interesting to see whether the appearance of

4In the BPS case, g0p0 and g1p1 must have the same sign.
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flat directions is a generic feature of the BPS case, or just a consequence of the simplic-
ity of the model under consideration. A large class of supersymmetric black holes in
gauged supergravity satisfies a Dirac-type quantization condition [78] (that corresponds
to a twisting of the dual superconformal field theory [4]), i.e., one has a relation between
Q and G, that enter into VBH and V respectively. This indicates that flat directions of Veff

might be generic in the supersymmetric case.
Using (4.62), one can derive the near-horizon value of Veff, and thus the entropy den-

sity (4.30),

sBH =
Veff(Q,G, zi)|zih(Q,G)

4
=
g0p

02
[(1− ν2)u+ 2(u2 − ν2)]

4κg1(1− u2)
. (4.66)

We now determine the action of Freudenthal duality on the charges and the FI parame-
ters. The definitions (4.54) yield

F(Q) ≡


0

0

q̂0

q̂1

 =


0

0

p0xh

p1/xh

 , F(G) ≡


ĝ0

ĝ1

0

0

 =


−g0/xh

−g1xh

0

0

 . (4.67)

The dual configuration is thus electrically charged and has purely magnetic gaugings.
For the transformed potentials one gets

F(VBH) = −1

2
Q̂thMQ̂h =

x2 + y2

2x
q̂2
1 +

q̂2
0

2x
, (4.68)

F(V ) = −1

2
ĜthMĜh − 4|〈Ĝh,V〉|2 = − 1

2x

(
(ĝ1)2 + 4ĝ0ĝ1x+ (ĝ0)2(x2 + y2)

)
.

These are identical to (4.60), except for the replacements

(p0)2 → q̂2
1 , (p1)2 → q̂2

0 , g2
0 → (ĝ1)2 , g2

1 → (ĝ0)2 , g0g1 → ĝ0ĝ1 .

The critical points of F(Veff) are thus x̂h = ĝ1û/ĝ0 and ŷh = 0, where û satisfies[
(1− ν̂2)û+ 2(û2 − ν̂2)

]2
= k̂(1− û2)(ν̂2 − û2) , (4.69)

with

ν̂ ≡ ĝ0q̂0

ĝ1q̂1
, k̂ ≡ κ2

(ĝ1q̂1)2
. (4.70)

Now, using (4.67), one easily shows that

ν̂2 =
1

ν2
, k̂ =

k

ν2
.

Plugging this into (4.69) and multiplying with ν4/û4 yields[
(1− ν2)û−1 + 2(û−2 − ν2)

]2
= k(1− û−2)(ν2 − û−2) . (4.71)
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Comparing with (4.62), we see that u and û−1 satisfy the same equation, and have thus
the same set of solutions. Hence, up to permutations of possible multiple roots, one gets
u = û−1, which, by means of (4.67), leads to x̂h = xh, and therefore Veff and F(Veff) share
the same critical points.

The transformed entropy density is given by

F(sBH) =
Veff(F(Q),F(G), zi)|ẑih(F(Q),F(G))

4
=
ĝ1q̂2

1 [(1− ν̂2)û+ 2(û2 − ν̂2)]

4κĝ0(1− û2)
. (4.72)

Using again (4.67), it is easy to see that this coincides with (4.66), so that the entropy is
indeed invariant under Freudenthal duality.

Coupling to hypermultiplets

In this section, we generalize our analysis to include also hypermultiplets, and consider
the case where abelian isometries of the quaternionic hyperscalar target manifold are
gauged. The dynamics of the attractor mechanism is now governed by the potentials
VBH(Q, zi) and V (Px(qu),Ku, zi), where Px = (PxΛ,PxΛ) denote the triholomorphic mo-
ment maps, and Ku = (kΛu, kuΛ) are the Killing vectors that define the gauging. Note
the presence of magnetic moment maps PxΛ and magnetic Killing vectors kΛu. In what
follows, we introduce the collective index A = (i, u) and represent the scalars as

φA = (zi, qu) . (4.73)

As was shown (3.137), the scalar potential can be written in the symplectically covariant
form provided the quantization condition (3.127) holds.

The field-dependent Freudenthal duality is again defined by (4.37), supplemented
with

Fz(Px) ≡ P̂x = −ΩMPx , Fz(Ku) ≡ K̂u = −ΩMKu . (4.74)

One easily shows that Fz(Qx) = Qx and, with slightly more effort, that

Fz(Veff(Q,Px(qu),Ku(qu), zi)) = Veff(Q,Px(qu),Ku(qu), zi) ,

Fz(∂AVeff(Q,Px(qu),Ku(qu), zi)) = −∂AVeff(Q,Px(qu),Ku(qu), zi) .
(4.75)

Thus, in analogy to the U(1) FI case, one has to consider the criticality conditions (4.29)
and apply the second relation of (4.75),

0 = −∂AVeff(Q,Px,Ku, zi)|φAh = Fz(∂AVeff(Q,Px,Ku, zi))|φAh =

= ∂AVeff(Q̂, P̂x, K̂u, zi)|φAh = ∂AVeff(Q̂h, P̂xh (quh ), K̂u(quh ), zih) ,
(4.76)

where
P̂xh (qu) = −ΩMhPx(qu) (4.77)

is the dual expression for the moment maps that depends on the scalar fields, the charges
and the parameters contained in the quaternionic Killing vectors. Defining Q̂h as in
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(4.54), the criticality condition of the attractor points φ̂Ah for the dual configuration of
(Q,Px(qu)), namely for (Q̂h, P̂xh (qu)), reads

0 = ∂AVeff(Q̂h, P̂xh , K̂u, zi)|φ̂Ah = ∂AVeff(Q̂h, P̂xh (q̂uh ), K̂u(q̂uh ), ẑih) . (4.78)

Thus a comparison between (4.76) and (4.78) shows that the configuration

φAh = φ̂Ah (4.79)

is a solution for both criticality conditions. It follows that

4F(sBH) =Veff(Q̂h, P̂xh (q̂uh ), ẑih) = Veff(Q̂h, P̂xh (quh ), zih)

= Veff(Q,Pxh (quh ), zih) = 4sBH ,
(4.80)

namely the entropy density of the two configurations related by the Freudenthal opera-
tor is the same.





CHAPTER 5

Symmetries as a solution generating technique

The structure of d = 4,N = 2 supergravity exhibits a very large symmetry group and
the electromagnetic duality is responsible for this fact [54]. This symmetry is generically
spoilt when a potential appears. We show two methods to use the residual symmetry to
generate more complicated solutions starting from a given seed. The first one is system-
atical and always applicable, the second resides in some particular form of the potential
that defines the symmetry and extends the possibility to add axions to the original so-
lution. Moreover mixing this technique with r-map construction 2.3 one can generate
dyonic stationary black string in d = 5.
The new results of this chapter are a characterization of the symmetries useful to gen-
erate new solutions in d = 4, N = 2 FI gauged supergravity [9] and its application to
generate rotating black strings after a dimensional reduction [5].

5.1 Reparametrization and U-duality algebra

A symplectic reparametrization of the section V (2.3) for a prepotential F = F (X) is a
transformation

V = (XΛ, FΛ)t 7−→ Ṽ = (X̃Λ, F̃Λ)t . (5.1)

In the new frame a prepotential does not necessarily exist. We are interested in the
subgroup of Sp(2nV + 2,R) that leaves the prepotential invariant [57, 122, 123],

F (X̃) = F̃ (X̃) . (5.2)

Its algebra is determined by the equation

XΛSΛΣX
Σ − FΛR

ΛΣFΣ − 2XΛQtΛ
ΣFΣ = 0 , (5.3)

where Q, R and S parametrize the symplectic algebra,

U =

(
Q R

S −Qt

)
, R = Rt , S = St .

73
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A reparametrization of this type, in special projective coordinates, leaves V invariant up
to a Kähler transformation. It is called the U-duality algebra and is an internal symmetry
of the ungauged theory.

5.2 Symplectic embedding

The choice of the symplectic embedding of the non-linear sigma model isometry group
is necessary to completely specify the special Kähler structure over a manifold [51, 122–
125].

Symplectically equivalent embeddings

The way in which the isometry group is embedded in the symplectic group is fixed by
supersymmetry [124]. In particular for a quadratic prepotential the fundamental repre-
sentaion of Sp(2nV + 2,R) has the branching rule to SU(1, nV)

2nV + 2→ (nV + 1)⊕ (nV + 1) (5.4)

and for the STU model the fundamental representaion of Sp(8,R) has the branching rule
to SU(1, 1)× SO(2, 2)

8→ 2⊗ (2⊕ 2) . (5.5)

These embeddings are not unique since one can always act by conjugation with a sym-
plectic matrix to construct a symplectically equivalent embedding. There are choices
for the section V such that the isometry group sits in the symplectic group in a simple
way, but the existence of a prepotential in that frame is in general not guaranteed. On
the other hand, many symplectically equivalent embeddings are encoded by different
prepotentials. Two physically interesting examples are [126, 127]

S1 =


1 1 0 0

1 −1 0 0

0 0 1
2

1
2

0 0 1
2 − 1

2

 , −iX0X1 7−→ i

4
(X12 −X02

) , (5.6)

S2 =



1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0


, −X

1X2X3

X0
7−→ −2i

√
X0X1X2X3 .

