
TILINGS OF NORMED SPACES
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Abstract. By a tiling of a topological linear space X we mean a covering
of X by at least two closed convex sets, called tiles, whose nonempty in-
teriors are pairwise disjoint. Study of tilings of infinite-dimensional spaces
initiated in 1980’s with pioneer papers by V. Klee. We prove some general
properties of tilings of locally convex spaces, and then apply these results to
study existence of tilings of normed and Banach spaces by tiles possessing
certain smoothness or rotundity properties. For a Banach space X, our
main results are the following.

(i) X admits no tiling by Fréchet smooth bounded tiles.
(ii) If X is locally uniformly rotund (LUR), it does not admit any tiling

by balls.
(iii) On the other hand, some `1(Γ) spaces, Γ uncountable, do admit a

tiling by pairwise disjoint LUR bounded tiles.

1. Introduction

Let X be a real topological vector space (t.v.s.). A set B ⊂ X will be
called a body if it is closed, convex and has nonempty interior. A tiling of X
is a covering of X by at least two bodies whose interiors are pairwise disjoint.
Members of a tiling are called tiles.

While there exists a wide theory of tilings (and their analogues with not
necessarily convex “tiles”) of finite dimensional spaces, especially the plane,
the infinite dimensional theory is still much less developed, though the first
“infinite dimensional” results appeared already in 1980’s. The present paper
is devoted to the question about existence, in infinite dimensional normed or
Banach spaces, of tilings having some particular properties. Let us briefly
recall main known results.

It is easy to see that some tilings always exist in any locally convex t.v.s. X.
Indeed, if f is a nonzero continuous linear functional on X and T is a tiling of
R then the family B = {f−1(T ) : T ∈ T } is a tiling of X. Each tiling of this
form will be called a trivial tiling.
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2 C.A. De Bernardi and L. Veselý

Notice that no countable tiling can be disjoint (i.e., consisting of pairwise
disjoint tiles) since otherwise a line in X would admit a disjoint covering by
at most countably many and at least two nonempty closed convex sets, which
is known to be impossible (see Fact 3.2 or [3, Theorem 6.1.27]). It follows
that a separable normed space does not admit any disjoint tiling. On the other
hand, some (nonseparable) `1(Γ) does admit a disjoint tiling by balls of the
same positive radius (see V. Klee [8]).

Tilings by bounded (convex) tiles always exist in normed spaces. In 1997,
V.P. Fonf, A. Pezzotta and C. Zanco [6] proved that every normed space X
admits a tiling by bounded bodies each of which contains a ball of a certain
fixed positive radius. Subsequently, A. Marchese and C. Zanco [12] showed
that each normed space X admits a tiling by bounded bodies such that each
point of X belongs to at most two of them. Since this tiling is “point-finite”,
a natural question arises: can such a tiling be always taken locally finite, in
the sense that each point of X has a neighborhood intersecting only finitely
many tiles? An answer is contained in a paper by Fonf [5] who showed that a
separable Banach space admits a locally finite tiling by bounded bodies if and
only if X is isomorphically polyhedral. For nonseparable Banach spaces X it
is only known that if X contains an infinite dimensional closed subspace non
containing c0 then X does not admit any locally finite tiling by bounded bodies;
this follows from a generalization, due to Fonf and Zanco [7], of a theorem of
Corson (1961).

A tiling B is said to be equi-bounded below and above if there exist two
constants 0 < r < R <∞ such that each member of B contains a ball of radius
r and is contained in a ball of radius R. Already in 1986, V. Klee [9] showed
that some nonseparable Hilbert spaces admit tilings that are equi-bounded below
and above. The case of the separable (infinite dimensional) Hilbert space was
settled only in 2010 by D. Preiss [13] in the positive: `2 admits a tiling which is
equi-bounded below and above. An interesting open problem is: which Banach
spaces admit such tilings?

Our interest is devoted to the question of existence of (nontrivial) tilings by
bodies that have a kind of smoothness or rotundity properties. The first such
result, due to Klee and Tricot [11], affirms that a tiling of a Banach space by
bounded tiles each of which is either smooth or rotund has to be uncountable.
In particular, a separable Banach space admits no tiling by smooth or rotund
bounded bodies. The only related known fact for nonseparable Banach spaces
follows from results in [10] and says: if X is a uniformly rotund or uniformly
smooth Banach space then it does not admit any tiling by balls which would be
either disjoint or bounded below (i.e., having radii bounded away from zero).

In the present paper, after proving some general results on tilings in locally
convex t.v.s. (Section 3), we show that Banach spaces do not admit nontriv-
ial tilings by Fréchet smooth bodies, and normed spaces do not admit disjoint
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tilings by Fréchet smooth bodies (see Theorem 4.2 and Corollary 4.3). Con-
cerning existence of tilings by locally uniformly rotund (LUR) bodies, we show
on the one hand that a LUR Banach space does not admit any tiling by balls,
and a LUR normed space does not admit any disjoint tiling by balls; on the
other hand, some nonseparable `1(Γ) admits a disjoint tiling by bounded cen-
trally symmetric LUR bodies (see Section 5). This last construction is based
on the above mentioned Klee’s construction in [8]. We also show that some
geometric conditions, concerning a single point of the unit sphere of a Banach
space, imply nonexistence of tilings by balls whose radii are bounded away
from zero; see Subsection 4.3.

2. Notations and preliminaries

Throughout this paper, all normed, Banach or topological vector spaces are
real and at least two-dimensional.

Let X be a normed space with dual X∗. By BX and SX we denote the
closed unit ball and the unit sphere of X, respectively. The polar set of a set
A ⊂ X is the set A◦ = {f ∈ X∗ : f(a) ≤ 1 for each a ∈ A}.

Let B ⊂ X be a body, that is, a closed convex set with nonempty interior.
A point x ∈ ∂B is a smooth point of B if the set

DB(x) = {f ∈ SX∗ : f(x) = sup f(B)}
is a singleton. If c ∈ intB, B0 = B − c and x0 = x − c, it is standard to see
(and well-known for balls) that x is a smooth point of B if and only if the
Minkowski functional pB0 of B0 is Gâteaux differentiable at x0. We say that
x is a Fréchet smooth point of B if pB0 is Fréchet differentiable at x0. (It is
standard to see that this definition does not depend on the choice of c.)

We say that x ∈ ∂B is a LUR (locally uniformly rotund) point of B if for
each ε > 0 there exists δ > 0 such that if y ∈ ∂B and dist(∂B, (x+ y)/2) < δ
then ‖x − y‖ < ε. If B = BX , this definition coincides with the standard
definition of local uniform rotundity of the norm at x.

We say that a body B is smooth, Fréchet smooth, or LUR if each boundary
point of B is a smooth, Fréchet smooth, or LUR point of B, respectively.

For f ∈ SX∗ and α ∈ [0, 1), we consider the closed convex cone

C(α, f) = {x ∈ X : f(x) ≥ α‖x‖}.
Notice that C(α, f) has nonempty interior.

