
Design-time to Run-time Verification of
Microservices Based Applications

(Short Paper)

Matteo Camilli, Carlo Bellettini, Lorenzo Capra

Dept. of Computer Science,
Università degli Studi di Milano, Milan, Italy

{camilli,bellettini,capra}@di.unimi.it

Abstract. Microservice based architectures have started to gain in pop-
ularity and are often adopted in the implementation of modern cloud,
IoT, and large-scale distributed applications. Software life cycles, in this
context, are characterized by short iterations, where several updates and
new functionalities are continuously integrated many times a day. This
paradigm shift calls for new formal approaches to systematic verification
and testing of applications in production infrastructures. We introduce
an approach to continuous, design- to run-time verification, of microser-
vice based applications. This paper describes our envisioned approach,
the current stage of this ongoing work, and the challenges ahead.

Keywords: microservices, cloud applications, formal verification, for-
mal methods @ runtime, Petri nets.

1 Introduction and Background

The microservice architectural style [1] represents an upward trending approach
to the development of modern cloud, IoT, or more in general large-scale dis-
tributed application. Services implement individual functional areas of the ap-
plication and they may be written using different programming languages and
technologies. Moreover, they are independently deployable by automated proce-
dures. This approach has been proposed to cope with many problems associated
with monolithic applications, especially as more applications are being deployed
into cloud platforms [2]. Among all the issues associated with monolithic prod-
ucts, some notable examples are: hard maintainability; scalability issues; tech-
nology lock-in for developers; and expensive delivery of latest builds.

The microservice style is not novel or innovative: it is inspired by service-
oriented computing [3] and we can find its roots in the design principles of
Unix [2]. However, the shift towards microservices is a sensitive matter nowa-
days. In fact, several companies are switching to this paradigm by applying major
refactoring activities. Netflix, Inc. [4] is a leading example: they recently moved
from their previous monolithic application to a microservices architecture with
hundreds of services working together to stream multimedia contents to mil-
lions of users every day. The whole architecture builds on Netflix Conductor



engine [5], an open source framework designed by Netflix Inc. and used daily
in their production environment. Conductor allows the creation of complex
process flows in which individual tasks are implemented by microservices. The
process flow blueprint is defined using a JSON based DSL and includes a set
of system tasks (e.g., fork, join, conditional, etc.) executed by Conductor’s
engine, and worker tasks (e.g., file encryption) that are the functional areas of
the application, running on remote machines. In this context, formal verification
and testing activities can be challenging. In fact, rapidly evolving services po-
tentially require formal models and tests to be recreated or modified. Moreover,
microservices’ polyglot nature potentially requires multiple testing tools because
of different programming languages and runtime environments.

To deal with these open problems, we introduce an approach to formal design-
to run-time verification (RV) of microservice-based process flows built on top of
Conductor. In particular, we have automated the modeling phase by mechan-
ically translating the Conductor blueprint into a formal specification given in
terms of Time Basic Petri nets [6] (from now on simply TB nets). TB nets are an
expressive time-extension of Petri nets (PNs) provided with a clear and rigorous
semantics, and represent an effective formal specification of distributed systems
with time constraints. The TB nets formalism is nicely supported by powerful
off-the-shelf software tools covering both modeling and verification phases [7,8].
The RV technique is currently implemented as a prototypal Java library, built on
top of MahaRAJA [9], a lightweight pluggable tool supporting the verification
of behavioral and temporal aspects of Java programs.

The paper is organized as follows. In Section 2, we introduce our proposed
approach, pointing out the current stage of this ongoing work. We report some
related work in Section 3, finally we draw our conclusions, discussing the chal-
lenges ahead, in Section 4.

2 Overview of the Approach

Figure 1 shows the two main phases of our approach: (i) model generation and
verification; and (ii) runtime verification. A description of the two phases fol-
lows. As a running example, used throughout the discussion, we use a taxi-hailing
application, such as Uber [10]. Each microservice implements a particular func-
tional area of the application (e.g., access control, passenger management, trip
management, payment, etc.) and exposes a REST API to other microservices or
the clients of the application. For example, the passenger management service
uses the notification service to notify a passenger about an available driver. An
API gateway exposes a public API used by mobile clients or web UIs. We as-
sume that the process flow of the application is specified with Conductor and
is deployed on a cloud platform running the Conductor’s engine.

(i) Model generation and offline verification – This phase tries to deal
with the rapid evolution of microservice systems by formalizing the Conductor
blueprint as a TB nets model, describing both the system under development

2



software 
product

TB net
(S, E)

Requirements
CTL/TCTL

(R)

Graphgen

RV module distributed
application

(i) model generation and verification (ii) runtime verification

Conductor2PnConductor
blueprint

MahaRAJA

Conductor
engine

Fig. 1: High level schema of our envisioned approach.

(S) and the environment (E). Every time a change is made to the process flow,
the formal specification is automatically kept in sync. The translation process
is fully automated by means of the Conductor2Pn component. Our modeling
approach abstracts from functional aspects and looks at each service as a black
box. We use TB net places to represent the state of a worker task (i.e., scheduled,
in progress, timed out, or failed) and transitions to represent both task primitives
and events coming from the surrounding environment. We leverage TB nets’
temporal functions associated with transitions to specify temporal constraints
on scheduling and execution. The proposed formal semantics is complete, i.e.,
covers all the language constructs of Conductor.

