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We analyze the virtual element methods (VEM) on a simple elliptic model problem,
allowing for more general meshes than the one typically considered in the VEM literature.
For instance, meshes with arbitrarily small edges (with respect to the parent element
diameter) can be dealt with. Our general approach applies to different choices of the
stability form, including, for example, the “classical” one introduced in Ref. 4, and
a recent one presented in Ref. 34. Finally, we show that the stabilization term can be
simplified by dropping the contribution of the internal-to-the-element degrees of freedom.
The resulting stabilization form, involving only the boundary degrees of freedom, can
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be used in the VEM scheme without affecting the stability and convergence properties.
The numerical tests are in accordance with the theoretical predictions.

Keywords: Virtual element methods; stability analysis; convergence analysis.

AMS Subject Classification: 65N12, 65N30, 65N15

1. Introduction

The virtual element method (VEM) has been introduced recently in Refs. 4, 5,
16 and 1 as a generalization of the finite element method that allows to make
use of general polygonal/polyhedral meshes. The VEM, that enjoyed an increasing
interest in the recent literature, has been developed in many aspects and applied
to many different problems; we here cite only a few works (Refs. 8, 6, 7, 11, 12, 15,
24, 17, 27, 28, 10, 34 and 33) in addition to the ones above, without pretending
to be exhaustive. We also note that VEM is not the only recent method that can
make use of polytopal meshes: we refer, again as a minimal sample list of papers,
to Refs. 18, 19, 20, 23, 29, 31 and 32.

A VEM scheme may be seen as a Galerkin method built by means of two parts:

(1) a first term strongly consistent on polynomials, which guarantees the accuracy;
(2) a stabilization term sE(·, ·), involving a suitably designed bilinear form.

We remark that under the usual assumptions on the polygonal mesh (namely,
shape regularity and the property that in a polygon, the length of each edge is
uniformly comparable to the diameter), devising and proving the stability features
of the form sE(·, ·) is quite simple. This is the reason why, in the VEM literature,
the focus is on describing explicit expression for sE(·, ·), while the proof of the
corresponding stability result is often omitted. Instead, the stability analysis is more
involved if one allows for more general mesh assumptions (for instance dropping the
edge length condition mentioned above).

This paper focuses on the stability properties of the bilinear form sE(·, ·).
Although the approach we follow is quite general, we here consider the problem
and notation of Refs. 4 and 6 in order to keep the presentation clearer. Our main
results are the following.

• The development of a new strategy to prove the convergence of the VEM schemes,
which requires weaker stability conditions on sE(·, ·) than the usual ones. Our
approach is used to analyze the situations described below:

(1) VEM schemes using a sequence of meshes with minor restrictions than the
ones usually requested. In particular, our analysis covers some instance
of shape regular meshes with edges arbitrarily short with respect to the
diameters of the elements they belong to.

(2) Different instances of stabilization forms sE(·, ·). Among them, we provide
a detailed analysis of both the classical choice presented in Refs. 4 and 6,
and a new one proposed in Ref. 34. In addition, it is worth remarking that a
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stability analysis for this latter choice could be developed using the tools of
Ref. 4. However, the resulting error bound would be sub-optimal, in contrast
with the numerical evidences. Our new approach, instead, leads to establish
error bounds in perfect accordance with the numerical tests. We also show
that the choice presented in Ref. 34, can have superior robustness properties
in the presence of small edges.

• The development of a stability result concerning the choice of sE(·, ·) presented in
Refs. 4 and 6 that is valid under more general mesh assumptions. Essentially, we
prove that the stabilization term is equivalent to the H1-seminorm, where one of
the two equivalence constants logarithmically degenerates in presence of “small”
edges.

• An interesting result regarding the structure of sE(·, ·). More precisely, we prove
that the internal term s◦E(·, ·) can be dropped without any detriment to the
stability features of the underlying VEM scheme.

A brief outline of the paper is as follows. In Sec. 2, we present the continuous
model problem, we review its virtual element discretization and we summarize the
main results of the paper. In Sec. 3, we present and develop our error analysis
strategy. Afterwards, in Sec. 4, we apply such an approach in order to analyze
some existing choices of the stability form, under more general mesh assumptions
than the ones typically adopted in the VEM literature. We present some numerical
tests in Sec. 5. Finally, a set of basic, yet important, technical tools are detailed
in Sec. 6.

2. The Continuous and Discrete Problems

In this section, we briefly present the continuous problem and its discretization with
the VEM. More details can be found in Refs. 4 and 6.

2.1. The continuous problem

As a model elliptic problem we consider the diffusion problem in primal form.
Defining (·, ·) as the scalar product in L2, and a(u, v) := (K∇u,∇v), the variational
formulation of the problem reads:{

Find u ∈ V := H1
0 (Ω) such that

a(u, v) = (f, v) ∀ v ∈ V,
(2.1)

where Ω ⊂ R
2 is a polygonal domain and the loading f ∈ L2(Ω). The diffusion

symmetric tensor K = K(x, y) is assumed to satisfy:

c|ξ|2 ≤ ξ · K(x, y)ξ ≤ C|ξ|2, ∀ ξ ∈ R
2, ∀(x, y) ∈ Ω.

Above, | · | denotes the Euclidean norm in R
2, while c and C are positive constants.
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It is well known that problem (2.1) has a unique solution, because our assump-
tions on K and the Poincaré inequality yield:

a(u, v) ≤ M‖u‖H1(Ω)‖v‖H1(Ω), a(v, v) ≥ α‖v‖2
H1(Ω) ∀u, v ∈ V, (2.2)

with 0 < α ≤ M < +∞.
Note that the bilinear form a(·, ·) in (2.2) can obviously be split as:

a(v, w) =
∑

E∈Th

aE(v, w) with aE(v, w) :=
∫

E

K ∇v · ∇w, (2.3)

for all v, w ∈ V .

2.2. The virtual element method

Let k be an integer, equal or greater than 1, and let {Ωh}h denote a family of
meshes, made of general simple polygons, on Ω. Given an element E ∈ Ωh of
diameter hE and area |E|, its boundary ∂E is subdivided into N = N(E) straight
segments, which are called edges, with a little abuse of terminology. Accordingly,
the endpoints of the edges are called vertices of the element E. We remark that
several consecutive edges of E may be collinear; as a consequence, the number of
edges (and vertices) may be greater than the minimum number of straight segments
covering ∂E. Hence, a triangle may have 10 edges, for instance. Furthermore, the
length of an edge e ∈ ∂E is denoted by he. Moreover, in the sequel we assume that
the diffusion tensor K is piecewise constant with respect to the meshes {Ωh}h.

For each E ∈ Ωh, we now introduce the local virtual space

VE = {vh ∈ H1(E) ∩ C0(E) : −∆vh ∈ Pk−2(E), vh|e ∈ Pk(e) ∀ e ∈ ∂E},

where Pn, n ∈ N, denotes the polynomial space of degree n, with the convention
that P−1 = {0}. The associated set of local degrees of freedom Ξ (divided into
boundary ones Ξ∂ , and internal ones Ξ◦) are given by:

• point values at the vertices of E;
• for each edge, point values at (k−1) distinct points on the edge (this are typically

taken as the internal Gauss–Lobatto nodes, see Refs. 4 and 6);
• the internal moments against a scaled polynomial basis {mi}k(k−1)/2

i=1 of Pk−2(E):

Ξ◦
i (vh) = |E|−1

∫
E

vhmi, span{mi}k(k−1)/2
i=1 = Pk−2(E), ‖mi‖L∞(E) 
 1.

(2.4)

For future reference, we collect all the Nk boundary degrees of freedom (the first
two items above) and denote them with {Ξ∂

i }Nk
i=1.