Observation 2.1. Let B ⊂ X be a body, x ∈ ∂B. If x is a Fréchet smooth
point of B then there exists f ∈ SX∗ with the following property: for each
α > 0 there exists ε > 0 such that

(1) [x− C(α, f)] ∩ [x+ εBX ] ⊂ B .

(Also the converse is true, but we shall need only the above implication.)
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4 C.A. De Bernardi and L. Veselý

Proof. Assume without any loss of generality that 0 ∈ int B. Let g be
the Fréchet derivative of pB at x, and f := g

‖g‖ . Then pB(x) = 1 and

lim‖h‖→0
pB(x+h)−pB(x)−g(h)

‖h‖ = 0. Consequently, for each α > 0 there exists

ε > 0 such that pB(x+h)−1−‖g‖f(h) ≤ α‖g‖‖h‖ whenever h ∈ εBX . Thus,
for h ∈ [−C(α, f)]∩ εBX , we obtain pB(x+ h) ≤ 1 + ‖g‖f(h) + α‖g‖‖h‖ ≤ 1,
and hence x+ h ∈ B. This completes the proof. �

Definition 2.2. Let B ⊂ X be a body, x ∈ ∂B and ε > 0. We say that x is
an ε-cone smooth point of B if there exists f ∈ SX∗ such that

[x− C(1
7
, f)] ∩ [x+ εBX ] ⊂ B ,

that is, (1) holds for α = 1/7. We denote by ε-CS(B) the set of all ε-cone
smooth points of B. We say that x ∈ ∂B is a cone smooth point of B if it is
an ε-cone smooth point of B for some ε > 0. Moreover, we say that B is cone
smooth if each x ∈ ∂B is a cone smooth point of B.

Lemma 2.3. Let f, g ∈ SX∗, α, β, δ > 0, and y ∈ δβBX . Suppose that

α + β + αβ < 1
2

and inf g
(
y + [C(α, f) ∩ δ(1 + β)BX ]

)
≥ 0 .

Then ‖g − f‖ ≤ 2(α + β + αβ).

Proof. By homogeneity, we can (and do) suppose that δ = 1. Put γ = α +
β + αβ. For each x ∈ C(γ, f) ∩ SX , we have ‖x− y‖ ≤ 1 + β and f(x− y) ≥
γ − β = α(1 + β) ≥ α‖x − y‖. This shows that C(γ, f) ∩ SX is contained in
y + [C(α, f) ∩ (1 + β)BX ]. Hence by our assumption, inf g(C(γ, f) ∩ SX) ≥ 0.
Since C(γ, f) is a cone, we obtain that inf g(C(γ, f)) = 0. Now, [2, Lemma 1.1]
(based on the “Parallel Hyperplane Lemma”) implies that ‖g−f‖ ≤ 2γ, which
completes the proof. �

3. General results on tilings

In the present section, if not specified otherwise, X denotes a real topological
vector space (t.v.s., for short).

Given a body B ⊂ X, a point x ∈ ∂B is called a conical [resp. flat] point
of B if the set (in fact, a convex cone)

⋃
t>0 t(B − x) is closed [resp. is a

closed halfspace]. The body B is plump [resp. flat] if each of its conical [resp.
boundary] points is flat.

Let us specify that the terms nonconical point and nonflat point refer only
to boundary points of the body. By the way, these two notions are equivalent
for plump bodies.

Recall that a hereditarily Baire space is a topological space whose all non-
empty closed subspaces are Baire spaces.

Let x be a boundary point of a body B. The following simple facts hold.
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(α) x is a flat point of B if and only if there exists a (necessarily unique)
supporting hyperplane H to B at x such that x ∈ a-intH(B ∩ H),
where a-intH(B ∩ H) is the relative algebraic interior (or “core”) of
B ∩H in H.

(β) If X is hereditarily Baire then in (α) we can write intH(B ∩H), the
topological relative interior of B ∩H in H, instead of a-intH(B ∩H).

(γ) Hence if x is a flat point of B then x is a smooth point (Fréchet smooth
point if X is a Banach space) of B.

(δ) Each smooth conical point is a flat point (see also [11, 1.3]); and, in
normed spaces, each LUR point is a nonconical point. Hence if each
boundary point of B is either a smooth or a LUR point then B is
plump.

As usual, by “arbitrarily near to x” we mean “in any neighborhood of x”.
The following lemma is based on [11, 2.1].

Lemma 3.1. Let x be a common boundary point of two bodies B,B′ ⊂ X
whose interiors are disjoint.

(i) If x is a nonconical point of B, then arbitrarily near to x there exists
a nonflat point of B that does not belong to B′.

(ii) If X is hereditarily Baire and x is a flat point of both B,B′, then x
belongs to A := int(B ∪ B′) and all boundary points of B or B′ that
belong to A are flat.

Proof. (i) Let H be a closed hyperplane through x that separates B and B′.
By 2.1 in [11], arbitrarlily near to x there exist nonflat points of B that do not
belong to H. This shows (i). Part (ii) follows easily from the observation (β)
above. �

A tiling of X is a covering of X by at least two bodies whose interiors
are pairwise disjoint. A disjoint tiling is a tiling whose members are pairwise
disjoint. A point x ∈ X is a singular point for a tiling B if each neighborhood
of x meets infinitely many members of B. The points of

⋃
B∈B ∂B that are not

singular are called regular points.
A tiling B is plump if each of its members is plump. Smooth tiling, Fréchet

smooth tiling, LUR tiling, etc. are defined in an analogous way. We say that
B has no common flat points if no point of X is a flat point of two distinct
members of B. A trivial tiling has been defined in Introduction.

The following simple fact is well known; we sketch a proof of it for sake of
completeness.

Fact 3.2. Each disjoint covering of R by at least two nonempty closed convex
subsets of R is uncountable. In particular, R admits no disjoint tiling.
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6 C.A. De Bernardi and L. Veselý

Proof. Suppose that B is such a covering and that B is countable. Then the
set S :=

⋃
I∈B ∂I is a countable closed (nonempty) set. It is easy to see that

S has no isolated points. On the other hand, a direct application of the Baire
category theorem to the complete metric space S =

⋃
s∈S{s} gives existence

of an isolated point of S. This contradiction completes the proof of the first
part. The second part holds by separability. �

Lemma 3.3. Let U ⊂ X be an open convex set, and B ⊂ X a body whose
boundary intersects U . Assume that each point of ∂B ∩U is a flat point of B.
Then each connected component of ∂B∩U is of the form H ∩U where H ⊂ X
is a closed hyperplane.

Proof. For x ∈ ∂B ∩ U , let Hx be the unique supporting hyperplane to B at
x. We claim that Hx ∩ U ⊂ ∂B. Indeed, if this is not the case, there exists
y ∈ (Hx ∩ U) \ B; then [x, y] ∩ B = [x, z] for some z ∈ (x, y) ⊂ Hx ∩ U , but
this is impossible since clearly z is a non-flat point of B.