As an example, the Conductor blueprint of the taxi-hailing application
contains different worker tasks, among which: Access control (validating user re-
quests); Passenger management (storing and processing passengers data); Driver
management (looking for available drivers near passengers). System tasks1 de-
fine the process flow. For instance, an event handler can be used to elaborate
incoming user requests; a fork task can be used to execute in parallel the Access
control functionality and a search for static contents in a cache service.

The model generation process is fully compositional, relying on the identifi-
cation of translation patterns for the involved microservices (Worker tasks) and
the execution flow (specified by System tasks). The final model is the composi-
tion of the TB net patterns of the microservices and execution flow constructs. It
can be used to perform different verification steps, such as interactive simulation
and model checking, with the aid of Graphgen module. A common property
to check is deadlock/livelock absence. More generally, it is possible to verify
invariant, safety, liveness and bounded-response time properties corresponding
to TCTL formulas [11]. For instance, we can verify whether it is possible to
complete the payment and the billing processes within a certain time bound.

(ii) Runtime verification – A model (re)generated in the previous step can
be also used to perform verification activities at runtime, on the production
infrastructure (the Conductor engine running on a cloud platform). The ob-
jective is to run and monitor several executions in order to stress the system
under scrutiny (SUS) and increase our confidence about its correctness.

1 A list of all the available system tasks can be found in [5].

3



The RV module exploits the MahaRAJA open source tool [9]. This frame-
work supplies the ability to map methods of interests (i.e., action methods) to
TB net transitions. At runtime, the MahaRAJA framework performs a moni-
toring activity through the co-execution of the formal specification (triggered by
running action methods) and the SUS. The monitor continuously evaluates the
conformance of the execution timed trace, observed from the SUS, with respect
to its formal specification. Since the Conductor engine is written in Java, the
MahaRAJA framework can be directly plugged-in to monitor at runtime its
own execution. As an example, different executions of the taxi-hailing applica-
tion can be stimulated by issuing user requests, such as: trip computation for a
given 〈source, destination〉 pair, by a passenger user; pick-up acceptance, by a
driver user. Thus, we verify that the involved services act as expected, within
the temporal constraints defined in the formal specification, by comparing the
observed execution traces with feasible execution paths of the TB net model.

In addition, the RV module can be tuned to distinguish operations under the
control of a tester (i.e., controllable action methods) from operations that can
only be observed (i.e., observable action methods). If the running system is in a
state of quiescence [12], a legal controllable action (e.g., a user request in our taxi-
hailing example) is randomly chosen by applying a user-defined strategy (based
on either fixed or decrementing weights [12]), to automate user interaction. In
order to help assess the quality of the runtime verification activity, we allow the
user to check if certain requirements (i.e., goal states, expressed as reachable
TB net markings) are met and we gather some coverage information in terms of
executed controllable/observable action methods.

Current Stage of the Work – The model generation is implemented by the
Conductor2Pn [13] Java tool. We validated our approach by translating a
variety of benchmarking examples. We are currently in the process of trying it
out on real-world applications. The generated model can be formally verified
using the Graphgen model checker [7, 8, 14]. The RV module, built on top of
MahaRAJA [9], is a prototypal implementation and has not yet been fully val-
idated. So far, it has been employed to monitor the execution of the taxi-hailing
application running on a locally simulated environment. This has permitted us to
discover a number of errors both in the blueprint and the implementation. Most
conceptual errors were early discovered at the design-time, what dramatically
reduced the number of bugs discovered during testing and RV.

3 Related Work

Although descriptive formalisms for distributed systems are very popular, the
adoption of operational specifications offers some advantages with respect to
declarative ones [15]. In fact, most operational models are visual and are usu-
ally easier to write and understand by non expert users. Automata-based for-
malisms support the specification of both behavioral and temporal aspects, but
PN-based models are more concise and scalable [16]. Moreover, aspects like mes-
saging and communication protocols, commonly used in service oriented and

4



microservice-based architectures, are difficult to model using the language prim-
itives of automata-based formalisms [17].

The automatic model generation, during the design phase, is somehow in-
spired by previous studies on Business Process Execution Language (BPEL) for
Web Services [18]. However, these approaches cannot be directly applied in the
context of microservices, where emerging new languages and frameworks, such
as Conductor, are being adopted as major references for orchestration.

Jolie [19] is an interpreter engine of microservice workflows specified by using
a Java-like syntax orchestration language. The supplied formal specifications of
its semantics (in terms of process algebra [20]) can be used for computer-aided
verification. This framework does not support runtime verification on production
infrastructures.

The approach presented in [21] aims at dealing with environmental dynamism
in service-based applications. The proposed modeling approach allows for par-
tial definition of services in order to perform late (i.e., at runtime) incremental
composition, when the execution context is discovered. This approach does not
support formal verification of requirements at design-time.