The global space Vh ⊆ H1
0 (Ω) (such that Vh|E = VE) is obtained by gluing the

above spaces, and the same holds for the global degrees of freedom. We refer to
Ref. 4 for the explicit expression. On each element E we also define a projector
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Π∇
E : VE → Pk(E), orthogonal with respect to the bilinear form aE(·, ·). More

explicitly, for all vh ∈ VE :
Π∇

Evh ∈ Pk(E),

aE(vh − Π∇
Evh, p) = 0 ∀ p ∈ Pk(E),

R(vh − Π∇
Evh) = 0,

(2.5)

where R denotes any projection operator onto the space P0(E). In the literature, one
can find various choices for the operator R. We here focus on a popular choice, that
makes use of an average on the boundary (for other possible choices see Remark 2.2):

Rvh = |∂E|−1

∫
∂E

vh. (2.6)

It is easy to check that the above projector Π∇
E is computable on the basis of

the available degrees of freedom (see Ref. 4). Moreover, we introduce the following
symmetric and positive semi-definite stability bilinear form on VE × VE :

sE(vh, wh) = s∂
E(vh, wh) + s◦E(vh, wh). (2.7)

Equation (2.7) highlights that sE is the sum of two contributions: the first, s∂
E ,

involving the boundary degrees of freedom; the second, s◦e, involving the internal
degrees of freedom. For s◦e, the classical choice is:

s◦E(vh, wh) =
k(k−1)/2∑

i=1

Ξ◦
i (vh)Ξ◦

i (wh). (2.8)

As far as s∂
E is concerned, we consider the following two options:

s∂
E(vh, wh) =

Nk∑
i=1

Ξ∂
i (vh)Ξ∂

i (wh) (classical choice); (2.9)

s∂
E(vh, wh) = hE

∫
∂E

∂svh∂swhds (choice proposed in Ref. 34). (2.10)

Now we can define the local discrete bilinear forms on VE × VE :

ah
E(vh, wh) = aE(Π∇

Evh, Π∇
Ewh) + sE((I − Π∇

E )vh, (I − Π∇
E )wh) (2.11)

that are computable and approximate aE(·, ·). Given the global discrete form

ah(vh, wh) =
∑

E∈Ωh

ah
E(vh|E , wh|E) ∀ vh, wh ∈ Vh, (2.12)

the discrete problem is:{
Find uh ∈ Vh,

ah(uh, vh) = 〈fh, vh〉 ∀ vh ∈ Vh.
(2.13)

For a discussion about the approximated loading term 〈fh, vh〉, we refer to
Refs. 4 and 1. In order to shorten the notation, and also to underline the generality
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of the proposed approach, in the following we will simply use ΠE instead of Π∇
E to

denote the projector operator.

Remark 2.1. The stability form sE(·, ·) may also be scaled by a multiplicative
factor τE > 0, to take into account the magnitude of the material parameter K, for
instance. In this respect, a possible choice could be to set τE as the trace of K on
each element. In this paper, we do not deeply investigate on how to select τE , but
we address the reader to Refs. 5, 24 and 8 for some study on such an issue.

Remark 2.2. In addition to (2.6), a pair of other popular choices for the operator
R are the following. A typical one, that can be used for k ≥ 2, is given by the
average on the element E:

Rvh = |E|−1

∫
E

vh.

Another choice, valid for any k, is the average of the vertex values

Rvh =
1
N

N∑
i=1

vh(pi),

where the pi’s denote the vertices of E. The analysis of this paper easily extends,
with minor modifications, also to the two cases here above. The details of the proofs
can be found in Ref. 9.

2.3. Mesh assumptions and overview of the main results

In this section, we present the mesh assumptions considered in the paper, along
with a table summarizing the main results.

We will deal with the following three mesh assumptions.

(A1) It exists γ ∈ R
+ such that all elements E of the mesh family {Ωh}h are

star-shaped with respect to a ball BE of radius ρE ≥ γhE and center xE .
(A2) It exists C ∈ N such that N(E) ≤ C for all elements E ∈ {Ωh}h.
(A3) It exists η ∈ R

+ such that for all elements E of the mesh family {Ωh}h and
all edges e ∈ ∂E it holds he ≥ ηhE .

In all the presented results we will explicitly write which of those hypotheses are
used, if any.

We remark that assumptions (A1) and (A3) are those considered in Ref. 4.
Here, we want to consider also weaker assumptions in terms of the edge require-
ments, namely the combination of (A1) and (A2). It is easy to check that, pro-
vided (A1) holds, assumption (A3) implies (A2). However, assumption (A2) is much
weaker than (A3), as it allows for edges arbitrarily small with respect to the element
diameter.

In the following the symbol � will denote a bound up to a constant that is
uniform for all E ∈ {Ωh}h (but may depend on the polynomial degree k). Moreover,
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Table 1. Scheme of the convergence results. The row determines the mesh assumptions, while the

column the type of stabilization boundary term. hm(E) denotes the length of the smallest edge
of E.

s∂
E(vh, wh) = s∂

E(vh, wh) =PNk
i=1 Ξ∂

i (vh)Ξ∂
i (wh) hE

R
∂E ∂svh ∂swh ds

(A1)
‖u − uh‖1,Ω � hs−1 |u|s,Ω

with 3/2 < s ≤ k + 1

(A1 + A2)
‖u − uh‖1,Ω � c(h) hs−1 |u|s,Ω

c(h) = maxE∈Ωh

„
log

„
1 + hE

hm(E)

««
same as for (A1)

with 1 < s ≤ k + 1

(A1 + A3)
‖u − uh‖1,Ω � hs−1 |u|s,Ω same as for (A1)
with 1 < s ≤ k + 1

in order to make the notation shorter, for any non-negative real s we will denote by

‖v‖s,ω = ‖v‖Hs(ω), |v|s,ω = |v|Hs(ω),

the standard Hs-Sobolev (semi)norm on the measurable open set ω (see for instance
Ref. 3). In particular, the H1/2-boundary seminorm will have an important role in
the paper. We thus recall its definition:

|v|21/2,∂E :=
∫

∂E

∫
∂E

(
v(s1) − v(s2)

s1 − s2

)2

ds1ds2, (2.14)

where, with a small abuse of notation, v stands for v|∂E , and where s1, s2 denote
curvilinear abscissae along the boundary.

The main results of this paper are the convergence estimates for Problem (2.13)
under different combinations of mesh assumptions and for the two choices detailed
in (2.9), (2.10). We summarize them in Table 1 (see also Remark 2.3 below).

The proofs of these results are based on a non-trivial extension of the stability
framework developed in Ref. 4, where the constants involved in the stability esti-
mates are carefully tracked. This is performed in Sec. 3.

Remark 2.3. An interesting point considered in this paper is the possibility to
completely neglect the internal part of the stability form. In other words, we will
show that the choice

s◦E(vh, wh) = 0, (2.15)

does not spoil the stability feature of the numerical scheme, see Sec. 3.1.

3. A General Error Analysis

In this section, we derive an error analysis, more general than the standard one
detailed in Ref. 4. We remark that the present approach can be applied to any
other linear symmetric elliptic problem.
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For the analysis, the following discrete semi-norm, induced by the stability term,
will play an important role:

|||v|||2E := sE((I −R)v, (I −R)v) + aE(ΠEv, ΠEv) ∀ v ∈ VE + VE . (3.1)

Above, VE ⊆ V|E is a subspace of sufficiently regular functions for sE(·, ·) to make
sense. We now introduce the following assumption, for all E ∈ Th.

Main assumption - We assume that it holds

aE(vh, vh) ≤ C1(E)|||vh|||2E ∀ vh ∈ VE , (3.2)

|||p|||2E ≤ C2(E)aE(p, p) ∀ p ∈ Pk(E), (3.3)

with C1(E), C2(E) positive constants which depend on the shape and possibly on
the size of E.

Differently than the standard analysis of Ref. 4 where a kind of bound (3.3) is
assumed for every vh ∈ VE , we here require the estimate only for the polynomials
p ∈ Pk(E). Thus, even when C1(E) and C2(E) can be chosen independent of E,
on VE the semi-norm induced by the stabilization term may be stronger than the
energy aE(·, ·)1/2. An instance of such an occurrence is given in Sec. 4.2. See also
Remark 3.1 below.

We start proving the following lemma.

Lemma 3.1. Under assumptions (3.2), (3.3), the local discrete bilinear form (2.11)
satisfies the stability condition

C�(E)|||vh|||2E � ah
E(vh, vh) � C�(E)|||vh|||2E ∀ vh ∈ VE , (3.4)

where C�(E) = min{1, C2(E)−1} and C�(E) = max{1, C1(E)C2(E)}. Further-
more, the bound

ah
E(vh, vh) � (1 + C2(E))(|||vh|||2E + |vh|21,E) ∀ vh ∈ VE (3.5)

holds true.

Proof. We first note that from definition (2.5) it is immediate to check that

R(I − ΠE)vh = 0 ∀ vh ∈ VE . (3.6)

Using first (3.6), then noting that ΠE(I − ΠE) = 0 and applying (3.3), we obtain
(cf. (3.1)):

ah
E(vh, vh) = aE(ΠEvh, ΠEvh) + sE((I −R)(I − ΠE)vh, (I −R)(I − ΠE)vh)

= aE(ΠEvh, ΠEvh) + aE(ΠE(I − ΠE)vh, ΠE(I − ΠE)vh)

+ sE((I −R)(I − ΠE)vh, (I −R)(I − ΠE)vh)

≥ C2(E)−1|||ΠEvh|||2E + |||vh − ΠEvh|||2E ≥ C�(E)|||vh|||2E (3.7)
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for all vh ∈ VE , with C�(E) = 1
2min{1, C2(E)−1}. Again using the first identity in

(3.7), recalling definition (3.1), from the triangle inequality we get

ah
E(vh, vh) ≤ |||vh|||2E + |||vh − ΠEvh|||2E ≤ 3|||vh|||2E + 2|||ΠEvh|||2E . (3.8)

Since ΠE is a projection with respect to aE and using (3.3) we obtain

|||ΠEvh|||2E ≤ C2(E)aE(ΠEvh, ΠEvh) ≤ C2(E)aE(vh, vh). (3.9)

From (3.9) we immediately get

|||ΠEvh|||2E ≤ C2(E)M |vh|21,E ,

and also, recalling (3.2),

|||ΠEvh|||2E ≤ C1(E)C2(E)|||vh|||2E .