Assume without any loss of generality that 0 ∈ int B, and let us consider
the function θ : ∂B ∩ U → X∗ such that, for x ∈ ∂B ∩ U , θ(x) is the unique
functional of X∗ such that

[θ(x)](x) = 1 = sup[θ(x)](B).

By the claim above, the map θ is locally constant, and hence it is constant on
each connected component of ∂B ∩ U . �

Lemma 3.4. Let U ⊂ X be an open convex set. Let En ⊂ X, n ∈ N, be
closed halfspaces intersecting U , such that En ∩ U ⊂ En+1 ∩ U for each n.
Then either C :=

⋃
n∈N(En ∩U) contains U , or the set ∂C ∩U is of the form

H ∩ U where H ⊂ X is a closed hyperplane.

Proof. Suppose that U \ C 6= ∅. By our monotonicity assumption, the set C
is convex. Notice that also the set U \ C =

⋂
n∈N(U \ En) is convex. Since

int (C ∩U) 6= ∅, there exists a closed hyperplane H ⊂ X that separates C ∩U
and U \ C. Since the union of the latter two sets is U and they belong to
opposite halfspaces determined by H, either of the two sets must contain the
relative interior in U of one of the two opposite halfspaces. This easily implies
the assertion. �

For simplicity of formulation, if E,F, U are sets and E ∩ U = F ∩ U , we
shall say that E coincides with F in U .

Theorem 3.5. Let B be a tiling of a locally convex metrizable t.v.s. X, B a
member of B, and x ∈ ∂B a non-flat point of B. Then at least one of the
following three conditions is satisfied.

(a) x belongs to at least three different members of B.
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(b) x belongs to two different members B,B′ of B and, in some neighbor-
hood of x, B ∪B′ coincides with a closed halfspace.

(c) Arbitrarily near to x there exist non-flat boundary points of members
of B non containing x.

Proof. Assume the contrary, that is, all (a),(b),(c) are false. In particular,
Bx := {C ∈ B : x ∈ C} contains at most two elements (one of which is
B), and there exists an open convex neighborhood U of x in which the only
non-flat boundary points of members of B belong to some element of Bx.

We claim that arbitrarily near to x there are points of members of B \ Bx.
This is clear if Bx = {B}. Let Bx contain also some B′ 6= B. If our claim is
false, B ∪ B′ contains a neighborhood V of x. But this easily implies that,
in such a neighborhood V , the set B (and B′, too) coincides with a closed
halfspace, contradicting the assumption that x is a non-flat point of B.

Now, observe that if C ∈ B \ Bx then, by Lemma 3.3, each component of
∂C ∩ U coincides in U with a closed hyperplane.

Fix a sequence {Cn} ⊂ B \ Bx such that the distances d(x,Cn) tend de-
creasingly to 0. By the above observation, for each n ∈ N, there exists a
closed hyperplane Hn such that Hn ∩U ⊂ ∂Cn, and Hn separates Cn ∩U and
Cn+1 ∩ U , as well as Cn ∩ U and (

⋃
Bx) ∩ U . Let En be the closed halfspace

such that ∂En = Hn and Cn ∩ U ⊂ En. Since the sets En ∩ U form an in-
creasing sequence which does not cover U , Lemma 3.4 implies that the relative
boundary of

⋃
n∈N(En ∩ U) in U is of the form H ∩ U where H is a closed

hyperplane. Clearly, H is a supporting hyperplane to B at x, and (
⋃
Bx)∩U

is contained in one of the two closed halfspaces, say G, determined by H.
If Bx = {B} then, in any neighborhood of x, B does not coincide with

G, since x is a non-flat point. If Bx = {B,B′} (with B′ 6= B) then, in any
neighborhood of x, B ∪ B′ does not coincide with G, since (b) is false. This
means that, arbitrarily near to x, there exists a boundary point y of some
D ∈ B \ Bx such that y ∈ intG. Notice that, for each such D, D ∩ U is
contained in G since it is disjoint from each Cn ∩ U (n ∈ N).

Proceeding as above, we can find a sequence {Dn} ⊂ B \ Bx and closed
halfspaces Fn, n ∈ N, such that:

• ∂Fn ∩ U ⊂ ∂Dn;
• ∂Fn separates Dn∩U and Dn+1∩U , as well as Dn∩U and (

⋃
Bx)∩U ;

• Dn ∩ U ⊂ Fn;
• the sequence {Fn ∩ U} is increasing and contained in G.

Now, Lemma 3.4 again implies that the relative boundary of
⋃
n∈N(Fn ∩U) in

U is of the form H ′∩U where H ′ is a closed hyperplane through x. Moreover,
H ′ ∩ U ⊂ G. But x ∈ ∂G ∩ H ′ ∩ U easily implies that H ′ = ∂G (= H).

So we obtain that B ∩ U ⊂ G and also B ∩ U ⊂
⋂
n∈N(U \ Fn) ⊂ X \G,
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8 C.A. De Bernardi and L. Veselý

and consequently B ∩ U ⊂ H, which is impossible since B is convex and has
nonempty interior. This contradiction completes the proof. �

Definition 3.6 ([1]). Let B be a body in a t.v.s. X. We say that x is a
QP-point of B iff there exists a neighborhood V of x such that [x, y] ⊂ ∂B
whenever y ∈ V ∩ ∂B.

We shall need the following simple lemma. (By the way, it is strictly con-
nected with [11, Theorem 5.1] and with the easy implication in the following
result of V.P. Fonf [5]: a separable Banach space admits a locally finite tiling
by bounded bodies if and only if it is isomorphically polyhedral.)

Lemma 3.7. Let B be a tiling of a t.v.s. X, and let x ∈
⋃
B∈B ∂B be a regular

(i.e., non-singular) point for B. Then x is a QP-point of each member of B
that contains x. In particular, if x is contained in only two members of B then
x is a flat QP-point for both of them.

Proof. Assume that x = 0 and denote B0 = {B ∈ B : 0 ∈ B}. Since B0 is
finite, it is easy to see that 0 ∈ int(

⋃
B0) (see also [9, Theorem 1.1]). Let

V ⊂ X be a balanced (i.e., starshaped w.r.t. 0) open neighborhood of 0 such
that V ⊂ int(

⋃
B0). Notice that the sets B∩V (B ∈ B0) form a finite “tiling”

of V . Now, fix arbitrary B ∈ B and y ∈ ∂B ∩ V . Then necessarily y ∈ B′

for some B′ ∈ B0 \ {B}, and hence [0, y] ⊂ B ∩ B′ ⊂ ∂B. This shows that
0 is a QP-point of B. Finally, if B0 = {B,B′}, let V be as above and let H
be a closed hyperplane through x that separates B and B′. Notice that then
necessarily ∂B ∩ V = ∂B′ ∩ V = H ∩ V . The proof is complete. �

The following theorem is the main result of the present section. Given a set
E ⊂ X and a neighborhood V of the origin, we write

diam(E) ≺ V

to say that x − y ∈ V whenever x, y ∈ E. Thus if X is a normed space then
diam(E) ≺ εBX is the same as diam(E) ≤ ε.