4 Conclusion and Future Work

This paper describes an ongoing research activity on the application of formal
methods to continuously support the development of microservices based cloud
applications. The approach gets solid foundations from well-established formal
methods and connects them to microservices based process flows. In particular,
we make use of TB nets formalism to support design- to run-time verification of
cloud applications built on top of Conductor.

The design-time phase aims at coping with continuously evolving specifica-
tions by keeping automatically updated the formal specification. The RV phase
provides a way to support integration testing activity in a formal setting by
means of a single software tool, although each service is independent and poten-
tially implemented using different programming languages and technologies.

We are going to validate the RV module with a realistic case study deployed
on a cloud platform. In addition, we are interested in expanding on this work in
different directions. We want to extend the RV module in order to support online
model-based testing with different scenario control techniques [12]. Moreover,
we aim at expanding the translation to stochastic PNs (supporting probabilistic
model checking) to deal with the intrinsic uncertainty of the environment.

References

1. N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomorrow,”
in PAUSE: Present and Ulterior Software Engineering, B. Meyer and
M. Mazzara, Eds. Springer, 2017, to appear. [Online]. Available: https:
//arxiv.org/pdf/1606.04036.pdf

5

https://arxiv.org/pdf/1606.04036.pdf
https://arxiv.org/pdf/1606.04036.pdf


2. “Microservices: a definition of this new architectural term,” https://martinfowler.
com/articles/microservices.html, last visited: June 2017.

3. T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 2005.

4. “Netflix, Inc.” https://www.netflix.com/, last visited: June 2017.
5. “Conductor,” https://netflix.github.io/conductor/, last visited: June 2017.
6. C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezzè, “A unified high-level Petri

net formalism for time-critical systems,” IEEE Trans. Softw. Eng., vol. 17, pp.
160–172, February 1991.

7. M. Camilli, A. Gargantini, and P. Scandurra, “Specifying and verifying real-time
self-adaptive systems,” in 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE), Nov 2015, pp. 303–313.

8. M. Camilli, “Petri nets state space analysis in the cloud,” in Proceedings of the 34th
International Conference on Software Engineering, ser. ICSE ’12. Piscataway, NJ,
USA: IEEE Press, 2012, pp. 1638–1640.

9. M. Camilli, A. Gargantini, P. Scandurra, and C. Bellettini, “Event-based runtime
verification of temporal properties using time basic Petri nets,” in NASA Formal
Methods: 9th Int. Symposium, NFM 2017, Moffett Field, CA, USA, May 16-18,
2017, Proceedings, ser. LNCS, C. Barrett, M. Davies, and T. Kahsai, Eds. Cham:
Springer Int. Publishing, 2017, vol. 10227, pp. 115–130.

10. “Uber Technologies, Inc.” https://www.uber.com/, last visited: June 2017.
11. R. Alur, C. Courcoubetis, and D. Dill, “Model-checking in dense real-time,” Inf.

Comput., vol. 104, no. 1, pp. 2–34, May 1993.
12. M. Veanes, C. Campbell, W. Schulte, and N. Tillmann, “Online testing with model

programs,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 5, pp. 273–282, Sep. 2005.
13. “Conductor2Pn,” https://bitbucket.org/seresearch unimi/conductor2pn, last vis-

ited: June 2017.
14. M. Camilli, C. Bellettini, L. Capra, and M. Monga, “CTL model checking in the

cloud using mapreduce,” in 2014 16th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, Sept 2014, pp. 333–340.

15. H. Liang, J. S. Dong, J. Sun, and W. E. Wong, “Software monitoring through
formal specification animation,” Innovations in Systems and Software Engineering,
vol. 5, no. 4, pp. 231–241, 2009.

16. C. Ramchandani, “Analysis of asynchronous concurrent systems by timed Petri
nets,” Cambridge, MA, USA, Tech. Rep., 1974.

17. W. J. Lee, S. D. Cha, and Y. R. Kwon, “Integration and analysis of use cases
using modular Petri nets in requirements engineering,” IEEE Trans. Softw. Eng.,
vol. 24, no. 12, pp. 1115–1130, Dec. 1998.

18. S. Hinz, K. Schmidt, and C. Stahl, “Transforming BPEL to Petri nets,” in Proc.
of the 3rd Int. Conf. on Business Process Management, ser. BPM’05. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 220–235.

19. F. Montesi, C. Guidi, R. Lucchi, and G. Zavattaro, “JOLIE: a java orchestration
language interpreter engine,” Electr. Notes Theor. Comput. Sci., vol. 181, pp. 19–
33, 2007.

20. W. Fokkink, Introduction to Process Algebra, 1st ed., W. Brauer, G. Rozenberg,
and A. Salomaa, Eds. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2000.

21. A. Bucchiarone, M. De Sanctis, and M. Pistore, Domain Objects for Dynamic and
Incremental Service Composition. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 62–80.

6

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://www.netflix.com/
https://netflix.github.io/conductor/
https://www.uber.com/
https://bitbucket.org/seresearch_unimi/conductor2pn

	Design-time to Run-time Verification of Microservices Based Applications