Combining the above bounds it follows:

ah
E(vh, vh) ≤ 3|||vh|||2E + 2C2(E)M |vh|21,E ,

ah
E(vh, vh) ≤ C�(E)|||vh|||2E

with C�(E) = 3 + 2C1(E)C2(E).

As an immediate consequence of Lemma 3.1 and (3.2), the discrete bilinear form
(2.12) associated to (2.11) satisfies

ah(vh, vh) ≥ Cstab(h)a(vh, vh) ≥ Cstab(h)α‖vh‖2
1,Ω ∀ vh ∈ Vh, (3.10)

where

Cstab(h) = min
E∈Th

C�(E)
C1(E)

. (3.11)

Therefore, due to (2.2), the discrete problem is positive definite and problem (2.13)
has a unique solution. For all sufficiently regular functions v, we now introduce the
global semi-norms

|||v|||2 =
∑

E∈Th

|||v|||2E , |v|21,h =
∑

E∈Th

|v|21,E . (3.12)

We notice that, by (3.2) and the Poincaré inequality, ||| · ||| is a norm on Vh, not
only a semi-norm. Furthermore, for any h, let Fh denote the quantity

Fh = sup
vh∈Vh

(f, vh) − 〈fh, vh〉
|||vh|||

. (3.13)

We remark that, again by (3.2), it holds:

Fh � sup
vh∈Vh

(f, vh) − 〈fh, vh〉
|vh|1,Ω

. (3.14)

Therefore, taking fh as in Ref. 4 and using the arguments in that paper, we infer:

Fh ≤ C(f)hk, (3.15)

where C(f) depends on suitable Sobolev norms of the source term f .
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We have the following result, stating a kind of generalized best-approximation
property (see also Remark 3.1 below).

Theorem 3.2. Let assumptions (3.2) and (3.3) hold. Let the continuous solution
of (2.1) satisfy u|E ∈ VE for all E ∈ Th, where VE ⊆ V|E is a subspace of sufficiently
regular functions for sE(·, ·) to make sense. Then, for every uI ∈ Vh and for every
uπ such that uπ|E ∈ Pk(E), the discrete solution uh of (2.13) with bilinear form
(2.11) satisfies

|u − uh|1,Ω � Cerr(h)((Fh) + |||u − uI ||| + |||u − uπ||| + |u − uI |1,Ω + |u − uπ|1,h).

(3.16)

Setting

C̃(h) = max
E∈Th

{1, C2(E)}, C1(h) = max
E∈Th

{C1(E)},

C�(h) = max
E∈Th

{C�(E)},
(3.17)

the constant Cerr(h) is given by

Cerr(h) = max{1, C̃(h)C1(h), C̃(h)3/2
√

C�(h)C1(h)}.

Proof. First using the coercivity property in Lemma 3.1, then with identical cal-
culations as in Ref. 4 (precisely: Theorem 3.1, Eq. (3.11)), we get

|||uh − uI |||2 ≤ C̃(h)ah(uh − uI , uh − uI) = C̃(h)(T1 + T2 + T3), (3.18)

where C̃(h) = maxE∈Th
{1, C2(E)}, and the terms Ti are given by

T1 = 〈fh, uh − uI〉 − (f, uh − uI),

T2 =
∑

E∈Th

ah
E(uπ − uI , uh − uI),

T3 =
∑

E∈Th

aE(u − uπ, uh − uI).

For term T1, definition (3.13) and assumption (3.2) yield

T1 � Fh|uh − uI |1,Ω �
√

C1(h)Fh|||uh − uI |||, (3.19)

where C1(h) = maxE∈Th
{C1(E)}. Term T2 is treated using both the bounds (3.4)

and (3.5), that easily lead to the estimate

T2 �
√

C�(h)C̃(h)(|||uπ − uI ||| + |uπ − uI |1,Ω)|||uh − uI |||

≤
√

C�(h)C̃(h)(|||u − uI ||| + |||u − uπ||| + |u − uI |1,Ω + |u − uπ|1,h)|||uh − uI |||,
(3.20)
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where C�(h) = maxE∈Th
{C�(E)}. Term T3 is bounded using the piecewise conti-

nuity in H1 of the continuous bilinear form and (3.2):

T3 �
√

C1(h)
∑

E∈Th

|u − uπ|1,E |||uh − uI |||E

≤
√

C1(h)|u − uπ|1,h|||uh − uI |||. (3.21)

From (3.18), using the bounds (3.19), (3.20) and (3.21), then dividing by the
term |||uh − uI |||, we get

|||uh − uI ||| � C̃(h)max {
√

C1(h),
√

C�(h)C̃(h)}

× (Fh + |||u − uI ||| + |||u − uπ||| + |u − uI |1,Ω + |u − uπ|1,h). (3.22)

The triangle inequality and (3.2) give

|u − uh|1,Ω ≤ |u − uI |1,Ω + |uh − uI |1,Ω

≤ |u − uI |1,Ω +
√

C1(h)|||uh − uI |||, (3.23)

Combining (3.22) and (3.23), we get (3.16) with

Cerr(h) = max{1, C̃(h)C1(h), C̃(h)3/2
√

C�(h)C1(h)}.

Corollary 3.3. By using (3.22) and the triangle inequality it is immediate to check
that, as a corollary of the above result, it also holds

|||u − uh||| ≤ C̃err(h)((Fh) + |||u − uI ||| + |||u − uπ||| + |u − uπ|1,h),

where C̃err(h) = max{1, C̃(h)
√

C1(h), C̃(h)3/2
√

C�(h)}.

Remark 3.1. In most cases of interest, the constants in (3.2) and (3.3) are in fact
either mildly dependent on, or even independent of the size of E (examples will be
shown in the sequel). In this latter instance, the constant Cerr(h) in (3.16) is O(1),
thus recovering a typical error estimate for Galerkin schemes.

We conclude this subsection with an extension of the approximation result in
Ref. 27 to the case of higher-order norms and more general mesh assumptions.

Theorem 3.4. Let assumption (A1) hold. Then there exist a real number σ > 3/2
and a linear operator Ih : Hs(Ω) → Vh, with 1 < s ≤ k + 1, such that it holds :

|u − Ihu|σ,E � hs−σ
E |u|s,E , E ∈ Ωh, u ∈ Hs(Ω), and 1 ≤ σ < min{σ, s}.

(3.24)

Proof. For each element E, we can build a sub-triangulation by connecting all
its vertices with the center xE introduced in assumption (A1). We denote by Th

the global (conforming) triangular mesh obtained by applying such a procedure for
all E ∈ Ωh. It is easy to check that, under assumption (A1), the triangles in the
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sequence of meshes {Th}h have maximum angles that are uniformly bounded away
from π (although shape regularity is not guaranteed).

Let ur be the standard continuous and piecewise Pk polynomial Lagrange inter-
polant of u over the triangulation Th. Then it holds:

|u − ur|σ,E � hs−σ
E |u|s,E , E ∈ Ωh, 1 ≤ σ < s ≤ k + 1, u ∈ Hs(Ω), (3.25)

where we used the anisotropic approximation results in Ref. 2, also recalling the
angle property above. In the following, we denote by uπ a piecewise discontinuous
polynomial approximation of u over the mesh Ωh. For instance, one may think of
the L2-projection of u on Pk(E) for each element E.

We now introduce the function Ihu ∈ Vh defined, on each element E, by{
∆(Ihu) = ∆uπ in E,

Ihu = ur on ∂E,

so that (Ihu − uπ) satisfies on every E{
∆(Ihu − uπ) = 0 in E,

Ihu − uπ = ur − uπ on ∂E.
(3.26)

Therefore, for all E ∈ Ωh, regularity results on Lipschitz domains (see Ref. 25)
guarantee that

|Ihu − uπ|σ,E � |ur − uπ|σ−1/2,∂E 1 ≤ σ ≤ σE , (3.27)

where σE = 2 if E is convex, and σE = 1 + π/ωE (with ωE the largest angle of
E) otherwise. Let now σ = minE∈{Ωh}h

σE , where we stress that the minimum is
taken among all elements of the whole mesh sequence. Due to assumption (A1),
that yields a uniform bound on the maximum element angles, the number σ is
strictly bigger than 3/2. First a triangle inequality and bound (3.27), then a trace
inequality yield

|u − Ihu|σ,E � |u − uπ|σ,E + |ur − uπ|σ−1/2,∂E � |u − uπ|σ,E + |ur − uπ|σ,E

� |u − uπ|σ,E + |u − ur|σ,E

for all 1 ≤ σ ≤ σ and all E ∈ Ωh. The result follows combining the above bound
with (3.25) and standard polynomial approximation estimates on shape regular
polygons.