(5.7)
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A physically less important transformation, which is nevertheless useful for practical
purposes, is for instance

Sa =

(
a 0

0 1
a

)
,

i

4
XΛηΛΣX

Σ 7−→ i

4a2
XΛηΛΣX

Σ . (5.8)

One can also construct inequivalent embeddings over the same manifold, the simplest
example being SU(1, 1)/U(1) [124].

Special Kähler structure over SU(1, nV)/(U(1)× SU(nV))

For this noncompact version of CPn a simple way to embed SU(1, nV) into Sp(2nV +2,R)

is obtained from the fact that

Sp(2nV + 2,R) ∼= Usp(1 + nV, 1 + nV) = Sp(2nV + 2,C) ∩U(1 + nV, 1 + nV) . (5.9)

This isomorphism is provided by conjugation with the Cayley matrix,

Cα : Sp(2nV + 2,R) −→ Usp(1 + nV, 1 + nV) , U 7−→ ĈαU Ĉ−1
α , (5.10)

where

Ĉα =
1√
2

(
1√
α
InV+1 i

√
αη

1√
α
InV+1 −i

√
αη

)
, (5.11)

and η is the Minkowski metric in nV +1 dimensions. In fact Usp(1+nV, 1+nV) is defined
by the conditions

UHU† = H , UΩ̃U t = Ω̃ . (5.12)

If the invariant bilinear forms are chosen as

H =

(
η 0

0 −η

)
, Ω̃ =

(
0 −η
η 0

)
, (5.13)

(5.12) becomes

U =

(
A C∗

C A∗

)
, AηA† − C∗ηCt = η , A∗ηCt − CηA† = 0 . (5.14)

The first of (5.4) is obtained by restricting the action of ια ≡ C−1
α to the subgroup with

C = 0. One can also explicitly verify that in this frame the prepotential exists and is
given by F = − i

2αX
ΛηΛΣX

Σ.

Special Kähler structure over SU(1, 1)/U(1)× SO(2, 2)/(SO(2)× SO(2))

This manifold belongs to the infinite sequence SU(1, 1)/U(1)×SO(2, n)/(SO(2)×SO(n)),
which for n = 2 is isomorphic to (SL(2,R)/SO(2))3. To find the symplectic embedding
it is useful to choose a frame [124, 128–130] in which the symplectic section cannot be
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integrated to have a prepotential. In this frame the Calabi-Visentini parametrization
appears in a natural way. The embedding problem is solved by

SO(2, 2) 3 L 7−→

(
L 0

0 L−1t

)
∈ Sp(8,R) , (5.15)

SL(2,R) 3

(
a b

c d

)
7−→

(
a bη̂

cη̂ d

)
∈ Sp(8,R) , (5.16)

where η̂ is the metric preserved by SO(2, 2). A symplectic transformation that leads to a
frame in which a prepotential exists is highly nontrivial to find [124].

5.3 Producing axions with the stabilizier of G under U-duality

The kinetic part of (2.15) corresponds to the action of the ungauged theory, whose on-
shell global symmetry group is called U-duality, consisting of the isometries of the non-
linear sigma model that act linearly also on the field strengths via the symplectic em-
bedding [29]. For purely electric gaugings, the scalar potential generically spoils this
invariance, but, as is clear from (2.16), for dyonic gauging one recovers the whole U-
duality invariance, at the price of changing the vector of gauge couplings and so the
physical theory [131]. We will call this group Ufi, that stands for fake internal symmetry
group1. The action of Ufi on a solution is the mapping to other solutions of other theo-
ries, in the same way in which some elements of the symplectic group map solutions of
theories with different prepotential into each other [73], cf. e.g. (5.6), (5.7).

Given Ufi, we fix a choice of the coupling constants G and, at least at the beginning,
we suppose that they are generic. We want to underline that for abelian dyonic gaug-
ings, the Maxwell equations remain homogeneous and so the action (2.15) doesn’t have
topological terms [55].

The true internal symmetry group Ui of the gauged supergravity theory is SG , the
stabilizer of G under the action of Ufi. This is obvious from the definition of the stabilizer,

SG = {g ∈ Ufi | gG = G} , (5.17)

which means that we impose to stay in the same theory, and this restricts of course the
group of internal symmetries.

By acting with S ∈ SG on a given seed solution (V,G,Fµν)2 of the equations of mo-
tion, we can generate another configuration via the map

(V,G,Fµν) 7→ (Ṽ, G̃, F̃µν) := (SV, SG, SFµν) = (SV,G, SFµν) . (5.18)

1When the special Kähler manifold is symmetric we define the Lie algebra ufi of Ufi through the equations
(5.3). The corresponding definition for nonsymmetric special Kähler manifolds requires more care.

2Actually we should write (V,G,Fµν , gµν), but since SG does not act on the metric, we shall suppress the
dependence on gµν .
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It is easy to verify that the equation of motion are invariant. The transformed fields
solve the field equations by construction3. In general, the scalars transform nonlinearly
under the corresponding isometry, the field strengths are rotated and the metric is func-
tionally invariant. Technically, in order to determine SG , it is simpler to work with the
corresponding algebra

sG = {a ∈ ufi | aG = 0} . (5.19)

If one is interested only in the bosonic equations the group of the symmetries Ui (bos)

is enlarged to SG ∪ SM. The group SM is the stabilizer of M (2.7) under the action of
Sp(2nv + 2)4

SM = {T ∈ Sp(2nv + 2) |T tMT =M} , (5.20)

By acting with T ∈ SM on a given seed solution (V,G,Fµν) of the equations of motion,
we can generate another configuration via the map

(V,G,Fµν) 7→ (V,G, TFµν) . (5.21)

In this case the supersymmetry of the solution is preserved only if T has also the property
of stabilizing the FI parameters G. However in some special cases symmetrical structures
of the specific model can enlarge Ui(bos) (see for example the discussion around (5.58)).

Stabilization and symmetries for some prepotentials

Now we want to apply these techniques to some specific prepotentials. Each of them ex-
hibits different peculiar features related to the geometry of the underlying special Kähler
manifold, namely to the symplectic embedding of the isometry group of the non-linear
sigma model (cf. app. 5.2).

Prepotential F = −iX0X1 This prepotential encodes a particular special Kähler struc-
ture on the symmetric manifold SU(1, 1)/U(1). The symplectic section is

V = (X0, X1,−iX1,−iX0)t , (5.22)

and we fix the couplings in a completely electric frame, G = (0, 0, g0, g1)t. The solution
to (5.3) defines the algebra ufi,

b1t1 + b2t2 + b3t3 + b4t4 =


b4 0 b1 b2

0 −b4 b2 b3

−b3 −b2 −b4 0

−b2 −b1 0 b4

 ,

3As it is clear from the formalism introduced in [73], the application of S ∈ SG on a static solution of the
BPS flow preserves the same amount of supersymmetry as the original configuration. In the rotating case, the
same is true if one considers electric gaugings only [132].

4In the following we will consider only the continuos part of SM; the study of discret subgroups can be
found in [97].
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to be the U-duality su(1, 1) plus a u(1), generated by t2, which acts trivially on the zi, as
we will see shortly. From the stability equation (5.19) one finds that sG is generated by

s = t2 −
g1

g0
t1 −

g0

g1
t3 , (5.23)

so that SG ⊆ U(1, 1) is the 1-parameter subgroup

S = eβs =


cos2β g1

g0
sin2β − g1g0 cosβ sinβ cosβ sinβ

g0
g1

sin2β cos2β cosβ sinβ − g0g1 cosβ sinβ
g0
g1

sinβ cosβ − cosβ sinβ cos2β g0
g1

sin2β

− cosβ sinβ g1
g0

cosβ sinβ g1
g0

sin2β cos2β

 . (5.24)

On the other hand, the U(1) generated by t2 is given by

Tα = eαt2 =


cosα 0 0 sinα

0 cosα sinα 0

0 − sinα cosα 0

− sinα 0 0 cosα

 , (5.25)

and it transforms the section V according to

TαV = e−iαV . (5.26)

The projective special Kähler coordinates are thus insensible to its action. The matrixM
defined in (2.7) transforms as

T tαMTα =M . (5.27)

One can thus act with Tα on Fµν only, leaving the equations of motion still invariant.
Tα is an example for a ‘field rotation matrix’ that is commonly used to generate non-BPS
solutions, a technique first introduced in [133, 134] and subsequently applied to gauged
supergravity in [97, 135]. In conclusion, the on-shell symmetry group of this model is
Ui(bos) = U(1)×U(1) ⊃ SG , with the two U(1) factors identified respectively with S and
Tα.