Theorem 3.8. Let B be a tiling of a locally convex t.v.s. X. Assume that at
least one of the following conditions is satisfied:

(i) B is disjoint;
(ii) X is completely metrizable, B is plump and nontrivial;
(iii) X is completely metrizable, B has no common flat points.

Then B is uncountable. Moreover, if

P := {(x,B) : B ∈ B, x ∈ ∂B} =
⋃
n∈NPn where P1 ⊂ P2 ⊂ . . . ,

then there exists m ∈ N with the following property:
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(∗) for each neighborhood V of 0 there exist three couples (xi, Bi) ∈ Pm,
i = 1, 2, 3, such that the bodies Bi are pairwise distinct and
diam{x1, x2, x3} ≺ V .

Proof. (i) Let B be a disjoint tiling of X. Let Y ⊂ X be a straight line
intersecting at least two members of B, and let B′ = {B ∩Y : B ∈ B, B ∩Y 6=
∅}. Since B′ is a disjoint cover of Y by nonempty closed convex sets, B′ (and
hence also B) is uncountable by Fact 3.2. Since Y is separable, the family
B′′ = {B ∈ B′ : intYB 6= ∅} is at most countable. Hence C := {B ∈ B :
#(B∩Y ) = 1} is uncountable. For n ∈ N, let Cn be the collection of all B ∈ C
such that B ∩ Y = {x} and (x,B) ∈ Pn. Since C =

⋃
n Cn, there exists m ∈ N

such that Cm is uncountable. The set M :=
⋃
B∈Cm(B ∩ Y ) is uncountable,

and hence it has an accumulation point w ∈ Y . Then arbitrarily near to w we
can find three distinct points x1, x2, x3 ∈M . Let B1, B2, B3 ∈ Cm be such that
xi ∈ ∂Bi (i = 1, 2, 3). Then B1, B2, B3 are pairwise distinct, (xi, Bi) ∈ Pm for
i = 1, 2, 3, and diam{x1, x2, x3} “can be taken arbitrarily small”. Thus (i) is
proved.

(ii) Let X be completely metrizable and let B be a nontrivial plump tiling
of X. Let us use the following notations.

(2)

Bx := {B ∈ B : x ∈ B} (x ∈ X),

ηB := {x ∈ ∂B : x is a nonflat point of B} (B ∈ B),

ηB :=
⋃
B∈B ηB , S :=

⋃
B∈B ∂B .

Notice that S is closed in X. If ηB = ∅ then each element of B is flat; in this
case, Lemma 3.3 (with U = X) easily implies that B is a trivial tiling. Hence
we have that ηB 6= ∅, and the closure ηB is a Baire space.

Suppose that B is countable. Then ηB =
⋃
B∈B(ηB ∩ ∂B), and hence there

exist B0 ∈ B, x ∈ ηB∩ ∂B0 and a convex open neighborhood U of x such that
ηB ∩ U ⊂ ∂B0. Clearly, x cannot be a flat point of B0; indeed, otherwise we
can suppose that, in U , the body B0 coincides with a closed halfspace, and
then ηB ∩ U = ∅, which is impossible. Thus x ∈ ηB0. In this case, one of the
conditions (a),(b) in Theorem 3.5 must hold. It is easy to see that this implies
existence of some B1 ∈ B such that x ∈ ηB1. Notice that x is a nonconical
point of B1 since B1 is plump. By Lemma 3.1(i), there exists a nonflat point of
B1 contained in U \B0. But this contradicts the choice of x. We have proved
that B is uncountable.

Now, let us show the second part of (ii). If some x ∈ S belongs to three
distinct B1, B2, B3 ∈ B, there exists m ∈ N such that (x,Bi) ∈ Pm for all
i ∈ {1, 2, 3}, and then (∗) trivially holds with x1 = x2 = x3 = x.
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10 C.A. De Bernardi and L. Veselý

So, let us suppose that each x ∈ S belongs to at most two members of B.
Then ηB =

⋃
n∈NAn where

An = {x ∈ ηB : (x,B) ∈ Pn whenever B ∈ Bx} .
Since ηB is a Baire space, there is m ∈ N such that Am has nonempty relative
interior in ηB. That is, there exist x1 ∈ Am and a convex open neighborhood
U of x1 such that U ∩ ηB ⊂ Am. By Lemma 3.1(ii), x1 cannot be a common
flat point of two distinct elements of Bx1 . Thus either x1 is a nonflat point of
some B1 ∈ Bx1 , or Bx1 = {B1} and x1 is a flat point of B1.

Case 1: x1 ∈ ηB1. Since we must have either (b) or (c) in Theorem 3.5,
arbitrarily near to x1 there exists a nonflat point x of some B ∈ B \ {B1}.
If x ∈ B1, we can apply Lemma 3.1(i) to find, arbitrarily near to x, a point
x′ ∈ ηB \ B1. So we can always suppose that x ∈ U \ B1, and hence x ∈ Am.
Arbitrarily near to x there exists x2 ∈ Am ∩ (U \B1).

Case 2: Bx1 = {B1} and x1 /∈ ηB1. Since x1 ∈ ηB and all points sufficiently
near to x1 are flat for B1, arbitrarily near to x1 we can find a nonflat point x
of some B ∈ B \ {B1}. Proceeding as in Case 1, we get that arbitrarily near
to x there exists x2 ∈ Am ∩ (U \B1).

In both Case 1 and 2, fix B2 ∈ Bx2 . Now, considering an open convex
neighborhood U ′ of x2 such that U ′ ⊂ U \B1, we can proceed as above to find,
arbitrarily near to x2, a point x3 ∈ Am∩(U ′\B2). Fix B3 ∈ Bx3 and notice that
the bodies B1, B2, B3 are pairwise distinct, (xi, Bi) ∈ Pm for i = 1, 2, 3, and
diam{x1, x2, x3} “can be taken arbitrarily small”. This completes the proof of
part (ii).

(iii) Let X be completely metrizable and let B be a tiling that has no
common flat points. We shall use the above notations (2). Assume that B
is countable. Then S =

⋃
B∈B ∂B is a Baire space (since it is closed), and

hence there exists B0 ∈ B for which ∂B0 has nonempty relative interior in S.
That is, there exist x ∈ ∂B0 and a convex open neighborhood U of x such
that U ∩ S ⊂ ∂B0. We can (and do) suppose that U ∩ ∂B0 is connected,
and so U \ ∂B0 has two components. Hence there exists B1 ∈ B \ {B0} such
that U ⊂ B0 ∪ B1. It follows that U ∩ ∂B0 = U ∩ ∂B1 is contained in a
closed hyperplane and hence x is a common flat point of B0 and B1. This
contradiction shows that B must be uncountable.