3.1. Reduction to the boundary

In this section, we derive a result that allows to focus the analysis of assumptions
(3.2) and (3.3) only on the boundary of the element. The boundary bilinear form
s∂

E(·, ·) is here one of the two detailed in (2.9) and (2.10), but the same analysis
applies to different choices, such as the ones outlined in Remark 4.1. We start by
showing the following lemma.
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Lemma 3.5. For all vh ∈ VE , there exists a polynomial p̃ ∈ Pk(E) such that
∆p̃ = ∆vh satisfying:

|p̃|1,E � hE‖∆vh‖0,E . (3.28)

Proof. We only sketch the very simple proof. Since for all vh ∈ VE it holds ∆vh ∈
Pk−2(E), there are (infinitely many) polynomials of degree k that satisfy ∆p̃ = ∆vh

(cf. Ref. 30, for instance). In order to derive the bound (3.28), we first note that,
thanks to assumption (A1) and since ∆p̃ = ∆vh, inequality (3.28) is equivalent to

|p̃|1,BE � hE‖∆p̃‖0,BE .

The above bound, that is now restricted on balls, can be easily deduced by choosing
p̃ in the subspace{

q ∈ Pk(BE) :
∫

BE

qp = 0 for all harmonic polynomials p ∈ Pk(BE)
}

and by a scaling argument.

Concerning assumption (3.2), we have the following result.

Proposition 3.6. Let assumption (A1) and let s◦E(·, ·) be given as in (2.8). Assume
the existence of a positive constant Ĉ1(E) such that

|vh|21/2,∂E ≤ Ĉ1(E)(s∂
E((I −R)vh, (I −R)vh) + |ΠEvh|21,E) ∀ vh ∈ VE . (3.29)

Then assumption (3.2) holds with C1(E) � max{1, Ĉ1(E)}.

Proof. Let vh ∈ VE and p̃ as in Lemma 3.5. Let vh be the unique constant function
on E such that

∫
∂E vh =

∫
∂E vh. Then, first by an integration by parts and then

by the definition of ΠE , we get∫
E

(vh − vh)∆vhdx =
∫

E

(vh − vh)∆p̃dx

= −
∫

E

∇vh · ∇p̃dx +
∫

∂E

(vh − vh)(∇p̃ · nE)ds

= −
∫

E

∇ΠEvh · ∇p̃dx +
∫

∂E

(vh − vh)(∇p̃ · nE). (3.30)

Again an integration by parts and (3.30) yield

aE(vh, vh) � |vh|21,E = |(vh − vh)|21,E

= −
∫

E

(vh − vh)∆vhdx +
∫

∂E

(vh − vh)(∇vh · nE)ds

=
∫

E

∇ΠEvh · ∇p̃dx +
∫

∂E

(vh − vh)(∇(vh − p̃) · nE)ds

= T1 + T2 (3.31)
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with nE denoting the outward unit normal to the boundary of E. The first term
above is bounded by the Cauchy–Schwarz inequality, and by a combination of
Lemma 3.5 with the estimate (see Lemma 6.3):

‖∆vh‖0,E � h−1
E |vh|1,E ∀ vh ∈ VE . (3.32)

We thus obtain

T1 ≤ |ΠEvh|1,E |p̃|1,E � |ΠEvh|1,E |vh|1,E � |||vh|||E |vh|1,E . (3.33)

For the second term, we first note that div(∇(vh−p̃)) = ∆(vh−p̃) = 0. Therefore,
after applying a (scaled) duality bound on the boundary of E, we can use the
estimate (see Lemma 6.2):

|w · nE |H−1/2(∂E) � ‖w‖0,E ∀w ∈ [L2(E)]2 s.t. divw = 0, (3.34)

with w = ∇(vh − p̃), and where H−1/2(∂E) denotes the dual space of H1/2(∂E).
Thus, we obtain

|T2| � (|(vh − vh)|1/2,∂E + h
−1/2
E ‖(vh − vh)‖0,∂E)‖∇(vh − p̃) · nE‖H−1/2(∂E)

� (|vh|1/2,∂E + h
−1/2
E ‖(vh − vh)‖0,∂E)|(vh − p̃)|1,E . (3.35)

Moreover, by standard approximation estimates in one dimension, it holds
h
−1/2
E ‖(vh − vh)‖0,∂E � |vh|1/2,∂E . Therefore, using (3.29), the triangle inequality

and again Lemma 3.5 with (3.32), bound (3.35) yields

|T2| � |vh|1/2,∂E(|vh|1,E + |p̃)|1,E)

≤ Ĉ1(E)(s∂
E((I −R)vh, (I −R)vh) + |ΠEvh|21,E)|vh|1,E

≤ Ĉ1(E)|||vh|||E |vh|1,E . (3.36)

The result follows by combining Eqs. (3.31), (3.33), (3.36) and recalling that
|vh|21,E � aE(vh, vh).

Furthermore, concerning assumption (3.3), we have the following result.

Proposition 3.7. Let assumption (A1) hold and let s◦E(·, ·) as given in (2.8).
Assume the existence of a positive constant Ĉ2(E) such that

s∂
E((I −R)p, (I −R)p) ≤ Ĉ2(E)|p|21,E ∀ p ∈ Pk(E). (3.37)

Then assumption (3.3) holds with C2(E) � max{1, Ĉ2(E)}.

Proof. We first note that the second term in (3.1) is immediately bounded:

aE(ΠEp, ΠEp) = aE(p, p) ≤ M |p|21,E ∀ p ∈ Pk(E). (3.38)
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Therefore, by the definition of sE(·, ·) and using (3.37), it is sufficient to show
that

s◦E((I −R)p, (I −R)p) � |p|21,E ∀ p ∈ Pk(E). (3.39)

By definition of s◦E(·, ·) and recalling that ‖mi‖L∞(E) � 1, i = 1, 2, . . . , nk−2, we
have

s◦E((I −R)p, (I −R)p) =
nk−2∑
i=1

Ξ◦
i ((I −R)p)2

=
nk−2∑
i=1

|E|−2

(∫
E

((I −R)p)mi

)2

�
nk−2∑
i=1

|E|−1‖(I −R)p‖2
0,E . (3.40)

We now notice that, under assumption (A1) we have:

‖v −Rv‖0,E � hE |v|1,E ∀ v ∈ H1(E), (3.41)

that follows easily from standard approximation theory on shape regular polygons.
Using (3.41) and (3.40), we obtain

s◦E((I −R)p, (I −R)p) �
nk−2∑
i=1

|p|2H1(E) � |p|21,E. (3.42)

Remark 3.2. Interestingly enough, we observe that Propositions 3.6 and 3.7
remain true if we completely neglect s◦E(·, ·). Indeed, if s◦E(·, ·) = 0, the proof
of Proposition 3.6 applies identically while the proof of Proposition 3.7 gets
simpler, since showing (3.39) becomes trivial. Therefore, selecting s◦E(v, w) = 0
instead of (2.8), cf. Remark 2.3, does not spoil the stability features of the
method.

4. Analysis of Two Choices for the Boundary Stabilization

In this section, we apply Propositions 3.6 and 3.7 for a couple of classical choices
of the boundary stability term s∂

E(·, ·), see (2.9) and (2.10). Compared to the the-
ory presented in Ref. 4, this allows to relax the mesh assumptions in establishing
stability and convergence properties of the proposed methods.

4.1. Identity matrix : Choice (2.9)

This is the more classical, and simpler to code, choice for virtual elements. We recall
it here again, for convenience:

s∂
E(vh, wh) =

Nk∑
i=1

Ξ∂
i (vh)Ξ∂

i (wh). (4.1)
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We may call it the identity matrix choice since in the implementation procedure
of the method, the bilinear form (4.1) is clearly associated with an identity matrix
of dimension Nk . We have the following stability result.

Proposition 4.1. Let assumptions (A1) and (A2) hold. Then, for the boundary
form (4.1), conditions (3.29) and (3.37) hold with positive constants Ĉ1 and Ĉ2

that satisfy

Ĉ1(E) � (log (1 + hE/hm(E))), Ĉ2(E) � 1, (4.2)

where hm(E) denotes the length of the smallest edge in E.