PrepotentialF = i
4X

ΛηΛΣX
Σ The prepotentialF = i

4X
ΛηΛΣX

Σ, with ηΛΣ = diag(−1, 1, ..., 1),
describes a special Kähler structure on the symmetric manifolds SU(1, nV)/(U(1)×SU(nV)).
The symplectic section reads

V = (XΛ,
i

2
ηΛΣX

Σ)t . (5.28)

Due to the linearity of V in the coordinatesXΛ, one can easily construct the one-parameter
subgroup

Lα =


cosα 0 2 sinα 0

0 InV cosα 0 −2InV sinα

− 1
2 sinα 0 cosα 0

0 1
2InV sinα 0 InV cosα


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of Sp(2nV + 2,R), under which the section V transforms as

LαV = e−iαV . (5.29)

Since
LtαMLα =M , (5.30)

we can add a new parameter to all the solutions of this model by acting with Lα on Fµν
only.
The stability equation is slightly more involved. Notice that the case with only one vector
multiplet is symplectically equivalent to F = −iX0X1, and thus the results for nV = 1

can be obtained from the previous subsection by an appropriate symplectic rotation (5.2).
Let us discuss the general case of nV = n vector multiplets. Eq. (5.3) defining the algebra
ufi is equivalent to

Qt = −ηQη , S = −1

4
ηRη . (5.31)

These equations define an embedding of U(1, n) into Sp(2n + 2,R). To see this, let z =

A+ iB ∈ u(1, n). Then, ztη + ηz = 0 implies

At = −ηAη , Btη = ηB , (5.32)

so ηB is symmetric. This suggests an embedding

ια : u(1, n) −→ sp(2n+ 2,R) , A+ iB 7−→

(
A αBη

− 1
αηB −At

)
, (5.33)

for any real α 6= 0. This is indeed an injective Lie algebra morphism, and its image con-
sists of the elements of sp(2n+ 2,R) which solve (5.3) with FΛ = i

αηΛΣX
Σ. In particular,

(5.31) selects ι2.
A basis for u(1, n) is given by the matrices

{Aa}n(n+1)/2
a=1 , {iBk}n(n+3)/2

k=0 , (5.34)

where Aa are a basis for the space of (n + 1) × (n + 1) real matrices A such that ηA is
antisymmetric, and Bk generate the space of (n+ 1)× (n+ 1) real matrices B such that
ηB is symmetric, with B0 = I , the identity matrix. The embedding extends obviously to
the group level via the exponential map, and, in particular, notice that

exp(αι2(iB0)) = Lα . (5.35)

Let us now consider the symmetry group SG . If we set

G = (0, g)t = (0,~0, g0, ~g)t , (5.36)

with ~g = (g1, . . . , gn), then we see that the invariance of G is defined by the equations

Atg = 0 , Bηg = 0 , (5.37)
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which define a maximal compact subgroup5 U(n) of U(1, n). To see this, let us first put6

ĝ :=
√
−g2 , (5.38)

and define Λg ∈ SO(1, n) by

(g0, ~g) = (ĝ,~0)Λg . (5.39)

Thus, A (or ηBt) has g in the cokernel if and only if ΛgAΛ−1
g (or ΛgηB

tΛ−1
g ) has (ĝ,~0)

in the cokernel. From this we immediately get that sG is generated by the elements of
u(1, n) of the form

zg = Λ−1
g zΛg , (5.40)

where z ∈ u(1, n) has vanishing first row and first column. Thus, zg ∈ U(n).
This provides also a way to realize an explicit construction of the group elements of
SG . One can choose e.g. a generalized Gell-Mann basis [136] for su(n), add the identity
matrix In and then embed the basis into u(1, n) by adding a first row and column of
zeros. If we call {zI}n

2−1
I=0 such a basis for the compact subalgebra u(n) of su(1, n), then

{ι2(zI)}n
2−1
I=0

is a basis for sG0 , where G0 ≡ (0,~0, ĝ,~0). Then we can explicitly construct the group
elements by means of the Euler construction of SG07, as in [136, 137]. Finally we have

SG = Λ̃−1
g SG0Λ̃g , (5.41)

with

Λ̃g =

(
Λg 0

0 Λ−1
g

)
. (5.42)

For practical purposes we can take Λg defined by

Λg
0
0 =

g0

ĝ
, Λg

i
0 = Λg

0
i =

gi
ĝ
, Λg

i
j =

g0 − ĝ
ĝ~g2

gigj + δij , (5.43)

whose inverse is obtained by the replacement ~g → −~g.
Let us focus on the first nontrivial case SU(1, 2)/(U(1)× SU(2)). We fix the couplings in
a completely electric frame, G = (0, 0, 0, g0, g1, g2)t. A basis for u(2) (relative to the vector
G0 = (0,~0, ĝ,~0)) is

t0 =

0 0 0

0 i 0

0 0 i

 , t1 =

0 0 0

0 0 i

0 i 0

 , t2 =

0 0 0

0 0 −1

0 1 0

 , t3 =

0 0 0

0 i 0

0 0 −i

 ,

(5.44)
5To be precise, this is the subgroup S(U(1)× U(n)).
6We assume g to be timelike future-directed, i.e., ηΛΣgΛgΣ < 0, g0 > 0.
7In a similar way one can use the Iwasawa construction to obtain the whole group Ufi, whose compact part

is just SG [125].
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which, by means of ι2, defines the basis of sG0

T0 =



0 0 0 0 0 0

0 0 0 0 2 0

0 0 0 0 0 2

0 0 0 0 0 0

0 − 1
2 0 0 0 0

0 0 − 1
2 0 0 0


, T1 =



0 0 0 0 0 0

0 0 0 0 0 2

0 0 0 0 2 0

0 0 0 0 0 0

0 0 − 1
2 0 0 0

0 − 1
2 0 0 0 0


,

T2 =



0 0 0 0 0 0

0 0 −1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 1 0


, T3 =



0 0 0 0 0 0

0 0 0 0 2 0

0 0 0 0 0 −2

0 0 0 0 0 0

0 − 1
2 0 0 0 0

0 0 1
2 0 0 0


. (5.45)

Note that
T 2

0 = −∆ , [Ti, Tj ]+ = −δij∆ , 1 ≤ i ≤ j ≤ 3 ,

with

∆ =



0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, (5.46)

from which we immediately get the expression for a generic element of SG0 ,

S0(x0, ~x) = ex
0T0e~x·

~T

= (I6 − 2 sin2 x
0

2
∆ + sinx0T0)(I6 − 2 sin2 |~x|

2
∆ + sin |~x| ~x · ~T ) , (5.47)

where ~x = (x1, x2, x3), |~x| =
√
~x · ~x, ~T = (T1, T2, T3) and ~x · ~T =

∑3
i=1 x

iTi.
Finally, after setting

T gµ = Λ̃−1
g TµΛ̃g , µ = 0, 1, 2, 3 , ∆g = Λ̃−1

g ∆Λ̃g , (5.48)

we get for a generic element of SG

Sg(x
0, ~x) = Λ̃−1

g S0(x0, ~x)Λ̃g (5.49)

= (I6 − 2 sin2 x
0

2
∆g + sinx0T g0 )(I6 − 2 sin2 |~x|

2
∆g + sin |~x| ~x · ~T g) .

In order to have even more manageable expressions for the matrices, it may be conve-
nient to change to the basis Rµ defined by

R0 = T g0 , R1 =
g2

1 − g2
2

g2
1 + g2

2

T g1 −
2g1g2

g2
1 + g2

2

T g3 , R2 = T g2 , R3 =
g2

1 − g2
2

g2
1 + g2

2

T g3 +
2g1g2

g2
1 + g2

2

T g1 .
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Prepotential F = −X1X2X3/X0 This prepotential describes a special Kähler struc-
ture on the symmetric manifold (SU(1, 1)/U(1))

3, the well-known stu model. This is
symplectically equivalent to the model with F = −2i(X0X1X2X3)1/2, for which super-
symmetric black holes with purely electric gaugings are known analytically [78]. After
a symplectic transformation to F = −X1X2X3/X0, the electric gaugings considered
in [78] become G = (0, g1, g2, g3, g0, 0, 0, 0)t, so we shall concentrate on this case in what
follows. The symplectic section reads

V = (X0, X1, X2, X3, X1X2X3/(X0)2,−X2X3/X0,−X1X3/X0,−X2X1/X0)t .