Now, as in (ii), if some x ∈ S belongs to three distinct members of B, we
are immediately done. So, let us assume that #Bx ≤ 2 for each x ∈ S. For
n ∈ N, denote An = {x ∈ S : (x,B) ∈ Pn whenever B ∈ Bx}, and notice that
S =

⋃
n∈NAn. Hence, for some m ∈ N, Am has nonempty relative interior

in S, that is, there exist x1 ∈ Am and a convex open neighborhood U of x1

such that U ∩ S ⊂ Am. We claim that x1 is necessarily a singular point of B.
Indeed, if not, we can apply Lemma 3.7 to obtain that Bx1 = {B0, B1} with
B0 6= B1, and x1 is a common flat point of B0, B1, which is impossible.
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Thus x1 is a singular point of B. Fix B1 ∈ Bx1 . Then arbitrarily near to x1

there exists x ∈ ∂B ∩ U with B ∈ B \ {B1}; and arbitrarily near to x there
exists x2 ∈ Am \ B1. Fix B2 ∈ Bx2 and notice that B2 6= B1. Now, arbitrarily
near to x1 find x′ ∈ ∂B′ with x′ ∈ B \ {B1, B2}; and arbitrarily near to x′ find
x3 ∈ Am \ (B1 ∪ B2). Fix B3 ∈ Bx3 . Then B1, B2, B3 are pairwise distinct,
(xi, Bi) ∈ Pm for i = 1, 2, 3, and diam{x1, x2, x3} “can be taken arbitrarily
small”. This proves (iii), and we are done. �

Corollary 3.9 (cf. [11]). Let B be a countable plump tiling of a locally convex
completely metrizable t.v.s. Then B is trivial.

4. Applications to normed and Banach spaces

In what follows, X is a normed space.

4.1. Smoothness-type prohibitive conditions.
For the definition of ε-CS(B) see Section 2.

Lemma 4.1. There exists a constant H ∈ (0, 1) such that if ε > 0, B1, B2, B3

are convex bodies in X with pairwise disjoint interiors and xi ∈ ε-CS(Bi)
(i = 1, 2, 3), then diam({x1, x2, x3}) > Hε.

Proof. We claim that our lemma holds with H = 1/51. Put α = 1/7 and
β = 1/50, and notice that

γ := α + β + αβ = 29
175

< 1
6
.

By homogeneity, we can (and do) suppose that ε = 1 + β = 51/50. Then
Hε = 1/50.

Now, assume that the assertion is false, i.e., diam({x1, x2, x3}) ≤ Hε = β.
Let fi ∈ SX∗ (i = 1, 2, 3) be such that

Ki := xi − [C(α, fi) ∩ (1 + β)BX ] ⊂ Bi .

Since the bodies K1, K2, K3 have pairwise disjoint interiors, for each i, j ∈
{1, 2, 3}, i < j, there exists gij ∈ SX∗ such that sup gij(−Kj) ≤ inf gij(−Ki),
that is,

inf gij
(
(xj−xi)+[C(α, fi)∩ (1+β)BX ]

)
≥ sup gij

(
[C(α, fj)∩ (1+β)BX ]

)
≥ 0.

By Lemma 2.3, ‖gij−fi‖ ≤ 2γ. In a similar way we obtain ‖gij+fj‖ ≤ 2γ. But
now, since 2f1 = (f1−g12)+(f2+g12)−(f2−g23)−(f3+g23)+(f3+g13)+(f1−g13),
we obtain 2 = ‖2f1‖ ≤ 6 · 2γ < 2, a contradiction. �

Theorem 4.2. Let B be a tiling of a normed space X. Assume that at least
one of the following conditions is satisfied:

(i) B is disjoint;
(ii) X is complete, B is plump and nontrivial;
(iii) X is complete, B has no common flat points.
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12 C.A. De Bernardi and L. Veselý

Then B is not cone smooth.

Proof. Let us suppose on the contrary that B is cone smooth. Let P be as in
Theorem 3.8 and, for each n ∈ N, let

Pn := {(x,B) : B ∈ B, x ∈ (1/n)-CS(B)}.
Then P1 ⊂ P2 ⊂ . . . , moreover, since B is cone smooth, P =

⋃
nPn.

Now, let H be the constant from Lemma 4.1. By Theorem 3.8, there exist
m ∈ N and three couples (xi, Bi) ∈ Pm, i = 1, 2, 3, such that the bodies
Bi are pairwise distinct and diam{x1, x2, x3} < H/m. But this contradicts
Lemma 4.1. �

Now, since Fréchet smooth bodies are cone smooth (see Section 2) and
plump (see (δ) in Section 3), we immediately obtain the following

Corollary 4.3. Let B be a Fréchet smooth tiling of a Banach space X. Then
B is trivial. In particular, X does not admit any Fréchet smooth tiling by
bounded bodies.

4.2. Rotundity-type prohibitive conditions for ball tilings.
We shall need the following elementary observation. As usual, if c, y ∈ X

are two distinct points then (c, y) denotes the relatively open line segment with
endpoints c, y, that is, (c, y) = {(1− t)c+ ty : 0 < t < 1}.
Observation 4.4. Given B = B(c, r), y ∈ ∂B, and 0 < ρ < r, there exists
B′ = B(c′, ρ) such that c′ ∈ (c, y), B′ ⊂ B and y ∈ ∂B′.
Lemma 4.5. Let X be a normed space, α > 0, ε ≥ 0, and B0, B1, B2 ⊂ X
three balls of radius at least α, whose interiors are pairwise disjoint. Consider
three points yi ∈ ∂Bi, i = 0, 1, 2, and denote x0 = y0−c0

‖y0−c0‖ where c0 is the center

of B0. If diam{y0, y1, y2} ≤ αε then

(3) diam
{
y ∈ SX : ‖x0 + y‖ ≥ 2− ε

}
≥ 2− 2ε .

Proof. By homogeneity and by Observation 4.4, we can assume that α = 1 and
the three balls have unit radius and that diam{y0, y1, y2} ≤ ε . We can also
assume that c0 = 0, so that x0 = y0. For i = 1, 2, let ci be the center of Bi, and
denote zi = ci−x0 and z̄i = zi

‖zi‖ . Since zi = (ci−yi)+(yi−y0) and ‖ci−yi‖ = 1,

we have 1−ε ≤ ‖zi‖ ≤ 1+ε, and hence ‖z̄i−zi‖ ≤ ε. Since x0 + z̄i = (ci−c0)+
(z̄i−zi) and ‖ci−c0‖ ≥ 2, we have ‖x0+z̄i

2
‖ ≥ 1− ε

2
, and hence the points z̄1, z̄2

belong to the set from (3). Finally, since z̄1−z̄2 = (c1−c2)+(z̄1−z1)+(z2−z̄2),
we obtain that ‖z̄1− z̄2‖ ≥ ‖c1−c2‖+‖z̄1−z1‖+‖z2− z̄2‖ ≥ 2−2ε, completing
the proof. �

Definition 4.6. We shall say that x ∈ SX is a locally non-D2 (or LND2) point
of BX if there exists δ > 0 such that

(4) diam
{
y ∈ SX : ‖x+y

2
‖ ≥ 1− δ

}
< 2 .