Proof. Standard results for polynomials in one dimension immediately give

‖wh‖2
L∞(∂E) � s∂

E(wh, wh), ∀wh ∈ VE . (4.3)

We now use the estimate (proved in Lemma 6.6):

∀wh ∈ VE : |wh|21/2,∂E � Ĉ(E)‖wh‖2
L∞(∂E), Ĉ(E) = (log (1 + hE/hm(E))).

(4.4)

In combination with (4.3), it yields:

|vh|21/2,∂E = |vh −Rvh|21/2,∂E � Ĉ(E)s∂
E((I −R)vh, (I −R)vh)

� Ĉ(E)(s∂
E((I −R)vh, (I −R)vh) + |ΠEvh|21,E)) ∀ vh ∈ VE , (4.5)

i.e. condition (3.29) holds with Ĉ1(E) � (log(1 + hE/hm(E))).
We now prove that estimate (3.37) holds. Recalling assumption (A2), it is imme-

diate to check that

s∂
E(v, v) � N‖v‖2

L∞(∂E) � ‖v‖2
L∞(∂E) ∀ v ∈ C0(∂E). (4.6)

Take any p ∈ Pk(E). We get, using bound (4.6), an inverse estimate for polynomials
(cf. Remark 6.1), and recalling (3.41):

s∂
E((I −R)p, (I −R)p) � ‖(I −R)p‖2

L∞(∂E) � ‖(I −R)p‖2
L∞(E)

� h−2
E ‖(I −R)p‖2

0,E ≤ |p|21,E, (4.7)

i.e. condition (3.37) holds with Ĉ2(E) � 1.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
17

.2
7:

25
57

-2
59

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IL
A

N
 o

n 
02

/0
1/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



October 5, 2017 14:42 WSPC/103-M3AS 1750052

Stability analysis for the virtual element method 2573

The following theorem shows that, even in the presence of arbitrarily small edges
(provided the number of edges are uniformly bounded), the convergence rate of the
VEM is optimal up to a loss of a logarithmic factor.

Theorem 4.2. Let assumptions (A1) and (A2) hold. Let u be the solution of prob-
lem (2.1), assumed to be in Hs(Ω), s > 1. Let uh be the solution of the discrete
problem (2.13). Then it holds

‖u − uh‖1,Ω � c(h)hs−1|u|s,Ω 1 < s ≤ k + 1.

with

c(h) = max
E∈Ωh

(log(1 + hE/hm(E))).

If the stronger assumption (A3) holds, then clearly c(h) � 1.

Proof. Proposition 4.1 allows to apply Propositions 3.6 and 3.7. Therefore,
assumptions (3.2) and (3.3) hold with C1(E) � log(1 + hE/hm(E)) and C2(E) � 1,
respectively. Then, Theorem 3.2 can be invoked; a look at the constants shows that

Cerr(h) � 1 + max
E∈Ωh

{C1(E)} � c(h).

We now estimate the terms in the right-hand side of (3.16). We first recall (3.15):

Fh � hk. (4.8)

Moreover, Theorem 3.4 with uI := Ihu shows that

|u − uI |1,Ω �
(∑

E∈Th

h2s−2
E |u|2s,E

)1/2

� hs−1|u|s,Ω 1 < s ≤ k + 1. (4.9)

We now choose uπ as the L2-projection of u on Pk(E) for each element E. Standard
approximation results on polygons (see for instance Ref. 22) yield(∑

E∈Th

|u − uπ|21,E

)1/2

�
(∑

E∈Th

h2s−2
E |u|2s,E

)1/2

� hs−1|u|s,Ω 1 < s ≤ k + 1. (4.10)

We now look into the term |||u − uI |||. From (2.7), (3.1) and (3.12), we deduce
that we need to estimate:

(1) the term

aE(ΠE(u − uI), ΠE(u − uI)); (4.11)

(2) the term

s∂
E((I −R)(u − uI), (I −R)(u − uI)) =

Nk∑
i=1

Ξ∂
i ((I −R)(u − uI))2; (4.12)
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(3) the term, see (2.8):

s◦E((I −R)(u − uI), (I −R)(u − uI)) =
k(k−1)/2∑

i=1

Ξ◦
i ((I −R)(u − uI))2.

(4.13)

Take s with 1 < s < k+1, and ε such that 0 < ε < min{1/2, s−1}. Regarding (4.11),
we notice that from the continuity of ΠE and from Theorem 3.4 with σ = 1, it holds

aE(ΠE(u − uI), ΠE(u − uI)) � |u − uI |21,E � h2s−2
E |u|2s,E . (4.14)

Now, the Sobolev embedding H1/2+ε(∂E) ⊂ C0(∂E) shows that it holds:

‖v‖L∞(∂E) � h
−1/2
E ‖v‖0,∂E + hε

E |v|1/2+ε,∂E ∀ v ∈ Hs(E). (4.15)

A scaled trace inequality, that can be derived by an argument analogous to that in
Lemma 6.1, gives

h
−1/2
E ‖v‖0,∂E + hε

E |v|1/2+ε,∂E � h−1
E ‖v‖0,E + hε

E |v|1+ε,E ∀ v ∈ Hs(E). (4.16)

Therefore, (4.6), (4.15) and (4.16) yield

s∂
E(v, v) � h−2

E ‖v‖2
0,E + h2ε

E |v|21+ε,E ∀ v ∈ Hs(E). (4.17)

Choosing v = (I−R)(u−uI)|E in (4.17), using (3.41) and noting that |(I −R)(u−
uI)|1+ε,E = |u − uI |1+ε,E , we obtain:

s∂
E((I −R)(u − uI), (I −R)(u − uI)) � |u − uI |21,E + h2ε

E |u − uI |21+ε,E . (4.18)

An application of Theorem 3.4 with σ = 1 (respectively, σ = 1 + ε) in the first
(respectively, second) term of the right-hand side of (4.18) leads to:

s∂
E((I −R)(u − uI), (I −R)(u − uI)) � h2s−2

E |u|2s,E. (4.19)

We now notice that bound (3.40) applies also to (u − uI)|E , and not only to poly-
nomials p ∈ Pk. Therefore, by using again (3.41) and Theorem 3.4 one easily gets

s◦E((I −R)(u − uI), (I −R)(u − uI)) � h−2
E ‖(I −R)(u − uI)‖2

0,E

� |u − uI |21,E � h2s−2
E |u|2s,E . (4.20)

Combining (4.14), (4.19) and (4.20), we get

|||u − uI ||| �
(∑

E∈Th

h2s−2
E |u|2s,E

)1/2

� hs−1|u|s,Ω, 1 < s ≤ k + 1. (4.21)

By following the same steps and using standard approximation results on polygons
(see for instance Ref. 22), we get

|||u − uπ||| �
(∑

E∈Th

h2s−2
E |u|2s,E

)1/2

� hs−1|u|s,Ω, 1 < s ≤ k + 1. (4.22)

We conclude by collecting estimates (4.8), (4.21), (4.22), (4.9) and (4.10).
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4.1.1. A “classical” stability bound

We close this part on the identity matrix choice by proving a stability result more
in the spirit of Ref. 4, but still under the more general mesh assumptions considered
in this paper. These estimates could be used to prove the same error estimate as in
Theorem 4.2, by simply applying the standard theory of Ref. 4.

Proposition 4.3. Let assumptions (A1) and (A2) hold. Then it holds

sE(vh, vh) � aE(vh, vh) � c(h) sE(vh, vh) ∀ vh with ΠEvh = 0, (4.23)

where

c(h) = max
E∈Ωh

log(1 + hE/hm(E)).

If the stronger assumption (A3) holds, then clearly c(h) � 1.