Let us now look at the solutions of (5.3). To this end, we define

XXX ≡


X03

X02
X1

X02
X2

X02
X3

 , FFF ≡


X1X2X3

−X0X2X3

−X0X1X3

−X0X1X2

 , (5.50)

so that (5.3) becomes

XXXSXXX −FFFRFFF − 2XXXQtFFF = 0 . (5.51)

Since the lhs is a homogeneous polynomial of degree 6 in (X0, X1, X2, X3), the coeffi-
cients of each monomial must be zero. The simplest way to get the general solutions is
then to look at the powers of X0. The possible powers of X0 in pS ≡ XXXSXXX , pR ≡ FFFRFFF
and pQ ≡XXXQtFFF are (6, 5, 4), (2, 1, 0) and (4, 3, 2) respectively. Since S andR are symmet-
ric, pS and pR can vanish only if S and R are zero. Thus, we are left with the following
three possibilities:

1. R = 0 and pQ cancels pS . The only common power for X0 is 4, so we have to
take matrices which generate only this power and equal degrees for the remaining
variables. A quick inspection gives the solutions8

S1 =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0


, T1 =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0


,

8To avoid confusion, note that S denotes the 4× 4 matrix in (5.51), while S1, S2 and S3 defined below are
8× 8 matrices.
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U1 =



0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0


.

(5.52)

2. S = 0 and pQ cancels pR. The only common power for X0 is 2, so we have to take
matrices generating only this and equal degrees for the remaining variables. The
solution is

S2 = St1 , T2 = T t1 , U2 = U t1 . (5.53)

3. R = S = 0 and Q satisfies pQ = 0. This implies that Q must be diagonal and that
the space of such solutions is 3-dimensional. The simplest way to fix a basis of this
space is to choose

S3 = [S1, S2] , T3 = [T1, T2] , U3 = [U1, U2] . (5.54)

In this way the nine matrices ~S, ~T and ~U generate the group Ufi = (SL(2,R))3.
In order to determine the symmetry algebra sG we have to consider the equation (using
the same notation as in the previous subsection)

(~x · ~S + ~y · ~T + ~z · ~U)G = 0 , (5.55)

whose general solution is given by

U(x, z) = g0g
3xS1 + g1g2xS2 − g0g

2(x+ z)T1 − g1g3(x+ z)T2 + g0g
1zU1 + g2g3zU2 ,

for arbitrary x, z ∈ R. A convenient basis is

U1 = U(1,−1) , U2 = U(1, 0) , (5.56)

which defines a two-dimensional abelian algebra. Notice that

trU2
1 = trU2

2 = 8g0g
1g2g3 , (5.57)

so that the algebra is compact (and thus defines the group U(1) × U(1)) if and only
if g0g

1g2g3 < 0. One can easily verify that, unfortunately, none of these continuous
symmetries survives for the truncation to the t3 model [124, 138] with prepotential F =

−(X1)3/X0.
It is worth noting that a particular situation arises for g1 = g2 = g3 = −g0 ≡ g. As was
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shown in [139], there is an enhancement of the internal symmetry group of the bosonic
part of the action. This happens because the scalar potential V can be written in terms
of fundamental objects that define the nonlinear sigma model of the non-homogeneous
projective coordinates zi = xi + iyi [29, 139], namely

V = g2
3∑
i=1

trMi , Mi =

(
yi + xi2

yi
xi

yi

xi

yi
1
yi

)
. (5.58)

In fact, the transformation property of Mi,

Mi 7−→ T tMi T , (5.59)

implies the invariance of the potential only if T T t = 1. Going back to the symplectic
formalism we see that this condition is equivalent to require for the symmetry group
to be orthogonal, which, in terms of the elements of ufi amounts to consider just the
subspace of antisymmetric matrices. Thus, the symmetry algebra is generated by

W1 = S1 − S2 , W2 = T1 − T2 , W3 = U1 − U2 , (5.60)

while the subalgebra leaving G fixed is generated by W2 −W1 and W3 −W2. The full
symmetry group of the bosonic part of the action is therefore an extension Ui(bos) = U(1)3

of SG = U(1)2. The extra U(1) symmetry breaks supersymmetry, it is not a symmetry of
the BPS equation but only of the bosonic equations of motion. Infact U , respresting this
extra U(1) symmetry, maintains invariant the equations of motion under the action

(V,G,Fµν) 7→ (UV,G, UFµν) . (5.61)

It can be cosidered as an accidental symmetry present thanks to the special structure 5.58
of the potential.

Prepotential F = X1X2X3/X0 − A
3 (X3)3/X0 The base manifold for this prepotential

is neither symmetric nor homogeneous and it has been studied in [120]. The symplectic
section is given by V = (XΛ, FΛ)t, with

XΛt =


X0

X1

X2

X3

 , F tΛ =


−X1X2X3/(X0)2 + A

3 (X3)3/(X0)2

X2X3/X0

X1X3/X0

X1X2/X0 −A(X3)2/X0

 . (5.62)

The solution to (5.3) is obtained by proceeding exactly like in the previous subsection.
After introducing the vectors

XXX =


X03

X02
X1

X02
X2

X02
X3

 , FFF =


A
3 X

33 −X1X2X3

X0X2X3

X0X1X3

X0X1X2 −AX0X32

 , (5.63)
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we reduce the equations to a polynomial identity, and looking at the coefficients we get
a five-dimensional space of solutions generated by the symplectic matrices

S1 =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 −2A 0 0 0 0


, S2 =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0


,

S3 =



0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0


,

D1 =



3 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 −3 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1


, D2 =



0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0


.

(5.64)
A direct comparison with the results of [120] shows that this algebra strictly contains the
U-duality algebra. This is due to the fact that the group of symmetries of the scalar po-
tential is larger than the symmetry group of the whole Lagrangian. Indeed the generator
D2 does not leave the metric invariant. Thus, the U-duality group is generated by the
algebra

〈S1, S2, S3, D1〉R . (5.65)

Notice that the Si are nilpotent of order 4 for i = 1 and order 2 for i = 2, 3. They are
indeed eigenmatrices for the adjoint action of D1, all with eigenvalue −2. The stability
equation (5.19) has a nontrivial solution only if A = −g1g2/(g3)2. With this choice for A
one gets a one-dimensional algebra sG generated by
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s = S1 −
g1

g3
S3 −

g2

g3
S2 . (5.66)

It is nilpotent of order 4 so that Ui = SG is a unipotent group of order 4. It is worthwhile
to note that for g1 = g2 = g3 one gets A = −1, which is the physically most interesting
case, since the corresponding prepotential arises in the context of type IIA string theory
compactified on Calabi-Yau manifolds [140].

Scalar hair and dyonic solutions

We shall now use the results of the previous section in order to generate new supergrav-
ity solutions from a given seed. The transformations inUi add new parameters to a given
solution and leave not only the equations of motion invariant, but also some potential
first-order flow equations (if these are satisfied by the seed). The transformed field con-
figuration preserves thus the same amount of supersymmetry as the one from which we
started.
As was stressed in [139], the latter statement is not true in the STU model for the addi-
tional U(1) that arises for equal couplings, whose action generically leads to a non-BPS
solution. The same story holds also in the quadratic models for Tα and Lα, due to the
properties (5.27) and (5.30) [97].
In what follows we will consider several relevant examples for some well-studied pre-
potentials, but there is no obstacle to extending this method to other solutions and pre-
potentials as well. We underline that in the static case, owing to the existence of the
black hole potential VBH [105, 107], one can directly rotate the charges Q instead of the
field strengths Fµν .

Prepotential F = −iX0X1 For this prepotential, we have Ui(bos) = U(1)2, whose action
on the static and magnetic BPS seed solution of [78] is

(V,G,Q) 7−→ (Ṽ, G̃, Q̃) = (SV,G, TαSQ) . (5.67)

Using the results of section 5.3 and the constraints on the seed parameters (cf. [78]), one
gets

Q̃ = (p0 cosα, p1 cosα,−p1 sinα,−p0 sinα)t ,

z̃ =
X̃1

X̃0
=
g0

g1
· g1z cosβ + ig0 sinβ

g0 cosβ + ig1z sinβ
, z ≡ X1

X0
.

(5.68)

The parameter β does not modify the supersymmetry of the solution; for α = 0 the new
configuration satisfies again the BPS flow equations of [73, 78]. For α 6= 0 one gets a
solution that still obeys a first-order flow, but this time a non-BPS one [97], driven by the
fake superpotential

W = eU |〈T−αQ̃, Ṽ〉 − ie2(ψ−U)L̃| , (5.69)
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where U(r) and ψ(r) are functions appearing in the metric

ds2 = −e2Udt2 + e−2Udr2 + e2(ψ−U)(dθ2 + sinh2θdφ2) , (5.70)

and L was defined in section 3.4. The first-order equations following from (5.69) imply
the equations of motion provided the Dirac-type charge quantization condition

〈G,Q〉 = 1 (5.71)

holds [97]. From (5.68) we see that for α 6= 0 one generates a dyonic solution from a
purely magnetic one, while β adds scalar hair to the seed. Note that this result was first
obtained in [139].