Author’s Draft: To be published in the Canadian Journal of Mathematics http://dx.doi.org/10.4153/CJM-2015-057-3

Copyright (c) 2015 Canadian Mathematical Society. All rights reserved.



Tilings of normed spaces 13

In the above definition, “D2” stands for “diameter 2”. Notice that each
LUR point of BX is clearly a LND2 point.

Theorem 4.7. Let B be a tiling by balls of a normed space X. Assume that
at least one of the following conditions is satisfied:

(i) B is disjoint;
(ii) X is a Banach space and B is plump;
(iii) X is a Banach space and B has no common flat points.

Then there exists x ∈ SX such that x is neither a cone smooth point nor a
LND2 point of BX .

The proof is similar to the proof of Theorem 4.2.

Proof. Let us suppose on the contrary that this is not the case, that is, each
x ∈ SX is either a cone smooth point or a LND2 point of BX . If B ∈ B let us
denote by rB and cB the radius and the center of B, respectively. Let P be as
in Theorem 3.8 and, for each n ∈ N, let Pn ⊂ P be the set of all couples (x,B)
such that rB ≥ 1/n and at least one of the following two conditions holds:

(a) diam
{
y ∈ SX : ‖ x−cB

‖x−cB‖
+ y‖ ≥ 2− 1

n

}
< 2− 2

n
;

(b) x ∈ 1
n
-CS(B).

Clearly P1 ⊂ P2 ⊂ . . . , and P =
⋃
nPn.

Let H be the constant from Lemma 4.1. By Theorem 3.8, there exists m ∈ N
and three couples (xi, Bi) ∈ Pm, i = 1, 2, 3, such that diam{x1, x2, x3} < H/m2

and the balls Bi (i = 1, 2, 3) are pairwise distinct and with radii at least 1/m.
Now, it sufficies to consider the following two cases.

Case 1: xi ∈ 1
m

-CS(Bi) for each i = 1, 2, 3. This case is impossible by
Lemma 4.1 since diam{x1, x2, x3} < H/m2 ≤ H/m.

Case 2: diam
{
y ∈ SX :

∥∥ x1−cB1

‖x1−cB1
‖ + y

∥∥ ≥ 2− 1
m

}
< 2− 2

m
. Since

diam{x1, x2, x3} < H/m2 < 1/m2 ,

Lemma 4.5 (with α = 1
m

) gives that diam
{
y ∈ SX :

∥∥ x1−cB1

‖x1−cB1
‖+y

∥∥ ≥ 2− 1
m

}
≥

2− 2
m
, which is a contradiction. �

Since each LUR point is a LND2 point, and each Fréchet smooth point is a
cone smooth point, we obtain the following corollary.

Corollary 4.8. Let B be a tiling by balls of a normed space X. Assume that
either B is disjoint or X is complete. Then there exists x ∈ SX such that x is
neither a Fréchet smooth point nor a LUR point of BX . In particular, a LUR
Banach space admits no tiling by balls, and a normed LUR space admits no
disjoint tiling by balls.
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14 C.A. De Bernardi and L. Veselý

4.3. One-point prohibitive conditions for large-ball tilings.
Now we are going to consider tilings by balls whose radii are bounded away

from 0. Let us recall two well known geometrical notions. Given a norm-one
functional f ∈ X∗, a slice of BX , determined by f , is any set of the form

S(f, δ) = {y ∈ BX : f(y) > 1− δ} where δ ∈ (0, 1).

A point x ∈ SX is said to be a strongly exposed point of BX if there exists a
norm-one f ∈ X∗ such that f(x) = 1 and diam(S(f, δ))→ 0 as δ → 0+.

Theorem 4.9. Let X be a normed space, suppose that at least one of the
following conditions holds:

(a) there exists x ∈ SX such that X is LND2 at x, and x is not a QP-point
for BX ;

(b) there exists a LUR point in SX ;
(c) there exists a Fréchet smooth point x ∈ SX , which is not a QP-point

for BX , and the unique norm-one functional fx ∈ X∗ that supports
BX at x determines a slice Σ of BX with diam(Σ) < 2;

(d) there exists a Fréchet smooth point x ∈ SX which is a strongly exposed
point of BX .

Then X admits no tiling by balls with radii bounded away from 0.

Proof. Let B be a tiling of X by balls with radii bounded away from 0. We
can (and do) suppose that BX ∈ B.

First assume (a). Let x ∈ SX be such that X is LND2 at x and such
that x is not a QP-point for BX . By Lemma 3.7, x is a singular point for B.
Thus there exist a sequence {Bn} of pairwise distinct elements of B \ {BX},
and points yn ∈ ∂Bn such that yn → x. Fix an arbitrary δ > 0. Since
diam{x, yn, yn+1} → 0, we can apply Lemma 4.5 to deduce that, for each
ε ∈ (0, 2δ), we have

diam{y ∈ SX : ‖x+ y‖ ≥ 2− 2δ} ≥ diam{y ∈ SX : ‖x+ y‖ ≥ 2− ε} ≥ 2− 2ε .

It follows that diam{y ∈ SX : ‖x+y
2
‖ ≥ 1 − δ} = 2 for each δ > 0. But this

contradicts the fact that x is a LND2 point for BX , and part (a) is proved.
Moreover, since each LUR point x ∈ SX satisfies (a), part (b) immediately
follows.

Now assume (c). By the first part of the proof of part (a), diam{y ∈ SX :
‖x+y

2
‖ ≥ 1− δ} = 2 for each δ > 0. This easily implies existence of a sequence

{yn} ⊂ SX such that ‖x+yn
2
‖ → 1, and diam({yn}n≥n0) = 2 for each n0 ∈ N.

By convexity of the norm, for each n ∈ N there exists zn ∈ (x, yn) such that
‖zn‖ = min{‖z‖ : z ∈ [x, yn]}. It is not difficult to see that

‖zn‖ ≥ ‖x+ yn‖ − 1
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(indeed, if z′n ∈ (x, yn) is such that zn+z′n
2

= x+yn
2

, then ‖x+ yn‖ = ‖zn + z′n‖ ≤
‖zn‖+1). For each n ∈ N, let fn ∈ X∗ be a norm-one functional that separates
‖zn‖BX and [x, yn]; clearly,

fn(zn) = ‖zn‖ = fn(x) = fn(yn).