Proof. Proposition 4.1 combined with Proposition 3.6 gives the validity of (3.2)
with constant C1(E) � c(h). Since ΠEvh = 0 implies Rvh = 0, bound (3.2) yields
the second inequality in (4.23). We now show the other bound. By definition, the
Hölder inequality and recalling ‖mi‖L∞ � 1, we get the estimate:

s◦E(vh, vh) =
nk−2∑
i=1

Ξ◦
i (vh)2 =

nk−2∑
i=1

|E|−2

(∫
E

vh mi

)2

�
nk−2∑
i=1

|E|−1‖vh‖2
0,E, (4.24)

for all vh ∈ Vh|E .
Regarding the term s∂

E(vh, vh), due to assumption (A2), it is immediate to derive

s∂
E(vh, vh) � ‖vh‖2

L∞(∂E). (4.25)

We now use the estimates

‖vh‖2
L∞(∂E) � (h−1

E ‖vh‖2
0,∂E + |vh|21/2,∂E) ∀ vh ∈ VE , E ∈ Ωh, (4.26)

|v|1/2,∂E � |v|1,E ∀ v ∈ H1(E), E ∈ Ωh (4.27)

and

h−1
E ‖v‖2

0,∂E � h−2
E ‖v‖2

0,E + |v|21,E ∀ v ∈ H1(E), E ∈Ωh, (4.28)

proved in Lemmas 6.5, 6.1 and 6.4, respectively. From (4.25) we thus obtain

s∂
E(vh, vh) � h−2

E ‖vh‖2
0,E + |vh|21,E . (4.29)

Since Πvh = 0 implies Rvh = 0, bound (3.41) yields

h−2
E ‖vh‖2

0,E � |vh|21,E . (4.30)

The first bound in (4.23) now follows from combining (4.24), (4.29) and (4.30) and
noting that |vh|21,E � aE(vh, vh).
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4.2. A stabilization based on boundary derivatives

We now analyze a different choice for the boundary part of the stabilization term,
namely the one given by (cf. Ref. 34):

s∂
E(vh, wh) = hE

∫
∂E

∂svh∂swhds ∀ vh, wh ∈ VE . (4.31)

We highlight that, contrary to the identity matrix stabilization presented in Sec. 4.1,
the standard approach of Ref. 4 applied to (4.31), would lead to a strongly subop-
timal result in the presence of small edges. Indeed, the term (4.31) can be bounded
by the H1-semi-norm only with a constant α∗ 
 hE/hm(E) (cf. the second bound
in Eq. (3.7) of Ref. 4). Instead, with the present analysis we can obtain uniform
bounds only making use of assumption (A1). In fact, we have the following result.

Proposition 4.4. Let assumption (A1) hold. Then, for the boundary form (4.31),
conditions (3.29) and (3.37) hold with positive constants Ĉ1 and Ĉ2 that satisfy:

Ĉ1(E) � 1, Ĉ2(E) � 1. (4.32)

Proof. We first prove that condition (3.37) is fulfilled. Take any p ∈ Pk(E). Using
assumption (A1) and an inverse inequality for polynomials (cf. Remark 6.1), we get

s∂
E((I −R)p, (I −R)p) = hE |(I −R)p|21,∂E � h2

E‖∇(I −R)p‖2
L∞(∂E)

≤ h2
E‖∇(I −R)p‖2

L∞(E)

� ‖∇(I −R)p‖2
0,E = |p|21,E , (4.33)

i.e. condition (3.37) holds with Ĉ2(E) � 1.
To prove that condition (3.29) is fulfilled, we simply notice that

|vh|21/2,∂E � hE |vh|21,∂E = hE |(I −R)vh|21,∂E

= s∂
E((I −R)vh, (I −R)vh) ∀ vh ∈ VE . (4.34)

and we obtain that condition (3.29) holds with Ĉ1(E) � 1.

Theorem 4.5. Let assumption (A1) hold. Let u be the solution of problem (2.1),
assumed to be in Hs(Ω), s > 3/2. Let uh be the solution of the discrete problem
(2.13), with the choice (4.31). Then it holds

‖u − uh‖1,Ω � hs−1|u|s,Ω 3/2 < s ≤ k + 1.

Proof. Proposition 4.4 allows to apply Propositions 3.6 and 3.7. Therefore,
assumptions (3.2) and (3.3) hold with C1(E) � 1 and C2(E) � 1, respectively.
Then, Theorem 3.2 can be invoked with Cerr(h) satisfying Cerr(h) � 1. We now
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estimate the terms in the right-hand side of (3.16), choosing both uπ and uI as in
Theorem 4.2. Using exactly the same arguments of Theorem 4.2, we get:

Fh � hk, (4.35)(∑
E∈Th

|ΠE(u − uI)|21,E

)1/2

� |u − uI |1,Ω � hs−1|u|s,Ω 3/2 < s ≤ k + 1, (4.36)

(∑
E∈Th

|ΠE(u − uπ)|21,E

)1/2

�
(∑

E∈Th

|u − uπ|21,E

)1/2

� hs−1|u|s,Ω 3/2 < s ≤ k + 1, (4.37)

and

s◦E((I −R)(u − uI), (I −R)(u − uI))

� |u − uI |21,E � h2s−2
E |u|2s,E 3/2 < s ≤ k + 1. (4.38)

Therefore, we only need to estimate the boundary part

s∂
E((I −R)(u − uI), (I −R)(u − uI)) = s∂

E(u − uI , u − uI).

To this end, take s > 3/2 and σ such that 3/2 < σ < s. We have, using a
scaled trace inequality (proved by a similar argument to that in Lemma 6.1 for the
function ∇(u − uI)):

s∂
E(u − uI , u − uI) = hE |u − uI |21,∂E � |u − uI |21,E + h2σ−2

E |u − uI |2σ,E. (4.39)

Hence, Theorem 3.4 gives:

s∂
E(u − uI , u − uI) � |u − uI |21,E + h2σ−2

E |u − uI |2σ,E � h2s−2
E |u|2s,E . (4.40)

Combining (4.38) and (4.40), we get

|||u − uI ||| �
(∑

E∈Th

h2s−2
E |u|2s,E

)1/2

� hs−1|u|s,Ω. (4.41)

Similarly, using also standard approximation results on polygons (see Ref. 22), we
get

|||u − uπ||| �
(∑

E∈Th

h2s−2
E |u|2s,E

)1/2

� hs−1|u|s,Ω. (4.42)

We conclude by collecting estimates (4.35), (4.36), (4.37), (4.41) and (4.42).

Remark 4.1. The same analysis can be employed to prove error estimates for
many other choices of the stabilization. We here consider the following variants of
choice (4.31).
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The first variant is an “L2-version” of (4.31):

s∂
E(vh, wh) =

∑
e∈∂E

h−1
e

∫
e

vhwhds ∀ vh, wh ∈ VE . (4.43)

It is easy to check that, under assumptions (A1) and (A2), it holds∑
e∈∂E

h−1
e ‖vh‖2

0,E 
 ‖vh‖2
L∞ ∀ vh ∈ Vh|E .

Hence, by following the same steps used for the identity matrix choice of Sec. 4.1,
one can easily obtain that Proposition 4.1 holds also for the present choice.

A second possible choice would be to substitute h−1
e with h−1

E in (4.43). For
this choice, robust results (at least from the theoretical perspective of the present
analysis) would be obtained only under the stronger assumption (A3). Indeed, it
is easy to check that for this latter choice one would get a factor hE/hm(E) in the
constant of bound (3.29).

5. Numerical Tests

For all numerical tests we will consider Laplace equation on the unit square Ω :=
]0, 1[2: {

−∆u = f in Ω,

u = g on ∂Ω
(5.1)

with right-hand side f and Dirichlet boundary condition g defined in such a way
that the exact solution is (see Fig. 1):

uex(x, y) := x3 − xy2 + x2y + x2 − xy − x

+ y − 1 + sin(5x) sin(7y) + log(1 + x2 + y4). (5.2)

In the following brief experiments we will address some of the issues considered
in the paper.

Remark 5.1. First of all, we point out that in all our experiments we have observed
a very weak dependence of the VEM solution with respect to the inclusion in the
stabilization of the term s◦E(vh, wh) depending on the internal degrees of freedom.
This observation holds for all kinds of boundary stabilization adopted. Hence, we
have set everywhere s◦E(vh, wh) = 0 (see Sec. 3.1).

5.1. Small edges

In the first numerical experiment we consider the issue of the presence of very
small edges. On the one hand, we show that the classical VEM stabilization (4.1)
can generate small oscillations, that are of the order of the approximation error.
In the case k = 1 these oscillations are visible and, depending on the application,
may be preferable to avoid. However, already for k = 2 the oscillations become so
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Fig. 1. Exact solution.

small to be practically negligible. On the other hand, we show that the stabilization
(4.31) eliminates this oscillations already for the k = 1 case.

We consider a mesh obtained by gluing together two distinct meshes along
x = 0.5; this case can happen for instance in contact problems, see Ref. 34. The
mesh is shown in Fig. 2, while in Fig. 3 we show the section of the mesh at x = 0.5.
Note that around y = 0.4 there is a very small edge of length 3.21 × 10−4.