As another example for the action of Ui(bos) we consider the Chow-Compère solution
[141], that solves the equations of motion following from the Lagrangian (2.12) of [141],

L = R ?1− 1

2
?dϕ ∧ dϕ− 1

2
e2ϕ ?dχ ∧ dχ− e−ϕ ?F 1 ∧ F 1 + χF 1 ∧ F 1 (5.72)

− 1

1 + χ2e2ϕ

(
eϕ ?F 2 ∧ F 2 + χe2ϕF 2 ∧ F 2

)
+ g2

(
4 + eϕ + e−ϕ + χ2eϕ

)
?1 ,

which is obtained from (2.15) by setting

z =
g0

g1

(
e−ϕ − iχ

)
, g0g1 = g2 , (5.73)

and redefining9

F 0 −→
√
g1

g0
F 1 , F 1 −→

√
g0

g1
F 2 . (5.74)

The dyonic rotating black hole solution of [141] is given by

ds2 = − R
W

(
dt− a2 − u1u2

a
dφ

)2

+
W

R
dr2 +

U

W

(
dt− r1r2 + a2

a
dφ

)2

+
W

U
du2 , (5.75)

where

R(r) = r2 − 2mr + a2 + g2r1r2(r1r2 + a2) ,

U(u) = −u2 + 2nu+ a2 + g2u1u2(u1u2 − a2) , (5.76)

W (r, u) = r1r2 + u1u2 , r1,2 = r + ∆r1,2 , u1,2 = u+ ∆u1,2 ,

and ∆r1,2, ∆u1,2 are constants defined by

∆r1 = m[cosh(2δ1) cosh(2γ2)− 1] + n sinh(2δ1) sinh(2γ1) ,

∆r2 = m[cosh(2δ2) cosh(2γ1)− 1] + n sinh(2δ2) sinh(2γ2) ,

∆u1 = n[cosh(2δ1) cosh(2γ2)− 1]−m sinh(2δ1) sinh(2γ1) ,

∆u2 = n[cosh(2δ2) cosh(2γ1)− 1]−m sinh(2δ2) sinh(2γ2) . (5.77)

9We assume g0/g1 > 0.



88 5.3 Producing axions with the stabilizier of G under U-duality

Below we shall also use the linear combinations

Σ∆r =
1

2
(∆r1 + ∆r2) , ∆∆r =

1

2
(∆r2 −∆r1) ,

Σ∆u =
1

2
(∆u1 + ∆u2) , ∆∆u =

1

2
(∆u2 −∆u1) . (5.78)

The complex scalar field has the very simple form

z =
g0

g1

r1 − iu1

r2 − iu2
, (5.79)

while the gauge fields and their duals read

A1 = ζ1(dt− adφ) +
r2u2ζ̃1
a

dφ , A2 = ζ2(dt− adφ) +
r1u1ζ̃2
a

dφ ,

Ã1 = ζ̃1(dt− adφ)− r1u1ζ
1

a
dφ , Ã2 = ζ̃2(dt− adφ)− r2u2ζ

2

a
dφ , (5.80)

where the three-dimensional electromagnetic scalars are

ζ1 =
1

2W

∂W

∂δ1
=
Q1r2 − P 1u2

W
, ζ̃1 =

Q1u1 + P 1r1

W
,

ζ2 =
1

2W

∂W

∂δ2
=
Q2r1 − P 2u1

W
, ζ̃2 =

Q2u2 + P 2r2

W
. (5.81)

Here, Q1,2 and P 1,2 denote respectively the electric and magnetic charges given by [141]

Q1 =
1

2

∂r1

∂δ1
, Q2 =

1

2

∂r2

∂δ2
, P 1 = −1

2

∂u1

∂δ1
, P 2 = −1

2

∂u2

∂δ2
. (5.82)

The solution is thus specified by the 7 parameters m, n, a, γ1,2 and δ1,2 that are related
to the mass, NUT charge, angular momentum, two electric and two magnetic charges.
Notice that a similar class of rotating black holes containing one parameter less was
constructed in [142].

Let us now consider the action of S defined in (5.24). For the transformed scalar we
get

z̃ =
X̃1

X̃0
=
g0

g1

r + ∆r′1 − i(u+ ∆u′1)

r + ∆r′2 − i(u+ ∆u′2)
, (5.83)

where
∆r′1
∆r′2
∆u′1
∆u′2

 =


cos2β sin2β − cosβ sinβ cosβ sinβ

sin2β cos2β cosβ sinβ − cosβ sinβ

cosβ sinβ − cosβ sinβ cos2β sin2β

− cosβ sinβ cosβ sinβ sin2β cos2β




∆r1

∆r2

∆u1

∆u2

 .

(5.84)
Note that the quantities Σ∆r and Σ∆u defined in (5.78) remain invariant under (5.84),
while ∆∆r and ∆∆u transform as
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(
∆′∆r
∆′∆u

)
=

(
cos 2β − sin 2β

sin 2β cos 2β

)(
∆∆r

∆∆u

)
. (5.85)

The transformed gauge fields can be easily inferred from
A1 +A2

g1
g0
Ã1 + g0

g1
Ã2

A2 −A1

g0
g1
Ã2 − g1

g0
Ã1


′

=


1 0 0 0

0 1 0 0

0 0 cos 2β − sin 2β

0 0 sin 2β cos 2β




A1 +A2

g1
g0
Ã1 + g0

g1
Ã2

A2 −A1

g0
g1
Ã2 − g1

g0
Ã1

 . (5.86)

In conclusion, S adds one more parameter β to the solution of [141].
Under the action of Tα (cf. (5.130)) the scalar z does not change. It turns out that the

new gauge fields can again be written in the form (5.80), but with the three-dimensional
electromagnetic scalars replaced by

√
g1
g0
ζ1√

g0
g1
ζ2√

g1
g0
ζ̃1√

g0
g1
ζ̃2

 7−→


cosα 0 0 sinα

0 cosα sinα 0

0 − sinα cosα 0

− sinα 0 0 cosα




√
g1
g0
ζ1√

g0
g1
ζ2√

g1
g0
ζ̃1√

g0
g1
ζ̃2

 . (5.87)

In other words, they transform (up to prefactors) with the same matrix Tα. This in-
variance can be used to generate additional charges by starting from a given seed. Set
e.g. γ2 = δ2 = 0 in (5.77), which by (5.82) implies P 2 = Q2 = 0. After acting with Tα one
gets a solution with all four charges nonvanishing, namely

Q′1 = Q1 cosα , P 1′ = P 1 cosα , Q′2 =
g1

g0
P 1 sinα , P 2′ = −g1

g0
Q1 sinα .

On the other hand, from the point of view of the AdS/CFT the β parameter enlarges the
set of the boundary conditions [143–145] and therefore deforms the dual CFT with mul-
titrace operator [146, 147]. The simplest example shown at the begining of this section
(5.68) is a fruitful arena to understand the meaning of the new parameter. If we take

z = e
√

2φ − i
√

2χ , (5.88)

the action is normalized as in [144] up to a global factor 1/2. The expansion of the fields
near the boundary is 10

φ =
4β0 cos 2β̂

a
√

2

1

r
+

8(β0)2 sin2(2β̂)

a2
√

2

1

r2
+O

(
1

r3

)
,

χ =
−4β0 sin 2β̂

a
√

2

1

r
+

16(β0)2(sin 3β̂ − sin β̂)

a2
√

2

1

r2
+O

(
1

r3

)
.

(5.89)

10We take g0 = g1 = 1, the coordinate z of [78] is replaced by r and we recall the previous parameter β as β̂
to avoid misleading errors in the following.
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Expanding the potential

V = −
(

2 + cosh
√

2φ+ e
√

2φχ2
)

(5.90)

near the extremum φ = χ = 0 one finds that the small fluctuations have m2
φ = m2

χ = −2

and due to the leading terms in expansion and to the Breitenlohner-Freedman bound
[144]. The coefficient α and β defined in [143] fix the value of

kφ = 2
√

2 tan 2β̂ , kχ =
4
√

2(sin 3β̂ − sin β̂)

sin2(2β̂)
. (5.91)

These constants determine the couplings in the dual CFT of the multitrace operators
[145] deforming the original action.