Notice that ‖zn‖ → 1, that is, fn(x)→ 1. Since x is a Fréchet smooth point of
BX , we have that fn → fx in the norm topology (see, e.g., [4, Corollary 7.22]).
It follows that fx(yn)→ 1. In particular, yn belongs to Σ for each sufficiently
large n, and hence diam(Σ) ≥ 2. This contradicition proves (c). Finally, part
(d) follows easily from part (c). Our theorem is proved. �

5. A LUR disjoint tiling of `1(Γ)

In this section we show that, for some suitable uncountable set Γ, the Banach
space `1(Γ) admits a disjoint tiling by bounded LUR bodies. Our construc-
tion is based on a construction by V. Klee [8] of a disjoint tiling of `1(Γ) by
translates of the unit ball. Let us start with some preliminary work.

Let Γ be a nonempty set and let us denote by ‖ · ‖i the canonical norm of
`i(Γ) (i = 1, 2). For x ∈ `1(Γ), let us define ‖x‖ = (‖x‖2

1 + ‖x‖2
2)1/2. It is

known that ‖ · ‖ is an equivalent LUR norm on `1(Γ) ([4, Lemma 13.26]).
In what follows, let M > 4

√
2 be a fixed constant. For γ ∈ Γ and x ∈ `1(Γ),

let us define

‖x‖γ1 =
∑

β∈Γ\{γ}

|x(β)|+ 1

M
|x(γ)| ,

‖x‖γ2 =
( ∑
β∈Γ\{γ}

|x(β)|2 +
1

M2
|x(γ)|2

)1/2

,

‖x‖γ =
[(
‖x‖γ1

)2
+
(
‖x‖γ2

)2
]1/2

.

It is easy to see that (`1(Γ), ‖ · ‖γ) and (`1(Γ), ‖ · ‖) are linearly isometric, and
hence ‖ · ‖γ is an equivalent LUR norm on `1(Γ).

As usual, B‖·‖ and S‖·‖ denote the closed unit ball and the unit sphere of
a norm ‖ · ‖. Notice that the polar set (B‖·‖)

◦ is the corresponding dual unit
ball. We shall need the following fact, the easy proof of which is left to the
reader.

Fact 5.1. Let x ∈ S‖·‖γ , and f ∈ `∞(Γ). Assume that f = a1f1 + a2f2, where
fi ∈ (B‖·‖γi )

◦ (i = 1, 2), and a1, a2 ∈ R are such that a2
1 + a2

2 ≤ 1. Then:

(a) f ∈ (B‖·‖γ )
◦;

(b) if ai = fi(x) = ‖x‖γi (i = 1, 2) then f(x) = 1 = sup f(B‖·‖γ ).
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16 C.A. De Bernardi and L. Veselý

Let {eβ}β∈Γ denote the canonical basis of `1(Γ). Let us define

zγ :=
(
M/
√

2
)
eγ (γ ∈ Γ).

It is elementary to see that

‖zγ‖γ1 = ‖zγ‖γ2 = 1/
√

2 and ‖zγ‖γ = 1 (γ ∈ Γ).

Lemma 5.2. Let γ0 and γ1 be two distinct elements of Γ. Let x ∈ S‖·‖γ0 be
such that x(γ1) = 0. Then there exists f ∈ `∞(Γ) \ {0} such that f(x) =
sup f(B‖·‖γ0 ) and f(zγ1) = sup f(B‖·‖γ1 ).

Proof. Let us define f1, f2, f ∈ `∞(Γ) as follows.

f1(γ) =


sign[x(γ)]/M if γ = γ0,

1 if γ = γ1,

sign[x(γ)] if γ 6= γ0, γ1;

f2(γ) =


x(γ)/[M2‖x‖γ02 ] if γ = γ0,

0 if γ = γ1,

x(γ)/‖x‖γ02 if γ 6= γ0, γ1;

f = ‖x‖γ01 f1 + ‖x‖γ02 f2 .

An easy calculation shows that:

• f1 ∈ (B‖·‖γ01 )◦ and f1(x) = ‖x‖γ01 ;

• f2 ∈ (B‖·‖γ02 )◦ and f2(x) = ‖x‖γ02 ;

• f(x) = 1 = sup f(B‖·‖γ0 ) by Fact 5.1.

It remains to show that sup f(B‖·‖γ1 ) = f(zγ1). Let us define g1, g2, g ∈ `∞(Γ)
as follows.

g1(γ) =

{
1/M if γ = γ1,

2f(γ)/[‖x‖γ01 M ] if γ 6= γ1;

g2(γ) =

{
1/M if γ = γ1,

0 if γ 6= γ1;

g = ‖zγ1‖
γ1
1 g1 + ‖zγ1‖

γ1
2 g2 =

(
1/
√

2
)
(g1 + g2).

Since ‖ · ‖γ01 ≥ ‖ · ‖
γ0
2 , we easily obtain ‖ · ‖γ01 ≥ ‖ · ‖γ0/

√
2. Moreover, since

|f(γ)| ≤ 2 (γ ∈ Γ), we have 2|f(γ)|
‖x‖γ01 M

≤ 2
√

2
M
|f(γ)| ≤ 4

√
2

M
≤ 1. This easily implies

that g1 ∈ (B‖·‖γ11 )◦.

It is also easy to verify that g2 ∈ (B‖·‖γ12 )◦, and gi(zγ1) = 1/
√

2 = ‖zγ1‖
γ1
i

(i = 1, 2). Using Fact 5.1, we obtain

g(zγ1) = 1 = sup g(B‖·‖γ1 ).
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To finish the proof, notice that f(γ1) = ‖x‖γ01 and g(γ1) =
√

2
M

. Now it is easy

to verify that f = M√
2
‖x‖γ01 g, and hence f(zγ1) = sup f(B‖·‖γ1 ). �

Lemma 5.3. Let γ0 and γ1 be two distinct elements of Γ. Let xγ1 be an
element of `1(Γ) \B‖·‖γ0 such that xγ1(γ1) = 0. Then the sets B0 := B‖·‖γ0 and
B1 := xγ1 + zγ1 +B‖·‖γ1 are disjoint.

Proof. Since xγ1(γ1) = 0, by Lemma 5.2, there exists f ∈ `∞(Γ) \ {0} such
that

f(zγ1) = sup f(B‖·‖γ1 ) = − inf f(B‖·‖γ1 ) and sup f(B0) = f(
xγ1

‖xγ1‖γ0
).

Since ‖xγ1‖γ0 > 1 and clearly f(xγ1) > 0, we obtain

sup f(B0) = inf f
( xγ1
‖xγ1‖γ0

+ zγ1 +B‖·‖γ1
)
< inf f(B1),

which proves that B0 and B1 are disjoint. �

Let us recall that Γ is a regular cardinal if Γ is a cardinal such that each
cofinal subset of Γ has the same cardinality as Γ. (A set A ⊂ Γ is called cofinal
with Γ if each element of Γ is less or equal to some element of A.) It is known
that there exist arbitrarily large infinite regular cardinals Γ such that Γℵ0 = Γ
(see [8]); such cardinals are clearly uncountable. Given a set M , we denote by
|M | its cardinality.