In Figs. 4 and 5, we plot the section at x = 0.5 of the VEM solution for the clas-
sical stabilization (4.1) (thick line) together with the exact solution (thinner line)
for k = 1 and k = 2, respectively. A careful inspection shows that in Fig. 4 there are

Fig. 2. Mesh.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 3. Mesh section at x = 0.5.
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Fig. 4. Exact solution and VEM solution for k = 1 and classical stabilization (4.1).
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Fig. 5. Exact solution and VEM solution for k = 2 and classical stabilization (4.1).
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Fig. 6. Exact solution and VEM solution for k = 1 and boundary stabilization (4.31).
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Fig. 7. Exact solution and VEM solution for k = 2 and boundary stabilization (4.31).

some small oscillations in correspondence of the small edges. In Fig. 5, the oscilla-
tions are no more visible but are still present. We reproduce the same experiments
in Figs. 6 and 7 with the boundary stabilization (4.31). Now the oscillation have
disappeared also for k = 1 but in this case the VEM solution seems to be less accu-
rate. The motivation is that the boundary stabilization (4.31) is too strong. The
situation can be improved by taking a smaller stabilization parameter (see Remark
2.1); in Figs. 8 and 9 we show the same experiments with τE = τ = 0.1. We have
developed several further experiments (here not shown) using different meshes and
loading, and choosing τ = 0.1 for sE(·, ·) as in (4.31): the obtained results were
always accurate. This is a general property of VEM: the sensitivity of the method
with respect to the stabilization parameter is very mild when considering different
meshes and loading/boundary data. Nevertheless, a detailed study on such an issue
is beyond the scope of this paper.
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Fig. 8. Exact solution and VEM solution for k = 1, boundary stabilization (4.31) and τ = 0.1.
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Fig. 9. Exact solution and VEM solution for k = 2, boundary stabilization (4.31) and τ = 0.1.

5.2. Convergence in H1

We will show, in a log–log scale, the convergence curves of the error in the H1-semi-
norm between the exact solution uex and the solution uh given by the VEM. As
the VEM solution uh is not explicitly known inside the elements, we compare ∇uex

with the elementwise L2-projection of ∇uh onto Pk−1, that is, with Π0
k−1∇uh. It

is easy to see that this latter quantity can indeed be computed starting from the
degrees of freedom of uh. For the convergence test we consider four sequences of
meshes.

The first sequence of meshes (labeled square) is simply a decomposition of the
domain in 4×4, 8×8, 16×16 and 32×32 equal squares, and the second one (labeled
hexagon) is a decomposition of the domain in 8× 10, 18× 20, 26× 30, 34× 40 and
44×50 (almost) regular hexagons. The first meshes of the two sequences are shown
in Fig. 10 and in Fig. 11, respectively.
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Fig. 10. Square mesh.

Fig. 11. Hexagon mesh.

The third sequence of meshes (labeled Lloyd-0) is a random Voronoi polygo-
nal tessellation of the unit square in 25, 100, 400 and 1600 polygons. The fourth
sequence (labeled Lloyd-100) is obtained starting from the previous one and per-
forming 100 Lloyd iterations leading to a Centroidal Voronoi Tessellation (CVT)
(see e.g. Ref. 21). The 100-polygon mesh of each family is shown in Fig. 12 (Lloyd-0)
and in Fig. 13 (Lloyd-100), respectively.

From Figs. 14–17, we plot for k = 1 (low-order case) the H1-error on each
mesh family as a function of the mean diameter h of the polygons. We consider
the classical stabilization (4.1) (solid line), the boundary stabilization (4.31) with
τ = 1 (dotted line), and the boundary stabilization (4.31) with τ = 0.1 (dashed
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Fig. 12. Lloyd-0 mesh.

Fig. 13. Lloyd-100 mesh.

10-2 10-1 100
10-2

10-1

100
k=1 square

1

1

classical (70)
boundary (107) τ=1
boundary (107) τ=0.1

Fig. 14. k = 1, Square mesh.
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10-2 10-1 100
10-2

10-1

100
k=1 hexagon

1

1

classical (70)
boundary (107) τ=1
boundary (107) τ=0.1

Fig. 15. k = 1, Hexagon mesh.

10-2 10-1 100
10-2

10-1

100
k=1 Lloyd-0

1

1

classical (70)
boundary (107) τ=1
boundary (107) τ=0.1

Fig. 16. k = 1, Lloyd-0 mesh.

10-2 10-1 100
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10-1

100
k=1 Lloyd-100

1

1

classical (70)
boundary (107) τ=1
boundary (107) τ=0.1

Fig. 17. k = 1, Lloyd-100 mesh.
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k=5 square

1
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classical (70)
boundary (107) τ=1
boundary (107) τ=0.1

Fig. 18. k = 5, Square mesh.
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k=5 hexagon
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classical (70)
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boundary (107) τ=0.1

Fig. 19. k = 5, Hexagon mesh.
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boundary (107) τ=0.1

Fig. 20. k = 5, Lloyd-0 mesh.
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10-2 10-1 100
10-9

10-8

10-7

10-6

10-5

10-4

10-3
k=5 Lloyd-100

1

5

classical (70)
boundary (107) τ=1
boundary (107) τ=0.1

Fig. 21. k = 5, Lloyd-100 mesh.

line). From Figs. 18–21, we finally plot the same values for k = 5 (as a sample
high-order case).

We observe that as h goes to zero all stabilizations behave very similarly, namely
as O(hk), as predicted by the theory.

6. Technical Tools

In this section, we collect a number of technical results that are used in the paper.
We remark that some similar estimates have been independently proved in Ref. 14.

We begin with the following lemmas.

Lemma 6.1. Let assumption (A1) hold. Then

|v|1/2,∂E � |v|1,E ∀ v ∈ H1(E), E ∈ Ωh. (6.1)

Moreover, for all E ∈ Ωh and all v ∈ H1/2(∂E), there exists an extension ṽ ∈
H1(E) such that

|ṽ|1,E � |v|1/2,∂E . (6.2)

Proof. We only sketch the simple proof, based on a mapping argument. Up to a
translation of the element E, we may assume that the ball center xE is the origin
of the coordinate axes. Let then the function Ψ : [0, 2π) → [ρE , hE] describe the
boundary of E, as follows. The boundary curve Γ = ∂E can be parametrized in a
unique way as

γ(θ) = (Ψ(θ) cos(θ), Ψ(θ) sin(θ)), θ ∈ [0, 2π), (6.3)

with θ representing the angle in radial coordinates. Note that property (A1) implies
Ψ ∈ W 1,∞[0, 2π), uniformly with respect to E ∈ Ωh. We then introduce the radial
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mapping F : BE → E, associating a point expressed in polar coordinates

(x̂, ŷ) = (r̂ cos(θ̂), r̂ sin(θ̂)), r̂ ∈ [0, ρE], θ̂ ∈ [0, 2π),

with the point (x, y) = F (x̂, ŷ), whose coordinates are

(x, y) = (r cos(θ), r sin(θ)), r = r̂
Ψ(θ̂)
ρE

, θ = θ̂.

By recalling (A1), it can be checked that F ∈ W 1,∞(BE), and the same holds for
the inverse mapping, i.e. F−1 ∈ W 1,∞(E). It is easy to see that |F |W 1,∞(BE) � C

and |F−1|W 1,∞(E) � C. As a consequence, bound (6.1) can be simply proved by a
standard “pull-back and push-forward” argument: (i) map v ∈ H1(E) from E into
BE using F ; (ii) notice that the trace bound analogous to (6.1) holds on the ball
BE ; (iii) map back to E using F−1. Bound (6.2) is similarly proved: one only needs
to map the boundary data into BE , to consider the harmonic extension inside BE ,
and finally to map back to E.

Lemma 6.2. Let assumption (A1) hold. Then

|w · nE |H−1/2(∂E) � ‖w‖0,E ∀w ∈ [L2(E)]2 with div w = 0, ∀E ∈ Ωh,

(6.4)

with nE denoting the outward unit normal to the boundary of E.

Proof. By the definition of dual norm and using (6.2), we get

|w · nE |H−1/2(∂E) = sup
v∈H1/2(∂E)

−1/2,∂E〈w · nE , v〉1/2,∂E

|v|1/2,∂E

� sup
ev∈H1(E)

−1/2,∂E〈w · nE , ṽ〉1/2,∂E

|ṽ|1,E
.

An integration by parts, using divw = 0, and the Cauchy–Schwarz inequality lead
to estimate (6.4):

|w · nE |H−1/2(∂E) � sup
ev∈H1(E)

∫
E w · ∇ṽ

|ṽ|1,E
≤ ‖w‖0,E.

Lemma 6.3. Let assumption (A1) hold true. Then we have:

‖∆vh‖0,E � h−1
E |vh|1,E ∀ vh ∈ VE . (6.5)

Proof. For E ∈ Ωh, let TE ⊂ E denote an equilateral triangle inscribed in the
ball BE . We start observing that, due to assumption (A1), for any polynomial p

of given maximum degree it holds ‖p‖0,E � ‖p‖0,TE . This follows from noting that
the smallest ball containing E and the largest ball contained in TE have uniformly
comparable radii. We now recall that ∆vh ∈ Pk−2. Let b ∈ P3(TE) denote the
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standard cubic bubble in TE with unitary maximum value. Standard properties
and inverse estimates of polynomial spaces on shape regular triangles yield

‖∆vh‖2
0,E � ‖∆vh‖2

0,TE
�
∫

TE

b∆vh∆vh =
∫

TE

∇vh · ∇(b∆vh)

� |vh|1,TEh−1
E ‖b∆vh‖0,TE ≤ h−1

E |vh|1,TE‖∆vh‖0,TE .