Prepotential F = i
4 ((X1)2 + (X2)2− (X0)2) In this case the most interesting feature of

Ui is the non-abelianity of SG , cf. sec. 5.3. As far as Lα is concerned, its effect is the same
as the one of Tα for F = −iX0X1, namely the transformed configuration solves non-BPS
first-order flow equations.
The nonabelian part acts nontrivially on the special scalars. With the 1-parameter sub-
groups exp(αµRµ) (µ = 0, . . . , 3, no summation over µ), where the Rµ are defined in
section 5.3, one can describe the action of SG on a static seed solution with charge vector
Q as

(V,G,Q) 7−→ (Ṽ, G̃, Q̃) = (eα0R0V,G, eα0R0Q) ,

z̃1 =
−g1(g0 + g1z

1 + g2z
2) + eiα0(g0g1 + (g2

0 − g2
2)z1 + g1g2z

2)

g0(g0 + g1z1 + g2z2)− eiα0(g2
1 + g2

2 + g0g2z2 + g0g1z1)
,

z̃2 =
−g2(g0 + g1z

1 + g2z
2) + eiα0(g0g2 + (g2

0 − g2
1)z2 + g1g2z

1)

g0(g0 + g1z1 + g2z2)− eiα0(g2
1 + g2

2 + g0g2z2 + g0g1z1)
,

(V,G,Q) 7−→ (Ṽ, G̃, Q̃) = (eα1R1V,G, eα1R1Q) ,

z̃1 =
−g1(g0 + g1z

1 + g2z
2) + (g0g1 + g2

0z
1 − g2

2z
1 + g1g2z

2) cosα1 − ĝ(g2 + g0z
2) sinα1

g0(g0 + g1z1 + g2z2)− (g2
1 + g0g1z1 + g2

2 + g0g2z2) cosα1 + ĝ(g1z2 − g2z1) sinα1
,

z̃2 =
−g2(g0 + g1z

1 + g2z
2) + (g0g2 + g2

0z
2 − g2

1z
2 + g2g1z

1) cosα1 + ĝ(g1 + g0z
1) sinα1

g0(g0 + g1z1 + g2z2)− (g2
1 + g0g1z1 + g2

2 + g0g2z2) cosα1 + ĝ(g1z2 − g2z1) sinα1
,

(V,G,Q) 7−→ (Ṽ, G̃, Q̃) = (eα2R2V,G, eα2R2Q) ,

z̃1 =
−g1(g0 + g1z

1 + g2z
2) + f(g1, g2, z

1, z2) cosα2 − h(g1, g2, z
1, z2) sinα2

g0(g0 + g1z1 + g2z2)− (g2
1 + g0g1z1 + g2(g2 + g0z2)) cosα2 + iĝ(g2z1 − g1z2) sinα2

,

z̃2 =
−g2(g0 + g1z

1 + g2z
2) + f(g2, g1, z

2, z1) cosα2 + h(g2, g1, z
2, z1) sinα2

g0(g0 + g1z1 + g2z2)− (g2
1 + g0g1z1 + g2(g2 + g0z2)) cosα2 + iĝ(g2z1 − g1z2) sinα2

,
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(V,G,Q) 7−→ (Ṽ, G̃, Q̃) = (eα3R3V,G, eα3R3Q) ,

z̃1 =
−g1(g2

1 + g2
2)(g0 + g1z

1 + g2z
2) + eiα3k(g1, g2, z

1, z2) + e−iα3g2ĝ
2(g2z

1 − g1z
2)

(g2
1 + g2

2) (g0(g0 + g1z1 + g2z2)− eiα3(g2
1 + g0g1z1 + g2

2 + g0g2z2))
,

z̃2 =
−g2(g2

1 + g2
2)(g0 + g1z

1 + g2z
2) + eiα3k(g2, g1, z

2, z1) + e−iα3g1ĝ
2(g1z

2 − g2z
1)

(g2
1 + g2

2) (g0(g0 + g1z1 + g2z2)− eiα3(g2
1 + g0g1z1 + g2

2 + g0g2z2))
,

where we used the definitions

ĝ =
√
g2

0 − g2
1 − g2

2 , f(g1, g2, z
1, z2) = g0g1 + g2

0z
1 + g1g2z

2 − g2
2z

1 ,

h(g1, g2, z
1, z2) =

iĝ

g2
1 + g2

2

(2g0g1g2z
1 + g2

1(g2 − g0z
2) + g2

2(g2 + g0z
2)) ,

k(g1, g2, z
1, z2) = g0g1(g2

1 + g0g1z
1 + g2

2 + g0g2z
2) .

(5.92)

The explicit expressions for Q̃ are not particularly enlightening, so we don’t report them
here. One may apply the above transformations to the static and magnetic BPS seed
given by eqns. (3.100) and (3.101) of [78] to generate dyonic and axionic solutions.
Note that the form of (5.49) splits the dependence of the group coordinates from the
couplings. Defining the section Vg = (XXXg,FFF g)

t ≡ Λ̃gV , the action of SG becomes Ṽg =

S0(x0, ~x)Vg that more explicitly reads

X̃XXg =


X0
g

eix
0
(
X1
g cos |~x|+ i((x1 + ix2)X2

g + ix3X1
g ) sin |~x|

)
eix

0
(
X2
g cos |~x|+ i((x1 − ix2)X1

g − ix3X2
g ) sin |~x|

)
 . (5.93)

This split is independent of the parametrization of the group and so one can also use
that of [136, 137].

PrepotentialF = −X1X2X3/X0 This model is related to the one withF = −2i(X0X1X2X3)1/2

by a symplectic rotation with the matrix (5.7). As a seed solution we shall thus take
the static magnetic BPS black holes given by eqns. (3.31)-(3.34) of [78], transformed to
F = −X1X2X3/X0. In this new frame, the vectors of charges and couplings are respec-
tively given by

Q = (p0, 0, 0, 0, 0, q1, q2, q3)t , G = (0, g1, g2, g3, g0, 0, 0, 0)t . (5.94)

Assuming g0g
1g2g3 < 0 and defining A ≡ (−g0g

1g2g3)1/2, the finite transformations
exp(α1U1) and exp(α2U2) generated by (5.56) act as

(V,G,Q) 7−→ (Ṽ, G̃, Q̃) = (eα1U1V,G, eα1U1Q) ,

z̃1 =
Az1 cos(Aα1) + g0g

1 sin(Aα1)

A cos(Aα1) + z1g2g3 sin(Aα1)
,

z̃2 = z2 ,

z̃3 =
Az3 cos(Aα1)− g0g

3 sin(Aα1)

A cos(Aα1)− z3g1g2 sin(Aα1)
,

(5.95)
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(V,G,Q) 7−→ (Ṽ, G̃, Q̃) = (eα2U2V,G, eα2U2Q) ,

z̃1 = z1 ,

z̃2 =
Az2 cos(Aα2) + g0g

2 sin(Aα2)

A cos(Aα2) + z2g1g3 sin(Aα2)
,

z̃3 =
Az3 cos(Aα2)− g0g

3 sin(Aα2)

A cos(Aα2)− z3g1g2 sin(Aα2)
.

(5.96)

Again, the expressions for Q̃ are not particularly enlightening, so we shall not report
them here. Notice that the transformations (5.95), (5.96) preserve the supersymmetry of
the seed.
As we pointed out in section 5.3, in the special case G = (0, g, g, g,−g, 0, 0, 0)t there
is an enhancement of the symmetry group to U(1)3 generated by (5.60). If we define
T = exp[α3

3 (W1 +W2 +W3)], the action of the extra U(1) is

(V,G,Q) 7−→ (Ṽ, G̃, Q̃) = (TV,G, TQ) ,

z̃1 =
z1 cosα3 − sinα3

z1 sinα3 + cosα3
,

z̃2 =
z2 cosα3 − sinα3

z2 sinα3 + cosα3
,

z̃3 =
z3 cosα3 − sinα3

z3 sinα3 + cosα3
,

(5.97)

plus an expression for the charges Q̃. (5.95), (5.96) and (5.97) where first obtained in [139].
Note that T breaks supersymmetry, since it does not belong to the stabilizer SG . In fact,

TG ≡ Gα3
= g(sinα3, cosα3, cosα3, cosα3,− cosα3, sinα3, sinα3, sinα3)t . (5.98)

However, the transformed solution still satisfies first-order non-BPS flow equations driven
by the fake superpotential [97]11

W = eU |〈Q̃, Ṽ〉 − ie2(ψ−U)〈Gα3 , Ṽ〉| , (5.99)

provided the charge quantization condition 〈G,Q〉 = −κ holds, where κ = 0, 1,−1 for
flat, spherical or hyperbolic horizons respectively.

Prepotential F = X1X2X3/X0 + g1g2

3(g3)2 (X3)3/X0 In this case the only known solution
with running scalars is that of [120], with static metric and purely imaginary scalar fields,

X1/X0 = z1 = −iλ1 , X2/X0 = z2 = −iλ2 , X3/X0 = z3 = −iλ3 . (5.100)

The charges and coupling constants are given by

11Notice that this flow is a BPS flow for a theory with gaugings given by Gα3 .
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Q = (p0, 0, 0, 0, 0, q1, q2, q3)t , G = (0, g1, g2, g3, g0, 0, 0, 0)t . (5.101)

Applying the finite transformation generated by (5.66) yields for the scalars

z̃1 = −iλ1 − g1

g3
c , z̃2 = −iλ2 − g2

g3
c , z̃2 = −iλ3 + c , (5.102)

and for the charges

Q̃ =



p0

−(cg1p0)/g3

−(cg2p0)/g3

cp0

−(4c3g1g2p0)/(3g32
) + (g1q1 + g2q2 − g3q3)/g3

q1 − c2g2p0/g3

q2 − c2g1p0/g3

q3 + 2c2g1g2p0/g32


, (5.103)

where c is a group parameter. This solution is again BPS but has also nontrivial (constant)
axions turned on and all charges are nonvanishing.