Theorem 5.4. Let I be a cardinal such that Iℵ0 = I. Then `1(I) admits a
disjoint tiling C by centrally symmetric bounded LUR bodies.

Proof. Let us proceed in two steps.
STEP1. Let Γ be a regular cardinal such that Γℵ0 = Γ. Put X := `1(Γ). We

shall show that X admits a disjoint tiling B by centrally symmetric bounded
LUR bodies.

Proceeding as in the proof of [8, Theorem 1.2], it is not difficult to show
that if K is an infinite cardinal then |`1(K)| = Kℵ0 . Then |X| = Γ and hence
we may assume that X is well-ordered by an antireflexive relation ≺ as to be
order-isomorphic with Γ.

For β ∈ Γ, denote Xβ = {x ∈ X : x(γ) = 0 ∀γ ≥ β}. Let us inductively
construct families Bβ (β ∈ Γ). For α = min Γ, we define

xα = 0, yα = zα, Bα := {yα +B‖·‖α}

(recall that zα = Meα/
√

2 ).
Now, let β ∈ Γ \ {α}, and assume that the families Bγ have been already

defined for all γ < β. Put Yβ =
⋃
γ<β(

⋃
Bγ).

(i) If Xβ ⊂ Yβ, define Bβ =
⋃
γ<β Bγ ;
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(ii) if else, let xβ be the first point of Xβ \ Yβ, and define

Bβ =
(⋃
γ<β

Bγ
)
∪ {yβ +B‖·‖β} where yβ = xβ + zβ.

We shall show that the family B =
⋃
β∈Γ Bβ has the desired properties.

First of all, let us show that the elements of B are pairwise disjoint. Indeed,
let B0 = yβ0 + B‖·‖β0 and B1 = yβ1 + B‖·‖β1 be two distinct elements of B
(with β0, β1 ∈ Γ). By our construction, we may suppose that β0 < β1, xβ1 /∈
yβ0 + B‖·‖β0 and xβ1(β1) = 0. Since xβ1(β1) = xβ0(β1) = zβ0(β1) = 0 and
xβ1 − xβ0 − zβ0 /∈ B‖·‖β0 , we can apply Lemma 5.3 to conclude that B‖·‖β0 and
(xβ1 − xβ0 − zβ0) +B‖·‖β1 are disjoint. It follows that B1 and B2 are disjoint.

It remains to show that B covers X. Suppose that this is not the case and
let w be the first element of X \

⋃
B. Put L = {x ∈ X : x ≺ w}. Since L is

covered by B, for each v ∈ L there exists βv ∈ Γ such that v ∈ yβv + B‖·‖βv .
Let us consider the set A ⊂ Γ defined by

A := supp(w) ∪
⋃
v∈L

[
supp(v) ∪ supp(yβv)

]
(here supp(u) denotes the support of u ∈ X). Notice that

|A| ≤ (2|L|+ 1) · ℵ0 = max{|L|,ℵ0} < Γ.

Since Γ is regular and |A| < Γ, A is not cofinal in Γ. Thus there exists δ ∈ Γ
such that β < δ for each β ∈ A. Clearly, w ∈ Xδ \ (

⋃
B) ⊂ Xδ \ Yδ.

We claim that w is the first element of Xδ \Yδ. Indeed, if v ∈ L, then βv ∈ A
and βv < δ, which implies that v ∈ yβv +B‖·‖βv ⊂

⋃
Bβv ⊂ Yδ.

But this means that w = xδ ∈ (yδ + B‖·‖δ) ∈ B, which is a contradiction
that concludes the proof of the first step.

STEP2. To prove the general case, we proceed as in the proof of [9, The-
orem 3.2]. Given our cardinal I, consider Γ := (2I)+, the successor of the
cardinal 2I. By [8, Remark 1.1], Γ is regular and Γℵ0 = Γ. By Step 1, `1(Γ)
admits a disjoint tiling B by centrally symmetric bounded LUR bodies. For
each B ∈ B let cB be its center of symmetry.

Let I0 = I ⊂ Γ and C0 = ∅. Let us inductively construct Iβ ⊂ Γ and Cβ ⊂ B
for β < ω1. Assume that Iγ and Cγ have been already defined for all γ < β.
If β is a limit ordinal, define Cβ =

⋃
γ<β Cγ and Iβ =

⋃
γ<β Iγ. If β = α + 1,

define

Cβ = {B ∈ B; B ∩ `1(Iα) 6= ∅}, Iβ = Iα ∪
⋃
B∈Cβ

supp(cB).

We claim that |Iβ| = I and |Cβ| ≤ I for each β < ω1. Let us prove our claim
by induction. Clearly it holds for β = 0. Now, assume that |Iα| = I = Iℵ0 and
|Cα| ≤ I hold for each α < β. If β is a limit ordinal then we have I ≤ |Iβ| ≤

Author’s Draft: To be published in the Canadian Journal of Mathematics http://dx.doi.org/10.4153/CJM-2015-057-3

Copyright (c) 2015 Canadian Mathematical Society. All rights reserved.



Tilings of normed spaces 19

ℵ0I = I and |Cβ| ≤ ℵ0I = I. For β = α+ 1, we have |Cβ| ≤ |`1(Iα)| = |Iα|ℵ0 = I,
and hence also |Iβ \ Iα| ≤ ℵ0|Cβ| ≤ I which implies that |Iβ| = I. The claim is
proved.

Now, define J =
⋃
β<ω1

Iβ. Clearly, |J| ≤ ℵ1I = I and hence |J| = I. Let

C ′ =
⋃
β<ω1
Cβ and C = {B ∩ `1(J) : B ∈ C ′}. Then C is a disjoint tiling of

`1(J) by centrally symmetric bounded LUR bodies. We are done since `1(J)
and `1(I) are isometrically isomorphic. �

Remark 5.5. (a) Let us remark that, under the generalized continuum hy-
pothesis, our assumption Iℵ0 = I holds for every uncountable cardinal I.

To see this, first suppose that I = K+ (the successor of a cardinal K). Then
I = 2K and hence Iℵ0 = 2K·ℵ0 = 2K = I. Now, assume that I is not a successor
cardinal; hence 2K < I whenever K < I. As usual, we can identify any ordinal
K with the smallest ordinal of cardinality K, and hence also with the interval
[0,K) of ordinals. Since I is uncountable, every sequence in [0, I) is contained
in [0,K) for some infinite cardinal K < I. Hence

I ≤ Iℵ0 ≤
∑

ω0≤K<I

Kℵ0 ≤
∑

ω0≤K<I

(2K)ℵ0 =
∑

ω0≤K<I

2K ≤ I · I = I ,

and we are done.
(b) On the other hand, it follows by [8, Proposition 3.5] that if `1(ℵ1) admits
a disjoint tiling then we have ℵ1 = 2ℵ0 , the continuum hypothesis.

References

[1] D. Amir and F. Deutsch, Suns, moons, and quasi-polyhedra, J. Approx. Theory 6
(1972), 176–201.
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