Estimate (6.5) now follows by observing ‖∆vh‖0,TE ≤ ‖∆vh‖0,E .

Remark 6.1. The same argument in the proof of Lemma 6.3 can be used to prove
inverse estimates for polynomials of fixed maximum degree, on polygons satisfying
assumption (A1).

Lemma 6.4. Let assumption (A1) hold. We have

h−1
E ‖v‖2

0,∂E � h−2
E ‖v‖2

0,E + |v|21,E ∀E ∈ Ωh, (6.6)

and for all v in H1(E).

Proof. The simple proof is based on an anisotropic scaling argument. Take an edge
e ∈ ∂E, and let T ∈ Th be the associated triangle (see the proof of Theorem 3.4). By
a rotation and translation of the Cartesian (x, y)-coordinates, it is not restrictive to
assume that e = {0}× [−he/2, he/2], and that the center of the ball, see assumption
(A1), xE = (xE , yE) satisfies xE ≥ 0. As a consequence of assumption (A1), it is
easy to check that xE � hE , yE � hE and that the ball BE is contained in the
half-plane {(x, y) ∈ R

2 : x ≥ 0}. Therefore, we also have xE � hE . Let T̂ now be
the triangle of vertices (0, he/2), (0,−he/2), (he/2, 0). We now consider the unique
affine mapping F : T → T̂ that leaves the edge e (and its orientation) unchanged:
ê := F (e) = e. By an explicit computation of F and its inverse F−1, we get the
Jacobian matrices:

DF =

(
he/xE 0

−yE/xE 1

)
, DF−1 =

(
xE/he 0

yE/he 1

)
.

The proof now follows by a scaling argument. Indeed, denoting v̂ = v ◦ F−1, well-
known (scaled) trace estimates on T̂ and a simple change of variables give

‖v‖2
0,e = ‖v̂‖2

0,ê � h−1
e ‖v̂‖2

0,T̂
+ he|v̂|21,T̂

� h−1
e

he

xE
‖v‖2

0,T + he
he

xE

((
xE

he

)2

+
(

yE

he

)2
)∥∥∥∥∂v

∂x

∥∥∥∥2

0,T

+ he
he

xE

∥∥∥∥∂v

∂y

∥∥∥∥2

0,T

.

By recalling the upper and lower bounds on (xE , yE), the above estimate yields

‖v‖2
0,e � h−1

E ‖v‖2
0,T + hE‖∇v‖2

0,T ,

that immediately implies (6.6) by summing overall e ∈ ∂E.
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The next lemma can be considered as a variant of Lemma 3.1 in Ref. 13, sup-
posing that the number of edges is uniformly bounded.

Lemma 6.5. Let (A1) and (A2) hold. For all E ∈ Ωh and all vh ∈ VE we have

‖vh‖2
L∞(∂E) � (h−1

E ‖vh‖2
0,∂E + |vh|21/2,∂E).

Proof. For wh ∈ VE , we recall that wh|∂E ∈ C0(∂E) and wh|∂E is a polynomial of
degree at most k on each edge.

In addition, we first suppose that
∫

∂E
wh = 0. Then, by definition (2.14) and

by using a scaling argument on each edge of the mesh, we obtain

|wh|21/2,∂E ≥
∑

e∈∂E

|wh|21/2,e �
∑

e∈∂E

∥∥∥∥∂wh

∂s

∥∥∥∥2

L1(e)

,

where s denotes the curvilinear abscissae along the generic edge. By assumption
(A2) and recalling that wh is continuous on the boundary, from the above bound
we have:

|wh|21/2,∂E �
(∑

e∈∂E

∥∥∥∥∂wh

∂s

∥∥∥∥
L1(e)

)2

=
∥∥∥∥∂wh

∂s

∥∥∥∥2

L1(∂E)

≥ ‖wh‖2
L∞(∂E), (6.7)

where we also used that wh|∂E has zero average and thus it vanishes at least at one
point of ∂E. For a generic vh ∈ VE (not necessarily with vanishing mean value),
the proof follows easily from (6.7) by adding and subtracting its average on the
boundary vh and simple bounds:

‖vh‖L∞(∂E) ≤ ‖vh − vh‖L∞(∂E) + ‖vh‖L∞(∂E)

� |vh − vh|1/2,∂E + |∂E|−1/2‖vh‖0,∂E

� |vh|1/2,∂E + |∂E|−1/2‖vh‖0,∂E

� |vh|1/2,∂E + h
−1/2
E ‖vh‖0,∂E ,

where |∂E| denotes the length of ∂E.

Lemma 6.6. Let assumptions (A1) and (A2) hold. For all E ∈ Ωh and all vh ∈ VE

we have

|vh|21/2,∂E � Ĉ(E)‖vh‖2
L∞(∂E), (6.8)

with Ĉ(E) = (log(1 + hE/hm(E))).

Proof. We first recall that ∂E is meshed by means of its edges, so that ∂E =⋃N
j=1 ej . We also define hj := |ej |. Moreover, in the proof we will make use of the
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space H
1/2
00 (Γ), where Γ is a connected part of ∂E with |Γ| > 0. This space is defined

by, see Ref. 26:

H
1/2
00 (Γ) = {v ∈ H1/2(Γ) : Ext(v) ∈ H1/2(∂E)}, (6.9)

where Ext(v) denotes the extension by zero of v to the whole ∂E. Its norm is defined
by

‖v‖
H

1/2
00 (Γ)

:=
(
|v|21/2,Γ +

∫
Γ

v(x)2

ρ(x)
dx

)1/2

, (6.10)

where ρ(x) denotes the distance of x from ∂Γ, is equivalent to |Ext(v)|1/2,∂E .
Given vh ∈ VE , we set vL ∈ VE as the usual piecewise linear Lagrange inter-

polant of vh, relative to the edge mesh. We have

|vh|21/2,∂E � |vh − vL|21/2,∂E + |vL|21/2,∂E . (6.11)

We now define wj = χej (vh − vL) and we notice that, since vh − vL vanishes at
all the nodes, we have

|vh − vL|1/2,∂E =

∣∣∣∣∣∣
N∑

j=1

Ext(wj)

∣∣∣∣∣∣
1/2,∂E

≤
N∑

j=1

|Ext(wj)|1/2,∂E �
N∑

j=1

‖wj‖H
1/2
00 (ej)

. (6.12)

Exploiting that wj is a polynomial of degrees ≤k on ej, a scaling argument shows
that

‖wj‖H
1/2
00 (ej)

� ‖wj‖L∞(ej).

Therefore, recalling assumption (A2) and using that ‖vL‖L∞(∂E) � ‖vh‖L∞(∂E), it
holds

|vh − vL|1/2,∂E �
N∑

j=1

‖wj‖L∞(ej) � ‖vh − vL‖L∞(∂E) � ‖vh‖L∞(∂E), (6.13)

by which

|vh − vL|21/2,∂E � ‖vh‖2
L∞(∂E). (6.14)

It remains to estimate |vL|21/2,∂E . We denote by ϕi the usual hat function with
support σi := ei−1 ∪ ei (here i − 1 and i are intended modulo N). We write

vL =
N∑

i=1

viϕi,

where vi ∈ R is the value of vL at the ith node. We have, using assumption (A2):

|vL|21/2,∂E � ‖vL‖2
L∞(∂E)

N∑
i=1

|ϕi|21/2,∂E � ‖vL‖2
L∞(∂E)

N∑
i=1

‖ϕi‖2

H
1/2
00 (σi)

. (6.15)
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Recalling (6.10), direct computations show that

|ϕi|2H1/2(σi)
� 1;

∫
σi

ϕi(x)2

ρ(x)
dx � log

(
1 +

max{hi−1, hi}
min{hi−1, hi}

)
, (6.16)

by which we obtain

‖ϕi‖2

H
1/2
00 (σi)

� log
(

1 +
max{hi−1, hi}
min{hi−1, hi}

)
. (6.17)

Therefore, using again assumption (A2) and noting that

max{hi−1, hi}
min{hi−1, hi}

≤ hE

hm(E)
1 ≤ i ≤ N,

from (6.15) and (6.16) we get

|vL|21/2,∂E � log
(

1 +
hE

hm(E)

)
‖vL‖2

L∞(∂E). (6.18)

Combining (6.11), (6.14) and (6.18), we get (6.8).
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