Extension to hypermultiplets

A possible generalization to include also hypermultiplets is described here. In this case
the situation is more involved, since the coupling constants are replaced by the moment
maps Px. However, when only abelian isometries of the quaternionic hyperscalar target
space are gauged, the scalar potential can be cast into the form (3.137)

V = GABDALDBL̄ − 3|L|2 . (5.104)

The most general symmetry transformation of the nonlinear sigma model is a linear
combination of the isometries of the quaternionic and the special Kähler manifold. Let
us define the formal operator

δ = kuDu + UV δ

δV
+ U V̄ δ

δV̄
+ UAµ

δ

δAµ
+ ki∂i + kı̄∂ı̄ , (5.105)

where ku is a Killing vector of the quaternionic manifold, U an element of the U-duality
algebra, ki the corresponding holomorphic special Kähler Killing vector, and Aµ is the
symplectic vector of the gauge potentials. Then it is clear from (5.104) that a sufficient
condition for δV = 0 is δL = 012, that holds if and only if

kuDuP̂x = U P̂x , (5.106)

where we added a hat to the quaternionic quantities that define the gaugings. Moreover
the invariance of the kinetic term of the hyperscalars [51] leads to

12Note that, as in the FI case, δL = 0 is in general sufficient but not necessary.



94 5.4 Stationary dyonic black string in the STU model

(Lkk̂)v = Uk̂v , (5.107)

where L denotes the Lie derivative. After choosing a specific model, these equations can
in principle be solved for the parameters that define the linear combination of Killing
vectors (5.105). In practice, (5.106) and (5.107) represent a highly constrained and very
model-dependent system, and it is a priori not guaranteed that a nontrivial solution
exists in general. In the FI limit, (5.106) boils down to the stabilization equation for the
coupling constants G and (5.107) is trivially satisfied, as it must be.
An interesting class of these models are the N = 2 truncations of M-theory described
in [3, 18]. In this case the solution of (5.106) and (5.107) could simplify the study of the
attractor equations, necessary to work along the lines of [113], namely to compare the
gravity side with the recent field theory results of [114–116].

5.4 Stationary dyonic black string in the STU model

In the supergravity theory with eight supercharges a particular interesting position is
reserved to the STU model that comes both in d = 4 and d = 5 as an effective model
of string compactification. With the r-map construction 2.3 the two cases are linked and
this can be used to analyze solutions in the two frameworks. In particular, it is possible
to use the rich techniques developed in d = 4 to generate more complicated solution
physically relevant d = 5. We show an example of how this works in a very simple
example.
In five dimensions STU model is characterized by the section constraint (5.108)

V = h1h2h3 = 1 , (5.108)

that means a symmetric CIJK tensor with only nontrivial component C123 = 1, up to
permutations. The functions hI = hI(φ1, φ2) are (5.118). By the r-map construction 2.3
it can be equivalently descibed in d = 4 FI gauged supergravity with a prepotential and
vector-couplings

F =
−X1X2X3

X0
, G = (0, 0, 0, 0, 0, g1, g2, g3)t . (5.109)

Domain wall solution in d = 4 and its uplift

In [78] various solutions to models in d = 4 N = 2 gauged supergravity are found. In
particular, for the prepotential F = −X1X2X3/X0, the solution reads 13

ds2 = −4b2dt2 +
1

b2
ydy2

cy + 2gp
+
y3

b2
(dθ2 + sinh2 θdφ2) , (5.110)

where
13 To make the comparison between 2.1 and [78] one has to take gCK → g/2 and (G)π → 1

8
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b4 =
8g1g2g3y

9
2

H0(cy + 2gp)
3
2

, H0 =
2q0

3g2p2y
3
2

(cy + 2gp)
1
2 (cy − gp) + h0 , (5.111)

with field strenghts and scalars

F 0 = 4dt ∧ d(H0)−1 , F I =
pI

2
sinh θdθ ∧ dφ , zi = iτ i = i

√
g1g2g3√

2gI

√
H0y

3
4

(cy + 2gp)
1
4

.

(5.112)
This field configuration is 1

4 -BPS and the near horizon metric is a 1
2 -BPS attractor point

AdS2 × H2. The range of the parameters is q0 < 0, pI > 0, c > 0, gp > 0, h0 > 2|q0|c
3
2

3g2p2

and coupling constants and magnetic charges are constrained by the three equations
gIp

I = gp 14, so it has effectively only one magnetic and one electric free parameters.
This implies that the configuration, imposing the physical requirement gI = g, lives in
the truncation, called t3, characterized by the prepotential F = −(X1)3/X0. Moreover
this solution has an horizon for y = 0 and it is not asymptotically AdS4.
A useful change of coordinates is

√
ydy

(cy + 2gp)
1
2

= dY , t→ t

2
, (5.113)

for which the metric assumes the form

ds2 = −e2Udt2 + e−2U
(
dY 2 + e2ψdΩ2

H2

)
, (5.114)

with e2U = b2 and e2ψ = y3, where y must be red as an implicit function of Y . Looking
at sec:gen4 is immediate to find the graviphoton

F 0 = − 1

(H0)2

4q0

y3
dt ∧ dY = −e2(U−ψ)I00 q0

2
dt ∧ dY , (5.115)

and all the informations on the fluxes can be described by the components of the fluxes
on H2

F0 =
q0

2
sinh θdθ ∧ dφ , F I =

pI

2
sinh θdθ ∧ dφ . (5.116)

The dictionary described in (2.3) can be used to uplift the field configuration (5.110),
(5.112), in d = 5. With the change of radial variable y = r2 the metric reads

ds2 = 2

(
1

H0b

) 2
3
(

1

b2
4r4dr2

cr2 + 2gp
+
r6

b2
dΩ2

H2

)
+

1

4
(H0b)

4
3

(
dz2 − 8

√
2

H0
dtdz

)
, (5.117)

with the functions defined as

b4 =
8g1g2g3r

9

H0(cr2 + 2gp)
3
2

, H0 =
2q0

3g2p2r3
(cr2 + 2gp)

1
2 (cr2 − gp) + h0 . (5.118)

The fluxes and the scalars are
14No summation over I.
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F I =
pI√

2
sinh θdθ ∧ dφ , hI =

(g1g2g3)
1
3

gI
. (5.119)

The metric (5.117) can be simplified to

ds2 =
2

(g1g2g3)
2
3

dr2

r2
+

cr2 + 2gp

2(g1g2g3)
2
3

dΩ2
H2 + 2

√
2

(g1g2g3)
1
3 r3√

cr2 + 2gp
dz

(
H0

4
√

2
dz − dt

)
, (5.120)

and it appears as a particular case of the general class described in [148]. It’s worth not-
ing that this connection permits to generate static four-dimensional black hole solution
that break the SO(2, 1) symmetry, through the explicit dependence from other coordi-
nates.

The supersymmetry variations of the theory reads [149]15

δψµ =

(
Dµ +

i

8
hI(Γµ

νρ − 4δµ
νΓρ)F Iνρ +

1

6
√

2
Γµh

IgI

)
ε ,

δλi =

(
3

8
ΓµνF Iµν∂ihI −

i

2
GijΓµ∂µφi +

1

2
√

2
gI∂ih

I

)
ε ,

(5.121)

where

Dµε =

(
∂µ +

1

4
ωµabΓ

ab − i

2
√

2
gIA

I
µ

)
ε . (5.122)

and the configuration (5.117) and (5.119) satisfies them (5.121) with a Killing spinor

ε = Y (r)(1 + iΓ32)(1− Γ1)ε0 , (5.123)

where ε0 is a generic constant Dirac spinor and therefore it is 1
4 -BPS, once the quantiza-

tion condition gIpI = 2 is imposed. The fuction H0 remains undeterminated by the BPS
equation, it is fixed by the zz component of the Einstein equation as required for the null
class [148, 150].
It has an horizon in r = 0, where the metric approach AdS3 ×H2, while asymptotically
becomes a magnetic AdS5. In the null class of minimal gauged supergravity, this solu-
tion is the most general with these limits. This happens in a unusual set of coordinates,
infact in the near horizon limit, changing the coordinates as

t→ 3
√

3

4
√

2
(g1g2g3)

1
3 t , z →

√
3gp

(g1g2g3)
1
6

z , r3 → ρ , (5.124)

the metric assumes the nice form

ds2 = R2
H2dΩ2

H2 + (dz + 2lρdt)
2

+ l2
(

dρ2

4ρ2
− 4ρ2dt2

)
, (5.125)

where the radii read
15We use the metric ηab = (−,+,+,+,+), the Clifford algebra [Γa,Γb]+ = 2ηab, the spin connection ωµab

and Γa1...an = Γ[a1 ...Γan].
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RH2 =

√
gp

(g1g2g3)
1
6

, l =
2
√

2

3(g1g2g3)
1
3

. (5.126)

The metric (5.125) is a particular set of coordinates that shows a product space of an H2

and an Hopf-like fibration AdS3 → AdS2. The cosmological constant is Λ = −2/l2 =

− 9
4 (g1g2g3)

2
3 .

The limit for r →∞ shows a metric

ds2 =
cr2

2(g1g2g3)
2
3

dΩ2
H2 +

2

(g1g2g3)
2
3

dr2

r2
+

(g1g2g3)
1
3 r2

2
√
c

dz

((
2q0c

3
2

3g2p2
+ h0

)
dz − 4

√
2dt

)
.

(5.127)
that with approprite rescaling and a linear diffeomorphism reads

ds2 =
α2

r2
dr2 +

r2

α2
dz2 − r2

α2
dt2 +

r2

β2
dΩ2

H2 , (5.128)

with α =
√

2/(g1g2g3)
1
3 and β =

√
2(g1g2g3)

1
3 /
√
c. Therefore asymptotically we have a

conformal boundary

Rµν =
2

3
Λgµν +O(r0)µν , Λ = −3(g1g2g3)

2
3 . (5.129)

The metric (5.128) is called magnetic AdS5 [151], because it is not diffeomorphic to ex-
actly AdS5, but in the limit in which r is large, the O(r0)µν can be negleted.

Residual symmetries and dyonic black string

The residual symmetries of the d = 4 theory consists in evaluating the stabilizer of the
U-duality group acting in the symplectic representation on the vector of the couplings
of the theory G = (0, 0, 0, 0, 0, g, g, g)t. In this case the stabilizer algebra reads

T (a1, a2) =



0 0 0 0 0 0 0 0

a1 0 0 0 0 0 0 0

a2 0 0 0 0 0 0 0

−a1 − a2 0 0 0 0 0 0 0

0 0 0 0 0 −a1 −a2 a1 + a2

0 0 a1 + a2 −a2 0 0 0 0

0 a1 + a2 0 −a1 0 0 0 0

0 −a2 −a1 0 0 0 0 0


,

(5.130)
a two dimensional abelian nilpotent subalgebra of order three of sp(8,R) algebra.
The informations on the fluxes is recollected in the symplectic vectorQ, defined with the
dual field strenghts

FΛµν = RΛΣF
Σ
µν −

1

2
IΛΣεµνρσ

√
−gFΣρσ . (5.131)

For a static solution
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ds2 = −e2Udt2 + e−2U
(
dr2 + e2ψdΩ2

H2

)
, (5.132)

the Maxwell equation is solved for

FΛ
tr = e2(U−ψ)IΛΣ(RΣΓp

Γ − qΣ) , FΛ
θφ = pΛfκ(θ) , (5.133)

with corresponding dual field strenghts

FΛtr = e2(U−ψ)
(
IΛΣp

Σ +RΛΓI
ΓΩRΩΣp

Σ −RΛΓI
ΓΩqΩ

)
, FΛθφ = qΛfκ(θ) . (5.134)

The components θφ fix uniquely the fluxes.
Following the recipe of 5.3 one can generate a new configuration from the seed solu-

tion (5.132) and the respective fluxes (5.116). Considering that q0 = −|q0|, starting form
the fluxes 16

Q = (0, p, p, p,−|q0|, 0, 0, 0)t , (5.135)

the action of U = eT (a1,a2) (5.130) generates

Q′ =



0

p

p

p

−|q0|+ (a1a2 + a2
1 + a2

2)p

−a1p

−a2p

(a1 + a2)p


. (5.136)

The scalars acquire a constant axion

z1′ = z1 + a1 , z2′ = z2 + a2 , z3′ = z3 − a1 − a2 . (5.137)

From (5.136) one could think that choosing properly the parameters a1, a2 the gravipho-
ton could be set to zero, but the form of the field strenghts in presence of axions read

FΛ =
e2U−2ψ

2
IΛΣ(RΣΓp

Γ − qΣ)dt ∧ dY +
pΛ

2
sinh θdθ ∧ dφ =

=
1

2
SΛdt ∧ dY +

pΛ

2
sinh θdθ ∧ dφ ,

(5.138)

where the vectors are

SΛ =
|q0|

τ1τ2τ3
(1, a1, a2,−a1 − a2)t , pΛ = (0, p, p, p)t . (5.139)

The form of the last vector shows explicitly that for q0 = 0 the solution cannot be dyonic.
In terms of the r and t coordinates, the metric of the uplift is

16Note that the restriction made g1 = g2 = g3 plus constraints gIpI = gp impose p1 = p2 = p3 = p.
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ds2 =
2

g2

dr2

r2
+
cr2 + 2gp

2g2
dΩ2

H2 + 2
√

2
gr3√

cr2 + 2gp
dz

(
H0

4
√

2
dz − dt

)
, (5.140)

The uplifted field strenghts and scalars result

F I =
b2

r6
SI

2
√

2r2

(cr2 + 2gp)
1
2

dt ∧ dr +
pI√

2
sinh θdθ ∧ dφ , hI = 1 , (5.141)

where

SI =
|q0|

τ1τ2τ3
(a1, a2,−a1 − a2)t , pI = (p, p, p)t . (5.142)

and τ I are defined in (5.112), up to the definition of the new coordinate y = r2. This
solution results to be a flow between magnetic AdS5 and AdS3 × H2, in fact the metric
remains untouched by the duality rotation. New features are the two charge’s parame-
ters that however maintain the same degree of supersymmetry of the configuration, as
can be easily seen inserting (5.142) in the supersymmetry variations (5.121). Moreover
the structure (5.142) shows that the new solution can no more be embedded in the t3

truncation of the STU model.

Dyonic black string rotating along ∂φ and ∂z

The idea is to generate a genuine rotating black string solution starting from the previous
one applying the same solution generanting technique, but this time along the other
killing vector ∂φ. The seed is (5.140) with respective fluxes and scalars (5.141). After the
reduction the four-dimensional configuration reads

ds2 = sinh θ

√2
(
cr2 + 2gp

) 1
2

g3

dr2

r2
+

(
cr2 + 2gp

) 3
2

2
√

2g3
dθ2 + 2r3dz

(
H0

4
√

2
dz − dt

) ,

AΛ =

(
0,

4qI
H0

dt

)
, zi =

pI√
2

cosh θ + i

(
cr2 + 2gp

) 1
2 sinh θ

√
2gI

,

(5.143)

where q3 = −q1−q2. Now one can apply the same duality transformation of the previous
section. The graviphoton is switched on

Q = (0, 0, 0, 0, 0, q1, q2,−q1 − q2)→ Q′ = (0, 0, 0, 0, ω, q1, q2,−q1 − q2)t , (5.144)

where ω = −a1(2q1 + q2)− a2(q1 + 2q2), and the scalar fields aquire a real constant part
as in (5.137). The lifting of the solution reads

ds2 =
2

g2

dr2

r2
+
cr2 + 2gp

2g2
dΩ2

H2 +
2
√

2g

(cr2 + 2gp)
1
2

r3dz

(
H0

4
√

2
dz − dt

)

+
cr2 + 2gp

2g2
sinh2 θ

(
8
√

2ω

H0
dφdt+

32ω2

(H0)
2 dt2

)
,

(5.145)
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with functions defined in (5.118) and the gauge fields and scalars, up to gauge transfor-
mation, read

AI =
pI√

2
cosh θdφ+

4qI
H0

dt+

(
sI +

pI√
2

cosh θ

)
4ω

H0
dt , hI = 1 , (5.146)

where sI = (a1, a2,−a1 − a2).
The near horizon limit of (5.145), r → 0, leads to the metric

ds2 =
2

g2

dr2

r2
+
p

g
dΩ2

H2 +
2g
√
gp
r3dz

(
H̃

4
√

2
dz − dt

)
+
p sinh2 θ

g

(
8
√

2ω

H̃
dφdt+

32ω2

H̃2
dt2

)
,

(5.147)
where

H̃ = h0 − 2
√

2|q0|
3
√
gp

1

r3
. (5.148)

The metric (5.145) at infinity becomes

ds2 =
2

g2

dr2

r2
+
cr2

2g2
dΩ2

H2 +
2
√

2g√
c
r2dz

(
H0

4
√

2
dz − dt

)
+
cr2 sinh2 θ

2g2

(
8
√

2ω

H0
dφdt+

32ω2

(H0)
2 dt2

)
,

(5.149)

that with approprite rescaling and a linear diffeomorphism reads

ds2 =
α2

r2
dr2 +

r2

α2
dz2 − r2

α2
dt2 +

r2

β2
dΩ2

H2 , (5.150)

with α =
√

2/g
1
3 and β =

√
2g

1
3 /
√
c. The metric (5.149) approaches again a magnetic

AdS5 (5.129) and the ω parameter is linked to a rotation property of the solution along
the φ direction.
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